WO2010140625A1 - 還元型グルタチオンの製造法 - Google Patents

還元型グルタチオンの製造法 Download PDF

Info

Publication number
WO2010140625A1
WO2010140625A1 PCT/JP2010/059361 JP2010059361W WO2010140625A1 WO 2010140625 A1 WO2010140625 A1 WO 2010140625A1 JP 2010059361 W JP2010059361 W JP 2010059361W WO 2010140625 A1 WO2010140625 A1 WO 2010140625A1
Authority
WO
WIPO (PCT)
Prior art keywords
glutathione
reduced glutathione
aqueous solution
acid
solution
Prior art date
Application number
PCT/JP2010/059361
Other languages
English (en)
French (fr)
Inventor
一成 福本
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to JP2011518476A priority Critical patent/JP5654457B2/ja
Priority to EP10783407.9A priority patent/EP2439312B1/en
Priority to US13/375,630 priority patent/US9249517B2/en
Priority to CN201080034332.1A priority patent/CN102803567B/zh
Publication of WO2010140625A1 publication Critical patent/WO2010140625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0215Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing natural amino acids, forming a peptide bond via their side chain functional group, e.g. epsilon-Lys, gamma-Glu
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the present invention relates to a method for producing reduced glutathione by electrolytic reduction of oxidized glutathione.
  • Patent Document 1 As a method for electrolytic reduction of a disulfide compound, a method using an alloy composed of two or more specific metals for the cathode is known (Patent Document 1). Also, as a method of producing L-cysteine by electrolytic reduction of L-cystine, which is a kind of disulfide compound, a cation exchange membrane was used for the diaphragm, and a mineral acid such as hydrochloric acid was added to the cathode side electrolytic cell to make it acidic. A method using an L-cystine solution is known (Patent Document 2).
  • the required area of the electrode and ion exchange membrane is reduced to a practical size while suppressing the corrosion of the cathode and the decomposition of the reduced glutathione. In addition, it is required to improve the reduction efficiency.
  • the present invention relates to the methods described in the following (1) to (7).
  • a method for producing reduced glutathione by electrolytic reduction of oxidized glutathione using a cathode chamber and an anode chamber separated by a diaphragm a pH 2.0 to 3.0 containing a conductive agent other than acid in the solution in the cathode chamber
  • the production method of the above (1), wherein the conductive agent other than the acid is a neutral salt.
  • the neutral salt is sodium sulfate, sodium chloride, potassium sulfate or potassium chloride.
  • reduced glutathione can be produced efficiently on an industrial scale.
  • FIG. 1A is a graph showing the change with time of the residual ratio of reduced glutathione at each pH.
  • FIG. 1B is a diagram showing the change over time in the amount of increase in impurities in the reduced glutathione aqueous solution at each pH.
  • the vertical axis in FIG. 1A represents the residual ratio of reduced glutathione, and the horizontal axis represents time (time).
  • the vertical axis represents the impurity content (g / L) in the reduced glutathione aqueous solution, and the horizontal axis represents the elapsed time (hours).
  • FIG. 2 is a graph showing the relationship between the oxidized glutathione concentration of the cathode tank solution and the electrolytic reduction rate.
  • the vertical axis represents the electrolytic reduction rate (g / m 2 / h), and the horizontal axis represents the oxidized glutathione concentration (g / L).
  • the method of the present invention is a method for producing reduced glutathione by electrolytic reduction of oxidized glutathione using a cathode tank and an anode tank separated by a diaphragm, and a pH 2.0 to 3.0 containing a conductive agent other than acid in the cathode tank solution.
  • a method for producing reduced glutathione characterized by using an oxidized glutathione aqueous solution.
  • Conductive agents other than acids are substances other than acids that have the effect of lowering the pH of aqueous solutions such as inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid and propionic acid when added to an oxidized glutathione aqueous solution.
  • the conductive agent is not particularly limited as long as it is a conductive agent that improves the conductivity of the aqueous solution.
  • a conductive agent is preferably a neutral salt.
  • neutral salts include inorganic salts such as sulfates, nitrates, chlorine salts and phosphates, and organic salts such as acetates and propionates.
  • the salt constituting the neutral salt include metal salts such as sodium, potassium, and magnesium, and ammonium salts.
  • Particularly preferable examples of the conductive agent include sodium sulfate, sodium chloride, potassium sulfate, and potassium chloride, and most preferable examples include sodium sulfate.
  • An oxidized glutathione aqueous solution containing a neutral salt may be prepared by directly dissolving the neutral salt in the solution, or by mixing an acid and an alkali to form a neutralized salt in the aqueous solution. It may be prepared.
  • the pH of the aqueous solution of oxidized glutathione is preferably 2.0 to 3.0, more preferably 2.5 to 2.9, because reduced glutathione produced by electrolytic reduction decomposes under strong acidity and electrolytic reduction does not proceed near neutrality. A pH of 2.8 to 2.9 is particularly preferred.
  • the concentration of the conductive agent is not particularly limited as long as it is equal to or lower than the saturated concentration in the oxidized glutathione aqueous solution.
  • sodium sulfate is used as the conductive agent, 0.05 to 5.0 mol / L, preferably 0.2 to 3.0 mol / L, More preferably, it is 0.4 to 1.0 mol / L.
  • the conductivity of the solution can be improved without lowering the pH of the oxidized glutathione aqueous solution.
  • the electrical resistance of the solution is lower than when the same current is applied to the aqueous glutathione solution, and therefore the temperature of the aqueous solution does not increase. That is, decomposition of reduced glutathione in the cathode chamber can be suppressed.
  • an electrolytic glutathione aqueous solution containing a conductive agent other than an acid is placed in the cathode tank and subjected to electrolytic reduction, so that the production efficiency can be increased while suppressing decomposition of the reduced glutathione.
  • the size of the electrode can be reduced, so that the equipment cost can be kept low.
  • the production method of the present invention has another feature in that a supersaturated oxidized glutathione aqueous solution is used as the oxidized glutathione aqueous solution in the cathode chamber.
  • Saturated solubility of oxidized glutathione in water at room temperature is 20 g / L or less, and solubilization does not increase even with salt unless the pH is greatly changed.
  • oxidized glutathione once had a very high supersaturated solubility exceeding 300 g / L. This supersaturated state is stable at room temperature and takes several days to crystallize.
  • the concentration of the supersaturated oxidized glutathione aqueous solution containing a conductive agent other than an acid is not limited as long as the supersaturated state can be maintained, but is 50 g / L or more, preferably 100 g / L or more, more preferably 150 g / L or more. More preferably, the concentration can be 200 g / L or more, and most preferably 300 g / L or more.
  • the solution has a supersaturated oxidation of 200 g / L or more.
  • Type glutathione aqueous solution the reduction rate greatly exceeds the degradation rate of reduced glutathione under strong acidity, so it is economically efficient if an electrode made of an inexpensive material that is not easily corroded under strong acidity as a cathode.
  • reduced glutathione can be produced.
  • the solution of the anode tank in the present invention is not particularly limited as long as it is a conductive aqueous solution, an inorganic acid solution such as hydrochloric acid and sulfuric acid, an organic acid solution such as acetic acid and propionic acid, and a solution in which a conductive agent other than an acid is dissolved.
  • the concentration of inorganic acid or organic acid is low, the conductivity is poor, and when the concentration is high, the ion exchange membrane is likely to deteriorate. Therefore, it is used at a concentration of 0.5 to 3 mol / L, preferably 1 to 2 mol / L.
  • the conductive agent other than the acid include the conductive agent contained in the oxidized glutathione aqueous solution in the cathode chamber described above, and preferably the same conductive agent as that contained in the oxidized glutathione aqueous solution.
  • the concentration of the conductive agent in the solution in the anode vessel is preferably the same as the concentration of the conductive agent in the solution in the cathode vessel.
  • concentration is 0.05 to 5.0 mol / L
  • the amount is preferably 0.2 to 3.0 mol / L, more preferably 0.4 to 1.0 mol / L.
  • a metal having a hydrogen overvoltage of carbon or more examples include zinc, lead, carbon, and porous carbon, and more preferably zinc. Can give.
  • any metal can be used as long as it is an insoluble metal, but a metal having excellent corrosion resistance is preferable, for example, platinum-plated titanium, platinum-iridium, lead, lead Alloys, lead dioxide, and titanium oxide can be mentioned, and platinum-plated titanium is preferable.
  • the membrane used in the method of the present invention may be any membrane as long as it can reduce leakage of reduced glutathione produced in the cathode cell to the anode cell, preferably an ion exchange membrane, more preferably cation exchange.
  • a membrane can be mentioned, specifically, Selemion CMT (Asahi Glass Co., Ltd.) can be mentioned.
  • the current density, voltage, temperature and the like are not particularly limited, but as a condition for improving the reduction efficiency while suppressing the decomposition of the produced reduced glutathione, the current density is preferably 0.1 to 30 A. / dm 2 , more preferably 0.5 to 20 A / dm 2 , more preferably 1 to 10 A / dm 2 , the voltage is preferably 1 to 20 V, more preferably 2 to 15 V, more preferably 3 to 10 V, and the temperature is preferably The temperature can be 4 to 50 ° C., more preferably 10 to 30 ° C., and still more preferably 10 to 25 ° C.
  • the solution in the cathode tank containing the reduced glutathione produced is desalted by passing through an ion exchange column, and the desalted reduced glutathione aqueous solution can be used as it is for crystallization.
  • ion exchange resins strong acid cation exchange resins represented by SK-116 and SK-104 (both Diaion and Mitsubishi Chemical) and weak basicity represented by WA-30 and WA-21 An ion exchange resin (both are Diaion, manufactured by Mitsubishi Chemical Corporation) can be mentioned, and the desalted reduced glutathione can be crystallized by adding a solvent or a seed crystal as appropriate after cooling and cooling.
  • the amount of impurities increased due to hydrolysis was larger in the solution having a pH of 2.0 or less than that in the solution having a pH of 2.90.
  • the total amount of substances other than reduced glutathione and oxidized glutathione was quantified under the following HPLC conditions, and the concentration (g / L) converted to reduced glutathione was calculated.
  • HPLC condition column Nucleosil 100-5 C18 ⁇ 4.6 ⁇ 150mm Column temperature: 40 ° C Buffer solution: 10% acetonitrile solution containing 0.405% sodium 1-heptanesulfonate (adjusted to pH 2.0 with phosphoric acid) Flow rate: 1.0mL / min Detector: UV detector (wavelength 210nm)
  • Electrolytic reduction of oxidized glutathione using sodium sulfate as a conductive agent About 400 g / L of oxidized glutathione aqueous solution was prepared by adding sodium hydroxide to pH 7.0, and this was passed through a cation exchange resin. By desalting, an about 350 g / L supersaturated oxidized glutathione aqueous solution was prepared. The solution was diluted and sodium sulfate was added to prepare a 310 g / L oxidized glutathione aqueous solution containing 0.75 mol / L sodium sulfate. The pH of the solution was 2.91.
  • the electrolytic cell used was an anode side of 150 mL and a cathode side of 300 mL, and the bipolar cell was separated by a 50 cm 2 cation exchange membrane selemion CMT (manufactured by Asahi Glass Co., Ltd.).
  • a 50 cm 2 platinum-plated titanium plate was used for the anode, and a 50 cm 2 zinc plate was used for the cathode.
  • the anode tank was filled with 140 mL of a 0.50 mol / L sulfuric acid solution, and the cathode tank was filled with 280 mL of the oxidized glutathione aqueous solution prepared above.
  • the electrolytic reduction reaction was performed at an electrolytic voltage of 5-6 V, an electrolytic current of 3.0 A, and room temperature for 10 hours.
  • the product in the cathode chamber was quantified by HPLC under the same conditions as in Example 1, and it was confirmed that 79.7 g of reduced glutathione was produced (conversion rate: 91.8%).
  • the cathode Under the above electrolytic reduction conditions, the cathode was hardly corroded, but under the above electrolytic reduction conditions, instead of the oxidized glutathione aqueous solution containing 0.75 mol / L sodium sulfate as the cathode bath solution, the pH was adjusted to 0. When the 150 g / L oxidized glutathione aqueous solution prepared in 68 was used, it was observed that zinc used for the cathode was eluted in the cathode cell solution.
  • Electrolytic reduction rate when using supersaturated oxidized glutathione aqueous solution About 350 g / L supersaturated oxidized glutathione aqueous solution prepared in Example 2 was diluted to 300 g / L containing 0.75 mol / L sodium sulfate, Oxidized glutathione aqueous solutions of 200 g / L, 150 g / L and 100 g / L were prepared. The pH of each solution was 2.89.
  • the electrolytic cell, cation exchange membrane, and both electrodes were the same as in Example 2.
  • the anode tank was filled with 140 mL of a 0.50 mol / L sulfuric acid solution, and the cathode tank was filled with 280 mL of the oxidized glutathione aqueous solution prepared above.
  • Electrolytic reduction reaction was performed at an electrolysis voltage of 5 to 7 V, an electrolysis current of 3.0 A, and room temperature.
  • the product in the cathode chamber was quantified by HPLC under the same conditions as in Example 1, and the higher the concentration of the oxidized glutathione aqueous solution in the cathode chamber, the higher the electroreduction rate, especially at higher than 150 g / L. (Fig. 2).
  • Example 2 Production of Reduced Glutathione Crystals
  • the reduced glutathione aqueous solution obtained in Example 2 was subjected to strong acidic cation exchange resin SK-116 (H +) (manufactured by Mitsubishi Chemical Corporation), followed by weakly basic anion exchange resin WA-21 ( OH-) (Mitsubishi Chemical Co., Ltd.) was passed through to remove the coexisting salt.
  • the obtained reduced glutathione-containing fraction was concentrated under reduced pressure, seed crystals were added and crystallized to obtain reduced glutathione crystals.
  • the method of the present invention has made it possible to produce reduced glutathione on an industrial scale by electrolytic reduction of oxidized glutathione.
  • represents pH 0.6
  • represents pH 1.2
  • represents pH 2.0
  • represents pH 2.9 reduced glutathione aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Peptides Or Proteins (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 酸化型グルタチオンの電解還元法による優れた還元型グルタチオンの製造法を提供する。 隔膜で隔てられた陰極槽、および陽極槽を用いた酸化型グルタチオンの電解還元による還元型グルタチオンの製造法において、陰極槽内に酸以外の導電剤を含有するpH2.0~3.0の酸化型グルタチオン水溶液を用いて還元型グルタチオンを製造する。

Description

還元型グルタチオンの製造法
 本発明は、酸化型グルタチオンを電解還元することにより還元型グルタチオンを製造する方法に関する。
 ジスルフィド化合物の電解還元方法としては、陰極に特定の2種以上の金属からなる合金を用いる方法が知られている(特許文献1)。またジスルフィド化合物の一種であるL-シスチンを電解還元することによりL-システインを製造する方法としては、隔膜にカチオン交換膜を用い、陰極側電解槽に塩酸などの鉱酸を加えて酸性にしたL-シスチン溶液を用いる方法が知られている(特許文献2)。酸化型グルタチオンを電解還元することにより還元型グルタチオンを製造する方法としても、陰極側電解槽に濃塩酸などの鉱酸を加えて酸性にした酸化型グルタチオン水溶液を用いる方法が知られている(特許文献3)。
 しかしながら、上記のジスルフィド化合物の電解還元法では、高価な電極を用いなければならず、特許文献2に記載のL-シスチンの電解還元条件で酸化型グルタチオンを電解還元する場合、還元型グルタチオンはL-システインに比べ強酸性、高温下では不安定なため、十分な収率で還元型グルタチオンを製造することはできない。特許文献3記載の方法も特許文献2記載の方法と同様、鉱酸を加えてpH0.6~1.0の強酸性にした酸化型グルタチオン水溶液を用いる方法であるため、陰極が腐食する、還元型グルタチオンが分解するという問題がある。強酸性下での還元型グルタチオンの分解を最小限にするためには電流密度を低くする必要があるが、そうすると電極面積当たりの還元効率が悪くなるため、その分電極面積を大きくしなければ還元型グルタチオンを効率よく製造することはできない。すなわち、鉱酸で強酸性にした酸化型グルタチオン水溶液を電解還元して還元型グルタチオンを工業的規模で製造するには、イオン交換膜と電極の大きさに応じた巨大な電解還元設備と腐食に耐えうる特殊な電極が必要となる。従って、従来の電解還元による還元型グルタチオンの製造法は、生産効率と設備の面において現実的な方法とは言い難いものであった。
特開平8-41671 特開昭59-9184 特開昭52-131528
 酸化型グルタチオンを電解還元して還元型グルタチオンを製造する方法においては、陰極の腐食と還元型グルタチオンの分解を抑制しつつ、電極およびイオン交換膜の必要面積を現実的な大きさに縮小させるために、還元効率を向上させることが要求されている。
 本発明は、以下の(1)~(7)に記載の方法に関する。
(1)隔膜で隔てられた陰極槽および陽極槽を用いた酸化型グルタチオンの電解還元による還元型グルタチオンの製造法において、陰極槽内の溶液に酸以外の導電剤を含有するpH2.0~3.0の酸化型グルタチオン水溶液を用いることを特徴とする還元型グルタチオンの製造方法。
(2)酸以外の導電剤が中性塩である上記(1)の製造方法。
(3)中性塩が硫酸ナトリウム、塩化ナトリウム、硫酸カリウムまたは塩化カリウムである上記(2)の製造方法。
(4)酸以外の導電剤の濃度が0.05mol/L以上、5.0mol/L以下である上記(1)~(3)のいずれか1つの製造方法。
(5)酸化型グルタチオン水溶液の濃度が50g/L以上である上記(1)~(4)のいずれか1つの製造方法。
(6)電解還元が電流密度0.1~30A/dm2で行われることを特徴とする上記(1)~(5)のいずれか1つの製造方法。
(7)上記(1)~(6)のいずれか1つの製造方法で製造された還元型グルタチオンをイオン交換カラムに通塔して脱塩された還元型グルタチオン水溶液を取得し、その後還元型グルタチオンを結晶化させることを特徴とする還元型グルタチオン結晶の製造方法。
本発明によれば、工業的規模で効率よく還元型グルタチオンを製造することができる。
図1Aは、各pHにおける還元型グルタチオンの残存率の経時変化を示す図である。図1Bは、各pHにおける還元型グルタチオン水溶液中の不純物増加量の経時変化を示す図である。図1Aの縦軸は還元型グルタチオンの残存率、横軸は経時時間(時間)を表す。図1Bの縦軸は還元型グルタチオン水溶液中の不純物の含有量(g/L)、横軸は経時時間(時間)を表す。 図2は陰極槽溶液の酸化型グルタチオン濃度と電解還元速度の関係を示す図である。縦軸は電解還元速度(g/m/h)、横軸は酸化型グルタチオン濃度(g/L)を表す。
 本発明の方法は、隔膜で隔てられた陰極槽と陽極槽を用いた酸化型グルタチオンの電解還元による還元型グルタチオンの製造法において、陰極槽溶液に酸以外の導電剤を含むpH2.0~3.0の酸化型グルタチオン水溶液を用いることを特徴とする還元型グルタチオンの製造法である。
 酸以外の導電剤は、塩酸、硫酸などの無機酸、酢酸、プロピオン酸などの有機酸のように酸化型グルタチオン水溶液に加えたときに該水溶液のpHを下げる作用を有する酸以外の物質であり、該水溶液の電導性を向上させる導電剤であれば特に制限されない。そのような導電剤としては、好ましくは中性塩をあげることができる。中性塩としては、硫酸塩、硝酸塩、塩素塩、リン酸塩などの無機塩、酢酸塩、プロピオン酸塩などの有機塩などをあげることができる。中性塩を構成する塩としては、ナトリウム、カリウム、マグネシウムなどの金属塩およびアンモニウム塩などをあげることができる。特に好ましい導電剤としては硫酸ナトリウム、塩化ナトリウム、硫酸カリウムおよび塩化カリウムをあげることができ、最も好ましくは硫酸ナトリウムをあげることができる。
 中性塩を含有する酸化型グルタチオン水溶液は、直接中性塩を該溶液に溶解させることにより調製してもよいし、酸とアルカリを混合して中和塩を該水溶液中で形成させることにより調製してもよい。
 酸化型グルタチオン水溶液のpHは、強酸性下では電解還元により生成した還元型グルタチオンが分解し、中性付近では電解還元が進行しないので、pH2.0~3.0が好ましく、pH2.5~2.9がさらに好ましく、pH2.8~2.9が特に好ましい。
 導電剤の濃度は、酸化型グルタチオン水溶液における飽和濃度以下であれば特に制限はないが、例えば導電剤として硫酸ナトリウムを用いる場合は、0.05~5.0mol/L 、好ましくは0.2~3.0mol/L、より好ましくは0.4~1.0mol/Lである。
 本発明の方法では、酸以外の導電剤を酸化型グルタチオン水溶液に加えることにより、酸化型グルタチオン水溶液のpHを下げることなく該溶液の電導性を向上させることができるので、導電剤非含有の酸化型グルタチオン水溶液に同じ電流を通電した場合に比べて溶液の電気抵抗は低く、よって水溶液の温度も高くならない。すなわち、陰極槽中での還元型グルタチオンの分解を抑えることができる。
 上記のとおり、酸以外の導電剤を含有する酸化型グルタチオン水溶液を陰極槽に入れて電解還元を行うことにより、還元型グルタチオンの分解を抑えつつ、その生成効率を上げることができるので、隔膜および電極の大きさを小さくでき、よって設備コストを低く抑えることができる。
 本発明の製造方法は、陰極槽の酸化型グルタチオン水溶液として過飽和の酸化型グルタチオン水溶液を用いることをもう一つの特徴とする。
 常温(25℃)の水に対する酸化型グルタチオンの飽和溶解度は、20g/L以下であり、pHを大きく変化させない限り、塩の共存化でも溶解度は上昇しない。しかしながら、酸化型グルタチオンは一旦溶解させると300g/Lを超える極めて大きな過飽和溶解度を有することが見出された。この過飽和状態は、常温で安定であり、起晶するまでに数日の時間を要する。この特徴を利用することで、飽和溶解度を上回る酸化型グルタチオンの溶液を調整することができ、また上記したように酸以外の導電剤を加えることにより優れた電導性を過飽和の酸化型グルタチオン水溶液に付与することができるので、さらに効率的な酸化型グルタチオンの電解還元が成立する。酸以外の電導剤を含有する過飽和の酸化型グルタチオン水溶液の濃度は、過飽和状態を維持できるかぎり制限はないが、50g/L以上、好ましくは100 g/L以上、より好ましくは150 g/L以上、さらに好ましくは200g/L以上、最も好ましくは300g/L以上の濃度をあげることができる。
 また、上記過飽和を利用すると、酸を加えることによりpHを0.6~1.0にした強酸性の酸化型グルタチオン水溶液を陰極槽溶液として用いた場合であっても、当該溶液が200g/L以上の過飽和酸化型グルタチオン水溶液であれば、還元速度が強酸性下での還元型グルタチオンの分解速度を大きく上回るため、陰極として強酸性下でも腐食されにくく、かつ安価な材質の電極を用いれば、効率よく経済的に還元型グルタチオンを製造することができる。
 酸化型グルタチオンの過飽和溶液の調製法に制限はなく、酸化型グルタチオンをアルカリ溶液に高濃度に溶解してから脱塩する方法、酸化型グルタチオンをイオン交換樹脂に吸着させた後、高濃度溶液として溶出させる方法、および飽和溶解度以下の溶液を濃縮する方法などをあげることができる。
 本発明における陽極槽の溶液は、導電性がある水溶液であれば特に制限はなく、塩酸、硫酸などの無機酸溶液、酢酸、プロピオン酸などの有機酸溶液、酸以外の導電剤を溶解した溶液などをあげることができる。無機酸、有機酸の濃度は、低濃度だと導電性が悪く、高濃度だとイオン交換膜が劣化し易くなるので、0.5~3mol/L、好ましくは1~2mol/Lの濃度で用いられる。酸以外の導電剤としては、上記した陰極槽内の酸化型グルタチオン水溶液に含まれる導電剤をあげることができ、好ましくは酸化型グルタチオン水溶液に含まれる導電剤と同じ導電剤をあげることができる。
 陽極槽内の溶液の導電剤の濃度は、陰極槽内の溶液の導電剤濃度と同程度の濃度が好ましく、例えば硫酸ナトリウムを導電剤として用いる場合の濃度としては、0.05~5.0mol/L、好ましくは0.2~3.0mol/L、より好ましくは0.4~1.0mol/Lをあげることができる。
 本発明の方法で用いられる陰極には、水素過電圧が炭素以上の金属を用いることが好ましく、そのような金属としては例えば亜鉛、鉛および炭素、多孔性炭素をあげることができ、より好ましくは亜鉛をあげることができる。
 本発明の方法で用いられる陽極には、不溶性の金属であればいずれの金属でも用いることができるが、耐腐食性に優れた金属が好ましく、例えば白金メッキしたチタン、白金-イリジウム、鉛、鉛合金、二酸化鉛、およびチタン酸化物をあげることができ、好ましくは白金メッキしたチタンをあげることができる。
 本発明の方法で用いられる隔膜としては、陰極槽内で生成する還元型グルタチオンの陽極槽への漏出を低減できる膜であればいずれの膜でもよく、好ましくはイオン交換膜、より好ましくはカチオン交換膜をあげることができ、具体的にはセレミオンCMT(旭硝子社製)をあげることができる。
 本発明の方法では、電流密度、電圧、温度などは特に限定されないが、生成した還元型グルタチオンの分解を抑制しつつ、還元効率を向上させるための条件としては、電流密度は好ましくは0.1~30A/dm2、より好ましくは0.5~20A/dm2、さらに好ましくは1~10A/dm2、電圧は好ましくは1~20V、より好ましくは2~15V、さらに好ましくは3~10V、温度は好ましくは4~50℃、より好ましくは10~30℃、さらに好ましくは10~25℃をあげることができる。
 電解還元終了後、生成した還元型グルタチオンを含有する陰極槽内の溶液をイオン交換カラムに通塔することにより脱塩し、脱塩された還元型グルタチオン水溶液はそのまま結晶化に用いることができる。イオン交換樹脂としては、SK-116、SK-104に代表される強酸性陽イオン交換樹脂(いずれもダイヤイオン、三菱化学社製)、およびWA-30、WA-21に代表される弱塩基性イオン交換樹脂(いずれもダイヤイオン、三菱化学社製)をあげることができ、脱塩した還元型グルタチオンは濃縮後、適宜溶媒または種晶を添加して冷却することにより結晶化させることができる。
還元型グルタチオンのpH安定性
 100g/Lの還元型グルタチオン水溶液(pH2.90)、および硫酸を用いてpH0.6、1.2、2.0に調整した100g/Lの還元型グルタチオン水溶液をそれぞれ作製した。
 それぞれの溶液を、25℃、24~36時間保存した後、以下の条件での高速液体クロマトグラフィー(HPLC)で還元型グルタチオンの残存量を定量した。図1Aに示すように、pH2.0以下の溶液では、pH2.90の溶液に比べ還元型グルタチオンの残存率が低下することがわかった。さらに、図1Bに示すように、pH2.0以下の溶液では、pH2.90の溶液に比べ、加水分解による不純物の増加量が大きいことがわかった。なお、不純物は下記のHPLC条件で還元型グルタチオン、酸化型グルタチオン以外の物質の総量を定量し、還元型グルタチオンに換算した濃度(g/L)を算出した。
HPLC条件
カラム:Nucleosil 100-5 C18 φ4.6×150mm
カラム温度:40℃
緩衝液:0.405%の1-ヘプタンスルホン酸ナトリウムを含む、10%アセトニトリル溶液(燐酸でpH2.0に調整)
流速:1.0mL/min
検出器:UV検出器(波長210nm)
硫酸ナトリウムを導電剤に用いた酸化型グルタチオンの電解還元
 水酸化ナトリウムを加えてpHを7.0にすることで約400g/Lの酸化型グルタチオン水溶液を調製し、これをカチオン交換樹脂に通塔して脱塩することで約350g/Lの過飽和の酸化型グルタチオン水溶液を作製した。該溶液を希釈するとともに硫酸ナトリウムを加え、0.75mol/Lの硫酸ナトリウムを含む310g/Lの酸化型グルタチオン水溶液を作製した。該溶液のpHは2.91であった。
 電解槽は、陽極側150mL、陰極側300mLのものを用い、両極槽を50cm2のカチオン交換膜セレミオンCMT(旭硝子社製)で隔てた。陽極には50cm2の白金メッキしたチタン板、陰極には50cm2の亜鉛板を用いた。陽極槽には0.50mol/Lの硫酸溶液140mL、陰極槽には上記で作製した酸化型グルタチオン水溶液280mLを入れた。
 電解電圧5~6V、電解電流3.0A、室温下で10時間、電解還元反応を行った。実施例1と同条件のHPLCで陰極槽内の生成物を定量し、79.7gの還元型グルタチオンが生成していることを確認した(転換率91.8%)。
 上記電解還元の条件下では、陰極の腐食はほとんど見られなかったが、上記電解還元条件において、陰極槽溶液として0.75mol/Lの硫酸ナトリウムを含む酸化型グルタチオン水溶液の代わりに、硫酸でpH0.68に調製した150g/Lの酸化型グルタチオン水溶液を用いた場合は、陰極に用いた亜鉛が陰極槽溶液中に溶出している様子が観察された。
過飽和の酸化型グルタチオン水溶液を用いたときの電解還元率
 実施例2で調整した約350g/Lの過飽和の酸化型グルタチオン水溶液を希釈して、0.75mol/Lの硫酸ナトリウムを含む、300g/L、200g/L、150g/Lおよび100g/Lの酸化型グルタチオン水溶液を作製した。それぞれの溶液のpHは、いずれも2.89であった。
 電解槽、カチオン交換膜、および両極は実施例2と同じものを用いた。陽極槽には0.50mol/Lの硫酸溶液140mL、陰極槽には上記で作製した酸化型グルタチオン水溶液をそれぞれ280mL入れた。
 電解電圧5~7V、電解電流3.0A、室温下で電解還元反応を行った。実施例1と同条件のHPLCで陰極槽内の生成物を定量し、陰極槽に入れる酸化型グルタチオン水溶液の濃度が高いほど電解還元速度は高く、特に150g/L以上で高い電解還元速度が得られることがわかった(図2)。
還元型グルタチオン結晶の製造
 実施例2で得られた還元型グルタチオン水溶液を、強酸性陽イオン交換樹脂SK-116(H+)(三菱化学社製)、次いで弱塩基性陰イオン交換樹脂WA-21(OH-)(三菱化学社製)に通過させることで、共存する塩を除去した。得られた還元型グルタチオン含有画分を減圧濃縮し、種晶を添加して晶析させることにより、還元型グルタチオンの結晶を取得した。
 本発明の方法により、酸化型グルタチオンの電解還元による還元型グルタチオンの製造が工業的規模で可能となった。
 図1において、◇はpH0.6、◆はpH1.2、□はpH2.0、■はpH2.9の還元型グルタチオン水溶液を表す。

Claims (7)

  1. 隔膜で隔てられた陰極槽および陽極槽を用いた酸化型グルタチオンの電解還元による還元型グルタチオンの製造法において、陰極槽内の溶液に酸以外の導電剤を含有するpH2.0~3.0の酸化型グルタチオン水溶液を用いることを特徴とする還元型グルタチオンの製造方法。
  2. 酸以外の導電剤が中性塩である請求項1記載の製造方法。
  3. 中性塩が硫酸ナトリウム、塩化ナトリウム、硫酸カリウムまたは塩化カリウムである請求項2記載の製造方法。
  4. 酸以外の導電剤の濃度が0.05mol/L以上、5.0mol/L以下である請求項1~3記載のいずれか1項に記載の製造方法。
  5. 酸化型グルタチオン水溶液の濃度が50g/L以上である請求項1~4のいずれか1項に記載の製造方法。
  6. 電解還元が電流密度0.1~30A/dm2で行われることを特徴とする請求項1~5のいずれか1項に記載の製造方法。
  7. 請求項1~6のいずれか1項に記載の製造方法で製造された還元型グルタチオンをイオン交換カラムに通塔して脱塩された還元型グルタチオン水溶液を取得し、その後還元型グルタチオンを結晶化させることを特徴とする還元型グルタチオン結晶の製造方法。
PCT/JP2010/059361 2009-06-03 2010-06-02 還元型グルタチオンの製造法 WO2010140625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011518476A JP5654457B2 (ja) 2009-06-03 2010-06-02 還元型グルタチオンの製造法
EP10783407.9A EP2439312B1 (en) 2009-06-03 2010-06-02 Process for production of reduced glutathione
US13/375,630 US9249517B2 (en) 2009-06-03 2010-06-02 Process for production of reduced glutathione
CN201080034332.1A CN102803567B (zh) 2009-06-03 2010-06-02 制造还原型谷胱甘肽的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009134115 2009-06-03
JP2009-134115 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010140625A1 true WO2010140625A1 (ja) 2010-12-09

Family

ID=43297758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059361 WO2010140625A1 (ja) 2009-06-03 2010-06-02 還元型グルタチオンの製造法

Country Status (5)

Country Link
US (1) US9249517B2 (ja)
EP (1) EP2439312B1 (ja)
JP (1) JP5654457B2 (ja)
CN (1) CN102803567B (ja)
WO (1) WO2010140625A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137824A1 (ja) 2011-04-06 2012-10-11 協和発酵バイオ株式会社 還元型グルタチオンの製造法
WO2014133129A1 (ja) 2013-02-28 2014-09-04 協和発酵バイオ株式会社 還元型グルタチオンの製造法
CN106526004A (zh) * 2016-10-14 2017-03-22 安琪酵母股份有限公司 一种富含谷胱甘肽酵母抽提物中氧化型谷胱甘肽杂质的检测方法
WO2017159555A1 (ja) 2016-03-17 2017-09-21 協和発酵バイオ株式会社 還元型グルタチオンの結晶及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238769A (zh) * 2013-05-28 2013-08-14 吉林大学 一种降低蒸煮火腿中亚硝酸盐和亚硝胺含量的抑制剂
US10640532B2 (en) * 2015-03-31 2020-05-05 University Public Corporation Osaka Crystal of reduced glutathione
KR102406826B1 (ko) * 2016-03-17 2022-06-10 교와 핫꼬 바이오 가부시키가이샤 환원형 글루타티온의 결정 및 그 제조 방법
CN105821439A (zh) * 2016-05-21 2016-08-03 江苏诚信药业有限公司 生产谷胱甘肽的工艺系统
CN105821438A (zh) * 2016-05-21 2016-08-03 江苏诚信药业有限公司 一种制备氨基酸衍生物的装置
CN105821442A (zh) * 2016-05-21 2016-08-03 江苏诚信药业有限公司 制备还原型谷胱甘肽的电解系统
CN105821441A (zh) * 2016-05-21 2016-08-03 江苏诚信药业有限公司 电解法制备谷胱甘肽的工艺系统
CN105821437A (zh) * 2016-05-21 2016-08-03 江苏诚信药业有限公司 一种制备三肽化合物的装置
IT202000022846A1 (it) 2020-09-28 2022-03-28 Lesaffre & Cie Lievito ricombinante per la produzione di oligopeptide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131527A (en) * 1976-04-27 1977-11-04 Kyowa Hakko Kogyo Co Ltd Purification of glutathione
JPS52131528A (en) 1976-04-28 1977-11-04 Kyowa Hakko Kogyo Co Ltd Production of glutathione of reduced type
JPS599184A (ja) 1982-07-06 1984-01-18 Asahi Glass Co Ltd L−システインの製造方法
JPH0841671A (ja) 1994-07-29 1996-02-13 Permelec Electrode Ltd ジスルフィド化合物の電解還元方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA869067A (en) * 1971-04-20 Diamalt Aktiengesellschaft Method for reducing amino acids and amino-acid derivatives containing disulphide bridges
BE904225A (fr) * 1985-02-14 1986-05-29 Fuji Oil Co Ltd Procede de fractionnement de proteines.
JPH0599184A (ja) * 1991-10-09 1993-04-20 Matsushita Electric Ind Co Ltd 多段ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131527A (en) * 1976-04-27 1977-11-04 Kyowa Hakko Kogyo Co Ltd Purification of glutathione
JPS52131528A (en) 1976-04-28 1977-11-04 Kyowa Hakko Kogyo Co Ltd Production of glutathione of reduced type
JPS599184A (ja) 1982-07-06 1984-01-18 Asahi Glass Co Ltd L−システインの製造方法
JPH0841671A (ja) 1994-07-29 1996-02-13 Permelec Electrode Ltd ジスルフィド化合物の電解還元方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439312A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137824A1 (ja) 2011-04-06 2012-10-11 協和発酵バイオ株式会社 還元型グルタチオンの製造法
CN103459409A (zh) * 2011-04-06 2013-12-18 协和发酵生化株式会社 制造还原型谷胱甘肽的方法
US9028669B2 (en) 2011-04-06 2015-05-12 Kyowa Hakko Bio Co., Ltd. Process for producing reduced glutathione
CN103459409B (zh) * 2011-04-06 2015-11-25 协和发酵生化株式会社 制造还原型谷胱甘肽的方法
JP5985467B2 (ja) * 2011-04-06 2016-09-06 協和発酵バイオ株式会社 還元型グルタチオンの製造法
WO2014133129A1 (ja) 2013-02-28 2014-09-04 協和発酵バイオ株式会社 還元型グルタチオンの製造法
US10094031B2 (en) 2013-02-28 2018-10-09 Kyowa Hakko Bio Co., Ltd. Method for manufacturing reduced glutathione
WO2017159555A1 (ja) 2016-03-17 2017-09-21 協和発酵バイオ株式会社 還元型グルタチオンの結晶及びその製造方法
CN106526004A (zh) * 2016-10-14 2017-03-22 安琪酵母股份有限公司 一种富含谷胱甘肽酵母抽提物中氧化型谷胱甘肽杂质的检测方法

Also Published As

Publication number Publication date
US9249517B2 (en) 2016-02-02
EP2439312B1 (en) 2017-08-09
EP2439312A4 (en) 2013-02-13
CN102803567B (zh) 2015-06-03
JP5654457B2 (ja) 2015-01-14
US20120118756A1 (en) 2012-05-17
CN102803567A (zh) 2012-11-28
EP2439312A1 (en) 2012-04-11
JPWO2010140625A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5654457B2 (ja) 還元型グルタチオンの製造法
JP5985467B2 (ja) 還元型グルタチオンの製造法
JP6219920B2 (ja) 還元型グルタチオンの製造法
EP2350354B1 (en) Process for plating chromium from a trivalent chromium plating bath
US6159352A (en) Process for the electrochemical synthesis of N-acetylcysteine from cystine
US20180312984A1 (en) High purity cobalt chloride and manufacturing method therefor
US5395488A (en) Electrochemical process for reducing oxalic acid to glyoxylic acid
CA1337807C (en) Processes for the preparation of alkali metal dichromates and chromic acid
JP6639224B2 (ja) L−システイン鉱酸塩の製造方法
JP2839156B2 (ja) アルカリ金属重クロム酸塩及びクロム酸の製造法
CN110668534A (zh) 无隔膜式酸性电解水生成机用电解质溶液配方
JPH0448037A (ja) イリジウムの回収方法
JPH04246187A (ja) イリジウムの回収方法
WO2013167779A1 (es) Procedimiento estereoselectivo para la síntesis electroquímica del ácido 3-(2-propinoxi)-2-propenoico
JPS5952234B2 (ja) メルカプトプロピオニルグリシンおよびその誘導体の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034332.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010783407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5237/KOLNP/2011

Country of ref document: IN

Ref document number: 2010783407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375630

Country of ref document: US