WO2010140774A2 - 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법 - Google Patents

데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법 Download PDF

Info

Publication number
WO2010140774A2
WO2010140774A2 PCT/KR2010/002745 KR2010002745W WO2010140774A2 WO 2010140774 A2 WO2010140774 A2 WO 2010140774A2 KR 2010002745 W KR2010002745 W KR 2010002745W WO 2010140774 A2 WO2010140774 A2 WO 2010140774A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
data
analysis method
analysis
information
Prior art date
Application number
PCT/KR2010/002745
Other languages
English (en)
French (fr)
Other versions
WO2010140774A3 (ko
Inventor
권요셉
박치열
노국필
이태훈
최종순
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2010140774A2 publication Critical patent/WO2010140774A2/ko
Publication of WO2010140774A3 publication Critical patent/WO2010140774A3/ko
Priority to US13/309,038 priority Critical patent/US20120109533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins

Definitions

  • the present invention relates to a method for analyzing a protein using a mass spectrometer, and more specifically, to analyze a protein by precisely re-validating a protein analyzed by a data independent analysis (MS E ) using a data dependency analysis (DDA). It is about a method.
  • Proteomics is the field of comprehensive study of which proteins are expressed and how they change in cells or tissues. Proteomics began with the breakthrough in mass spectrometry since the 90's, when a database of amino acid sequences of proteins was established and made available.
  • proteomics Unlike conventional protein biochemistry, which analyzes individual proteins independently, proteomics has very different characteristics in terms of volume, speed, automation of isolation, and interoperability with genomic / protein DB information.
  • Proteomics is a large-scale, multi-step, high-speed analysis technique that studies whole proteins in the cell, so the subject is also subject to expression, function, structure, and posttranslational modification (PTM) and related proteins. Because it focuses on protein-protein interactions, it is more complex than genomics and the amount of data is huge. According to the proteomics, it is possible to analyze and understand the binding and function of the physiological state of the cell. Therefore, it is possible to study the mechanism of disease development by analyzing post translational modifications and binding partners of proteins, which are not known only by genetic information, and using them directly for diagnosis and treatment. Will be.
  • a protein mixture separated in a cell is cut into a peptide by a predetermined method, a mass spectrum of the peptide is obtained by using a mass spectrometer, and the protein is quantitatively analyzed by comparing the results with an existing database. Done.
  • the data obtained from the mass spectrometer and the sequence of each protein registered in the data bank NCBI, EXPASY, ETS, etc.
  • Mass spectrometers are called by different names depending on the ionization source and mass spectrometer (detector).
  • ESI electrospray ionization
  • MALDI matrix assists laser desorption ionization
  • ESI easily ionizes liquid samples, making it easy to connect directly to separation methods such as liquid chromatography.
  • MALDI mixes the matrix with the sample, dries it into crystals, and then causes ionization by a laser.
  • mass spectrometers include ion trap, time of flight (TOF), quadrupole (Q), and Fourier transform ion cyclotron resonance (FT-ICR). Etc., which are used alone or in combination of two or more in the form of tandem (serial) mass spectrometer.
  • TOF time of flight
  • Q quadrupole
  • FT-ICR Fourier transform ion cyclotron resonance
  • the triple quadrupole of the tandem mass spectrometer is an analyzer made by connecting three quadrupole type analyzers (Q 1 , Q 2 and Q 3 ) in series. In the center Q 2 , the injected neutral gas collides with the sample ions and fragments. Triple quadrupoles operate in two ways: scan mode and fragmentation mode. 1 In the scan mode , only the Q 1 analyzer is activated so that all implanted ions with m / z values are recorded and mass analysis of all ions is possible within one second. 2 In fragmentation mode , all of Q 1 , Q 2 and Q 3 are used.
  • Q 1 mass filter
  • Q 2 mass filter
  • DDA Data Dependent Analysis
  • the DDA method has the advantage that only the substance in the sample corresponding to the given information can be analyzed by inputting the information of the exact retention time and the mass value (m / z).
  • a small amount of peptide (not able to generate fragments) cannot be analyzed because a substance having a large observed size of ions of the peptide is likely to be analyzed.
  • the MS E method produces peptide fragments irrespective of the height of the observed ions, which is more advantageous for relatively small amount of peptide analysis.
  • the MS E method can only analyze proteins in Waters' Proteininex Global Searver (PLGS), which is not suitable for MASCOT, which researchers use most.
  • PLGS Waters' Proteininex Global Searver
  • MASCOT MASCOT
  • it has the strong advantage that even a small amount of protein in the sample can be analyzed.
  • blood proteins account for 98% of 23 proteins, with the remaining 2% having the biomarkers we want to see.
  • a lot of blood samples can not be obtained, there is a limit to the concentration.
  • the MS E -DDA method proposed in the present invention is a method already known separately for the MS E and DDA method, but by overcoming the advantages and disadvantages of the two methods will be able to analyze and verify the chemical changes of trace proteins and trace proteins. This is possible by combining peptide analysis without quantitative discrimination of MS E with highly selective analysis of DDA. By providing the minimum information optimized from MS E to DDA, more reliable protein information can be verified.
  • the present invention seeks to provide a method for quickly and easily detecting and qualitatively detecting a modified protein using a mass spectrometer.
  • the present invention is to provide a method that can quickly and easily detect and identify trace proteins present in the sample using a mass spectrometer and information utilizing a protein database.
  • the present invention for solving the above problems, the protein quantitative qualitative analysis method using a mass spectrometer, (A) pretreatment of the protein mixture; (B) obtaining retention time and mass value information of the peptides through data-independence analysis; (C) quantitatively quantifying protein first by searching a database (PLGS) based on the residence time and mass value information; (D) extracting information about a predetermined protein from the residence time and mass value information; (E) performing data dependency analysis using the information extracted in (D); (F) quantitatively quantifying the protein by searching a database (MASCOT) based on the residence time and mass value information obtained from (E); And (G) comparing the results of (C) with the results of (F) to verify the quantitative crystallization of the protein.
  • a protein quantitative analysis method comprising a data independence analysis method and a data dependency analysis method comprising a It is about.
  • the present invention also provides a protein quantitative analysis method using a mass spectrometer, comprising the steps of: (A) selecting a protein of interest with reference to a protein database; (B) estimating the theoretical retention time and mass value of said protein peptide of interest with reference to a protein database; (C) performing data dependency analysis utilizing the estimated information; And (D) searching the protein database based on the results of (C) to determine whether the analyzed protein is a protein of interest selected in (A).
  • the present invention relates to a complex protein quantitative analysis method.
  • the mass spectrometer is preferably a triple quadrupole mass spectrometer.
  • the protein may be a protein present in a trace amount in a cell, for example, a membrane protein.
  • the protein may be a post-translationally modified protein (PTM), for example, a protein containing cysteine.
  • PTM post-translationally modified protein
  • the present invention also relates to a program for performing the protein quantitative qualitative analysis method and a storage medium in which the program is stored.
  • the present invention relates to a method for analyzing proteins by precisely re-validating proteins analyzed by data independence analysis (MS E ), as shown in FIG. 1, using data dependency analysis (DDA).
  • MS E data independence analysis
  • DDA data dependency analysis
  • the present invention relates to a program that can perform a method for analyzing proteins by precisely re-validating proteins analyzed by data independence analysis (MS E ), primarily by data dependency analysis (DDA).
  • MS E data independence analysis
  • DDA data dependency analysis
  • Peptide fragments generated from data-independent methods can provide information even when relatively small amounts are present in a sample.
  • the present invention is to obtain the information of the peptides to be analyzed by comparing the results analyzed by the previously developed data-independent method with previously calculated biological information.
  • the information obtained can be inserted into a data dependency analysis mode to generate peptide fragments that we want to use to analyze and verify proteins.
  • the biological information used was found to be effective for relatively small amounts of protein. If there are relatively few proteins, there is a high probability that the analysis will not be performed properly with the existing data-dependent methods. Therefore, the method of the present invention can be used to analyze proteins that are relatively inferior in analysis.
  • Mass spectrometry allows for quick and easy detection and qualitative analysis of modified proteins
  • the method according to the invention makes it possible to quickly and effectively obtain chemical modifications of proteins of industrial and academic importance, ie post translational modification (PTM) information of proteins.
  • PTM post translational modification
  • FIG. 1 is a flow chart showing a protein identification and validation process according to the present invention.
  • Figure 2 is a program screen (A) showing the application status of the include list extracted the peptide information containing the cysteine in accordance with the method of the present invention and a chart (B) showing the distribution of the include list.
  • FIG. 3 is a diagram illustrating a result of TIC by applying an include list to a DDA mode in an embodiment of the present invention.
  • FIG. 4 is a diagram showing a comparison of the number of proteins searched by the present invention and the number of proteins searched by the conventional method.
  • Figure 5 is a diagram showing the distribution of the include list for the membrane protein in an embodiment of the present invention.
  • Figure 6 is a chart showing the comparison of the information of the membrane protein analyzed by the embodiment of the present invention, and the information of the membrane protein analyzed by the prior art.
  • FIG. 7 is a diagram showing the difference between peptide information utilized in the method (MS E -DDA) and the conventional method (DDA) according to the present invention when searching for a specific protein Slr0906.
  • the list containing the specific residence time and mass information is called the " include list " and this information will be used in the DDA analysis mode for the analysis of specific proteins.
  • a program that can conveniently create an include list by taking the retention time and the mass value of the peptide used to analyze the protein from the protein information obtained from MS E.
  • the inclusion list used when revalidating depends on the implications of the proteins obtained from the MS E assay.
  • the protein containing cysteine is selected from the protein information obtained from MS E , and the peptide information used in the analysis can be collected to generate an include list.
  • Raw data obtained from the triple experiments were processed in PLGS, and peptide and fragmentation tolerance were searched for proteins using sprot database in automatic mode.
  • the include list was prepared by calculating residence time and ion order for proteins including peptide sequences including Cystein among the EMRT information generated through MS E experiments (see FIG. 2).
  • TIC Total Ion Chromatography
  • LC developing solvent and flow rate used in the DDA experiments were the same as the data-independent experiments.
  • Each sample was injected with 5 ⁇ l through an autosampler and the salt was removed from the C18 trapping column and concentrated.
  • 100 fmol / ml glu-fibrino peptide B was injected into the internal standard at a rate of 600 nL / min and ionized.
  • Mass spectrometry was programmed to scan the m / z 50-1990 region in V mode and fragment up to three precursor ions.
  • the first to third graphs show the results of fragmentation by selecting the mass values present in the include list
  • the fourth graph is the TIC showing the results of 150 minutes of treatment (chromatography).
  • the protein database uses IPI_mouse_v3.44.fasta. Carbamidomethylation (C) and N_ethylmaleimide were used as variable modifications, and peptide peptides were searched for 100 ppm and ms / ms tolerance 0.2 Da (Fig. 4).
  • MS E results were analyzed by PLGS and MS E -DDA and DDA were retrieved using MASCOT.
  • 88 proteins were identified when only the information containing Cystein was extracted and analyzed by the MS E method, which shows a significantly different aspect than when analyzed only in DDA mode.
  • N-ethyl maleimide chemically labeled on cysteine which was the object of the present invention, was confirmed by this high score and confirmed that it can be sufficiently utilized for a specific PTM analysis. This shows that the EMRT table obtained from MS E is reliable and based on this information, automatic generation of include list works effectively.
  • the present invention analyzes membrane proteins present in a relatively small amount by a data-independent method, and then extracts only membrane protein information to perform data dependency analysis. Verification was possible.
  • the Synechocytosis Protein Database contains a total of 3661 protein information, including TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) and Signal P 3.0 (http://www.cbs.dtu.dk/services / SignalP /) were used to extract a total of 706 membrane protein information.
  • the extracted membrane protein information was stored and used as a text file.
  • Raw data including fragment information of peptides obtained from three replicates were processed in PLGS to search for proteins in the sprot database. Protein search conditions were fragment tolerance 100 ppm, MS / MS rolerance 0.1 Da, Enzyme trypsin, Missed cleavages 1, Fixed modification Cabamidomethylation (C), Variable modification Oxidation (M).
  • the include list of the distribution shown in FIG. 5 was extracted by using the program prepared above. 5 shows the extracted distribution and is actually used in the form of a text file.
  • the x-axis is the retention time in the analysis column and the y-axis is the mass value.
  • Each point on the graph represents the retention time and mass values of the peptides derived from the membrane protein.
  • the LC developing solvent and flow rate used in the data dependency experiments were the same as the data independent experiments.
  • Each sample was injected with 5 ⁇ l through an autosampler and the salt was removed from the C18 trapping column and concentrated.
  • 100 fmol / ml glu-fibrino peptide B was injected into the internal standard at a rate of 600 nL / min and ionized.
  • Mass spectrometry was programmed to scan the m / z 50-1990 region in V mode and fragment up to three precursor ions.
  • Membrane proteins were analyzed according to the method according to the invention (MS E- DDA assay) and the prior art methods (MS E , DDA assay) (FIG. 6).
  • the black bar graph is a data dependency analysis analyzed with include list information, and the red bar graph has no include list information. Data dependency analysis.
  • MS E -DDA shows a higher database score as shown in the graph, with more than a double improvement. This is because the experiment proceeds without quantitative loss because the peptide information is given at a more accurate time. In addition, the number of analyzed proteins also shows that MS E -DDA is higher than DDA.
  • FIG. 7 A is a result of SIC (Selected Ion Chromatography) of a peptide corresponding to 8 peptide information as analyzed through MS E -DDA.
  • SIC Select Ion Chromatography
  • FIG. 7 B can be seen that four peptide information was used as part of the data from the DDA method to analyze the same protein. The reason why the number of peptides used to analyze the same protein is different is whether or not it is based on data independence analysis results.
  • MS E -DDA utilizes more accurate peptide information, more peptide information is utilized to analyze specific proteins. Therefore, the phenomenon of increasing the score of the protein can be seen. Since higher scores are indicative of improved reliability of the analyzed protein, protein validation through the MS E -DDA method may be useful.
  • the present invention it is possible to easily detect, quantitatively and qualitatively analyze a modified protein and a small amount of protein in a sample, which is very useful for cell signaling research and drug development.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 질량분석기를 이용하여 단백질을 분석하는 방법에 관한 것으로서, (A) 단백질 혼합물을 전처리하는 단계; (B) 데이터 비의존성 분석을 통해 펩타이드의 체류시간 및 질량값 정보를 획득하는 단계; (C) 상기 체류시간 및 질량값 정보를 바탕으로 데이터베이스(PLGS)를 검색하여 1차로 단백질을 정량정성하는 단계; (D) 상기 체류시간 및 질량값 정보로부터 소정의 단백질에 관한 정보를 추출하는 단계; (E) 상기 (D)에서 추출된 정보를 활용하여 데이터 의존성 분석을 수행하는 단계; (F) 상기 (E)로부터 얻어진 체류시간 및 질량값 정보를 바탕으로 데이터베이스(MASCOT)를 검색하여 상기 단백질을 2차로 정량정성하는 단계; 및 (G) 상기 (C)의 결과와 상기 (F)의 결과를 비교분석하여 상기 단백질의 정량정석을 검증하는 단계; 를 포함하는 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법에 관한 것이다.

Description

데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법
본 발명은 질량분석기를 이용하여 단백질을 분석하는 방법에 관한 것으로서, 보다 상세하게는 데이터 비의존성 분석법(MSE)으로 분석된 단백질을 데이터 의존성 분석법(DDA)으로 정밀하게 재검증하여 단백질을 분석하는 방법에 관한 것이다.
프로테오믹스(proteomics; 단백질체학)는 세포 혹은 조직에서 어떤 단백질들이 발현되며 어떤 변화를 보여주는지 종합적으로 연구하는 분야이다. 프로테오믹스는 90년대 이후 질량분석법의 획기적 발전과 더불어 단백질들의 아미노산 서열에 대한 데이터베이스가 구축되고, 이의 활용이 가능해지면서 시작되었다.
개별 단백질을 독립적으로 분석하던 통상의 단백질 생화학과는 달리 프로테오믹스는 연구대상의 볼륨, 속도, 분리수단의 자동화 및 게놈/단백체 DB정보와의 연동성 측면에서 매우 다른 특성을 지닌다. 프로테오믹스는 세포내 전체단백질을 연구하는 대형 스케일의 다단계 고속 분석 기술이므로 연구대상도 단백체의 발현(expression), 기능(function), 구조(structure) 및 생합성후 구조변형(posttranslational modification: PTM)과 관련 단백질간의 결합성(protein-protein interaction)에 초점을 두고 있기 때문에 유전체학보다 복잡하며 데이터양도 방대하다. 프로테오믹스에 의하면 세포의 생리상태변화에 따른 결합성과 기능을 분석하고 파악할 수 있다. 따라서 이를 활용하여 유전자 정보만으로는 알 수 없는 단백질의 이성구조(isoform), 인산화 등의 수식화(post translational modification)와 결합 파트너 등을 분석함으로써 질병의 발생기작을 연구하고, 그의 진단이나 치료에 직접 활용할 수 있게 된다.
일반적으로 프로테오믹스에서는, 세포 내에서 분리된 단백질 혼합물을 소정의 방법으로 절단하여 펩타이드로 만들고 질량분석기를 이용하여 펩타이드의 질량스펙트럼을 얻고, 이 결과와 기존의 데이터베이스를 비교하는 방법으로 단백질을 정량정성분석하게 된다. 즉, 질량분석기로부터 얻어진 데이터와 데이터 은행(NCBI, EXPASY, ETS 등)에 등록된 각 단백질들의 서열을 이용하여 가상적인 단편화를 통하여 예측된 테이터들을 비교 검토함으로써 시료 내에 존재하는 단백질들을 동정하는 것이다. 이에 의하면 검색 결과로 바로 유전체 및 유전자 서열 데이터 은행으로 연결되어 유전자정보를 얻을 수 있을 뿐만 아니라, 데이터 은행에 등록되는 단백질 정보량이 기하급수적으로 증가하고 있으므로 매우 유용하다.
질량분석기는 이온화원과 질량분석관(검출기)에 따라 여러 가지 이름으로 불린다.
시료 단백질이나 펩타이드를 이온화시키는 방법으로는 전기분무이온화법(electrospray ionization; ESI)과 매트릭스상레이저탈리이온화법(matrix assists laser desorption ionization; MALDI)이 대표적으로 이용되고 있다. ESI는 액체상의 시료를 이온화시키는 방식으로 액체크로마토그래피 같은 분리 방법과 직접 연결이 용이하다. MALDI는 매트릭스와 시료를 혼합한 후 건조시켜 결정으로 만든 다음 레이저에 의해 이온화가 일어나도록 한다.
현재 널리 사용되는 질량분석관으로 이온트랩(ion trap), 비행시간형(time of flight; TOF), 사극자형(quadrupole; Q), 그리고 퓨리에변환이온공명형(fourier transform ion cyclotron resonance; FT-ICR) 등이 있는데, 단독으로 또는 두 개 이상을 조합하여 탄뎀(직렬)질량분석기 형태로 사용된다.
탄뎀질량분석기 중 삼중사극자는 사극자형 분석관 3개(Q1, Q2, Q3)를 직렬로 연결하며 만들어진 분석기이다. 가운데 위치하는 Q2에서는 주입된 중성가스가 시료이온과 충돌하여 이온들이 단편화된다. 삼중사극자는 스캔모드와 단편화모드 두 가지 방식으로 운전된다. ① 스캔모드에서는 Q1 분석기만이 작동되어 주입된 모든 m/z값을 지니는 이온들이 기록되며, 1초 이내에 전체 이온의 질량분석이 가능하다. ② 단편화모드에서는 Q1, Q2, Q3 모두 사용된다. Q1(질량필터)은 사극자에 가해지는 전압이 어느 특정 m/z값만을 가지는 이온만 통과되도록 조절(필터링)되고 통과된 이온은 충돌실(Q2)로 넘어간다. 충돌실로 들어온 이온은 아르곤 가스와 충돌하여 단편화된다. 단편화된 이온들은 Q3로 들어가 질량 대 전하비로 분리되어 검출기에 기록된다.
이러한 삼중사극자 분석기를 활용한 분석론 중의 하나가 데이터의존성분석(Data Dependent Analysis; DDA)법이다. DDA법은, 스캔모드(MS)로 시료 중의 모든 펩타이드 이온에 대한 질량 대 전하량(m/z) 값을 얻고, 이어서 단편화모드(MS/MS)로 펩타이드를 단편화하여 단편화된 이온에 대한 질량 대 전하량(m/z) 값을 얻는 방식이다. 이때 MS 와 MS/MS가 교차되어 데이터(스펙트럼)를 생성하게 된다.
DDA 분석법은 정확한 체류시간(retention time)과 질량값 (m/z)의 정보를 입력하면 주어진 정보에 해당하는 시료중의 물질만 분석할 수 있는 장점이 있다. 그러나 펩타이드의 이온의 관찰된 크기가 큰 물질들이 분석될 확률이 높아 적은 양의 펩타이드의 경우 (절편을 생성하지 못하여) 분석되지 못하는 단점이 있다.
한편, 최근 DDA와는 개념이 다른 펩타이드 정보를 얻는 방법론으로 고충돌 에너지와 저충돌에너지를 동시에 적용시키는 데이터 비의존성 분석법(High/low collision energy MS ; MSE) 가 알려졌다. 이 또한 삼중극자 분석기에서 적용되며, DDA가 데이터 의존성 분석법이라면 MSE는 데이터 비의존성 분석법이라고 할 수 있다. MSE법은 단위 시간에 들어온 모든 펩타이드를 동시에 충돌기체와 충돌시켜 단편화시키고, 혼합된 펩타이드 절편 정보를 펩타이드의 액상 크로마토그래피의 체류시간과 얻어진 질량값의 패턴을 연동시켜 분석에 활용될 MS/MS 스펙트럼 정보를 생성하는 방식이다.
이러한 MSE법은 DDA법과는 달리, 관찰된 이온의 높이와는 무관하게 펩타이드 절편을 생성하므로 상대적으로 적은 양의 펩타이드 분석에 보다 유리하다. 그러나 MSE법은 Waters사의 PLGS(Proteinlynx Global Searver)에서만 단백질을 분석할 수 있으며, 연구자들이 가장 많이 이용하는 MASCOT 등에는 적합하지 못한 형식이라는 단점이 있다. 그러나 시료 중의 함량이 미량인 단백질이라도 분석할 수 있다는 강력한 장점을 가지고 있다. 예를 들어, 혈액 단백질은 23종의 단백질이 98% 를 차지하며 나머지 2%에 우리가 보고자 하는 바이오마커가 있는 것으로 생각하고 있다. 이러한 미량의 단백질을 분석하기 위해서는 양적으로 많은 단백질을 제거하여 미량의 단백질을 농축하는 과정을 거쳐야 한다. 하지만 혈액샘플은 많이 얻을 수 없어 농축도 한계가 있다. 또한, 막단백질의 경우 대부분 양적으로 풍부한 세포질 내부의 단백질이 오염되어 막단백질 분석을 방해하게 된다. 이는 기존에 주로 활용하던 DDA 방법이 양적으로 우세한 펩타이드를 먼저 분석하기 때문에 겪는 어려움인 것이다. DDA 방법을 사용하여 분석하더라도 농축되어 있으며 컬럼에서 고효율로 분리가 일어난다면 좋은 분석결과를 기대 할 수 있다. 그러나 여러 가지 방법들의 개발에도 불구하고 미량 단백질의 분석 및 검증은 우리가 겪는 난관중의 하나이다.
본 발명에서 제안된 MSE-DDA 방법은 개별적으로 MSE 와 DDA 분석법으로 이미 알려져 있는 방법이지만 두 분석법의 장단점을 극복하여 미량 단백질과 미량 단백질의 화학적 변화를 분석, 검증할 수 있을 것이다. 이는 MSE의 양적인 차별 없는 펩타이드 분석과 DDA의 높은 선택적 분석의 조화로 가능하다. MSE로부터 최적화된 최소한의 정보를 DDA로 줌으로써 보다 확실한 단백질의 정보를 검증할 수 있는것이다.
단백질의 정확한 동정을 위해서는, 특정단백질에 반응하는 항체(antibody)를 이용하는 것이 일반적이다. 그러나 항체는 고가일 뿐만 아니라, 모든 단백질이 항체가 개발된 것이 아니기 때문에 단백질의 확인동정에 사용되기 부적합하다.
본 발명은 질량분석기를 이용하여 수식화된 단백질을 신속하고도 용이하게 검출하고 정성분석할 수 있는 방법을 제공하고자 한다.
또한 본 발명은 단백질 데이터베이스를 활용한 정보와 질량분석기를 이용하여 샘플내에 미량 존재하는 단백질을 신속하고도 용이하게 검출하고 동정할 수 있는 방법을 제공하고자 한다.
전술한 과제를 해결하기 위한 본 발명은, 질량분석기를 이용한 단백질 정량정성분석 방법으로서, (A) 단백질 혼합물을 전처리하는 단계; (B) 데이터 비의존성 분석을 통해 펩타이드의 체류시간 및 질량값 정보를 획득하는 단계; (C) 상기 체류시간 및 질량값 정보를 바탕으로 데이터베이스(PLGS)를 검색하여 1차로 단백질을 정량정성하는 단계; (D) 상기 체류시간 및 질량값 정보로부터 소정의 단백질에 관한 정보를 추출하는 단계; (E) 상기 (D)에서 추출된 정보를 활용하여 데이터 의존성 분석을 수행하는 단계; (F) 상기 (E)로부터 얻어진 체류시간 및 질량값 정보를 바탕으로 데이터베이스(MASCOT)를 검색하여 상기 단백질을 2차로 정량정성하는 단계; 및 (G) 상기 (C)의 결과와 상기 (F)의 결과를 비교분석하여 상기 단백질의 정량정석을 검증하는 단계;를 포함하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법에 관한 것이다.
또한 본 발명은, 질량분석기를 이용한 단백질 정량정성분석 방법으로서, (A) 단백질 데이터베이스를 참조하여 관심 단백질을 선정하는 단계; (B) 단백질 데이터베이스를 참조하여 상기 관심 단백질 펩타이드의 이론상 체류시간 및 질량값을 추정하는 단계; (C) 상기 추정된 정보를 활용하여 데이터 의존성 분석을 수행하는 단계; 및 (D) 상기 (C)의 결과를 기초로 상기 단백질 데이터베이스를 검색하여 분석된 단백질이 상기 (A)에서 선정된 관심 단백질인지를 확인하는 단계;를 포함하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법에 관한 것이다.
본 발명에 있어서, 상기 질량분석기는 삼중사극자 질량분석기인 것이 바람직하다.
또한 본 발명에서, 상기 단백질은 세포내에 미량 존재하는 단백질, 예를 들면 막단백질일 수 있다.
본 발명에서 상기 단백질은 번역후 수식화(PTM)된 단백질, 예를 들면 시스테인이 함유된 단백질일 수 있다.
또한 본 발명은, 상기 단백질 정량정성 분석방법을 수행하는 프로그램 자체 및 상기 프로그램이 저장된 저장매체에 관한 것이다.
다시 말해 본 발명은, 도 1과 같이, 1차로 데이터 비의존성 분석법(MSE)으로 분석된 단백질을 데이터 의존성 분석법(DDA)으로 정밀하게 재검증하여 단백질을 분석하는 방법에 관한 것이다.
또한 본 발명은, 1차로 데이터 비의존성 분석법(MSE)으로 분석된 단백질을 데이터 의존성 분석법(DDA)으로 정밀하게 재검증하여 단백질을 분석하는 방법을 수행할 수 있는 프로그램에 관한 것이다.
데이터 비의존성 방법으로부터 생성된 펩타이드 절편은 샘플 중에 상대적으로 적은양이 존재하더라도 그 정보를 줄 수 있는 방법이다. 본 발명은 기존에 개발된 데이터 비의존성 방법으로 분석된 결과를 미리 계산된 생물학적 정보와 비교하여 분석하고자 하는 펩타이드들의 정보를 얻고자 하는 것이다. 또한, 얻어진 정보를 데이터 의존성 분석 모드에 대입하여 우리가 원하는 펩타이드 절편을 생성시켜 단백질을 분석, 검증하는데 활용할 수 있게 한다.
이때 사용하는 생물학적 정보는 주로 상대적으로 양이 적은 단백질에 효과적인 것으로 확인 되었다. 단백질이 상대적으로 적게 존재하게 되면 기존에 많이 사용하는 데이터 의존성 방법으로는 분석이 제대로 되지 않을 확률이 크기 때문에 본 발명된 방법을 사용하게 되면 상대적으로 분석 열세에 있는 단백질을 분석할 수 있게 된다.
따라서, 본 발명에 의하면,
질량분석기를 이용하여 수식화된 단백질을 신속하고도 용이하게 검출하고 정성분석할 수 있으며,
또한 단백질 데이터베이스 정보와 질량분석기를 이용하여 샘플내에 미량 존재하는 단백질을 신속하고도 용이하게 검출하고 정량, 정성 분석할 수 있게 된다.
본 발명에 의한 방법은, 산업적, 학문적 중요성을 가진 단백질의 화학변형 즉, 단백질의 PTM(post translational modification) 정보를 빠르고 효과적으로 얻을 수 있게 한다. 이러한 정보는 세포 신호전달 연구, 의약품 개발 등의 중요한 정보로 활용될 수 있다.
도 1은 본 발명에 의한 단백질 동정 및 검증 과정을 보여주는 흐름도.
도 2는 본 발명의 방법에 따라 시스테인을 포함한 펩타이드 정보를 추출한 include list의 적용상황을 보여주는 프로그램 화면(A)과 상기 추출한 include list의 분포도를 보여주는 도표(B).
도 3은 본 발명에 의한 실시예에서, include list를 DDA 모드에 적용시켜 TIC한 결과를 보여주는 도표.
도 4는 본 발명에 의해 검색된 단백질 수와, 종래 방법에 의해 검색된 단백질 수를 비교하여 보여주는 다이어그램.
도 5는 본 발명의 실시예에서, 막단백질에 대한 include list의 분포도를 보여주는 도표.
도 6은 본 발명의 실시예에 의해 분석된 막단백질의 정보와, 종래 기술에 의해 분석된 막단백질의 정보를 비교해서 보여주는 도표.
도 7은 특정 단백질 Slr0906을 검색할 때, 본 발명에 의한 방법(MSE-DDA)과 종래 방법(DDA)에서 활용하는 펩타이드 정보의 차이를 보여주는 도표.
이하 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
특정 체류시간과 질량값 정보를 포함한 목록을 "Include list"라 부르며 이 정보는 DDA 분석모드에 활용되어 특정 단백질의 분석을 위해 사용될 것이다.
본 발명에서는 MSE 로부터 얻어진 단백질 정보로부터 그 단백질을 분석하기 위해 사용되었던 펩타이드의 체류시간과 질량값을 취하여 include list를 편리하게 만들 수 있는 프로그램을 제작하였다. MSE 분석으로부터 얻어진 단백질들에 어떤 의미를 부여하느냐에 따라 재검증하고자 할 때 사용되는 include list는 달라지게 된다.
실시예 : 시스테인에 특정 화학적 변화 분석
목적하는 실험이 아미노산중 시스테인에 특정 화학적 변화를 관찰 하는 실험이라면 MSE로부터 얻어진 단백질 정보 중에서 시스테인을 포함하는 단백질을 선별하게 되고 이를 분석할 때 사용되었던 펩타이드 정보를 모아 include list를 생성시킬 수 있다.
(1) 단백질 전처리
많은 단백질은 S-S 공유결합을 가지고 있다. 이는 시스테인과 시스테인이 연결되는 것이다. 특정 조건 즉, 병적인 조건에서 단백질의 S-S 결합이 깨지게 되는데 이를 확인하기 위하여 두 가지 화학물질로 공유결합 시켜 샘플을 만들었다. 샘플에 Iodoacetamide를 처리하게 되면 시스테인에 +57.02 Da의 질량차가 나며 N-ethyl maleimide(NEM)를 처리하면 +111.03 Da의 질량차가 나게 된다.
단백질 샘플에 Iodoacetamide를 처리한 후 S-S 결합을 깨는 물질인 DTT (dithiothreitol)을 처리하였다. 그 후 NEM을 처리하게 되면 처음부터 S-S 결합이 깨져있는 단백질과 그렇지 않은 단백질을 구별할 수 있게 된다.
(2) 데이터 비의존성 분석 및 데이터베이스 검색
Nano-UPLC와 Synapt HDMS tandem mass spectrometry(Waters)를 연결한 nano-UPLC-MSE mode에서 시료를 분석하였다. 분석조건은 다음 표와 같다.
Figure PCTKR2010002745-appb-I000001
3중실험으로 얻은 기초정보(raw data)는 PLGS에서 처리되어 펩타이드와 fragmentation tolerance는 automatic mode로 sprot database 이용하여 단백질을 검색하였다.
(3) EMRT 테이블 작성 및 include list 결정
MSE 실험을 통하여 생성된 EMRT 정보 중 Cystein을 포함한 펩타이드 서열을 포함한 단백질에 대해 체류시간과 이온차수를 계산하여 include list를 작성하였다(도 2 참조).
(4) 데이터 의존성 분석
상기 include list를 DDA 모드에 적용시켜 도 3과 같은 TIC(Total Ion Chromatography) 결과를 얻었다. DDA 실험에 사용된 LC 전개용매 및 유속은 데이터 비의존성 실험과 동일하게 하였다. 각 샘플은 autosampler를 통하여 5㎕씩 주입하였으며 C18 trapping column에서 염을 제거하고 농축시켰다. 내부표준물질로 100fmol/ml glu-fibrino 펩타이드 B를 600nL/min의 속도로 주입하여 이온화하였다. 질량분석은 V 모드로 m/z 50~1990 영역을 스캔하고 최대 3개의 전구이온을 단편화시키는 것으로 프로그래밍하였다.
도 3에서, 첫 번째~세 번째 그래프는 include list에 존재하는 질량값을 골라 단편화한 결과를 보여주는 것이고, 네 번째 그래프는 150분간 처리(크로마토그래피)한 결과를 보여주는 TIC이다.
(5) 데이터베이스 검색(재검증)
MASCOT v 2.2 프로그램을 이용하여 단백질 데이터베이스는 IPI_mouse_v3.44.fasta를 사용하였다. Carbamidomethylation(C) 와 N_ethylmaleimide를 variable modification 으로 하고 펩타이드 tolerance 100ppm, ms/ms tolerance 0.2Da으로 검색하였다(도 4).
도 4에서, MSE 결과는 PLGS로 분석하였으며 MSE-DDA와 DDA는 MASCOT을 이용하여 검색한 것이다. 도에서 볼 수 있듯이, MSE 방법으로 검색된 단백질 중 Cystein을 포함한 부분만 정보를 추출하여 분석하였을 경우 88개의 단백질을 확인 할 수 있었고, 이는 DDA 모드로만 분석하였을 때와는 상당히 다른 양상을 보인다. 또한, 본 발명에서 목적했던 시스테인에 화학적으로 표지된 N-ethyl maleimide는 이 높은 score로 확인되어 특정 PTM 분석에 충분히 활용될 수 있음을 확인하였다. 이는 MSE에서 얻은 EMRT table이 신뢰할만하며 이 정보를 바탕으로 include list 자동 생성은 유효하게 작동함을 알 수 있다.
도 7에서 확인할 수 있듯이, 정확한 정보를 제공받은 데이터 의존성 분석법(MSE-DDA)을 활용할 경우 DDA 모드에서는 분석되지 못한 40개의 시스테인의 변형정보를 포함한 단백질을 확인할 수 있었으며 이는 DDA모드만을 사용했을 때는 분석할 수 없는 단백질이다.
데이터 비의존성 분석을 통하여 얻어진 정보를 미량 단백질에 활용하여 검증한 예이며 이 방법을 활용한다면 단백질의 화학적 변형정보를 보다 정확하게 얻을 수 있는 좋은 방법이 될 것이다.
실시예 : 막단백질의 분석 및 재검증
산업적, 학문적 중요성을 가진 막단백질을 질량분석기를 이용하여 분석하는데 어려움을 겪는 이유는 상대적인 양에 있다. 본 발명에서는 이점에 착안하여 상대적으로 적은 양으로 존재하는 막단백질을 데이터 비의존성 방법으로 분석한 후 막단백질 정보만 추출하여 데이터 의존성 분석을 할 수 있도록 하였으며 이를 통하여 존재하고 있는 보다 높은 신뢰도로 분석하여 검증할 수 있도록 하였다.
분석하고자 하는 단백질이 막단백질이라면 사용하는 단백질 데이터 베이스 중 막단백질을 미리 예측을 한 후 그 목록과 비교하여 include list 를 생성하는 방법을 사용할 수 있다. 본 실시예를 통하여 본 발명이 양적으로 열세에 있는 단백질 혼합물의 분석에 응용할 수 있음을 알 수 있다.
(1) 데이터베이스 검색 및 막단백질 예측
Synechocytosis 단백질 데이터베이스에 총 3661개의 단백질 정보가 있으며 이를 TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/)과 Signal P 3.0 (http://www.cbs.dtu.dk/services/SignalP/)을 이용하여 총 706 개의 막단백질 정보를 추출하였다.
추출한 막단백질 정보는 text file 형태로 저장하여 사용하였다.
Figure PCTKR2010002745-appb-I000002
(2) 데이터 비의존성 분석 및 데이터베이스 검색
Nano-UPLC와 Synapt HDMS tandem mass spectrometry(Waters)를 연결한 nano-UPLC-MSE mode에서 시료를 분석하였다. 분석조건은 다음 표와 같다.
Figure PCTKR2010002745-appb-I000003
세 번 반복 실험으로 얻은 펩타이드의 절편 정보가 포함된 기초정보(raw data)는 PLGS에서 처리되어 sprot database에 대하여 단백질을 검색하였다. 단백질 검색 조건은 fragment tolerance 100ppm, MS/MS rolerance 0.1Da, Enzyme trypsin, Missed cleavages 1, Fixed modification Cabamidomethylation (C), Variable modification Oxidation (M) 이다.
(3) EMRT 테이블 작성 및 include list 결정
막단백질로 예측된 gene index와 데이터 비의존성 데이터 (EMRT 테이블)를 비교하여 해당되는 막단백질을 분석하기 위해 사용된 펩타이드의 체류시간과 차수 등을 추출하여 데이터 의존성 분석을 할 수 있도록 include list를 생성하였다.
include list의 자동생성을 위한 프로그램을 아래에 예시하였다.
<include list 생성 프로그램의 예>
Figure PCTKR2010002745-appb-I000004
위에서 작성된 프로그램을 이용하여 도 5와 같은 분포의 include list를 추출하게 되었다. 도 5는 추출된 분포를 보여주는 것이고 실제로는 텍스트 파일 형태로 활용하게 된다.
도 5에서, x축은 분석컬럼에서 머무름 시간이며 y축은 질량값이다. 그래프 상에서 각 점은 막단백질에서 유래된 해당 펩타이드의 체류시간과 질량값을 나타낸다.
(4) 데이터 의존성 분석
분석조건은 다음 표와 같다.
Figure PCTKR2010002745-appb-I000005
데이터 의존성 실험에 사용된 LC 전개용매 및 유속은 데이터 비의존성 실험과 동일하게 하였다. 각 샘플은 autosampler를 통하여 5㎕씩 주입하였으며 C18 trapping column에서 염을 제거하고 농축시켰다. 내부표준물질로 100fmol/ml glu-fibrino 펩타이드 B를 600nL/min의 속도로 주입하여 이온화하였다. 질량분석은 V 모드로 m/z 50~1990 영역을 스캔하고 최대 3개의 전구이온을 단편화시키는 것으로 프로그래밍하였다.
(5) 데이터베이스 검색(재검증)
본 발명에 의한 방법(MSE-DDA 분석법) 및 종래 기술에 의한 방법(MSE, DDA 분석법)에 따라 막단백질을 분석하였다(도 6).
도 6에서, 데이터 비의존성 분석법에 의해 분석된 막단백질정보를 x 축으로 볼 때 검정색 막대그래프는 Include list 정보를 가지고 분석한 데이터 의존성 분석이며 붉은색 막대 그래프는 Include list 정보를 가지고 있지 않은 상태의 데이터 의존성 분석이다.
MSE-DDA는 그래프에서와 같이 보다 높은 데이터베이스 스코어를 나타내어 두배 이상의 향상이 있다. 이는 보다 정확한 시간에 펩타이드 정보를 주기 때문에 양적인 손실 없이 실험이 진행되기 때문이다. 뿐만 아니라 분석된 단백질 개수 또한 MSE-DDA 가 DDA 보다 높은 것을 알 수 있다.
MSE로 분석(X 축)은 되었지만 MSE-DDA에서 분석되지 않은 단백질들은 양적으로 적게 분포되어 있는 것을 확인하였으며 정확한 펩타이드 분석 정보 없어 그 신뢰도가 낮다고 할 수 있다.
구체적인 예로서, 단백질 Slr0906(Galactose mutarotase and related enzymes)을 찾기 위해 MSE-DDA방법과 DDA방법에서 펩타이드 정보를 어떻게 인식하고 있는지 확인할 수 있다(도 7).
도 7에서 A는, MSE-DDA를 통한 분석으로서 8개의 펩타이드 정보를 활용한 것으로 해당되는 펩타이드의 SIC(Selected Ion Chromatography) 결과이다. 도 7에서 B는, 같은 단백질을 분석하기 위해 DDA방법으로부터 나온 데이터의 일부로서 4 개의 펩타이드 정보가 사용된 것을 알 수 있다. 이렇게 같은 단백질을 분석하기 위해 사용된 펩타이드 개수가 다른 이유는 데이터 비의존성 분석결과를 토대로 한 것인지 아닌 것인지의 차이이다.
MSE-DDA가 보다 정확한 펩타이드 정보를 활용함으로써 특정 단백질을 분석하기 위해 보다 많은 펩타이드 정보가 활용된다. 따라서 단백질의 스코어가 증가되는 현상을 볼 수 있다. 보다 높은 스코어는 분석된 단백질의 신뢰도를 향상시킬 수 있는 지표가 되므로 MSE-DDA 방법을 통한 단백질 검증은 유용하게 활용될 수 있을 것이다.
본 발명에 의하면, 수식하된 단백질과 샘플내에 미량 존재하는 단백질을 용이하게 검출하고 정량, 정성 분석할 수 있어 세포 신호전달 연구, 의약품 개발에 매우 유용하다.

Claims (14)

  1. 질량분석기를 이용한 단백질 정량정성분석 방법으로서,
    (A) 단백질 혼합물을 전처리하는 단계;
    (B) 데이터 비의존성 분석을 통해 펩타이드의 체류시간 및 질량값 정보를 획득하는 단계;
    (C) 상기 체류시간 및 질량값 정보를 바탕으로 데이터베이스(PLGS)를 검색하여 1차로 단백질을 정량정성하는 단계;
    (D) 상기 체류시간 및 질량값 정보로부터 소정의 단백질에 관한 정보를 추출하는 단계;
    (E) 상기 (D)에서 추출된 정보를 활용하여 데이터 의존성 분석을 수행하는 단계;
    (F) 상기 (E)로부터 얻어진 체류시간 및 질량값 정보를 바탕으로 데이터베이스(MASCOT)를 검색하여 상기 단백질을 2차로 정량정성하는 단계;
    (G) 상기 (C)의 결과와 상기 (F)의 결과를 비교분석하여 상기 단백질의 정량정석을 검증하는 단계;
    를 포함하는 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  2. 제 1 항에 있어서,
    상기 질량분석기는 삼중사극자 질량분석기인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  3. 제 1 항에 있어서,
    상기 단백질은 세포내에 미량 존재하는 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  4. 제 3 항에 있어서,
    상기 단백질은 막단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  5. 제 1 항에 있어서,
    상기 단백질은 번역후 수식화(PTM)된 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  6. 제 5 항에 있어서,
    상기 단백질은 시스테인이 함유된 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  7. 제 1 항에 의한 단백질 정량정성 분석방법을 수행하는 프로그램이 저장된 저장매체.
  8. 질량분석기를 이용한 단백질 정량정성분석 방법으로서,
    (A) 단백질 데이터베이스를 참조하여 관심 단백질을 선정하는 단계;
    (B) 단백질 데이터베이스를 참조하여 상기 관심 단백질 펩타이드의 이론상 체류시간 및 질량값을 추정하는 단계;
    (C) 상기 추정된 정보를 활용하여 데이터 의존성 분석을 수행하는 단계;
    (D) 상기 (C)의 결과를 기초로 상기 단백질 데이터베이스를 검색하여 분석된 단백질이 상기 (A)에서 선정된 관심 단백질인지를 확인하는 단계;
    를 포함하는 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  9. 제 8 항에 있어서,
    상기 질량분석기는 삼중사극자 질량분석기인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  10. 제 8 항에 있어서,
    상기 단백질은 세포내에 미량 존재하는 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  11. 제 10 항에 있어서,
    상기 단백질은 막단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  12. 제 8 항에 있어서,
    상기 단백질은 번역후 수식화(PTM)된 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  13. 제 8 항에 있어서,
    상기 단백질은 시스테인이 함유된 단백질인 것을 특징으로 하는 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 정량정성 분석방법.
  14. 제 8 항에 의한 단백질 정량정성 분석방법을 수행하는 프로그램이 저장된 저장매체.
PCT/KR2010/002745 2009-06-01 2010-04-30 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법 WO2010140774A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/309,038 US20120109533A1 (en) 2009-06-01 2011-12-01 Method of analyzing protein using data-independent analysis combined with data-dependent analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090048024A KR101114228B1 (ko) 2009-06-01 2009-06-01 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법
KR10-2009-0048024 2009-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/309,038 Continuation US20120109533A1 (en) 2009-06-01 2011-12-01 Method of analyzing protein using data-independent analysis combined with data-dependent analysis

Publications (2)

Publication Number Publication Date
WO2010140774A2 true WO2010140774A2 (ko) 2010-12-09
WO2010140774A3 WO2010140774A3 (ko) 2011-03-10

Family

ID=43298273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002745 WO2010140774A2 (ko) 2009-06-01 2010-04-30 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법

Country Status (3)

Country Link
US (1) US20120109533A1 (ko)
KR (1) KR101114228B1 (ko)
WO (1) WO2010140774A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431062B1 (ko) * 2012-03-08 2014-08-21 (주)바이오메디앙 유방암 진단용 다중 바이오마커 세트, 이의 검출 방법 및 이에 대한 항체를 포함하는 유방암 진단키트
US10495647B2 (en) 2014-06-13 2019-12-03 Waters Technologies Corporation Analysis of complex biological matrices through targeting and advanced precursor and product ion alignment
US10079137B2 (en) * 2015-02-05 2018-09-18 Dh Technologies Development Pte. Ltd. Rapid scanning of wide quadrupole RF windows while toggling fragmentation energy
US9911585B1 (en) * 2016-12-21 2018-03-06 Thermo Finnigan Llc Data-independent mass spectral data acquisition including data-dependent precursor-ion surveys
JP7400698B2 (ja) * 2020-11-16 2023-12-19 株式会社島津製作所 クロマトグラフ質量分析装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013120A1 (en) * 2001-07-12 2003-01-16 Patz Edward F. System and method for differential protein expression and a diagnostic biomarker discovery system and method using same
KR20030074773A (ko) * 2001-02-01 2003-09-19 싸이퍼젠 바이오시스템즈, 인코포레이티드 탠덤 질량 분광계에 의한 단백질 확인, 특성화 및 서열결정을 위한 개선된 방법
KR20070029126A (ko) * 2003-12-17 2007-03-13 요시오 야마우치 단백질 해석 방법
JP2007256126A (ja) * 2006-03-24 2007-10-04 Hitachi High-Technologies Corp 質量分析システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017693A (en) * 1994-03-14 2000-01-25 University Of Washington Identification of nucleotides, amino acids, or carbohydrates by mass spectrometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074773A (ko) * 2001-02-01 2003-09-19 싸이퍼젠 바이오시스템즈, 인코포레이티드 탠덤 질량 분광계에 의한 단백질 확인, 특성화 및 서열결정을 위한 개선된 방법
US20030013120A1 (en) * 2001-07-12 2003-01-16 Patz Edward F. System and method for differential protein expression and a diagnostic biomarker discovery system and method using same
KR20070029126A (ko) * 2003-12-17 2007-03-13 요시오 야마우치 단백질 해석 방법
JP2007256126A (ja) * 2006-03-24 2007-10-04 Hitachi High-Technologies Corp 質量分析システム

Also Published As

Publication number Publication date
US20120109533A1 (en) 2012-05-03
KR20100129457A (ko) 2010-12-09
WO2010140774A3 (ko) 2011-03-10
KR101114228B1 (ko) 2012-03-05

Similar Documents

Publication Publication Date Title
Cagney et al. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging
US7626162B2 (en) Mass spectrometry system and mass spectrometry method
Zhang et al. Application of electron transfer dissociation mass spectrometry in analyses of non‐enzymatically glycated peptides
JP5299060B2 (ja) 糖ペプチド構造解析方法及び装置
US20060255263A1 (en) Method of identifying substances using mass spectrometry
US11199547B2 (en) Methods and systems for LC-MS/MS proteomic genotyping
WO2010140774A2 (ko) 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법
EP2283366A1 (en) Method for high throughput peptide/protein assay generation and assays generated therewith
CA2349265A1 (en) Protein expression profile database
JP4821400B2 (ja) 構造解析システム
Leitner et al. SnapShot: mass spectrometry for protein and proteome analyses
JP2005345332A (ja) 質量分析方法及び質量分析システム
Rebak et al. Characterizing citrullination by mass spectrometry-based proteomics
WO2021172946A1 (ko) 펩타이드 특성 학습 기반 액체 크로마토그래프 질량 분석에서 펩타이드 생성이온의 스펙트럼 양상을 예측하는 시스템
JP6079587B2 (ja) 糖ペプチド解析装置
KR101135048B1 (ko) 데이터 비의존성 분석법과 데이터 의존성 분석법을 복합화한 단백질 분석방법
JP2008039608A (ja) 質量分析システム
Kodera et al. Establishment of a strategy for the discovery and verification of low-abundance biomarker peptides in plasma using two types of stable-isotope tags
Fournier et al. Sequencing of a branched peptide using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry
WO2023013047A1 (ja) ペプチド分析方法及びペプチド分析装置
WO2019138441A1 (ja) タンパク質同定方法
Brune et al. RESEARCH GROUP/COMMITTEE REPORTS
JPWO2007072648A1 (ja) 質量分析システムおよび質量分析方法
Laser the Flatworm Proteome
Byers et al. Mass Spectrometry–A Powerful Analytical Tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783523

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783523

Country of ref document: EP

Kind code of ref document: A2