WO2010134465A1 - Fluorine-containing binder - Google Patents

Fluorine-containing binder Download PDF

Info

Publication number
WO2010134465A1
WO2010134465A1 PCT/JP2010/058134 JP2010058134W WO2010134465A1 WO 2010134465 A1 WO2010134465 A1 WO 2010134465A1 JP 2010058134 W JP2010058134 W JP 2010058134W WO 2010134465 A1 WO2010134465 A1 WO 2010134465A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fluorine
group
binder
polymer
Prior art date
Application number
PCT/JP2010/058134
Other languages
French (fr)
Japanese (ja)
Inventor
山田 亮治
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011514390A priority Critical patent/JPWO2010134465A1/en
Publication of WO2010134465A1 publication Critical patent/WO2010134465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for an electrode material used for manufacturing an electrode of a power storage device, a paste-like composition containing the binder, the electrode material, and water, and an electrode using the paste-like composition It relates to the manufacturing method.
  • This electrode is used as an electrode of a storage element such as a lithium ion battery, a lithium polymer battery, a nickel metal hydride battery, or a capacitor.
  • Storage elements of various mechanisms and forms are widely used as energy sources for mobile devices, in-vehicle storage / discharge systems / energy sources, power storage systems, and the like. These elements are required to have characteristics such as high output, high energy density, reliability that can be used stably even in various environments such as low temperature and high temperature, and safety even in an unexpected situation. Conventionally, studies for improving these characteristics have been on the improvement of the main material that plays a role. However, it is also extremely important to study an element structure that can fully exhibit the characteristics of the material, particularly an element structure for realizing an electrode composite structure.
  • the electrode of the electricity storage element is composed of a composite of at least an electrode active material having a main function, a conductive additive, a binder and the like.
  • Composite formation is performed by preparing a paste in which each electrode constituent material is dispersed in a medium, and applying and drying the paste on a current collector. Conventionally, an organic solvent has been used as a medium for preparing the paste. In order to support the electrode constituent material using a small amount of the polymer for the binder, it has been considered preferable to use a polymer solution (Patent Document 1).
  • ammonium perfluorooctanoate (hereinafter referred to as APFO), which is an emulsifier used in the production of an aqueous fluoropolymer dispersion, and carboxymethyl cellulose (hereinafter referred to as CMC) coexist.
  • APFO ammonium perfluorooctanoate
  • CMC carboxymethyl cellulose
  • PFOAs typified by APFO
  • PFOAs include APFO and ammonium perfluorooctane sulfonate, and perfluoroalkanoic acid and salts thereof and perfluoroalkanesulfonic acid and salts thereof which are similar to these.
  • fluorinated surfactants such as, etc.
  • a hydrocarbon-based surfactant such as sodium lauryl sulfate or polyoxyethylene alkyl ether is added to the resulting emulsion of the fluoropolymer.
  • PFOAs PFOAs are removed to obtain a fluoropolymer aqueous dispersion having a significantly low PFOA content.
  • the present invention overcomes the above-mentioned problems of the prior art, enables electrode materials such as electrode active materials and conductive assistants to be finely and uniformly dispersed, and the obtained electrode composite layer has high workability, and has an environmental load and It is an object of the present invention to provide a binder having a low risk of damaging human health, a paste-like composition containing the binder, an electrode material, and water, and a method for producing an electrode using the paste-like composition. To do.
  • this invention provides the manufacturing method of the binder which has the following structures, a paste-form composition, and an electrode.
  • a fluorine content of 3 to 60% by mass selected from a fluorine-containing olefin copolymer having a hydrophilic group in the side chain or a linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends.
  • a binder for electrode materials comprising a polymer having a number average molecular weight of 1,000 to 1,000,000.
  • the fluorine-containing olefin copolymer is at least one unit selected from tetrafluoroethylene and chlorotrifluoroethylene units, a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation).
  • a pasty composition comprising the binder according to any one of [1] to [4], an electrode material, and water.
  • a method for producing an electrode for a storage element wherein the paste composition according to any one of [5] to [8] is applied to a current collector and dried.
  • the method for producing an electrode according to [9], wherein the storage element is a lithium ion secondary battery, a nickel hydride secondary battery, or an electric double layer capacitor.
  • the binder of the present invention When the binder of the present invention is placed in water, it forms a structure called so-called self-assembly, and exhibits a function of being dissolved in water and / or microscopically dispersed in water. Self-organization also has a function of incorporating a hydrophobic material arranged in the vicinity into the structure and dispersing it in water.
  • a compound containing fluorine in a hydrophobic group is excellent in this function, and even incorporates acetylene black, which is widely used as a conductive aid and is very hydrophobic and difficult to disperse in water, and is incorporated into water. It has the effect of being uniformly dispersed in the inside.
  • the paste-like composition manufactured using the binder of the present invention is an electrode composite that maintains a state in which a plurality of finely divided components are uniformly dispersed even after being applied onto a current collector. Layers can be formed.
  • the obtained electrode has excellent adhesion to the current collector, excellent solvent resistance and heat resistance, high workability, and finely divided electrode active material, conductive additive and binder are homogeneous. Therefore, it functions to perform smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and has the effect of exhibiting good storage element characteristics. Moreover, it is not necessary to use PFOAs having in vivo residue and accumulation in the paste-like composition of the present invention.
  • the binder of the present invention is also self-organized with binders such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, etc., which have been used as a binder for power storage element electrodes, and that are very hydrophobic. Incorporated into a structured structure, it is also refined into water and dispersed uniformly. Therefore, the binder of the present invention is not only a binder but also exhibits an effect of functioning as a dispersant or stabilizer for an aqueous paste.
  • binders such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, etc.
  • the binder of the present invention also has an effect of exhibiting excellent adhesion with a small addition amount because the hydrophilic group bears strong adhesion with the current collector. This effect can also be applied to conventional fluorine-based binders that have been considered to have low adhesion, and when used in combination with the binder of the present invention, has the effect of imparting strong adhesion.
  • the binder of the present invention has a high affinity with the electrolyte solution, the electrolyte solution spreads deep into the electrode composite, without interfering with the interfacial charge transfer reaction in rapid charge / discharge, or unevenly distributing the active region, It also has the effect of achieving high load characteristics and power, and a long battery life.
  • acrylate and methacrylate are collectively referred to as (meth) acrylate.
  • (meth) acrylic acid and the like are collectively referred to as (meth) acrylic acid and the like.
  • the binder of the present invention has a fluorine content selected from a fluorine-containing olefin copolymer having a hydrophilic group in the side chain or a linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends. It is characterized by comprising a polymer having 3 to 60% by mass and a number average molecular weight of 1,000 to 1,000,000.
  • the fluorine-containing olefin copolymer having a hydrophilic group in the side chain in the present invention is a copolymer having a unit of a fluorine-containing olefin and a unit having a hydrophilic group in the side chain, and further copolymerization if necessary. It may be a copolymer further having other possible monomer units.
  • the fluorine-containing olefin in the present invention includes vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, tetrafluoroethylene, pentafluoropropylene, hexafluoropropylene and other ⁇ -olefins, and the following general formula Examples include perfluoro (alkyl vinyl ethers) and perfluoro (alkyloxyalkyl vinyl ethers) represented by (1), 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, and others. it can.
  • R f1 is a perfluoroalkyl group having 1 to 18 carbon atoms or a perfluoroalkyloxyalkyl group containing one or more ether bonds in the molecule, n is 1 or 2, and any carbon chain is It may have a linear, branched or cyclic structure.
  • CH 2 CH (CF 2 ) 2 Br
  • CH 2 CHOCH 2 (CF 2) 2 H
  • CH 2 CHOCH 2 (CF 2) 4 H
  • CH 2 CHO (CH 2) 2 (CF 2) fluorine-containing monomer such as 6 F
  • chlorotrifluoroethylene and tetrafluoroethylene are preferable because they are stable thermally and electrochemically and have excellent durability.
  • the unit having a hydrophilic group in the side chain in the fluorinated olefin copolymer is a monomer having a hydrophilic functional group such as a hydroxyl group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group or an amino group, or a hydrophilic group such as an oxyethylene chain.
  • a copolymer obtained by copolymerizing a monomer having a group that can be converted into a hydrophilic functional group with a fluorine-containing olefin converts the group that can be converted into a hydrophilic functional group into a hydrophilic functional group, and is used in the present invention. Conversion into a fluorinated olefin copolymer having a hydrophilic group in the chain.
  • a copolymer having an unsaturated carboxylic acid unit such as a (meth) acrylic acid unit by hydrolyzing a copolymer having an unsaturated carboxylic acid ester unit such as a (meth) acrylic acid ester. Coalescence can be obtained.
  • the copolymer which has a unit of a hydroxyl-containing monomer can be made to react with ethylene oxide, and the copolymer which has a polyoxyethylene chain in a side chain can be obtained.
  • the monomer include the following compounds. 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl Hydroxyl-containing alkyl vinyl ethers such as vinyl ether.
  • 2-hydroxyethyl (meth) allyl ether 3-hydroxypropyl (meth) allyl ether, 2-hydroxypropyl (meth) allyl ether, 4-hydroxybutyl (meth) allyl ether, 3-hydroxybutyl (meth) allyl ether, Hydroxyl-containing alkyl allyl ethers such as 2-hydroxy-2-methylpropyl (meth) allyl ether, 5-hydroxypentyl (meth) allyl ether, and 6-hydroxyhexyl (meth) allyl ether.
  • Vinyl esters of cyclic carboxylic acids such as vinyl cyclohexanecarboxylate, vinyl methylcyclohexanecarboxylate, vinyl benzoate, vinyl p-tert-butylbenzoate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate And (meth) acrylic acid esters such as cyclohexyl (meth) acrylate.
  • the unit having a hydrophilic group in the side chain is preferably a unit having at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation) in the side chain.
  • This unit is obtained using a monomer having a hydroxyl group, a monomer having a —COOH group, a monomer having a group capable of becoming a hydroxyl group upon hydrolysis, and a monomer having a group capable of becoming a —COOH group upon hydrolysis.
  • the hydrophilic group of the above monomer is usually a nonion or an anion in the polymer, but it is also possible to convert the hydrophilic group into a cation after polymerization.
  • a copolymerizable monomer that becomes a cation by normal or simple treatment can also be used.
  • alkylaminoalkyl (meth) acrylates such as N-dimethylaminoethyl (meth) acrylate, alkylaminohydroxyalkyl (meth) acrylates, alkylaminoalkyl (meth) acrylamides, aziridiniethyl (meth) acrylate, pyrrolidinylethyl ( Examples include meth) acrylate, piperidinylethyl (meth) acrylate, vinylpyridine, vinylimidazole, allylamine, vinylamine, and derivatives thereof.
  • the fluorine-containing olefin copolymer may have other monomer units in addition to the above-described two monomer units.
  • Other monomers include those represented by the general formula (2): CH 2 ⁇ CHOR 2 (wherein R 2 is an alkyl group having 1 to 18 carbon atoms or an alkyloxyalkyl group containing at least one ether bond, The chain may also have a linear, branched or cyclic structure, and may be an alkyloxyalkyl group partially substituted with a halogen other than fluorine.)
  • Alkyl vinyl ethers, ethylene, propylene, butene-1, vinyl chloride, vinylidene chloride, styrene, ⁇ -methylstyrene, vinyl toluene, acrylonitrile, cyanostyrene, and the like can be used.
  • a monomer represented by the general formula (2) is particularly preferable.
  • an epoxy group-containing monomer such as a monomer represented by the following general formula (3) can also be used.
  • R 3 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms
  • R 4 is an alkyl group having 1 to 18 carbon atoms
  • R 5 is an alkyl group having 1 to 18 carbon atoms, or epoxycyclohexanemethylene It is a group.
  • a is an integer of 0 to 10
  • b is an integer of 0 to 5
  • c is 0 or 1
  • b is 0 when a is 1 to 10
  • a is 0 when b is 1 to 4.
  • the fluorine-containing olefin copolymer having a hydrophilic group in the side chain in the present invention has a fluorine content of 3 to 60% by mass. More preferably, it is 10 to 55% by mass.
  • the unit having a hydrophilic group needs to be at least 10 mol% in order to exhibit dispersibility, and is preferably 10 to 50 mol% based on all units.
  • the number average molecular weight M n is a value measured by gel permeation chromatography (hereinafter referred to as GPC) using polystyrene as a standard substance.
  • Mn of the fluorinated olefin copolymer having a hydrophilic group in the side chain of the present invention is preferably from 1,000 to 1,000,000, more preferably from 1500 to 600,000. It is preferable that M n is 1000 or more because good adhesion can be exhibited and the accumulation in the human body is reduced. Moreover, even if Mn exceeds 1000000, the characteristics useful for the present invention do not remarkably increase, but rather the handling is often more difficult. Therefore, Mn is more preferably 1000000 or less.
  • the production of the copolymer in the present invention is not particularly limited, and various conventionally known production methods such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like can be used.
  • the solution polymerization and the emulsion polymerization are preferable.
  • the polymerization initiator includes diacyl peroxides such as benzoyl peroxide and acetyl peroxide, various ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide, hydroperoxides such as hydrogen peroxide and cumene hydroperoxide, Dialkyl peroxides such as dibutyl peroxide and dicumyl peroxide, alkyl peroxy esters such as butyl peroxyacetate and butyl peroxypivalate, azo compounds such as azobisisobutyronitrile and azobisisovaleronitrile Or persulfates such as potassium persulfate and ammonium persulfate can be used.
  • diacyl peroxides such as benzoyl peroxide and acetyl peroxide
  • various ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxid
  • the amount of the polymerization initiator used is determined depending on the type of polymerization initiator used, the polymerization conditions, and the like, but is usually about 0.1 to 0.5% by mass based on the total amount of monomers. It is general and is preferably used in the present invention.
  • the polymerization temperature is often determined by the type of initiator used, but it is usually preferably from 10 ° C to 90 ° C because it is easy to handle.
  • the polymerization pressure is usually from 0 to 100 kg / cm 2 ⁇ G, preferably from 1 to 50 kg / cm 2 ⁇ G, since it is easy to operate.
  • the solvent used for the polymerization is not particularly limited as long as various monomers, a polymerization initiator, or an emulsifier is soluble, and examples thereof include the following solvents. These solvents can be preferably used alone or as a mixed medium using two or more kinds in combination.
  • Aromatic hydrocarbons such as benzene, xylene and toluene.
  • Aliphatic hydrocarbons such as heptane, hexane, and octane.
  • Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane and ethylcyclohexane; Alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, 2-ethylhexanol, cyclohexanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether.
  • Ethers such as dimethoxyethane, tetrahydrofuran, dioxane, isopropyl ether; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone and isophorone.
  • Esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, ethylene glycol monomethyl ether acetate, and ethylene glycol monoethyl acetate.
  • Chloroform methylene chloride, carbon tetrachloride, chlorodifluoromethane, trichloroethane, tetrachloroethane, tetrafluoroethane, chloropentafluoroethane, dichloropentafluoropropane, trifluoromethoxydifluoroethyl ether, difluoroethyl ether, methylchlorohexafluoropropyl Halogenated hydrocarbons such as ether. Mineral spirit, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, ethylene carbonate, water, etc.
  • the linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends in the present invention is present at both ends of a linear polymer chain containing a unit having a hydrophilic group and the linear polymer chain. It is a polymer having a hydrophobic fluorine-containing organic group derived from a polymerization initiator or a chain transfer agent.
  • the hydrophobic fluorine-containing organic group derived from the polymerization initiator present at both ends of the linear polymer chain is represented by the following general formula (4) because it is easily available and relatively easy to handle. Fluoroalkanoyl peroxide is preferred.
  • R f6 C ( ⁇ O) OOC ( ⁇ O) R f7 (4) In the formula, R f6 and R f7 have a perfluoroalkyl group having 3 or more carbon atoms which may have an etheric oxygen atom between carbon atoms, or an etheric oxygen atom between carbon atoms.
  • a fluorine-containing alkyl group in which a part of fluorine atoms is replaced by a hydrogen atom or a chlorine atom, and any carbon chain may have a linear, branched or cyclic structure.
  • the fluoroalkanoyl peroxide can be easily produced by a known method in which an acyl halide having a fluoroalkyl group is reacted with a hydrogen peroxide solution in a fluorine-containing solvent to which an alkali such as sodium hydroxide is added.
  • diperfluorobutyryl peroxide diperfluoroheptanoyl peroxide, diperfluoro-2-methyl-3-oxahexanoyl peroxide, diperfluoro-2-methyl-3-oxanonanoyl peroxide, diperfluoroperoxide -2,5-dimethyl-3,6-dioxanonanoyl, diperfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoyl peroxide, etc., all of which are examples of the polymerization of the present invention It can be suitably used as an initiator.
  • the unit having a hydrophilic group in the linear polymer chain containing a unit having a hydrophilic group is the same unit as the unit having a hydrophilic group in the side chain in the fluorine-containing olefin copolymer.
  • This unit is a unit obtained by modifying a radical polymerizable monomer unit or a radical polymerizable monomer unit as described above.
  • the linear polymer chain may be a linear polymer chain having a hydrophilic unit such as an oxyethylene group (for example, a polyoxyethylene chain).
  • the linear polymer chain containing a unit having a hydrophilic group preferably has a radical polymerizable monomer unit or a unit obtained by modifying it.
  • the linear polymer chain containing the unit which has a hydrophilic group may have units other than the unit which has a hydrophilic group.
  • the unit having a hydrophilic group in the linear polymer chain containing a unit having a hydrophilic group has, in particular, at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation). Units are preferred. This unit is obtained using a monomer having a hydroxyl group, a monomer having a —COOH group, a monomer having a group capable of becoming a hydroxyl group upon hydrolysis, and a monomer having a group capable of becoming a —COOH group upon hydrolysis.
  • a unit having a —COOX group in which X is a cation can be obtained by converting a hydrogen atom of a —COOH group in a linear polymer into a cation.
  • a group that can be converted to a hydrophilic functional group after the production of the polymer is converted to a hydrophilic functional group, as long as the polymer after the conversion becomes sufficiently hydrophilic, all the groups that can be converted to the hydrophilic functional group There is no need to convert to a hydrophilic functional group.
  • hydrophobic fluorine-containing organic group derived from the chain transfer agent present at both ends of the linear polymer chain thiols having a polyfluoroalkyl group can be used. Examples thereof include polyfluoromercaptan having 1 to 14 carbon atoms.
  • the Mn of the linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends is preferably from 1,000 to 1,000,000, more preferably from 1500 to 100,000. It is preferable that M n is 1000 or more because good adhesion can be exhibited and the accumulation in the human body is reduced. Moreover, even if Mn exceeds 1000000, the characteristics useful for the present invention do not remarkably increase, but rather the handling is often more difficult. Therefore, Mn is more preferably 1000000 or less.
  • the linear hydrophilic polymer having hydrophobic fluorine-containing organic groups at both ends has a fluorine content of 3 to 60% by mass. More preferably, it is 10 to 55% by mass. Further, the unit having a hydrophilic group needs to be at least 35 mol% or more, preferably 35 to 99 mol% with respect to the total polymerization units in order to exhibit dispersibility.
  • a hydrophilic polymer having a low molecular weight can be obtained if the molar ratio of fluoroalkanoyl peroxide is high. If the molar ratio of alkanoyl is low, a hydrophilic polymer having a large molecular weight can be obtained.
  • the radical polymerizable monomer can be used in combination of two or more monomers. Two or more types of fluoroalkanoyl peroxide can be used in combination, but fluoroalkanoyl peroxide is not practical because the decomposition start temperature differs depending on the type.
  • reaction temperature depends on the fluoroalkanoyl peroxide used, it is usually from ⁇ 20 ° C. to 150 ° C., preferably from 0 ° C. to 100 ° C., because normal pressure can be used with relatively simple equipment. .
  • the reaction time is usually 30 minutes to 50 hours, but it is practical to set it to 1 to 10 hours.
  • the hydrophilic polymer in the present invention can be obtained by reacting fluoroalkanoyl peroxide and a radical polymerizable monomer in the absence of a solvent.
  • an organic solvent or the like as the reaction solvent because the reaction is easily controlled stably from the start to the end of the reaction.
  • the reaction solvent include a series of solvents presented as the polymerization solvent and others, and these can be used alone or as an arbitrary mixed solvent of two or more kinds.
  • a polymer obtained by reacting a fluoroalkanoyl peroxide and a radical polymerizable monomer can be used as it is as the binder of the present invention.
  • the dispersibility in water can be further enhanced by acid treatment or alkali treatment.
  • the usable acid either an inorganic acid or an organic acid can be used.
  • Examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, boric acid, hydrofluoric acid, acetic acid, butyric acid, trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, toluenesulfonic acid, and the like.
  • An inorganic alkali or an organic base can also be used as the alkali.
  • sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, pyridine, triethylamine, tributylamine, lutidine, triethanolamine and the like can be exemplified.
  • the acid treatment and alkali treatment are usually preferably performed using an acid or alkali solution because the reaction is easy to control.
  • the solvent used in these solutions include general-purpose organic solvents such as water, methanol, ethanol, xylene, toluene, benzene, and acetonitrile.
  • the amount of acid or alkali used is preferably 0.01 to 1000 parts by weight with respect to 1 part by weight of the polymer.
  • the reaction temperature is preferably ⁇ 20 ° C. to 250 ° C., and the reaction time is preferably in the range of 1 minute to 48 hours because it is easy to control.
  • the fluorine-containing olefin copolymer and the hydrophilic polymer can be produced by charging the monomers, polymerization initiators, polymerization media, and other total amounts into a reaction vessel and copolymerizing them. Furthermore, it can be produced by copolymerizing a part of the monomers or other monomers, polymerization initiators, etc., or by supplying them sequentially or continuously to the reaction vessel. Although it is often observed that the produced copolymer does not dissolve in the polymerization solvent, there is no problem in using it as the binder of the present invention.
  • the binder of the present invention is provided as an aqueous solution or aqueous dispersion of the polymer.
  • the polymerization solvent or the polymerization dispersion medium is water
  • the polymer aqueous solution or polymer aqueous dispersion after polymerization can be used as it is as the binder of the present invention.
  • a polymerization method using an organic solvent as a polymerization solvent or a polymerization dispersion medium is also widely used.
  • a solution or dispersion using such an organic solvent as a medium it can be used as the binder of the present invention by converting it into a solution or dispersion using water as a medium.
  • a technique for converting a solution or dispersion using an organic solvent as a medium to a solution or dispersion of an aqueous medium is also known and can be applied to the present invention.
  • a solution or dispersion is prepared by adding water to an organic medium solution or dispersion and mixing, and then the organic medium is removed by a method such as distillation under reduced pressure to convert it into an aqueous medium solution or dispersion. It can be suitably used in the present invention.
  • the neutralization type monomer generally has low polymerization reactivity. Therefore, it is possible to obtain a copolymer having a wide composition by using a carboxylic acid type monomer or a hydroxyl group-containing monomer which is easily copolymerized.
  • the polymer thus obtained can be modified in an organic solvent to obtain the binder of the present invention.
  • the copolymer containing a hydroxyl group is characterized in that it exhibits a desirable characteristic such as being hydrophilic per se or improving adhesion to a current collector. However, at least a part of the hydroxyl group is acid-modified, so that the hydrophilicity is further increased and the solubility and dispersibility in water can be improved. Acid modification is performed by reacting a hydroxyl group with an anhydride of a dibasic acid and esterifying it.
  • Dibasic acid anhydrides include succinic anhydride, glutaric anhydride, itaconic anhydride, adipic anhydride, cyclohexanedicarboxylic anhydride, cyclhexene dicarboxylic anhydride, phthalic anhydride, naphthalic anhydride, maleic anhydride, etc. It can be exemplified and is preferably used in the present invention.
  • the organic solvent itself used in the polymerization reaction may be added, or other solvents selected in consideration of the solubility of the hydroxyl group-containing binder and dibasic acid anhydride may be added.
  • a catalyst can be used in combination.
  • metal salts of carboxylic acids, alkali metal hydroxides, alkali metal carbonates, quaternary ammonium salts, tertiary amines and the like are generally used.
  • the esterification temperature is in the range of room temperature to 150 ° C., but it is generally carried out at 50 to 100 ° C., which is easy to control the reaction. Although the reaction time depends on the temperature and the catalyst, it is generally several minutes to several hours for the same reason.
  • the neutralization of the carboxylic acid can be performed by reacting a carboxyl group-containing polymer with a basic compound.
  • a basic compound In the present invention, it can be freely selected from a wide range of basic compounds, but since it is difficult to remain in the formed electrode composite, it can be selected from amines, imines and the like. Particularly preferred.
  • Examples of such basic compounds include the following compounds. Primary, secondary or tertiary alkylamines such as monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, triisopropylamine, monobutylamine, dibutylamine and the like.
  • Alkanolamines such as monoisopropanolamine, dimethylaminoethanol, diethylaminoethanol and methyldiethanolamine.
  • Diamines such as ethylenediamine, propylenediamine, tetramethylenediamine and hexamethylenediamine.
  • Alkyleneimines such as ethyleneimine and propyleneimine. Ammonia, piperazine, morpholine, pyrazine, pyridine.
  • the neutralization reaction is performed by adding a basic compound or a basic compound solution to an organic dispersion of a carboxyl group-containing binder.
  • the proportion of the carboxyl group in the fluorinated olefin copolymer to be neutralized is generally 30 to 100 mol%, but it can be increased to 50 to 100 mol% because the solubility or dispersibility in water can be further improved. Preferably there is.
  • the polymer medium is an organic solution or an organic dispersion
  • it is then converted into an aqueous solution or dispersion and applied to the binder of the present invention.
  • the aqueous solution or dispersion can be converted into an aqueous solution or dispersion by adding water to the organic solution or dispersion of the polymer to dissolve or disperse it, and then distilling off the organic solvent under reduced pressure.
  • it can be converted to an aqueous dispersion.
  • the removal of the organic solvent is generally 50 to 100% by mass, preferably 90 to 100% by mass, more preferably.
  • the binder of the present invention can be used alone or in combination with other binders. When used alone, it is preferable because the hydrophilic group of the binder has an affinity for the electrolyte and the supply of the electrolyte into the electrode composite proceeds smoothly.
  • binders polymers such as crystalline resins, amorphous resins, rubbers, and elastomers can be used regardless of the content of fluorine.
  • polymers that do not contain fluorine include natural rubber, styrene butadiene copolymer, acrylic modified styrene butadiene copolymer, vinyl acetate copolymer, nitrile butyl rubber, hydrogenated nitrile butyl rubber, acrylic rubber, epichlorohydrin, polyurethane, etc.
  • Synthetic resins such as rubber / elastomers, (meth) acrylic resin, vinyl resin, polyolefin, polycarbonate, nylon, and polyimide can be used.
  • a fluorine-containing polymer is more preferable.
  • the fluorine-containing polymer is not particularly limited as long as it is a fluorine-containing polymer obtained by polymerizing a fluorine-containing monomer.
  • fluorine-containing monomers include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl vinyl ethers) and perfluoro (alkyloxyalkyl vinyl ethers) represented by the general formula (1), and chlorotrifluoroethylene.
  • PTFE polytetrafluoroethylene
  • copolymerizable monomers such as alkyl vinyl ethers and alkyloxyalkyl vinyl ethers represented by the general formula (2), ethylene and propylene may be copolymerized. Good.
  • copolymerizable monomers include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl (meth) acrylate, maleic anhydride, itaconic anhydride, maleic acid, Examples include itaconic acid.
  • the fluorine-containing crystalline polymer and the fluorine-containing amorphous polymer obtained from these monomers can be used alone or in combination of two or more.
  • the binder of the electrode material of the present invention is composed of the fluorine-containing olefin copolymer and the hydrophilic polymer.
  • This electrode material is a material used for manufacturing a positive electrode or a negative electrode of a power storage element.
  • the binder for an electrode material of the present invention is suitable as a binder for producing a paste-like composition containing an electrode material and a liquid medium.
  • it is suitable as a binder for producing a paste-like composition containing an electrode material and an aqueous medium.
  • the present invention is also a paste-like composition comprising the above-mentioned electrode material binder, electrode material and water.
  • a paste-like composition containing a binder, an electrode material, and an aqueous medium which is characterized by containing an aqueous medium, is also referred to as an aqueous paste.
  • an electrode active material or a conductive additive selected from metal compounds and carbon materials can be used as appropriate.
  • metal oxides, metal sulfides, conductive organic compounds and the like are generally used as the positive electrode active material of lithium batteries.
  • metal oxides such as lithium metal composite oxide and lithium metal phosphoolivine are preferable because stable battery characteristics can be expressed over a long period of time. These metal oxides are sometimes used as a composite oxide of Li and another metal, but are also used as a composite oxide composed of Li and other metals.
  • LiNiO 2 is hardly used as a positive electrode of a lithium ion battery as it is, and a part of lithium or nickel is Co, Mn, Al, B, Cr, Cu, F, Fe, A material substituted with one or more elements selected from Ga, Mg, Mo, Nb, O, Sn, Ti, V, Zn, Zr, and the like is preferable.
  • materials such as graphite-based carbon, non-graphite-based carbon, or metal-based materials can be preferably applied.
  • natural graphite, artificial graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, furnace black, acetylene black, carbon fiber, etc. are suitably used as the carbon material.
  • carbides such as phenol resin and cellulose and partially graphitized products of these carbides are also preferably used.
  • Metal systems such as tin, silicon, titanium, metal nitride, lithium, and lithium alloys are also preferably used.
  • lithium titanium composite oxide and other oxide systems are also preferably used.
  • Activated carbon is suitably used as the electrode active material for the electric double layer capacitor.
  • modified activated carbon such as activated carbon treated with boric acid is also preferably used.
  • a nickel hydroxide in which nickel hydroxide or cobalt oxide is combined with the positive electrode is preferably used, and a nickel-based or titanium-based hydrogen storage alloy is preferably used for the negative electrode.
  • the average particle diameter of the electrode active material is usually preferably from 0.05 to 500 ⁇ m, more preferably from 0.1 to 100 ⁇ m.
  • the content of the electrode active material in the paste-like composition is not limited, but is generally preferably 5 to 65% by mass, and preferably 20 to 55% by mass with respect to the total amount of the paste-like composition. % Is more preferable. Even if the amount is less than 5% by mass, the formed electrode itself has no problem in characteristics, but it is not preferable because of low productivity and inefficiency.
  • Effective conductive aids in the present invention include graphites such as natural graphite and artificial graphite, carbon blacks such as thermal black, furnace black, channel black, lamp black and acetylene black, ketjen black, needle coke, and carbon fiber. Carbon nanotubes, carbon nanocoils and the like are preferably used.
  • the average particle size of the conductive aid is usually preferably 3 to 1000 nm, more preferably 5 to 200 nm. In the case of a fibrous carbon material, the length is preferably 100 ⁇ m or less because it is easy to handle.
  • the content of the conductive additive in the paste-like composition is determined according to the type and characteristics of the electrode active material, but the content of the conductive auxiliary is usually 0 with respect to the amount of the electrode active material. 0.01 to 15% by mass is preferable, and 0.1 to 12% by mass is more preferable.
  • the main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function.
  • the paste-like composition of the present invention is mixed with a dispersion stabilizer and / or a thickening agent of the paste-like composition such as methylcelluloses, carboxymethylcelluloses, crown ethers, dextrins, and water-soluble dietary fibers. May be.
  • the mixing amount of the dispersion stabilizer and / or thickener is preferably 0.01 to 10% by mass with respect to the total amount of the paste-like composition.
  • the aqueous medium used in the aqueous paste may be water such as ion-exchanged water.
  • the aqueous medium As an aqueous medium, a water-soluble compound having a boiling point higher than that of water can be used. Examples of the water-soluble compound having a higher boiling point than water include organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetramethylene sulfone, N-methylpyrrolidone, ethylene glycols, propylene glycols, and glycerin.
  • the content of the organic solvent is preferably 0 to 50% by mass, more preferably 0 to 20% by mass with respect to the total amount of water and the organic solvent.
  • the content ratio of the aqueous medium is preferably 30 to 90% by mass, more preferably 40 to 75% by mass with respect to the total amount of the aqueous paste.
  • the production of the aqueous paste of the present invention is carried out by further mixing a binder, an electrode active material, a conductive auxiliary agent and an aqueous medium with the above-mentioned other components as necessary.
  • a binder an aqueous dispersion or aqueous solution is used as the binder, since an aqueous medium is already contained, another aqueous medium may not be added, or another aqueous medium may be added.
  • the method for producing a storage element electrode using the aqueous paste of the present invention is not limited in any way, and can be produced using a general general technique or other techniques.
  • an electrode manufacturing method using an aqueous process is preferred because it takes advantage of the property of being easily dissolved or dispersed in water.
  • an aqueous paste in which all materials constituting the electrode are dispersed in an aqueous medium is formed and mixed homogeneously, and an electrode composite is formed by applying and drying on a current collector to produce an electrode for a storage element. Is done.
  • the content of the binder for forming the electrode composite is determined according to the type and characteristics of the electrode active material, and is 0.01 to 15% by mass with respect to the amount of the electrode active material.
  • the binder of the present invention When the amount of the binder is less than 0.01% by mass, it is difficult to form an electrode composite in which a conductive auxiliary agent such as carbon and an active material are uniformly arranged, or even if an electrode can be formed, it is not preferable to maintain a uniform arrangement.
  • the storage element characteristics cannot be expressed.
  • the binder exceeds 15% by mass, there is no remarkable defect in electrode formation, but there is no effect commensurate with the content. Rather, a high content of a material that does not have a power storage function deteriorates the characteristics of the power storage device.
  • the main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function. More preferably, the content is 0.1 to 12% by mass.
  • Examples of a method for forming a storage element electrode from a paste-like composition include a method in which a paste-like composition of the present invention is applied to a current collector, dried and heat-treated.
  • the viscosity of the water-based paste that is preferable for application to the current collector depends on the application method, but is generally preferably 100 to 10,000 mPa ⁇ S. If the viscosity is less than 100 mPa ⁇ S, it may be difficult to maintain the form of the coating film, and it is difficult to control the film thickness. On the other hand, when the viscosity is greater than 10,000 mPa ⁇ S, it is not preferable because unevenness is generated in the coating film and uniform molding becomes difficult.
  • the viscosity of the aqueous paste is more preferably 300 to 8000 mPa ⁇ S, and further preferably 500 to 6000 mPa ⁇ S. Within these ranges, the film thickness can be easily controlled and a uniform coating film can be formed.
  • an aluminum foil is used for a positive electrode of a lithium ion battery, a copper foil or an aluminum foil is used for a negative electrode, an aluminum foil is used for a capacitor electrode, a nickel foil or a nickel mesh is used for a nickel metal hydride battery electrode.
  • a good electrode composite layer can be formed on any of these current collectors from the aqueous paste of the present invention.
  • a good coating film can be formed on other current collectors.
  • the aqueous paste of the present invention is suitable for forming an electrode composite layer of a storage element.
  • a storage element primary batteries such as lithium batteries such as lithium ion batteries, lithium polymer batteries, and lithium primary batteries, nickel hydride batteries, secondary batteries, and capacitors such as electric double layer capacitors are suitable.
  • the composite electrode manufactured using the binder of the present invention can realize a structure in which an electrode active material, a conductive additive, a binder, and other composite components are finely and homogeneously arranged as described above, it is smooth. Can develop a positive charge transfer reaction.
  • a power storage device having such features has a large charge / discharge capacity and high energy density, and can realize excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. In particular, it is possible to achieve both high energy density and high load characteristics with high power and highly reliable safety, so that high output, high energy density, high reliability and safety can be realized even in medium and large-sized devices.
  • EVE ethyl vinyl ether
  • CHVE cyclohexyl vinyl ether
  • HBVE 4-hydroxybutyl vinyl ether
  • MEK methyl ethyl ketone
  • the nitrogen gas pressurization operation is repeated to remove dissolved air, and then 50.3 g of tetrafluoroethylene (hereinafter referred to as TFE) is charged, the polymerization reaction is performed at 50 ° C., and the residual pressure purge is performed after 24 hours. Then, the polymerization reaction was completed.
  • TFE tetrafluoroethylene
  • the polymerization reaction was performed at 50 ° C., and the residual pressure purge is performed after 24 hours. Then, the polymerization reaction was completed.
  • Kyoward 500SH consisting of a double salt of magnesium and aluminum (hydrotalcite consisting of a double salt of magnesium and aluminum, manufactured by Kyowa Chemical Industry Co., Ltd.)
  • a solution having a polymer concentration of 60.3% by mass was obtained.
  • the polymer had a fluorine content of 29.5% by mass and a number average molecular weight of 10,000.
  • 210 g of a fluorine-containing copolymer aqueous solution (E) having a polymer concentration of 2.1% by mass was obtained.
  • the polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying TFE, and then the temperature was raised to 90 ° C., and 1 L of a 2.5 mass% APFO aqueous solution was added and continued for 95 minutes. Agglomerates, paraffin and the like are removed from the obtained emulsion, and an aqueous dispersion having a polytetrafluoroethylene (hereinafter referred to as PTFE) content of 26.0% by mass and an APFO content of 0.05% by mass 25. 1 kg was obtained.
  • PTFE polytetrafluoroethylene
  • aqueous dispersion 0.2 kg of a nonionic surfactant mainly composed of polyoxyethylene (average polymerization degree 9) lauryl ether was added and dissolved, and 0.3 kg of an anion exchange resin (Diaion WA—manufactured by Mitsubishi Chemical) was dissolved. 30) was dispersed and stirred for 24 hours, followed by filtration to remove the anion exchange resin. To the filtrate was added 0.04 kg of 28% by mass aqueous ammonia, concentrated by a phase separation method at 80 ° C. for 10 hours, and after removing the supernatant, 15 g of ammonium perfluorohexanoate (hereinafter referred to as APFH) was newly added.
  • APFH ammonium perfluorohexanoate
  • PTFE aqueous dispersion (G) 10.5 kg having a PTFE content of 59.7% by mass, an APFH content of 0.15% by mass, and an APFO content of 0.01% by mass
  • TFE-propylene copolymer aqueous dispersion (H) 1.5 L of ion exchange water, 40 g of disodium hydrogenphosphate dodecahydrate, 0.5 g of sodium hydroxide, 198 g of grade butanol, 8 g of sodium lauryl sulfate (hereinafter referred to as SLS), and 2.5 g of ammonium persulfate were charged and dissolved.
  • SLS sodium lauryl sulfate
  • This paste was subjected to bead mill treatment for 1 hour using zirconia beads having a diameter of 0.5 mm, and then an aqueous solution prepared by dissolving 51.4 g of dextrin having an average molecular weight of 8500 in 115 g of pure water was dissolved and spray-dried to obtain a dry powder.
  • the dry powder was heated to 600 ° C. at a temperature rising rate of 5 ° C./min while supplying 5% hydrogen containing nitrogen gas at a flow rate of 0.8 liter / min, and kept at 600 ° C. for 5 hours. Cooling was performed at a temperature lowering rate setting of ° C./min to obtain lithium iron phosphate having an average particle diameter of 4.2 ⁇ m.
  • lithium cobalt composite oxide and spinel-type lithium manganese composite oxide which are positive electrode active materials for lithium ion secondary batteries, are synthesized by existing methods, and natural graphite, nickel hydrogen, which are negative electrode active materials for lithium ion secondary batteries.
  • Commercially available products were used for nickel hydroxide as a positive electrode active material for secondary batteries and activated carbon as an electrode active material for electric double layer capacitors.
  • Example 1 Example 1 While adding 2.3 g of acetylene black to 75 g of ion-exchanged water to which 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer was added, the three-one motor equipped with the disk turbine blades was rotated at a speed of 450 rpm. Stir for minutes to disperse.
  • an aqueous polytetrafluoroethylene dispersion (G) (the sum of the polymer components of (A) and (G) corresponds to 1.85 g) and a commercially available lithium cobalt composite dispersed in 25 g of ion-exchanged water 60 g of oxide was added and stirred for 1 minute in the same manner as above to obtain an aqueous paste (1).
  • the electrode active material, the conductive auxiliary agent, and the binder were finely and uniformly dispersed.
  • the aqueous paste (1) was applied onto the aluminum sheet, dried at 120 ° C. for 2 hours, heat-treated at 200 ° C. for 10 minutes and roll-press-rolled to adjust the electrode composite layer thickness to 120 ⁇ m.
  • a test piece cut out to a size of 2 cm in width and 10 cm in length from the obtained electrode plate was bent 100 times along a round bar having a diameter of 2 mm, and the strength of the electrode composite layer and the electrode active material holding power were examined.
  • Adhesion with the current collector (aluminum sheet) is determined by the number of meshes remaining by peeling off the adhesive tape ("Serotape (registered trademark)”) after lightly cutting it into a 100 square grid. Measured and evaluated. The results are shown in Table 1. From Table 1, the positive electrode plate for a lithium ion battery formed from the aqueous paste (1) had good electrode active material carrying power and adhesion with the current collector.
  • a lead wire is attached to each of the positive electrode plate obtained by punching out the electrode plate to a predetermined size and the negative electrode plate obtained by cutting out lithium foil to a predetermined size, and stored in a stainless steel cell case via a polyolefin-based separator, An electrolyte solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solution of ethylene carbonate and diethylene carbonate was injected to obtain a model cell of a lithium secondary battery.
  • Example 2 (Example) A storage element electrode was formed in the same manner as in Example 1 except that 0.93 g of the aqueous solution (B) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. An aqueous paste (2) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (2) has a good electrode active material supporting force and an adhesive force with the current collector.
  • Example 3 Formation of a storage element electrode in the same manner as in Example 1 except that 14.1 g of the aqueous solution (C) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer.
  • An aqueous paste (3) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (3) had a good electrode active material carrying power and an adhesive force with the current collector.
  • Example 4 (Comparative example) An aqueous paste (4) was used in the same manner as in Example 1 except that 17.6 g of the aqueous solution (E) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. ) was prepared, but the paste had thickened into a gel, so that a homogeneous electrode composite layer could not be applied. This was judged to be due to insufficient dispersibility of the copolymer (E) having a small fluorine content.
  • Example 5 (Comparative example) An aqueous paste (5) was prepared in the same manner as in Example 1, except that 1.23 g of the aqueous solution (F) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer.
  • the electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the adhesion with the current collector was insufficient. This was considered to be because the molecular weight of the oligomer (F) was small, so that adhesion could not be expressed.
  • Example 6 An aqueous paste (6) for forming a storage element electrode was obtained in the same manner as in Example 1 except that 60 g of a commercially available spinel type lithium manganese composite oxide was used instead of 60 g of the lithium cobalt composite oxide, and an electrode plate was prepared. The strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the water-based paste (6) had a good electrode active material carrying power and an adhesive force with the current collector.
  • Example 7 (Example) Instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer, 0.46 g of (A) is replaced with 2.49 g of the aqueous polytetrafluoroethylene dispersion (G), and 2 of (G) 0.8 g is replaced with 2.3 g of acetylene black, 2.3 g of boron-modified acetylene black (L) is replaced with 60 g of commercially available lithium cobalt composite oxide, and lithium (nickel / manganese / cobalt) composite oxide (I)
  • a water-based paste for forming a storage element electrode (7) was obtained in the same manner as in Example 1 except that 60 g of was used, and an electrode plate was prepared.
  • the strength of the electrode composite layer, the electrode active material holding power, and the current collector was investigated. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (7) has a good electrode active material supporting force and an adhesive force with the current collector.
  • Example 8 (Example) Example 6 except that 0.46 g of the aqueous dispersion (A) of the fluorinated copolymer and 2.8 g of the aqueous polytetrafluoroethylene dispersion (G) were used instead of 4.57 g of (A).
  • an aqueous paste (8) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (8) had a good electrode active material carrying force and an adhesive force with the current collector.
  • Example 9 (Example) Instead of 0.91 g of the aqueous solution (A) of the fluorinated copolymer, 3.63 g of the aqueous solution (D) of the fluorinated copolymer was replaced with 2.49 g of the aqueous polytetrafluoroethylene dispersion (G).
  • An aqueous paste (9) was prepared in the same manner as in Example 1 except that 60 g of was used to obtain a positive electrode plate for a lithium ion battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
  • Example 10 An aqueous paste (10) for forming a storage element electrode was obtained in the same manner as in Example 7 except that 60 g of lithium iron phosphate (J) was used instead of 60 g of lithium (nickel / manganese / cobalt) composite oxide (I). It prepared and obtained the positive electrode plate for lithium ion batteries. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
  • the table also shows the results of battery evaluation of model cells assembled in the same manner as in Example 1. From the table, it was found that this model cell was a lithium secondary battery with good power storage device characteristics.
  • Example 11 (Example) (Example) An aqueous system was used in the same manner as in Example 1 except that 30 g of disproportionated silicon (K) and 30 g of commercially available natural graphite (average particle size: 3.3 ⁇ m) were used instead of 60 g of lithium cobalt composite oxide. A paste (11) was prepared to obtain a negative electrode plate for a lithium ion battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
  • Example 12 An aqueous paste (12) was prepared in the same manner as in Example 1 except that 60 g of commercially available activated carbon (BET specific surface area of 2900 m 2 / g) was used instead of 60 g of lithium cobalt composite oxide, and an electrode for an electric double layer capacitor I got a plate. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
  • BET specific surface area of 2900 m 2 / g 60 g of lithium cobalt composite oxide
  • Example 13 (Example) (Example) (Example) Example 1 was used except that 5.0 g of cobalt oxyhydroxide was used instead of 2.3 g of acetylene black, and 60 g of commercially available nickel hydroxide (average particle size: 8.0 ⁇ m) was used instead of 60 g of lithium cobalt composite oxide.
  • An aqueous paste (13) was prepared to obtain an electrode plate for a nickel metal hydride battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
  • EVE ethyl vinyl ether
  • CHVE cyclohexyl vinyl ether
  • HBVE 4-hydroxybutyl vinyl ether
  • MEK methyl ethyl ketone
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • the present invention makes it possible to manufacture an electrode for a storage element, which has been conventionally manufactured using an organic solvent, using an aqueous process. Since the method of the present invention is also excellent in workability, it is possible to produce a homogeneously dispersed aqueous paste and an electrode plate with excellent adhesion to the current collector, which has high durability, long life, and high It is also suitably used in the manufacture of power storage elements that require power. Furthermore, the method of the present invention is also suitably used as a highly safe manufacturing process with a low risk of harming the environmental load and human health.

Abstract

Disclosed is a binder which is capable of finely and uniformly dispersing an electrode active material, a conductive assistant and a binder, and is also capable of providing an electrode composite layer that has high workability and a low risk of placing a burden on the environment or damaging the health of human beings. Also disclosed is an aqueous paste which is used for the production of an electrode for an electrical storage element. Specifically disclosed is a binder which is blended into an aqueous paste of an electrode material that is used for the production of an electrode for an electrical storage element. The binder is composed of a polymer which is selected from among fluorine-containing olefin copolymers having a hydrophilic group in a side chain and linear hydrophilic polymers having a hydrophobic fluorine-containing organic group at both ends, and has a fluorine content of 3-60% by mass and a number average molecular weight of 1,000-1,000,000.

Description

含フッ素結着剤Fluorine-containing binder
 本発明は、蓄電素子の電極を製造するために使用される電極材料の結着剤、該結着剤と電極材料と水とを含むペースト状組成物、および該ペースト状組成物を用いた電極の製造方法に関する。この電極は、リチウムイオン電池、リチウムポリマー電池、ニッケル水素電池、キャパシタなどの蓄電素子の電極に使用される。 The present invention relates to a binder for an electrode material used for manufacturing an electrode of a power storage device, a paste-like composition containing the binder, the electrode material, and water, and an electrode using the paste-like composition It relates to the manufacturing method. This electrode is used as an electrode of a storage element such as a lithium ion battery, a lithium polymer battery, a nickel metal hydride battery, or a capacitor.
 蓄電素子はモバイル機器用エネルギ源、車載用蓄放電システム・エネルギ源、電力貯蔵システム用等としてさまざまな機構・形態の素子が広く利用されている。これらの素子には、高出力、高エネルギ密度、低温下、高温下等さまざまな環境にあっても安定して使用できる信頼性、不慮の事態にも安全である等の特性が求められる。従来、それらの特性を改善するための検討は、機能を担う主たる材料の改良にあった。しかしながら材料の持つ特性を如何なく発揮できる素子構造、特に電極コンポジット構造を実現するための素子構造の検討も極めて重要である。 Storage elements of various mechanisms and forms are widely used as energy sources for mobile devices, in-vehicle storage / discharge systems / energy sources, power storage systems, and the like. These elements are required to have characteristics such as high output, high energy density, reliability that can be used stably even in various environments such as low temperature and high temperature, and safety even in an unexpected situation. Conventionally, studies for improving these characteristics have been on the improvement of the main material that plays a role. However, it is also extremely important to study an element structure that can fully exhibit the characteristics of the material, particularly an element structure for realizing an electrode composite structure.
 蓄電素子の電極は、少なくとも主たる機能を担う電極活物質、導電助剤、結着剤等のコンポジットから成る。コンポジット形成においては、粉体粒子である電極活物質と導電助剤とを可能な限り微細に、かつ、均質に分散させたうえで、出来るだけ少量の結着剤に担持する技術が、各構成材料の持てる特性を最大限に引き出すために重要となる。コンポジット形成は、各電極構成材料を媒体中に分散させたペーストを調製し、これを集電体に塗布、乾燥させることにより、行われている。ペースト調製のための媒体は、従来有機溶媒が使用されてきた。結着剤用のポリマーを少量用いて電極構成材料を担持するためには、ポリマー溶液を用いるのが好ましいと考えられていた(特許文献1)。 The electrode of the electricity storage element is composed of a composite of at least an electrode active material having a main function, a conductive additive, a binder and the like. In the formation of composites, the technology of supporting the electrode active material, which is powder particles, and the conductive additive as finely and as homogeneously as possible, and supporting them in as little binder as possible. This is important in order to maximize the properties of the material. Composite formation is performed by preparing a paste in which each electrode constituent material is dispersed in a medium, and applying and drying the paste on a current collector. Conventionally, an organic solvent has been used as a medium for preparing the paste. In order to support the electrode constituent material using a small amount of the polymer for the binder, it has been considered preferable to use a polymer solution (Patent Document 1).
 一方、媒体として水を用いる水性ペーストも従来から提案されており、材料面でも、設備面でも、設備稼働面でも、大きな環境負荷の低減とコスト削減が図れるものと期待された。しかしながら、通常導電助剤として使われる導電性炭素材料は疎水性であり、水への分散は極めて困難なため、水性ペーストから電池特性良好な電極を製造することは出来なかった。しかも、非水系蓄電素子にあっては水の浸入は素子特性を大きく損ねてしまうことから、むしろ製造プロセスに水を持ち込まないよう配慮されてきた。 On the other hand, water-based pastes that use water as a medium have been proposed in the past, and it was expected that the environmental burden and cost could be greatly reduced in terms of materials, equipment, and equipment operation. However, conductive carbon materials that are usually used as conductive aids are hydrophobic and are extremely difficult to disperse in water. Therefore, it has not been possible to produce electrodes with good battery characteristics from aqueous pastes. In addition, in the case of non-aqueous power storage elements, since the intrusion of water greatly impairs the element characteristics, it has been considered not to bring water into the manufacturing process.
 この問題点を解消するものとして、含フッ素ポリマー水性分散液の製造に用いられる乳化剤であるパーフルオロオクタン酸アンモニウム(以下、APFOと称する。)とカルボキシメチルセルロース(以下、CMCと称する。)共存下に、導電性炭素質材料を水中に微細化させて分散させることが提案されている(特許文献2参照)。この場合、電極形成用材料が均質に分散された水性ペーストが調製できる。かかる水性ペーストから製造された電極は良好な蓄電素子特性を発現できることから、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の蓄電素子において、水性ペーストから製造された電極が採用されるようになってきた。 In order to solve this problem, ammonium perfluorooctanoate (hereinafter referred to as APFO), which is an emulsifier used in the production of an aqueous fluoropolymer dispersion, and carboxymethyl cellulose (hereinafter referred to as CMC) coexist. It has been proposed that a conductive carbonaceous material is finely dispersed in water (see Patent Document 2). In this case, an aqueous paste in which the electrode forming material is uniformly dispersed can be prepared. Since an electrode manufactured from such an aqueous paste can exhibit good electric storage element characteristics, an electrode manufactured from an aqueous paste has been adopted in electric storage elements such as lithium batteries, lithium ion batteries, and electric double layer capacitors. I came.
 しかし、APFOに代表されるPFOA類(本明細書においてPFOA類とは、APFOやパーフルオロオクタンスルホン酸アンモニウムを含め、これらに近似するパーフルオロアルカン酸とその塩およびパーフルオロアルカンスルホン酸とその塩等のフッ素系界面活性剤を総称している。)は、生体内残留・蓄積性の高いことがわかった。生体内に残ったPFOA類の人体に対する毒性・危険性はまだ不明な点が多いが、自然界に無い化合物であることから極力使用しないことが要請されている。このため含フッ素ポリマー水性分散液の製造ではPFOA類を使用して乳化重合した後、得られた含フッ素ポリマーの乳化液にラウリル硫酸ナトリウムやポリオキシエチレンアルキルエーテル等の炭化水素系界面活性剤を加え安定化した後、PFOA類を除去して、PFOA類含有量の著しく少ない含フッ素ポリマー水性分散液を得る技術が開発されている。 However, PFOAs typified by APFO (in this specification, PFOAs include APFO and ammonium perfluorooctane sulfonate, and perfluoroalkanoic acid and salts thereof and perfluoroalkanesulfonic acid and salts thereof which are similar to these. It was found that fluorinated surfactants such as, etc.) have high in vivo persistence and accumulation. Although there are still many unclear points about the toxicity and danger of PFOAs remaining in the living body to the human body, it is required not to use them as much as possible because they are compounds that do not exist in nature. For this reason, in the production of an aqueous dispersion of a fluoropolymer, after emulsion polymerization using PFOAs, a hydrocarbon-based surfactant such as sodium lauryl sulfate or polyoxyethylene alkyl ether is added to the resulting emulsion of the fluoropolymer. In addition, after stabilization, a technique has been developed in which PFOAs are removed to obtain a fluoropolymer aqueous dispersion having a significantly low PFOA content.
 しかしながら、PFOA類の少ない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは、ペーストが異常に増粘する結果、均質な塗膜を集電体表面に塗布することができず、曲げや巻取り等の加工性に優れ、良好な蓄電素子特性を発現できる電極コンポジット層を形成することが出来ない問題があった。 However, an aqueous paste using a fluorine-containing polymer aqueous dispersion containing a small amount of PFOA as a binder cannot be applied to the surface of the current collector as a result of abnormally thickening of the paste. There has been a problem that it is not possible to form an electrode composite layer that is excellent in workability such as winding and that can exhibit good characteristics of an electric storage element.
特公平08-4007号公報Japanese Patent Publication No. 08-4007 特公平07-40485号公報Japanese Patent Publication No. 07-40485
 本発明は、前記従来技術の課題を克服し、電極活物質や導電助剤などの電極材料を微細で均質に分散可能で、得られた電極コンポジット層が高い加工性を有し、環境負荷および人体の健康を損ねる危険性の小さい結着剤、該結着剤と電極材料と水とを含むペースト状組成物、および該ペースト状組成物を用いた電極の製造方法を提供することを目的とする。 The present invention overcomes the above-mentioned problems of the prior art, enables electrode materials such as electrode active materials and conductive assistants to be finely and uniformly dispersed, and the obtained electrode composite layer has high workability, and has an environmental load and It is an object of the present invention to provide a binder having a low risk of damaging human health, a paste-like composition containing the binder, an electrode material, and water, and a method for producing an electrode using the paste-like composition. To do.
 本発明者は、上記課題を達成すべく鋭意研究を進めたところ、水中にあって自己組織化と呼ばれる構造を形成して水に溶解および/またはミクロ分散する含フッ素のオリゴマーおよびポリマーが、上記課題を解決することができることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の構成を有する結着剤、ペースト状組成物および電極の製造方法を提供する。
[1]側鎖に親水性基を有する含フッ素オレフィン共重合体または両末端に疎水性の含フッ素有機基を有する線状の親水性重合体から選ばれる、フッ素含有量が3~60質量%、数平均分子量が1000~1000000の重合体からなる、電極材料の結着剤。
[2]前記含フッ素オレフィン共重合体が、テトラフルオロエチレンおよびクロロトリフルオロエチレンから選ばれる少なくとも1種のフッ素オレフィンの単位と、水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を有する単位と、を含む共重合体である、[1]に記載の結着剤。
[3]前記親水性重合体が、水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を有する単位を含む線状重合体鎖と、該線状重合体鎖の両末端に存在する、重合開始剤または連鎖移動剤に由来する疎水性の含フッ素有機基と、を有する重合体である、[1]に記載の結着剤。
[4]疎水性の含フッ素有機基が、炭素原子間にエーテル性酸素原子を有していてもよい炭素数3以上のパーフルオロアルキル基を有する、[1]または[3]に記載の結着剤。
[5][1]~[4]のいずれかに記載の結着剤と、電極材料と、水とを含むペースト状組成物。
[6]さらに、ポリテトラフルオロエチレンを含む、[5]に記載のペースト状組成物。
[7]前記電極材料が、金属化合物および炭素材料からから選ばれる少なくとも1種からなる、[5]または[6]に記載のペースト状組成物。
[8]前記電極材料が、蓄電素子の電極の材料である、[5]~[7]のいずれかに記載のペースト状組成物。
[9][5]~[8]のいずれかに記載のペースト状組成物を集電体に塗布して乾燥する、蓄電素子の電極の製造方法。
[10]蓄電素子がリチウムイオン二次電池、ニッケル水素二次電池または電気二重層キャパシタである、[9]に記載の電極の製造方法。
The present inventor has intensively studied to achieve the above-mentioned problems. As a result, fluorine-containing oligomers and polymers that are dissolved in water and / or micro-dispersed in water form a structure called self-assembly. The present inventors have found that the problem can be solved and have completed the present invention. That is, this invention provides the manufacturing method of the binder which has the following structures, a paste-form composition, and an electrode.
[1] A fluorine content of 3 to 60% by mass selected from a fluorine-containing olefin copolymer having a hydrophilic group in the side chain or a linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends. , A binder for electrode materials, comprising a polymer having a number average molecular weight of 1,000 to 1,000,000.
[2] The fluorine-containing olefin copolymer is at least one unit selected from tetrafluoroethylene and chlorotrifluoroethylene units, a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation). The binder according to [1], which is a copolymer comprising a unit having one kind of hydrophilic group.
[3] A linear polymer chain in which the hydrophilic polymer includes a unit having at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation), and the linear polymer. The binder according to [1], which is a polymer having a hydrophobic fluorine-containing organic group derived from a polymerization initiator or a chain transfer agent present at both ends of the chain.
[4] The bond according to [1] or [3], wherein the hydrophobic fluorine-containing organic group has a perfluoroalkyl group having 3 or more carbon atoms, which may have an etheric oxygen atom between carbon atoms. Dressing.
[5] A pasty composition comprising the binder according to any one of [1] to [4], an electrode material, and water.
[6] The paste composition according to [5], further comprising polytetrafluoroethylene.
[7] The paste composition according to [5] or [6], wherein the electrode material is at least one selected from a metal compound and a carbon material.
[8] The paste composition according to any one of [5] to [7], wherein the electrode material is a material for an electrode of a storage element.
[9] A method for producing an electrode for a storage element, wherein the paste composition according to any one of [5] to [8] is applied to a current collector and dried.
[10] The method for producing an electrode according to [9], wherein the storage element is a lithium ion secondary battery, a nickel hydride secondary battery, or an electric double layer capacitor.
 本発明の結着剤は、水中に置かれると所謂自己組織化と呼ばれる構造形成を起こして水に溶解および/または水にミクロに分散する機能を発現する。自己組織化は、近傍に配置された疎水性材料を構造内に取り込み、水に分散させる機能も有する。特に疎水性基にフッ素を含有する化合物はこの機能に優れ、導電助剤として広く使われている極めて疎水性が強く水への分散が困難とされているアセチレンブラックをも微細にして取り込み、水の中に均質に分散させる効果を有する。こうして本発明の結着剤を用いて製造されたペースト状組成物は、集電体上に塗工された後も微細化された複数の成分が均質に分散された状態を保持したまま電極コンポジット層を形成できる。得られた電極は、集電体との密着性に優れ、耐溶剤性、耐熱性に優れ、高い加工性を有し、それぞれ微細化された電極活物質、導電助剤、結着剤が均質に分散されるので、スムースな界面電荷移動反応とイオン伝導、電子伝導を担うように機能し、良好な蓄電素子特性を発現する効果を奏する。しかも、本発明のペースト状組成物には、生体内残留および蓄積性を有するPFOA類を使用する必要がない。 When the binder of the present invention is placed in water, it forms a structure called so-called self-assembly, and exhibits a function of being dissolved in water and / or microscopically dispersed in water. Self-organization also has a function of incorporating a hydrophobic material arranged in the vicinity into the structure and dispersing it in water. In particular, a compound containing fluorine in a hydrophobic group is excellent in this function, and even incorporates acetylene black, which is widely used as a conductive aid and is very hydrophobic and difficult to disperse in water, and is incorporated into water. It has the effect of being uniformly dispersed in the inside. Thus, the paste-like composition manufactured using the binder of the present invention is an electrode composite that maintains a state in which a plurality of finely divided components are uniformly dispersed even after being applied onto a current collector. Layers can be formed. The obtained electrode has excellent adhesion to the current collector, excellent solvent resistance and heat resistance, high workability, and finely divided electrode active material, conductive additive and binder are homogeneous. Therefore, it functions to perform smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and has the effect of exhibiting good storage element characteristics. Moreover, it is not necessary to use PFOAs having in vivo residue and accumulation in the paste-like composition of the present invention.
 また本発明の結着剤は、従来から蓄電素子電極用結着剤として使用されてきた極めて疎水性の強いポリテトラフルオロエチレンやその他ポリフッ化ビニリデン、スチレンブタジエンゴム等の結着剤をも自己組織化した構造中に取り込み、水の中に微細化して均質に分散する機能も発現する。したがって本発明の結着剤は、結着剤であると同時に、水性ペーストの分散剤や安定剤として機能する効果も発現する。 The binder of the present invention is also self-organized with binders such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, etc., which have been used as a binder for power storage element electrodes, and that are very hydrophobic. Incorporated into a structured structure, it is also refined into water and dispersed uniformly. Therefore, the binder of the present invention is not only a binder but also exhibits an effect of functioning as a dispersant or stabilizer for an aqueous paste.
 本発明の結着剤はまた、親水性基が集電体との強力な密着を担うことから、少ない添加量で優れた密着性を発現する効果も有する。この効果は密着力が弱いとされてきた従来のフッ素系結着剤にも適用可能で、本発明の結着剤と併用することにより強力な密着性を付与できる効果がある。 The binder of the present invention also has an effect of exhibiting excellent adhesion with a small addition amount because the hydrophilic group bears strong adhesion with the current collector. This effect can also be applied to conventional fluorine-based binders that have been considered to have low adhesion, and when used in combination with the binder of the present invention, has the effect of imparting strong adhesion.
 さらに本発明の結着剤は電解質液との親和性が高いことから電解質液が電極コンポジットの奥深くまで行き渡り、急速充放電における界面電荷移動反応を滞らせたり、活性域を偏在させることがなく、高負荷特性およびパワーの発現、長い電池寿命を達成する効果も有している。 Furthermore, since the binder of the present invention has a high affinity with the electrolyte solution, the electrolyte solution spreads deep into the electrode composite, without interfering with the interfacial charge transfer reaction in rapid charge / discharge, or unevenly distributing the active region, It also has the effect of achieving high load characteristics and power, and a long battery life.
 本明細書においては、アクリレートおよびメタクリレートを総称して(メタ)アクリレートと記す。(メタ)アクリル酸等についても同様に記す。 In this specification, acrylate and methacrylate are collectively referred to as (meth) acrylate. The same applies to (meth) acrylic acid and the like.
 本発明の結着剤は、側鎖に親水性基を有する含フッ素オレフィン共重合体または両末端に疎水性の含フッ素有機基を有する線状の親水性重合体から選ばれる、フッ素含有量が3~60質量%、数平均分子量が1000~1000000の重合体からなることを特徴としている。 The binder of the present invention has a fluorine content selected from a fluorine-containing olefin copolymer having a hydrophilic group in the side chain or a linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends. It is characterized by comprising a polymer having 3 to 60% by mass and a number average molecular weight of 1,000 to 1,000,000.
 本発明における側鎖に親水性基を有する含フッ素オレフィン共重合体とは、含フッ素オレフィンの単位と側鎖に親水性基を有する単位を有する共重合体であり、さらに必要であれば共重合可能な他のモノマーの単位をさらに有する共重合体であってもよい。 The fluorine-containing olefin copolymer having a hydrophilic group in the side chain in the present invention is a copolymer having a unit of a fluorine-containing olefin and a unit having a hydrophilic group in the side chain, and further copolymerization if necessary. It may be a copolymer further having other possible monomer units.
 本発明における含フッ素オレフィンは、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオリエチレン、ブロモトリフルオロエチレン、テトラフルオロエチレン、ペンタフルオロプロピレン、ヘキサフルオロプロピレン等のα-オレフィン類、下記一般式(1)で表されるパーフルオロ(アルキルビニルエーテル)類およびパーフルオロ(アルキルオキシアルキルビニルエーテル)類、1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、その他を例示することができる。
CF=C(ORf12-n    (1)
 式中、Rf1は炭素数1~18のパーフルオロアルキル基または分子内に1個以上のエーテル結合を含むパーフルオロアルキルオキシアルキル基であり、nは1または2であり、いずれの炭素鎖も直鎖状、分岐状または環状構造を有してもよい。
The fluorine-containing olefin in the present invention includes vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, tetrafluoroethylene, pentafluoropropylene, hexafluoropropylene and other α-olefins, and the following general formula Examples include perfluoro (alkyl vinyl ethers) and perfluoro (alkyloxyalkyl vinyl ethers) represented by (1), 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, and others. it can.
CF 2 = C (OR f1 ) n F 2-n (1)
In the formula, R f1 is a perfluoroalkyl group having 1 to 18 carbon atoms or a perfluoroalkyloxyalkyl group containing one or more ether bonds in the molecule, n is 1 or 2, and any carbon chain is It may have a linear, branched or cyclic structure.
 また、CH=CH(CFBr、CH=CHOCH(CFH、CH=CHOCH(CFH、CH=CHO(CH(CFF等の含フッ素モノマーも本発明に好適に使用できる。特に熱的にも電気化学的にも安定で耐久性に優れることから、クロロトリフルオロエチレン、テトラフルオロエチレンが好ましい。 Further, CH 2 = CH (CF 2 ) 2 Br, CH 2 = CHOCH 2 (CF 2) 2 H, CH 2 = CHOCH 2 (CF 2) 4 H, CH 2 = CHO (CH 2) 2 (CF 2) fluorine-containing monomer such as 6 F can be preferably used in the present invention. In particular, chlorotrifluoroethylene and tetrafluoroethylene are preferable because they are stable thermally and electrochemically and have excellent durability.
 含フッ素オレフィン共重合体における側鎖に親水性基を有する単位は、水酸基、カルボン酸基、スルホン酸基、リン酸基、アミノ基等の親水性官能基を有するモノマーやオキシエチレン連鎖等の親水性連鎖を有するモノマーの単位、これらの親水性官能基に変換しうる基を有するモノマーの単位を加水分解等の処理でこれらの基を親水性官能基に変換して得られる親水性官能基を有する単位、または親水性連鎖を導入しうる基(水酸基など)を有するモノマーの単位にエチレンオキシド等を反応させて親水性連鎖を導入して得られる単位、などである。親水性官能基に変換しうる基を有するモノマーを含フッ素オレフィンと共重合して得られる共重合体は、親水性官能基に変換しうる基を親水性官能基に変換して本発明における側鎖に親水性基を有する含フッ素オレフィン共重合体に変換する。例えば、(メタ)アクリル酸エステルなどの不飽和カルボン酸エステルの単位を有する共重合体を加水分解して、親水性である(メタ)アクリル酸単位などの不飽和カルボン酸の単位を有する共重合体を得ることができる。また、水酸基含有モノマーの単位を有する共重合体にエチレンオキシドを反応させて、側鎖にポリオキシエチレン鎖を有する共重合体を得ることができる。 The unit having a hydrophilic group in the side chain in the fluorinated olefin copolymer is a monomer having a hydrophilic functional group such as a hydroxyl group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group or an amino group, or a hydrophilic group such as an oxyethylene chain. A hydrophilic functional group obtained by converting a monomer unit having an ionic chain, a monomer unit having a group that can be converted into these hydrophilic functional groups into a hydrophilic functional group by a treatment such as hydrolysis. A unit obtained by reacting ethylene oxide or the like with a monomer unit having a group having a group capable of introducing a hydrophilic chain (such as a hydroxyl group) or the like, and introducing a hydrophilic chain. A copolymer obtained by copolymerizing a monomer having a group that can be converted into a hydrophilic functional group with a fluorine-containing olefin, converts the group that can be converted into a hydrophilic functional group into a hydrophilic functional group, and is used in the present invention. Conversion into a fluorinated olefin copolymer having a hydrophilic group in the chain. For example, a copolymer having an unsaturated carboxylic acid unit such as a (meth) acrylic acid unit by hydrolyzing a copolymer having an unsaturated carboxylic acid ester unit such as a (meth) acrylic acid ester. Coalescence can be obtained. Moreover, the copolymer which has a unit of a hydroxyl-containing monomer can be made to react with ethylene oxide, and the copolymer which has a polyoxyethylene chain in a side chain can be obtained.
 具体的なモノマーとしては、以下の化合物を例示できる。
 2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル等の水酸基含有アルキルビニルエーテル類。
 2-ヒドロキシエチル(メタ)アリルエーテル、3-ヒドロキシプロピル(メタ)アリルエーテル、2-ヒドロキシプロピル(メタ)アリルエーテル、4-ヒドロキシブチル(メタ)アリルエーテル、3-ヒドロキシブチル(メタ)アリルエーテル、2-ヒドロキシ-2-メチルプロピル(メタ)アリルエーテル、5-ヒドロキシペンチル(メタ)アリルエーテル、6-ヒドロキシヘキシル(メタ)アリルエーテル等の水酸基含アルキルアリルエーテル類。
 ビニル-2,2-ジメチルプロパノエート、ビニル-2,2-ジメチルブタノエート、ビニル-2,2-ジメチルペンタノエート、ビニル-2,2-ジメチルヘキサノエート、ビニル-2-エチル-2-メチルブタノエート、ビニル-2-エチル-2-メチルペンタノエート、ビニル-3-クロロ-2,2-ジメチルプロパノエート、その他の分岐脂肪族カルボン酸ビニル類。酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、クロトン酸ビニル、ステアリン酸ビニル、アジピン酸モノビニル、コハク酸モノビニル、その他の分岐脂肪族カルボン酸ビニル類以外の各種脂肪族カルボン酸ビニル類およびその誘導体類。
 シクロヘキサンカルボン酸ビニル、メチルシクロヘキサンカルボン酸ビニル、安息香酸ビニル、p-tert-ブチル安息香酸ビニル等の環状カルボン酸のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類。
 4-ビニルオキシカルボニルメチル-2-オキソ-1,3-ジオキソラン、4-メチル4-ビニルオキシカルボニルメチル-2-オキソ-1,3-ジオキソラン、4-(1-プロペニル)オキシカルボニルメチル-2-オキソ-1,3-ジオキソラン、4-メチル-4-(1-プロペニル)オキシカルボニルメチル-2-オキソ-1,3-ジオキソラン、4-ビニルオキシメチル-2-オキソ-1,3-ジオキソラン、4-メチル-4-ビニルオキシメチル-2-オキソ-1,3-ジオキソラン、4-(1-プロペニル)オキシメチル-2-オキソ-1,3-ジオキソラン、4-メチル-4-(1-プロペニル)オキシメチル-2-オキソ-1,3-ジオキソラン等の2-オキソ-1,3-ジオキソラン基含有ビニルモノマー類。
 ポリオキシエチレングリコールモノ(メタ)アクリレート、ポリオキシプロピレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、無水イタコン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、3-アリルオキシプロピオン酸、アリルオキシ吉草酸、(メタ)アリルスルホン酸、ビニルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸ブチル-4-スルホン酸、(メタ)アクリロオキシベンゼンスルホン酸、ブチルアクリルアミドスルホン酸、2-アクリル-2-アクリルアミド-2-メチルプロパンスルホン酸、ホスホオキシエチル(メタ)アクリレート、ホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート、ホスホオキシポリポリプロピレングリコール(メタ)アクリレート、リン酸ビニル、リン酸アリル、リン酸プロペニル、アクリルアミドおよびそれらの誘導体類等。
Specific examples of the monomer include the following compounds.
2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl Hydroxyl-containing alkyl vinyl ethers such as vinyl ether.
2-hydroxyethyl (meth) allyl ether, 3-hydroxypropyl (meth) allyl ether, 2-hydroxypropyl (meth) allyl ether, 4-hydroxybutyl (meth) allyl ether, 3-hydroxybutyl (meth) allyl ether, Hydroxyl-containing alkyl allyl ethers such as 2-hydroxy-2-methylpropyl (meth) allyl ether, 5-hydroxypentyl (meth) allyl ether, and 6-hydroxyhexyl (meth) allyl ether.
Vinyl-2,2-dimethylpropanoate, vinyl-2,2-dimethylbutanoate, vinyl-2,2-dimethylpentanoate, vinyl-2,2-dimethylhexanoate, vinyl-2-ethyl- 2-methylbutanoate, vinyl-2-ethyl-2-methylpentanoate, vinyl-3-chloro-2,2-dimethylpropanoate, and other branched aliphatic carboxylates. Vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl crotonate, vinyl stearate, monovinyl adipate, monovinyl succinate, other branched aliphatic vinyl carboxylates Aliphatic vinyl carboxylates and derivatives thereof other than those.
Vinyl esters of cyclic carboxylic acids such as vinyl cyclohexanecarboxylate, vinyl methylcyclohexanecarboxylate, vinyl benzoate, vinyl p-tert-butylbenzoate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate And (meth) acrylic acid esters such as cyclohexyl (meth) acrylate.
4-vinyloxycarbonylmethyl-2-oxo-1,3-dioxolane, 4-methyl 4-vinyloxycarbonylmethyl-2-oxo-1,3-dioxolane, 4- (1-propenyl) oxycarbonylmethyl-2- Oxo-1,3-dioxolane, 4-methyl-4- (1-propenyl) oxycarbonylmethyl-2-oxo-1,3-dioxolane, 4-vinyloxymethyl-2-oxo-1,3-dioxolane, 4 -Methyl-4-vinyloxymethyl-2-oxo-1,3-dioxolane, 4- (1-propenyl) oxymethyl-2-oxo-1,3-dioxolane, 4-methyl-4- (1-propenyl) Vinyl monomers containing a 2-oxo-1,3-dioxolane group such as oxymethyl-2-oxo-1,3-dioxolane;
Polyoxyethylene glycol mono (meth) acrylate, polyoxypropylene glycol mono (meth) acrylate, (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride, pentenoic acid, hexene Acid, heptenoic acid, octenoic acid, nonenic acid, decenoic acid, undecenoic acid, 3-allyloxypropionic acid, allyloxyvaleric acid, (meth) allylsulfonic acid, vinylsulfonic acid, styrenesulfonic acid, butyl (meth) acrylate 4-sulfonic acid, (meth) acrylooxybenzenesulfonic acid, butylacrylamidesulfonic acid, 2-acryl-2-acrylamido-2-methylpropanesulfonic acid, phosphooxyethyl (meth) acrylate, phosphooxypolyoxyethylene glycol (Meth) acrylate, phosphonate oxy poly polypropylene glycol (meth) acrylate, vinyl phosphoric acid, allyl phosphoric acid, propenyl phosphoric acid, acrylamide and the like derivatives thereof.
 特に、側鎖に親水性基を有する単位としては水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を側鎖に有する単位が好ましい。この単位は、水酸基を有するモノマー、-COOH基を有するモノマー、加水分解により水酸基になりうる基を有するモノマー、加水分解により-COOH基になりうる基を有するモノマーを使用して得られる。また、共重合体中の-COOH基の水素原子をカチオンに変換することによりXがカチオンである-COOX基を有する単位とすることができる。なお、共重合体製造後に親水性官能基に変換しうる基を親水性官能基に変換する場合、親水性官能基に変換しうる基のすべてを親水性官能基に変換する必要はない。 In particular, the unit having a hydrophilic group in the side chain is preferably a unit having at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation) in the side chain. This unit is obtained using a monomer having a hydroxyl group, a monomer having a —COOH group, a monomer having a group capable of becoming a hydroxyl group upon hydrolysis, and a monomer having a group capable of becoming a —COOH group upon hydrolysis. Further, by converting the hydrogen atom of the —COOH group in the copolymer to a cation, a unit having a —COOX group in which X is a cation can be obtained. In addition, when converting the group which can be converted into a hydrophilic functional group into a hydrophilic functional group after manufacture of a copolymer, it is not necessary to convert all the groups which can be converted into a hydrophilic functional group into a hydrophilic functional group.
 以上のモノマーの親水性基は重合体中にあっては通常はノニオンまたはアニオンであるが、重合後に親水性基をカチオンに変換して用いることも可能である。また、通常カチオン性或いは簡便な処理でカチオンとなる共重合性モノマーも使用できる。例えばN-ジメチルアミノエチル(メタ)アクリレート等のアルキルアミノアルキル(メタ)アクリレート類、アルキルアミノヒドロキシアルキル(メタ)アクリレート類、アルキルアミノアルキル(メタ)アクリルアミド類、アジリジニエチル(メタ)アクリレート、ピロリジニエチル(メタ)アクリレート、ピペリジニエチル(メタ)アクリレート、ビニルピリジン、ビニルイミダゾール、アリルアミン、ビニルアミンおよびそれらの誘導体類等を例示できる。 The hydrophilic group of the above monomer is usually a nonion or an anion in the polymer, but it is also possible to convert the hydrophilic group into a cation after polymerization. In addition, a copolymerizable monomer that becomes a cation by normal or simple treatment can also be used. For example, alkylaminoalkyl (meth) acrylates such as N-dimethylaminoethyl (meth) acrylate, alkylaminohydroxyalkyl (meth) acrylates, alkylaminoalkyl (meth) acrylamides, aziridiniethyl (meth) acrylate, pyrrolidinylethyl ( Examples include meth) acrylate, piperidinylethyl (meth) acrylate, vinylpyridine, vinylimidazole, allylamine, vinylamine, and derivatives thereof.
 含フッ素オレフィン共重合体は、上記2種のモノマーの単位以外に他のモノマーの単位を有していてもよい。他のモノマーとしては、一般式(2):CH=CHOR(式中、Rは炭素数1~18のアルキル基またはエーテル結合を1個以上含むアルキルオキシアルキル基であり、いずれの炭素鎖も直鎖状、分岐状または環状構造を有しても良く、部分的にフッ素以外のハロゲンで置換されたアルキルオキシアルキル基であっても良い。)で表されるアルキルビニルエーテル類およびアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン、ブテン-1、塩化ビニル、塩化ビニリデン、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、シアノスチレンなどを用いることができる。他のモノマーとしては、特に上記一般式(2)で表わされるモノマーが好ましい。 The fluorine-containing olefin copolymer may have other monomer units in addition to the above-described two monomer units. Other monomers include those represented by the general formula (2): CH 2 ═CHOR 2 (wherein R 2 is an alkyl group having 1 to 18 carbon atoms or an alkyloxyalkyl group containing at least one ether bond, The chain may also have a linear, branched or cyclic structure, and may be an alkyloxyalkyl group partially substituted with a halogen other than fluorine.) Alkyl vinyl ethers, ethylene, propylene, butene-1, vinyl chloride, vinylidene chloride, styrene, α-methylstyrene, vinyl toluene, acrylonitrile, cyanostyrene, and the like can be used. As the other monomer, a monomer represented by the general formula (2) is particularly preferable.
 また、下記一般式(3)で表されるモノマーなどのエポキシ基含有モノマーも用いることができる。 Moreover, an epoxy group-containing monomer such as a monomer represented by the following general formula (3) can also be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ただし、式中、Rは水素原子、ハロゲン原子、炭素数1~5のアルキル基、Rは炭素数1~18のアルキル基、Rは炭素数1~18アルキル基、またはエポキシシクロヘキサンメチレン基である。aは0~10の整数、bは0~5の整数、cは0または1であり、aが1~10のときbは0、bが1~4のときaは0である。 In the formula, R 3 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, R 4 is an alkyl group having 1 to 18 carbon atoms, R 5 is an alkyl group having 1 to 18 carbon atoms, or epoxycyclohexanemethylene It is a group. a is an integer of 0 to 10, b is an integer of 0 to 5, c is 0 or 1, b is 0 when a is 1 to 10, and a is 0 when b is 1 to 4.
 本発明における側鎖に親水性基を有する含フッ素オレフィン共重合体は、フッ素含有量が3~60質量%である。より好ましくは、10~55質量%である。親水性基を有する単位は、分散性を発揮するために少なくとも10モル%以上が必要であり、全単位に対して10~50モル%が好ましい。 The fluorine-containing olefin copolymer having a hydrophilic group in the side chain in the present invention has a fluorine content of 3 to 60% by mass. More preferably, it is 10 to 55% by mass. The unit having a hydrophilic group needs to be at least 10 mol% in order to exhibit dispersibility, and is preferably 10 to 50 mol% based on all units.
 数平均分子量Mは、ポリスチレンを標準物質としてゲルパーミエーションクロマトグラフィー(以下、GPCという。)で測定される値である。本発明の側鎖に親水性基を有する含フッ素オレフィン共重合体のMは、1000~1000000が好ましく、1500~600000がより好ましい。Mが1000以上であると良好な密着性を発現でき、しかも人体への蓄積性が小さくなることから好ましい。またMが1000000を超えても本発明に有用な特性が顕著に高まることはなく、むしろ取扱に困難さが増す場合が多い。したがってMは1000000以下であるのがより好ましい。 The number average molecular weight M n is a value measured by gel permeation chromatography (hereinafter referred to as GPC) using polystyrene as a standard substance. Mn of the fluorinated olefin copolymer having a hydrophilic group in the side chain of the present invention is preferably from 1,000 to 1,000,000, more preferably from 1500 to 600,000. It is preferable that M n is 1000 or more because good adhesion can be exhibited and the accumulation in the human body is reduced. Moreover, even if Mn exceeds 1000000, the characteristics useful for the present invention do not remarkably increase, but rather the handling is often more difficult. Therefore, Mn is more preferably 1000000 or less.
 本発明における共重合体の製造には、特に限定されず、溶液重合、乳化重合、懸濁重合、塊状重合等、従来知られている種々の製法を用いることができる。好ましくは、上記溶液重合、および乳化重合である。 The production of the copolymer in the present invention is not particularly limited, and various conventionally known production methods such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like can be used. The solution polymerization and the emulsion polymerization are preferable.
 重合開始剤には、ベンゾイルパーオキサイドやアセチルパーオキサイド等のジアシルパーオキサイド類、メチルエチルケトンパーオキサイドやシクロヘキサノンパーオキサイド等の各種ケトンパーオキサイド類、過酸化水素やクメンハイドロパーオキサイド等のハイドロパーオキサイド類、ジブチルパーオキサイドやジクミルパーオキサイド等のジアルキルパーオキサイド類、ブチルパーオキシアセテートやブチルパーオキシピバレート等のアルキルパーオキシエステル類、アゾビスイソブチロニトリルやアゾビスイソバレロニトリル等のアゾ系化合物類、或いは過硫酸カリウムや過硫酸アンモニウム等の過硫酸塩類を用いることができる。 The polymerization initiator includes diacyl peroxides such as benzoyl peroxide and acetyl peroxide, various ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide, hydroperoxides such as hydrogen peroxide and cumene hydroperoxide, Dialkyl peroxides such as dibutyl peroxide and dicumyl peroxide, alkyl peroxy esters such as butyl peroxyacetate and butyl peroxypivalate, azo compounds such as azobisisobutyronitrile and azobisisovaleronitrile Or persulfates such as potassium persulfate and ammonium persulfate can be used.
 重合開始剤の使用量は、使用する重合開始剤の種類や重合条件等に依存して決定されるが、通常はモノマーの総量に対して0.1~0.5質量%ほどであるのが一般的であり、本発明にも好ましく用いられる。 The amount of the polymerization initiator used is determined depending on the type of polymerization initiator used, the polymerization conditions, and the like, but is usually about 0.1 to 0.5% by mass based on the total amount of monomers. It is general and is preferably used in the present invention.
 重合温度は用いる開始剤の種類により決定されることが多いが、通常は10℃~90℃であるのが取り扱い容易であり、好ましい。重合圧力は通常0~100kg/cm・Gであるが、好ましくは1~50kg/cm・Gであるのが操作容易であることから一般的である。 The polymerization temperature is often determined by the type of initiator used, but it is usually preferably from 10 ° C to 90 ° C because it is easy to handle. The polymerization pressure is usually from 0 to 100 kg / cm 2 · G, preferably from 1 to 50 kg / cm 2 · G, since it is easy to operate.
 重合に用いる溶媒には、各種モノマーや重合開始剤、または乳化剤が溶ければ特に限定されず、例えば、下記の溶媒を例示できる。また、これらの溶媒を単独で、或いは2種以上を併用した混合媒体として好ましく使用することができる。
 ベンゼン、キシレン、トルエン等の芳香族炭化水素類。ヘプタン、ヘキサン、オクタン等の脂肪族炭化水素類。シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環族炭化水素類。
 メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、2-エチルヘキサノール、シクロヘキサノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類。
 ジメトキシエタン、テトラヒドロフラン、ジオキサン、イソプロピルエーテル等のエーテル類。アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロン等のケトン類。酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルアセテート等のエステル類。
 クロロホルム、メチレンクロライド、四塩化炭素、クロロジフルオロメタン、トリクロルエタン、テトラクロルエタン、テトラフルオロエタン、クロロペンタフルオロエタン、ジクロロペンタフルオロプロパン、トリフルオロメトキシジフルオロエチルエーテル、ジフルオロエチルエーテル、メチルクロロヘキサフルオロプロピルエーテル等のハロゲン化炭化水素類。
 ミネラルスピリット、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレンカーボネート、水等。
The solvent used for the polymerization is not particularly limited as long as various monomers, a polymerization initiator, or an emulsifier is soluble, and examples thereof include the following solvents. These solvents can be preferably used alone or as a mixed medium using two or more kinds in combination.
Aromatic hydrocarbons such as benzene, xylene and toluene. Aliphatic hydrocarbons such as heptane, hexane, and octane. Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane and ethylcyclohexane;
Alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, 2-ethylhexanol, cyclohexanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether.
Ethers such as dimethoxyethane, tetrahydrofuran, dioxane, isopropyl ether; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone and isophorone. Esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, ethylene glycol monomethyl ether acetate, and ethylene glycol monoethyl acetate.
Chloroform, methylene chloride, carbon tetrachloride, chlorodifluoromethane, trichloroethane, tetrachloroethane, tetrafluoroethane, chloropentafluoroethane, dichloropentafluoropropane, trifluoromethoxydifluoroethyl ether, difluoroethyl ether, methylchlorohexafluoropropyl Halogenated hydrocarbons such as ether.
Mineral spirit, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, ethylene carbonate, water, etc.
 本発明における両末端に疎水性の含フッ素有機基を有する線状の親水性重合体は、親水性基を有する単位を含む線状重合体鎖と、該線状重合体鎖の両末端に存在する、重合開始剤または連鎖移動剤に由来する疎水性の含フッ素有機基を有する重合体である。 The linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends in the present invention is present at both ends of a linear polymer chain containing a unit having a hydrophilic group and the linear polymer chain. It is a polymer having a hydrophobic fluorine-containing organic group derived from a polymerization initiator or a chain transfer agent.
 前記線状重合体鎖の両末端に存在する、重合開始剤に由来する疎水性の含フッ素有機基には、入手し易く比較的取り扱い容易であることから下記一般式(4)で表される過酸化フルオロアルカノイルが好ましい。
f6C(=O)OOC(=O)Rf7    (4)
(式中、Rf6およびRf7は、炭素原子間にエーテル性酸素原子を有していてもよい炭素数3以上のパーフルオロアルキル基、または炭素原子間にエーテル性酸素原子を有していてもよい炭素数3以上かつフッ素原子の一部が水素原子か塩素原子に置き換えられた含フッ素アルキル基であり、いずれの炭素鎖も直鎖状、分岐状または環状構造を有しても良い。)特に好ましくは、炭素原子間にエーテル性酸素原子を有していてもよい炭素数3以上のパーフルオロアルキル基である。
The hydrophobic fluorine-containing organic group derived from the polymerization initiator present at both ends of the linear polymer chain is represented by the following general formula (4) because it is easily available and relatively easy to handle. Fluoroalkanoyl peroxide is preferred.
R f6 C (═O) OOC (═O) R f7 (4)
(In the formula, R f6 and R f7 have a perfluoroalkyl group having 3 or more carbon atoms which may have an etheric oxygen atom between carbon atoms, or an etheric oxygen atom between carbon atoms. Or a fluorine-containing alkyl group in which a part of fluorine atoms is replaced by a hydrogen atom or a chlorine atom, and any carbon chain may have a linear, branched or cyclic structure. ) Particularly preferred is a perfluoroalkyl group having 3 or more carbon atoms which may have an etheric oxygen atom between carbon atoms.
 過酸化フルオロアルカノイルの製造は、水酸化ナトリウム等のアルカリを加えた含フッ素溶媒中でフルオロアルキル基を持つハロゲン化アシルと過酸化水素水を反応させる公知の方法により容易に得ることができる。具体的には、過酸化ジパーフルオロブチリル、過酸化ジパーフルオロヘプタノイル、過酸化ジパーフルオロ-2-メチル-3-オキサヘキサノイル、過酸化ジパーフルオロ-2-メチル-3-オキサノナノイル、過酸化ジパーフルオロ-2,5-ジメチル-3,6-ジオキサノナノイル、過酸化ジパーフルオロ-2,5,8-トリメチル-3,6,9-トリオキサドデカノイル、その他を例示でき、いずれも本発明の重合開始剤として好適に用いることができる。 The fluoroalkanoyl peroxide can be easily produced by a known method in which an acyl halide having a fluoroalkyl group is reacted with a hydrogen peroxide solution in a fluorine-containing solvent to which an alkali such as sodium hydroxide is added. Specifically, diperfluorobutyryl peroxide, diperfluoroheptanoyl peroxide, diperfluoro-2-methyl-3-oxahexanoyl peroxide, diperfluoro-2-methyl-3-oxanonanoyl peroxide, diperfluoroperoxide -2,5-dimethyl-3,6-dioxanonanoyl, diperfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoyl peroxide, etc., all of which are examples of the polymerization of the present invention It can be suitably used as an initiator.
 親水性基を有する単位を含む線状重合体鎖における親水性基を有する単位は、前記含フッ素オレフィン共重合体における側鎖に親水性基を有する単位と同様の単位である。この単位は前記のようにラジカル重合性モノマーの単位またはラジカル重合性モノマーの単位を変性して得られた単位である。さらに、線状重合体鎖は、オキシエチレン基などの親水性単位を有する線状重合体鎖(例えば、ポリオキシエチレン鎖)であってもよい。親水性基を有する単位を含む線状重合体鎖は、ラジカル重合性モノマーの単位やそれを変性して得られた単位を有することが好ましい。また、親水性基を有する単位を含む線状重合体鎖は、親水性基を有する単位以外の単位を有していてもよい。 The unit having a hydrophilic group in the linear polymer chain containing a unit having a hydrophilic group is the same unit as the unit having a hydrophilic group in the side chain in the fluorine-containing olefin copolymer. This unit is a unit obtained by modifying a radical polymerizable monomer unit or a radical polymerizable monomer unit as described above. Furthermore, the linear polymer chain may be a linear polymer chain having a hydrophilic unit such as an oxyethylene group (for example, a polyoxyethylene chain). The linear polymer chain containing a unit having a hydrophilic group preferably has a radical polymerizable monomer unit or a unit obtained by modifying it. Moreover, the linear polymer chain containing the unit which has a hydrophilic group may have units other than the unit which has a hydrophilic group.
 親水性基を有する単位を含む線状重合体鎖における親水性基を有する単位としては、特に、水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を有する単位が好ましい。この単位は、水酸基を有するモノマー、-COOH基を有するモノマー、加水分解により水酸基になりうる基を有するモノマー、加水分解により-COOH基になりうる基を有するモノマーを使用して得られる。また、線状重合体中の-COOH基の水素原子をカチオンに変換することによりXがカチオンである-COOX基を有する単位とすることができる。なお、重合体製造後に親水性官能基に変換しうる基を親水性官能基に変換する場合、変換後の重合体が充分な親水性となる限り、親水性官能基に変換しうる基のすべてを親水性官能基に変換する必要はない。 The unit having a hydrophilic group in the linear polymer chain containing a unit having a hydrophilic group has, in particular, at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation). Units are preferred. This unit is obtained using a monomer having a hydroxyl group, a monomer having a —COOH group, a monomer having a group capable of becoming a hydroxyl group upon hydrolysis, and a monomer having a group capable of becoming a —COOH group upon hydrolysis. Further, a unit having a —COOX group in which X is a cation can be obtained by converting a hydrogen atom of a —COOH group in a linear polymer into a cation. In addition, when a group that can be converted to a hydrophilic functional group after the production of the polymer is converted to a hydrophilic functional group, as long as the polymer after the conversion becomes sufficiently hydrophilic, all the groups that can be converted to the hydrophilic functional group There is no need to convert to a hydrophilic functional group.
 前記線状重合体鎖の両末端に存在する、連鎖移動剤に由来する疎水性の含フッ素有機基には、ポリフルオロアルキル基を有するチオール類等が用いることができる。例えば、炭素数1~14のポリフルオロメルカプタン等が挙げられる。 As the hydrophobic fluorine-containing organic group derived from the chain transfer agent present at both ends of the linear polymer chain, thiols having a polyfluoroalkyl group can be used. Examples thereof include polyfluoromercaptan having 1 to 14 carbon atoms.
 本発明における両末端に疎水性の含フッ素有機基を有する線状の親水性重合体のMは、1000~1000000が好ましく、1500~100000がより好ましい。Mが1000以上であると良好な密着性を発現でき、しかも人体への蓄積性が小さくなることから好ましい。またMが1000000を超えても本発明に有用な特性が顕著に高まることはなく、むしろ取扱に困難さが増す場合が多い。したがってMは1000000以下であるのがより好ましい。 In the present invention, the Mn of the linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends is preferably from 1,000 to 1,000,000, more preferably from 1500 to 100,000. It is preferable that M n is 1000 or more because good adhesion can be exhibited and the accumulation in the human body is reduced. Moreover, even if Mn exceeds 1000000, the characteristics useful for the present invention do not remarkably increase, but rather the handling is often more difficult. Therefore, Mn is more preferably 1000000 or less.
 本発明における両末端に疎水性の含フッ素有機基を有する線状の親水性重合体は、フッ素含有量が3~60質量%である。より好ましくは、10~55質量%である。また、親水性基を有する単位は、分散性を発揮するために全重合単位に対して少なくとも35モル%以上が必要であり、35~99モル%が好ましい。 In the present invention, the linear hydrophilic polymer having hydrophobic fluorine-containing organic groups at both ends has a fluorine content of 3 to 60% by mass. More preferably, it is 10 to 55% by mass. Further, the unit having a hydrophilic group needs to be at least 35 mol% or more, preferably 35 to 99 mol% with respect to the total polymerization units in order to exhibit dispersibility.
 本発明における両末端に疎水性の含フッ素有機基を有する線状の親水性重合体において、過酸化フルオロアルカノイルのモル比が高ければ分子量の小さい親水性重合体が得られ、逆に過酸化フルオロアルカノイルのモル比が低ければ分子量の大きい親水性重合体をえることができる。ラジカル重合性モノマーは2種以上のモノマーを組み合わせて用いることができる。2種以上の過酸化フルオロアルカノイルを混合して使用することも可能であるが、過酸化フルオロアルカノイルは種類によって分解開始温度が違うため実用的ではない。反応温度は使用する過酸化フルオロアルカノイルにも依存するが、通常は-20℃~150℃、好ましくは0℃~100℃の範囲の常圧であるのが比較的簡便な設備で行えることから望ましい。反応時間は通常30分~50時間であるが、1~10時間とするのが実用的である。 In the linear hydrophilic polymer having a hydrophobic fluorine-containing organic group at both ends in the present invention, a hydrophilic polymer having a low molecular weight can be obtained if the molar ratio of fluoroalkanoyl peroxide is high. If the molar ratio of alkanoyl is low, a hydrophilic polymer having a large molecular weight can be obtained. The radical polymerizable monomer can be used in combination of two or more monomers. Two or more types of fluoroalkanoyl peroxide can be used in combination, but fluoroalkanoyl peroxide is not practical because the decomposition start temperature differs depending on the type. Although the reaction temperature depends on the fluoroalkanoyl peroxide used, it is usually from −20 ° C. to 150 ° C., preferably from 0 ° C. to 100 ° C., because normal pressure can be used with relatively simple equipment. . The reaction time is usually 30 minutes to 50 hours, but it is practical to set it to 1 to 10 hours.
 過酸化フルオロアルカノイルとラジカル重合性モノマーを無溶媒下で反応させることによって本発明における親水性重合体を得ることができる。しかしながら反応を反応開始から終了まで安定して制御しやすいことから、有機溶媒等を反応溶媒に用いることが好ましい。反応溶媒としては、前記重合溶媒に提示した一連の溶媒、その他が挙げられ、それらの単独或いは2種以上の任意の混合溶媒として使用することができる。 The hydrophilic polymer in the present invention can be obtained by reacting fluoroalkanoyl peroxide and a radical polymerizable monomer in the absence of a solvent. However, it is preferable to use an organic solvent or the like as the reaction solvent because the reaction is easily controlled stably from the start to the end of the reaction. Examples of the reaction solvent include a series of solvents presented as the polymerization solvent and others, and these can be used alone or as an arbitrary mixed solvent of two or more kinds.
 過酸化フルオロアルカノイルとラジカル重合性モノマーとを反応させて得られた重合体はそのまま本発明の結着剤として使用することもできる。しかし選択したラジカル重合性モノマーによっては、酸処理やアルカリ処理を施すことにより水への分散性がさらに高められる。使用可能な酸としては無機酸や有機酸のいずれも使用可能である。例えば、塩酸、硫酸、硝酸、リン酸、クエン酸、ホウ酸、フッ酸、酢酸、酪酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トルエンスルホン酸等を例示できる。アルカリとしても無機アルカリや有機塩基が使用可能である。例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ピリジン、トリエチルアミン、トリブチルアミン、ルチジン、トリエタノールアミン等を例示できる。酸処理およびアルカリ処理は、通常酸やアルカリの溶液を用いて行われるのが反応を制御し易いことから好ましい。これら溶液に用いる溶媒としては、水、メタノール、エタノール、キシレン、トルエン、ベンゼン、アセトニトリル等の汎用有機溶剤が挙げられる。酸またはアルカリの使用量は、前記重合体の1重量部に対して0.01~1000重量部であるのが好ましい。反応温度は-20℃~250℃、反応時間は1分~48時間の範囲であるのが制御し易いことから好ましい。 A polymer obtained by reacting a fluoroalkanoyl peroxide and a radical polymerizable monomer can be used as it is as the binder of the present invention. However, depending on the selected radically polymerizable monomer, the dispersibility in water can be further enhanced by acid treatment or alkali treatment. As the usable acid, either an inorganic acid or an organic acid can be used. Examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, boric acid, hydrofluoric acid, acetic acid, butyric acid, trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, toluenesulfonic acid, and the like. An inorganic alkali or an organic base can also be used as the alkali. For example, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, pyridine, triethylamine, tributylamine, lutidine, triethanolamine and the like can be exemplified. The acid treatment and alkali treatment are usually preferably performed using an acid or alkali solution because the reaction is easy to control. Examples of the solvent used in these solutions include general-purpose organic solvents such as water, methanol, ethanol, xylene, toluene, benzene, and acetonitrile. The amount of acid or alkali used is preferably 0.01 to 1000 parts by weight with respect to 1 part by weight of the polymer. The reaction temperature is preferably −20 ° C. to 250 ° C., and the reaction time is preferably in the range of 1 minute to 48 hours because it is easy to control.
 前記含フッ素オレフィン共重合体および前記親水性重合体は、前記のモノマー類、重合開始剤類、重合媒体類、その他の全量を反応容器に仕込み、共重合させることにより製造できる。さらにモノマー類の一部或いは他のモノマー類や重合開始剤類等を分割して、或いは逐次に、或いは連続して反応容器に供給しながら共重合させることによっても製造できる。生成した共重合体が重合溶媒に溶解しないこともしばしば観察されるが、本発明の結着剤として使用するに全く支障ない。 The fluorine-containing olefin copolymer and the hydrophilic polymer can be produced by charging the monomers, polymerization initiators, polymerization media, and other total amounts into a reaction vessel and copolymerizing them. Furthermore, it can be produced by copolymerizing a part of the monomers or other monomers, polymerization initiators, etc., or by supplying them sequentially or continuously to the reaction vessel. Although it is often observed that the produced copolymer does not dissolve in the polymerization solvent, there is no problem in using it as the binder of the present invention.
 本発明の結着剤は、前記重合体の水溶液或いは水性分散液として供される。重合溶媒或いは重合分散媒が水であると、重合後の重合体水溶液や重合体水性分散液をそのまま本発明の結着剤として使用することができる。一方、有機溶媒を重合溶媒或いは重合分散媒とする重合方法も広く用いられている。かかる有機溶媒を媒体とする溶液或いは分散液の場合は、水を媒体とする溶液或いは分散液に変換することにより本発明の結着剤として使用することができる。有機溶媒を媒体とする溶液或いは分散液を水媒体の溶液或いは分散液に変換する手法も公知であり、本発明に適用可能である。例えばはじめに有機媒体の溶液或いは分散液に水を加えて混合せしめた溶液或いは分散液を調製し、続いて有機媒体を減圧留去等の手法で除去することにより水媒体の溶液或いは分散液に変換でき、本発明にも好適に用いられる。 The binder of the present invention is provided as an aqueous solution or aqueous dispersion of the polymer. When the polymerization solvent or the polymerization dispersion medium is water, the polymer aqueous solution or polymer aqueous dispersion after polymerization can be used as it is as the binder of the present invention. On the other hand, a polymerization method using an organic solvent as a polymerization solvent or a polymerization dispersion medium is also widely used. In the case of a solution or dispersion using such an organic solvent as a medium, it can be used as the binder of the present invention by converting it into a solution or dispersion using water as a medium. A technique for converting a solution or dispersion using an organic solvent as a medium to a solution or dispersion of an aqueous medium is also known and can be applied to the present invention. For example, firstly, a solution or dispersion is prepared by adding water to an organic medium solution or dispersion and mixing, and then the organic medium is removed by a method such as distillation under reduced pressure to convert it into an aqueous medium solution or dispersion. It can be suitably used in the present invention.
 水への溶解性や水への分散性を高めるには、例えばカルボキシル基含有重合体の場合、カルボン酸型であるよりその塩等に中和された型である方が有効である。しかしカルボキシル基を有するモノマーの場合、一般的に中和型モノマーは重合反応性が低い。そこで共重合しやすいカルボン酸型モノマーや水酸基含有モノマーを用いることで広範な組成の共重合体を得ることが可能となる。こうして得られた重合体を有機溶媒中で変性して本発明の結着剤とすることも可能である。 In order to improve the solubility in water and the dispersibility in water, for example, in the case of a carboxyl group-containing polymer, it is more effective to use a type neutralized with a salt thereof rather than a carboxylic acid type. However, in the case of a monomer having a carboxyl group, the neutralization type monomer generally has low polymerization reactivity. Therefore, it is possible to obtain a copolymer having a wide composition by using a carboxylic acid type monomer or a hydroxyl group-containing monomer which is easily copolymerized. The polymer thus obtained can be modified in an organic solvent to obtain the binder of the present invention.
 水酸基を含有する共重合体はそれ自体親水性であったり集電体との密着性を高めたり等の好ましい特性を発現するといった特徴がある。しかし水酸基の少なくとも一部を酸変性させることによりさらに親水性が高まり、水への溶解性や分散性を高めることができる。酸変性とは水酸基に二塩基性酸の無水物を反応させてエステル化すること等により成される。二塩基性酸無水物としては無水コハク酸、無水グルタル酸、無水イタコン酸、無水アジピン酸、無水シクロヘキサンジカルボン酸、無水シクリヘキセンジカルボン酸、無水フタル酸、無水ナフタル酸、無水マレイン酸、その他等を例示でき、本発明に好ましく用いられる。 The copolymer containing a hydroxyl group is characterized in that it exhibits a desirable characteristic such as being hydrophilic per se or improving adhesion to a current collector. However, at least a part of the hydroxyl group is acid-modified, so that the hydrophilicity is further increased and the solubility and dispersibility in water can be improved. Acid modification is performed by reacting a hydroxyl group with an anhydride of a dibasic acid and esterifying it. Dibasic acid anhydrides include succinic anhydride, glutaric anhydride, itaconic anhydride, adipic anhydride, cyclohexanedicarboxylic anhydride, cyclhexene dicarboxylic anhydride, phthalic anhydride, naphthalic anhydride, maleic anhydride, etc. It can be exemplified and is preferably used in the present invention.
 エステル化のための溶媒としては重合反応に用いた有機溶媒そのものでも、また水酸基含有の結着剤や二塩基性酸無水物の溶解性を考慮して選択されるその他の溶媒を追加することも可能である。エステル化の工程では触媒を併用することも可能である。触媒としては一般にカルボン酸の金属塩類、アルカリ金属水酸化物類、アルカリ金属炭酸塩類、4級アンモニウム塩類、3級アミン類等が用いられる。エステル化温度は室温~150℃の範囲で行われるが、通常は反応制御しやすい50~100℃で行われるのが一般的である。反応時間も温度と触媒に依存するが、同様の理由から通常は数分~数時間であるのが一般的である。 As the solvent for esterification, the organic solvent itself used in the polymerization reaction may be added, or other solvents selected in consideration of the solubility of the hydroxyl group-containing binder and dibasic acid anhydride may be added. Is possible. In the esterification step, a catalyst can be used in combination. As the catalyst, metal salts of carboxylic acids, alkali metal hydroxides, alkali metal carbonates, quaternary ammonium salts, tertiary amines and the like are generally used. The esterification temperature is in the range of room temperature to 150 ° C., but it is generally carried out at 50 to 100 ° C., which is easy to control the reaction. Although the reaction time depends on the temperature and the catalyst, it is generally several minutes to several hours for the same reason.
 カルボン酸の中和はカルボキシル基含有の重合体に塩基性化合物を反応させて行うことができる。本発明においても広範な塩基性化合物の中から自由に選択して使用することができるが、形成された電極コンポジット中へ残留し難いことから、アミン類やイミン類等から選択して用いるのが特に好ましい。かかる塩基性化合物としては、下記の化合物を例示できる。モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、トリイソプロピルアミン、モノブチルアミン、ジブチルアミン等の1級、2級若しくは3級アルキルアミン類。モノイソプロパノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール、メチルジエタノールアミン等のアルカノールアミン類。エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等のジアミン類。エチレンイミン、プロピレンイミン等のアルキレンイミン類。アンモニア、ピペラジン、モルホリン、ピラジン、ピリジン。 The neutralization of the carboxylic acid can be performed by reacting a carboxyl group-containing polymer with a basic compound. In the present invention, it can be freely selected from a wide range of basic compounds, but since it is difficult to remain in the formed electrode composite, it can be selected from amines, imines and the like. Particularly preferred. Examples of such basic compounds include the following compounds. Primary, secondary or tertiary alkylamines such as monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, triisopropylamine, monobutylamine, dibutylamine and the like. Alkanolamines such as monoisopropanolamine, dimethylaminoethanol, diethylaminoethanol and methyldiethanolamine. Diamines such as ethylenediamine, propylenediamine, tetramethylenediamine and hexamethylenediamine. Alkyleneimines such as ethyleneimine and propyleneimine. Ammonia, piperazine, morpholine, pyrazine, pyridine.
 中和反応はカルボキシル基含有の結着剤の有機分散液に塩基性化合物或いは塩基性化合物の溶液を添加することで成される。中和する含フッ素オレフィン共重合体中のカルボキシル基の割合は、一般的には30~100モル%であるが、水への溶解性或いは分散性をより高められることから50~100モル%であるのが好ましい。 The neutralization reaction is performed by adding a basic compound or a basic compound solution to an organic dispersion of a carboxyl group-containing binder. The proportion of the carboxyl group in the fluorinated olefin copolymer to be neutralized is generally 30 to 100 mol%, but it can be increased to 50 to 100 mol% because the solubility or dispersibility in water can be further improved. Preferably there is.
 重合体の媒体が有機溶液或いは有機分散液の場合、次に水性の溶液或いは分散液に変換されて本発明の結着剤に適用される。水性溶液或いは水性分散液への変換は、前述の通り重合体の有機溶液或いは有機分散液に水を加えて溶解或いは分散させた後、有機溶媒を減圧留去することにより、重合体の水性溶液或いは水性分散液に変換することができる。有機溶媒の除去は50~100質量%であるのが一般的であるが、好ましくは90~100質量%であるがより好ましい。 When the polymer medium is an organic solution or an organic dispersion, it is then converted into an aqueous solution or dispersion and applied to the binder of the present invention. As described above, the aqueous solution or dispersion can be converted into an aqueous solution or dispersion by adding water to the organic solution or dispersion of the polymer to dissolve or disperse it, and then distilling off the organic solvent under reduced pressure. Alternatively, it can be converted to an aqueous dispersion. The removal of the organic solvent is generally 50 to 100% by mass, preferably 90 to 100% by mass, more preferably.
 本発明の結着剤は、単独または他の結着剤と併用して用いることができる。単独で用いる場合は、結着剤の親水性基が電解質と親和し、電極コンポジット内への電解質供給がスムースに進行することから好ましい。他の結着剤としては、フッ素の含有にかかわらず、結晶性樹脂や非晶性樹脂、ゴム、エラストマー等のポリマーを用いることができる。例えば、フッ素を含有しないポリマーとしては天然ゴム類、スチレンブタジエン共重合体、アクリル変性スチレンブタジエン共重合体、酢酸ビニル共重合体、ニトリルブチルゴム、水素化ニトリルブチルゴム、アクリルゴム、エピクロルヒドリン、ポリウレタン等の合成ゴム・エラストマー類、(メタ)アクリル樹脂、ビニル樹脂、ポリオレフィン、ポリカーボネート、ナイロン、ポリイミド等の合成樹脂類等を用いることができる。 The binder of the present invention can be used alone or in combination with other binders. When used alone, it is preferable because the hydrophilic group of the binder has an affinity for the electrolyte and the supply of the electrolyte into the electrode composite proceeds smoothly. As other binders, polymers such as crystalline resins, amorphous resins, rubbers, and elastomers can be used regardless of the content of fluorine. For example, polymers that do not contain fluorine include natural rubber, styrene butadiene copolymer, acrylic modified styrene butadiene copolymer, vinyl acetate copolymer, nitrile butyl rubber, hydrogenated nitrile butyl rubber, acrylic rubber, epichlorohydrin, polyurethane, etc. Synthetic resins such as rubber / elastomers, (meth) acrylic resin, vinyl resin, polyolefin, polycarbonate, nylon, and polyimide can be used.
 本発明における他の結着剤としては、含フッ素ポリマーがより好ましい。含フッ素ポリマーとしては、含フッ素モノマーなどを重合して得られる含フッ素ポリマーであれば、特に制限はない。含フッ素モノマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、前記一般式(1)で表されるパーフルオロ(アルキルビニルエーテル)類およびパーフルオロ(アルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレンから選ばれる少なくとも1種か2種以上の組み合わせの含フッ素モノマーが挙げられる。
 好ましくは、粉体の結着性に優れ、イオンの移動を妨げることのない、テトラフルオロエチレンの重合より得られるポリテトラフルオロエチレン(PTFE)がよい。
As the other binder in the present invention, a fluorine-containing polymer is more preferable. The fluorine-containing polymer is not particularly limited as long as it is a fluorine-containing polymer obtained by polymerizing a fluorine-containing monomer. Examples of fluorine-containing monomers include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl vinyl ethers) and perfluoro (alkyloxyalkyl vinyl ethers) represented by the general formula (1), and chlorotrifluoroethylene. Fluorine-containing monomers of at least one or a combination of two or more selected from
Preferably, polytetrafluoroethylene (PTFE) obtained by polymerization of tetrafluoroethylene, which has excellent powder binding properties and does not hinder ion migration, is preferable.
 また、含フッ素モノマー以外に、前記一般式(2)で表されるアルキルビニルエーテル類およびアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン等の共重合性モノマーの1種または2種以上を共重合させてもよい。 In addition to the fluorine-containing monomer, one or more of copolymerizable monomers such as alkyl vinyl ethers and alkyloxyalkyl vinyl ethers represented by the general formula (2), ethylene and propylene may be copolymerized. Good.
 その他に、共重合性モノマーとしては1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、(メタ)アクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が例示できる。本発明にはこれらモノマーから得られた含フッ素結晶性ポリマー、含フッ素非晶性ポリマーをそれぞれ単独或いは2種以上を併用して使用することができる。 Other copolymerizable monomers include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl (meth) acrylate, maleic anhydride, itaconic anhydride, maleic acid, Examples include itaconic acid. In the present invention, the fluorine-containing crystalline polymer and the fluorine-containing amorphous polymer obtained from these monomers can be used alone or in combination of two or more.
 本発明の電極材料の結着剤は、前記含フッ素オレフィン共重合体および前記親水性重合体からなる。この電極材料は、蓄電素子の正極又は負極を製造するために使用される材料である。本発明の電極材料の結着剤は、電極材料と液状媒体とを含むペースト状組成物を製造するための結着剤として適している。特に、電極材料と水性媒体とを含むペースト状組成物を製造するための結着剤として適している。本発明は、また、上記電極材料の結着剤と電極材料と水とを含むペースト状組成物である。以下、特に水性媒体を含むことを特徴とする、結着剤と電極材料と水性媒体とを含むペースト状組成物を水系ペーストともいう。 The binder of the electrode material of the present invention is composed of the fluorine-containing olefin copolymer and the hydrophilic polymer. This electrode material is a material used for manufacturing a positive electrode or a negative electrode of a power storage element. The binder for an electrode material of the present invention is suitable as a binder for producing a paste-like composition containing an electrode material and a liquid medium. In particular, it is suitable as a binder for producing a paste-like composition containing an electrode material and an aqueous medium. The present invention is also a paste-like composition comprising the above-mentioned electrode material binder, electrode material and water. Hereinafter, a paste-like composition containing a binder, an electrode material, and an aqueous medium, which is characterized by containing an aqueous medium, is also referred to as an aqueous paste.
 電極材料には、金属化合物および炭素材料から選ばれる電極活物質または導電助剤を適宜用いることができる。 As the electrode material, an electrode active material or a conductive additive selected from metal compounds and carbon materials can be used as appropriate.
 本発明における電極活物質としては、例えば、リチウム電池類の正極電極活物質としては、一般的には金属酸化物類、金属硫化物類、導電性有機化合物類等が用いられる。特にリチウム金属複合酸化物やリチウム金属フォスフォオリビン類等の金属酸化物類は、安定した電池特性を長期に亘って発現できることから好ましい。これらの金属酸化物類は、Liと他の1種の金属の複合酸化物として使用されることもあるが、Liと他の複数の金属からなる複合酸化物としても用いられる。例えばリチウムニッケル複合酸化物類であると、LiNiOをそのままリチウムイオン電池の正極とすることはほとんど無く、リチウムやニッケルの一部をCo、Mn、Al、B、Cr、Cu、F、Fe、Ga、Mg、Mo、Nb、O、Sn、Ti、V、Zn、Zr、その他等の中から選ばれる1種或いは複数の元素で置き換えられた材料が好ましい。 As the electrode active material in the present invention, for example, metal oxides, metal sulfides, conductive organic compounds and the like are generally used as the positive electrode active material of lithium batteries. In particular, metal oxides such as lithium metal composite oxide and lithium metal phosphoolivine are preferable because stable battery characteristics can be expressed over a long period of time. These metal oxides are sometimes used as a composite oxide of Li and another metal, but are also used as a composite oxide composed of Li and other metals. For example, in the case of lithium nickel composite oxides, LiNiO 2 is hardly used as a positive electrode of a lithium ion battery as it is, and a part of lithium or nickel is Co, Mn, Al, B, Cr, Cu, F, Fe, A material substituted with one or more elements selected from Ga, Mg, Mo, Nb, O, Sn, Ti, V, Zn, Zr, and the like is preferable.
 リチウム電池類の負極電極活物質としては、黒鉛系炭素、非黒鉛系炭素或いは金属系等の材料が好ましく適用できる。例えば炭素材料としては、天然黒鉛、人造黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ炭化物、石油系ピッチ炭化物、ニードルコークス、ピッチコークス、ファーネスブラック、アセチレンブラック、炭素繊維等が好適に用いられる。また、フェノール樹脂やセルロース等の炭化物およびこれら炭化物の部分黒鉛化物も好適に用いられる。スズ系、シリコン系、チタン系、金属窒化物、リチウム、リチウム合金等の金属系も好適に用いられる。さらにリチウムチタン複合酸化物、その他の酸化物系も好適に用いられる。 As the negative electrode active material of lithium batteries, materials such as graphite-based carbon, non-graphite-based carbon, or metal-based materials can be preferably applied. For example, natural graphite, artificial graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, furnace black, acetylene black, carbon fiber, etc. are suitably used as the carbon material. . In addition, carbides such as phenol resin and cellulose and partially graphitized products of these carbides are also preferably used. Metal systems such as tin, silicon, titanium, metal nitride, lithium, and lithium alloys are also preferably used. Furthermore, lithium titanium composite oxide and other oxide systems are also preferably used.
 電気二重層キャパシタ用電極活物質としては活性炭が好適に用いられる。負荷特性や静電容量を高める目的からホウ酸処理を施した活性炭等の改質された活性炭も好適に用いられる。 Activated carbon is suitably used as the electrode active material for the electric double layer capacitor. For the purpose of increasing load characteristics and capacitance, modified activated carbon such as activated carbon treated with boric acid is also preferably used.
 ニッケル水素電池用電極活物質としては、正極にニッケル水酸化物やコバルト酸化物を複合化させたニッケル水酸化物が、負極にニッケル系やチタン系水素吸蔵合金が好適に用いられる。 As an electrode active material for a nickel metal hydride battery, a nickel hydroxide in which nickel hydroxide or cobalt oxide is combined with the positive electrode is preferably used, and a nickel-based or titanium-based hydrogen storage alloy is preferably used for the negative electrode.
 電極活物質の平均粒径は、通常0.05~500μmが好ましく、0.1~100μmがより好ましい。ペースト状組成物において、ペースト状組成物中の、電極活物質の含有量に制限はないが、一般的にはペースト状組成物全体量に対して5~65質量%が好ましく、20~55質量%がより好ましい。5質量%より少なくても形成された電極自体に特性上の不具合は無いが、生産性が低く非効率であることから好ましくない。 The average particle diameter of the electrode active material is usually preferably from 0.05 to 500 μm, more preferably from 0.1 to 100 μm. In the paste-like composition, the content of the electrode active material in the paste-like composition is not limited, but is generally preferably 5 to 65% by mass, and preferably 20 to 55% by mass with respect to the total amount of the paste-like composition. % Is more preferable. Even if the amount is less than 5% by mass, the formed electrode itself has no problem in characteristics, but it is not preferable because of low productivity and inefficiency.
 本発明における有効な導電助剤としては、天然黒鉛、人造黒鉛等のグラファイト類、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック、アセチレンブラック等のカーボンブラック類およびケッチェンブラック、ニードルコークス、カーボンファイバー、カーボンナノチューブ、カーボンナノコイル等が好適に用いられる。導電助剤の平均粒径は、通常3~1000nmが好ましく、5~200nmがより好ましい。繊維状カーボン材料の場合は、長さ100μm以下であるのが取扱容易であることから好ましい。ペースト状組成物における導電助剤の含有量は、電極活物質の種類やその特性に応じて決定されるものであるが、導電助剤の含有量は、通常は電極活物質量に対して0.01~15質量%が好ましく、より好ましくは0.1~12質量%である。 Effective conductive aids in the present invention include graphites such as natural graphite and artificial graphite, carbon blacks such as thermal black, furnace black, channel black, lamp black and acetylene black, ketjen black, needle coke, and carbon fiber. Carbon nanotubes, carbon nanocoils and the like are preferably used. The average particle size of the conductive aid is usually preferably 3 to 1000 nm, more preferably 5 to 200 nm. In the case of a fibrous carbon material, the length is preferably 100 μm or less because it is easy to handle. The content of the conductive additive in the paste-like composition is determined according to the type and characteristics of the electrode active material, but the content of the conductive auxiliary is usually 0 with respect to the amount of the electrode active material. 0.01 to 15% by mass is preferable, and 0.1 to 12% by mass is more preferable.
 蓄電素子の特性を担う主たる材料は電極活物質である。したがって蓄電容量に寄与しない電極活物質以外の材料は求められる機能を発現できる最小量の添加が好ましい。 The main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function.
 本発明のペースト状組成物には、その他にメチルセルロース類、カルボキシメチルセルロース類、クラウンエーテル類、デキストリン類、水溶性食物繊維類等の、ペースト状組成物の分散安定剤および/または増粘剤を混合してもよい。分散安定剤および/または増粘剤の混合量は、ペースト状組成物の全体量に対して0.01~10質量%が好ましい。 In addition, the paste-like composition of the present invention is mixed with a dispersion stabilizer and / or a thickening agent of the paste-like composition such as methylcelluloses, carboxymethylcelluloses, crown ethers, dextrins, and water-soluble dietary fibers. May be. The mixing amount of the dispersion stabilizer and / or thickener is preferably 0.01 to 10% by mass with respect to the total amount of the paste-like composition.
 水系ペースト(すなわち、水性媒体を含むペースト状組成物)に用いられる水性媒体としては、イオン交換水などの水のみでもよいが、電極コンポジットと集電体間の密着性を高める目的から、水性媒体として、水に、水より沸点の高い水溶性化合物を添加した水性媒体を用いることができる。水より沸点の高い水溶性化合物としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラメチレンスルホン、N-メチルピロリドン、エチレングリコール類、プロピレングリコール類、グリセリン等の有機溶媒を例示できる。有機溶媒の含有割合は、通常、水と有機溶媒の合計量に対して0~50質量%が好ましく、0~20質量%がより好ましい。また、水系媒体の含有割合は、水系ペーストの全体量に対して30~90質量%が好ましく、40~75質量%がより好ましい。 The aqueous medium used in the aqueous paste (that is, the paste-like composition containing the aqueous medium) may be water such as ion-exchanged water. For the purpose of improving the adhesion between the electrode composite and the current collector, the aqueous medium As an aqueous medium, a water-soluble compound having a boiling point higher than that of water can be used. Examples of the water-soluble compound having a higher boiling point than water include organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetramethylene sulfone, N-methylpyrrolidone, ethylene glycols, propylene glycols, and glycerin. In general, the content of the organic solvent is preferably 0 to 50% by mass, more preferably 0 to 20% by mass with respect to the total amount of water and the organic solvent. The content ratio of the aqueous medium is preferably 30 to 90% by mass, more preferably 40 to 75% by mass with respect to the total amount of the aqueous paste.
 本発明の水系ペーストの製造は、結着剤、電極活物質、導電助剤および水性媒体を、さらに、必要に応じて上記他の成分を混合することにより、行う。なお、結着剤として水性分散液や水溶液を用いる場合、既に水性媒体が含まれているので、別の水性媒体を加えなくてもよいし、別の水性媒体を追加してもよい。 The production of the aqueous paste of the present invention is carried out by further mixing a binder, an electrode active material, a conductive auxiliary agent and an aqueous medium with the above-mentioned other components as necessary. When an aqueous dispersion or aqueous solution is used as the binder, since an aqueous medium is already contained, another aqueous medium may not be added, or another aqueous medium may be added.
 本発明の水系ペーストを用いた蓄電素子電極の製造方法は、何ら制限されることはなく、通常の汎用手法やその他の手法を用いて製造することが可能である。しかしながら水に容易に溶解或いは分散できる特性を活かせることから水性プロセスを用いた電極の製造方法であるのが好ましい。水性プロセスにおいては電極を構成する全ての材料を水媒体に分散させた水系ペーストを形成して均質に混合し、集電体上に塗布乾燥させた電極コンポジットを形成して蓄電素子用電極が製造される。電極コンポジットを形成するための結着剤の含有量は電極活物質の種類やその特性に応じて決定されるものであるが、電極活物質量に対して0.01~15質量%であるのが一般的であり、本発明の結着剤も同様である。結着剤が0.01質量%より少ないと、カーボン等導電助剤や活物質を均質に配置された電極コンポジット形成が困難となったり、電極を形成できても均質な配置を維持できず好ましい蓄電素子特性を発現できない。一方結着剤が15質量%を超えても電極形成に顕著な不具合は見られないが、含有量に見合う効果はなく、むしろ蓄電機能を有さない材料の高い含有量は蓄電素子特性を低下させる。蓄電素子の特性を担う主たる材料は電極活物質である。したがって蓄電容量に寄与しない電極活物質以外の材料は求められる機能を発現できる最小量の添加が好ましい。より好ましくは0.1~12質量%である。 The method for producing a storage element electrode using the aqueous paste of the present invention is not limited in any way, and can be produced using a general general technique or other techniques. However, an electrode manufacturing method using an aqueous process is preferred because it takes advantage of the property of being easily dissolved or dispersed in water. In the aqueous process, an aqueous paste in which all materials constituting the electrode are dispersed in an aqueous medium is formed and mixed homogeneously, and an electrode composite is formed by applying and drying on a current collector to produce an electrode for a storage element. Is done. The content of the binder for forming the electrode composite is determined according to the type and characteristics of the electrode active material, and is 0.01 to 15% by mass with respect to the amount of the electrode active material. The same applies to the binder of the present invention. When the amount of the binder is less than 0.01% by mass, it is difficult to form an electrode composite in which a conductive auxiliary agent such as carbon and an active material are uniformly arranged, or even if an electrode can be formed, it is not preferable to maintain a uniform arrangement. The storage element characteristics cannot be expressed. On the other hand, even if the binder exceeds 15% by mass, there is no remarkable defect in electrode formation, but there is no effect commensurate with the content. Rather, a high content of a material that does not have a power storage function deteriorates the characteristics of the power storage device. Let The main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function. More preferably, the content is 0.1 to 12% by mass.
 ペースト状組成物から蓄電素子電極を形成する方法としては、例えば集電体に本発明のペースト状組成物を塗布し、乾燥し、熱処理する方法が挙げられる。集電体への塗布に好ましい水系ペーストの粘度は、塗布方法にも依存するが、一般には100~10000mPa・Sが好ましいとされている。粘度が100mPa・Sより小さいと塗膜の形態保持が困難となることがあり、膜厚を制御し難くなることから好ましくない。一方、粘度が10000mPa・Sよりも大きいと塗膜に凹凸を生じて均一成形し難くなることから好ましくない。水系ペーストの粘度は、より好ましくは300~8000mPa・Sであり、さらに好ましくは500~6000mPa・Sである。これらの範囲であれば、膜厚制御が容易であり均質な塗膜を形成できる。 Examples of a method for forming a storage element electrode from a paste-like composition include a method in which a paste-like composition of the present invention is applied to a current collector, dried and heat-treated. The viscosity of the water-based paste that is preferable for application to the current collector depends on the application method, but is generally preferably 100 to 10,000 mPa · S. If the viscosity is less than 100 mPa · S, it may be difficult to maintain the form of the coating film, and it is difficult to control the film thickness. On the other hand, when the viscosity is greater than 10,000 mPa · S, it is not preferable because unevenness is generated in the coating film and uniform molding becomes difficult. The viscosity of the aqueous paste is more preferably 300 to 8000 mPa · S, and further preferably 500 to 6000 mPa · S. Within these ranges, the film thickness can be easily controlled and a uniform coating film can be formed.
 集電体としては、リチウムイオン電池の正極にアルミニウム箔、負極に銅箔やアルミニウム箔、キャパシタ電極にはアルミニウム箔、ニッケル水素電池電極にはニッケル箔やニッケルメッシュ等が用いられる。本発明の水系ペーストからは、これらいずれの集電体にも良好な電極コンポジット層を形成できる。その他の集電体上にも良好な塗膜を形成できる。 As the current collector, an aluminum foil is used for a positive electrode of a lithium ion battery, a copper foil or an aluminum foil is used for a negative electrode, an aluminum foil is used for a capacitor electrode, a nickel foil or a nickel mesh is used for a nickel metal hydride battery electrode. A good electrode composite layer can be formed on any of these current collectors from the aqueous paste of the present invention. A good coating film can be formed on other current collectors.
 本発明の水系ペーストは、蓄電素子の電極コンポジット層形成に好適である。蓄電素子としては、リチウムイオン電池、リチウムポリマー電池、リチウム一次電池といったリチウム電池類やニッケル水素電池等の一次、二次電池類、電気二重層キャパシター等のキャパシタ類が好適である。 The aqueous paste of the present invention is suitable for forming an electrode composite layer of a storage element. As the storage element, primary batteries such as lithium batteries such as lithium ion batteries, lithium polymer batteries, and lithium primary batteries, nickel hydride batteries, secondary batteries, and capacitors such as electric double layer capacitors are suitable.
 本発明の結着剤を用いて製造されたコンポジット電極は、上述のとおり電極活物質、導電助剤、結着剤、その他のコンポジット構成成分を微細に均質に配置した構造を実現できることから、スムースな電荷移動反応を発現できる。こうした特長を持つ蓄電素子は、大きな充放電容量と高いエネルギ密度を持ち、優れたサイクル特性、高負荷特性、低温特性、高温特性、安全性を実現できる。特にパワーの取れるエネルギ密度および高負荷特性と、信頼性の高い安全性を両立できることから、中・大型素子においても高出力、高エネルギ密度、高い信頼性と安全性を実現できる。 Since the composite electrode manufactured using the binder of the present invention can realize a structure in which an electrode active material, a conductive additive, a binder, and other composite components are finely and homogeneously arranged as described above, it is smooth. Can develop a positive charge transfer reaction. A power storage device having such features has a large charge / discharge capacity and high energy density, and can realize excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. In particular, it is possible to achieve both high energy density and high load characteristics with high power and highly reliable safety, so that high output, high energy density, high reliability and safety can be realized even in medium and large-sized devices.
 以下に実施例によって本発明を更に具体的に説明するが、本発明はこれらによって制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 (1)側鎖に親水性基を有する含フッ素オレフィン共重合体の水性分散液(A)の合成
 250mLの耐圧重合槽にエチルビニルエーテル(以下EVEと称する。)3.1g、シクロヘキシルビニルエーテル(以下CHVEと称する。)26.9g、4-ヒドロキシブチルビニルエーテル(以下HBVEと称する。)19.8g、メチルエチルケトン(以下MEKと称する。)67g、t-ブチルパーオキシピバレート0.6gを仕込み、冷却して脱気後窒素ガス加圧する操作を繰り返して溶存空気を除去した後、テトラフルオロエチレン(以下TFEと称する。)50.3gを仕込んで、50℃にて重合反応を行い、24時間後残圧パージして重合反応を終了した。次にマグネシウムとアルミニウムの複塩からなるキョーワード500SH(マグネシウムとアルミニウムの複塩からなるハイドロタルサイト、協和化学工業株式会社製)2gを加えて室温で30分間撹拌した後固形分を除去したら、ポリマー濃度60.3質量%の溶液が得られた。このポリマーのフッ素含有量は29.5質量%、数平均分子量は10000であった。
(1) Synthesis of aqueous dispersion (A) of fluorine-containing olefin copolymer having a hydrophilic group in the side chain 3.1 g of ethyl vinyl ether (hereinafter referred to as EVE), cyclohexyl vinyl ether (hereinafter referred to as CHVE) in a 250 mL pressure-resistant polymerization tank 26.9 g, 4-hydroxybutyl vinyl ether (hereinafter referred to as HBVE) 19.8 g, methyl ethyl ketone (hereinafter referred to as MEK) 67 g, and t-butyl peroxypivalate 0.6 g were charged and cooled. After deaeration, the nitrogen gas pressurization operation is repeated to remove dissolved air, and then 50.3 g of tetrafluoroethylene (hereinafter referred to as TFE) is charged, the polymerization reaction is performed at 50 ° C., and the residual pressure purge is performed after 24 hours. Then, the polymerization reaction was completed. Next, after adding 2 g of Kyoward 500SH consisting of a double salt of magnesium and aluminum (hydrotalcite consisting of a double salt of magnesium and aluminum, manufactured by Kyowa Chemical Industry Co., Ltd.) and stirring for 30 minutes at room temperature, the solid content was removed. A solution having a polymer concentration of 60.3% by mass was obtained. The polymer had a fluorine content of 29.5% by mass and a number average molecular weight of 10,000.
 このポリマー溶液166gに無水コハク酸1.8gとトリエチルアミン0.05gを加え、70℃にて6時間エステル化させた後、トリエチルアミン1.3gを加え、30℃にて20分間撹拌してカルボン酸を部分中和した。続いてイオン交換水145gを撹拌しながらゆっくり加えた後、MEKを減圧留去してポリマー濃度40.5質量%の含フッ素共重合体水溶液(A)を得た。なお水溶液(A)に残存するMEKは、ガスクロマトグラフ分析から水溶液の総量に対して0.3質量%未満であった。 To 166 g of this polymer solution, 1.8 g of succinic anhydride and 0.05 g of triethylamine were added, esterified at 70 ° C. for 6 hours, 1.3 g of triethylamine was added, and the mixture was stirred at 30 ° C. for 20 minutes to remove the carboxylic acid. Partial neutralization. Subsequently, 145 g of ion-exchanged water was slowly added with stirring, and then MEK was distilled off under reduced pressure to obtain a fluorine-containing copolymer aqueous solution (A) having a polymer concentration of 40.5% by mass. The MEK remaining in the aqueous solution (A) was less than 0.3% by mass based on the total amount of the aqueous solution from gas chromatographic analysis.
 (2)側鎖に親水性基を有する含フッ素オレフィン共重合体の水性分散液(B)の合成
 250mLの耐圧重合槽にEVE10.3g、CHVE16.7g、HBVE15.4g、10-ウンデセン酸(以下UDAと称する。)4.9g、MEK67g、t-ブチルパーオキシピバレート0.6g、キョーワード500SH2gを仕込み、冷却して脱気後窒素ガス加圧する操作を繰り返して溶存空気を除去した後、クロロトリフルオロエチレン(以下CTFEと称する。)52.2gを仕込んで、50℃にて重合反応を行い、24時間後残圧パージして重合反応を終了し、固形分を除去したら、ポリマー濃度60.3質量%の溶液が得られた。このポリマーのフッ素含有量は20.2質量%、GPCによるポリスチレン換算数平均分子量は11000であった。
(2) Synthesis of aqueous dispersion (B) of fluorine-containing olefin copolymer having a hydrophilic group in the side chain 10.3 g of EVE, 16.7 g of CHVE, 15.4 g of HBVE, 10-undecenoic acid (hereinafter, referred to as 250 mL) 4.9 g, MEK 67 g, t-butyl peroxypivalate 0.6 g, and Kyoward 500 SH 2 g are charged, and after cooling, degassing, and nitrogen gas pressurization are repeated to remove dissolved air, and then chloro After charging 52.2 g of trifluoroethylene (hereinafter referred to as CTFE) and carrying out the polymerization reaction at 50 ° C., purging the residual pressure after 24 hours to complete the polymerization reaction, and removing the solid content, the polymer concentration 60. A 3% by weight solution was obtained. The polymer had a fluorine content of 20.2 mass% and a polystyrene-reduced number average molecular weight by GPC of 11,000.
 このポリマー溶液167gにトリエチルアミン1.85gを加えて中和し、イオン交換水145gを撹拌しながらゆっくり加えた。続いてMEKを減圧留去し、ポリマー濃度40質量%の含フッ素共重合体水溶液(B)を得た。この水溶液(B)に残存するMEKは水溶液の総量に対して0.4質量%未満であった。 To 1.67 g of this polymer solution, 1.85 g of triethylamine was added for neutralization, and 145 g of ion-exchanged water was slowly added with stirring. Subsequently, MEK was distilled off under reduced pressure to obtain a fluorine-containing copolymer aqueous solution (B) having a polymer concentration of 40% by mass. MEK remaining in the aqueous solution (B) was less than 0.4% by mass relative to the total amount of the aqueous solution.
 (3)両末端に疎水性の含フッ素有機基を有する線状の親水性重合体水溶液(C)の合成
 酢酸ビニル1.7gとアクリル酸4.3gの混合液に、一般式(4)におけるRf6およびRf7が-CF(CF)OCFCF(CF)O(CFFである過酸化フルオロアルカノイル9.9gを溶解させた300gのジクロロペンタフルオロプロパン(商品名:アサヒクリンAK225(旭硝子社製))溶液を加えて、窒素気流下の30℃にて反応させた。7時間後、生成物をメタノールに溶解させた後ヘキサン中に析出させて精製し、乾燥後、得られた精製物のメタノール溶液に40質量%の水酸化ナトリウム水溶液9.5mlをゆっくり滴下させたら白色の沈殿物が得られた。この白色沈殿物をメタノール洗浄し、乾燥させたら、分子鎖両末端に-CF(CF)OCFCF(CF)O(CFFを持つビニルアルコールとアクリル酸(モル比1対2)の共重合体であってフッ素含有量5.9質量%、数平均分子量11000の含フッ素共重合体5.3gが得られた。これを純水に溶解させたら、ポリマー濃度2.6質量%の含フッ素共重合体水溶液(C)の202gが得られた。
(3) Synthesis of linear hydrophilic polymer aqueous solution (C) having hydrophobic fluorine-containing organic groups at both ends In a mixed solution of 1.7 g of vinyl acetate and 4.3 g of acrylic acid, 300 g of dichloropentafluoropropane (trade name: Asahi) in which 9.9 g of fluoroalkanoyl peroxide in which R f6 and R f7 are —CF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F was dissolved Clean AK225 (Asahi Glass Co., Ltd.) solution was added and reacted at 30 ° C. under a nitrogen stream. After 7 hours, the product was dissolved in methanol, purified by precipitation in hexane, dried, and after 9.5 ml of 40% by weight aqueous sodium hydroxide solution was slowly added dropwise to the methanol solution of the obtained purified product. A white precipitate was obtained. When this white precipitate was washed with methanol and dried, vinyl alcohol having both —CF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F at both ends of the molecular chain and acrylic acid (molar ratio of 1 pair) Thus, 5.3 g of a fluorine-containing copolymer having a fluorine content of 5.9% by mass and a number average molecular weight of 11,000 was obtained. When this was dissolved in pure water, 202 g of a fluorine-containing copolymer aqueous solution (C) having a polymer concentration of 2.6% by mass was obtained.
 (4)両末端に疎水性の含フッ素有機基を有する線状の親水性重合体水溶液(D)の合成
 アクリル酸4.5gに、一般式(4)におけるRf6およびRf7が-CF(CF)O(CFFである過酸化フルオロアルカノイル14.9gを溶解させた300gのジクロロペンタフルオロプロパン(商品名:アサヒクリンAK225)溶液を加えて、窒素気流下の30℃にて反応させた。7時間後、生成物をメタノールに溶解させた後ヘキサン中に析出させて精製し、乾燥させたら分子鎖両末端に-CF(CF)O(CFFを持つポリアクリル酸であってフッ素含有量29.2質量%、数平均分子量1950の含フッ素共重合体5.2gが得られた。これを純水に溶解させたら、ポリマー濃度5.1質量%の含フッ素共重合体水溶液(D)の101gが得られた。
(4) Synthesis of linear hydrophilic polymer aqueous solution (D) having hydrophobic fluorine-containing organic groups at both ends. Rf6 and Rf7 in the general formula (4) are converted to —CF ( A solution of 300 g of dichloropentafluoropropane (trade name: Asahiklin AK225) in which 14.9 g of fluoroalkanoyl peroxide as CF 3 ) O (CF 2 ) 6 F was dissolved was added at 30 ° C. under a nitrogen stream. Reacted. After 7 hours, the product was dissolved in methanol and then precipitated and purified in hexane. When dried, it was polyacrylic acid having —CF (CF 3 ) O (CF 2 ) 6 F at both ends of the molecular chain. As a result, 5.2 g of a fluorine-containing copolymer having a fluorine content of 29.2% by mass and a number average molecular weight of 1950 was obtained. When this was dissolved in pure water, 101 g of a fluorine-containing copolymer aqueous solution (D) having a polymer concentration of 5.1% by mass was obtained.
 (5)両末端に疎水性の含フッ素有機基を有する線状の親水性重合体水溶液(E)の合成
 酢酸ビニル3.0gとアクリル酸9.9g、一般式(4)におけるRf6およびRf7が-CF(CF)O(CFFである過酸化フルオロアルカノイル6.5g、40質量%の水酸化ナトリウム水溶液を18ml用いたことを除き、例(3)と同様に処理したら分子鎖両末端に-CF(CF)O(CFFを持つビニルアルコールとアクリル酸(モル比1対3)の共重合体であってフッ素含有量2.5質量%、数平均分子量17000の含フッ素共重合体4.5gが得られた。これを純水に溶解させたら、ポリマー濃度2.1質量%の含フッ素共重合体水溶液(E)の210gが得られた。
(5) Synthesis of linear hydrophilic polymer aqueous solution (E) having hydrophobic fluorine-containing organic groups at both ends 3.0 g vinyl acetate and 9.9 g acrylic acid, R f6 and R in the general formula (4) When treated in the same manner as in Example (3) except that 6.5 g of fluoroalkanoyl peroxide whose f7 is —CF (CF 3 ) O (CF 2 ) 6 F and 18 ml of 40% by mass aqueous sodium hydroxide solution were used. A copolymer of vinyl alcohol and acrylic acid (molar ratio 1 to 3) having —CF (CF 3 ) O (CF 2 ) 6 F at both ends of the molecular chain, the fluorine content is 2.5 mass%, the number average 4.5 g of a fluorine-containing copolymer having a molecular weight of 17000 was obtained. When this was dissolved in pure water, 210 g of a fluorine-containing copolymer aqueous solution (E) having a polymer concentration of 2.1% by mass was obtained.
 (6)両末端に疎水性の含フッ素有機基を有する線状の親水性重合体水溶液(F)の合成
 アクリル酸1.5g、一般式(4)におけるRf6およびRf7が-CF(CF)O(CFFである過酸化フルオロアルカノイルを21.5g用いたことを除き、例(4)と同様に処理したら分子鎖両末端に-CF(CF)O(CFFを持つポリアクリル酸であってフッ素含有量63.3質量%、数平均分子量900の含フッ素共重合体7.7gが得られた。これを純水に溶解させたら、オリゴマー濃度30.2質量%の含フッ素共重合体水溶液(G)の25gが得られた。
(6) Synthesis of linear hydrophilic polymer aqueous solution (F) having hydrophobic fluorine-containing organic groups at both ends 1.5 g of acrylic acid, R f6 and R f7 in formula (4) are —CF (CF 3 ) When treated in the same manner as in Example (4) except that 21.5 g of fluoroalkanoyl peroxide as O (CF 2 ) 6 F was used, both ends of the molecular chain were —CF (CF 3 ) O (CF 2 ) As a result, 7.7 g of a fluorine-containing copolymer having 6 F and a fluorine content of 63.3 mass% and a number average molecular weight of 900 was obtained. When this was dissolved in pure water, 25 g of a fluorine-containing copolymer aqueous solution (G) having an oligomer concentration of 30.2% by mass was obtained.
 (7)ポリテトラフルオロエチレン水性分散液(G)の調製
 100Lの耐圧重合槽にパラフィンワックス736g、超純水59L、APFO15gを仕込んだ。70℃に昇温後、窒素パージしてから脱気し、撹拌しながらTFEを内圧1.9MPaまで導入した。これに0.5質量%ジコハク酸パーオキシド水溶液の1Lを圧入して重合開始した。重合はTFEを供給しながら重合圧力1.9MPaに保持して45分間行った後、90℃まで昇温して2.5質量%のAPFO水溶液1Lを加え、95分間継続した。得られた乳濁液から凝集物やパラフィン等を除去し、ポリテトラフルオロエチレン(以下、PTFEと称する。)含有量26.0質量%、APFO含有量0.05質量%の水性分散液25.1kgを得た。
(7) Preparation of polytetrafluoroethylene aqueous dispersion (G) Paraffin wax 736 g, ultrapure water 59 L, and APFO 15 g were charged into a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, TFE was introduced to an internal pressure of 1.9 MPa while stirring. 1 L of 0.5 mass% disuccinic acid peroxide aqueous solution was injected into this to initiate polymerization. The polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying TFE, and then the temperature was raised to 90 ° C., and 1 L of a 2.5 mass% APFO aqueous solution was added and continued for 95 minutes. Agglomerates, paraffin and the like are removed from the obtained emulsion, and an aqueous dispersion having a polytetrafluoroethylene (hereinafter referred to as PTFE) content of 26.0% by mass and an APFO content of 0.05% by mass 25. 1 kg was obtained.
 この水性分散液に0.2kgのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、0.3kgのアニオン交換樹脂(三菱化学製ダイアイオンWA-30)を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28質量%アンモニア水0.04kgを加え、相分離法により80℃にて10時間濃縮し、上澄み液を除去した後15gのパーフルオロへキサン酸アンモニウム(以下APFHと称する。)を新たに加えて、PTFE含有量59.7質量%、APFH含有量0.15質量%、APFO含有量0.01質量%のPTFE水性分散液(G)10.5kgを得た。 To this aqueous dispersion, 0.2 kg of a nonionic surfactant mainly composed of polyoxyethylene (average polymerization degree 9) lauryl ether was added and dissolved, and 0.3 kg of an anion exchange resin (Diaion WA—manufactured by Mitsubishi Chemical) was dissolved. 30) was dispersed and stirred for 24 hours, followed by filtration to remove the anion exchange resin. To the filtrate was added 0.04 kg of 28% by mass aqueous ammonia, concentrated by a phase separation method at 80 ° C. for 10 hours, and after removing the supernatant, 15 g of ammonium perfluorohexanoate (hereinafter referred to as APFH) was newly added. In addition, PTFE aqueous dispersion (G) 10.5 kg having a PTFE content of 59.7% by mass, an APFH content of 0.15% by mass, and an APFO content of 0.01% by mass was obtained.
 (8)TFE-プロピレ共重合体水性分散液(H)の調製
 3Lの耐圧重合槽にイオン交換水1.5L、リン酸水素二ナトリウム12水和物40g、水酸化ナトリウム0.5g、第3級ブタノール198g、ラウリル硫酸ナトリウム(以下SLSと称する。)8g、過硫酸アンモニウム2.5gを仕込んで溶解させた。続いて0.4gのエチレンジアミン四酢酸二ナトリウム塩・2水和物と0.3gの硫酸第一鉄7水和物を溶解させた水溶液200gを投入後、撹拌しながらモル比85/15のTFE/プロピレン(以下Prと称する。)混合ガスを投入して内圧2.5MPaとし、2.5質量%のロンガリット水溶液を添加して重合開始した。重合はモル比56/44のTFE/Pr混合ガス800gを追加供給しながら重合圧2.5MPaに保持して5.5時間行った。得られた乳濁液から凝集物等を除去し、TFEとPrのコポリマー含有量30.8質量%であるTFE-Pr共重合体水性分散液(H)の2520gを得た。
(8) Preparation of TFE-propylene copolymer aqueous dispersion (H) 1.5 L of ion exchange water, 40 g of disodium hydrogenphosphate dodecahydrate, 0.5 g of sodium hydroxide, 198 g of grade butanol, 8 g of sodium lauryl sulfate (hereinafter referred to as SLS), and 2.5 g of ammonium persulfate were charged and dissolved. Subsequently, 200 g of an aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved was added, and then the TFE with a molar ratio of 85/15 was stirred. / Propylene (hereinafter referred to as Pr) mixed gas was charged to an internal pressure of 2.5 MPa, and 2.5% by mass of Rongalite aqueous solution was added to initiate polymerization. The polymerization was carried out for 5.5 hours while maintaining a polymerization pressure of 2.5 MPa while additionally supplying 800 g of a TFE / Pr mixed gas having a molar ratio of 56/44. Aggregates and the like were removed from the obtained emulsion to obtain 2520 g of an aqueous TFE-Pr copolymer dispersion (H) having a TFE / Pr copolymer content of 30.8% by mass.
 (9)リチウムイオン電池用正極活物質(I)[リチウム(ニッケル・マンガン・コバルト)複合酸化物]の調製
 炭酸ニッケルを大気中700℃にて15時間焼成して調製した酸化ニッケル3.3モル、炭酸マンガンを大気中700℃にて15時間焼成して調製した二酸化マンガン3.3モル、結晶性の低いオキシ水酸化コバルト3.3モル、炭酸リチウム5.1モルを純水に分散させ、直径0.1mmのジルコニアビーズで2時間ビーズミル処理した後、噴霧乾燥して乾燥粉を得た。これを大気中850℃にて15時間焼成し、平均粒径3.6μmであるリチウム(ニッケル・マンガン・コバルト)複合酸化物を得た。
(9) Preparation of positive electrode active material for lithium ion battery (I) [lithium (nickel / manganese / cobalt) composite oxide] 3.3 mol of nickel oxide prepared by firing nickel carbonate at 700 ° C. for 15 hours in the air Then, 3.3 mol of manganese dioxide prepared by baking manganese carbonate at 700 ° C. for 15 hours in the air, 3.3 mol of cobalt oxyhydroxide having low crystallinity, and 5.1 mol of lithium carbonate were dispersed in pure water, The beads were milled with zirconia beads having a diameter of 0.1 mm for 2 hours and then spray-dried to obtain a dry powder. This was calcined in the atmosphere at 850 ° C. for 15 hours to obtain a lithium (nickel / manganese / cobalt) composite oxide having an average particle size of 3.6 μm.
 (10)リチウムイオン電池正極活物質(J)[リチウム鉄フォスフェート]の調製
 313.1gの85%リン酸を純水1000gで希釈した。このリン酸水溶液を撹拌しながら100.3gの炭酸リチウムを加えて溶解させ、リン酸リチウムの水溶液を得た。この水溶液に鉄1当量あたりの分子量が92.4であるオキシ水酸化鉄を加え、さらに純水400gを追加してリチウム鉄フォスフェート用原料の水系ペーストを得た。このペーストを直径0.5mmのジルコニアビーズを用いて1時間ビーズミル処理した後、平均分子量8500のデキストリン51.4gを115gの純水に溶かした水溶液を加えて溶解させてから噴霧乾燥し、乾燥粉を得た。この乾燥粉を、水素5%含有窒素ガス0.8リットル/分の流速で供給しながら5℃/分の昇温速度で600℃まで加熱し、600℃にて5時間保持した後、-5℃/分の降温速度設定で冷却して、平均粒径が4.2μmであるリチウム鉄フォスフェートを得た。
(10) Preparation of lithium ion battery positive electrode active material (J) [lithium iron phosphate] 313.1 g of 85% phosphoric acid was diluted with 1000 g of pure water. While stirring this aqueous phosphoric acid solution, 100.3 g of lithium carbonate was added and dissolved to obtain an aqueous solution of lithium phosphate. To this aqueous solution, iron oxyhydroxide having a molecular weight of 92.4 per equivalent of iron was added, and 400 g of pure water was further added to obtain an aqueous paste as a raw material for lithium iron phosphate. This paste was subjected to bead mill treatment for 1 hour using zirconia beads having a diameter of 0.5 mm, and then an aqueous solution prepared by dissolving 51.4 g of dextrin having an average molecular weight of 8500 in 115 g of pure water was dissolved and spray-dried to obtain a dry powder. Got. The dry powder was heated to 600 ° C. at a temperature rising rate of 5 ° C./min while supplying 5% hydrogen containing nitrogen gas at a flow rate of 0.8 liter / min, and kept at 600 ° C. for 5 hours. Cooling was performed at a temperature lowering rate setting of ° C./min to obtain lithium iron phosphate having an average particle diameter of 4.2 μm.
 (11)リチウムイオン電池負極活物質(K)[不均化シリコン]の調製
 平均粒径0.38μmの一酸化ケイ素240gを630gの純水加えて撹拌し、得られたペーストから噴霧乾燥して乾燥粉を調製した。この乾燥粉をアルゴンガス1リットル/分の流速で供給しながら5℃/分の昇温速度で1200℃まで加熱し、1200℃にて5時間保持した後、-5℃/分の降温速度設定で冷却して、平均粒径が4.2μmである不均化シリコンを得た。
(11) Preparation of Lithium Ion Battery Negative Electrode Active Material (K) [Disproportionated Silicon] 240 g of silicon monoxide having an average particle size of 0.38 μm was added to 630 g of pure water, stirred, and spray-dried from the obtained paste. A dry powder was prepared. While supplying this dry powder at a flow rate of 1 liter / min of argon gas, it is heated to 1200 ° C. at a temperature increase rate of 5 ° C./min, held at 1200 ° C. for 5 hours, and then a temperature decrease rate of −5 ° C./min is set. To obtain disproportionated silicon having an average particle diameter of 4.2 μm.
 (12)ホウ素変性アセチレンブラック(L)
 入手したホウ素変性アセチレンブラック(L)はホウ素含有量1.07質量%、炭素含有量95.3質量%であり、汎用のアセチレンブラックより水になじみ易い特性を有していた。このホウ素変性アセチレンブラック(L)は、750~800℃に制御したチューブ炉に、アセチレンガスを200リットル/時間、ホウ酸トリメチルを30ミリリットル/時間の供給速度で噴霧し、ホウ素含有のアセチレンブラックを得、このホウ素含有のアセチレンブラックをアルゴン雰囲気下2800℃にて処理することで得られる。
(12) Boron-modified acetylene black (L)
The obtained boron-modified acetylene black (L) had a boron content of 1.07% by mass and a carbon content of 95.3% by mass, and had characteristics that were easier to adapt to water than general-purpose acetylene black. This boron-modified acetylene black (L) is sprayed into a tube furnace controlled at 750 to 800 ° C. at a feed rate of acetylene gas of 200 liters / hour and trimethyl borate of 30 ml / hour, and boron-containing acetylene black is obtained. The boron-containing acetylene black is obtained by treating at 2800 ° C. in an argon atmosphere.
 その他、リチウムイオン二次電池用正極活物質であるリチウムコバルト複合酸化物、スピネル型リチウムマンガン複合酸化物は既存の方法により合成し、リチウムイオン二次電池用負極活物質である天然黒鉛、ニッケル水素二次電池用正極活物質である水酸化ニッケル、電気二重層キャパシタ用電極活物質である活性炭は市販品を用いた。 In addition, lithium cobalt composite oxide and spinel-type lithium manganese composite oxide, which are positive electrode active materials for lithium ion secondary batteries, are synthesized by existing methods, and natural graphite, nickel hydrogen, which are negative electrode active materials for lithium ion secondary batteries. Commercially available products were used for nickel hydroxide as a positive electrode active material for secondary batteries and activated carbon as an electrode active material for electric double layer capacitors.
 (例1) (実施例)
 含フッ素共重合体の水性分散液(A)の0.91gを添加したイオン交換水75gにアセチレンブラック2.3gを加えて、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにポリテトラフルオロエチレン水性分散液(G)2.49g[(A)と(G)のポリマー成分の和は1.85gに相当]と25gのイオン交換水に分散させた市販のリチウムコバルト複合酸化物60gを加えて上記と同様にして1分間撹拌し、水系ペースト(1)を得た。得られた水系ペースト(1)は、電極活物質、導電助剤、結着剤が微細で均質に分散されていた。
(Example 1) (Example)
While adding 2.3 g of acetylene black to 75 g of ion-exchanged water to which 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer was added, the three-one motor equipped with the disk turbine blades was rotated at a speed of 450 rpm. Stir for minutes to disperse. To this, 2.49 g of an aqueous polytetrafluoroethylene dispersion (G) (the sum of the polymer components of (A) and (G) corresponds to 1.85 g) and a commercially available lithium cobalt composite dispersed in 25 g of ion-exchanged water 60 g of oxide was added and stirred for 1 minute in the same manner as above to obtain an aqueous paste (1). In the obtained aqueous paste (1), the electrode active material, the conductive auxiliary agent, and the binder were finely and uniformly dispersed.
 <密着性評価>
 続いてアルミシート上に水系ペースト(1)を塗工して120℃にて2時間乾燥後、200℃にて10分間熱処理してロールプレス圧延し、電極コンポジット層膜厚を120μmに調製した。得られた電極板から幅2cm、長さ10cmの大きさに切り抜いた試験片を直径2mmの丸棒に沿って100回折り曲げ、電極コンポジット層の強度と電極活物質保持力を調べた。集電体(アルミシート)との密着性は、100マスの碁盤目状に浅く切り込みを入れ、粘着テープ(「セロテープ(登録商標)」)を軽く接着させてから引き剥がして残存する目数を計測して評価した。その結果を表1に示した。表1より水系ペースト(1)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していた。
<Adhesion evaluation>
Subsequently, the aqueous paste (1) was applied onto the aluminum sheet, dried at 120 ° C. for 2 hours, heat-treated at 200 ° C. for 10 minutes and roll-press-rolled to adjust the electrode composite layer thickness to 120 μm. A test piece cut out to a size of 2 cm in width and 10 cm in length from the obtained electrode plate was bent 100 times along a round bar having a diameter of 2 mm, and the strength of the electrode composite layer and the electrode active material holding power were examined. Adhesion with the current collector (aluminum sheet) is determined by the number of meshes remaining by peeling off the adhesive tape ("Serotape (registered trademark)") after lightly cutting it into a 100 square grid. Measured and evaluated. The results are shown in Table 1. From Table 1, the positive electrode plate for a lithium ion battery formed from the aqueous paste (1) had good electrode active material carrying power and adhesion with the current collector.
 <電池特製評価>
 次に上記電極板を所定の大きさに打抜いた正極板とリチウム箔を所定の大きさに切り出した負極板それぞれにリード線を取り付け、ポリオレフィン系セパレータを介してステンレス製セルケースに収納し、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入してリチウム二次電池のモデルセルを得た。このモデルセルを充放電試験機に取り付け、25℃において充電電量0.6mA/cmで電池電圧4.3Vになるまで充電した後、放電電量2.0mA/cm(1.25Cレートに相当)で2.0Vになるまで放電する充放電の繰り返しを100サイクル行った結果も併せて表1に示した。表1からこのモデルセルは蓄電素子特性良好なリチウム二次電池であることがわかった。
<Battery special evaluation>
Next, a lead wire is attached to each of the positive electrode plate obtained by punching out the electrode plate to a predetermined size and the negative electrode plate obtained by cutting out lithium foil to a predetermined size, and stored in a stainless steel cell case via a polyolefin-based separator, An electrolyte solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solution of ethylene carbonate and diethylene carbonate was injected to obtain a model cell of a lithium secondary battery. Attach the model cell charge and discharge tester, corresponds to the charge coulometry 0.6 mA / cm 2 was charged to a battery voltage 4.3V, the discharge coulometric 2.0mA / cm 2 (1.25C rate at 25 ° C. Table 1 also shows the results of repeating 100 cycles of charging and discharging for discharging until 2.0 V. From Table 1, it was found that this model cell was a lithium secondary battery with good storage element characteristics.
 (例2) (実施例)
 含フッ素共重合体の水性分散液(A)の0.91gに替えて含フッ素共重合体の水溶液(B)の0.93gを用いたことを除き、例1と同様にして蓄電素子電極形成用水系ペースト(2)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果、水系ペースト(2)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していることがわかった。
(Example 2) (Example)
A storage element electrode was formed in the same manner as in Example 1 except that 0.93 g of the aqueous solution (B) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. An aqueous paste (2) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (2) has a good electrode active material supporting force and an adhesive force with the current collector.
 例1と同様にして組んだモデルセルの電池評価の結果も併せて示した。表からこのモデルセルは蓄電素子特性良好なリチウム二次電池であることがわかった。 The results of battery evaluation of model cells assembled in the same manner as in Example 1 are also shown. From the table, it was found that this model cell was a lithium secondary battery with good power storage device characteristics.
 (例3) (実施例)
 含フッ素共重合体の水性分散液(A)の0.91gに替えて含フッ素共重合体の水溶液(C)の14.2gを用いたことを除き、例1と同様にして蓄電素子電極形成用水系ペースト(3)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果、水系ペースト(3)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していることがわかった。
(Example 3) (Example)
Formation of a storage element electrode in the same manner as in Example 1 except that 14.1 g of the aqueous solution (C) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. An aqueous paste (3) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (3) had a good electrode active material carrying power and an adhesive force with the current collector.
 例1と同様にして組んだモデルセルの電池評価の結果も併せて示した。表からこのモデルセルは蓄電素子特性良好なリチウム二次電池であることがわかった。 The results of battery evaluation of model cells assembled in the same manner as in Example 1 are also shown. From the table, it was found that this model cell was a lithium secondary battery with good power storage device characteristics.
 (例4) (比較例)
 含フッ素共重合体の水性分散液(A)の0.91gに替えて含フッ素共重合体の水溶液(E)の17.6gを用いたことを除き、例1と同様にして水系ペースト(4)を調製したが、ペーストがゲル状に増粘してしまったため均質な電極コンポジット層を塗工することができなかった。これは、フッ素含有量の小さい(E)の共重合体の分散力不足のためと判断された。
(Example 4) (Comparative example)
An aqueous paste (4) was used in the same manner as in Example 1 except that 17.6 g of the aqueous solution (E) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. ) Was prepared, but the paste had thickened into a gel, so that a homogeneous electrode composite layer could not be applied. This was judged to be due to insufficient dispersibility of the copolymer (E) having a small fluorine content.
 (例5) (比較例)
 含フッ素共重合体の水性分散液(A)の0.91gに替えて含フッ素共重合体の水溶液(F)の1.23gを用いたことを除き、例1と同様にして水系ペースト(5)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果集電体との密着性が不足していることがわかった。これは(F)のオリゴマの分子量が小さいため、密着性を発現できなかったためと判断された。
(Example 5) (Comparative example)
An aqueous paste (5) was prepared in the same manner as in Example 1, except that 1.23 g of the aqueous solution (F) of the fluorinated copolymer was used instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer. The electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the adhesion with the current collector was insufficient. This was considered to be because the molecular weight of the oligomer (F) was small, so that adhesion could not be expressed.
 例1と同様にして組んだモデルセルの電池評価の結果も併せて示した。表からこのモデルセルは蓄電素子として実用的な寿命を有していないことがわかった。 The results of battery evaluation of model cells assembled in the same manner as in Example 1 are also shown. From the table, it was found that this model cell does not have a practical life as a power storage element.
 (例6) (実施例)
 リチウムコバルト複合酸化物60gに替えて市販のスピネル型リチウムマンガン複合酸化物60gを用いたことを除き、例1と同様にして蓄電素子電極形成用水系ペースト(6)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果、水系ペースト(6)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していることがわかった。
(Example 6) (Example)
An aqueous paste (6) for forming a storage element electrode was obtained in the same manner as in Example 1 except that 60 g of a commercially available spinel type lithium manganese composite oxide was used instead of 60 g of the lithium cobalt composite oxide, and an electrode plate was prepared. The strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the water-based paste (6) had a good electrode active material carrying power and an adhesive force with the current collector.
 (例7) (実施例)
 含フッ素共重合体の水性分散液(A)の0.91gに替えて(A)の0.46gを、ポリテトラフルオロエチレン水性分散液(G)の2.49gに替えて(G)の2.8gを、アセチレンブラックの2.3gに替えてホウ素変性アセチレンブラック(L)の2.3gを、市販のリチウムコバルト複合酸化物60gに替えてリチウム(ニッケル・マンガン・コバルト)複合酸化(I)の60gを用いたことを除き、例1と同様にして蓄電素子電極形成用水系ペースト(7)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果、水系ペースト(7)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していることがわかった。
(Example 7) (Example)
Instead of 0.91 g of the aqueous dispersion (A) of the fluorinated copolymer, 0.46 g of (A) is replaced with 2.49 g of the aqueous polytetrafluoroethylene dispersion (G), and 2 of (G) 0.8 g is replaced with 2.3 g of acetylene black, 2.3 g of boron-modified acetylene black (L) is replaced with 60 g of commercially available lithium cobalt composite oxide, and lithium (nickel / manganese / cobalt) composite oxide (I) A water-based paste for forming a storage element electrode (7) was obtained in the same manner as in Example 1 except that 60 g of was used, and an electrode plate was prepared. The strength of the electrode composite layer, the electrode active material holding power, and the current collector The adhesion with was investigated. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (7) has a good electrode active material supporting force and an adhesive force with the current collector.
 (例8) (実施例)
 含フッ素共重合体の水性分散液(A)の0.46gとポリテトラフルオロエチレン水性分散液(G)の2.8gに替えて(A)の4.57gを用いたことを除き、例6と同様にして水系ペースト(8)を得、電極板を作製して、電極コンポジット層の強度と電極活物質保持力および集電体との密着性を調べた。その結果、水系ペースト(8)から形成されたリチウムイオン電池用正極板は良好な電極活物質担持力と集電体との密着力を有していることがわかった。
(Example 8) (Example)
Example 6 except that 0.46 g of the aqueous dispersion (A) of the fluorinated copolymer and 2.8 g of the aqueous polytetrafluoroethylene dispersion (G) were used instead of 4.57 g of (A). In the same manner as above, an aqueous paste (8) was obtained, an electrode plate was prepared, and the strength of the electrode composite layer, the electrode active material holding power, and the adhesion with the current collector were examined. As a result, it was found that the positive electrode plate for a lithium ion battery formed from the aqueous paste (8) had a good electrode active material carrying force and an adhesive force with the current collector.
 (例9) (実施例)
 含フッ素共重合体の水溶液(A)の0.91gに替えて含フッ素共重合体の水溶液(D)の3.63gを、ポリテトラフルオロエチレン水性分散液(G)の2.49gに替えて(G)の1.87gとTFE-プロピレ共重合体水性分散液(H)の1.84gを、市販のリチウムコバルト複合酸化物60gに替えてリチウム(ニッケル・マンガン・コバルト)複合酸化(I)の60gを用いたことを除き例1と同様にして水系ペースト(9)を調製し、リチウムイオン電池用正極板を得た。この電極板は良好な電極活物質担持力と集電体との密着性を有していた。
(Example 9) (Example)
Instead of 0.91 g of the aqueous solution (A) of the fluorinated copolymer, 3.63 g of the aqueous solution (D) of the fluorinated copolymer was replaced with 2.49 g of the aqueous polytetrafluoroethylene dispersion (G). Lithium (nickel / manganese / cobalt) composite oxidation (I) instead of 1.87 g of (G) and 1.84 g of TFE-propylene copolymer aqueous dispersion (H) in place of 60 g of commercially available lithium cobalt composite oxide An aqueous paste (9) was prepared in the same manner as in Example 1 except that 60 g of was used to obtain a positive electrode plate for a lithium ion battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
 (例10) (実施例)
 リチウム(ニッケル・マンガン・コバルト)複合酸化(I)の60gに替えてリチウム鉄フォスフェート(J)の60gを用いたことを除き例7と同様にして蓄電素子電極形成用水系ペースト(10)を調製し、リチウムイオン電池用正極板を得た。この電極板は良好な電極活物質担持力と集電体との密着性を有していた。
(Example 10) (Example)
An aqueous paste (10) for forming a storage element electrode was obtained in the same manner as in Example 7 except that 60 g of lithium iron phosphate (J) was used instead of 60 g of lithium (nickel / manganese / cobalt) composite oxide (I). It prepared and obtained the positive electrode plate for lithium ion batteries. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
 表には例1と同様にして組んだモデルセルの電池評価の結果も併せて示した。表からこのモデルセルは蓄電素子特性良好なリチウム二次電池であることがわかった。 The table also shows the results of battery evaluation of model cells assembled in the same manner as in Example 1. From the table, it was found that this model cell was a lithium secondary battery with good power storage device characteristics.
 (例11) (実施例)
 リチウムコバルト複合酸化物60gに替えて不均化シリコン(K)の30gと電極活物質として市販の天然黒鉛(平均粒径3.3μm)の30gを用いたことを除き例1と同様にして水系ペースト(11)を調製し、リチウムイオン電池用負極板を得た。この電極板は良好な電極活物質担持力と集電体との密着性を有していた。
(Example 11) (Example)
An aqueous system was used in the same manner as in Example 1 except that 30 g of disproportionated silicon (K) and 30 g of commercially available natural graphite (average particle size: 3.3 μm) were used instead of 60 g of lithium cobalt composite oxide. A paste (11) was prepared to obtain a negative electrode plate for a lithium ion battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
 (例12) (実施例)
 リチウムコバルト複合酸化物60gに替えて市販の活性炭(BET比表面積が2900m/g)60gを用いたことを除き例1と同様にして水系ペースト(12)を調製し、電気二重層キャパシタ用電極板を得た。この電極板は良好な電極活物質担持力と集電体との密着性を有していた。
(Example 12) (Example)
An aqueous paste (12) was prepared in the same manner as in Example 1 except that 60 g of commercially available activated carbon (BET specific surface area of 2900 m 2 / g) was used instead of 60 g of lithium cobalt composite oxide, and an electrode for an electric double layer capacitor I got a plate. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
 (例13) (実施例)
 アセチレンブラック2.3gに代えてオキシ水酸化コバルト5.0gを、リチウムコバルト複合酸化物60g替えて市販の水酸化ニッケル(平均粒径8.0μm)60gを用いたことを除き例1と同様にして水系ペースト(13)を調製し、ニッケル水素電池用電極板を得た。この電極板は良好な電極活物質担持力と集電体との密着性を有していた。
(Example 13) (Example)
Example 1 was used except that 5.0 g of cobalt oxyhydroxide was used instead of 2.3 g of acetylene black, and 60 g of commercially available nickel hydroxide (average particle size: 8.0 μm) was used instead of 60 g of lithium cobalt composite oxide. An aqueous paste (13) was prepared to obtain an electrode plate for a nickel metal hydride battery. This electrode plate had good electrode active material carrying power and adhesion to the current collector.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
EVE:エチルビニルエーテル
CHVE:シクロヘキシルビニルエーテル
HBVE:4-ヒドロキシブチルビニルエーテル
MEK:メチルエチルケトン
TFE:テトラフルオロエチレン
CTFE:クロロトリフルオロエチレン
EVE: ethyl vinyl ether CHVE: cyclohexyl vinyl ether HBVE: 4-hydroxybutyl vinyl ether MEK: methyl ethyl ketone TFE: tetrafluoroethylene CTFE: chlorotrifluoroethylene
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、従来有機溶剤を用いて製造されることが多かった蓄電素子用電極の製造を、水性プロセスを用いて製造することを可能とした。本発明の方法はまた加工性に優れることから、均質に分散された水系ペーストの製造と、集電体との密着性に優れた電極板の製造が可能となり、高耐久で長寿命、およびハイパワーを求められる蓄電素子の製造にも好適に用いられる。さらに本発明の方法は環境負荷および人体の健康を損ねる危険性が小さい安全性高い製造プロセスとしても好適に用いられる。

 なお、2009年5月18日に出願された日本特許出願2009-119962号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The present invention makes it possible to manufacture an electrode for a storage element, which has been conventionally manufactured using an organic solvent, using an aqueous process. Since the method of the present invention is also excellent in workability, it is possible to produce a homogeneously dispersed aqueous paste and an electrode plate with excellent adhesion to the current collector, which has high durability, long life, and high It is also suitably used in the manufacture of power storage elements that require power. Furthermore, the method of the present invention is also suitably used as a highly safe manufacturing process with a low risk of harming the environmental load and human health.

The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2009-119962 filed on May 18, 2009 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (10)

  1.  側鎖に親水性基を有する含フッ素オレフィン共重合体または両末端に疎水性の含フッ素有機基を有する線状の親水性重合体から選ばれる、フッ素含有量が3~60質量%、数平均分子量が1000~1000000の重合体からなる、電極材料の結着剤。 Fluorine content of 3 to 60% by mass, number average selected from fluorine-containing olefin copolymer having hydrophilic group in side chain or linear hydrophilic polymer having hydrophobic fluorine-containing organic group at both ends A binder for electrode materials comprising a polymer having a molecular weight of 1,000 to 1,000,000.
  2.  前記含フッ素オレフィン共重合体が、テトラフルオロエチレンおよびクロロトリフルオロエチレンから選ばれる少なくとも1種のフッ素オレフィンの単位と、水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を有する単位と、を含む共重合体である、請求項1に記載の結着剤。 The fluorine-containing olefin copolymer is at least one selected from a unit of at least one fluorine olefin selected from tetrafluoroethylene and chlorotrifluoroethylene, a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation). The binder of Claim 1 which is a copolymer containing the unit which has a hydrophilic group.
  3.  前記親水性重合体が、水酸基および-COOX基(Xは水素原子またはカチオン)から選ばれる少なくとも1種の親水性基を有する単位を含む線状重合体鎖と、該線状重合体鎖の両末端に存在する、重合開始剤または連鎖移動剤に由来する疎水性の含フッ素有機基と、を有する重合体である、請求項1に記載の結着剤。 The hydrophilic polymer includes a linear polymer chain containing a unit having at least one hydrophilic group selected from a hydroxyl group and a —COOX group (X is a hydrogen atom or a cation), and both the linear polymer chain and the linear polymer chain. The binder according to claim 1, which is a polymer having a hydrophobic fluorine-containing organic group derived from a polymerization initiator or a chain transfer agent present at a terminal.
  4.  疎水性の含フッ素有機基が、炭素原子間にエーテル性酸素原子を有していてもよい炭素数3以上のパーフルオロアルキル基を有する、請求項1または3に記載の結着剤。 The binder according to claim 1 or 3, wherein the hydrophobic fluorine-containing organic group has a perfluoroalkyl group having 3 or more carbon atoms which may have an etheric oxygen atom between carbon atoms.
  5.  請求項1~4のいずれか1項に記載の結着剤と、電極材料と、水とを含むペースト状組成物。 A paste-like composition comprising the binder according to any one of claims 1 to 4, an electrode material, and water.
  6.  さらに、ポリテトラフルオロエチレンを含む、請求項5に記載のペースト状組成物。 The paste composition according to claim 5, further comprising polytetrafluoroethylene.
  7.  前記電極材料が、金属化合物および炭素材料からから選ばれる少なくとも1種からなる、請求項5または6に記載のペースト状組成物。 The paste composition according to claim 5 or 6, wherein the electrode material comprises at least one selected from a metal compound and a carbon material.
  8.  前記電極材料が、蓄電素子の電極の材料である、請求項5~7のいずれか1項に記載のペースト状組成物。 The paste composition according to any one of claims 5 to 7, wherein the electrode material is a material for an electrode of a storage element.
  9.  請求項5~8のいずれか1項に記載のペースト状組成物を集電体に塗布して乾燥する、蓄電素子の電極の製造方法。 A method for producing an electrode of a storage element, wherein the paste composition according to any one of claims 5 to 8 is applied to a current collector and dried.
  10.  蓄電素子がリチウムイオン二次電池、ニッケル水素二次電池または電気二重層キャパシタである、請求項9に記載の電極の製造方法。 The method for producing an electrode according to claim 9, wherein the storage element is a lithium ion secondary battery, a nickel hydride secondary battery or an electric double layer capacitor.
PCT/JP2010/058134 2009-05-18 2010-05-13 Fluorine-containing binder WO2010134465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514390A JPWO2010134465A1 (en) 2009-05-18 2010-05-13 Fluorine-containing binder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-119962 2009-05-18
JP2009119962 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134465A1 true WO2010134465A1 (en) 2010-11-25

Family

ID=43126146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058134 WO2010134465A1 (en) 2009-05-18 2010-05-13 Fluorine-containing binder

Country Status (2)

Country Link
JP (1) JPWO2010134465A1 (en)
WO (1) WO2010134465A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056788A (en) * 2010-09-08 2012-03-22 Toray Ind Inc Carbon nanotube water dispersion
WO2015111724A1 (en) * 2014-01-27 2015-07-30 旭硝子株式会社 Binder for electricity storage devices, binder composition, electrode mixture, electrode and secondary battery
WO2016076371A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
WO2016076370A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JPWO2016158823A1 (en) * 2015-03-27 2017-10-26 株式会社クレハ Carbonaceous molded body for battery electrode and method for producing the same
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
CN110476280A (en) * 2017-03-24 2019-11-19 日产自动车株式会社 Anode for nonaqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery for having used the cathode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263987A (en) * 2002-03-08 2003-09-19 Mitsubishi Materials Corp Binder for lithium ion polymer secondary cell
JP2004039569A (en) * 2002-07-05 2004-02-05 Daikin Ind Ltd Additive for electrode
JP2009129889A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Positive electrode for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010044958A (en) * 2008-08-13 2010-02-25 Sony Corp Secondary battery and method of manufacturing the same and anode, positive electrode, and electroyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263987A (en) * 2002-03-08 2003-09-19 Mitsubishi Materials Corp Binder for lithium ion polymer secondary cell
JP2004039569A (en) * 2002-07-05 2004-02-05 Daikin Ind Ltd Additive for electrode
JP2009129889A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Positive electrode for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010044958A (en) * 2008-08-13 2010-02-25 Sony Corp Secondary battery and method of manufacturing the same and anode, positive electrode, and electroyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056788A (en) * 2010-09-08 2012-03-22 Toray Ind Inc Carbon nanotube water dispersion
WO2015111724A1 (en) * 2014-01-27 2015-07-30 旭硝子株式会社 Binder for electricity storage devices, binder composition, electrode mixture, electrode and secondary battery
JPWO2015111724A1 (en) * 2014-01-27 2017-03-23 旭硝子株式会社 Binder for power storage device, binder composition, electrode mixture, electrode and secondary battery
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
WO2016076371A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
WO2016076370A1 (en) * 2014-11-14 2016-05-19 旭硝子株式会社 Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
CN107078301A (en) * 2014-11-14 2017-08-18 旭硝子株式会社 Binder for electricity storage device composition, electrode for power storage device mixture, electrode for power storage device and secondary cell
JPWO2016158823A1 (en) * 2015-03-27 2017-10-26 株式会社クレハ Carbonaceous molded body for battery electrode and method for producing the same
CN110476280A (en) * 2017-03-24 2019-11-19 日产自动车株式会社 Anode for nonaqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery for having used the cathode

Also Published As

Publication number Publication date
JPWO2010134465A1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN111194495B (en) Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery, and secondary battery
JP5228524B2 (en) Aqueous paste for forming electricity storage element electrodes with low environmental impact
JP6269890B1 (en) Binder for secondary battery and electrode mixture for secondary battery
KR101599658B1 (en) Binder, cathode mixture and anode mixture
JP5854092B2 (en) Electrodes for electrochemical devices
EP3061145B1 (en) Positive electrodes for lithium-sulphur batteries
WO2010134465A1 (en) Fluorine-containing binder
JP5733314B2 (en) Positive electrode mixture for non-aqueous secondary battery, positive electrode for non-aqueous secondary battery and secondary battery using the same
WO2009098986A1 (en) Aqueous paste for forming electrode of electrical storage device
KR101762983B1 (en) Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
JP2018005972A (en) Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
KR101520975B1 (en) Composition for forming a binder for capacitor electrode
KR102165678B1 (en) Binder composition, binder dispersion, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and method for producing a binder composition
JP2009295405A (en) Method for manufacturing aqueous paste for forming power storage element electrode
JP2013178926A (en) Positive electrode mixture for nonaqueous secondary battery
JP2019160651A (en) Binder composition, electrode mixture raw material, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and manufacturing method of electrode mixture
JP2021523535A (en) Electrode forming composition
JPWO2016076370A1 (en) Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
WO2016076369A1 (en) Binder composition for power storage device, and manufacturing method for same
EP3950827B1 (en) Vinylidene-fluoride-based polymer composition obtained using non-fluorinated surfactant and production method therefor
US20220407075A1 (en) Composition, binder, electrode mixture, electrode, and secondary battery
WO2022113859A1 (en) Paste for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
CN115702173A (en) Electrode binder composition for lithium ion electric storage device
KR20230171954A (en) Composition for lithium battery electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777698

Country of ref document: EP

Kind code of ref document: A1