WO2010140736A1 - 폐수의 열회수장치 모니터링 시스템 - Google Patents

폐수의 열회수장치 모니터링 시스템 Download PDF

Info

Publication number
WO2010140736A1
WO2010140736A1 PCT/KR2009/003864 KR2009003864W WO2010140736A1 WO 2010140736 A1 WO2010140736 A1 WO 2010140736A1 KR 2009003864 W KR2009003864 W KR 2009003864W WO 2010140736 A1 WO2010140736 A1 WO 2010140736A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
heat recovery
recovery device
unit
filter
Prior art date
Application number
PCT/KR2009/003864
Other languages
English (en)
French (fr)
Inventor
문성균
Original Assignee
Moon Sung Kyoon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moon Sung Kyoon filed Critical Moon Sung Kyoon
Priority to US13/376,111 priority Critical patent/US20120073782A1/en
Publication of WO2010140736A1 publication Critical patent/WO2010140736A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C2001/005Installations allowing recovery of heat from waste water for warming up fresh water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/20Sewage water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a heat recovery system monitoring system of wastewater, and more specifically, to remove firstly the sediment contained in the wastewater by the sediment filter, and secondly to remove the fine foreign matter contained in the wastewater by the filtering unit.
  • the blockage phenomenon can be prevented, and the circulating direction of the wastewater and the circulating direction of the fresh water are switched to maximize the filtering efficiency of the filtering unit, as well as remotely controlling each component of the heat recovery device. It relates to a technique for monitoring and controlling the entire process of the device.
  • a wastewater heat recovery facility that recovers and reuses wastewater heat includes a wastewater collection tank for storing high temperature wastewater and a cold water tank for storing cold water, and recovers heat from the high temperature wastewater to change the cold water into warm water. To be collected in a warm water tank.
  • the hot wastewater is pumped and pumped to a heat exchanger, and the cold and clean water is pumped and pumped to a heat exchanger, and the hot waste water and the cold and clean water flow in opposite directions in the heat exchanger, The heat is transferred to the cold clean water so that the cold clean water becomes warm fresh water.
  • the waste water heat recovery facility is provided with a filter for filtering the precipitate and fine foreign matter.
  • the filter has a problem in that there is a possibility that frequent occlusion occurs by the sediment and fine foreign matter contained in the high temperature wastewater. Therefore, there is a need for means for effectively treating deposits and fine foreign matter contained in hot wastewater.
  • the operator can not visually check the process of the heat recovery device of the waste water, and the operation of removing the blockage generated in the filter is dependent on the manual operation of the worker.
  • An administrator monitors and controls the entire process of the heat recovery device of the waste water from a remote location.
  • an object of the present invention is to remove the sediment contained in the waste water by the precipitation filter first, and to remove the fine foreign matter contained in the waste water by the filtering unit secondary To prevent the blockage, and to monitor and control the entire process of the heat recovery device of the wastewater to maximize the filtering efficiency of the filtering unit by switching the cycle of the wastewater and the circulation of the fresh water. To provide a heat recovery system monitoring system.
  • the heat recovery device monitoring system of the wastewater of the present invention for achieving the technical problem, the sediment filtration unit to precipitate the sediment contained in the waste water as the sewage treatment is supplied to the waste water, and the waste water from which the sediment is removed through the sediment filtration unit Upon receiving the supply, cold foreign water is supplied between the waste water and the cold water to exchange heat between the cold water and the cold water to make the warm water, between the settling filter and the heat exchanger, the fine foreign matter contained in the waste water passing through the settling filter Filter the first filter, filter the second filter the second foreign matter contained in the waste water passed through the heat exchange unit, and receives the pressure value detected from the connected wastewater pressure sensor, the cold and clean water temperature information detected from the cold water temperature sensor Is received, is received the warm water temperature information detected from the warm water temperature sensor, the first detected from the first wastewater temperature sensor
  • a heat recovery device comprising a heat recovery sensing unit receiving water temperature information and a second waste water temperature sensor from a second waste water temperature sensor, and connected through a heat recovery device and an information
  • Operation screen, operation status, alarm screen temperature graph of the heat recovery device by receiving the pressure value received from the heat recovery sensing unit, cold and cool water temperature information, warm and clean water temperature information, temperature information of the first wastewater and temperature information of the second wastewater And a monitoring device for displaying the pressure graph.
  • the present invention by removing the sediment contained in the waste water primarily by the sediment filtration unit, and by removing the fine foreign matter contained in the waste water by the filtering unit secondary, the effect of preventing the blockage phenomenon in advance. There is.
  • the present invention by remotely controlling the components of the heat recovery device and at the same time display the status information of the entire process of the heat recovery device, real-time management and control of the heat recovery device at a remote location, as well as a small number of working people heat recovery device It is effective to promote maintenance.
  • 1 is a block diagram showing the circulation from the first filter to the second filter of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • FIG. 2 is a block diagram showing the circulation from the second filter to the first filter of the waste heat recovery system monitoring system (S) according to the present invention.
  • FIG. 3 is a block diagram showing the circulation according to the wastewater retrograde module 124 of the waste heat recovery system monitoring system (S) according to the present invention.
  • FIG. 4 is a block diagram showing the sediment filtration unit 110 of the heat recovery device monitoring system (S) of the wastewater according to the present invention.
  • FIG. 5 is a block diagram showing a heat exchange unit 120 of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • FIG. 6 is a block diagram showing a filtering unit 130 of the waste heat recovery system monitoring system (S) according to the present invention.
  • FIG. 7 is a view showing the operation screen display unit 210 of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • FIG. 8 is a view showing a heat recovery device setting unit 220 of the heat recovery device monitoring system (S) of the wastewater according to the present invention.
  • FIG. 9 is a view showing an alarm screen display unit 230 of the waste heat recovery system monitoring system (S) according to the present invention.
  • FIG. 10 is a view showing a temperature graph generation unit 240 of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • FIG 11 is a view showing a pressure graph generator 250 of the waste heat recovery system monitoring system (S) according to the present invention.
  • FIG. 12 is a view showing a data extraction / management unit 260 of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • FIG. 13 is a view showing the time-specific pressure information of the heat recovery device monitoring system (S) of the wastewater according to the present invention.
  • FIG. 14 is a view showing the monthly calorie information of the heat recovery apparatus monitoring system (S) of wastewater according to the present invention.
  • 15 is a view showing daily temperature information of the heat recovery apparatus monitoring system S of wastewater according to the present invention.
  • wastewater precipitation tank 112 wastewater supply port
  • heat exchange space 123a cold water inlet
  • filtering unit 131 first filter
  • transmission module 142 control module
  • monitoring device 210 operation screen display unit
  • heat recovery device setting unit 230 alarm screen display unit
  • TS1 Cold Clean Water Temperature Sensor
  • TS2 Clean Water Temperature Sensor
  • TS3 first wastewater temperature sensor
  • TS4 second wastewater temperature sensor
  • V1 ⁇ V14 1st valve ⁇ 14th valve
  • FIG. 1 is a block diagram showing a circulation from the first filter to the second filter of the heat recovery device monitoring system (S) of the wastewater according to the present invention
  • Figure 2 is a heat recovery device monitoring system (S) of the wastewater according to the present invention
  • 3 is a block diagram showing the circulation from the second filter to the first filter
  • Figure 3 is a block diagram showing the circulation according to the wastewater retrograde module 124 of the heat recovery device monitoring system (S) of the wastewater according to the present invention, As it comprises a heat recovery device 100 and the monitoring device 200.
  • the description thereof will be omitted, but it is assumed that the information transmission between the heat recovery apparatus 100 and the monitoring apparatus 200 according to the present invention is performed through an information communication network including a wired and wireless network.
  • the heat recovery apparatus 100 receives the wastewater and receives the wastewater from which the sediment is removed by passing through the sediment filtration unit 110 and the sediment filtration unit 110 to settle the sediment contained in the wastewater through the sedimentation treatment.
  • the cold water is supplied between the heat exchanger 120 and the precipitation filter 110 and the heat exchanger 120 for converting the cold and clean water into warm water by heat exchange between the waste water and the cold and clean water.
  • the precipitation filtration unit 110 of the heat recovery apparatus 100 receives the wastewater and performs the precipitation treatment, but the wastewater precipitation tank 111, the wastewater supply port 112, and the wastewater discharge port 113. , Sediment recruitment tank 114, and the sediment discharge port 115.
  • Wastewater sedimentation tank 111 is provided in a cone shape having a lower cross-sectional area of the lower than the upper portion of the cylindrical to form a space for receiving the wastewater therein.
  • Wastewater supply port 112 is provided on the upper side of the wastewater sedimentation tank 111 to receive the wastewater, supplied to the wastewater sedimentation tank 111 through the wastewater supply port 112 in the warm wastewater storage tank 12 As the wastewater rotates by forming a vortex ( ⁇ ) inside the wastewater sedimentation tank 111, the sediment contained in the wastewater is collected under the wastewater sedimentation tank 111 by its own weight.
  • the wastewater outlet 113 is connected to the upper surface of the wastewater sedimentation tank and extends upwardly to discharge the wastewater from which the sediment is removed, and the wastewater from which the sediment is removed by rotation according to the vortex formed inside the wastewater sedimentation tank 111. Is discharged.
  • Sediment recruitment tank 114 is provided integrally at the lower end of the waste water sedimentation tank to raise the precipitate contained in the waste water. At this time, the sediment recruitment tank 114 is formed wider than the cross section of the lower end of the waste water sedimentation tank 111 is formed in a structure that can prevent the rise of the sediment as the waste water forms the vortex.
  • the sediment discharge port 115 is provided to communicate with the lower surface of the sediment recruitment tank 114 and extend downwardly, and includes a sediment discharge valve 115a for periodically discharging the sediment collected in the sediment recruitment tank 114. When the sediment collected in the sediment collection tank 114 has a predetermined amount or more, the sediment discharge valve 115a is opened to discharge the collected sediment to the cold wastewater treatment tank 14.
  • the sediment filtration unit 110 When the sediment filtration unit 110 is configured as described above, wastewater is supplied into the wastewater sedimentation tank 111 through the wastewater supply port 112, and the sediment contained in the supplied wastewater is precipitated to precipitate sedimentation tank. Recruitment to 114, it is configured to discharge the precipitate collected through the sediment outlet 115, and discharge the waste water from which the sediment is removed through the waste water outlet 113.
  • the heat exchanger 120 of the heat recovery device 100 passes through the precipitation filtration unit 110 and receives the wastewater from which the precipitate is removed, and at the same time the cold and clean water supply tank 12.
  • the internal cleansing water is supplied from the bar to convert the cold and clean water into warm and clean water by performing heat exchange between the waste water and the cold and clean water, and includes a waste water supply space 121, a waste water discharge space 122, and a heat exchange space 123.
  • the wastewater discharge space 122 communicates with the wastewater supply space 121 through a plurality of pipes and discharges the wastewater through the wastewater discharge port 122a provided with the wastewater supplied to the wastewater supply space 121. That is, the wastewater collected in the wastewater supply space 121 is configured to be supplied to the wastewater discharge space 122 through a plurality of pipes.
  • the heat exchange space 123 is configured to flow cold fresh water to a plurality of pipe surfaces, and includes a cold fresh water inlet 123a and a warm fresh water outlet 123b so that the incoming cold fresh water receives the heat of the waste water and receives the fresh water. do.
  • the heat exchange space 123 forms a space for closing a plurality of pipes at the same time to close the closed space provided with a cold water inlet 123a, the other side of the closed space is provided with a warm water inlet 123b. You can.
  • the wastewater introduced through the wastewater inlet 121a is collected into the wastewater discharge space 120 through a plurality of pipes, and the collected wastewater discharged to the wastewater outlet 122a.
  • the cold and clean water is introduced into the plurality of pipe surfaces through the cold and clean water inlet 123a to be discharged to the warm and clean water outlet (123b).
  • the heat of the wastewater flowing through the plurality of pipes is transferred to the cold and clean water flowing through the plurality of pipes are converted into warm and clean water according to the temperature rise of the cold and clean water.
  • the heat exchanger 120 is connected to and installed on the wastewater inlet 121a and the wastewater outlet 122a to flow the wastewater introduced into the wastewater inlet 121a and discharged to the wastewater outlet 122a in a reverse direction. It is configured to include a wastewater running module (124).
  • Wastewater retrograde module 124 is configured to remove the foreign matter in the form of fibers remaining inside the heat exchange unit 120, is conjoined simultaneously with a plurality of pipes connecting the wastewater supply space 121 and wastewater discharge space 122 It is a configuration for flowing the waste water in the reverse direction to remove the foreign matter in the form of fibers.
  • the wastewater retrograde module 124 may be composed of a plurality of automatic control valves connected and installed on the wastewater inlet 121a and the wastewater outlet 122a, and the wastewater inlet 121a and the wastewater outlet 122a.
  • the wastewater flowing to the heat exchange part 120 constitutes a ninth valve (V9), a tenth valve (V10), an eleventh valve (V11), and a twelfth valve (V12) on the path of the forward or reverse flow. Can be controlled.
  • the ninth valve V9 is opened, the tenth valve V10 is closed, the eleventh valve V11 is closed, and the twelfth valve V12 is opened during forward flow.
  • the waste water supplied is discharged through the wastewater inlet 212 through the twelfth valve V12 to the wastewater outlet 222 and discharged through the ninth valve V9, and when the reverse flow flows, the ninth valve V9 is in a closed state, the tenth valve V10 is in an open state, the eleventh valve V11 is in an open state, and the twelfth valve V12 is in a closed state, so that the wastewater supplied is supplied to the tenth valve ( V10) is discharged to the wastewater inlet 121a through the wastewater outlet 122a and discharged through the eleventh valve V11.
  • a wastewater discharge valve (V14) is provided for discharging the wastewater flowing into the wastewater outlet (122a) when the wastewater flows in a reverse direction, and the wastewater flows in the reverse direction by the wastewater backward module (124).
  • the filtering unit 130 stops filtering and the wastewater discharge valve V14 is opened.
  • the filtering of the filtering unit 130 is stopped so as not to be sent to the filtering unit 130, and the wastewater discharge valve V14. ), So that the wastewater containing the foreign matter in the fiber form is directly supplied to the cold wastewater treatment tank 14 to be treated.
  • the filtering unit 130 of the heat recovery device 100 is installed between the precipitation filtration unit 110 and the heat exchange unit 120 wastewater passing through the filtration unit 110.
  • First filtering the fine foreign matter contained in the second filter, and second filtering the fine foreign matter contained in the wastewater passing through the heat exchange unit 120, the first filter 131, the second filter 132, the first path switching The module 133 and the second path switching module 134 are configured.
  • the first filter 131 and the second filter 132 are installed to be spaced apart from each other in the same structure, the waste water is supplied or discharged through the upper and lower, the center of the first filter 131 and the second filter 132 Filter panels 131a and 132a having a plurality of rectangular holes h formed therein are provided, and a large amount of steel balls 131b and 132b are filled in the upper space of the filter panels 131a and 132a.
  • the fine dense matter contained in the wastewater is filtered while passing through the steel ball 131b, and the lower side of the filter through the square hole h of the filter panel 131a.
  • the waste water is supplied through the lower portion of the first filter 131, the waste water remains between the steel balls 131b as the water flows between the steel balls 131b through the square hole h of the filter panel 131a. To float the fine foreign matter to flow to the upper portion of the first filter 131 with the waste water.
  • the direction change of the waste water flowing from the upper side to the lower side and the waste water flowing from the lower side to the upper side in the first filter 131 and the second filter 132 is the first path switching module 133 and the second path switching. Performed by module 134.
  • the first path switching module 133 alternately sends the wastewater that has passed through the precipitation filtration unit 110 to one of the first filter 131 or the second filter 132 and sends the path.
  • the second path switching module 134 alternately sends the waste water that has passed through the heat exchange part 120 to either the first filter 131 or the second filter 132 to switch the path. .
  • the second path switching module 134 moves the heat exchange part 120.
  • the first path switching module 133 sends the wastewater passing through the precipitation filtration unit 110 to the second filter 132
  • the second path switching sends wastewater that has passed through the heat exchanger 120 to the first filter 131.
  • the path switching operation of the first path switching module 133 and the second path switching module 134 may be performed at regular intervals, and a wastewater pressure sensor for detecting a supply pressure of the wastewater supplied to the precipitation filtration unit 110. It may be made by the detection of PS1.
  • the first path switching module 133 sends the wastewater that has passed through the precipitation filtration unit 110 to the first filter 131, and the second path switching module 134 sends the wastewater that has passed through the heat exchange unit 120.
  • the first path switching module 133 passes the wastewater that has passed through the precipitation filtration unit 110.
  • the second path switching module 134 is to switch to send the waste water passed through the heat exchange unit 120 to the first filter (131).
  • the first path switching module 133 sends the wastewater that has passed through the precipitation filtration unit 110 to the second filter 132, and the second path switching module 134 passes the wastewater that has passed through the heat exchange unit 120.
  • the first filter 131 is sent to the first filter 131
  • the pressure value detected by the wastewater pressure sensor PS1 is higher than a reference range
  • the first path switching module 133 passes the wastewater that has passed through the precipitation filter 110.
  • the second path switching module 134 is to switch to send the waste water passed through the heat exchange unit 120 to the second filter (132).
  • the pressure value detected by the wastewater pressure sensor PS1 may be increased by fine foreign matter filtered by the first filter 131 and the second filter 132 of the filtering unit 130, for example, the filtering unit 130. If the foreign matter accumulates in a predetermined amount or more), the pressure value detected by the wastewater pressure sensor (PS1) is increased.
  • the waste heat recovery apparatus 100 including the precipitation filtration unit 110, the heat exchange unit 120, and the filter unit 130 detects the temperature of the cold and clean water supplied to the heat exchange unit 120.
  • Fresh water temperature sensor (TS1), the warm water temperature sensor (TS2) for detecting the temperature of the warm water heat exchanged in the heat exchange unit 120, the first wastewater temperature sensor for detecting the temperature of the waste water supplied to the heat exchange unit (120) TS3) and a second wastewater temperature sensor TS4 for sensing the temperature of the wastewater heat exchanged in the heat exchanger 120 are provided.
  • the heat recovery sensing unit 140 of the heat recovery device 100 receives the pressure value detected from the wastewater pressure sensor PS1, receives the cold fresh water temperature information detected from the cold water temperature sensor TS1, and receives the warm water.
  • the warm and clean water temperature information detected by the temperature sensor TS2 is applied, the temperature information of the first wastewater detected by the first wastewater temperature sensor TS3 is received, and the second wastewater temperature is received from the second wastewater temperature sensor TS4. Get temperature information.
  • the transmission module 141 of the heat recovery sensing unit 140 is cold and cool water temperature information, warm and clean water temperature information, temperature information of the first wastewater and temperature information of the second wastewater, respectively, and wastewater pressure sensor PS1 received from the sensors. And transmits the pressure value received from the control unit to the monitoring device 200 through the information communication network, and from the monitoring device 200, the precipitation filtration unit 110, the heat exchange unit 120, the filtering unit 130 and the heat recovery sensing unit 140. ) Receive control signals for each.
  • the control module 142 of the heat recovery sensing unit 140 corresponds to the precipitation filter 110, the heat exchanger 120, the filtering unit 130, and the heat recovery sensing unit 140 so as to match the control signal received from the transmission module 141. ) To control each.
  • monitoring device 200 of the heat recovery device monitoring system S of wastewater according to the present invention will be described with reference to FIGS. 7 to 15.
  • the monitoring device 200 is connected to the heat recovery device 100 through an information communication network and controls and monitors an operation state of the heat recovery device 100 installed at a remote location.
  • the operation screen display unit 210 and the heat recovery device setting unit 220 ), Alarm screen display unit 230, temperature graph generator 240, pressure graph generator 250, data extraction / management unit 260, data management DB 270 and language conversion unit 280 do.
  • the operation screen display unit 210 of the monitoring device 200 outputs an operation state of the heat recovery device 100 located at a remote location, from the transmission module 141 of the heat recovery device 100.
  • the cold and cold water temperature information, the warm and fresh water temperature information, the temperature information of the first wastewater and the temperature information of the second wastewater, and the pressure value received from the wastewater pressure sensor PS1 are displayed through the output module 210.
  • the temperature difference between the cold water temperature sensor TS1 and the warm water temperature sensor TS2 or the temperature difference between the first wastewater temperature sensor TS3 and the second wastewater temperature sensor TS4 Calculate and display the amount of heat gained while changing.
  • the heat recovery device setting unit 220 of the monitoring device 200 displays the pressure value applied from the wastewater pressure sensor PS1 and displays the pressure value input according to the operator's key input signal.
  • the wastewater pressure sensor PS1 is controlled to have an input pressure value.
  • the heat recovery device setting unit 220 sets the sediment discharge port 115 operating time in the heat recovery device 100, and sets the control signal for opening and closing the sediment discharge valve 115a according to the set time.
  • the heat recovery device 100 is transmitted to the transmission module 141 in the heat recovery sensing unit 140 to control the heat recovery device 100.
  • the heat recovery device setting unit 220 sets and controls the operating time of the heat exchanger 120 in the heat recovery device 100 according to the set control signal and displays the operating time of the heat exchanger 120. 124) to control the circulation of the waste water in the forward or reverse direction to match the set time.
  • the alarm screen display unit 230 of the monitoring device 200 may include a precipitation filtration unit 110, a heat exchange unit 120, a filtering unit 130, and a heat recovery sensing unit (eg, a heat recovery device 100). 140) If the preset operation of each component is not performed, the state and time information of the corresponding component are displayed.
  • the temperature graph generating unit 240 of the monitoring device 200 includes the cold and clean water temperature sensor TS1, the warm and clean water temperature sensor TS2, and the first wastewater temperature sensor of the heat recovery device 100.
  • TS3 and second wastewater temperature sensor (TS4) receive the temperature information respectively, hot and cold water temperature information, cold and cool water temperature information, temperature information of the wastewater supply port and temperature information of the wastewater outlet port time series trend curve graph Create and display.
  • the pressure graph generating unit 250 of the monitoring device 200 receives pressure information detected by the wastewater pressure sensor PS1 of the heat recovery device 100 and displays the generated pressure information as a trend curve graph. do.
  • the data extraction / management unit 260 of the monitoring device 200 includes the pressure information detected by the wastewater pressure sensor PS1, the cold and clean water temperature sensor TS1, and the warm and clean water temperature sensor TS2. Calorie information obtained by changing the temperature difference value or the temperature difference value between the first wastewater temperature sensor TS3 and the second wastewater temperature sensor TS4 to warm and clean water, and the temperature graph generator 240 transmits Each temperature information received from 141, and the pressure information received from the pressure graph generator 250 from the transmission module 141, and the flow rates received from the valves V1 to V14 of the heat recovery device 100, respectively. Information is stored and managed in the data management DB 270.
  • the data extraction / management unit 260 converts the calorie information, temperature information, pressure information, and flow rate information into an Excel file, as shown in FIGS. 13 to 15, between time pressure information, hourly calorie information, and hourly temperature.
  • Information, hourly flow rate information, daily pressure information, daily calorie information, daily temperature information, daily flow rate information, monthly pressure information, monthly calorie information, monthly temperature information, and monthly flow rate information are displayed.
  • the language conversion unit 280 of the monitoring device 200 includes an operation screen display unit 210, a heat recovery device setting unit 220, an alarm screen display unit 230, a temperature graph generator 240, and a pressure graph generator 250. And convert the language displayed by the data extraction / management unit 260 into one of Korean, Chinese, and English.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 폐수의 열회수장치 모니터링 시스템에 관한 것으로서, 폐수를 공급받아 침전처리함에 따라 폐수에 내포된 침전물을 침전시키는 침전여과부와, 침전여과부를 통과하여 침전물이 제거된 폐수를 공급받음과 동시에 냉청수를 공급받아 폐수와 냉청수 간의 열교환을 이루어 냉청수가 온청수로 되게 하는 열교환부, 침전여과부와 열교환부의 사이에 설치되어, 침전여과부를 통과한 폐수에 내포된 미세 이물질을 1차필터링하고, 열교환부를 통과한 폐수에 내포된 미세 이물질을 2차필터링하는 필터링부, 및 접속된 폐수압력센서로부터 감지된 압력값을 인가받으며, 냉청수온도센서로부터 감지된 냉청수 온도정보를 인가받고, 온청수온도센서로부터 감지된 온청수 온도정보를 인가받으며, 제1폐수온도센서로부터 감지된 제1폐수의 온도정보를 인가받고, 제2폐수온도센서로부터 제2폐수의 온도정보를 인가받는 열회수센싱부를 구성한 열회수장치, 및 열회수장치와 정보통신망을 통해 접속되어 열회수장치의 운전 상태를 제어 및 모니터링하며, 열회수센싱부로부터 전송받은 압력값, 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보를 전송받아 열회수장치의 운전화면, 운전 상태, 경보화면, 온도그래프 및 압력그래프를 디스플레이하는 모니터링장치를 포함한다.

Description

폐수의 열회수장치 모니터링 시스템
본 발명은 폐수의 열회수장치 모니터링 시스템에 관한 것으로서, 더욱 상세하게는 침전여과부에 의해 폐수에 포함된 침전물을 1차적으로 제거하고, 필터링부에 의해 폐수에 포함된 미세 이물질을 2차적으로 제거함에 따라 폐색 현상을 방지할 수 있고, 또한, 폐수의 순환방향과 청수의 순환방향을 설정한 주기로 전환하여 필터링부의 필터링 효율을 극대화함은 물론, 열회수장치의 각 구성요소들의 원격에서 제어함과 동시에 열회수장치의 전 공정을 모니터링 및 제어하는 기술에 관한 것이다.
일반적으로 폐수열을 회수하여 재사용하는 폐수열회수설비는 고온의 폐수가 저장된 폐수수집조와 냉청수가 저장된 냉청수탱크를 포함하여 구성되고, 상기 고온의 폐수로부터 열을 회수하여 상기 냉청수를 온청수로 변화시켜 온청수탱크로 모여지도록 한다.
즉, 고온의 폐수를 열교환기로 펌핑(pumping)하여 압송하고, 상기 냉청수를 열교환기로 펌핑하여 압송하며, 상기 고온의 폐수와 상기 냉청수가 상기 열교환기 내에서 서로 반대방향으로 흐르면서 고온의 폐수의 열이 냉청수로 이동하여 냉청수가 온청수가 되도록 하는 것이다.
이때, 고온의 폐수에 포함된 침전물 및 미세 이물질이 열교환기 및 배관의 폐수유로를 폐색시키는 현상이 발생할 수 있으므로, 폐수열회수설비에는 상기 침전물 및 미세 이물질을 필터링하기 위한 필터가 구비된다.
그러나, 상기 필터는 고온의 폐수에 포함된 침전물 및 미세 이물질에 의해 잦은 폐색이 발생할 우려가 있다는 문제점이 있다. 따라서, 고온의 폐수에 포함된 침전물 및 미세 이물질을 효과적으로 처리하기 위한 수단이 요구되고 있다.
또한, 폐수의 열회수장치의 공정을 작업자가 육안으로 확인할 수 없으며, 필터에 발생한 폐색제거 작업을 작업자의 수작업에 의존하고 있는 실정으로, 관리자가 원격지에서 폐수의 열회수장치의 전 공정을 모니터링하고 이를 제어하기 위한 시스템 구축이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해소하고자 안출된 것으로서, 본 발명의 목적은, 침전여과부에 의해 폐수에 포함된 침전물을 1차 제거하고, 필터링부에 의해 폐수에 포함된 미세 이물질을 2차 제거함에 따라 폐색 현상을 방지할 수 있고, 또한, 폐수의 순환방향과 청수의 순환방향을 설정한 주기로 전환하여 필터링부의 필터링 효율을 극대화할 수 있도록 하는 폐수의 열회수장치의 전 공정을 모니터링 및 제어하는 폐수의 열회수장치 모니터링 시스템을 제공함에 있다.
이러한 기술적 과제를 달성하기 위한 본 발명의 폐수의 열회수장치 모니터링 시스템은, 폐수를 공급받아 침전처리함에 따라 폐수에 내포된 침전물을 침전시키는 침전여과부와, 침전여과부를 통과하여 침전물이 제거된 폐수를 공급받음과 동시에 냉청수를 공급받아 폐수와 냉청수 간의 열교환을 이루어 냉청수가 온청수로 되게 하는 열교환부, 침전여과부와 열교환부의 사이에 설치되어, 침전여과부를 통과한 폐수에 내포된 미세 이물질을 1차필터링하고, 열교환부를 통과한 폐수에 내포된 미세 이물질을 2차필터링하는 필터링부, 및 접속된 폐수압력센서로부터 감지된 압력값을 인가받으며, 냉청수온도센서로부터 감지된 냉청수 온도정보를 인가받고, 온청수온도센서로부터 감지된 온청수 온도정보를 인가받으며, 제1폐수온도센서로부터 감지된 제1폐수의 온도정보를 인가받고, 제2폐수온도센서로부터 제2폐수의 온도정보를 인가받는 열회수센싱부를 구성한 열회수장치, 및 열회수장치와 정보통신망을 통해 접속되어 열회수장치의 운전 상태를 제어 및 모니터링하며, 열회수센싱부로부터 전송받은 압력값, 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보를 전송받아 열회수장치의 운전화면, 운전 상태, 경보화면, 온도그래프 및 압력그래프를 디스플레이하는 모니터링장치를 포함한다.
상기와 같은 본 발명에 따르면, 침전여과부에 의해 폐수에 포함된 침전물을 1차적으로 제거하고, 필터링부에 의해 폐수에 포함된 미세 이물질을 2차적으로 제거함으로써, 폐색 현상을 미연에 방지하는 효과가 있다.
또한, 본 발명에 따르면, 폐수의 순환방향과 청수의 순환방향을 설정한 주기로 전환함으로써, 필터링부의 필터링 효율을 극대화하는 효과가 있다.
그리고, 본 발명에 따르면, 열회수장치의 각 구성요소들의 원격에서 제어함과 동시에 열회수장치의 전 공정 상태정보를 디스플레이 함으로써, 원격지에서 열회수장치를 실시간 관리ㆍ제어함은 물론 소수의 작업인원으로 열회수장치의 유지보수를 도모하는 효과가 있다.
도 1 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 제1필터에서 제2필터로의 순환을 나타낸 구성도.
도 2는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 제2필터에서 제1필터로의 순환을 나타낸 구성도.
도 3 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 폐수역행모듈(124)에 따른 순환을 나타낸 구성도.
도 4 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 침전여과부(110)를 나타낸 구성도.
도 5 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 열교환부(120)를 나타낸 구성도.
도 6 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 필터링부(130)를 나타낸 구성도.
도 7 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 운전화면 표시부(210)를 나타낸 도면.
도 8 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 열회수장치 설정부(220)를 나타낸 도면.
도 9 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 경보화면 표시부(230)를 나타낸 도면.
도 10 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 온도그래프 생성부(240)를 나타낸 도면.
도 11 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 압력그래프 생성부(250)를 나타낸 도면.
도 12 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 데이터추출/관리부(260)를 나타낸 도면.
도 13 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 시간별 압력정보를 나타낸 도면.
도 14 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 월별 열량정보를 나타낸 도면.
도 15 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 일별 온도정보를 나타낸 도면.
** 도면의 주요 부분에 대한 부호의 설명 **
S: 폐수의 열회수장치 모니터링 시스템
100: 열회수장치 110: 침전여과부
111: 폐수침전조 112: 폐수공급구
113: 폐수배출구 114: 침전물모집조
115: 침전물배출구 115a: 침전물배출밸브
120: 열교환부 121: 폐수공급공간
121a: 폐수투입구 122a: 폐수투출구
123: 열교환공간 123a: 냉청수투입구
123b: 온청수배출구 124: 폐수역행모듈.
130: 필터링부 131: 제1필터
131a: 필터패널 131b: 강구
132: 제2필터 132a: 필터패널
132b: 강구 133: 제1경로전환모듈
134: 제2경로전환모듈 140: 열회수센싱부
141: 전송모듈 142: 제어모듈
200: 모니터링장치 210: 운전화면 표시부
220: 열회수장치 설정부 230: 경보화면 표시부
240: 온도그래프 생성부 250: 열량그래프 생성부
260: 데이터추출/관리부 270: 데이터관리DB
280: 언어변환부 PS1: 폐수압력센서
TS1: 냉청수온도센서 TS2: 오청수온도센서
TS3: 제1폐수온도센서 TS4: 제2폐수온도센서
V1 ~ V14: 제1밸브 ~ 제14밸브
본 발명의 구체적인 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다. 또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.
도 1 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 제1필터에서 제2필터로의 순환을 나타낸 구성도이고, 도 2 는 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 제2필터에서 제1필터로의 순환을 나타낸 구성도이며, 도 3 은 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 폐수역행모듈(124)에 따른 순환을 나타낸 구성도인바, 도시된 바와 같이 열회수장치(100) 및 모니터링장치(200)를 포함하여 이루어진다.
이하에서는 그 언급을 생략하겠으나, 본 발명에 따른 열회수장치(100) 및 모니터링장치(200)간의 정보전송은 유ㆍ무선망을 포함하는 정보통신망을 통해 이루어지는 것으로 상정한다.
먼저, 열회수장치(100)는 폐수를 공급받아 침전처리를 통해 상기 폐수에 내포된 침전물을 침전시키는 침전여과부(110)와, 침전여과부(110)를 통과하여 침전물이 제거된 폐수를 공급받음과 동시에 냉청수를 공급받아 상기 폐수와 냉청수 간의 열교환에 의해 냉청수를 온청수로 변환시키는 열교환부(120), 침전여과부(110)와 열교환부(120) 사이에 구비되어 침전여과부(110)를 통과한 폐수에 내포된 미세 이물질을 1차 필터링하고, 열교환부(120)를 통과한 폐수에 내포된 미세 이물질을 2차 필터링하는 필터링부(130), 및 열회수센싱부(140)로 구성된다.
구체적으로 도 1 내지 도 4 를 참조하여 열회수장치(100)의 침전여과부(110)는 폐수를 공급받아 침전처리를 하되, 폐수침전조(111), 폐수공급구(112), 폐수배출구(113), 침전물모집조(114), 및 침전물배출구(115)로 구성된다.
폐수침전조(111)는 원통형의 상부보다 하부의 단면적이 작은 콘 형상으로 구비되어 내부에 폐수를 수용하는 공간을 형성한다.
폐수공급구(112)는 폐수침전조(111)의 상부 일측면에 구비되어 폐수를 공급받는 부분으로, 온폐수저장탱크(12)에서 폐수공급구(112)를 통해 폐수침전조(111)로 공급된 폐수는 폐수침전조(111) 내부에서 와류(渦流)를 형성하여 회전함에 따라 폐수에 포함된 침전물이 자중에 의해 폐수침전조(111) 하방으로 모여지게 된다.
폐수배출구(113)는 폐수침전조의 상면과 연통됨과 아울러 상방으로 연장형성되도록 구비되며 침전물이 제거된 폐수를 배출하되, 폐수침전조(111)의 내부에서 형성된 와류에 따른 회전에 의해 침전물이 제거된 폐수가 배출된다.
침전물모집조(114)는 폐수침전조의 하단부에 일체로 구비되어 폐수에 포함된 침전물이 침전된 것을 모집한다. 이때, 침전물모집조(114)는 폐수침전조(111)의 하단부 단면보다 넓게 형성되어 상기 폐수가 와류를 형성함에 따른 침전물의 부상을 방지할 수 있는 구조로 형성된다.
침전물 배출구(115)는 침전물모집조(114)의 하면과 연통됨과 아울러 하방으로 연장형성되도록 구비되어 침전물모집조(114)에 모여진 침전물을 주기적으로 배출하기 위한 침전물배출밸브(115a)를 구비하며, 침전물모집조(114)에 모여진 침전물이 일정량 이상이 되었을 경우, 침전물배출밸브(115a)를 개방하여 모여진 침전물을 냉폐수처리탱크(14)로 배출시킨다.
상술한 바와 같은 구성인 침전여과부(110)를 정리하면, 폐수공급구(112)를 통해 폐수침전조(111)의 내부로 폐수를 공급받고, 공급된 폐수에 포함된 침전물을 침전시켜 침전물모집조(114)로 모집하며, 침전물배출구(115)를 통해 모집된 침전물을 배출시키고, 침전물이 제거된 폐수를 폐수배출구(113)를 통해 배출시키도록 구성된다.
도 1 내지 도 3 및 도 5 를 참조하면, 열회수장치(100)의 열교환부(120)는 침전여과부(110)를 통과하여 침전물이 제거된 폐수를 공급받음과 동시에 냉청수 공급탱크(12)로부터 내청수를 공급받아 폐수와 냉청수 간의 열교환을 이루어 상기 냉청수를 온청수로 변환하는바, 폐수공급공간(121), 폐수배출공간(122) 및 열교환공간(123)을 포함하여 구성된다.
폐수공급공간(121)은 상기 침전여과부(110)를 통과한 폐수를 공급받도록 구비된 폐수투입구(121a)를 통해 침전여과부(110)에서 침전물이 제거된 폐수를 폐수투입구(121a)를 통해 공급받는다.
폐수배출공간(122)은 폐수공급공간(121)과 다수개의 파이프를 통해 연통되어, 상기 폐수공급공간(121)으로 공급된 폐수를 구비된 폐수투출구(122a)를 통해 배출한다. 즉, 폐수공급공간(121)에 모여진 폐수가 다수개의 파이프를 통해 폐수배출공간(122)으로 공급되어 모여지도록 구성된다.
열교환공간(123)은 다수개의 파이프 표면으로 냉청수를 흘려보내도록 구성되어, 유입된 냉청수가 폐수의 열을 전달받아 온청수가 되도록 냉청수투입구(123a)와 온청수배출구(123b)를 구비한다. 바람직하게는, 열교환공간(123)에 다수개의 파이프를 동시에 감싸서 폐쇠하는 공간을 형성하여 폐쇄공간의 일측에 냉청수투입구(123a)를 구비하고, 폐쇠공간의 타측에 온청수투입구(123b)를 구비시킬 수 있다.
상술한 바와 같은 구성인 열교환부(120)를 정리하면, 상기 폐수투입구(121a)를 통해 유입된 폐수가 다수개의 파이프를 통해 폐수배출공간(120)으로 모여지고, 모여진 폐수가 폐수투출구(122a)를 통해 배출됨과 동시에, 상기 냉청수가 냉청수투입구(123a)를 통해 다수개의 파이프 표면으로 유입되어 온청수배출구(123b)로 배출되도록 구성된다. 이때, 다수개의 파이프를 통해 흐르는 폐수의 열이 다수개의 파이프를 통해 흐르는 냉청수에 전달되어 냉청수의 온도상승에 따라 온청수로 변환된다.
또한, 열교환부(120)는 폐수투입구(121a)로 투입되어 폐수투출구(122a)로 투출되는 폐수를 역방향으로 흘려보내기 위해 폐수투입구(121a) 및 폐수투출구(122a) 상에 연결되어 설치되는 폐수역행모듈(124)을 포함하여 구성된다.
폐수역행모듈(124)은 열교환부(120) 내부에 잔존하는 섬유형태의 이물질을 제거하기 위한 구성으로, 폐수공급공간(121)과 폐수배출공간(122)을 연결하는 다수개의 파이프에 동시에 결쳐져 있는 섬유형태의 이물질을 제거할 수 있도록 상기 폐수를 역방향으로 흘려보내기 위한 구성이다.
즉, 폐수투입구(121a)로 공급된 폐수가 폐수공급공간(121)에서 폐수배출공간(122)으로 순방향으로만 흐르게 될 경우, 다수개의 파이프 일단(폐수공급공간(121) 측)에 섬유형태의 이물질이 'U'자 형태로 걸쳐져 잔존하게 되므로, 폐수가 폐수배출공간(122)에서 폐수공급공간(121)으로 흐르도록 역방향 전환을 통해 'U'자 형태로 걸쳐진 섬유형태의 이물질을 제거하는 구성인 것이다.
이때, 폐수역행모듈(124)은 폐수투입구(121a) 및 폐수투출구(122a) 상에 연결ㆍ설치되는 다수개의 자동제어밸브로 구성될 수 있는데, 폐수투입구(121a) 및 폐수투출구(122a)의 경로 상에 제9밸브(V9), 제10밸브(V10), 제11밸브(V11), 제12밸브(V12)를 구성하여 상기 열교환부(120)로 흐르는 폐수가 순방향흐름 또는 역방향흐름이 되도록 제어할 수 있다.
예컨대, 순방향흐름 시 상기 제9밸브(V9)는 열린 상태, 제10밸브(V10)는 닫힌 상태, 제11밸브(V11)는 닫힌 상태, 제12밸브(V12)는 열린 상태가 되도록 제어하여, 공급되는 폐수가 상기 제12밸브(V12)를 통해 상기 폐수투입구(212)를 통해 상기 폐수투출구(222)로 배출되어 상기 제9밸브(V9)를 통해 배출하게 되고, 역방향흐름 시 제9밸브(V9)는 닫힌 상태, 제10밸브(V10)는 열린 상태, 제11밸브(V11)는 열린 상태, 제12밸브(V12)는 닫힌 상태가 되도록 제어하여, 공급되는 폐수가 상기 제10밸브(V10)를 통해 상기 폐수투출구(122a)를 통해 상기 폐수투입구(121a)로 배출되어 상기 제11밸브(V11)를 통해 배출하게 된다.
반면에, 상기 폐수가 역방향흐름 시 상기 폐수투출구(122a)로 흘러나오는 폐수를 배출하기 위한 폐수배출밸브(V14)가 구비되고, 상기 폐수역행모듈(124)에 의해 상기 폐수가 역방향으로 흐는 경우에, 상기 필터링부(130)는 필터링을 정지함과 동시에 상기 폐수배출밸브(V14)가 개방되는 것이 바람직하다.
즉, 상기 폐수투출구(122a)로 흘러나오는 폐수에는 섬유형태의 이물질이 포함되어 있으므로, 상기 필터링부(130)로 보내지지 않도록 필터링부(130)의 필터링을 정지하고, 상기 폐수배출밸브(V14)를 개방하여 상기 섬유형태의 이물질이 포함된 폐수가 냉폐수처리탱크(14)로 바로 공급되어 처리될 수 있도록 하는 것이다.
도 1 내지 도 3 및 도 6 을 참조하면, 열회수장치(100)의 필터링부(130)는 침전여과부(110)와 열교환부(120)사이에 설치되어 침연여과부(110)를 통과한 폐수에 내포된 미세 이물질을 1차 필터링하고, 열교환부(120)를 통과한 폐수에 내포된 미세 이물질을 2차 필터링하는바, 제1필터(131), 제2필터(132), 제1경로전환모듈(133) 및 제2경로전환모듈(134)을 포함하여 구성된다.
제1필터(131)와 제2필터(132)는 동일한 구조로 상호 이격되어 설치되고, 상부와 하부를 통해 폐수가 공급 또는 배출되며, 제1필터(131) 및 제2필터(132)의 중앙 내부에 형성된 다수개의 사각홀(h)을 형성한 필터패널(131a, 132a)이 구비되고, 필터패널(131a, 132a)의 상측 공간에 다량의 강구(131b, 132b)가 충진되어 있다.
즉, 제1필터(131)의 상부를 통해 폐수가 공급되면, 강구(131b)를 지나는 동안 폐수에 포함된 미세 이밀질이 필터링되어 필터패널(131a)의 사각홀(h)을 통해 필터의 하측으로 흐르게 되고, 제1필터(131)의 하부를 통해 폐수가 공급되면, 폐수가 필터패널(131a)의 사각홀(h)을 통해 강구(131b) 사이를 흐름에 따라 강구(131b) 사이에 잔류하는 미세 이물질을 부상시켜 폐수와 함께 제1필터(131)의 상부로 흐르게 된다.
아울러, 제1필터(131) 및 제2필터(132)의 내부에서 폐수가 상측에서 하측으로 흐르는 것과 폐수가 하측에서 상측으로 흐르는 것의 방향전환은 제1경로전환모듈(133) 및 제2경로전환모듈(134)에 의해 수행된다.
제1경로전환모듈(133)은 상기 침전여과부(110)를 통과한 폐수를 상기 제1필터(131) 또는 제2필터(132) 중 어느 하나에 택일적으로 경로를 전환하여 보내는 역할을 하고, 제2경로전환모듈(134)은 상기 열교환부(120)를 통과한 폐수를 상기 제1필터(131) 또는 제2필터(132) 중 어느 하나에 택일적으로 경로를 전환하여 보내는 역할을 한다.
이때, 제1경로전환모듈(133)이 상기 침전여과부(110)를 통과한 폐수를 제1필터(131)로 보내는 경우에, 제2경로전환모듈(134)은 상기 열교환부(120)를 통과한 폐수를 제2필터(132)로 보내도록 하고, 제1경로전환모듈(133)이 침전여과부(110)를 통과한 폐수를 제2필터(132)로 보내는 경우에, 제2경로전환모듈(134)은 상기 열교환부(120)를 통과한 폐수를 상기 제1필터(131)로 보내도록 한다.
한편, 제1경로전환모듈(133) 및 제2경로전환모듈(134)의 경로전환 동작은 일정한 주기로 이루어질 수도 있고, 상기 침전여과부(110)에 공급되는 폐수의 공급압력을 감지하는 폐수압력센서(PS1)의 감지에 의해 이루어질 수도 있다.
예컨대, 제1경로전환모듈(133)이 침전여과부(110)를 통과한 폐수를 제1필터(131)로 보내고, 제2경로전환모듈(134)은 열교환부(120)를 통과한 폐수를 제2필터(132)로 보내는 경우에, 폐수압력센서(PS1)에서 감지된 압력값이 기준범위보다 높을 경우에 상기 제1경로전환모듈(133)이 침전여과부(110)를 통과한 폐수를 상기 제2필터(132)로 보내도록 전환시키고, 제2경로전환모듈(134)은 상기 열교환부(120)를 통과한 폐수를 상기 제1필터(131)로 보내도록 전환시키게 한다.
또한, 제1경로전환모듈(133)이 침전여과부(110)를 통과한 폐수를 제2필터(132)로 보내고, 제2경로전환모듈(134)은 열교환부(120)를 통과한 폐수를 제1필터(131)로 보내는 경우에, 상기 폐수압력센서(PS1)에서 감지된 압력값이 기준범위보다 높을 경우에 제1경로전환모듈(133)이 침전여과부(110)를 통과한 폐수를 제1필터(131)로 보내도록 전환시키고, 제2경로전환모듈(134)은 열교환부(120)를 통과한 폐수를 제2필터(132)로 보내도록 전환시키게 한다.
이때, 폐수압력센서(PS1)에서 감지되는 압력값은 필터링부(130)의 제1필터(131) 및 제2필터(132)에 필터링된 미세 이물질에 의해 높아질 수 있으며, 예컨대, 필터링부(130)에 미세 이물질이 일정량 이상 누적되면 폐수압력센서(PS1)에서 감지되는 압력값은 증가하게 되는 것이다.
한편, 폐수압력센서(PS1)에서 감지된 압력값이 기준범위보다 낮을 경우에는 폐수누출과 같은 비상 상황이므로 알람을 발생하여 작업자가 알 수 있도록 한다.
상술한 바와 같이 침전여과부(110), 열교환부(120), 필터링부(130)를 포함하여 구성된 폐수의 열회수장치(100)에는 열교환부(120)로 공급되는 냉청수의 온도를 감지하는 냉청수온도센서(TS1), 열교환부(120)에서 열교환된 온청수의 온도를 감지하는 온청수온도센서(TS2), 열교환부(120)로 공급되는 폐수의 온도를 감지하는 제1폐수온도센서(TS3) 및 열교환부(120)에서 열교환된 폐수의 온도를 감지하는 제2폐수온도센서(TS4)가 구비된다.
그리고, 열회수장치(100)의 열회수센싱부(140)는 폐수압력센서(PS1)로부터 감지된 압력값을 인가받으며, 냉청수온도센서(TS1)로부터 감지된 냉청수 온도정보를 인가받고, 온청수온도센서(TS2)로부터 감지된 온청수 온도정보를 인가받으며, 제1폐수온도센서(TS3)로부터 감지된 제1폐수의 온도정보를 인가받고, 제2폐수온도센서(TS4)로부터 제2폐수의 온도정보를 인가받는다.
열회수센싱부(140)의 전송모듈(141)은 각각 센서들로부터 인가받은 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보들과, 폐수압력센서(PS1)로부터 인가받은 압력값을 정보통신망을 통해 모니터링장치(200)로 전송하고, 모니터링장치(200)로부터 침전여과부(110), 열교환부(120), 필터링부(130) 및 열회수센싱부(140) 각각에 대한 제어신호를 전송받는다.
열회수센싱부(140)의 제어모듈(142)은 전송모듈(141)로부터 인가받은 제어신호와 부합하도록 침전여과부(110), 열교환부(120), 필터링부(130) 및 열회수센싱부(140) 각각을 제어한다.
이하, 도 7 내지 도 15 를 참조하여 본 발명에 따른 폐수의 열회수장치 모니터링 시스템(S)의 모니터링장치(200)에 대해 살피면 아래와 같다.
모니터링장치(200)는 열회수장치(100)와 정보통신망을 통해 접속되어 원격지에 설치된 열회수장치(100)의 운전 상태를 제어 및 모니터링하는 구성으로, 운전화면 표시부(210), 열회수장치 설정부(220), 경보화면 표시부(230), 온도그래프 생성부(240), 압력그래프 생성부(250), 데이터추출/관리부(260), 데이터관리DB(270) 및 언어변환부(280)를 포함하여 구성된다.
먼저, 모니터링장치(200)의 운전화면 표시부(210)는 도 7 에 도시된 바와 같이, 원격지에 위치한 열회수장치(100)의 운전 상태를 출력하되, 열회수장치(100)의 전송모듈(141)로부터 전송받은 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보들과, 폐수압력센서(PS1)로부터 인가받은 압력값을 출력모듈(210)을 통해 디스플레이 하며, 냉청수온도센서(TS1)와 온청수온도센서(TS2)의 온도 차이값 또는 제1폐수온도센서(TS3)와 제2폐수온도센서(TS4)의 온도 차이값을 비교하여 냉청수가 온청수로 변하면서 얻게 된 열량을 계산하여 디스플레이 한다.
모니터링장치(200)의 열회수장치 설정부(220)는 도 8 에 도시된 바와 같이, 폐수압력센서(PS1)로부터 인가받은 압력값을 디스플레이하고, 작업자의 키 입력신호에 따라 입력된 압력값을 디스플레이함과 아울러 상기 폐수압력센서(PS1)가 입력받은 압력값을 갖도록 제어한다.
또한, 열회수장치 설정부(220)는 열회수장치(100)내의 침전물 배출구(115) 가동시간을 설정하고, 설정된 시간에 따라 침전물배출밸브(115a)의 개방 및 폐쇄를 설정된 제어신호를 열회수장치(100)의 열회수센싱부(140)내 전송모듈(141)로 전송하여 열회수장치(100)를 제어한다.
그리고, 열회수장치 설정부(220)는 설정된 제어신호에 따라 열회수장치(100)내의 열교환부(120) 가동시간을 설정ㆍ제어하며 열교환부(120)의 가동시간을 디스플레이 하는데, 이는 폐수역행모듈(124)을 통해 폐수의 순방향 또는 역방향으로의 순환을 설정된 시간에 부합하도록 제어하는 것이다.
모니터링장치(200)의 경보화면 표시부(230)는 도 9 에 도시된 바와 같이, 열회수장치(100)의 침전여과부(110), 열교환부(120), 필터링부(130) 및 열회수센싱부(140) 각각 구성요소들의 기 설정된 운전을 수행하지 않는 경우, 해당 구성요소의 상태 및 시간정보를 디스플레이한다.
모니터링장치(200)의 온도그래프 생성부(240)는 도 10 에 도시된 바와 같이, 열회수장치(100)의 냉청수온도센서(TS1), 온청수온도센서(TS2), 제1폐수온도센서(TS3) 및 제2폐수온도센서(TS4)가 각각 감지한 온도정보를 전송받아 온청수 온도정보, 냉청수 온도정보, 폐수공급구의 온도정보 및 폐수배출구의 온도정보를 시계열적인 추이(推移)곡선 그래프를 생성하여 디스플레이 한다.
모니터링장치(200)의 압력그래프 생성부(250)는 도 11 에 도시된 바와 같이, 열회수장치(100)의 폐수압력센서(PS1)가 감지한 압력정보를 전송받아 이를 추이곡선 그래프로 생성하여 디스플레이 한다.
모니터링장치(200)의 데이터추출/관리부(260)는 도 12 에 도시된 바와 같이, 폐수압력센서(PS1)가 감지한 압력정보, 냉청수온도센서(TS1)와 온청수온도센서(TS2)의 온도 차이값 또는 제1폐수온도센서(TS3)와 제2폐수온도센서(TS4)의 온도 차이값을 비교하여 냉청수가 온청수로 변하면서 얻은 열량정보, 온도그래프 생성부(240)가 전송모듈(141)로부터 전송받은 각각의 온도정보, 및 압력그래프 생성부(250)가 전송모듈(141)로부터 전송받은 압력정보, 및 열회수장치(100)의 각각 밸브(V1 내지 V14)들로부터 전송받은 유량정보를 데이터관리DB(270)에 저장ㆍ관리한다.
또한, 데이터추출/관리부(260)는 도 13 내지 도 15에 도시된 바와 같이, 상기 열량정보, 온도정보, 압력정보 및 유량정보들을 엑셀파일로 변환하여 사간별 압력정보, 시간별 열량정보, 시간별 온도정보, 시간별 유량정보, 일별 압력정보, 일별 열량정보, 일별 온도정보, 일별 유량정보, 월별 압력정보, 월별 열량정보, 월별 온도정보, 및 월별 유량정보들을 디스플레이 한다.
모니터링장치(200)의 언어변환부(280)는 운전화면 표시부(210), 열회수장치 설정부(220), 경보화면 표시부(230), 온도그래프 생성부(240), 압력그래프 생성부(250) 및 데이터추출/관리부(260)가 디스플레이하는 언어를 한국어, 중국어 및 영어 중에 어느 하나로 변환하는 기능을 수행한다.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (14)

  1. 폐수의 열회수장치 모니터링 시스템에 있어서,
    상기 폐수를 공급받아 침전처리함에 따라 상기 폐수에 내포된 침전물을 침전시키는 침전여과부와, 상기 침전여과부를 통과하여 침전물이 제거된 폐수를 공급받음과 동시에 냉청수를 공급받아 상기 폐수와 상기 냉청수 간의 열교환을 이루어 상기 냉청수가 온청수로 되게 하는 열교환부, 상기 침전여과부와 상기 열교환부의 사이에 설치되어, 상기 침전여과부를 통과한 폐수에 내포된 미세 이물질을 1차필터링하고, 상기 열교환부를 통과한 폐수에 내포된 미세 이물질을 2차필터링하는 필터링부, 및 접속된 폐수압력센서로부터 감지된 압력값을 인가받으며, 냉청수온도센서로부터 감지된 냉청수 온도정보를 인가받고, 온청수온도센서로부터 감지된 온청수 온도정보를 인가받으며, 제1폐수온도센서로부터 감지된 제1폐수의 온도정보를 인가받고, 제2폐수온도센서로부터 제2폐수의 온도정보를 인가받는 열회수센싱부를 구성한 열회수장치; 및
    상기 열회수장치와 정보통신망을 통해 접속되어 상기 열회수장치의 운전 상태를 제어 및 모니터링하며, 상기 열회수센싱부로부터 전송받은 압력값, 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보를 전송받아 열회수장치의 운전화면, 운전 상태, 경보화면, 온도그래프 및 압력그래프를 디스플레이하는 모니터링장치; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  2. 제 1 항에 있어서,
    상기 침전여과부는,
    상부보다 하부의 단면적이 작은 콘의 형상으로 형성된 폐수침전조; 상기 폐수침전조의 상부 일측면에 구비되어 상기 폐수가 공급되는 폐수공급구; 상기 폐수침전조의 상면과 연통되어 상방으로 연장형성되어 상기 침전물이 제거된 폐수가 배출되는 폐수배출구;
    상기 폐수침전조의 하단부에 일체로 구비되어 상기 침전물이 침전되어 모여지는 침전물모집조; 및
    상기 침전물모집조의 하면과 연통되어 하방으로 연장형성되어 상기 침전물모집조에 모여진 침전물을 주기적으로 배출하기 위해 침전물배출밸브가 구비된 침전물배출구; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  3. 제 1 항에 있어서,
    상기 열교환부는,
    상기 침전여과부를 통과한 폐수를 공급받도록 폐수투입구가 구비된 폐수공급공간;
    상기 폐수공급공간과 다수개의 파이프를 통해 연통되고, 상기 폐수공급공간으로 공급된 폐수를 배출하는 폐수투출구가 구비된 폐수배출공간; 및
    상기 다수개의 파이프의 표면으로 상기 냉청수를 흘려보내어, 상기 냉청수가 상기 폐수의 열을 전달받아 온청수로 되도록 냉청수투입구와 온청수배출구가 구비된 열교환공간; 을 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  4. 제 3 항에 있어서,
    상기 열교환부는,
    상기 폐수투입구로 투입되어 상기 폐수투출구로 투출되는 폐수를 역방향으로 흘려보내기 위해 상기 폐수투입구 및 상기 폐수투출구 상에 연결되어 설치되는 폐수역행모듈; 을 포함하되,
    상기 폐수역행모듈에 의해 상기 폐수가 역방향으로 흐르는 경우, 상기 필터링부가 필터링을 정지함과 동시에 상기 폐수투출구로 흘러나오는 폐수를 배출하기 위한 폐수배출밸브; 를 더 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  5. 제 1 항에 있어서,
    상기 필터링부는,
    상호 이격되어 설치된 제1필터 및 제2필터;
    상기 침전여과부를 통과한 폐수를 상기 제1필터 또는 상기 제2필터 중 어느 하나에 택일적으로 경로전환하여 보내는 제1경로전환모듈; 및
    상기 열교환부를 통과한 폐수를 상기 제1필터 또는 상기 제2필터 중 어느 하나에 택일적으로 경로전환하여 보내는 제2경로전환모듈; 을 포함하되,
    상기 제1경로전환모듈이 상기 침전여과부를 통과한 폐수를 상기 제1필터로 보내는 경우에, 상기 제2경로전환모듈은 상기 열교환부를 통과한 폐수를 상기 제2필터로 보내고, 상기 제1경로전환모듈이 상기 침전여과부를 통과한 폐수를 상기 제2필터로 보내는 경우에, 상기 제2경로전환모듈은 상기 열교환부를 통과한 폐수를 상기 제1필터로 보내는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  6. 제 5 항에 있어서,
    상기 침전여과부에 공급되는 폐수의 공급압력을 감지하는 폐수압력센서; 를 구비하며, 상기 폐수압력센서에서 감지된 압력값이 기준범위보다 높을 경우에 상기 제1경로전환모듈이 상기 침전여과부를 통과한 폐수를 상기 제2필터로 보내고, 상기 제2경로전환모듈은 상기 열교환부를 통과한 폐수를 상기 제1필터로 보내도록 전환하고, 상기 폐수압력센서에서 감지된 압력값이 기준범위보다 높을 경우에 상기 제1경로전환모듈이 상기 침전여과부를 통과한 폐수를 상기 제1필터로 보내고, 상기 제2경로전환모듈은 상기 열교환부를 통과한 폐수를 상기 제2필터로 보내도록 전환하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  7. 제 6 항에 있어서,
    상기 폐수압력센서에서 감지된 압력값이 기준범위보다 낮을 경우에 알람을 발생하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  8. 제 1 항에 있어서.
    상기 열교환기로 공급되는 냉청수의 온도를 감지하는 냉청수온도센서; 상기 열교환기에서 열교환된 온청수의 온도를 감지하는 온청수온도센서; 상기 열교환기로 공급되는 폐수의 온도를 감지하는 제1폐수온도센서; 및 상기 열교환기에서 열교환된 폐수의 온도를 감지하는 제2폐수온도센서; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  9. 제 1 항에 있어서,
    상기 열회수센싱부는,
    상기 폐수압력센서, 냉청수온도센서, 온청수온도센서, 제1폐수의 온도센서 및 제2폐수의 온도센서로부터 인가받은 압력값, 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보들을 상기 정보통신망을 통해 모니터링장치로 전송하고, 상기 모니터링장치로부터 상기 침전여과부, 열교환부, 필터링부 및 열회수센싱부 각각에 대한 제어신호를 전송받는 전송모듈; 및
    상기 전송모듈로부터 인가받은 제어신호와 부합하도록 상기 침전여과부, 열교환부, 필터링부 및 열회수센싱부 각각을 제어하는 제어모듈; 을 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  10. 제 1 항에 있어서,
    상기 모니터링장치는,
    상기 열회수장치의 운전화면, 운전 상태, 경보화면, 온도그래프 및 압력그래프를 디스플레이 하되, 상기 열회수장치로부터 전송받은 냉청수 온도정보, 온청수 온도정보, 제1폐수의 온도정보 및 제2폐수의 온도정보들과, 폐수압력센서로부터 전송받은 압력값을 디스플레이 함과 아울러, 냉청수온도센서와 온청수온도센서의 온도 차이값 또는 제1폐수온도센서와 제2폐수온도센서의 온도 차이값을 비교하여 냉청수가 온청수로 변하면서 얻게 된 열량을 계산하여 디스플레이하는 운전화면 표시부; 및
    상기 폐수압력센서로부터 인가받은 압력값을 디스플레이하고, 작업자의 키 입력신호에 따라 입력된 압력값을 디스플레이함과 아울러 상기 폐수압력센서가 입력된 압력값을 갖도록 제어하며, 상기 열회수장치내의 침전물 배출구 가동시간을 설정하고, 설정된 시간에 따라 침전물배출밸브의 개방 및 폐쇄를 상기 열회수장치의 열회수센싱부내 전송모듈로 설정된 제어신호를 전송하여 상기 열회수장치를 제어하는 열회수장치 설정부; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  11. 제 10 항에 있어서,
    상기 열회수장치 설정부는,
    상기 설정된 제어신호에 따라 상기 열회수장치내의 열교환부 가동시간을 설정ㆍ제어하며 상기 열교환부의 가동시간을 디스플레이 하되, 상기 열교환부를 제어하여 상기 폐수의 순방향 또는 역방향으로의 순환을 설정된 시간에 부합하도록 제어하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  12. 제 1 항에 있어서,
    상기 모니터링장치는,
    상기 열회수장치의 침전여과부, 열교환부, 필터링부 및 열회수센싱부 각각 구성요소들의 기 설정된 운전을 수행하지 않는 경우, 해당 구성요소의 상태 및 시간정보를 디스플레이하는 경보화면 표시부;
    상기 열회수장치의 냉청수온도센서, 온청수온도센서, 제1폐수온도센서및 제2폐수온도센서가 각각 감지한 온도정보를 전송받아 온청수 온도정보, 냉청수 온도정보, 폐수공급구의 온도정보 및 폐수배출구의 온도정보를 시계열적인 추이(推移)곡선 그래프를 생성하여 디스플레이하는 온도그래프 생성부;
    상기 열회수장치의 폐수압력센서가 감지한 압력정보를 전송받아 이를 추이곡선 그래프로 생성하여 디스플레이하는 압력그래프 생성부; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  13. 제 1 항 및 제 12 항에 있어서,
    상기 모니터링장치는,
    상기 열회수장치의 폐수압력센서가 감지한 압력정보, 상기 냉청수온도센서와 온청수온도센서간의 온도 차이값 또는 상기 제1폐수온도센서와 제2폐수온도센서간의 온도 차이값을 비교하여 냉청수가 온청수로 변하면서 얻은 열량정보, 상기 온도그래프 생성부가 상기 열회수장치로부터 전송받은 각각의 온도정보, 및 상기 압력그래프 생성부가 상기 열회수장치로부터 전송받은 압력정보, 및 상기 열회수장치 각각의 밸브들로부터 전송받은 유량정보를 데이터관리DB에 저장ㆍ관리하는 데이터추출/관리부; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
  14. 제 1 항에 있어서,
    상기 모니터링장치는,
    상기 열회수장치의 운전화면, 운전 상태, 경보화면, 온도그래프 및 압력그래프를 한국어, 중국어 및 영어 중에 어느 하나의 언어로 변환하여 디스플레이하는 언어변환부; 를 포함하는 것을 특징으로 하는 폐수의 열회수장치 모니터링 시스템.
PCT/KR2009/003864 2009-06-05 2009-07-14 폐수의 열회수장치 모니터링 시스템 WO2010140736A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/376,111 US20120073782A1 (en) 2009-06-05 2009-07-14 Wastewater heat recovery apparatus monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090050096A KR101080258B1 (ko) 2009-06-05 2009-06-05 폐수의 열회수장치 모니터링 시스템
KR10-2009-0050096 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010140736A1 true WO2010140736A1 (ko) 2010-12-09

Family

ID=43297867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003864 WO2010140736A1 (ko) 2009-06-05 2009-07-14 폐수의 열회수장치 모니터링 시스템

Country Status (3)

Country Link
US (1) US20120073782A1 (ko)
KR (1) KR101080258B1 (ko)
WO (1) WO2010140736A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527999A (ja) 2009-05-27 2012-11-12 ソン ギュン ムン, 廃水の熱回収装置及び方法
GB2510547B (en) * 2012-03-01 2016-04-27 Waste Heat Recovery Ltd Heat recovery
CN107478458B (zh) * 2017-09-15 2018-12-18 青岛海洋地质研究所 三维时序矢量沉积物捕获器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070467A (ko) * 1998-02-20 1999-09-15 최수현 자체청소기능을 갖춘 폐수용 열교환기
KR20010056918A (ko) * 1999-12-17 2001-07-04 이정수 수(水) 처리설비의 자동제어 시스템
KR100330371B1 (ko) * 2000-10-09 2002-04-03 김기석 셸튜브형 필터 및 자동제어 폐열회수 시스템
KR100843803B1 (ko) * 2006-07-04 2008-07-03 정방균 자동 여과 장치를 이용한 폐수열 회수 시스템 및 여기에 사용된 오방향 밸브

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405037A (en) * 1965-10-04 1968-10-08 Harrworth Inc Distilland treatment with concentrate recycle
US5526268A (en) * 1994-05-11 1996-06-11 Westinghouse Electric Corporation Dynamic language changing process graphics
WO2003008065A1 (en) * 2001-07-20 2003-01-30 Bang Gyoon Jung Back washing valve and filtering apparatus with the same
US7110906B2 (en) * 2004-07-22 2006-09-19 Abb Inc. System and method for monitoring the performance of a heat exchanger
US7399419B2 (en) * 2004-10-29 2008-07-15 Filtersure, Inc. Modular filtration system
US7894918B2 (en) * 2006-07-27 2011-02-22 Abb Research Ltd. System for analyzing batch processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070467A (ko) * 1998-02-20 1999-09-15 최수현 자체청소기능을 갖춘 폐수용 열교환기
KR20010056918A (ko) * 1999-12-17 2001-07-04 이정수 수(水) 처리설비의 자동제어 시스템
KR100330371B1 (ko) * 2000-10-09 2002-04-03 김기석 셸튜브형 필터 및 자동제어 폐열회수 시스템
KR100843803B1 (ko) * 2006-07-04 2008-07-03 정방균 자동 여과 장치를 이용한 폐수열 회수 시스템 및 여기에 사용된 오방향 밸브

Also Published As

Publication number Publication date
KR20100131284A (ko) 2010-12-15
KR101080258B1 (ko) 2011-11-08
US20120073782A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2010137763A1 (ko) 폐수의 열회수장치 및 방법
WO2015163631A1 (ko) 유로가 측면에 형성되는 역삼투막 필터
WO2011122747A1 (ko) 물 저장 및 배출장치
WO2010140736A1 (ko) 폐수의 열회수장치 모니터링 시스템
KR101171836B1 (ko) 마을 상수도 시스템의 원격 관리 방법
WO2018194211A1 (ko) 사물인터넷 기반 자가진단 및 원격제어가 가능한 지능형 음용수기 제어장치
CN108828179B (zh) 一种一体化可扩展微型水质在线监测系统
WO2019045486A1 (ko) 원격제어가 가능한 무방류 순환수세식 화장실 시스템
WO2013103198A1 (ko) 액체필터부를 구비한 입자회수장치
WO2014175500A1 (ko) 유체 여과망의 이물질 제거가 용이한 볼타입 개폐 여과밸브
CN201187960Y (zh) 废水热能回收装置
CN214750211U (zh) 一种水质自动监测系统
CN101786698A (zh) 饮用水单向管道膜净化装置
WO2013015499A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
WO2021172795A1 (ko) 진공 스팀 순환기 및 그 순환기가 결합된 보일러
WO2018131734A1 (ko) 이동형 간이 수처리 장치
WO2021085924A1 (ko) 정수기
CN108314201A (zh) 一种模块化油水处理装置及系统
CN101493291A (zh) 废水热能回收系统
WO2016027968A1 (ko) 정수장치
CN211419837U (zh) 一种水体快速净化一体机
WO2016108345A1 (ko) 모듈식 슬러지 수집블록을 구비하는 슬러지 수집기
CN203030105U (zh) 管道除污装置
WO2014200285A1 (ko) 수압을 이용한 정수장치
WO2015170843A1 (ko) 가온식 막여과 농축장치를 이용한 고농축 유기성 폐수 시스템 및 폐수 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13376111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845578

Country of ref document: EP

Kind code of ref document: A1