WO2010136611A1 - Elemento de desgaste con resistencia al desgaste mejorada - Google Patents

Elemento de desgaste con resistencia al desgaste mejorada Download PDF

Info

Publication number
WO2010136611A1
WO2010136611A1 PCT/ES2009/000352 ES2009000352W WO2010136611A1 WO 2010136611 A1 WO2010136611 A1 WO 2010136611A1 ES 2009000352 W ES2009000352 W ES 2009000352W WO 2010136611 A1 WO2010136611 A1 WO 2010136611A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
steel
wear
zirconia
zone
Prior art date
Application number
PCT/ES2009/000352
Other languages
English (en)
French (fr)
Inventor
Jorge Triginer
José SÁNCHEZ
José López
Jorge ALCALÁ
Jordi Brufau Guinovart
Original Assignee
Metálogenia, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metálogenia, S.A. filed Critical Metálogenia, S.A.
Priority to PCT/ES2009/000352 priority Critical patent/WO2010136611A1/es
Priority to PCT/EP2009/005802 priority patent/WO2010136055A1/en
Priority to PCT/EP2010/003245 priority patent/WO2010136207A1/en
Priority to AU2010252229A priority patent/AU2010252229B2/en
Priority to RU2011147743A priority patent/RU2610934C9/ru
Priority to PL10727670T priority patent/PL2435636T3/pl
Priority to CA2762933A priority patent/CA2762933C/en
Priority to PCT/EP2010/003246 priority patent/WO2010136208A1/en
Priority to BRPI1009083-5A priority patent/BRPI1009083B1/pt
Priority to US13/322,881 priority patent/US8763282B2/en
Priority to US13/321,047 priority patent/US8806785B2/en
Priority to PL10727669T priority patent/PL2435638T3/pl
Priority to ES10727669T priority patent/ES2431270T3/es
Priority to CN201080021963.XA priority patent/CN102439233B/zh
Priority to AU2010252228A priority patent/AU2010252228B2/en
Priority to ES10727670.1T priority patent/ES2472917T3/es
Priority to CN201080023481.8A priority patent/CN102482862B/zh
Priority to EP10727670.1A priority patent/EP2435636B1/en
Priority to EP10727669.3A priority patent/EP2435638B1/en
Publication of WO2010136611A1 publication Critical patent/WO2010136611A1/es
Priority to ZA2011/08681A priority patent/ZA201108681B/en
Priority to ZA2011/08682A priority patent/ZA201108682B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/285Teeth characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/815Blades; Levelling or scarifying tools
    • E02F3/8152Attachments therefor, e.g. wear resisting parts, cutting edges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2883Wear elements for buckets or implements in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades

Definitions

  • the present invention relates to wear elements, as well as inserts incorporated therein, in order to optimize wear resistance and service life of said elements.
  • the wear elements are of special application in machinery for the movement of stone, earth or similar.
  • the intermediate layers described in Furman consist of metal alloys whose temperatures of melting are 5O 0 C above the cast metal and more preferably 200 0 C above the cast metal, on the contrary, the intermediate layers described in Furman, comprise an alloy with low melting temperature, such as copper.
  • Fischer and Waldenstrom mention that the thickness of the intermediate layer will be wide enough that it does not dissolve during the casting of the steel
  • the structure produced is considered to have improved resistance against crack propagation due to the properties of the cracks.
  • intermediate layers to stop the cracks In the included example, the microscopic section of the part of the WC insert is constituted by less than 5 particles of such hard or cemented carbide along the two external regions where the penetration of the cast iron takes place. In said particles, Waldenstrom describes the formation of internal diffusion zones and pure molten alloy.
  • the international application WO9011383 of Materkowski, describes a process by which particles of hard metal or cemented carbide are placed inside from a mold and cast iron is cast to produce an insert.
  • the casting temperature of the iron-based alloy is significantly lower than that of the steel, which prevents the particles from dissolving.
  • Fischer the cermet is placed inside a protective container and the molten metal is cast around. As the penetration of molten metal is prevented by the container, the resulting union between the cermet and the container takes place due to the contraction adjustment.
  • inserts of ceramic material with porosity and reticular structure that are infiltrated by molten steel in the state of the art there is the application WO2008051591, González-Rocha; US patent number US7290586-B2, Sambrook; "Processing of Ceramic-metal interpretation composites", Journal of the European Ceramic Society 29 (2009) 827-842, by Binner et al; and "Bi-continuous metal matrix composites” Material Science and Engineering A303 (2001) 37-45, by Peng et al.
  • the present invention relates to obtaining elements or parts of wear in reinforced cast steel to increase its duration, by placing inside it inserts of harder material than steel.
  • the invention therefore relates to components and wear elements with improved abrasion resistance, such as teeth for earthmoving, rock cutting machinery, etc. in which the union between the insert and the cast steel is optimal so that the correct operation of the reinforced parts in service is guaranteed and breakages related to defects in it are eliminated.
  • the quality of the joint that takes place between the insert material and the steel is critical for the performance of the element and to avoid sudden failures.
  • the quality of the wear element is directly related to the lack of macroporosity in the union between the insert, of the family of cermets, and the steel, and in another of the preferred embodiments, to the extensive contact surface between the insert of ceramic nature and steel.
  • One of the preferred embodiments of the reinforced elements object of the present invention has particular application in those markets in which the cost of stopping the machine for the replacement of worn components involves a high cost, e.g. ex. The dredging market.
  • the reinforced elements of the present invention must allow lengthening the useful working times between changes in these applications.
  • the reinforced elements of the present invention also have application in those markets in which traditionally wear elements exclusively produced in medium carbon and low alloy steels tempered and tempered have been traditionally used. Such wear elements in steel are capable of providing adequate wear life at a controlled cost. It is in these markets where another of the preferred embodiments of the reinforced elements object of the invention provides wear elements of greater useful life with a moderate cost increase.
  • the present invention provides different embodiments for the reinforcement of wear elements in cast steel, a first embodiment refers to inserts constituted by a material of the family of cermets, a second embodiment refers to the use of ceramic foams, and a last embodiment of the invention, refers to the combined use of the previous embodiments consisting of an insert composed mainly of ceramic foam with inserts in cermet inside.
  • Figure 1 shows a diagram of the areas existing in the joint between the insert and the molten steel of the wear element.
  • Figure 2 shows an enlargement of three junction zones.
  • the object of the present invention is the optimization of a reinforced wear element, produced by casting molten steel, in which a ceramic or cermet insert has been previously arranged, characterized in that the union between the material of said insert and The cast steel guarantees the operation of the wear elements or reinforced parts in service, also eliminating breakages related to defects in said union.
  • a first embodiment refers to wear elements or components comprising at least one insert consisting of a material of the family of ceramic composites of metal matrix, cermets or cemented carbides, whose hardness is substantially higher to the hardness of the steel that constitutes the rest of the non-reinforced areas of the wear component or element.
  • the wear element joint is optimized by controlling the properties of the poured steel.
  • Said insert is sized and positioned so that the problems described in the state of the art are avoided.
  • the dimensions of the cermet used as an insert are designed such that the heat of the molten steel that surrounds it during the mold filling process, assumes that the steel partially infiltrates it without causing its total dissolution.
  • this first region of union in which the steel replaces the matrix of the cermet, in the union of the insert with the steel it is possible to distinguish a second zone of union in which the steel reacts with the cermet. It is in this second region that the porosity defects that want to be avoided occur. It is possible to optimize this second junction zone by:
  • the cermet preferably used is tungsten carbide in cobalt matrix, since this material has excellent wear performance, also improving the toughness in relation to that possessed by monolithic ceramics.
  • the region of union between the insert and the molten steel can be divided into different zones (See figs 1 and 2): a) A central zone (1), which is strictly not a union, corresponding to the core of the cermet, in which the amount of cobalt binding phase is increased with respect to its original content, b) A first zone in which Ia infiltration of the steel in the mass of the insert occurs, replacing the metallic binder (2) , c) A second zone, formed by two sub-zones rich in tungsten around the insert; a first subzone (3), usually adjacent to the original surface of the insert, consisting of a solid solution where the tungsten exceeds 60% by weight, where the tungsten carbide particles dissolve in the steel and subsequently reprecipitate; and a second subzone (4), in which a second solid solution is formed where the tungsten content is between 15% and 60% by weight.
  • a fundamental aspect of the above processes concerns this second subzone (4), where the high carbon content of the matrix resulting from the dissolution of the tungsten carbide particles significantly reduces the melting temperature, as deduced from the eutectic point in the Fe-C diagram, located on 113th 0 C. contraction of this zone during solidification Ia leads to the formation of porosity therein. This porosity limits the mechanical resistance of the reinforced part. Said condition of the temperature where the molten steel is cast at a temperature below 100 0 C above its melting point, significantly reduces the width of said second zone enriched carbon within 3 mm. Under these temperature conditions, the porosity due to the contraction of the second zone during the solidification is consequently reduced to a thickness of less than 3 mm.
  • the type of defects that are generated on the surface of the tungsten carbide inserts in cobalt with the casting steel in known parts have been analyzed and limited.
  • the analyzes carried out have allowed us to evaluate that although the resistance to wear of the insert is optimal, its mechanical resistance could be lower than that of a conventional tooth by the mere fact of incorporate an insert.
  • criteria for the positioning of the insert have been developed, and techniques that allow its secure fixation before casting, so that they are located sufficiently close to the neutral axis of the components, so that the resistance Final mechanics of the reinforced product is similar to that of the conventional product.
  • a second embodiment of the present invention allows to obtain a wear element with a cellular three-dimensional ceramic foam with a porous structure of open cells that is substantially or entirely penetrated by molten steel.
  • the infiltration of the ceramic skeleton by molten steel takes place without the need for pressure, this is due to the fact that the combination of fluid properties of the steel at casting temperature is sufficient to guarantee satisfactory infiltration.
  • the industrial process would have been complicated in such a way that it is possible that the invention had not been economically viable.
  • the viability of the infiltration of ceramic foams with molten steel is hindered if the selection of the ceramic materials of the foam is not correct.
  • the insert included in the wear element object of this second embodiment is a cellular three-dimensional ceramic foam with a porous open-cell structure that is substantially or completely penetrated by molten steel cast by gravity.
  • the material of said insert is preferably zirconia (ZrO 2 ), although it can also be a zirconia base material alloyed with other ceramic materials such as, for example, zirconia-CaO, zirconia-MgO, zirconia-Y 2 O 3 , or equally AI 2 0 3 -circone or.
  • the ceramic insert may consist mainly of alumina (AI 2 O 3 ) or alumina based alloys, such as alumina spinel or mullite.
  • ceramic foams must have specific characteristics as well as belong to a particular chemical nature to provide the best properties to wear parts.
  • said foams are preferably zirconia or alumina.
  • Another feature of the previous insert is that it has a functional porosity, that is, that the size of the pores vary conveniently, according to a previous design, along the thickness of the foam, thus allowing to improve the infiltration of the steel therein. , reaching greater penetrated depths and, consequently, larger inserts.
  • the use of a mullite coating in the ceramic foams of the oxides indicated previously is positive.
  • the mullite has a better wettability on the part of the steel than that of the mentioned oxides.
  • the type of foams proposed is constituted by dipping a conventional foam of alumina, zirconia or alumina-zirconia in a mullite slip.
  • a last embodiment of the invention consists of a hybrid insert, preferably composed of a core of a hard metal, cermet, preferably tungsten carbide, introduced into a ceramic foam as described above. Due to the different response to wear of the infiltrated ceramic foam and the cermet, inserts can be designed that when working provide the reinforced wear element object of this last embodiment of the invention, a profile during the work that optimizes the properties of the element as Penetration capacity refers. Technically, it has been determined that the hybrid insert alternative is achievable by the excellent infiltration that allows the casting steel in the tested ceramic foams. In this way, the steel reaches the cermet portion of the hybrid insert at a temperature still sufficient to produce the joint regions detailed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

La presente invención se refiere a elementos de desgaste, así como a insertos incorporados en su interior, a fin de optimizar la resistencia al desgaste y vida útil en servicio de dichos elementos. Los elementos de desgaste son de especial aplicación en maquinaria para el movimiento de piedra, tierras o similares.

Description

ELEMENTO DE DESGASTE CON RESISTENCIA AL DESGASTE MEJORADA
Campo de Ia invención
La presente invención se refiere a elementos de desgaste, así como a insertos incorporados en su interior, a fin -de optimizar Ia resistencia al desgaste y vida útil en servicio de dichos elementos. Los elementos de desgaste son de especial aplicación en maquinaria para el movimiento de piedra, tierras o similares.
Antecedentes de Ia invención En el estado de Ia técnica son conocidos documentos que describen insertos incluidos en piezas de acero fundido para aumentar Ia resistencia al desgaste de dichas piezas. El problema en el estado de Ia técnica relativo al vertido de acero fundido en Ia cavidad de un molde que contiene un cermet con base WC era que provocaba Ia disolución de las partículas de WC. Esta característica se impidió con Ia introducción de capas intermedias protectoras entre Ia aleación colada con base de hierro fundido y las partículas de WC; para de hierro fundido y acero (US4764255, Fischer); para hierro fundido (US4584020, Waldenstrom); y para acero fundido (Reinforcing Steel Castings with Wear-Resisting Cast Iron" Liteinoe Proizvodstvo, No. 7, p.27 (1986), Furman et al)). En Fischer y Waldenstrom estas capas intermedias se constituyen por aleaciones metálicas cuyas temperaturas de fusión están 5O0C por encima del metal colado y más preferiblemente 2000C por encima por encima del metal colado. Por el contrario, las capas intermedias descritas en Furman, comprenden una aleación con temperatura de fusión baja, tal como cobre. Asimismo, Fischer y Waldenstrom mencionan que el espesor de Ia capa intermedia será suficientemente ancho como para que no se disuelva durante Ia colada del acero. En Waldenstrom, Ia estructura producida se considera que tiene resistencia mejorada contra Ia propagación de las grietas debido a las propiedades de las capas intermedias para detener las grietas. En el ejemplo incluido, Ia sección microscópica de Ia parte del inserto de WC está constituida por menos de 5 partículas de metal duro o carburo cementado a Io largo de las dos regiones externas donde tiene lugar Ia penetración del hierro fundido. En dichas partículas, Waldenstrom describe Ia formación de zonas de difusión interna y aleación fundida pura.
La solicitud internacional WO9011383, de Materkowski, describe un procedimiento mediante el cual partículas de metal duro o carburo cementado se sitúan en el interior de un molde y hierro fundido es colado para producir un inserto. En esta solicitud, Ia temperatura de Ia colada de Ia aleación con base de hierro es significativamente menor que Ia del acero, que previene que las partículas se disuelvan. A excepción de Fischer, el cermet se sitúa en el interior de un contenedor protector y el metal fundido es colado alrededor. Como Ia penetración del metal fundido es impedida por el contenedor, Ia unión resultante entre el cermet y el contenedor tiene lugar debido al ajuste por contracción.
También es conocido que composites de WC con acero han sido empleados utilizando procesos estándar de metalurgia en polvo, donde el WC y las partículas de acero con baja temperatura de fusión son situadas en un molde cuya temperatura es elevada hasta Ia temperatura de fundición del acero. Dicho proceso de sinterizado son descritos en Ia patente estadounidense número US4608318, Makrides, y en Ia patente australiana número AU-31362/77-B1. Los insertos fabricados son posteriormente situados en un molde en el que metal fundido es colado, produciendo Ia parte final. Una diferencia importante entre los insertos descritos del estado de Ia técnica y los que son objeto de Ia presente invención es qye kis insertios de WC empleados se producen in situ a partir de insertos de metal duro convencionales en bloque, de manera que el ligante metálico se endurece a través de procedimientos de enfriamiento que provocan Ia formación de martensita en el acero. En relación con otra realización de Ia invención, insertos de material cerámico con porosidad y estructura reticular que son infiltrados por acero fundido, en el estado de Ia técnica existen Ia solicitud WO2008051591 , González-Rocha; Ia patente estadounidense número US7290586-B2, Sambrook; "Processing of Ceramic-metal interprenetation composites", Journal of the European Ceramic Society 29 (2009) 827- 842, de Binner et al; y "Bi-continuous metal matriz composites" Material Science and Engineering A303 (2001) 37-45, de Peng et al. Estos documentos describen Ia fabricación de espumas cerámicas celulares reticuladas en bloque mediante Ia infiltración de metal, que es favorecido por las siguientes técnicas: i) colada de una aleación con temperatura de fusión baja; ii) aplicación de presión externa; y iii) calentamiento previo del molde.
Ninguna de las anteriores describe ni menciona Ia colada de acero fundido en moldes que. incorporan una espuma cerámica, objeto de Ia presente invención. Estado de Ia técnica adicional a esta segunda realización de Ia invención fue descrito en "Processing and microstruture of metal matriz composites prepared by pressureless Ti-actívated ¡nfiltration using Fe-base and Ni-based alloys" Materials Science and Engineering A 393 (2005) 225-238, de Lemster et al.; y en "Dynamic response of ceramic-metal composites: The TiC-steel system", J. Appl. Phys. 93, p. 968 (2203), de Klein et al. Ambos documentos se refieren al tratamiento de composites de una matriz de acero con partículas cerámicas incrustadas. Sin embargo, ninguno constituye Ia fase cerámica a partir de espumas cerñamicas como Ia presente invención.
Descripción de Ia invención
La presente invención se refiere a Ia obtención de elementos o piezas de desgaste en acero fundido reforzadas para aumentar su duración, mediante Ia colocación en su interior de insertos de material más duro que el acero. La invención se refiere por tanto a componentes y elementos de desgaste con una resistencia a Ia abrasión mejorada, tal como dientes para movimiento de tierras, maquinaria de corte de rocas, etc. en los que Ia unión entre inserto y el acero colado es óptima de forma que se garantiza ei correcto funcionamiento de las piezas reforzadas en servicio y se eliminan las roturas relacionadas con defectos en la misma.
La calidad de Ia unión que tiene lugar entre el material de inserto y el acero es crítica para el rendimiento del elemento y para evitar fallos repentinos. En una de las realizaciones preferidas, Ia calidad del elemento de desgaste está directamente relacionada con Ia inexistencia de macroporosidad en Ia unión entre el inserto, de Ia familia de los cermets, y el acero, y en otra de las realizaciones preferidas, a Ia extensa superficie de contacto entre el inserto de naturaleza cerámica y el acero.
Una de las realizaciones preferidas de los elementos reforzados objeto de Ia presente invención tiene particular aplicación en aquellos mercados en los que el coste de paro de Ia máquina para Ia sustitución de los componentes desgastados supone un coste elevado, p. ej. el mercado de dragado. Los elementos reforzados de Ia presente invención deben permitir alargar los tiempos de trabajo útil entre cambios en éstas aplicaciones. Los elementos reforzados de Ia presente invención tienen también aplicación en aquellos mercados en los que tradicionalmente se han usado elementos de desgaste exclusivamente producidos en aceros de medio carbono y baja aleación templados y revenidos. Tales elementos de desgaste en acero son capaces de proporcionar una vida al desgaste adecuada a un coste controlado. Es en estos mercados en los que otra de las realizaciones preferidas de los elementos reforzados objeto de Ia invención proporciona elementos de desgaste de mayor vida útil con un incremento de coste moderado.
Así pues, Ia presente invención prevé diferentes realizaciones para el refuerzo de elementos de desgaste en acero colado, una primera realización se refiere a insertos constituidos por un material de Ia familia de los cermets, una segunda realización se refiere a Ia utilización de espumas cerámicas, y una última realización de Ia invención, se refiere a Ia utilización combinada de las anteriores realizaciones consistente en un inserto compuesto principalmente de espuma cerámica con insertos en cermet en su interior.
Descripción de las figuras
La presente solicitud incluye las siguientes figuras con carácter ilustrativo y no limitativo.
La figura 1 muestra un esquema de las zonas existentes en Ia unión entre el inserto y el acero fundido del elemento de desgaste. La figura 2 muestra una ampliación de tres zonas de unión.
Descripción detallada de las realizaciones preferidas
El objeto de Ia presente invención es Ia optimización de un elemento de desgaste reforzado, producido mediante colada de acero fundido, en el que previamente se ha dispuesto un inserto de carácter cerámico o cermet, caracterizado por que Ia unión entre el material de dicho inserto y el acero colado garantiza el funcionamiento de los elementos de desgaste o piezas reforzadas en servicio, eliminando, asimismo, roturas relacionadas con defectos en Ia dicha unión.
Tal y como se ha citado anteriormente, una primera realización se refiere a elementos o componentes de desgaste que comprenden al menos un inserto constituido por un material de Ia familia de los composites cerámicos de matriz metálica, cermets o carburos cementados, cuya dureza es sustancialmente superior a Ia dureza del acero que constituye el resto de zonas no reforzadas del componente o elemento de desgaste. Según esta primera realización, Ia unión del elemento de desgaste se optimiza mediante el control de las propiedades del acero vertido. Dicho inserto está dimensionado y posicionado de forma que se evitan los problemas descritos en el estado de Ia técnica.
A diferencia de Io que sucede en insertos fabricados a partir de granza de carburo descritos en el estado de Ia técnica, las dimensiones del cermet empleado como inserto se diseñan tal que el calor del acero fundido que Io envuelve durante el procedimiento de llenado del molde, supone que el acero Io infiltre parcialmente sin provocar su total disolución. Adicionalmente a esta primera región de unión en Ia que el acero sustituye a Ia matriz del cermet, en Ia unión del inserto con el acero cabe distinguir una segunda zona de unión en Ia que el acero reacciona con el cermet. Es en esta segunda región en Ia que se producen los defectos de porosidad que quieren evitarse. Es posible conseguir optimizar esta segunda zona de unión mediante:
- al colar el acero fundido se controla Ia temperatura del mismo cuando este entra en contacto con Ia superficie del inserto cermet, de manera que dicha temperatura no supera en 1000C a Ia temperatura de fusión del acero, y/o
- el empleo de un ratio mejorado entre el ligante metálico y el carburo que proporciona control sobre Ia penetración del acero, y/o
- posicionado de noyos metálicos o de arena en las zonas más masivas de Ia zona reforzada del componente con Ia misión de disminuir Ia inercia térmica del acero en dichas zonas.
El cermet preferiblemente empleado es carburo de tungsteno en matriz de cobalto, ya que este material posee un excelente comportamiento al desgaste, mejorando igualmente Ia tenacidad en relación a Ia que poseen las cerámicas monolíticas.
En este contexto, Ia región de unión entre el inserto y el acero fundido, se puede dividir en diferentes zonas (Ver figs 1 y 2): a) Una zona central (1), que estrictamente no es de unión, correspondiente al núcleo del cermet, en Ia que Ia cantidad de fase ligante, cobalto, se ve incrementada respecto a su contenido original, b) Una primera zona en Ia que Ia se produce Ia infiltración del acero en Ia masa del inserto, sustituyendo el ligante metálico (2), c) Una segunda zona, formada por dos subzonas ricas en tungsteno alrededor del inserto; una primera subzona (3), usualmente adyacente a Ia superficie original del inserto, constituida por una solución sólida donde el tungsteno supera el 60% en peso, donde las partículas de carburo de tungsteno se disuelven en el acero y reprecipitan posteriormente; y una segunda subzona (4), en Ia que se forma una segunda solución sólida donde el contenido de tungsteno se encuentra entre el 15% y el 60% en peso.
Un aspecto fundamental de los procesos anteriores concierne a esta segunda subzona (4), donde el alto contenido en carbono de Ia matriz resultante de Ia disolución de las partículas de carburo de tungsteno reduce significativamente Ia temperatura de fusión, tal como se deduce del punto eutéctico en el diagrama Fe-C, situado en 113O0C. La contracción de esta zona durante Ia solidificación lleva a Ia formación de porosidad en su interior. Esta porosidad limita Ia resistencia mecánica de Ia parte reforzada. La citada condición de Ia temperatura donde el acero fundido se cuela a una temperatura inferior a 1000C por encima de su punto de fusión, reduce significativamente Ia anchura de dicha segunda zona enriquecida de carbono a menos de 3 mm. Bajo estas condiciones de temperatura, Ia porosidad debido a Ia contracción de Ia segunda zona durante Ia solidificación se ve consiguientemente disminuida a un espesor inferior a 3 mm.
En particular se han analizado y acotado el tipo de defectos que se generan en Ia superficie de los insertos de carburo de tungsteno en cobalto con el acero de colada en piezas conocidas. A pesar de minimizar Ia defectología en las zonas de unión entre inserto y acero, los análisis realizados han permitido evaluar que aunque Ia resistencia a desgaste del inserto es óptima, su resistencia mecánica podría ser inferior a Ia de un diente convencional por el mero hecho de incorporar un inserto. A fin de mejorar este último aspecto, se han desarrollado criterios para el posicionamiento del inserto, y técnicas que permiten su fijación segura antes de Ia colada, a fin de que éstos se sitúen suficientemente cerca del eje neutro de los componentes con Io que Ia resistencia mecánica final del producto reforzado sea similar a Ia del producto convencional.
Como también se ha mencionado, es conocido en el estado de Ia técnica el uso de espumas cerámicas de distinta naturaleza como elementos de refuerzo en piezas de aleaciones de aluminio, cobre y/o hierro colado. En estos casos Ia infiltración de las espumas cerámicas se produce preferentemente con Ia ayuda de un incremento de Ia presión de infiltración.
Sin embargo, una segunda realización de Ia presente invención, permite obtener un elemento de desgaste con una espuma cerámica tridimensional celular con una estructura porosa de celdas abiertas que es substancialmente o enteramente penetrada por el acero fundido. En Ia fabricación de dicho elemento de desgaste, Ia infiltración del esqueleto cerámico por acero fundido tienen lugar sin necesidad de presión, ello debido a que Ia combinación de propiedades fluídicas del acero a temperatura de colada es suficiente para garantizar una infiltración satisfactoria. En el supuesto negado de que Ia infiltración requiriera de presión, el proceso industrial se hubiese complicado de tal manera que es posible que Ia invención no hubiese sido económicamente viable. Adicionalmente, cabe señalar que Ia viabilidad de Ia infiltración de espumas cerámicas con acero fundido se ve dificultada si Ia selección de los materiales cerámicos de Ia espuma no es correcta. En particular, el inserto incluido en el elemento de desgate objeto de esta segunda realización, es una espuma cerámica tridimensional celular con una estructura porosa de celdas abiertas que es substancialmente o completamente penetrada por el acero fundido vertido por gravedad. El material de dicho inserto es preferiblemente circona (ZrO2), aunque también puede ser un material base circona aleado con otros materiales cerámicos como, por ejemplo, circona-CaO, circona-MgO, c¡rcona-Y2O3 , o igualmente AI203-circona o. Asimismo, el inserto cerámico puede estar constituido principalmente por alúmina (AI2O3) o aleaciones base alúmina como, por ejemplo, espinelas de alúmina o mullita.
Los experimentos llevados a cabo han demostrado que es posible interpenetrar espumas cerámicas de porosidad menor a 20 ppi, siendo Ia porosidad media del inserto de entre 10 y 60 poros por pulgada (10 a 60 ppi), y preferiblemente de 30 ppi. De esta forma, es posible acotar el uso de dichas espumas a ser infiltradas por el acero de colada con Ia finalidad que el composite resultante tenga unas prestaciones superiores garantizadas por una microestructura suficientemente fina. Asimismo, es conveniente que el volumen en porcentaje de Ia fase cerámica del inserto celular sea menor al 20%, siendo por tanto Ia mayor parte del 80% o más del volumen restante poros abiertos penetrados por el acero fundido.
Asimismo, las espumas cerámicas deben disponer de unas características concretas así como pertenecer a una naturaleza química particular para proporcionar las mejores propiedades a las piezas de desgaste. Como se ha citado, dichas espumas son preferiblemente circona o alúmina. Estas cerámicas, en especial las de base circona, poseen una combinación de propiedades de mojabiiidad por el acero y de dureza, óptimas para constituir el esqueleto cerámico del inserto. Otra característica del inserto anterior es que disponga de porosidad funcional, es decir, que el tamaño de los poros varíe de forma conveniente, según un diseño anterior, a Io largo del espesor de Ia espuma, permitiendo así mejorar Ia infiltración del acero en Ia misma, alcanzándose mayores profundidades penetradas y, en consecuencia, insertos de mayor tamaño.
Por otro lado, es positivo el uso de un recubrimiento de mullita en las espumas cerámicas de los óxidos indicados previamente. En este sentido, Ia mullita posee una mejor mojabilidad por parte del acero que Ia de los óxidos mencionados. El tipo de espumas planteado se constituye al sumergir una espuma convencional de alumina, circona o alumina-circona en una barbotina de mullita.
Una última realización de Ia invención consiste en un inserto híbrido, preferiblemente compuesto de un núcleo de un metal duro, cermet, preferiblemente carburo de tungsteno, introducido en el seno de una espuma cerámica como las descritas anteriormente. Debido a Ia diferente respuesta al desgaste de Ia espuma cerámica infiltrada y el cermet, pueden diseñarse insertos que al trabajar proporcionen al elemento de desgaste reforzado objeto de esta última realización de Ia invención, un perfil durante el trabajo que optimice las propiedades del elemento en cuanto a capacidad de penetración se refiere. Técnicamente, se ha determinado que Ia alternativa de inserto híbrido es realizable por Ia excelente infiltración que permite el acero de colada en las espumas cerámicas probadas. De esta manera, el acero alcanza Ia porción de cermet del inserto híbrido a una temperatura todavía suficiente como para producir las regiones de unión detalladas anteriormente.

Claims

REIVINDICACIONES
1- Elemento de desgaste para ser utilizado en máquinas para el movimiento de tierra, fabricado en acero fundido colado por gravedad y que contiene al menos un inserto de carburo cementado, en el cual se definen al menos dos zonas de unión entre el inserto y el acero,
- una primera zona de unión donde Ia matriz ligante del cermet es substituida por el acero colado.
- una segunda zona en Ia que el carburo del cermet reacciona con el acero colado, enriqueciéndolo en carbono y disminuyendo su temperatura de fusión, caracterizado porque dicha segunda zona tiene un espesor controlado a fin de evitar Ia formación de macroporosidad en Ia interfase de unión entre el acero y el inserto, eliminándose por ello el riesgo de rotura prematura del elemento en servicio.
2- Elemento, según Ia reivindicación 1 , caracterizado porque dicha segunda zona tiene una anchura menor que 3 mm.
3- Elemento, según Ia reivindicación 1 , caracterizado porque dicha segunda zona contiene poros no mayores que 3 mm. 4- Elemento, según Ia reivindicación 1 , caracterizado porque dicho inserto es un cermet de carburo de tungsteno en una matriz de cobalto.
5- Elemento, según la reivindicación 4, caracterizado porque el contenido de tungsteno en dicha segunda zona de unión es superior al 12%.
6- Elemento, según la reivindicación 1 , caracterizado porque el acero fundido es vertido a una temperatura inferior a 1000C por encima de su temperatura de fusión.
7- Elemento, según Ia reivindicación 1, caracterizado porque el núcleo del inserto ha incrementado su contenido en ligante tras Ia colada del elemento, incrementando su tenacidad.
8- Elemento, según Ia reivindicación 7, caracterizado porque el ligante es cobalto. 9- Elemento, según Ia reivindicación 1 , caracterizado porque Ia zona menos masiva de dicho componente contiene un rebosadero. 10- Elemento, según Ia reivindicación 1 , caracterizado porque el acero fundido es vertido a una temperatura superior a 5O0C sobre su temperatura de fusión. 11- Elemento, según Ia reivindicación 10, caracterizado porque previamente al vertido del acero se disponen en el molde noyos para reducir Ia inercia térmica del acero fundido.
12- Elemento de desgaste para ser utilizado en máquinas para el movimiento de tierra, fabricado en acero fundido colado por gravedad y que contiene al menos un inserto caracterizado porque: dicho inserto comprende una espuma cerámica tridimensional celular con una estructura porosa de celdas abiertas que es substancialmente o enteramente penetrada por el acero fundido.
13- Elemento, según Ia reivindicación 12, caracterizado porque dicho inserto está compuesto principalmente de circona (ZrO2), o aleaciones base circona tales como, p. ej. CaO- circona, MgO- circona o Y2O3- circona.
14- Elemento, según Ia reivindicación 12, caracterizado porque dicho inserto está compuesto principalmente por alúmina (AI2O3) o por composites de alúmina como alúmina/circona y/o compuestos químicos de base alúmina tales como, por ejemplo, espinelas de alúmina o mullita. 15- Elemento, según Ia reivindicación 12, caracterizado porque Ia porosidad media del inserto es de entre 10 y 60 poros por pulgada (ppi) y es de preferiblemente entre 20 y 40 ppi.
16- Elemento, según Ia reivindicación 12, caracterizado porque el volumen en porcentaje de Ia fase cerámica del inserto celular es menor al 20%, siendo Ia mayor parte del 80% o más del volumen restante del inserto, poros abiertos penetrados por el acero fundido.
17- Elemento, según Ia reivindicación 12, caracterizado porque incorpora al menos un segundo inserto en el interior o al menos parcialmente rodeado por el primer inserto.
18- Elemento, según Ia reivindicación 17, caracterizado porque dicho segundo inserto es un cermet de carburo de tungsteno en una matriz de cobalto.
19- Inserto para su introducción en un elemento de desgaste de acero fundido colado por gravedad, que comprende una espuma cerámica tridimensional celular con una estructura porosa de celdas abiertas.
PCT/ES2009/000352 2009-05-29 2009-07-01 Elemento de desgaste con resistencia al desgaste mejorada WO2010136611A1 (es)

Priority Applications (21)

Application Number Priority Date Filing Date Title
PCT/ES2009/000352 WO2010136611A1 (es) 2009-05-29 2009-07-01 Elemento de desgaste con resistencia al desgaste mejorada
PCT/EP2009/005802 WO2010136055A1 (en) 2009-05-29 2009-08-10 Wear element for earth working machine with enhanced wear resistance
US13/322,881 US8763282B2 (en) 2009-05-29 2010-05-28 Wearing element with enhanced wear resistance
PL10727669T PL2435638T3 (pl) 2009-05-29 2010-05-28 Element zużywalny do prac ziemnych/skalnych ze zwiększoną odpornością na zużycie
RU2011147743A RU2610934C9 (ru) 2009-05-29 2010-05-28 Изнашиваемый элемент с повышенной износостойкостью для землеройных работ
PL10727670T PL2435636T3 (pl) 2009-05-29 2010-05-28 Element zużywalny do prac ziemnych ze zwiększoną odpornością na zużycie
CA2762933A CA2762933C (en) 2009-05-29 2010-05-28 Wearing element for ground engaging operations with enhanced wear resistance
PCT/EP2010/003246 WO2010136208A1 (en) 2009-05-29 2010-05-28 Wearing element for ground engaging operations with enhanced wear resistance
BRPI1009083-5A BRPI1009083B1 (pt) 2009-05-29 2010-05-28 Elemento de desgaste para máquinas para movimentar terra e rocha, penetrar no solo e/ou carregar a terra
PCT/EP2010/003245 WO2010136207A1 (en) 2009-05-29 2010-05-28 Wear element for earth/rock working operations with enhanced wear resistance
US13/321,047 US8806785B2 (en) 2009-05-29 2010-05-28 Wearing element with enhanced wear resistance
AU2010252229A AU2010252229B2 (en) 2009-05-29 2010-05-28 Wearing element for ground engaging operations with enhanced wear resistance
ES10727669T ES2431270T3 (es) 2009-05-29 2010-05-28 Elemento de desgaste para operaciones de trabajo en tierra/roca con resistencia al desgaste mejorada
CN201080021963.XA CN102439233B (zh) 2009-05-29 2010-05-28 具有强化的耐磨性的、用于土地/岩石工序的磨损元件
AU2010252228A AU2010252228B2 (en) 2009-05-29 2010-05-28 Wear element for earth/rock working operations with enhanced wear resistance
ES10727670.1T ES2472917T3 (es) 2009-05-29 2010-05-28 Elemento de desgaste para operaciones de penetraci�n en la tierra con resistencia al desgaste mejorada
CN201080023481.8A CN102482862B (zh) 2009-05-29 2010-05-28 耐磨性增强的耐磨部件
EP10727670.1A EP2435636B1 (en) 2009-05-29 2010-05-28 Wearing element for ground engaging operations with enhanced wear resistance
EP10727669.3A EP2435638B1 (en) 2009-05-29 2010-05-28 Wear element for earth/rock working operations with enhanced wear resistance
ZA2011/08681A ZA201108681B (en) 2009-05-29 2011-11-25 Wear element for earth/rock working operations with enhanced wear resistance
ZA2011/08682A ZA201108682B (en) 2009-05-29 2011-11-25 Wearing element for ground engaging operations with enhanced wear resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21332109P 2009-05-29 2009-05-29
US61/213,321 2009-05-29
PCT/ES2009/000352 WO2010136611A1 (es) 2009-05-29 2009-07-01 Elemento de desgaste con resistencia al desgaste mejorada

Publications (1)

Publication Number Publication Date
WO2010136611A1 true WO2010136611A1 (es) 2010-12-02

Family

ID=41172238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000352 WO2010136611A1 (es) 2009-05-29 2009-07-01 Elemento de desgaste con resistencia al desgaste mejorada

Country Status (1)

Country Link
WO (1) WO2010136611A1 (es)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WITTIG D. ET AL: "Activated pressureless melt infiltration of zirconia-based metal matrix composites", MATERIALS SCIENCE AND ENGINEERING A, vol. 488, 2008, pages 580 - 585, XP022683583, DOI: doi:10.1016/j.msea.2007.11.065 *
XIANQING Y. ET AL: "Microstructure evolution of WC/stethe composite by laser surface re-melting", APPLIED SURFACE SCIENCE, vol. 253, 2007, pages 4409 - 4414, XP005877342, DOI: doi:10.1016/j.apsusc.2006.09.061 *
ZHANG, G.-S. ET AL.: "Impact wear resistance of WC/Hadfield stethe compsite and its interfacial characteristics", WEAR, vol. 260, 2006, pages 728 - 734 *

Similar Documents

Publication Publication Date Title
ES2472917T3 (es) Elemento de desgaste para operaciones de penetraci�n en la tierra con resistencia al desgaste mejorada
CA2748867C (en) A hard-metal body
CA2671427C (en) Displacement members and methods of using such displacement members to form bit bodies of earth-boring rotary drill bits
JP4275900B2 (ja) キャストイン硬質材料体を含む金属鋳造鋳型体
ES2431270T3 (es) Elemento de desgaste para operaciones de trabajo en tierra/roca con resistencia al desgaste mejorada
BRPI0510431B1 (pt) Fixed cutter drill body.
ITTO990712A1 (it) Procedimento per l'infiltrazione ad altre temperature,ad esempio perpunte da perforazione e relativo prodotto con legante di infiltrazione
US9394592B2 (en) Hard-metal body
US11292088B2 (en) Wear resistant coating
WO2010136611A1 (es) Elemento de desgaste con resistencia al desgaste mejorada
ES2959034T3 (es) Pieza de desgaste compuesta
WO2010136055A1 (en) Wear element for earth working machine with enhanced wear resistance
RU2781511C2 (ru) Композитная изнашиваемая деталь
JP2006007270A (ja) シリンダブロック鋳造用ボアピン
BRPI1009083B1 (pt) Elemento de desgaste para máquinas para movimentar terra e rocha, penetrar no solo e/ou carregar a terra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845120

Country of ref document: EP

Kind code of ref document: A1