WO2010137460A1 - Method for creating injection speed program pattern for injection molding machine and control device for injection molding machine - Google Patents

Method for creating injection speed program pattern for injection molding machine and control device for injection molding machine Download PDF

Info

Publication number
WO2010137460A1
WO2010137460A1 PCT/JP2010/058042 JP2010058042W WO2010137460A1 WO 2010137460 A1 WO2010137460 A1 WO 2010137460A1 JP 2010058042 W JP2010058042 W JP 2010058042W WO 2010137460 A1 WO2010137460 A1 WO 2010137460A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
pressure
filling section
injection speed
filling
Prior art date
Application number
PCT/JP2010/058042
Other languages
French (fr)
Japanese (ja)
Inventor
修司 合葉
Original Assignee
株式会社ソディックプラステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソディックプラステック filed Critical 株式会社ソディックプラステック
Priority to JP2011515970A priority Critical patent/JP4913924B2/en
Publication of WO2010137460A1 publication Critical patent/WO2010137460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76595Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76765Moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76943Using stored or historical data sets compare with thresholds

Definitions

  • the present invention relates to a method for creating an injection speed program pattern for setting a target condition for control in an injection molding machine that operates automatically by program control, and an injection speed program pattern that is created and created.
  • the present invention relates to a control device for program-controlling an injection molding machine.
  • Recent injection molding machines have operating conditions such as the type of resin used, the temperature of the plasticizing cylinder, the amount of injection resin in each shot cycle, the injection pressure during the injection operation, the injection speed, and the holding pressure after completion of the injection operation.
  • the optimum value is stored in advance in a control computer, and automatic operation is performed while performing feedback control according to the operation conditions stored in each part of the injection molding machine, so that a homogeneous product can be mass-produced.
  • the operation guideline of injection molding machines in recent years is based on the policy of emphasizing production efficiency such as how many products can be produced per unit time, for example, energy consumed for production per unit number.
  • the policy is shifting to a policy that emphasizes reducing the environmental impact, such as how the amount can be reduced. This is due to changes in the social situation in which the price for the environmental load is included in the product price.
  • the various operating conditions which are the contents of the program that controls the injection molding machine, are not only required to maintain the quality of the products produced, but also injection molding with low energy consumption without shortening the service life of molds, etc. It is also necessary to meet the demand for whether the machine can be operated.
  • the contents of the injection conditions that control the injection process which is the process until the molten resin is forcibly transferred from the injection cylinder into the mold cavity, are as follows: It is a technical field that has a particularly high level of attention in the industry as having a great influence on the product quality, mold life, and energy consumed in the operation of injection molding machines. Much time and effort has been devoted (see the prior art document column below).
  • control elements of the injection process from the start of injection until the required amount of molten resin is filled in the mold cavities and immediately before the pressure holding process, there are the injection speed and the injection pressure.
  • these control elements are fixed values along the time axis or the advance position of the injection plunger or injection screw within the injection period. Pattern or time axis, or a pattern of values that change along the advance position of the injection plunger or injection screw (hereinafter, the injection conditions based on the injection speed are referred to as “injection speed program pattern”, and the injection pressure is used as the reference.
  • injection condition to perform is called “injection pressure program pattern”).
  • the injection speed is maintained so as to match the injection speed program pattern regardless of the change in the injection pressure. Therefore, the overpacking is caused by the slight fluctuation of the injection speed immediately before the completion of the injection process. It is known that problems of (overfilling) and poor filling occur, causing mold breakage and product defects. Therefore, the determination of the injection speed program pattern is a work that requires difficult skills that must take into account the feedback control capability of the control unit of the injection molding machine.
  • the injection pressure is set to an initial pressure value which is a fixed value on the low pressure side as an initial condition
  • a test shot is performed with injection pressure priority control
  • the injection pressure set value is gradually set according to the filling failure of the molded product.
  • the molding is repeated while increasing, and the average value of the actually measured injection speed that changes in the whole area of the one-shot injection process when a good product is obtained, that is, the first speed value is obtained.
  • molding is performed by injection speed priority control using the injection speed program pattern of the first speed value. The reason why the injection speed priority control is used instead of the injection pressure priority control using the pressure value when a good product is obtained is that it is necessary to improve reproducibility while stabilizing the molding cycle.
  • a trial shot is performed by setting a temporary injection speed pattern that an expert expects from observation of a mold cavity and an injection pressure regulation value of one pressure value. Molding is performed by injection speed feedback control until the actually measured value reaches a set regulation value, and after reaching the regulation value, switching to injection pressure priority control by open control is continued. And the measured value pattern of the injection speed when a non-defective product is obtained by a plurality of test shots by such a method is used as the injection speed program pattern during mass production operation.
  • the pressure priority control is switched at the later stage of the injection process where the injection pressure is highest at the time of the test shot, so overpacking is prevented and the mold at the time of the test shot is It can be expected to damage or extend the life of the mold during mass production.
  • the speed priority control based on the injection speed pattern based on the guess of the skilled operator is performed, an objective actual measurement value based on the injection pressure value has not been detected. There is no guarantee that this condition is the best, and there is a problem that it cannot be reproduced by an unfamiliar operator.
  • the sprue part, runner part, gate part, and product part in the mold apparatus are different in shape and cross-sectional area, respectively, and the minimum injection pressure required to fill the molten resin is also different in the shape and cross-sectional area. Each is different. Therefore, when injection molding is performed under the injection speed condition generated in Patent Document 1, there is a portion where the molten resin flows with an injection pressure more than necessary.
  • the shape and cross-sectional dimensions of the sprue part and runner part are often determined by the idea of the mold designer rather than by the shape and dimensions of the product part. Therefore, even if there are a plurality of mold apparatuses that mold the same product, the shape of the sprue part or the runner part and their cross-sectional dimensions may differ if the designers of the mold apparatuses are different. Therefore, in Patent Document 1, since one pressure value is set in accordance with the latter half of the filling step where pressure is increased most, the injection pressure value actually generated when the molten resin flows in the first half of the filling step, that is, the sprue portion or the runner portion. May be different for each mold apparatus.
  • Patent Document 2 since it is switched to the pressure priority control at the latter stage of the filling process in which the injection pressure is highest at the time of trial molding, the purpose is to prevent overpacking to the last.
  • the injection speed priority control since the injection speed priority control is performed based on the injection speed condition, the actual speed value is not detected by the pressure priority control.
  • the injection speed condition in the first stage of the filling process must be set by trial and error by the operator.
  • the present invention provides a method for creating an injection speed program pattern of an injection molding machine capable of generating an optimal injection speed condition according to the difference in the shape and cross-sectional dimensions of the flow path in the mold apparatus, and the injection speed program pattern.
  • An object of the present invention is to provide a control device for an injection molding machine that can be programmed and controlled based on the created injection speed program pattern.
  • the method of creating the injection speed program pattern of the injection molding machine according to the present invention includes at least one of locations where the shape and the flow path cross-sectional area of the flow path of the molten resin in the mold cavity change, such as branching and joining locations.
  • Arbitrary n or more points are selected, and the mold cavity is sequentially filled with the first filling section and the second filling section from the upstream side when the molten resin is filled into the mold cavity with the selected n places as a boundary.
  • the interval is set up to the (n + 1) th filling interval, and multiple times while increasing the injection pressure stepwise for all the filling intervals selected in any order from the first filling interval to the (n + 1) th filling interval.
  • the upper limit value of the injection pressure which is the upper limit value of the injection pressure at which the molten resin can be almost fully filled in each filling section, is obtained and the corresponding filling section is supported.
  • Test shot by pressure priority control in the state where the pressure change point that is the forward position of the injection screw or injection plunger is obtained, and the pressure upper limit value and pressure change point obtained for each filling section are set in the control device of the injection molding machine
  • the measured value pattern of the injection speed is an injection speed program pattern for controlling the injection molding machine by speed priority control.
  • the section is set in the mold cavity.
  • the section is set by visually observing the mold cavity and selecting at least one arbitrary n point from the branching point of the flow path of the molten resin and the position where the cross-sectional area of the flow path changes stepwise (n is 1).
  • the above natural number is performed by a method of recognizing the selected portion as a boundary and treating the front and rear of the boundary as different filling sections. Since the determination of the branching point of the flow path of the molten resin is obvious even for non-experts, this operation is easy and can be determined by the non-experts.
  • locations where the shape and flow path cross-sectional area of the flow path branching / merging points in the mold cavity change are not only those where the shape of the product part or flow path cross-sectional area changes.
  • a sprue part, a runner part, and a gate part in the mold apparatus are included, and an angle changing part of the flow path is also included.
  • the branch position of the flow path (the branch position when a large number of products are taken) is also included. Some products have a gate portion or the like inside the product, but these are also included.
  • the location where the said shape differs, or the location where a flow-path cross-sectional area changes are all the locations where the shape and cross-sectional area of a product change in steps.
  • the determination of how many filling sections are set in the mold cavity can be determined in reverse from the required accuracy of the product manufactured by the mold, that is, objectively determined. Advanced empirical knowledge is not required. However, the accuracy of the final injection speed program pattern can be improved by setting a large number of sections in the mold cavity, but there is a relationship that the number of subsequent test shots increases. It is preferable to set the section by recognizing this. Note that the inside of the mold cavity is set to the number of filling sections obtained by adding 1 to the number of locations of the selected boundary. The set filling sections are handled in the order of the first filling section, the second filling section, and the (n + 1) th filling section in order from the upstream side when the molten resin is filled into the mold cavity.
  • test shot is performed for each filling section. At this time, it is arbitrary from which filling section the test shot is started. Note that the test shot performed here is not a test shot for determining the quality of a product that is generally performed, but an injection pressure at which the molten resin can be almost fully filled in each filling section of the mold cavity. This is a test shot for the purpose of seeking.
  • full filling refers to a state in which a specific filling section subject to a test shot is completely filled with molten resin, and therefore “almost full filling” refers to the state before full filling. The state is almost full.
  • the corner of the product portion may not be completely filled, and (b) sink marks (the product surface has irregularities) may be present.
  • the final filling of the product to the corner of the product or prevention of sink marks is performed in a pressure holding process performed following the injection process as usual.
  • the test shot for each filling section is performed multiple times while increasing the injection pressure step by step to obtain the upper limit value of the injection pressure at which the molten resin can be almost fully filled in each filling section of the mold cavity.
  • the forward position of the injection screw or the injection plunger when a substantially full state is obtained in the filling section is obtained as the pressure change point. Note that whether or not the molten resin is almost fully filled in each filling section is determined by visual determination.
  • the pressure upper limit value and the pressure change point obtained for each filling section from the first filling section to the (n + 1) th filling section are set in the control device of the injection molding machine.
  • the measured value pattern of the injection speed is used as an injection speed program pattern for controlling the injection molding machine by speed priority control.
  • the pressure upper limit value and the pressure change point for each filling section may be set in the control device every time the test shot for each filling section is completed, or set collectively after the test shots for all filling sections are completed. Even so, the result is the same.
  • the injection speed program pattern finally obtained as described above is the injection speed when the injection operation is performed while changing the injection pressure for each filling section according to the pressure upper limit value set for each filling section. It can be positioned as a change pattern. That is, as long as the injection operation is executed by speed priority control based on this injection speed program pattern, it is guaranteed that the injection pressure in each filling section does not exceed the pressure upper limit value when the injection speed program pattern is obtained. It is.
  • the method for creating an injection speed program pattern of an injection molding machine according to the present invention is based on the basic invention described above, by actually measuring the injection speed when obtaining the pressure upper limit value corresponding to the filling section for each filling section, An injection speed program pattern can be created by connecting the actual measurement patterns of the injection speed obtained for each section.
  • the trial shot is performed in an arbitrary order from the first filling section to the (n + 1) th filling section, and the pressure upper limit value corresponding to the filling section is obtained for each filling section.
  • the upper limit of pressure and the pressure change point for each filling section which are the preconditions for obtaining the injection speed program pattern, are obtained simultaneously with the completion of the test shot for the last filling section. Simultaneously with the completion of the test shot for the section, it is possible to obtain an injection speed program pattern in a state in which the actually measured injection speed pattern obtained for each filling section is connected. Therefore, it is possible to omit an injection speed program pattern creation step and create an injection speed program pattern that fits a specific mold in a short time.
  • the method of creating the injection speed program pattern of the injection molding machine of the present invention sequentially performs a test shot for each filling section from the first filling section to the (n + 1) th filling section for any configuration of the present invention.
  • the initial value of the pressure upper limit value to be obtained in a plurality of test shots carried out while increasing the injection pressure stepwise in each filling section can be set as the pressure upper limit value of the immediately preceding previous filling section.
  • the pressure upper limit value to be obtained by the test shot for the specific filling section is the value before the filling section.
  • the injection speed program pattern can be created in a short time by making full use of the obvious reason that it cannot be below the upper pressure limit of the filling section of the order.
  • the trial shot for a specific filling section can be performed by excluding the range below the upper pressure limit value of the latest previous filling section that has already been obtained.
  • the control device for an injection molding machine drives at least a setting device for setting various molding conditions, a molding condition storage unit, an actual measurement value storage unit for storing actual measurement value data for each shot, and a monitor. For each filling section of a plurality of filling sections set in the mold cavity based on the characteristics of the mold cavity used.
  • the molding condition storage unit stores the injection pressure while changing the injection pressure stepwise via the setting device, and the molding condition storage unit stores the injection pressure data input via the setting device.
  • the mechanism control unit controls the injection mechanism of the injection molding machine based on the injection pressure data sent from the molding condition storage unit, and the actual measurement value storage unit stores each when a predetermined filling state is obtained.
  • the actual value data of the injection speed through the entire filling section is created.
  • the measured value data of the injection speed is output to the molding condition storage unit directly or via the display control unit and stored as an injection speed program pattern, and the mechanism control unit converts the injection speed program pattern to be output from the molding condition storage unit.
  • the injection mechanism is controlled as a target.
  • the control device of the injection molding machine having the above-described configuration is configured for each filling section of the mold cavity by function cooperation with the setting device, the molding condition storage unit, the actual measurement value storage unit, the display control unit, and the mechanism control unit each having the above functions.
  • An injection speed program pattern can be created from the result of the trial shot by the pressure priority control of the open system, and the injection mechanism of the injection molding machine can be controlled based on the created injection speed program pattern.
  • the injection speed program pattern creation method of the injection molding machine of the present invention is a method in which the shape of the flow path of the resin and the cross-sectional area of the flow path change in the mold cavity before performing the test shot for the entire mold cavity. After dividing into a plurality of filling sections at the boundary (reference) and obtaining a minimum injection pressure that can be almost fully filled with molten resin for each filling section, it was obtained by a test shot that was performed for each filling section, and then obtained A test shot is performed on the entire mold by pressure priority control with the injection pressure as a target value, and an injection speed program pattern finally required is created by actually measuring the injection speed at the time of this test shot. Therefore, it is possible to generate an injection speed program pattern when molding is performed at an optimal injection pressure corresponding to the difference in the shape and cross-sectional area of the flow path in the mold.
  • the work content of the test shot to be performed for each filling section is a simple content to be performed until the molten resin is fully filled while gradually increasing the injection pressure in the filling section to be the target of the test shot, Advanced experience judgment such as prediction of the pressure load applied to the mold is unnecessary, and even an unskilled person can reliably carry out the process without causing an accident such as damage to the mold.
  • the test shot process for the entire mold for obtaining the injection speed program pattern is performed by pressure priority control with the pressure upper limit value obtained for each filling section as a target value, so the pressure applied to the mold in this process is Since the set pressure upper limit value is not exceeded, it is possible to reliably prevent the mold from being damaged due to a prediction error of the pressure upper limit value at the time of the test shot.
  • the injection speed program pattern finally obtained is based on an objective correlation with the pressure upper limit value optimally set for each filling section of the mold cavity. In trial shots and mass production operations of molded products using as a control target, energy-saving operation of the injection molding machine and extension of the mold life can be realized.
  • It is control concept explanatory drawing which shows the block structure of the control apparatus used when performing the production method of the injection speed program pattern of one embodiment of this invention linked
  • the injection speed program pattern VPT (shown in FIG. 4) created by the method of the present invention presents a unique pattern corresponding to the mold cavity of each mold used.
  • a molded product Z (the final product part is indicated by a reference symbol Z1) molded by the mold cavity shape will be described (FIG. 2).
  • the pre-plastic type refers to an injection molding machine in which plastic material is plasticized with a special plasticizing screw provided separately, and this is sent to the front part of the plunger, and then the plunger is advanced to inject the thermoplastic resin. It is used for molding.
  • the injection molding machine comprises a plasticizing part 10 for the purpose of plasticizing a resin material and an injection part 20 for the purpose of injecting the plasticized resin material into a mold cavity. They are connected at a junction 17 provided with a molten resin communication passage 16 (FIG. 1).
  • the plasticizing unit 10 includes a plasticizing cylinder 15 including a hopper 13 for supplying resin pellets, a screw driving device 11 that drives a screw 14 in the plasticizing cylinder 15, and a check device that controls the front-rear operation of the screw 14. 12 mag.
  • the injection unit 20 includes an injection cylinder 2B having an injection nozzle 21 attached to the tip thereof via a nozzle cylinder 2A, an injection plunger 2C provided in the cylinder 2B, an injection drive device 27 that drives the plunger 2C, and the like.
  • the main part of the injection driving device 27 is a hydraulic cylinder including an operating rod 3A, a piston 3C, and a cylinder 3B.
  • the injection drive device 27 incorporates a position sensor G1 for detecting the position of the injection plunger 2C and a pressure sensor G2 for detecting the injection pressure, and the operation state and injection pressure of the injection plunger 2C from the control device 30 side. The value is monitored.
  • the expression “position of the injection plunger” is simply the tip position of the injection plunger 2C in a strict sense.
  • the outline of the injection operation in such an injection molding machine is that the screw 14 in the plasticizing cylinder 15 is slightly retracted to open the communication passage 16 of the junction portion 17 that has been blocked by the tip portion of the screw 14, Molten resin is supplied from the plasticizing cylinder 15 through the communication path 16 to the injection cylinder 2B side.
  • the injection plunger 2C receives the molten resin for one shot while moving backward, and the molten resin is measured by the retraction amount of the injection plunger 2C.
  • the communication path 16 is closed by the advance of the screw 14.
  • the injection plunger 2C is driven forward, and the molten resin received in the injection cylinder 2B is injected into the mold cavity at a predetermined injection speed. After the molten resin is completely filled in the mold cavity, that is, after the injection process is completed, the injection plunger 2C is further driven in the forward direction to apply a holding pressure necessary for the subsequent pressure holding process to the molten resin.
  • the molten resin is completely filled in the mold cavity while flowing in a small amount in the mold cavity by the pressure-holding process, and the fluidity is lost by being cooled by the mold.
  • Product Z When the gate 5C of the molded product Z is cut off, the final product Z1 is obtained.
  • control device 30 including a mold clamping device (not shown).
  • the control device 30 includes a molding condition storage unit 31, a measured value storage unit 32, a display control unit 34 that includes a measured value conversion processing unit 33, and a mechanism control unit 36 that includes a feedback control unit 35 as functional units in charge of specific functions. And a key input device as a setting device 37 and a display device 38.
  • a sensor group G including a position sensor G1 and a pressure sensor G2 of the injection driving device 27 is connected to the control device 30, and an information signal from the control device 30 is used to display visual information to the operator.
  • it is connected to a driver group D including a driver for the injection driving device 27. That is, the basic operation of the control device 30 is an operation for processing the information sent from the sensor group G in relation to pre-programmed information and sending it to the driver group D or the like.
  • the molding condition storage unit 31 in the control device 30 converts and stores various molding conditions and actual measurement values input from the setting machine 37.
  • the actual measurement value storage unit 32 stores or updates the actual measurement value information from the sensor group G.
  • the mechanism control unit 36 controls the injection driving device 27 and other various mechanisms by feedback control based on the molding conditions and the actually measured values.
  • the display control unit 34 converts various data and outputs the converted data to the display device.
  • the actual value conversion processing unit 33 included in the display control unit 34 converts the actual measurement value waveform of the injection speed into a step shape or a polygonal line shape. And output to the molding condition storage unit 31.
  • the actual value of the injection speed is detected by a method of converting the actual position value sequentially sent from the position sensor G1 that detects the forward position of the injection plunger 2C into speed data with reference to the reference clock of the control device 30.
  • the actual measurement value of the injection pressure is detected by the pressure sensor G2 via the hydraulic pressure that drives the injection plunger 2C. Then, the injection speed and the injection pressure when the injection plunger 2C moves forward are feedback controlled by the display control unit 34 described later with the following predetermined condition as a target.
  • the mold cavity formed by the fixed mold 51 and the movable mold 52 of the mold 50 used as a sample in the method for creating the injection speed program pattern VPT of the present invention includes a sprue 5A, a runner 5B, a gate 5C, and a product.
  • the convex portion 5D, the concave portion 5E, and the convex portion 5F, which are parts, have a cavity shape that communicates sequentially (FIGS. 2 and 3).
  • the sprue 5A and the runner 5B (position S0 to position S1) are the first filling section K1
  • the gate 5C and the first half convex part 5D are the second filling section K2
  • the concave part 5E of the product Z1 and the second half convex part are the concave part 5E of the product Z1 and the second half convex part.
  • the section 5F is set as the third filling section K3.
  • the sprue 5A and the runner 5B may be divided into a plurality of sections, and the final product section.
  • Z1 may be divided into a plurality of sections or divided into four or more sections.
  • the number of the above-mentioned sections at least two sections are required with respect to places having different shapes and cross-sectional areas. Dividing into two sections with the gate 5C as a boundary is advantageous when the processing accuracy of the final product part Z1 is higher than that of the sprue 5A or the runner 5B.
  • the sprue 5A and the runner 5B are referred to as the first half of the filling process, and the gate C5 and the final product portion Z1 are referred to as the second half of the filling process, they are divided into two sections, the first half and the second half. Also good.
  • the measurement value of the molten resin per shot is set in consideration of the cushion amount, and the injection time upper limit value and the injection speed upper limit value are set as limiters. Must be set in advance.
  • the limiters are all prepared for abnormal situations, and the injection time upper limit value is to stop the operation of the injection molding machine when the injection pressure does not rise and the filling is incomplete, the injection speed upper limit value is It functions to forcibly switch the operating condition to injection speed priority control when the injection speed rises abnormally.
  • the molten resin is almost fully filled in the sprue 5A and the runner 5B, which are the first filling section K1, while gradually raising the pressure upper limit P1 of the injection pressure via the setting device 37 of the control device 30.
  • a trial shot is carried out until it is done (FIG. 3A).
  • the upper pressure limit P1 applied to the first filling section K1 is the upper pressure limit when the molten resin is substantially filled in the sprue 5A and the runner 5B and the molten resin is not flowing into the second filling section K2.
  • the position of the injection plunger 2C at that time is obtained as the pressure change point S1 between the first filling section K1 and the second filling section K2.
  • the actual measurement value V1 of the injection speed at this time is stored in the actual measurement value storage unit 32.
  • the pressure upper limit value P1 and the pressure change point S1 obtained in the control device 30 are set, and a test shot is performed on the gate 5C that is the second filling section K2 and the convex portion 5D in the first half of the product based on these values. (FIG. 3B).
  • the work procedure of the test shot is the same as the test shot for the first filling section K1, but the pressure upper limit value P1 obtained for the first filling section K1 and set in the control device 30 is the initial value. Is different.
  • the upper limit value of the injection pressure when the molten resin is almost sufficiently filled in the gate 5C and the convex portion 5D of the product Z and the molten resin is not flowing into the third filling section K3 is the second value.
  • the pressure upper limit P2 is applied to the filling section K2, and the position of the injection plunger 2C at that time is the pressure change point S2 between the second filling section K2 and the third filling section K3. Further, the actual measurement value V2 of the injection speed at this time is stored in the actual measurement value storage unit 32.
  • the pressure upper limit value P2 and the pressure change point S2 are set in the control device 30, and the product intermediate portion concave portion 5E and the product rear half convex portion 5F, which are the third filling section K3, are tested based on these values.
  • a shot is performed to obtain the pressure upper limit value P3 and the pressure change point S3 and set them in the control device 30 (FIG. 3C).
  • the actual value V3 of the injection speed at the time when the pressure upper limit value P3 is obtained is stored in the actual value storage unit 32, and the previously measured actual values V1 and V2 of the injection speed and the pressure change points S1 and S2 are connected.
  • An injection speed program pattern VPT connected as dots is obtained.
  • the created injection speed program pattern VPT is output to the display device 38 via the actual measurement value conversion processing unit 33 of the display control unit 34 as necessary, and is also output to the molding condition storage unit 31 and stored therein.
  • the injection speed program pattern VPT created as described above is created under critical conditions, in order to obtain a non-defective product, it is necessary to further modify it by performing a trial shot. There can be.
  • the already created injection speed program pattern VPT also has significance as an injection speed program pattern for a safe test shot that does not cause mold damage.
  • injection speed priority control is performed with the injection speed program pattern VPT as a tracking target. Therefore, the necessary minimum pressure upper limit values P1, P2 in the filling sections K1, K2, K3 in the stage of creating the injection speed program pattern VPT without impairing the advantage of high repetition accuracy, which is the superiority of the injection speed priority control. , P3 is reflected, the effect of extending the mold life, the effect of preventing overpacking, and the energy saving operation effect are realized.
  • the “actual pressure value” indicates an actual pressure value detected by the pressure sensor G2 when the test shot is performed.
  • the created injection speed program pattern VPT can be used after being converted into a step shape or a polygonal line shape, and even in this case, the characteristics of the original injection speed program pattern VPT are greatly impaired. Absent.
  • a pre-plastic type injection molding machine is used to create the injection speed program pattern VPT, it may be created by an injection molding machine that directly performs an injection operation with an injection screw.
  • the program pattern VPT can be suitably used for such an injection molding machine.
  • the test shots are sequentially performed from the first filling section K1, but the test shots may be performed in a randomly selected order. This is because by storing the test shot results for each of the filling sections K1, K2, and K3 in the control device 30, the injection speed program pattern VPT can be obtained by completing the test shot for the last filling section.
  • the injection speed is measured for each trial shot in each of the filling sections K1, K2, K3, but the pressure upper limit value P1 of all the filling sections K1, K2, K3.
  • P2, P3 are obtained and set, and then a test shot is performed through all the filling sections K1, K2, K3 by pressure priority control, and the actual measured values V1, V2, V3 of the injection speed at the time of this test shot are used as they are.
  • the program pattern VPT can also be used.
  • the pressure change points S1, S2, and S3 that have the significance of causing the control device 30 to recognize the boundaries of the filling sections K1, K2, and K3 are before the injection plunger 2C reaches the pressure change points S1, S2, and S3, respectively. It can also be used by converting to the required actual measurement time. In this case, for example, in the first filling section K1, control is performed so that the obtained pressure upper limit value P1 is maintained for a period required for the plunger 2C to reach the pressure change point S1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a method for creating an injection speed program pattern for an injection molding machine by which good products can be continuously molded with the least amount of operation energy, by repeating a simple trial shot which does not require highly proficient judgment. Among portions in a die cavity where a flow path of a molten resin is branched or a cross-sectional area of a flow path changes stepwise, n-portions are arbitrarily selected, n being at least one; the die cavity is sectioned from a first filling section (K1) to n+1-th filling section (Kn) using the selected n-portions as boundaries; pressure upper limit values (P1, P2 ………) which are the minimum injection pressure capable of filling the respective filling sections (K1 ………) full of the molten resin are obtained; the pressure upper limit values (P1, P2 ………) obtained for the respective filling sections (K1 ………) are set to perform a trial shot for a molded product (Z); and an actual measured pattern of the injection speed when a good product is obtained is used as an injection speed program pattern (VPT) for a speed priority control.

Description

射出成形機の射出速度プログラムパターンの作成方法および射出成形機の制御装置Method for creating injection speed program pattern of injection molding machine and control device for injection molding machine
 本発明は、プログラム制御によって自動運転する射出成形機おいて、制御の目標条件とするための射出速度プログラムパターンの作成方法、および射出速度プログラムパターンを作成するとともに作成した射出速度プログラムパターンに基づいて射出成形機をプログラム制御する制御装置に関する。 The present invention relates to a method for creating an injection speed program pattern for setting a target condition for control in an injection molding machine that operates automatically by program control, and an injection speed program pattern that is created and created. The present invention relates to a control device for program-controlling an injection molding machine.
 近時における射出成形機は、使用する樹脂の種類、可塑化シリンダの温度、毎ショットサイクルの射出樹脂量、射出動作に際しての射出圧力、射出速度、射出動作完了後における保圧力等の運転条件の最適値を制御用のコンピュータに予め記憶させ、射出成形機の各部を記憶させた運転条件に従ってフィードバック制御しながら自動運転することによって、均質な製品を量産することができるようにされている。 Recent injection molding machines have operating conditions such as the type of resin used, the temperature of the plasticizing cylinder, the amount of injection resin in each shot cycle, the injection pressure during the injection operation, the injection speed, and the holding pressure after completion of the injection operation. The optimum value is stored in advance in a control computer, and automatic operation is performed while performing feedback control according to the operation conditions stored in each part of the injection molding machine, so that a homogeneous product can be mass-produced.
 また、近時における射出成形機の運転指針は、単位時間当りいかにして多数個の製品を生産することができるかという生産効率重視の方針から、例えば、単位個数当りの生産に消費されるエネルギー量をいかに削減することができるかという、環境負荷を削減することを重視する方針に変化している。これは、環境負荷に対する代価が製品価格に含まれることとなるような社会情勢の変化が背景となっている。 In addition, the operation guideline of injection molding machines in recent years is based on the policy of emphasizing production efficiency such as how many products can be produced per unit time, for example, energy consumed for production per unit number. The policy is shifting to a policy that emphasizes reducing the environmental impact, such as how the amount can be reduced. This is due to changes in the social situation in which the price for the environmental load is included in the product price.
 したがって、射出成形機を制御するプログラムの内容である各種の運転条件は、生産される製品の品質維持の要請のほか、金型等の耐用期間を短縮することなく、いかに低消費エネルギーで射出成形機を稼動させることができるかという要請にも適合するものとする必要がある。 Therefore, the various operating conditions, which are the contents of the program that controls the injection molding machine, are not only required to maintain the quality of the products produced, but also injection molding with low energy consumption without shortening the service life of molds, etc. It is also necessary to meet the demand for whether the machine can be operated.
 射出成形機を制御するプログラムの内容である各種の運転条件のうち、溶融樹脂を射出シリンダから金型キャビィティ内に強制的に移送完了するまでの工程である射出工程を制御する射出条件の内容は、製品品質や金型寿命、射出成形機の運転に消費されるエネルギーに大きな影響力を有するものとして業界においても殊更に注目度が高い技術分野であり、射出条件の決定方法の策定には、多くの時間と労力とが傾注されている(下記先行技術文献欄参照)。 Among the various operating conditions that are the contents of the program that controls the injection molding machine, the contents of the injection conditions that control the injection process, which is the process until the molten resin is forcibly transferred from the injection cylinder into the mold cavity, are as follows: It is a technical field that has a particularly high level of attention in the industry as having a great influence on the product quality, mold life, and energy consumed in the operation of injection molding machines. Much time and effort has been devoted (see the prior art document column below).
 射出開始から金型キャビィティ内に必要量の溶融樹脂が充填完了され、保圧工程に移行する直前に至るまでの射出工程の制御要素としては、射出速度と射出圧力とがある。また、射出速度と射出圧力とのいずれを基準として射出工程を制御する場合においても、これらの制御要素は、射出期間内における時間軸あるいは射出プランジャや射出スクリュの前進位置に沿って一定の固定値のパターンまたは時間軸あるいは射出プランジャや射出スクリュの前進位置に沿って変化する値のパターンとして設定される(以下、射出速度を基準とする射出条件を「射出速度プログラムパターン」、射出圧力を基準とする射出条件を「射出圧力プログラムパターン」という。)。 As the control elements of the injection process from the start of injection until the required amount of molten resin is filled in the mold cavities and immediately before the pressure holding process, there are the injection speed and the injection pressure. In addition, when controlling the injection process based on either the injection speed or the injection pressure, these control elements are fixed values along the time axis or the advance position of the injection plunger or injection screw within the injection period. Pattern or time axis, or a pattern of values that change along the advance position of the injection plunger or injection screw (hereinafter, the injection conditions based on the injection speed are referred to as “injection speed program pattern”, and the injection pressure is used as the reference. The injection condition to perform is called “injection pressure program pattern”).
 一般に、射出工程の制御を射出速度プログラムパターンに基づいて速度フィードバック制御する場合には、射出開始から射出完了までの時間が一定となることから、1ショット毎の成形サイクルが安定となり、隣接工程との連携を円滑に行うことができる。しかし、この制御方法においては、射出圧力の変化にかかわらず射出速度が射出速度プログラムパターンに一致するように維持されることから、特に、射出工程の完了間際における射出速度の僅かの揺らぎによってオーバパック(過充填)や充填不良の問題が発生し、金型破損や製品欠陥の原因となることが知られている。したがって、射出速度プログラムパターンの決定は、射出成形機の制御部のフィードバック制御能力までを考慮しなければならない難しい熟練を要する作業となる。 Generally, when controlling the injection process based on the speed feedback control based on the injection speed program pattern, since the time from the start of injection to the completion of injection is constant, the molding cycle for each shot becomes stable, and the adjacent process Can be smoothly coordinated. However, in this control method, the injection speed is maintained so as to match the injection speed program pattern regardless of the change in the injection pressure. Therefore, the overpacking is caused by the slight fluctuation of the injection speed immediately before the completion of the injection process. It is known that problems of (overfilling) and poor filling occur, causing mold breakage and product defects. Therefore, the determination of the injection speed program pattern is a work that requires difficult skills that must take into account the feedback control capability of the control unit of the injection molding machine.
 一方、射出工程の制御を射出圧力プログラムパターンに基づいて圧力フィードバック制御する場合には、射出工程内において射出圧力が異常に高まるような事態は起こらないという利点がある反面において、射出速度が無視されることとなるため、1ショット毎の成形サイクルが不安定となり、連続ショットを行う際の再現性ないし繰り返し精度に乏しいという射出圧力プログラムパターンを利用することによる固有の問題がある。 On the other hand, when the pressure control of the injection process is controlled based on the injection pressure program pattern, there is an advantage that the injection pressure does not increase abnormally in the injection process, but the injection speed is ignored. Therefore, the molding cycle for each shot becomes unstable, and there is a problem inherent in using the injection pressure program pattern that the reproducibility or repeatability when performing continuous shots is poor.
 上記、一般的な問題に対して、射出速度プログラムパターンの策定を容易に行えるようにした射出速度設定方法が提案されている(特許文献1参照)。 An injection speed setting method has been proposed in which an injection speed program pattern can be easily formulated for the above general problem (see Patent Document 1).
 上記文献の方法は、初期条件として射出圧力を低圧側の固定値である一圧値に設定し、射出圧力優先制御で試ショットを行い、成形品の充填不良に応じて射出圧力設定値を徐々に大きくしていきながら成形を繰返し、良品を得たときの1ショットの射出工程の全域で変化する実測された射出速度の平均値、すなわち、一速値を求める。そして、実際の成形では、その一速値の射出速度プログラムパターンを用いて、射出速度優先制御で成形が行われる。良品を得た際の圧力値を用いた射出圧力優先制御とせずに、射出速度優先制御とするのは、成形サイクルを安定化させながら再現性を高める必要があるからである。 In the method of the above-mentioned document, the injection pressure is set to an initial pressure value which is a fixed value on the low pressure side as an initial condition, a test shot is performed with injection pressure priority control, and the injection pressure set value is gradually set according to the filling failure of the molded product. The molding is repeated while increasing, and the average value of the actually measured injection speed that changes in the whole area of the one-shot injection process when a good product is obtained, that is, the first speed value is obtained. In actual molding, molding is performed by injection speed priority control using the injection speed program pattern of the first speed value. The reason why the injection speed priority control is used instead of the injection pressure priority control using the pressure value when a good product is obtained is that it is necessary to improve reproducibility while stabilizing the molding cycle.
 しかし、上記のようにして作成された一速値の射出速度プログラムパターンを用いて射出工程を制御する場合においては、射出工程において無駄な運転エネルギーを消耗してしまうという問題がある。これは、射出速度プログラムパターンを作成するための試ショットに使用される圧力値が金型キャビティ全体に溶融樹脂を充填するのに必要とされる高い値に設定されるためである。このため大きな射出圧力を必要としないスプルやランナおよび金型キャビティ前半部分等に対しては、必要以上の速度で溶融樹脂が駆動され、無駄なエネルギーが消費されるとともに、金型および周辺機器に大きな負荷が加わる。 However, when the injection process is controlled using the first-speed injection speed program pattern created as described above, there is a problem that wasteful operating energy is consumed in the injection process. This is because the pressure value used for the test shot for creating the injection speed program pattern is set to a high value required to fill the entire mold cavity with the molten resin. Therefore, for sprues and runners that do not require large injection pressure, the mold cavity first half, etc., the molten resin is driven at a speed higher than necessary, and wasteful energy is consumed. A large load is applied.
 また、試ショットを圧力値で上限を規制した射出速度優先制御と、オープン制御による射出圧力優先制御との併用によって実施して射出速度プログラムパターンを作成する方法が提案されている(特許文献2参照)。 Further, a method has been proposed in which an injection speed program pattern is created by performing a combination of injection speed priority control in which the upper limit is controlled by a pressure value and injection pressure priority control by open control (see Patent Document 2). ).
 上記方法は、初期条件として、熟練者が金型キャビティの観察から予想するところの仮の射出速度パターンと、一圧値の射出圧力規制値を設定して試ショットを行い、射出開始から射出圧力の実測値が設定された規制値に達するまでを射出速度フィードバック制御で成形し、規制値に達した以後、オープン制御による射出圧力優先制御に切り換えて成形を続行するようにされている。そして、このような方法による複数回の試ショットによって良品を得た際の射出速度の実測値パターンを量産運転時の射出速度プログラムパターンとするものである。 In the above method, as an initial condition, a trial shot is performed by setting a temporary injection speed pattern that an expert expects from observation of a mold cavity and an injection pressure regulation value of one pressure value. Molding is performed by injection speed feedback control until the actually measured value reaches a set regulation value, and after reaching the regulation value, switching to injection pressure priority control by open control is continued. And the measured value pattern of the injection speed when a non-defective product is obtained by a plurality of test shots by such a method is used as the injection speed program pattern during mass production operation.
 上記のような方法で作成される射出速度プログラムパターンにおいては、試ショット時において、射出圧力が最も高まる射出工程の後期で圧力優先制御に切り換えるので、オーバーパックが防止され、試ショット時における金型破損や、量産運転時における金型寿命の延長が期待できる。しかし、試ショットの際の射出工程前期は、熟練オペレータの推測に基づく射出速度パターンによる速度優先制御が行われているので、射出圧力値に基づく客観的な実測値が検出されておらず、したがって、この条件が最良であるかの保障はなく、また、不慣れなオペレータによっては再現することができないという問題がある。 In the injection speed program pattern created by the method as described above, the pressure priority control is switched at the later stage of the injection process where the injection pressure is highest at the time of the test shot, so overpacking is prevented and the mold at the time of the test shot is It can be expected to damage or extend the life of the mold during mass production. However, in the first half of the injection process at the time of the test shot, since the speed priority control based on the injection speed pattern based on the guess of the skilled operator is performed, an objective actual measurement value based on the injection pressure value has not been detected. There is no guarantee that this condition is the best, and there is a problem that it cannot be reproduced by an unfamiliar operator.
特許第2598747号公報Japanese Patent No. 2598747 特許第3430189号公報Japanese Patent No. 3430189
 ところで、金型装置内のスプル部、ランナ部、ゲート部、製品部は、それぞれ形状や断面積が違い、溶融樹脂を充填するのに最低限必要な射出圧力も形状や断面積が違う部分でそれぞれ違うものである。そのため、特許文献1で生成された射出速度条件で射出成形をした場合には、必要以上の射出圧力で溶融樹脂が流動する部分ができる。 By the way, the sprue part, runner part, gate part, and product part in the mold apparatus are different in shape and cross-sectional area, respectively, and the minimum injection pressure required to fill the molten resin is also different in the shape and cross-sectional area. Each is different. Therefore, when injection molding is performed under the injection speed condition generated in Patent Document 1, there is a portion where the molten resin flows with an injection pressure more than necessary.
 また、スプル部やランナ部の形状や断面寸法は、製品部の形状や寸法によって決定されるよりも、金型設計者の思想によって決定されることが多い。そのため、同じ製品を成形する金型装置が複数あったとしても、それら金型装置の設計者が違えば、スプル部やランナ部の形状およびそれらの断面寸法が違うこともあり得る。そのため、特許文献1では、最も昇圧される充填工程後期に合わせて一圧値が設定されるため、充填工程前期すなわちスプル部やランナ部に溶融樹脂が流動する際に実際に発生する射出圧力値が金型装置毎に異なる場合があり得る。一方、特許文献2では、試し成形時に射出圧力が一番高まる充填工程の後期で、圧力優先制御に切り換えられるので、あくまでオーバーパック防止が目的である。試し成形の際の充填工程前期は、射出速度条件による射出速度優先制御がされているので、圧力優先制御による実速度値の検出を行っていない。あくまで充填工程前期の射出速度条件は、オペレータが試行錯誤して設定しなければいけない。 Also, the shape and cross-sectional dimensions of the sprue part and runner part are often determined by the idea of the mold designer rather than by the shape and dimensions of the product part. Therefore, even if there are a plurality of mold apparatuses that mold the same product, the shape of the sprue part or the runner part and their cross-sectional dimensions may differ if the designers of the mold apparatuses are different. Therefore, in Patent Document 1, since one pressure value is set in accordance with the latter half of the filling step where pressure is increased most, the injection pressure value actually generated when the molten resin flows in the first half of the filling step, that is, the sprue portion or the runner portion. May be different for each mold apparatus. On the other hand, in Patent Document 2, since it is switched to the pressure priority control at the latter stage of the filling process in which the injection pressure is highest at the time of trial molding, the purpose is to prevent overpacking to the last. In the first half of the filling process at the time of trial molding, since the injection speed priority control is performed based on the injection speed condition, the actual speed value is not detected by the pressure priority control. The injection speed condition in the first stage of the filling process must be set by trial and error by the operator.
 そこで本発明は、金型装置内の流路の形状や断面寸法の違いに応じた最適な射出速度条件を生成可能な射出成形機の射出速度プログラムパターンの作成方法、およびその射出速度プログラムパターンを作成するとともに作成した射出速度プログラムパターンに基づいて射出成形機をプログラム制御することができる射出成形機の制御装置を提供することを目的とする。 Therefore, the present invention provides a method for creating an injection speed program pattern of an injection molding machine capable of generating an optimal injection speed condition according to the difference in the shape and cross-sectional dimensions of the flow path in the mold apparatus, and the injection speed program pattern. An object of the present invention is to provide a control device for an injection molding machine that can be programmed and controlled based on the created injection speed program pattern.
 本発明の射出成形機の射出速度プログラムパターンの作成方法は、金型キャビティ内における溶融樹脂の流路の分岐箇所・合流箇所のような形状や流路断面積が変化する箇所のうちから少なくとも1箇所以上の任意のn箇所を選択し、選択したn箇所を境として溶融樹脂が金型キャビティ内に充填される際の上流側から順次に金型キャビティ内を第1充填区間、第2充填区間のように第n+1充填区間までに区間設定し、第1充填区間から第n+1充填区間までのうちから任意の順序で選択する全ての各充填区間に対して段階的に射出圧力を高めながら複数回の試ショットを実施することによって、各充填区間ごとに当該各充填区間に溶融樹脂をほぼ満充填可能な射出圧力の上限値である圧力上限値を求めるとともに、各充填区間に対応する射出スクリュまたは射出プランジャの前進位置である圧力変更点を求め、各充填区間ごとに求めた圧力上限値と圧力変更点とを射出成形機の制御装置に設定された状態における圧力優先制御による試ショットに際しての射出速度の実測値パターンを速度優先制御によって射出成形機をプログラム制御するための射出速度プログラムパターンとすることを特徴とする。 The method of creating the injection speed program pattern of the injection molding machine according to the present invention includes at least one of locations where the shape and the flow path cross-sectional area of the flow path of the molten resin in the mold cavity change, such as branching and joining locations. Arbitrary n or more points are selected, and the mold cavity is sequentially filled with the first filling section and the second filling section from the upstream side when the molten resin is filled into the mold cavity with the selected n places as a boundary. As described above, the interval is set up to the (n + 1) th filling interval, and multiple times while increasing the injection pressure stepwise for all the filling intervals selected in any order from the first filling interval to the (n + 1) th filling interval. By carrying out the test shots for each filling section, the upper limit value of the injection pressure, which is the upper limit value of the injection pressure at which the molten resin can be almost fully filled in each filling section, is obtained and the corresponding filling section is supported. Test shot by pressure priority control in the state where the pressure change point that is the forward position of the injection screw or injection plunger is obtained, and the pressure upper limit value and pressure change point obtained for each filling section are set in the control device of the injection molding machine In this case, the measured value pattern of the injection speed is an injection speed program pattern for controlling the injection molding machine by speed priority control.
 上記射出成形機の射出速度プログラムパターンの作成方法においては、先ず、金型キャビティ内に区間設定を行う。区間設定は、金型キャビティを目視し、溶融樹脂の流路の分岐箇所や流路断面積が段階的に変化する箇所のうちから少なくとも1箇所以上の任意のn箇所を選択し(nは1以上の自然数)、選択した箇所を境界として認識し、かつ境界の前後を異なる充填区間として扱う方法で実施する。溶融樹脂の流路の分岐箇所等の判断は、非熟練者においても明らかなものであることから、この作業は容易であり、かつ非熟練者の判断で足りる。
 ここで、「金型キャビティ内における流路の分岐箇所・合流箇所のような形状や流路断面積が変化する箇所」とは、製品部の形状や流路断面積が変化する箇所のみならず、金型装置内のスプル部、ランナ部、ゲート部も含まれ、流路の角度変更部分も含まれる。また、流路の分岐位置(製品を多数個とりする場合の分岐位置)も含まれる。なお、製品内部にゲート部等を有するものもあるが、これらも含まれる。そして、製品部については、前記形状が相違する箇所や流路断面積が変化する箇所は、製品の形状や断面積が段階的に変化する箇所のすべての箇所であることが好ましい。
In the method of creating the injection speed program pattern of the injection molding machine, first, the section is set in the mold cavity. The section is set by visually observing the mold cavity and selecting at least one arbitrary n point from the branching point of the flow path of the molten resin and the position where the cross-sectional area of the flow path changes stepwise (n is 1). The above natural number) is performed by a method of recognizing the selected portion as a boundary and treating the front and rear of the boundary as different filling sections. Since the determination of the branching point of the flow path of the molten resin is obvious even for non-experts, this operation is easy and can be determined by the non-experts.
Here, “locations where the shape and flow path cross-sectional area of the flow path branching / merging points in the mold cavity change” are not only those where the shape of the product part or flow path cross-sectional area changes. In addition, a sprue part, a runner part, and a gate part in the mold apparatus are included, and an angle changing part of the flow path is also included. Moreover, the branch position of the flow path (the branch position when a large number of products are taken) is also included. Some products have a gate portion or the like inside the product, but these are also included. And about a product part, it is preferable that the location where the said shape differs, or the location where a flow-path cross-sectional area changes are all the locations where the shape and cross-sectional area of a product change in steps.
 金型キャビティ内に何箇所の充填区間を設定するかの判断は、当該金型によって製造される製品の要求精度等から逆算的に、すなわち、客観的に決定することができるのでこの判断にも高度の経験的知見は必要とされない。ただし、金型キャビティ内に多数の区間設定を行うことにより、最終的に作成される射出速度プログラムパターンの精度を向上させることができる反面において、後続の試ショット作業の回数が増えるという関係があることを認識して区間設定を行うことが好ましい。なお、金型キャビティ内は、選択した境界の箇所数に1を加えた数の充填区間に区間設定される。設定された充填区間は、溶融樹脂が金型キャビティ内に充填される際の上流側から順次に第1充填区間、第2充填区間、第n+1充填区間のように順序付けをして扱う。 The determination of how many filling sections are set in the mold cavity can be determined in reverse from the required accuracy of the product manufactured by the mold, that is, objectively determined. Advanced empirical knowledge is not required. However, the accuracy of the final injection speed program pattern can be improved by setting a large number of sections in the mold cavity, but there is a relationship that the number of subsequent test shots increases. It is preferable to set the section by recognizing this. Note that the inside of the mold cavity is set to the number of filling sections obtained by adding 1 to the number of locations of the selected boundary. The set filling sections are handled in the order of the first filling section, the second filling section, and the (n + 1) th filling section in order from the upstream side when the molten resin is filled into the mold cavity.
 次いで、各充填区間ごとに試ショットを行う。この際いずれの充填区間から試ショットを開始するかは、任意である。なお、ここで行われる試ショットは、一般的におこなわれるところの製品の良否判定のための試ショットではなく、金型キャビティの各充填区間内に溶融樹脂をほぼ満充填することができる射出圧力を求めることを目的とする試ショットである。ここで「満充填」とは、試ショットの対象となる特定の充填区間に完全に溶融樹脂が充填された状態をいい、したがって「ほぼ満充填」とは、満充填に至る以前の状態であって満充填に近い状態をいう。例えば、(a)製品部の角まで完全に充填していなくても良く、(b)ヒケ(製品表面に凹凸あり)があっても良い。なお、最終的に製品の角まできっちり充填させたり、ヒケを防止させたりするのは、従来通りに射出工程に続いて行われる保圧工程で行う。 Next, a test shot is performed for each filling section. At this time, it is arbitrary from which filling section the test shot is started. Note that the test shot performed here is not a test shot for determining the quality of a product that is generally performed, but an injection pressure at which the molten resin can be almost fully filled in each filling section of the mold cavity. This is a test shot for the purpose of seeking. Here, “full filling” refers to a state in which a specific filling section subject to a test shot is completely filled with molten resin, and therefore “almost full filling” refers to the state before full filling. The state is almost full. For example, (a) the corner of the product portion may not be completely filled, and (b) sink marks (the product surface has irregularities) may be present. The final filling of the product to the corner of the product or prevention of sink marks is performed in a pressure holding process performed following the injection process as usual.
 各充填区間に対する試ショットは、段階的に射出圧力を高めながら複数回実施することによって金型キャビティの各充填区間内に溶融樹脂をほぼ満充填可能な射出圧力の圧力上限値を求めるとともに、各充填区間においてほぼ満充填状態を得られた際の射出スクリュまたは射出プランジャの前進位置を圧力変更点として求める。なお、各充填区間に溶融樹脂がほぼ満充填されているか否かの判定は、目視判定による。例えば、第n充填区間の圧力上限値および圧力変更点を求める場合において、(1)射出上限圧を前より高めて射出し、(2)金型内の溶融樹脂が固化したら金型を開き、(3)目視判定をし、(4)成形品を金型から取り出し、(5)金型を閉じる(さらに型締めする。)。以上を第n充填区間がほぼ満充填されるまで繰り返す。また、上記(4)の成形品を金型から取り出してからの目視判定も可能である。 The test shot for each filling section is performed multiple times while increasing the injection pressure step by step to obtain the upper limit value of the injection pressure at which the molten resin can be almost fully filled in each filling section of the mold cavity. The forward position of the injection screw or the injection plunger when a substantially full state is obtained in the filling section is obtained as the pressure change point. Note that whether or not the molten resin is almost fully filled in each filling section is determined by visual determination. For example, in the case of obtaining the pressure upper limit value and the pressure change point in the nth filling section, (1) injection is performed with the injection upper limit pressure higher than before, (2) when the molten resin in the mold is solidified, the mold is opened, (3) Visual determination is performed, (4) the molded product is taken out from the mold, and (5) the mold is closed (further clamped). The above is repeated until the nth filling section is almost full. Further, visual determination after the molded product (4) is taken out from the mold is also possible.
 次いで、第1充填区間から第n+1充填区間の各充填区間ごとに求めた上記圧力上限値と圧力変更点とが射出成形機の制御装置に設定された状態での圧力優先制御による試ショットに際しての射出速度の実測値パターンを速度優先制御によって射出成形機をプログラム制御するための射出速度プログラムパターンとする。なお、各充填区間ごと圧力上限値と圧力変更点は、各充填区間についての試ショット完了ごとに制御装置に設定してもよく、すべての充填区間についての試ショットが完了した後に、まとめて設定しても、結果は同じである。 Next, in the test shot by the pressure priority control in the state where the pressure upper limit value and the pressure change point obtained for each filling section from the first filling section to the (n + 1) th filling section are set in the control device of the injection molding machine. The measured value pattern of the injection speed is used as an injection speed program pattern for controlling the injection molding machine by speed priority control. The pressure upper limit value and the pressure change point for each filling section may be set in the control device every time the test shot for each filling section is completed, or set collectively after the test shots for all filling sections are completed. Even so, the result is the same.
 上記のようにして最終的に得られた射出速度プログラムパターンは、各充填区間ごとに設定された圧力上限値に従って各充填区間ごとに射出圧力を変化させながら射出動作が行われた際の射出速度の変化パターンであると位置付けることができる。すなわち、射出動作が、この射出速度プログラムパターンに基づいて速度優先制御によって実行される限り、各充填区間における射出圧力が射出速度プログラムパターンを求めた際の圧力上限値を超えないことが保障されるのである。 The injection speed program pattern finally obtained as described above is the injection speed when the injection operation is performed while changing the injection pressure for each filling section according to the pressure upper limit value set for each filling section. It can be positioned as a change pattern. That is, as long as the injection operation is executed by speed priority control based on this injection speed program pattern, it is guaranteed that the injection pressure in each filling section does not exceed the pressure upper limit value when the injection speed program pattern is obtained. It is.
 本発明の射出成形機の射出速度プログラムパターンの作成方法は、上記基本発明を前提として、各充填区間ごとに当該充填区間に対応する圧力上限値を求めた際の射出速度を実測し、各充填区間ごとに得られた射出速度の実測値パターンを連結して射出速度プログラムパターンを作成する構成とすることができる。 The method for creating an injection speed program pattern of an injection molding machine according to the present invention is based on the basic invention described above, by actually measuring the injection speed when obtaining the pressure upper limit value corresponding to the filling section for each filling section, An injection speed program pattern can be created by connecting the actual measurement patterns of the injection speed obtained for each section.
 上記構成を採用する場合には、第1充填区間から第n+1充填区間に対して任意の順序によって試ショットを実施し、各充填区間ごとに当該充填区間に対応する圧力上限値を求めた際の射出速度を実測することによって、最後の充填区間に対する試ショットの完了と同時に射出速度プログラムパターンを得るための前提となる各充填区間ごとの圧力上限値や圧力変更点が求められるので、最後の充填区間に対する試ショットの完了と同時に各充填区間ごとに得られた射出速度の実測値パターンを連結した状態の射出速度プログラムパターンを得ることができる。したがって、射出速度プログラムパターンの作成工程を省き、短時間で特定の金型に適合する射出速度プログラムパターンを作成することができる。 In the case of adopting the above configuration, the trial shot is performed in an arbitrary order from the first filling section to the (n + 1) th filling section, and the pressure upper limit value corresponding to the filling section is obtained for each filling section. By measuring the injection speed, the upper limit of pressure and the pressure change point for each filling section, which are the preconditions for obtaining the injection speed program pattern, are obtained simultaneously with the completion of the test shot for the last filling section. Simultaneously with the completion of the test shot for the section, it is possible to obtain an injection speed program pattern in a state in which the actually measured injection speed pattern obtained for each filling section is connected. Therefore, it is possible to omit an injection speed program pattern creation step and create an injection speed program pattern that fits a specific mold in a short time.
 本発明の射出成形機の射出速度プログラムパターンの作成方法は、上記本発明のいずれの構成についても、各充填区間に対する試ショットを第1充填区間から第n+1充填区間に向かって順次に実施し、各充填区間において段階的に射出圧力を高めながら実施する複数回の試ショットにおいて求めるべき圧力上限値の初期値を既に求めた直近の前充填区間の圧力上限値とする構成とすることができる。 The method of creating the injection speed program pattern of the injection molding machine of the present invention sequentially performs a test shot for each filling section from the first filling section to the (n + 1) th filling section for any configuration of the present invention. The initial value of the pressure upper limit value to be obtained in a plurality of test shots carried out while increasing the injection pressure stepwise in each filling section can be set as the pressure upper limit value of the immediately preceding previous filling section.
 上記構成を採用する場合には、各充填区間に対する試ショットが第1充填区間から順次に実施されるので、特定の充填区間についての試ショットによって求めるべき圧力上限値が、その充填区間の前の順位の充填区間の圧力上限値以下ではありえないという自明の理を最大限に活用して短時間で射出速度プログラムパターンを作成することができる。つまり、特定の充填区間に対する試ショットは、既に求めた直近の前充填区間の圧力上限値未満の範囲を除外して実施することができるのである。 In the case of adopting the above configuration, since the test shots for each filling section are sequentially performed from the first filling section, the pressure upper limit value to be obtained by the test shot for the specific filling section is the value before the filling section. The injection speed program pattern can be created in a short time by making full use of the obvious reason that it cannot be below the upper pressure limit of the filling section of the order. In other words, the trial shot for a specific filling section can be performed by excluding the range below the upper pressure limit value of the latest previous filling section that has already been obtained.
 本発明の射出成形機の制御装置は、少なくとも、各種の成形条件を設定するための設定器と、成形条件記憶部と、ショットごとの実測値データを記憶する実測値記憶部と、モニターを駆動する表示制御部と、射出成形機の諸機構をフィードバック制御する機構制御部とを備え、使用される金型キャビティの特徴に基づいて金型キャビティに設定される複数の充填区間の各充填区間ごとに実施する試ショットにおいて、設定器を介して段階的に射出圧力を変化させながら成形条件記憶部に記憶させ、成形条件記憶部は、設定器を介して入力された射出圧力データを機構制御部に出力し、機構制御部は、成形条件記憶部から送られた射出圧力データに基づいて射出成形機の射出機構を制御し、実測値記憶部は、所定の充填状態が得られた際の各充填区間ごとに射出圧力と射出速度および射出スクリュまたは射出プランジャの位置データを記憶することによって全充填区間を通じての射出速度の実測値データを作成し、実測値記憶部は、作成した全充填区間を通じての射出速度の実測値データを直接または表示制御部を経由して成形条件記憶部に出力して射出速度プログラムパターンとして記憶し、機構制御部は、成形条件記憶部から出力させる射出速度プログラムパターンに目標として射出機構を制御することを特徴とする。 The control device for an injection molding machine according to the present invention drives at least a setting device for setting various molding conditions, a molding condition storage unit, an actual measurement value storage unit for storing actual measurement value data for each shot, and a monitor. For each filling section of a plurality of filling sections set in the mold cavity based on the characteristics of the mold cavity used. In the test shot to be performed, the molding condition storage unit stores the injection pressure while changing the injection pressure stepwise via the setting device, and the molding condition storage unit stores the injection pressure data input via the setting device. The mechanism control unit controls the injection mechanism of the injection molding machine based on the injection pressure data sent from the molding condition storage unit, and the actual measurement value storage unit stores each when a predetermined filling state is obtained. By storing the injection pressure, the injection speed, and the position data of the injection screw or the injection plunger for each filling section, the actual value data of the injection speed through the entire filling section is created. The measured value data of the injection speed is output to the molding condition storage unit directly or via the display control unit and stored as an injection speed program pattern, and the mechanism control unit converts the injection speed program pattern to be output from the molding condition storage unit. The injection mechanism is controlled as a target.
 上記構成による射出成形機の制御装置は、それぞれ上記機能を有する設定器、成形条件記憶部、実測値記憶部、表示制御部、機構制御部との機能連携によって、金型キャビティの各充填区間に対するオープン方式の圧力優先制御による試ショットの成果から射出速度プログラムパターンを作成し、作成した射出速度プログラムパターンに基づいて射出成形機の射出機構を制御することができる。 The control device of the injection molding machine having the above-described configuration is configured for each filling section of the mold cavity by function cooperation with the setting device, the molding condition storage unit, the actual measurement value storage unit, the display control unit, and the mechanism control unit each having the above functions. An injection speed program pattern can be created from the result of the trial shot by the pressure priority control of the open system, and the injection mechanism of the injection molding machine can be controlled based on the created injection speed program pattern.
 本発明の射出成形機の射出速度プログラムパターンの作成方法は、金型キャビティ全体に対する試ショットを実施するに先立ち、金型キャビティ内を樹脂の流路の形状や流路断面積が変化する箇所を境(基準)に複数の充填区間に区分し、各充填区間ごとに溶融樹脂をほぼ満充填することができる最低限の射出圧力を各充填区間ごとに実施する試ショットによって求めた後、求めた射出圧力を目標値とする圧力優先制御によって金型全体に対する試ショットを行い、この試ショットの際の射出速度を実測することによって最終的に必要とされる射出速度プログラムパターンを作成する。したがって、金型内の流路の形状や断面積の違いに対応した最適な射出圧力で成形したときの射出速度プログラムパターンを生成可能である。 The injection speed program pattern creation method of the injection molding machine of the present invention is a method in which the shape of the flow path of the resin and the cross-sectional area of the flow path change in the mold cavity before performing the test shot for the entire mold cavity. After dividing into a plurality of filling sections at the boundary (reference) and obtaining a minimum injection pressure that can be almost fully filled with molten resin for each filling section, it was obtained by a test shot that was performed for each filling section, and then obtained A test shot is performed on the entire mold by pressure priority control with the injection pressure as a target value, and an injection speed program pattern finally required is created by actually measuring the injection speed at the time of this test shot. Therefore, it is possible to generate an injection speed program pattern when molding is performed at an optimal injection pressure corresponding to the difference in the shape and cross-sectional area of the flow path in the mold.
 各充填区間ごとに行う試ショットの作業内容は、溶融樹脂を試ショットの対象となる充填区間に徐々に射出圧力を高めながら満充填されるに至るまでの範囲で行う単純な内容であるので、金型に加わる圧力負荷の予測等の高度の経験判断が不要であって、非熟練者においても金型破損等の事故を伴うことなく確実に実施することができる。 Since the work content of the test shot to be performed for each filling section is a simple content to be performed until the molten resin is fully filled while gradually increasing the injection pressure in the filling section to be the target of the test shot, Advanced experience judgment such as prediction of the pressure load applied to the mold is unnecessary, and even an unskilled person can reliably carry out the process without causing an accident such as damage to the mold.
 射出速度プログラムパターンを得るための金型全体に対する試ショット工程は、各充填区間ごとに求めた圧力上限値を目標値とする圧力優先制御によって実施されるので、この工程において金型に加わる圧力は、設定された圧力上限値を上回ることはないので、試ショット時の圧力上限値の予測ミス等に起因する金型破損を確実に予防することができる。 The test shot process for the entire mold for obtaining the injection speed program pattern is performed by pressure priority control with the pressure upper limit value obtained for each filling section as a target value, so the pressure applied to the mold in this process is Since the set pressure upper limit value is not exceeded, it is possible to reliably prevent the mold from being damaged due to a prediction error of the pressure upper limit value at the time of the test shot.
 最終的に得られたところの射出速度プログラムパターンは、金型キャビティの各充填区間ごとに最適に設定された圧力上限値と客観的な相関関係によって成立しているところから、その射出速度プログラムパターンを制御目標として用いる成形品の試ショットおよび量産運転においては、射出成形機の省エネルギー運転化や金型寿命の延長を実現することができる。 The injection speed program pattern finally obtained is based on an objective correlation with the pressure upper limit value optimally set for each filling section of the mold cavity. In trial shots and mass production operations of molded products using as a control target, energy-saving operation of the injection molding machine and extension of the mold life can be realized.
本発明の一実施の形態の射出速度プログラムパターンの作成方法を実行する際に使用する制御装置のブロック構成を射出成形機と関連付けて示す制御概念説明図である。It is control concept explanatory drawing which shows the block structure of the control apparatus used when performing the production method of the injection speed program pattern of one embodiment of this invention linked | related with an injection molding machine. 上記一実施の形態の射出速度プログラムパターンの作成対象とする金型キャビティ形状で成形される成形品の説明図であり、(a)はその正面図であり、(b)はその側面図である。It is explanatory drawing of the molded product shape | molded by the mold cavity shape made into the preparation object of the injection speed program pattern of the said one Embodiment, (a) is the front view, (b) is the side view. . 上記一実施の形態の射出速度プログラムパターンの作成例を成形品の形状(金型キャビティ形状)とともに作成段階的順序で示す図である。It is a figure which shows the creation example of the injection speed program pattern of the said one Embodiment with the shape of a molded article (mold cavity shape) in a creation stepwise order. 上記一実施の形態の射出速度プログラムパターンをプランジャ位置と関連付けて示す説明図である。It is explanatory drawing which shows the injection speed program pattern of the said one Embodiment linked | related with a plunger position.
 以下、図面を引用しながらプリプラ式の射出成形機を例示して本発明の射出成形機の制御装置30および射出成形機の射出速度プログラムパターンVPTを作成する方法を説明する(図1ないし図4)。本発明の方法によって作成される射出速度プログラムパターンVPT(図4に示す)は、使用する個々の金型の金型キャビティに対応して固有のパターンを呈するものであり、ここでは、説明の複雑化を避けるため金型キャビティ形状により成型される成形品Z(最終製品部を符号Z1で示す。)について説明する(図2)。なお、プリプラ式とは、成形材料を別に設けた可塑化専用スクリュで可塑化させ、これをプランジャ前部へ送り込んだ後、プランジャを前進させて射出する方式の射出成形機をいい、熱可塑性樹脂の成形に採用されている。 Hereinafter, a method for creating an injection molding machine control device 30 and an injection molding machine injection speed program pattern VPT will be described by exemplifying a pre-plastic injection molding machine with reference to the drawings (FIGS. 1 to 4). ). The injection speed program pattern VPT (shown in FIG. 4) created by the method of the present invention presents a unique pattern corresponding to the mold cavity of each mold used. In order to avoid this, a molded product Z (the final product part is indicated by a reference symbol Z1) molded by the mold cavity shape will be described (FIG. 2). The pre-plastic type refers to an injection molding machine in which plastic material is plasticized with a special plasticizing screw provided separately, and this is sent to the front part of the plunger, and then the plunger is advanced to inject the thermoplastic resin. It is used for molding.
 射出成形機は、樹脂材料を可塑化することを目的とする可塑化部10と、可塑化された樹脂材料を金型キャビティ内に射出することを目的とする射出部20とからなり、両者は、溶融樹脂の連通路16を設けたジャンクション部17において接続している(図1)。 The injection molding machine comprises a plasticizing part 10 for the purpose of plasticizing a resin material and an injection part 20 for the purpose of injecting the plasticized resin material into a mold cavity. They are connected at a junction 17 provided with a molten resin communication passage 16 (FIG. 1).
 可塑化部10は、樹脂ペレットを供給するためのホッパ13を備える可塑化シリンダ15と、可塑化シリンダ15内のスクリュ14を駆動するスクリュ駆動装置11およびスクリュ14の前後動作を制御する逆止装置12等からなる。 The plasticizing unit 10 includes a plasticizing cylinder 15 including a hopper 13 for supplying resin pellets, a screw driving device 11 that drives a screw 14 in the plasticizing cylinder 15, and a check device that controls the front-rear operation of the screw 14. 12 mag.
 一方、射出部20は、先端部にノズルシリンダ2Aを介して射出ノズル21を取り付けた射出シリンダ2Bと、そのシリンダ2B内に備える射出プランジャ2Cと、そのプランジャ2Cを駆動する射出駆動装置27等からなる。射出駆動装置27の主要部は、作動ロッド3A、ピストン3Cおよびシリンダ3Bからなる油圧シリンダである。 On the other hand, the injection unit 20 includes an injection cylinder 2B having an injection nozzle 21 attached to the tip thereof via a nozzle cylinder 2A, an injection plunger 2C provided in the cylinder 2B, an injection drive device 27 that drives the plunger 2C, and the like. Become. The main part of the injection driving device 27 is a hydraulic cylinder including an operating rod 3A, a piston 3C, and a cylinder 3B.
 射出駆動装置27には、射出プランジャ2Cの位置を検出するための位置センサG1と、射出圧力を検出するための圧力センサG2が組み込まれ、制御装置30側から射出プランジャ2Cの動作状態および射出圧力値が監視される。なお、本願において単に「射出プランジャの位置」と表現しているのは、厳密な意味においては、射出プランジャ2Cの先端位置のことである。 The injection drive device 27 incorporates a position sensor G1 for detecting the position of the injection plunger 2C and a pressure sensor G2 for detecting the injection pressure, and the operation state and injection pressure of the injection plunger 2C from the control device 30 side. The value is monitored. In the present application, the expression “position of the injection plunger” is simply the tip position of the injection plunger 2C in a strict sense.
 このような射出成形機における射出動作の概要は、可塑化シリンダ15内のスクリュ14を僅かに後退させることによって、スクリュ14の先端部で塞がれていたジャンクション部17の連通路16を開き、可塑化シリンダ15から連通路16を介して溶融樹脂を射出シリンダ2B側に供給する。一方、射出シリンダ2B側では、射出プランジャ2Cが後退動作しながら1ショット分の溶融樹脂を受け入れ、溶融樹脂は射出プランジャ2Cの後退量によって計量される。 The outline of the injection operation in such an injection molding machine is that the screw 14 in the plasticizing cylinder 15 is slightly retracted to open the communication passage 16 of the junction portion 17 that has been blocked by the tip portion of the screw 14, Molten resin is supplied from the plasticizing cylinder 15 through the communication path 16 to the injection cylinder 2B side. On the other hand, on the injection cylinder 2B side, the injection plunger 2C receives the molten resin for one shot while moving backward, and the molten resin is measured by the retraction amount of the injection plunger 2C.
 計量工程後、スクリュ14の前進によって連通路16が閉鎖される。次いで、射出プランジャ2Cが前進駆動され、射出シリンダ2B内に受け入れられた溶融樹脂を金型キャビティ内に所定の射出速度で射出する。金型キャビティ内に溶融樹脂が充填完了し、つまり、射出工程が完了した後、射出プランジャ2Cは、さらに前進方向に駆動され、溶融樹脂に対して引き続く保圧工程に必要な保圧力を加える。 After the weighing process, the communication path 16 is closed by the advance of the screw 14. Next, the injection plunger 2C is driven forward, and the molten resin received in the injection cylinder 2B is injected into the mold cavity at a predetermined injection speed. After the molten resin is completely filled in the mold cavity, that is, after the injection process is completed, the injection plunger 2C is further driven in the forward direction to apply a holding pressure necessary for the subsequent pressure holding process to the molten resin.
 保圧工程では、保圧力によって溶融樹脂が金型キャビティ内において微量に流動をしながら金型キャビティ内に完全充填されるとともに、金型によって冷却されることによって流動性を失い、所定形状の成形品Zとなる。なお、成形品Zのゲート5Cを切り離すと最終製品Z1になる。 In the pressure-holding process, the molten resin is completely filled in the mold cavity while flowing in a small amount in the mold cavity by the pressure-holding process, and the fluidity is lost by being cooled by the mold. Product Z. When the gate 5C of the molded product Z is cut off, the final product Z1 is obtained.
 射出成形機における上記のような一連の連携動作は、図示しない型締装置を含め、制御装置30によって予めプログラムされた各種の条件を充足するようにフィードバック制御される。 The series of cooperative operations as described above in the injection molding machine are feedback controlled so as to satisfy various conditions programmed in advance by the control device 30 including a mold clamping device (not shown).
 制御装置30は、特定の機能を担当する機能手段としての成形条件記憶部31、実測値記憶部32、実測値変換処理部33を含む表示制御部34、フィードバック制御部35を含む機構制御部36を主要部としてなり、設定器37としてのキー入力装置および表示装置38を伴う。 The control device 30 includes a molding condition storage unit 31, a measured value storage unit 32, a display control unit 34 that includes a measured value conversion processing unit 33, and a mechanism control unit 36 that includes a feedback control unit 35 as functional units in charge of specific functions. And a key input device as a setting device 37 and a display device 38.
 制御装置30には、前記射出駆動装置27の位置センサG1および圧力センサG2を含むセンサ群Gが接続されるとともに、制御装置30からの情報信号は、オペレータに視覚情報を提供する表示装置38の外、射出駆動装置27用のドライバを含むドライバ群Dに接続されている。すなわち、制御装置30の基本的動作は、センサ群Gから送られてくる情報を予めプログラムされた情報との関連において演算処理し、ドライバ群D等に送り出す動作である。 A sensor group G including a position sensor G1 and a pressure sensor G2 of the injection driving device 27 is connected to the control device 30, and an information signal from the control device 30 is used to display visual information to the operator. In addition, it is connected to a driver group D including a driver for the injection driving device 27. That is, the basic operation of the control device 30 is an operation for processing the information sent from the sensor group G in relation to pre-programmed information and sending it to the driver group D or the like.
 具体的に、制御装置30における成形条件記憶部31は、設定機37から入力された各種の成形条件や実測値を変換処理して記憶する。実測値記憶部32は、センサ群Gからの実測値情報を記憶または更新記憶する。機構制御部36は、成形条件と実測値をもとにフィードバック制御によって射出駆動装置27その他の各種機構を制御する。表示制御部34は、各種データを変換処理して表示装置に出力するとともに、表示制御部34に含まれる実測値変換処理部33は、射出速度の実測値波形をステップ状や折れ線状に変換処理して成形条件記憶部31に出力することができる。 Specifically, the molding condition storage unit 31 in the control device 30 converts and stores various molding conditions and actual measurement values input from the setting machine 37. The actual measurement value storage unit 32 stores or updates the actual measurement value information from the sensor group G. The mechanism control unit 36 controls the injection driving device 27 and other various mechanisms by feedback control based on the molding conditions and the actually measured values. The display control unit 34 converts various data and outputs the converted data to the display device. The actual value conversion processing unit 33 included in the display control unit 34 converts the actual measurement value waveform of the injection speed into a step shape or a polygonal line shape. And output to the molding condition storage unit 31.
 ここで、射出速度の実測値は、射出プランジャ2Cの前進位置を検出する位置センサG1から逐次送出される位置実測値を制御装置30の基準クロックを参照して速度データに変換する方式で検出される。また、射出圧力の実測値は、射出プランジャ2Cを駆動する油圧を介して圧力センサG2によって検出される。そして、射出プランジャ2Cの前進時の射出速度や射出圧力が後述する表示制御部34によって、下記の所定条件を目標にフィードバック制御される。 Here, the actual value of the injection speed is detected by a method of converting the actual position value sequentially sent from the position sensor G1 that detects the forward position of the injection plunger 2C into speed data with reference to the reference clock of the control device 30. The The actual measurement value of the injection pressure is detected by the pressure sensor G2 via the hydraulic pressure that drives the injection plunger 2C. Then, the injection speed and the injection pressure when the injection plunger 2C moves forward are feedback controlled by the display control unit 34 described later with the following predetermined condition as a target.
 本発明の射出速度プログラムパターンVPTの作成方法にサンプルとして使用する金型50の固定金型51と可動金型52とによって形成される金型キャビティは、スプル5A、ランナ5B、ゲート5C、および製品部分である凸部5D、凹部5E、凸部5Fが順次に連通するキャビティ形状を有する(図2,図3)。ここでは、スプル5Aとランナ5Bの部分(位置S0から位置S1)を第1充填区間K1、ゲート5Cと製品前半の凸部5Dとを第2充填区間K2、製品Z1の凹部5Eと後半の凸部5Fとを第3充填区間K3として区間設定している。ちなみに、スプル5A、ランナ5B、成形品Zの形状によっては、ゲート5Cを境界にした2つの区間に分けても良いし、スプル5Aやランナ5Bの部分を複数の区間に分けたり、最終製品部Z1を複数の区間に分けたりして4つ以上の区間に分けても良い。上記区間の数は、形状や断面積が異なる箇所を境に少なくとも2区間が必要になる。上記ゲート5Cを境界にした2つの区間に分けることは、最終製品部Z1の加工精度がスプル5Aやランナ5Bの部分よりも高い場合に有利である。なお、スプル5Aとランナ5Bの部分(位置S0から位置S1)を充填工程前期とし、ゲートC5と最終製品部Z1とを充填工程後期と呼ぶとすると、これら前期と後期の2つの区間に分けても良い。 The mold cavity formed by the fixed mold 51 and the movable mold 52 of the mold 50 used as a sample in the method for creating the injection speed program pattern VPT of the present invention includes a sprue 5A, a runner 5B, a gate 5C, and a product. The convex portion 5D, the concave portion 5E, and the convex portion 5F, which are parts, have a cavity shape that communicates sequentially (FIGS. 2 and 3). Here, the sprue 5A and the runner 5B (position S0 to position S1) are the first filling section K1, the gate 5C and the first half convex part 5D are the second filling section K2, and the concave part 5E of the product Z1 and the second half convex part. The section 5F is set as the third filling section K3. Incidentally, depending on the shape of the sprue 5A, the runner 5B, and the molded product Z, it may be divided into two sections with the gate 5C as a boundary, the sprue 5A and the runner 5B may be divided into a plurality of sections, and the final product section. Z1 may be divided into a plurality of sections or divided into four or more sections. As for the number of the above-mentioned sections, at least two sections are required with respect to places having different shapes and cross-sectional areas. Dividing into two sections with the gate 5C as a boundary is advantageous when the processing accuracy of the final product part Z1 is higher than that of the sprue 5A or the runner 5B. If the sprue 5A and the runner 5B (position S0 to position S1) are referred to as the first half of the filling process, and the gate C5 and the final product portion Z1 are referred to as the second half of the filling process, they are divided into two sections, the first half and the second half. Also good.
 以下、上記の射出成形機および制御装置30を使用し、第1充填区間K1から第3充填区間K3に向けて順次に試ショットを実施して本発明の射出速度プログラムパターンVPTの作成する態様の作成方法を説明する(図1ないし図4)。 Hereinafter, using the above-described injection molding machine and the control device 30, a test shot is sequentially performed from the first filling section K1 to the third filling section K3 to create the injection speed program pattern VPT of the present invention. A creation method will be described (FIGS. 1 to 4).
 なお、射出速度プログラムパターンVPTの作成開始に当り、1ショット当たりの溶融樹脂の計量値をクッション量を考慮に入れて設定しておくものとし、さらに、リミッタとして射出時間上限値と射出速度上限値を設定しておく必要がある。リミッタは、いずれも異常事態に備えるものであり、射出時間上限値は、射出圧力が立ち上がらずに充填不全となった際に射出成形機の運転を停止するものであり、射出速度上限値は、射出速度が異常に高まった際に運転条件を射出速度優先制御に強制的に切り換えるように機能する。 At the start of creating the injection speed program pattern VPT, the measurement value of the molten resin per shot is set in consideration of the cushion amount, and the injection time upper limit value and the injection speed upper limit value are set as limiters. Must be set in advance. The limiters are all prepared for abnormal situations, and the injection time upper limit value is to stop the operation of the injection molding machine when the injection pressure does not rise and the filling is incomplete, the injection speed upper limit value is It functions to forcibly switch the operating condition to injection speed priority control when the injection speed rises abnormally.
 上記、事前設定の上、制御装置30の設定器37を介して徐々に射出圧力の圧力上限値P1を上げながら第1充填区間K1であるスプル5Aとランナ5Bの部分に溶融樹脂をほぼ満充填されるに至るまで試ショットを実施する(図3(A))。スプル5Aとランナ5Bの部分に溶融樹脂がほぼ充填され、かつ溶融樹脂が第2充填区間K2の領域に流動していないときの圧力上限値が第1充填区間K1について適用される圧力上限値P1となり、そのときの射出プランジャ2Cの位置が、第1充填区間K1と第2充填区間K2との間の圧力変更点S1として求められる。また、この際の射出速度の実測値V1は、実測値記憶部32に記憶される。 In the above-described pre-setting, the molten resin is almost fully filled in the sprue 5A and the runner 5B, which are the first filling section K1, while gradually raising the pressure upper limit P1 of the injection pressure via the setting device 37 of the control device 30. A trial shot is carried out until it is done (FIG. 3A). The upper pressure limit P1 applied to the first filling section K1 is the upper pressure limit when the molten resin is substantially filled in the sprue 5A and the runner 5B and the molten resin is not flowing into the second filling section K2. Thus, the position of the injection plunger 2C at that time is obtained as the pressure change point S1 between the first filling section K1 and the second filling section K2. Further, the actual measurement value V1 of the injection speed at this time is stored in the actual measurement value storage unit 32.
 制御装置30に求めた圧力上限値P1と圧力変更点S1とを設定し、これらの値を基準にして第2充填区間K2であるゲート5Cと製品前半部の凸部5Dについて試ショットを実施する(図3(B))。試ショットの作業要領は、第1充填区間K1についての試ショットと同様であるが、第1充填区間K1について求められ、かつ制御装置30に設定された圧力上限値P1が初期値とされる点が異なる。試ショットの結果、ゲート5Cと製品Zの凸部5Dに溶融樹脂がほぼ十分に充填され、かつ溶融樹脂が第3充填区間K3の領域に流動していないときの射出圧力の上限値が第2充填区間K2について適用される圧力上限値P2となり、そのときの射出プランジャ2Cの位置が、第2充填区間K2と第3充填区間K3との間の圧力変更点S2となる。また、この際の射出速度の実測値V2は、実測値記憶部32に記憶される。 The pressure upper limit value P1 and the pressure change point S1 obtained in the control device 30 are set, and a test shot is performed on the gate 5C that is the second filling section K2 and the convex portion 5D in the first half of the product based on these values. (FIG. 3B). The work procedure of the test shot is the same as the test shot for the first filling section K1, but the pressure upper limit value P1 obtained for the first filling section K1 and set in the control device 30 is the initial value. Is different. As a result of the test shot, the upper limit value of the injection pressure when the molten resin is almost sufficiently filled in the gate 5C and the convex portion 5D of the product Z and the molten resin is not flowing into the third filling section K3 is the second value. The pressure upper limit P2 is applied to the filling section K2, and the position of the injection plunger 2C at that time is the pressure change point S2 between the second filling section K2 and the third filling section K3. Further, the actual measurement value V2 of the injection speed at this time is stored in the actual measurement value storage unit 32.
 次いで、制御装置30に圧力上限値P2と圧力変更点S2とを設定し、これらの値を基準にして第3充填区間K3である製品中間部の凹部5Eと製品後半部の凸部5Fについて試ショットを実施し、圧力上限値P3と圧力変更点S3を求め、制御装置30に設定する(図3(C))。圧力上限値P3が求められた時点での射出速度の実測値V3は、実測値記憶部32に記憶され、先に記憶された射出速度の実測値V1,V2と圧力変更点S1,S2を連結点として連結された状態の射出速度プログラムパターンVPTが得られる。作成された射出速度プログラムパターンVPTは、必要に応じて表示制御部34の実測値変換処理部33を介して表示装置38に出力されるとともに、成形条件記憶部31に出力されて記憶される。 Next, the pressure upper limit value P2 and the pressure change point S2 are set in the control device 30, and the product intermediate portion concave portion 5E and the product rear half convex portion 5F, which are the third filling section K3, are tested based on these values. A shot is performed to obtain the pressure upper limit value P3 and the pressure change point S3 and set them in the control device 30 (FIG. 3C). The actual value V3 of the injection speed at the time when the pressure upper limit value P3 is obtained is stored in the actual value storage unit 32, and the previously measured actual values V1 and V2 of the injection speed and the pressure change points S1 and S2 are connected. An injection speed program pattern VPT connected as dots is obtained. The created injection speed program pattern VPT is output to the display device 38 via the actual measurement value conversion processing unit 33 of the display control unit 34 as necessary, and is also output to the molding condition storage unit 31 and stored therein.
 上記のようにして作成された射出速度プログラムパターンVPTは、臨界的条件によって作成されたものであるため、良品を得るためには、さらに試ショットを行って部分的に修正を加える必要がある場合もありえる。この場合には、既に作成された射出速度プログラムパターンVPTは、金型破損を起しえない安全な試ショット用の射出速度プログラムパターンとしての意義をも有することとなる。 Since the injection speed program pattern VPT created as described above is created under critical conditions, in order to obtain a non-defective product, it is necessary to further modify it by performing a trial shot. There can be. In this case, the already created injection speed program pattern VPT also has significance as an injection speed program pattern for a safe test shot that does not cause mold damage.
 また、実際の成形においては、射出速度プログラムパターンVPTを追従目標とする射出速度優先制御が行われる。したがって、射出速度優先制御の優位性である繰返し精度が高い利点を損ねることなく、当該射出速度プログラムパターンVPTの作成段階の各充填区間K1,K2,K3における必要最低限の圧力上限値P1,P2,P3との相関関係が反映されていることにより、金型寿命の延長効果、オーバーパック防止効果、省エネルギー運転効果が実現されるのである。なお、図3(A)(B)(C)において、「実圧力値」とは、試ショットの実施の際に圧力センサG2で検出された実際の圧力値を示すものである。 In actual molding, injection speed priority control is performed with the injection speed program pattern VPT as a tracking target. Therefore, the necessary minimum pressure upper limit values P1, P2 in the filling sections K1, K2, K3 in the stage of creating the injection speed program pattern VPT without impairing the advantage of high repetition accuracy, which is the superiority of the injection speed priority control. , P3 is reflected, the effect of extending the mold life, the effect of preventing overpacking, and the energy saving operation effect are realized. 3A, 3B, and 3C, the “actual pressure value” indicates an actual pressure value detected by the pressure sensor G2 when the test shot is performed.
 ここで、作成された射出速度プログラムパターンVPTは、ステップ状や折れ線状に変換して使用することも可能であり、この場合においても、オリジナルの射出速度プログラムパターンVPTの特性が大きく損なわれることはない。また、射出速度プログラムパターンVPTの作成においては、プリプラ式の射出成形機を用いているが、射出スクリュで直接に射出動作を行う射出成形機によって作成してもよく、その結果作成された射出速度プログラムパターンVPTは、そのような方式の射出成形機に好適に使用することができるものとなる。 Here, the created injection speed program pattern VPT can be used after being converted into a step shape or a polygonal line shape, and even in this case, the characteristics of the original injection speed program pattern VPT are greatly impaired. Absent. In addition, although a pre-plastic type injection molding machine is used to create the injection speed program pattern VPT, it may be created by an injection molding machine that directly performs an injection operation with an injection screw. The program pattern VPT can be suitably used for such an injection molding machine.
 上記射出速度プログラムパターンVPTの作成方法では、第1充填区間K1から順次に試ショットを実施しているが、試ショットは、無作為に選択した順序で実施してもよい。各充填区間K1,K2,K3ごとの試ショットの結果を制御装置30に記憶させておくことによって、最後の充填区間に対する試ショットの完了によって射出速度プログラムパターンVPTを得ることができるからである。また、上記射出速度プログラムパターンVPTの作成方法においては、各充填区間K1,K2,K3の試ショットごとに射出速度を実測しているが、すべての充填区間K1,K2,K3の圧力上限値P1,P2,P3を求めて設定した後に、圧力優先制御による全充填区間K1,K2,K3を通しての試ショットを実施し、この試ショットに際しての射出速度の実測値V1,V2,V3をそのまま射出速度プログラムパターンVPTとすることもできる。 In the above-described method of creating the injection speed program pattern VPT, the test shots are sequentially performed from the first filling section K1, but the test shots may be performed in a randomly selected order. This is because by storing the test shot results for each of the filling sections K1, K2, and K3 in the control device 30, the injection speed program pattern VPT can be obtained by completing the test shot for the last filling section. In the method of creating the injection speed program pattern VPT, the injection speed is measured for each trial shot in each of the filling sections K1, K2, K3, but the pressure upper limit value P1 of all the filling sections K1, K2, K3. , P2, P3 are obtained and set, and then a test shot is performed through all the filling sections K1, K2, K3 by pressure priority control, and the actual measured values V1, V2, V3 of the injection speed at the time of this test shot are used as they are. The program pattern VPT can also be used.
 さらに、制御装置30に各充填区間K1,K2,K3の境界を認識させる意義を有する圧力変更点S1,S2,S3は、射出プランジャ2Cがそれぞれ圧力変更点S1,S2,S3に到達するまでに要した実測時間に変換して利用することもできるものとする。この場合、例えば、第1充填区間K1であれば、求められた圧力上限値P1をプランジャ2Cが圧力変更点S1に到達するのに要した期間の間維持するように制御することになる。 Furthermore, the pressure change points S1, S2, and S3 that have the significance of causing the control device 30 to recognize the boundaries of the filling sections K1, K2, and K3 are before the injection plunger 2C reaches the pressure change points S1, S2, and S3, respectively. It can also be used by converting to the required actual measurement time. In this case, for example, in the first filling section K1, control is performed so that the obtained pressure upper limit value P1 is maintained for a period required for the plunger 2C to reach the pressure change point S1.
 VPT  射出速度プログラムパターン
 V1,V2… 射出速度の実測値
 S1,S2… 圧力変更点
 P1,P2… 圧力上限値
 K1   第1充填区間
 K2   第2充填区間
 K3   第3充填区間
 2B   射出シリンダ
 30   制御装置
 31   設定器
 32   実測値記憶部
 34   表示制御部
 36   機構制御部
 Z    成形品
 Z1   製品
 
VPT Injection speed program pattern V1, V2 ... Actual value of injection speed S1, S2 ... Pressure change point P1, P2 ... Pressure upper limit value K1 First filling section K2 Second filling section K3 Third filling section 2B Injection cylinder 30 Controller 31 Setter 32 Actual value storage unit 34 Display control unit 36 Mechanism control unit Z Molded product Z1 Product

Claims (4)

  1.  金型キャビティ内における溶融樹脂の流路の分岐箇所・合流箇所のような形状や流路断面積が変化する箇所のうちから少なくとも1箇所以上の任意のn箇所を選択し、選択したn箇所を境として溶融樹脂が金型キャビティ内に充填される際の上流側から順次に金型キャビティ内を第1充填区間、第2充填区間のように第n+1充填区間までに区間設定し、
     第1充填区間から第n+1充填区間までのうちから任意の順序で選択する全ての各充填区間に対して段階的に射出圧力を高めながら複数回の試ショットを実施することによって、各充填区間ごとに当該各充填区間に溶融樹脂をほぼ満充填可能な射出圧力の上限値である圧力上限値を求めるとともに、各充填区間に対応する射出スクリュまたは射出プランジャの前進位置である圧力変更点を求め、
     各充填区間ごとに求めた圧力上限値と圧力変更点とが射出成形機の制御装置に設定された状態における圧力優先制御による試ショットに際しての射出速度の実測値パターンを速度優先制御によって射出成形機をプログラム制御するための射出速度プログラムパターンとすることを特徴とする射出成形機の射出速度プログラムパターンの作成方法。
    At least one or more arbitrary n locations are selected from the locations where the shape and flow path cross-sectional area of the flow path of the molten resin in the mold cavity change, such as branching and joining locations, and the selected n locations are selected. As a boundary, the mold cavity is sequentially set from the upstream side when the molten resin is filled into the mold cavity to the n + 1 filling section like the first filling section and the second filling section,
    By performing a plurality of test shots while increasing the injection pressure stepwise for all the filling sections selected in any order from the first filling section to the (n + 1) th filling section, for each filling section The pressure upper limit value that is the upper limit value of the injection pressure at which the molten resin can be almost fully filled in each filling section is obtained, and the pressure change point that is the advance position of the injection screw or the injection plunger corresponding to each filling section is obtained,
    The injection molding machine uses the speed priority control to measure the injection speed measured value pattern at the time of the trial shot by the pressure priority control in the state where the pressure upper limit value and the pressure change point obtained for each filling section are set in the control device of the injection molding machine. A method for creating an injection speed program pattern for an injection molding machine, characterized in that an injection speed program pattern is used for program control.
  2.  各充填区間ごとに当該充填区間に対応する圧力上限値を求めた際の射出速度を実測し、各充填区間ごとに得られた射出速度の実測値パターンを連結して射出成形機の射出速度プログラムパターンとすることを特徴とする請求項1に記載の射出成形機の射出速度プログラムパターンの作成方法。 The injection speed program of the injection molding machine is measured by measuring the injection speed when determining the upper pressure limit value corresponding to the filling section for each filling section, and connecting the measured value pattern of the injection speed obtained for each filling section. 2. The method of creating an injection speed program pattern for an injection molding machine according to claim 1, wherein the pattern is a pattern.
  3.  各充填区間に対する試ショットを第1充填区間から第n+1充填区間に向かって順次に実施し、各充填区間において段階的に射出圧力を高めながら実施する複数回の試ショットにおいて求めるべき圧力上限値の初期値を既に求めた直前の充填区間の圧力上限値とすることを特徴とする請求項1または請求項2に記載の射出成形機の射出速度プログラムパターンの作成方法。 Test shots for each filling section are sequentially performed from the first filling section to the (n + 1) th filling section, and the pressure upper limit value to be obtained in a plurality of test shots performed while increasing the injection pressure stepwise in each filling section. 3. The method for creating an injection speed program pattern for an injection molding machine according to claim 1, wherein the initial value is set to the pressure upper limit value of the immediately preceding filling section.
  4.  少なくとも、各種の成形条件を設定するための設定器と、成形条件記憶部と、ショットごとの実測値データを記憶する実測値記憶部と、モニターを駆動する表示制御部と、射出成形機の諸機構をフィードバック制御する機構制御部とを備え、
     使用される金型キャビティの特徴に基づいて金型キャビティに設定される複数の充填区間の各充填区間ごとに実施する試ショットにおいて、設定器を介して段階的に射出圧力を変化させながら成形条件記憶部に記憶させ、成形条件記憶部は、設定器を介して入力された射出圧力データを機構制御部に出力し、機構制御部は、成形条件記憶部から送られた射出圧力データに基づいて射出成形機の射出機構を制御し、実測値記憶部は、所定の充填状態が得られた際の各充填区間ごとに射出圧力と射出速度および射出スクリュまたは射出プランジャの位置データを記憶することによって全充填区間を通じての射出速度の実測値データを作成し、
     実測値記憶部は、作成した全充填区間を通じての射出速度の実測値データを直接または表示制御部を経由して成形条件記憶部に出力して射出速度プログラムパターンとして記憶し、機構制御部は、成形条件記憶部から出力させる射出速度プログラムパターンに目標として射出機構を制御することを特徴とする射出成形機の制御装置。
    At least a setting device for setting various molding conditions, a molding condition storage unit, an actual measurement value storage unit for storing actual measurement value data for each shot, a display control unit for driving a monitor, and various types of injection molding machines A mechanism control unit that feedback-controls the mechanism,
    Molding conditions while changing injection pressure step by step through a setting device in a test shot performed for each filling section of multiple filling sections set in the mold cavity based on the characteristics of the mold cavity used The molding condition storage unit outputs the injection pressure data input via the setting device to the mechanism control unit, and the mechanism control unit is configured to output the injection pressure data sent from the molding condition storage unit. By controlling the injection mechanism of the injection molding machine, the measured value storage unit stores the injection pressure, the injection speed, and the position data of the injection screw or injection plunger for each filling section when a predetermined filling state is obtained. Create measured value data of injection speed throughout the entire filling section,
    The actual measurement value storage unit outputs the actual measurement value data of the injection speed through all the created filling sections to the molding condition storage unit directly or via the display control unit and stores it as an injection speed program pattern. A control apparatus for an injection molding machine, wherein an injection mechanism is controlled with an injection speed program pattern output from a molding condition storage unit as a target.
PCT/JP2010/058042 2009-05-29 2010-05-12 Method for creating injection speed program pattern for injection molding machine and control device for injection molding machine WO2010137460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515970A JP4913924B2 (en) 2009-05-29 2010-05-12 Method for creating injection speed program pattern of injection molding machine and control device for injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009129821 2009-05-29
JP2009-129821 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137460A1 true WO2010137460A1 (en) 2010-12-02

Family

ID=43222573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058042 WO2010137460A1 (en) 2009-05-29 2010-05-12 Method for creating injection speed program pattern for injection molding machine and control device for injection molding machine

Country Status (2)

Country Link
JP (1) JP4913924B2 (en)
WO (1) WO2010137460A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132325A (en) * 1989-10-19 1991-06-05 Toyo Mach & Metal Co Ltd Injection condition control method for injection molding machine
JPH05245899A (en) * 1992-03-03 1993-09-24 Fanuc Ltd Injection control system for motorized injection molding machine
JP2002086533A (en) * 2000-09-08 2002-03-26 Toshiba Mach Co Ltd Method for setting input of injection velocity pattern
JP2009096076A (en) * 2007-10-17 2009-05-07 Nissei Plastics Ind Co Injection control method for injection molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132325A (en) * 1989-10-19 1991-06-05 Toyo Mach & Metal Co Ltd Injection condition control method for injection molding machine
JPH05245899A (en) * 1992-03-03 1993-09-24 Fanuc Ltd Injection control system for motorized injection molding machine
JP2002086533A (en) * 2000-09-08 2002-03-26 Toshiba Mach Co Ltd Method for setting input of injection velocity pattern
JP2009096076A (en) * 2007-10-17 2009-05-07 Nissei Plastics Ind Co Injection control method for injection molding machine

Also Published As

Publication number Publication date
JPWO2010137460A1 (en) 2012-11-12
JP4913924B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5801924B2 (en) Molding method for injection molding machine
JP5421980B2 (en) Control device for injection molding machine
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
JP5524914B2 (en) Waveform monitoring device for injection molding machine
JP2015131472A (en) Mold clamping force setting device and mold clamping force setting method for injection molding machine
CN103895194A (en) Injection molding machine
JP4913924B2 (en) Method for creating injection speed program pattern of injection molding machine and control device for injection molding machine
JP2014534100A (en) Control structure for molding systems
JP4085103B2 (en) Holding pressure switching control method
JP7293962B2 (en) Molded product quality anomaly prediction system
KR102330798B1 (en) Apparatus and method for positioning sensor for injection molding machine
JP3128048B2 (en) Injection compression molding method and apparatus
US20230364841A1 (en) Injection molding machine
JP2013031952A (en) Method of setting toggle type injection molding machine and molding method
JP4028563B2 (en) Local pressure pin drive control method
WO2022244221A1 (en) Injection molding device
JP3880441B2 (en) Control method of screw forward speed in injection molding machine
JP3154382B2 (en) Injection compression molding method and apparatus
CN111186105A (en) Injection molding machine and control method thereof
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JP3880442B2 (en) Control method of screw forward speed in injection molding machine
JP4423175B2 (en) Control device and control method for injection molding machine
JP3872446B2 (en) Injection molding method
JP3282435B2 (en) Injection press molding method and injection press molding apparatus
JPH08323831A (en) Injection compression molding method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780415

Country of ref document: EP

Kind code of ref document: A1