WO2010139513A1 - Réseau sans fil d'identification et d'investigation pour équipements spatiaux - Google Patents

Réseau sans fil d'identification et d'investigation pour équipements spatiaux Download PDF

Info

Publication number
WO2010139513A1
WO2010139513A1 PCT/EP2010/055926 EP2010055926W WO2010139513A1 WO 2010139513 A1 WO2010139513 A1 WO 2010139513A1 EP 2010055926 W EP2010055926 W EP 2010055926W WO 2010139513 A1 WO2010139513 A1 WO 2010139513A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless network
satellite
equipment
space
space equipment
Prior art date
Application number
PCT/EP2010/055926
Other languages
English (en)
Inventor
Philippe Guyot
Christian Bainier
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41606616&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010139513(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thales filed Critical Thales
Priority to CN201080024065.XA priority Critical patent/CN102450082B/zh
Priority to RU2011154146/08A priority patent/RU2542931C2/ru
Priority to EP10720286.3A priority patent/EP2438790B1/fr
Priority to US13/319,448 priority patent/US8818262B2/en
Priority to JP2012513521A priority patent/JP5982682B2/ja
Priority to BRPI1010952-8A priority patent/BRPI1010952B1/pt
Priority to CA2762940A priority patent/CA2762940C/fr
Publication of WO2010139513A1 publication Critical patent/WO2010139513A1/fr
Priority to IL215987A priority patent/IL215987A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the observability of equipment intended to be integrated with satellites.
  • the object of the invention is to propose a simple and robust technical solution to the problem of the observability of equipment intended to be integrated with satellites. Thanks to the invention, this observability is made possible throughout the life cycle of equipment, from their manufacture to their implementation in space.
  • the invention is particularly well suited to an application in the field of satellite constellations because it makes it possible to simplify and rationalize the data processing, mainly in assembly and test phases.
  • radiofrequency communication means up and down links, usually S-band or Ku-band, in nominal mode, called RF mode (for radio frequency);
  • digital signals can, under certain conditions, be taken and analyzed using sensors based on the principle of a Hertz loop.
  • the present invention is therefore based on the idea of associating, from their design, equipment intended to be integrated with a satellite, intelligent couplers equipped with wireless communication means.
  • An embedded wireless network is thus constituted and made accessible and controllable from a laptop when the satellite is on the ground in the integration phase or test. When the satellite is in flight, the on-board wireless network is nominally disabled.
  • This or these smart couplers also have an internal memory to store technical information relating to the equipment or equipment with which they are associated.
  • the internal memory of these intelligent couplers is searchable in real time or delayed, facilitating non-intrusive investigations in case of anomaly.
  • the memory The internal couplers also host equipment self-test functions that can be executed remotely.
  • the subject of the invention is an evolving and evanescent wireless network system for space equipment integrated into a satellite or intended to be, comprising:
  • a set of intelligent couplers integrated into said space devices as soon as they are manufactured or used autonomously within a satellite said smart couplers comprising internal and external wireless communication blocks constituting an evolving wireless network, forming, on the ground , at each space equipment, a so-called “distributed” network, then an "embedded” network after final integration of the satellite, • at least one computer, possibly a laptop, equipped with a wireless communication card, able to connect to said evolving wireless network,
  • At least one software installed on said computer allowing: isolated access to any space equipment, in order at least to collect information relating to the proper operation of said space equipment. o access to the on-board wireless network, in order at least to collect information relating to the operation of said space equipment, in a non-intrusive manner.
  • the intelligent couplers comprise a processor, an internal memory, a transmission / reception circuit and at least one high frequency antenna, said internal memory of said intelligent couplers furthermore comprising means for ensuring, by means of intermediate of a suitable programming, at least one of the following functions:
  • the on-board wireless network can be configured to communicate with the computer located on the ground via, in particular, nominal communication means of the satellite.
  • said embedded wireless network comprises means for activating and deactivating it electrically.
  • said embedded wireless network comprises means for activating and deactivating it remotely, said space equipment being on the ground within a satellite, for example in the test phase.
  • said embedded wireless network comprises means for activating and deactivating it remotely, said space equipment being in flight within a satellite in orbit.
  • the system according to the invention comprises means for performing at least one of the following functions: aid in determining the state of each of said space equipment,
  • each of said spatial equipment presenting a report of recipe, said minutes of receipts, • acquisition and recording of failures, alarms or events occurring on said space equipment,
  • the on-board wireless network has a topology comprising internal nodes corresponding to the internal wireless communication blocks, and interface nodes, corresponding to the external wireless communication blocks, said internal nodes and said interface nodes being by consequently associated with the internal and external intelligent couplers, and said interface nodes allowing communication between said internal nodes and at least one external node, fixed or mobile with respect to said internal nodes, said external node corresponding to said computer, which may be a computer portable.
  • the on-board wireless network may comprise means for performing the operational data bus function.
  • the onboard wireless network according to the invention may have an operating mode in which the on-board wireless network constitutes an evanescent data bus that can not be activated in flight.
  • the on-board wireless network according to the invention may have a mode of operation in which the on-board wireless network constitutes an operational data bus, necessary for satellite operation or redundant operation.
  • the onboard wireless network according to the invention may have an operating mode in which the on-board wireless network constitutes an evanescent data bus comprising means for activating it in flight for the purpose of aiding diagnosis, particularly in the case of malfunction of a space equipment.
  • the on-board wireless network according to the invention may have a mode of operation in which the on-board wireless network constitutes a real data bus, necessary for the operation of the satellite or redundant.
  • the on-board wireless network may have an operating mode in which the on-board wireless network constitutes an evanescent data bus comprising means for activating it in flight for diagnostic assistance purposes in the event of a malfunction. one of the space equipment.
  • FIG. 1 an example of a ground satellite comprising input ports for intelligent couplers equipped with wireless communication blocks to the outside world, according to the invention
  • FIG. 2 is a diagram of an exemplary means for attaching an input port of wireless communications means to the wall of a satellite;
  • FIG. 3 the diagram of an exemplary implementation of an on-board wireless network according to the invetion
  • Figure 4 the diagram of an example of "network topology" of a system according to the invention.
  • FIG. 1 shows an example of satellite 1, which may be in the assembly or ground test phase, and comprising wireless communication blocks W1, W2, W3, W4 associated with intelligent couplers allowing an exchange of the information of non-intrusive manner, that is to say without disassembly of equipment and without disruption of the overall system, between said satellite 1 and an operator Op equipped with a computer C, itself having a wireless communication card for WPAN type for example (for Wireless Personal Area Network according to the acronym).
  • WPAN type for Wireless Personal Area Network according to the acronym
  • the wireless communication blocks W1, W2, W3, W4 generally consist mainly of a miniature radiofrequency antenna, as described in FIG. 2.
  • the computer C of the operator Op is preferably a computer portable.
  • the computer C comprises software that can access the wireless network embedded via the wireless communication card, and to fulfill at least one of the following functions, as seen previously:
  • the embedded wireless network in the system according to the invention, is designed to be as weakly intrusive as possible. In use on the ground, it can be electrically deactivated at any time. Moreover, it acts only in data exchange mode with the data bus associated with the equipment to which said coupler is connected. Finally, the on-board wireless network can be configured in such a way that it can only act in data acquisition mode, read on said data bus. In flight, the system according to the invention, in particular the on-board wireless network, is preferably deactivated. However, if necessary, it can be configured so that it can be activated remotely using the satellite communications links. Depending on the level of observability sought, activation of the on-board wireless network may be limited.
  • An operator Op can then, via a computer C equipped with wireless communication means and adapted software, connect to said on-board wireless network in order to access data stored in the memory of smart couplers. associated with the equipment of the satellite 1, or read data directly on the satellite data bus 1.
  • the on-board wireless network can, if necessary, provide the operational, active or redundant data bus function.
  • the main function of the system according to the invention is to help to perform a diagnosis, that is to say to help determine the causes of an anomaly.
  • This activity is commonly referred to as "trouble-shooting" in the Anglo-Saxon language.
  • the system according to the invention allows the operator Op to read data, either directly on a data bus, or in the internal memory of smart couplers. Many parameters can thus be consulted, either by direct access or because they have been stored. It is indeed possible to record continuously in the internal memory of the couplers parameters such as the frequency of an internal clock for example, that is to say, parameters that are not necessarily related to the function of the controller. equipment with an anomaly on which the Op operator conducts an analysis.
  • FIG. 1 The objective is to make possible access to what the equipment having an anomaly "saw” as close as possible to the appearance of said anomaly.
  • FIG. 1 four wireless communication blocks W1 to W4 located at the interface between the inside and the outside of the satellite 1 are shown.
  • intelligent couplers associated in particular with these wireless communication blocks said smart couplers not shown in Figure 1 but shown schematically in Figure 3, are arranged in the heart of the satellite 1, within the space equipment.
  • these integrated intelligent couplers can communicate with at least one of the wireless communication blocks W1 to W4, located at the interface between the inside and the outside of the satellite 1.
  • the operator Op equipped with the computer, portable, C interrogates the wireless network embedded by a communication link passing through the wireless communication block W1, W2, W3 or W4 the best placed.
  • a wireless communication block has been positioned on each of the faces of the satellite 1 so that the on-board wireless network is accessible to the operator Op regardless of its position around the satellite. 1.
  • This configuration is however not mandatory: we can be content with a single wireless communication block W1 for example.
  • FIG. 2 is a diagram showing an example of setting up a wireless communication block W constituting an "air" input port at the level of the adiabatic protection film 20 of a satellite 1.
  • Said adiabatic protection film 20 of the satellite 1 is commonly called MLI (for Multi-Layer Insulator); it provides a function of bilateral thermal insulation.
  • MLI Multi-Layer Insulator
  • a P pouch PWM film is reported and sewn on the adiabatic protection film 20 which covers the satellite 1.
  • a wireless communication block W is placed in said pocket P.
  • the wireless communication block W comprises a miniature radiofrequency antenna A and constitutes a wireless communication means.
  • Said pocket P allows, with the exception of the passage hole of the coaxial cable of the miniature radiofrequency antenna A, to maintain the integrity of the thermal insulation.
  • FIG. 3 shows schematically an example of a system implementing the invention.
  • the "inner world" INT corresponding to the interior of a satellite, comprises a number of devices E1, E2, E3, E4, E5, E6, in which smart couplers CL are integrated.
  • the equipment E1, E2, E6, which are in the immediate vicinity of the walls of the satellite, are respectively associated with the nodes INT1, INT2, INT3 of FIG. 4.
  • Said equipment E1, E2, E6 are associated with an external wireless communication block WE and an internal wireless communication block W1, coupled by means of a divider DP liability.
  • a single intelligent coupler CLS provided with said antennas WE and W1 can act as communication node INT4 for said equipment, as in FIG. 4.
  • the "inner world” INT of FIG. 3 also comprises physical data buses DB enabling the exchange of data between the different devices E1 to E6.
  • the System Management Unit (SMU) contains a CTRL bus controller (Data Bus Controller English) and supervises the operation of the satellite.
  • the "inner world” INT via the wireless communication blocks W1, WE, allows a user belonging to the "outside world” EXT to access the data buses DB and the equipment E1 to E6 via the CL or CLS intelligent couplers.
  • Said intelligent couplers CL or CLS are in fact respectively connected to at least one of the devices E1 to E6 and are adapted for exchanging information, input and / or output, with said equipment E1 to E6.
  • the invention resides in particular in that the intelligent couplers CL or CLS are associated with, or comprise, wireless communication means or blocks WE and WI.
  • These wireless communication means WE, W1 can be of Zigbee or Wifi type. It is also possible for one, for example, the wireless communication blocks W1 of the "inner world" INT to be of Zigbee type while the wireless communication blocks WE, constituting a communication interface with the "outside world" EXT, are Wifi type. From the point of view of the "inner world" INT, the wireless communication blocks W1 associated with the intelligent couplers CL or CLS constitute an internal wireless network embedded in the satellite.
  • FIG. 4 an exemplary topology of a wireless communication network resulting from the implementation of the system according to the invention is presented.
  • Smart couplers associated with wireless communication blocks are arranged inside the enclosure 10 of the satellite, in the equipment themselves. These couplers placed at the heart of the satellite, and associated with wireless communication blocks, constitute internal communication nodes IN1, IN2, IN3, IN4.
  • Other couplers equipped with wireless communication blocks are positioned in equipment located on the periphery of the enclosure 10 of the satellite. They constitute nodes of communication INT1, INT2, INT3, INT4 at the interface between the interior of the satellite, the "interior world", and the outside of the satellite, the "outside world”.
  • interface communication nodes INT1 to INT4 are distributed here so that the on-board wireless network is accessible over 360 ° around the satellite.
  • potential external communication nodes ENP1, ENP2, ENP3, ENP4, mobile or fixed can access the on-board wireless network.
  • the PCOM type communication links in FIG. 4 indicate a potential communication link.
  • the operator equipped with his computer equipped with a wireless communication card constitutes an active external communication node EN.
  • the communication links of the ACOM type in FIG. 4 represent active communication links.
  • an operator via the external communication node EN, or via another potential external communication node ENP1 to ENP4, to access the on-board wireless network of the satellite. It can pass through the interface communication node INT3 located at the interface between the inside and the outside of the satellite.
  • This communication node INT3 corresponds to one of the wireless communication blocks WE of FIG. 3; it is associated with one of the couplers intelligent CL.
  • Said interface communication node INT3 accesses via the on-board wireless network to the internal communication nodes IN1 to IN4.
  • These internal communication nodes IN1 to IN4 correspond to the internal communication blocks W1 of the "inner world" INT associated with the intelligent couplers CL, located near the equipment E1 to E6, in FIG. 3.
  • the operator thus accesses all the data he needs, either by reading recorded parameters, automatically or by programming, in the internal memory of the intelligent couplers of which the satellite is equipped, or by reading data. stored techniques without the internal memory of said intelligent couplers, either by acquisition of parameters directly on the real data buses, DB in Figure 3, the satellite.
  • the operator can also remotely perform self-test functions on the equipment, in order to assist in the development of a diagnosis in the event of an anomaly.
  • this "non-intrusive" trouble-shooting function since it does not require any dismantling of equipment or introduction of measuring devices, can in any case be very useful on the ground.
  • assembly phase of a satellite or in test phase Indeed, all the subsets, all the equipment having been made “communicating”, by integration of intelligent couplers equipped with wireless communication means, as soon as they are manufactured, it is possible to build a permanent embedded wireless network, which is functional during the entire life of the satellite.
  • By recording parameters or test results in the internal memory of the intelligent couplers introduced in the heart of the satellite it is also possible to enrich the technical data and the parameters available as and when the interventions carried out.
  • the operator equipped with his laptop can, if necessary, access, via the satellite's own communication means, the previously installed wireless network; this can be an ultimate and valuable aid to diagnosis in case of anomaly.
  • the embedded wireless network can, if necessary, be used as a data bus in case of failure of physical data buses.
  • the invention proposes the implementation of a wireless network embedded in a satellite via intelligent couplers with wireless communication means.
  • the wireless communication mode used may be based on the Zigbee / IEEE 802.15.4 protocol preferably. However, other wireless communication protocols, such as Wi-Fi, could also be used.
  • This embedded wireless network is an evanescent data bus internal and weakly intrusive. An external operator equipped with a portable computer with a wireless communication card and adapted software can access this embedded wireless network to acquire technical data relating to the integrated space equipment.
  • the internal evanescent data bus may constitute a real data bus used in parallel with a nominal or redundant operational data bus of the satellite.
  • the internal evanescent bus constituted by the wireless network embedded in the system according to the invention. It can be completely disabled in flight. In this case, it is useful only on the ground, in phases of assembly and test in particular. It can be disabled in flight but can be activated remotely. In this configuration, the on-board wireless network can be remotely activated in the event of an anomaly in order to assist in the development of a diagnosis. Finally, it can be fully active during the entire flight of the satellite. It is then used as an operational data bus.
  • the non-intrusive accessibility of the on-board wireless network makes it possible to implement data bus monitoring functions, in particular during the testing or debugging phase.
  • an on-board wireless network as an evanescent data bus has the advantage of not requiring the transport of electrical power, which can simply solve technical problems. encountered in the current satellites, related to the galvanic isolation, such as problems of primary mass and secondary mass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

L'objet de l'invention est de proposer une solution technique simple et robuste au problème de l'observabilité d'équipements destinés à être intégrés à des satellites. A cet effet, l'invention a pour objet un système de réseau sans fil évanescent pour équipements spatiaux (E1,E2,E3,E4,E5,E6) intégrés dans un satellite (1) ou destinés à l'être, et comprenant : ° un ensemble de coupleurs intelligents (CL,CLS) intégrés ou non auxdits équipements spatiaux, lesdits coupleurs intelligents (CL,CLS) comportant des moyens de communication sans fil (WI,WE), constituant un réseau sans fil embarqué, ° au moins un ordinateur (C), qui peut être un ordinateur portable, équipé d'une carte de communication sans fil, pouvant se connecter audit réseau sans fil embarqué, ° au moins un logiciel installé sur ledit ordinateur (C), permettant l'accès au réseau sans fil embarqué, en vue au moins de recueillir des informations relatives au fonctionnement desdits équipements spatiaux (E1,E2,E3,E4,E5,E6) de façon non intrusive.

Description

Réseau sans fil d'identification et d'investigation pour équipements spatiaux.
La présente invention concerne l'observabilité d'équipements destinés à être intégrés à des satellites. L'objet de l'invention est de proposer une solution technique simple et robuste au problème de l'observabilité d'équipements destinés à être intégrés à des satellites. Grâce à l'invention, cette observabilité est rendue possible durant tout le cycle de vie des équipements, depuis leur fabrication jusqu'à leur mise en œuvre dans l'espace. L'invention est particulièrement bien adaptée à une application dans le domaine des constellations de satellites car elle permet de simplifier et de rationaliser le traitement des données, principalement en phases d'assemblage et de tests.
De façon générale, lorsqu'une anomalie est détectée sur un équipement, la procédure à suivre comprend deux étapes principales :
• l'accès à des informations relatives à ce que l'équipement concerné par l'anomalie « a vu » au moment où l'anomalie s'est déclarée ; • l'application d'un programme de tests en vue de comprendre les causes de l'anomalie constatée.
Les moyens connus pour tenter de mener à bien ces étapes d'investigation manquent de flexibilité ; de plus, ils sont difficiles à mettre en œuvre et coûteux. Par ailleurs, ils nécessitent généralement de démonter des équipements assemblés ou d'introduire des appareillages dans le système global comprenant l'équipement concerné par l'anomalie. De telles interventions, souvent lourdes, nécessitent en outre des agréments, potentiellement longs à obtenir, autorisant l'intervention. En effet, aujourd'hui, lorsque des investigations sont menées, sur un satellite au moins partiellement assemblé, en vue de déterminer les causes d'une anomalie survenue sur un équipement, il est nécessaire de communiquer avec le ou les équipements concernés, à l'intérieur du satellite, depuis des moyens de communication « sol », par l'intermédiaire : • d'interfaces électriques du ou des équipements concernés, en mode nominal, dit mode conduit ;
• de moyens de communication radiofréquences, en liens montant et descendant, généralement en bande S ou en bande Ku, en mode nominale, dit mode RF (pour radiofréquence) ;
• d'appareils, ou « boîtes éclatées », permettant le prélèvement et l'analyse d'un signal analogique en un point quelconque de l'équipement, en mode anomalie.
Par ailleurs, des signaux numériques peuvent, sous certaines conditions, être prélevés et analysés grâce à des capteurs basés sur le principe d'une boucle de Hertz.
La complexité, le manque de souplesse, les délais nécessaires pour une investigation complète, et les coûts de ces moyens connus permettant la recherche des causes d'une anomalie détectée sur un équipement sont incompatibles avec le caractère « temps réel » et les objectifs de simplicité, de robustesse et de discrétion souhaités pour de telles applications : ils constituent donc autant de défauts que la présente invention cherche à résoudre.
La présente invention est par conséquent basée sur l'idée d'associer, depuis leur conception, aux équipements destinés à être intégrés à un satellite, des coupleurs intelligents dotés de moyens de communication sans fil. Un réseau sans fil embarqué est ainsi constitué et rendu accessible et commandable depuis un ordinateur portable lorsque le satellite est au sol en phase d'intégration ou de test. Lorsque le satellite est en vol, le réseau sans fil embarqué est nominalement désactivé. Ce ou ces coupleurs intelligents disposent par ailleurs d'une mémoire interne leur permettant de stocker des informations techniques relatives à l'équipement ou aux équipements auxquels ils sont associés. La mémoire interne de ces coupleurs intelligents est consultable en temps réel ou en différé, facilitant les investigations non intrusives en cas d'anomalie. Par ailleurs, la mémoire interne des coupleurs héberge également des fonctions d'autotests des équipements, exécutables à distance.
Ainsi, l'invention a pour objet un système de réseau sans fil évolutif et évanescent pour équipements spatiaux intégrés dans un satellite ou destinés à l'être, comprenant :
• un ensemble de coupleurs intelligents intégrés auxdits équipements spatiaux dès leur fabrication ou utilisés de manière autonome au sein d'un satellite, lesdits coupleurs intelligents comportant des blocs de communication sans fil internes et externes, constituant un réseau sans fil évolutif, formant, au sol, au niveau de chaque équipement spatial, un réseau dit « réparti », puis un réseau dit « embarqué » après intégration finale du satellite, • au moins un ordinateur, pouvant être un ordinateur portable, équipé d'une carte de communication sans fil, pouvant se connecter audit réseau sans fil évolutif,
• au moins un logiciel installé sur ledit ordinateur, permettant : o l'accès isolé à un quelconque équipement spatial, en vue au moins de recueillir des informations relatives au bon fonctionnement dudit équipement spatial. o l'accès au réseau sans fil embarqué, en vue au moins de recueillir des informations relatives au fonctionnement desdits équipements spatiaux, de façon non intrusive.
Dans le système selon l'invention, les coupleurs intelligents comprennent un processeur, une mémoire interne, un circuit d'émission / réception et au moins une antenne haute fréquence, ladite mémoire interne desdits coupleurs intelligents comprenant par ailleurs des moyens pour assurer, par l'intermédiaire d'une programmation adaptée, l'une au moins des fonctions suivantes :
• l'enregistrement automatique de paramètres relatifs au fonctionnement des équipements spatiaux auxquels ils sont associés, • le stockage de données techniques relatives aux équipements spatiaux auxquels lesdits coupleurs intelligents sont associés,
• le stockage de procédures d'autotests relatives aux équipements spatiaux auxquels lesdits coupleurs intelligents sont associés, exécutables à distance.
Dans le système selon l'invention, avantageusement, ledit satellite comprenant des moyens de communications nominaux sol / bord et ledit satellite étant en vol, le réseau sans fil embarqué peut être configuré pour communiquer avec l'ordinateur situé au sol par l'intermédiaire notamment des moyens de communication nominaux du satellite.
Dans le système selon l'invention, ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver électriquement. Dans le système selon l'invention, ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver à distance, lesdits équipements spatiaux étant au sol au sein d'un satellite, par exemple en phase de test.
Dans le système selon l'invention, ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver à distance, lesdits équipements spatiaux étant en vol au sein d'un satellite en orbite.
Avantageusement, le système selon l'invention comprend des moyens pour assurer l'une au moins des fonctions suivantes : • l'aide à la détermination de l'état de chacun desdits équipements spatiaux,
• la mise à jour, chacun desdits équipements spatiaux présentant un procès verbal de recette, desdits procès verbaux de recettes, • l'acquisition et l'enregistrement de pannes, alarmes ou événements survenus sur lesdits équipements spatiaux,
• le lancement de procédures d'autotests à distance sur lesdits équipements spatiaux,
• la lecture de données techniques relatives auxdits équipements spatiaux, • la lecture de paramètres relatifs auxdits équipements spatiaux, enregistrés automatiquement,
• l'acquisition en temps réel de paramètres sur un ou des bus de données associés auxdits équipements spatiaux, • l'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux au sol,
• l'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux en vol.
Avantageusement, le réseau sans fil embarqué présente une topologie comprenant des nœuds internes correspondant aux blocs de communication sans fil internes, et des nœuds d'interface, correspondant aux blocs de communication sans fil externes, lesdits nœuds internes et lesdits nœuds d'interface étant par conséquent associés aux coupleurs intelligents internes et externes, et lesdits nœuds d'interface permettant la communication entre lesdits nœuds internes et au moins un nœud externe, fixe ou mobile par rapport auxdits nœuds internes, ledit nœud externe correspondant audit ordinateur, qui peut être un ordinateur portable.
Le réseau sans fil embarqué selon l'invention peut comprendre des moyens pour assurer la fonction de bus de données opérationnel.
Le réseau sans fil embarqué selon l'invention peut présenter un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent ne pouvant pas être activé en vol.
Le réseau sans fil embarqué selon l'invention peut présenter un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données opérationnel, nécessaire au fonctionnement du satellite ou redondant.
Le réseau sans fil embarqué selon l'invention peut présenter un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent comprenant des moyens pour l'activer en vol à des fins d'aide au diagnostic, notamment en cas de dysfonctionnement d'un des équipements spatiaux.
Le réseau sans fil embarqué selon l'invention peut présenter un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données réel, nécessaire au fonctionnement du satellite ou redondant.
Le réseau sans fil embarqué selon l'invention peut présenter un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent comprenant des moyens pour l'activer en vol à des fins d'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :
• la figure 1 : un exemple de satellite au sol comportant des ports d'entrée pour coupleurs intelligents dotés de blocs de communication sans fil vers le monde extérieur, selon l'invention ;
• la figure 2 : le schéma d'un exemple de moyen de fixation d'un port d'entrée de moyens de communications sans fil à la paroi d'un satellite ;
• la figure 3 : le schéma d'un exemple d'implémentation d'un réseau sans fil embarqué selon l'invetion ;
• la figure 4 : le schéma d'un exemple de « topologie réseau » d'un système selon l'invention.
La figure 1 présente un exemple de satellite 1 , pouvant se trouver en phase d'assemblage ou de tests au sol, et comprenant des blocs de communication sans fil W1 , W2, W3, W4 associés à des coupleurs intelligents permettant un échange des informations de façon non intrusive, c'est-à-dire sans démontage d'équipement et sans perturbation du système global, entre ledit satellite 1 et un opérateur Op équipé d'un ordinateur C, disposant lui-même d'une carte de communication sans fil de type WPAN par exemple (pour Wireless Personal Area Network selon l'acronyme anglais).
Les blocs de communication sans fil W1 , W2, W3, W4 sont généralement principalement constitués d'une antenne radiofréquence miniature, comme cela est décrit à la figure 2. Par ailleurs, l'ordinateur C de l'opérateur Op est de préférence un ordinateur portable. Les coupleurs intelligents, généralement situés au cœur du satellite 1 , au sein des différents équipements spatiaux, sont constitués des éléments suivants :
• un processeur associé à une unité de stockage, ou mémoire interne ;
• un circuit d'émission / réception ;
• une antenne radiofréquence.
L'ordinateur C comprend un logiciel pouvant accéder au réseau sans fil embarqué par l'intermédiaire de la carte de communication sans fil, et permettant de remplir l'une au moins des fonctions suivantes, comme vu précédemment :
• l'aide à la détermination de l'état de chacun desdits équipements spatiaux, • la mise à jour, chacun desdits équipements spatiaux présentant un procès verbal de recette, desdits procès verbaux de recettes,
• l'acquisition et l'enregistrement de pannes, alarmes ou événements survenus sur lesdits équipements spatiaux, • le lancement de procédures d'autotests à distance sur lesdits équipements spatiaux,
• la lecture de données techniques relatives auxdits équipements spatiaux,
• la lecture de paramètres relatifs auxdits équipements spatiaux, enregistrés automatiquement,
• l'acquisition en temps réel de paramètres sur un ou des bus de données associés auxdits équipements spatiaux,
• l'aide au diagnostique en cas de dysfonctionnement d'un des équipements spatiaux au sol, • l'aide au diagnostique en cas de dysfonctionnement d'un des équipements spatiaux en vol.
Le réseau sans fil embarqué, dans le système selon l'invention, est conçu pour être le plus faiblement intrusif possible. En utilisation au sol, il peut être désactivé électriquement à tout moment. De plus, il n'agit qu'en mode échange de données avec le bus de données associé à l'équipement auquel ledit coupleur est connecté. Enfin, le réseau sans fil embarqué peut être configuré de telle manière qu'il ne puisse agir qu'en mode acquisition de données, lues sur ledit bus de données. En vol, le système selon l'invention, en particulier le réseau sans fil embarqué, est de préférence désactivé. Cependant, si besoin, il peut être configuré de manière à ce qu'il puisse être activé à distance en utilisant les liens de communications du satellite. Selon le niveau d'observabilité recherché, l'activation du réseau sans fil embarqué peut être limitée. Un opérateur Op peut alors, par l'intermédiaire d'un ordinateur C équipé de moyens de communication sans fil et d'un logiciel adapté, se connecter audit réseau sans fil embarqué afin d'accéder à des données enregistrées dans la mémoire des coupleurs intelligents associés aux équipements du satellite 1 , ou lire des données directement sur les bus de données du satellite 1. De façon optionnelle, le réseau sans fil embarqué peut, en cas de nécessité, assurer la fonction de bus de données opérationnel, actif ou redondant.
Comme cela a été mentionné plus haut, la fonction principale du système selon l'invention est d'aider à réaliser un diagnostique, c'est-à-dire d'aider à déterminer les causes d'une anomalie. Cette activité est couramment désignée sous l'appellation anglo-saxonne de « trouble- shooting ». Dans ce contexte, le système selon l'invention permet à l'opérateur Op de lire des données, soit directement sur un bus de données, soit dans la mémoire interne des coupleurs intelligents. De nombreux paramètres peuvent ainsi être consultés, soit par accès direct, soit parce qu'ils ont été stockés. Il est en effet possible d'enregistrer en continu dans la mémoire interne des coupleurs des paramètres tels que la fréquence d'une horloge interne par exemple, c'est-à-dire des paramètres qui ne sont pas forcément liés à la fonction de l'équipement présentant une anomalie sur laquelle l'opérateur Op mène une analyse. L'objectif est de rendre possible l'accès à ce que l'équipement présentant une anomalie « a vu » au plus près possible de l'apparition de ladite anomalie. Sur la figure 1 , quatre blocs de communications sans fil W1 à W4 situés à l'interface entre l'intérieur et l'extérieur du satellite 1 sont représentés. Selon l'invention, des coupleurs intelligents associés notamment à ces blocs de communication sans fil, lesdits coupleurs intelligents n'étant pas représentés sur la figure 1 mais schématisés sur la figure 3, sont disposés au cœur du satellite 1 , au sein des équipements spatiaux. Ainsi, ces coupleurs intelligents intégrés peuvent communiquer avec l'un au moins des blocs de communication sans fil W1 à W4, situés à l'interface entre l'intérieur et l'extérieur du satellite 1.
Ensuite, en fonction de sa position autour du satellite, l'opérateur Op équipé de l'ordinateur, portable, C interroge le réseau sans fil embarqué par un lien de communication passant par le bloc de communication sans fil W1 , W2, W3 ou W4 le mieux placé. Dans l'exemple non limitatif de la figure 1 , on a positionné un bloc de communication sans fil sur chacune des faces du satellite 1 de sorte que le réseau sans fil embarqué est accessible à l'opérateur Op quel que soit sa position autour du satellite 1. Cette configuration n'est cependant pas obligatoire : on peut se contenter d'un seul bloc de communication sans fil W1 par exemple.
La figure 2 est un schéma montrant un exemple de mise en place d'un bloc de communication sans fil W, constituant un port d'entrée « air » au niveau du film de protection adiabatique 20 d'un satellite 1 . Ledit film de protection adiabatique 20 du satellite 1 est communément appelé MLI (pour Multi-Layer Insulator) ; il assure une fonction d'isolation thermique bilatérale. Dans cet exemple, une poche P en film MLI est rapportée et cousue sur le film de protection adiabatique 20 qui recouvre le satellite 1 . Un bloc de communication sans fil W est placé dans ladite poche P. Le bloc de communication sans fil W comporte une antenne radiofréquence miniature A et constitue un moyen de communication sans fil.
Ladite poche P permet, à l'exception du trou de passage du câble coaxial de l'antenne radiofréquence miniature A, de conserver l'intégrité de l'isolation thermique.
La figure 3 représente schématiquement un exemple de système mettant en œuvre l'invention. Le « monde intérieur » INT, correspondant à l'intérieur d'un satellite, comprend un certain nombre d'équipements E1 , E2, E3, E4, E5, E6, dans lesquels sont intégrés des coupleurs intelligents CL.
En outre, les équipements E1 , E2, E6, qui se trouvent à proximité immédiate des parois du satellite, sont respectivement associés aux nœuds de communication INT1 , INT2, INT3 de la figure 4. Lesdits équipements E1 , E2, E6 sont associés à un bloc de communication sans fil extérieur WE et à un bloc de communication sans fil intérieur Wl, couplées à l'aide d'un diviseur passif DP. Dans la mesure où une paroi quelconque du satellite ne serait pas desservie par un équipement, un coupleur intelligent seul CLS muni desdites antennes WE et Wl peut faire office de nœud de communication INT4 pour lesdits équipements, comme sur la figure 4.
Comme pour tout satellite classique, le « monde intérieur » INT de la figure 3 comporte également des bus de données physiques DB permettant l'échange de données entre les différents équipements E1 à E6. Par ailleurs, l'unité de contrôle SMU (System Management Unit en anglais) contient un contrôleur de bus CTRL (Data Bus Contrôler en anglais) et supervise le fonctionnement du satellite. Enfin, le « monde intérieur » INT, par l'intermédiaire des blocs de communication sans fil Wl, WE, permet à un utilisateur appartenant au « monde extérieur » EXT d'accéder aux bus de données DB et aux équipements E1 à E6 via les coupleurs intelligents CL ou CLS. Lesdits coupleurs intelligents CL ou CLS sont en effet respectivement connectés à l'un au moins des équipements E1 à E6 et sont adaptés pour échangés des informations, en entrée et / ou en sortie, avec lesdits équipements E1 à E6. L'invention réside en particulier dans le fait que les coupleurs intelligents CL ou CLS sont associés à, ou comprennent, des moyens ou blocs de communication sans fil WE et Wl. Ces moyens de communication sans fil WE, Wl peuvent être de type Zigbee ou Wifi. Il est également possible que les uns, par exemple les blocs de communication sans fil Wl du « monde intérieur » INT soient de type Zigbee tandis que les blocs de communication sans fil WE, constituant une interface de communication avec le « monde extérieur » EXT, sont de type Wifi. Du point de vue du « monde intérieur » INT, les blocs de communication sans fil Wl associés aux coupleurs intelligents CL ou CLS constituent un réseau sans fil embarqué interne au satellite. L'association des coupleurs intelligents CL ou CLS à des blocs de communication WE permettant la communication avec le « monde extérieur » rend possible l'accès au réseau sans fil embarqué interne au satellite par un utilisateur appartenant au « monde extérieur ». Comme le montre la figure 4, la création de ce réseau sans fil embarqué interne au satellite, et accessible depuis le « monde extérieur », présente deux principaux effets techniques : d'une part, cela constitue un moyen d'investigation non intrusif en cas de panne de l'un quelconque des équipements E1 à E6 ; d'autre part, le réseau sans fil embarqué interne au satellite constitue un bus de données évanescent qui, en dernier recours et en cas de dysfonctionnement des bus de données physiques DB, peut être utilisé comme bus de données.
Dans la figure 4, on présente un exemple de topologie d'un réseau de communication sans fil issu de la mise en œuvre du système selon l'invention. Des coupleurs intelligents associés à des blocs de communication sans fil sont disposés à l'intérieur de l'enceinte 10 du satellite, dans les équipements eux-mêmes. Ces coupleurs placés au cœur du satellite, et associés à des blocs de communication sans fil, constituent des nœuds de communication interne IN1 , IN2, IN3, IN4. D'autres coupleurs dotés de blocs de communication sans fil sont positionnés dans des équipements situés en périphérie de l'enceinte 10 du satellite. Ils constituent des nœuds de communication INT1 , INT2, INT3, INT4 à l'interface entre l'intérieur du satellite, le « monde intérieur », et l'extérieur du satellite, le « monde extérieur ». Ces nœuds de communication d'interface INT1 à INT4 sont ici répartis de façon à ce que le réseau sans fil embarqué soit accessible sur 360° autour du satellite. De cette manière, des nœuds de communication externes potentiels ENP1 , ENP2, ENP3, ENP4, mobiles ou fixes, peuvent accéder au réseau sans fil embarqué. Ainsi, les liens de communication du type PCOM sur la figure 4 indique un lien de communication potentiel. Dans l'exemple représenté, l'opérateur équipé de son ordinateur doté d'une carte de communication sans fil constitue un nœud de communication externe actif EN. Ainsi, les liens de communication du type ACOM sur la figure 4 représentent des liens de communication actifs.
Comme le montre la figure 4, il est possible à un opérateur, via le nœud de communication externe EN, ou via un autre nœud de communication externe potentiel ENP1 à ENP4, d'accéder au réseau sans fil embarqué du satellite. Il peut passer par le nœud de communication d'interface INT3 situé à l'interface entre l'intérieur et l'extérieur du satellite. Ce nœud de communication INT3 correspond à l'un des blocs de communication sans fil WE de la figure 3 ; il est associé à l'un des coupleurs intelligents CL. Ledit nœud de communication d'interface INT3 accède via le réseau sans fil embarqué aux nœuds de communications internes IN1 à IN4. Ces nœuds de communication internes IN1 à IN4 correspondent aux blocs de communication internes Wl du « monde intérieur » INT associés aux coupleurs intelligents CL, situés auprès des équipements E1 à E6, sur la figure 3. Par l'intermédiaire de ces nœuds de communication internes IN1 à IN4, l'opérateur accède donc à toutes les données dont il a besoin, soit par lecture de paramètres enregistrés, de manière automatique ou par programmation, dans la mémoire interne des coupleurs intelligents dont est équipé le satellite, soit par lecture de données techniques stockées sans la mémoire interne desdits coupleurs intelligents, soit par acquisition de paramètres directement sur les bus de données réels, DB sur la figure 3, du satellite. De cette manière, l'opérateur peut également exécuter à distance des fonctions d'autotests sur les équipements, en vue d'aider à l'élaboration d'un diagnostique en cas d'anomalie.
Comme cela a été exposé précédemment, cette fonction de « trouble-shooting » non intrusive, puisqu'elle ne nécessite notamment aucun démontage d'équipement ni aucune introduction d'appareils de mesure, peut dans tous les cas être très utile au sol, en phase d'assemblage d'un satellite ou en phase de test. En effet, tous les sous-ensembles, tous les équipements ayant été rendus « communiquant », par intégration de coupleurs intelligents dotés de moyens de communication sans fil, dès leur fabrication, il est possible de construire un réseau sans fil embarqué permanent, fonctionnel pendant toute la durée de vie du satellite. Par enregistrement de paramètres ou de résultats de tests dans la mémoire interne des coupleurs intelligents introduits au cœur du satellite, il est par ailleurs possible d'enrichir les données techniques et les paramètres disponibles au fur et à mesure des interventions réalisées. En vol, l'opérateur équipé de son ordinateur portable peut si besoin accéder, par l'intermédiaire des moyens de communication propres du satellite, au réseau sans fil embarqué préalablement activé ; cela peut constituer une aide ultime et précieuse au diagnostique en cas d'anomalie.
Enfin, comme cela a été vu précédemment, le réseau sans fil embarqué peut, en cas de nécessité, être utilisé comme bus de données en cas de panne des bus de données physiques. En résumé, l'invention propose la mise en place d'un réseau sans fil embarqué au sein d'un satellite par l'intermédiaire de coupleurs intelligents dotés de moyens de communication sans fil. Le mode de communication sans fil utilisé peut reposer sur le protocole Zigbee / IEEE 802.15.4 de préférence. Cependant, d'autres protocoles de communication sans fil, par exemple le Wifi, pourraient également être utilisés. Ce réseau sans fil embarqué constitue un bus de données évanescent interne et faiblement intrusif. Un opérateur externe équipé d'un ordinateur portable doté d'une carte de communication sans fil et d'un logiciel adapté peut accéder à ce réseau sans fil embarqué afin d'acquérir des données techniques relatives aux équipements spatiaux intégrés. Cela peut être particulièrement utile à des fins d'aide au diagnostique en cas d'anomalie, d'autant qu'il est également possible, via ce lien, d'exécuter à distance sur les équipements du satellite des fonctions d'autotest. En outre, le bus de données évanescent interne peut constituer un bus de données réel utilisé en parallèle d'un bus de données opérationnel nominal ou redondant du satellite.
Ainsi, trois configurations sont possibles pour le bus évanescent interne constitué par le réseau sans fil embarqué dans le système selon l'invention. Il peut être complètement désactivé en vol. Dans ce cas, il n'est utile qu'au sol, en phases d'assemblage et de test notamment. Il peut être désactivé en vol mais activable à distance. Dans cette configuration, le réseau sans fil embarqué peut être activé à distance en cas d'anomalie en vue d'aider à l'élaboration d'un diagnostique. Enfin, il peut être totalement actif pendant tout le vol du satellite. Il est alors utilisé comme un bus de données opérationnel.
Enfin, l'accessibilité, de façon non intrusive, au réseau sans fil embarqué rend possible la mise en œuvre de fonctions de surveillance des bus de données, notamment en phase de test ou de mise au point.
II est par ailleurs intéressant de noter que l'utilisation d'un réseau sans fil embarqué en tant que bus de données évanescent présente l'avantage de ne pas nécessiter de transport de courant électrique, ce qui peut permettre de résoudre simplement des problèmes techniques rencontrés dans les satellites actuels, liés à l'isolation galvanique, comme par exemple des problèmes de masse primaire et de masse secondaire.

Claims

REVENDICATIONS
Système de réseau sans fil évolutif et évanescent pour équipements spatiaux intégrés dans un satellite (1 ) ou destinés à l'être, comprenant : « un ensemble de coupleurs intelligents (CL) intégrés auxdits équipements spatiaux dès leur fabrication (E1 ,E2,E3,E4,E5,E6) ou utilisés de manière autonome (CLS) au sein d'un satellite, lesdits coupleurs intelligents (CL,CLS) comportant des blocs de communication sans fil internes (Wl) et externes (WE), constituant un réseau sans fil évolutif, formant, au sol, au niveau de chaque équipement spatial, un réseau dit « réparti », puis un réseau dit « embarqué » après intégration finale du satellite, • au moins un ordinateur (C), pouvant être un ordinateur portable, équipé d'une carte de communication sans fil, pouvant se connecter audit réseau sans fil évolutif, • au moins un logiciel installé sur ledit ordinateur (C), permettant : o l'accès isolé à un quelconque équipement spatial, en vue au moins de recueillir des informations relatives au bon fonctionnement dudit équipement spatial. o l'accès au réseau sans fil embarqué, en vue au moins de recueillir des informations relatives au fonctionnement desdits équipements spatiaux, de façon non intrusive, caractérisé en ce que les coupleurs intelligents (CL,CLS) comprennent un processeur, une mémoire interne, un circuit d'émission / réception et au moins une antenne haute fréquence, ladite mémoire interne desdits coupleurs intelligents (CL,CLS) comprenant par ailleurs des moyens pour assurer, par l'intermédiaire d'une programmation adaptée, l'une au moins des fonctions suivantes : • l'enregistrement automatique de paramètres relatifs au fonctionnement des équipements spatiaux auxquels ils sont associés,
• le stockage de données techniques relatives aux équipements spatiaux auxquels lesdits coupleurs intelligents (CL,CLS) sont associés,
• le stockage de procédures d'autotests relatives aux équipements spatiaux auxquels lesdits coupleurs intelligents (CL,CLS) sont associés, exécutables à distance.
2. Système selon la revendication 1 , ledit satellite (1 ) comprenant des moyens de communications nominaux sol / bord et ledit satellite (1 ) étant en vol, caractérisé en ce que le réseau sans fil embarqué peut être configuré pour communiquer avec l'ordinateur (C) situé au sol par l'intermédiaire notamment des moyens de communication nominaux du satellite (1 ).
3. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver électriquement.
4. Système selon la revendication 3, caractérisé en ce que ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver à distance, lesdits équipements spatiaux étant au sol au sein d'un satellite, par exemple en phase de test.
5. Système selon la revendication 3, caractérisé en ce que ledit réseau sans fil embarqué comprend des moyens pour l'activer et le désactiver à distance, lesdits équipements spatiaux étant en vol au sein d'un satellite en orbite.
6. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens pour assurer l'une au moins des fonctions suivantes : • l'aide à la détermination de l'état de chacun desdits équipements spatiaux,
• la mise à jour, chacun desdits équipements spatiaux présentant un procès verbal de recette, desdits procès verbaux de recettes,
• l'acquisition et l'enregistrement de pannes, alarmes ou événements survenus sur lesdits équipements spatiaux,
• le lancement de procédures d'autotests à distance sur lesdits équipements spatiaux, « la lecture de données techniques relatives auxdits équipements spatiaux,
• la lecture de paramètres relatifs auxdits équipements spatiaux, enregistrés automatiquement,
• l'acquisition en temps réel de paramètres sur un ou des bus de données associés auxdits équipements spatiaux,
• l'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux au sol,
• l'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux en vol.
7. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente une topologie comprenant des nœuds internes (IN1 ,IN2,IN3,IN4) correspondant aux blocs de communication sans fil internes (Wl), et des nœuds d'interface (INT1 ,INT2,INT3,INT4), correspondant aux blocs de communication sans fil externes (WE), lesdits nœuds internes (IN1 ,IN2,IN3,IN4) et lesdits nœuds d'interface (INT1 ,INT2,INT3,INT4) étant par conséquent associés aux coupleurs intelligents internes et externes (CL,CLS), et lesdits nœuds d'interface (INT1 ,INT2,INT3,INT4) permettant la communication entre lesdits nœuds internes (IN1 ,IN2,IN3,IN4) et au moins un nœud externe (EN,ENP1 ,ENP2,ENP3,ENP4), fixe ou mobile par rapport auxdits nœuds internes (IN1 ,IN2,IN3,IN4), ledit nœud externe correspondant audit ordinateur (C), qui peut être un ordinateur portable.
8. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué comprend des moyens pour assurer la fonction de bus de données opérationnel.
9. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent ne pouvant pas être activé en vol.
10. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données opérationnel, nécessaire au fonctionnement du satellite ou redondant.
1 1 . Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent comprenant des moyens pour l'activer en vol à des fins d'aide au diagnostic, notamment en cas de dysfonctionnement d'un des équipements spatiaux (E1 ,E2,E3,E4,E5,E6).
12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données réel, nécessaire au fonctionnement du satellite ou redondant.
13. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau sans fil embarqué présente un mode de fonctionnement dans lequel le réseau sans fil embarqué constitue un bus de données évanescent comprenant des moyens pour l'activer en vol à des fins d'aide au diagnostic en cas de dysfonctionnement d'un des équipements spatiaux (E1 ,E2,E3,E4,E5,E6).
PCT/EP2010/055926 2009-06-05 2010-04-30 Réseau sans fil d'identification et d'investigation pour équipements spatiaux WO2010139513A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201080024065.XA CN102450082B (zh) 2009-06-05 2010-04-30 用于空间设备的无线识别和研究网络
RU2011154146/08A RU2542931C2 (ru) 2009-06-05 2010-04-30 Беспроводная сеть идентификации и исследования для космических приборов
EP10720286.3A EP2438790B1 (fr) 2009-06-05 2010-04-30 Réseau sans fil d'identification et d'investigation pour équipements spatiaux
US13/319,448 US8818262B2 (en) 2009-06-05 2010-04-30 Wireless identification and research network for space devices
JP2012513521A JP5982682B2 (ja) 2009-06-05 2010-04-30 通信システム
BRPI1010952-8A BRPI1010952B1 (pt) 2009-06-05 2010-04-30 sistema de comunicação para equipamentos espaciais de um satélite
CA2762940A CA2762940C (fr) 2009-06-05 2010-04-30 Reseau sans fil d'identification et d'investigation pour equipements spatiaux
IL215987A IL215987A (en) 2009-06-05 2011-10-27 Wireless research and identification network for space devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902730 2009-06-05
FR0902730A FR2946484B1 (fr) 2009-06-05 2009-06-05 Reseau sans fil d'identification et d'investigation pour equipements spatiaux

Publications (1)

Publication Number Publication Date
WO2010139513A1 true WO2010139513A1 (fr) 2010-12-09

Family

ID=41606616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055926 WO2010139513A1 (fr) 2009-06-05 2010-04-30 Réseau sans fil d'identification et d'investigation pour équipements spatiaux

Country Status (10)

Country Link
US (1) US8818262B2 (fr)
EP (1) EP2438790B1 (fr)
JP (1) JP5982682B2 (fr)
CN (1) CN102450082B (fr)
BR (1) BRPI1010952B1 (fr)
CA (1) CA2762940C (fr)
FR (1) FR2946484B1 (fr)
IL (1) IL215987A (fr)
RU (1) RU2542931C2 (fr)
WO (1) WO2010139513A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486788B (zh) * 2014-12-12 2017-03-22 清华大学 基于无线网络的航天器控制系统及部件安全接入的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032142A2 (fr) * 1999-02-23 2000-08-30 TRW Inc. Structure pour interconnection de modules dans un engin spatial
US20070049195A1 (en) * 2005-08-23 2007-03-01 The Boeing Company Wireless operational and testing communications network for diverse platform types
WO2009001122A1 (fr) * 2007-06-26 2008-12-31 Astrium Limited Système et procédé de test incorporé

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280999A (ja) * 1999-03-30 2000-10-10 Nec Eng Ltd インタフェースチェッカ
JP3705034B2 (ja) * 1999-09-01 2005-10-12 ソニー株式会社 無線伝送制御方法及び無線伝送装置
JP2005164315A (ja) * 2003-12-01 2005-06-23 Hitachi Industrial Equipment Systems Co Ltd 設備診断システム及びポンプ又はモーターとシステム制御装置
JP4538644B2 (ja) * 2004-09-07 2010-09-08 独立行政法人情報通信研究機構 衛星情報自律配信衛星、衛星情報収集システム、衛星地上試験システム
KR100645379B1 (ko) * 2004-10-29 2006-11-15 삼성광주전자 주식회사 로봇 제어 시스템 및 로봇 제어방법
JP2007323173A (ja) * 2006-05-30 2007-12-13 Hitachi Ltd 制御機器及び監視制御システム
JP4869125B2 (ja) * 2007-03-29 2012-02-08 株式会社東芝 プラント監視システムおよび監視方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032142A2 (fr) * 1999-02-23 2000-08-30 TRW Inc. Structure pour interconnection de modules dans un engin spatial
US20070049195A1 (en) * 2005-08-23 2007-03-01 The Boeing Company Wireless operational and testing communications network for diverse platform types
WO2009001122A1 (fr) * 2007-06-26 2008-12-31 Astrium Limited Système et procédé de test incorporé

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATISH SHARMA ET AL: "Wireless Telecommand and Telemetry System for Satellite", RECENT ADVANCES IN SPACE TECHNOLOGIES, 2007. RAST '07. 3RD INTERN ATIONAL CONFERENCE ON, IEEE, PI, 1 June 2007 (2007-06-01), pages 551 - 555, XP031123363, ISBN: 978-1-4244-1056-9 *
VLADIMIROVA T ET AL: "Characterising Wireless Sensor Motes for Space Applications", ADAPTIVE HARDWARE AND SYSTEMS, 2007. AHS 2007. SECOND NASA/ESA CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 5 August 2007 (2007-08-05), pages 43 - 50, XP031464143, ISBN: 978-0-7695-2866-3 *

Also Published As

Publication number Publication date
FR2946484B1 (fr) 2012-05-11
RU2542931C2 (ru) 2015-02-27
RU2011154146A (ru) 2013-07-20
FR2946484A1 (fr) 2010-12-10
CA2762940C (fr) 2017-10-24
CN102450082A (zh) 2012-05-09
CA2762940A1 (fr) 2010-12-09
JP5982682B2 (ja) 2016-08-31
CN102450082B (zh) 2015-12-09
JP2012528756A (ja) 2012-11-15
IL215987A (en) 2016-03-31
BRPI1010952A2 (pt) 2018-03-06
EP2438790B1 (fr) 2020-02-26
BRPI1010952B1 (pt) 2021-02-17
IL215987A0 (en) 2012-01-31
EP2438790A1 (fr) 2012-04-11
US20120052797A1 (en) 2012-03-01
US8818262B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
Rahlin et al. Pre-flight integration and characterization of the SPIDER balloon-borne telescope
FR2757331A1 (fr) Systeme et procede pour collecter des donnees relatives a un avion et pour transmettre des conseils
Kangas et al. Ice cloud imager instrument for MetOp Second Generation
EP2438790B1 (fr) Réseau sans fil d'identification et d'investigation pour équipements spatiaux
FR2635589A1 (fr) Systeme de surveillance automatique en milieu explosif d'une source de courant continu a batteries d'accumulateurs
EP1349078A1 (fr) Installation, passerelle et procédé de téléchargement d'informations entre des équipements embarqués sur un aéronef et des moyens de chargement non-embarqués
FR3085944A1 (fr) Systeme de collecte et d'analyse de donnees relatives a des criteres de securite et de confort d'un aeronef
D'Addio et al. The microwave radiometers on-board MetOp second generation satellites
Walter MEC: The MKID exoplanet camera for high speed focal plane control at the subaru telescope
Quintana-Díaz et al. An sdr mission measuring uhf signal propagation and interference between small satellites in leo and arctic sensors
Jain et al. Practical Implementation of Test-As-You-Fly for the DESCENT CubeSat Mission
FR2893169A1 (fr) Dispositif de surveillance d'un objet sensible tel qu'un avion et procede de conduite de ce dispositif
FR3074920A1 (fr) Balise de localisation autonome multi-mode
EP3198886A1 (fr) Architecture d'observation d'une pluralité d'objets disposés dans des endroits géographiques distincts et procédé de collecte de données d'observation associé
WO2014068219A1 (fr) Système et procédé de surveillance d'un réseau maille de retour de courant d'un aéronef
EP3679554B1 (fr) Système de surveillance d'un aéronef
D'Addio et al. Microwave imager instrument for MetOp second generation
Zhang et al. Automation and Integration of Hardware/Software Co-Verification Tool with Embedded Multi Processors System-On-Chip (MPSoC) Instrument Avionics for Next Generation Imagining Spectrometer (NGIS): On-Chip LiveCheckHSI
Andrews Design considerations for 500-2000 MHz ultra-wideband radiometric measurements
Peranich Implementation of UAS-based P-band signals of opportunity receiver for root-zone soil moisture retrieval
Song Integration and Analysis of the Balloon-Borne Telescope, SPIDER
EP3182287A1 (fr) Procede et systeme de controle de la fiabilite d'au moins un equipement electronique installe dans un aeronef
FR3101330A1 (fr) Drone pour la localisation de personne recherchée et procédé associé
Morea et al. 3 Cat-4 mission, 1-Unit CubeSat for earth observation: Evaluation on the qualification and production during Phase D
Brady Real-Time Beamformer Development and Analysis of Weak Signal Detection with Interference Mitigation for Phased-Array Feed Radio Astronomy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024065.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010720286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 215987

Country of ref document: IL

Ref document number: 8351/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13319448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2762940

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012513521

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011154146

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010952

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111205