WO2009098986A1 - Aqueous paste for forming electrode of electrical storage device - Google Patents
Aqueous paste for forming electrode of electrical storage device Download PDFInfo
- Publication number
- WO2009098986A1 WO2009098986A1 PCT/JP2009/051382 JP2009051382W WO2009098986A1 WO 2009098986 A1 WO2009098986 A1 WO 2009098986A1 JP 2009051382 W JP2009051382 W JP 2009051382W WO 2009098986 A1 WO2009098986 A1 WO 2009098986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous
- paste
- aqueous paste
- electrode
- carbonaceous material
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 66
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 66
- 239000011230 binding agent Substances 0.000 claims abstract description 50
- 239000007772 electrode material Substances 0.000 claims abstract description 42
- 239000006185 dispersion Substances 0.000 claims description 115
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 100
- 229920000642 polymer Polymers 0.000 claims description 88
- 229920002313 fluoropolymer Polymers 0.000 claims description 63
- 239000004811 fluoropolymer Substances 0.000 claims description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 58
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 43
- 239000011737 fluorine Substances 0.000 claims description 43
- 229910052731 fluorine Inorganic materials 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 30
- 239000006230 acetylene black Substances 0.000 claims description 29
- -1 natural graphite Chemical compound 0.000 claims description 29
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 238000011156 evaluation Methods 0.000 claims description 18
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 13
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 9
- 238000005342 ion exchange Methods 0.000 claims description 9
- 229920003169 water-soluble polymer Polymers 0.000 claims description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 8
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 8
- 239000002736 nonionic surfactant Substances 0.000 claims description 8
- 239000003945 anionic surfactant Substances 0.000 claims description 7
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 7
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 7
- 239000003273 ketjen black Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 229910021382 natural graphite Inorganic materials 0.000 claims description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 239000004375 Dextrin Substances 0.000 claims description 4
- 229920001353 Dextrin Polymers 0.000 claims description 4
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 235000010980 cellulose Nutrition 0.000 claims description 4
- 235000019425 dextrin Nutrition 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000006232 furnace black Substances 0.000 claims description 4
- 239000011331 needle coke Substances 0.000 claims description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 3
- 241001265503 Pyrodinium Species 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 150000003973 alkyl amines Chemical class 0.000 claims description 3
- 239000002280 amphoteric surfactant Substances 0.000 claims description 3
- 229960003237 betaine Drugs 0.000 claims description 3
- 229920001400 block copolymer Polymers 0.000 claims description 3
- 150000001720 carbohydrates Chemical class 0.000 claims description 3
- 150000007942 carboxylates Chemical class 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 239000006231 channel black Substances 0.000 claims description 3
- 150000003983 crown ethers Chemical class 0.000 claims description 3
- 235000013325 dietary fiber Nutrition 0.000 claims description 3
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 3
- 229920001249 ethyl cellulose Polymers 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 3
- 150000002462 imidazolines Chemical class 0.000 claims description 3
- 239000006233 lamp black Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 229920001542 oligosaccharide Polymers 0.000 claims description 3
- 150000002482 oligosaccharides Chemical class 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- 239000006234 thermal black Substances 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 description 43
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 28
- 229910001416 lithium ion Inorganic materials 0.000 description 28
- 239000002131 composite material Substances 0.000 description 22
- 239000000758 substrate Substances 0.000 description 22
- 239000002482 conductive additive Substances 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 239000006229 carbon black Substances 0.000 description 14
- 235000019241 carbon black Nutrition 0.000 description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 9
- 239000003995 emulsifying agent Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 9
- 239000012752 auxiliary agent Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 229920006125 amorphous polymer Polymers 0.000 description 7
- 239000003957 anion exchange resin Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000012736 aqueous medium Substances 0.000 description 6
- 239000004815 dispersion polymer Substances 0.000 description 6
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 4
- 238000007720 emulsion polymerization reaction Methods 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 238000002076 thermal analysis method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000006276 transfer reaction Methods 0.000 description 3
- SAHQQCUQWHJOCV-SNAWJCMRSA-N (e)-2-ethenylbut-2-enoic acid Chemical compound C\C=C(/C=C)C(O)=O SAHQQCUQWHJOCV-SNAWJCMRSA-N 0.000 description 2
- ZPYGRBTUNITHKJ-UHFFFAOYSA-N 1-bromo-1,1,2,2-tetrafluoro-2-(1,2,2-trifluoroethenoxy)ethane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)Br ZPYGRBTUNITHKJ-UHFFFAOYSA-N 0.000 description 2
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000003869 coulometry Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- MKTOIPPVFPJEQO-UHFFFAOYSA-N 4-(3-carboxypropanoylperoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OOC(=O)CCC(O)=O MKTOIPPVFPJEQO-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- YOALFLHFSFEMLP-UHFFFAOYSA-N azane;2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic acid Chemical compound [NH4+].[O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YOALFLHFSFEMLP-UHFFFAOYSA-N 0.000 description 1
- UAWBWGUIUMQJIT-UHFFFAOYSA-N azanium;1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound N.OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F UAWBWGUIUMQJIT-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- MAHNFPMIPQKPPI-UHFFFAOYSA-N disulfur Chemical compound S=S MAHNFPMIPQKPPI-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0409—Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an aqueous paste for forming an electric storage element electrode and an electric storage element having an electric storage element electrode formed from the aqueous paste.
- the electrode active material, the conductive additive, and the binder are each finely divided and uniformly dispersed, have high processability, and contain very little or no PFOA, which is represented by APFO.
- An object of the present invention is to provide an aqueous paste for forming a storage element electrode, and a storage element electrode formed from the aqueous paste.
- the conductive carbonaceous material having hydrophilicity include boron-modified conductive carbonaceous material.
- boron-modified conductive carbonaceous material boron-modified acetylene black is particularly preferable because it exhibits high characteristics as a power storage element and can maintain the characteristics over a long period of time.
- a method for synthesizing such a boron-modified conductive carbonaceous material is known (Japanese Patent No. 3667144) and can be preferably used in the present invention.
- boron-modified carbon blacks can be produced by mixing pulverized carbon blacks and pulverized boron carbide and then heating at about 2500 ° C.
- carbon blacks acetylene black, thermal black, furnace black, channel black, lamp black and the like are used.
- graphites such as natural graphite and artificial graphite, and other carbonaceous materials such as ketjen black, needle coke and carbon fiber can also be used as carbon blacks.
- boron is synthesized by spraying a mixed gas of acetylene gas and vaporized trimethyl borate onto a cylindrical furnace heated to about 2000 ° C. and thermally decomposing it.
- Boron-modified acetylene black solid-dissolved in (3) can also be used.
- the boron content can be variously controlled by adjusting the mixing amount of acetylene gas and trimethyl borate.
- an aqueous dispersion of a fluorine-containing polymer is more preferable.
- the fluorine-containing polymer include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, general formula (1): CF 2 ⁇ C (OR f ) n F 2-n (wherein R f has 1 to 8 carbon atoms)
- R f has 1 to 8 carbon atoms
- the mixing ratio (mass ratio) of the crystalline fluoropolymer and the amorphous fluoropolymer is preferably in the range of 0.1: 9.9 to 9.9: 0.1, and 0.2: 9.8 to 9
- the range of .8: 0.2 is more preferable, and the range of 0.3: 9.7 to 9.7: 0.3 is more preferable.
- the ratio of the crystalline fluorine-containing polymer to the amorphous fluorine-containing polymer is within this range, the electricity storage device electrode is excellent in adhesion to the substrate and excellent in solvent resistance and heat resistance.
- the fluorine-based emulsifier can also be obtained by concentration using an ED method (Electro-decantation method) or a phase separation method (described in fluorine resin handbook (edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990)). Can be removed.
- an aqueous dispersion of a fluorine-containing polymer from which a fluorine-based emulsifier has been removed or reduced by such a method can be suitably used.
- the polymer concentration of the aqueous polymer dispersion is usually preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
- anionic surfactants such as carboxylate type, sulfonate type, sulfate type, and phosphate type; cations such as quaternary ammonium salt type, imidazolinium salt type, and pyrodinium salt type
- amphoteric surfactants such as betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type; ether type, ether ester type, ester type, nitrogen-containing type, ethylene oxide and propylene oxide
- Nonionic surfactants such as block copolymers are exemplified. Of these, anionic surfactants and nonionic surfactants are preferred because they have a small impact on the environment.
- Example 7 Example except that 2.3 g of boron-modified acetylene black (A) having a value of (W 2 / W 1 ) ⁇ 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black
- A boron-modified acetylene black
- Example 7 Example except that 2.3 g of boron-modified acetylene black (A) having a value of (W 2 / W 1 ) ⁇ 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black
- A boron-modified acetylene black having a value of (W 2 / W 1 ) ⁇ 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black
- an electrode-forming aqueous paste (19) was prepared to obtain an electrode plate for a lithium ion battery. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (19) had good electrode active material carrying ability and adhesion to the substrate.
- Example 28 When the electrode plate of Example 20 is punched to a predetermined size, a positive electrode plate is obtained, and when the lithium foil is cut to a predetermined size, a negative electrode plate is obtained. A lead wire is attached to each of the positive electrode plate and the negative electrode plate thus obtained, accommodated in a stainless steel cell case via a polyolefin separator, and 1 mol / liter of lithium hexafluorophosphate is dissolved in a mixed solution of ethylene carbonate and diethylene carbonate. When the electrolyte solution is injected, it becomes a model cell of a lithium secondary battery.
- the model cell corresponds to the charge coulometry 0.6 mA / cm 2 was charged to a battery voltage 4.3V, the discharge coulometric 2.0mA / cm 2 (1.25C rate at 25 ° C. ),
- the model cell is a lithium secondary battery with good storage element characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Disclosed is an aqueous paste for forming an electrode of electrical storage devices, wherein an electrode active material, a conductive assistant and a binder are finely and uniformly dispersed. The aqueous paste exhibits high processability, while having a low risk of placing burden on the environment or impairing human health. Also disclosed is an electrode for electrical storage devices, which is made from the aqueous paste. Specifically disclosed is an aqueous paste for forming an electrode of electrical storage devices, which is characterized by containing an electrode active material, a conductive assistant and a binder. The aqueous paste is also characterized in that the conductive assistant is composed of a hydrophilic conductive carbonaceous material.
Description
本発明は、蓄電素子電極形成用水性ペースト、及びその水性ペーストから形成される蓄電素子電極を有する蓄電素子に関する。
The present invention relates to an aqueous paste for forming an electric storage element electrode and an electric storage element having an electric storage element electrode formed from the aqueous paste.
蓄電素子はモバイル機器用エネルギー源、車載用蓄放電システム・エネルギー源、電力貯蔵システム用等としてさまざまな機構・形態の素子が広く利用されている。これら素子には、高出力、高エネルギー密度などの特性を有し、低温下、高温下等のさまざまな環境にあっても安心して使用できる信頼性、不測の事態にも安全である等の特性が求められる。従来その特性を改善するための検討は、機能を担う主たる材料の改良にあった。しかしながら、それらの材料の持つ特性を如何なく発揮できる素子構造、特に電極コンポジット構造を実現するための製造方法の検討も極めて重要である。
Storage elements are widely used in various mechanisms and forms, such as energy sources for mobile devices, in-vehicle storage / discharge systems / energy sources, and power storage systems. These devices have characteristics such as high output and high energy density, reliability that can be used with peace of mind even in various environments such as low and high temperatures, and safety for unforeseen circumstances. Is required. Conventionally, the study for improving the characteristics has been on the improvement of the main material responsible for the function. However, it is extremely important to study a manufacturing method for realizing an element structure that can exhibit the characteristics of these materials as much as possible, particularly an electrode composite structure.
蓄電素子の電極は、少なくとも主たる機能を担う電極活物質、導電助剤、結着剤等のコンポジットから成る。コンポジット形成においては、粉体粒子である電極活物質と導電助剤とを可能な限り微細に、かつ、均質に分散させたうえで、結着剤に担持する技術が、各構成材料の持てる特性を最大限に引き出すために重要となる。コンポジット形成は、各電極構成材料を媒体中に分散させたペーストを調製し、これを集電体に塗布、乾燥させることにより行われている。ペースト調製のための媒体は、従来有機溶媒が使用されてきた。結着剤用のポリマーを少量用いて電極構成材料を担持するためには、ポリマー溶液を用いるのが好ましいと考えられていた(特許文献1参照)。
The electrode of the electricity storage element is composed of a composite of at least an electrode active material having a main function, a conductive additive, a binder and the like. In the formation of composites, the technology that the electrode active material, which is powder particles, and the conductive additive are dispersed as finely and as homogeneously as possible and then supported by the binder is a characteristic that each constituent material has. It is important to get the most out of it. The composite is formed by preparing a paste in which each electrode constituent material is dispersed in a medium, and applying and drying the paste on a current collector. Conventionally, an organic solvent has been used as a medium for preparing the paste. In order to support the electrode constituent material using a small amount of the polymer for the binder, it has been considered preferable to use a polymer solution (see Patent Document 1).
一方、媒体として水を用いる水性ペーストも従来から提案されており、材料面でも、設備面でも、設備稼働面でも、大きな環境負荷の低減とコスト削減が図れるものと期待された。しかしながら、通常導電助剤として使われる導電性炭素質材料は疎水性であり、水への分散は極めて困難なため、水性ペーストから電池特性良好な電極を製造することは出来なかった。しかも、非水系蓄電素子にあっては水の浸入は素子特性を大きく損ねてしまうことから、むしろ製造プロセスに水を持ち込まないよう配慮されてきた。
On the other hand, water-based pastes that use water as a medium have been proposed in the past, and it was expected that the environmental burden and cost could be greatly reduced in terms of materials, equipment, and equipment operation. However, since the conductive carbonaceous material usually used as a conductive auxiliary agent is hydrophobic and is very difficult to disperse in water, an electrode having good battery characteristics cannot be produced from an aqueous paste. In addition, in the case of non-aqueous power storage elements, since the intrusion of water greatly impairs the element characteristics, it has been considered not to bring water into the manufacturing process.
この問題点を解消するものとして、含フッ素ポリマー水性分散液の製造に用いられる乳化剤であるパーフルオロオクタン酸アンモニウム(以下、APFOと称する。)とカルボキシメチルセルロース(以下、CMCと称する。)共存下に、導電性炭素質材料を水中に微細化させて分散させることが提案されている(特許文献2参照)。この場合、電極形成用材料が均質に分散された水性ペーストが調製できる。かかる水性ペーストから製造された電極は良好な蓄電素子特性を発現できることから、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等において、水性ペーストから製造された電極が採用されるようになってきた。
In order to solve this problem, ammonium perfluorooctanoate (hereinafter referred to as APFO), which is an emulsifier used in the production of an aqueous fluoropolymer dispersion, and carboxymethyl cellulose (hereinafter referred to as CMC) coexist. It has been proposed that a conductive carbonaceous material is finely dispersed in water (see Patent Document 2). In this case, an aqueous paste in which the electrode forming material is uniformly dispersed can be prepared. Since an electrode manufactured from such an aqueous paste can exhibit good electric storage element characteristics, an electrode manufactured from an aqueous paste has been adopted in lithium batteries, lithium ion batteries, electric double layer capacitors and the like.
しかし、APFOに代表されるPFOA類(本明細書においてPFOA類とは、APFOやパーフルオロオクタンスルホン酸アンモニウムを含め、これらに近似するパーフルオロアルカン酸とその塩およびパーフルオロアルカンスルホン酸とその塩等のフッ素系界面活性剤を総称している。)は、生体内残留・蓄積性の高いことがわかった。生体内に残ったPFOA類の人体に対する毒性・危険性はまだ不明な点が多いが、自然界に無い化合物であることから極力使用しないことが要請されている。このため含フッ素ポリマー水性分散液の製造ではPFOA類を使用して乳化重合した後、得られた含フッ素ポリマーの乳化液にラウリル硫酸ナトリウムやポリオキシエチレンアルキルエーテル等の炭化水素系界面活性剤を加え安定化した後、PFOA類を除去して、PFOA類含有量の著しく少ない含フッ素ポリマー水性分散液を得る技術が開発されている。
However, PFOAs typified by APFO (in this specification, PFOAs include APFO and ammonium perfluorooctane sulfonate, and perfluoroalkanoic acid and salts thereof and perfluoroalkanesulfonic acid and salts thereof which are similar to these. It was found that fluorinated surfactants such as, etc.) have high in vivo persistence and accumulation. Although there are still many unclear points about the toxicity and danger of PFOAs remaining in the living body to the human body, it is required not to use them as much as possible because they are compounds that do not exist in nature. For this reason, in the production of an aqueous dispersion of a fluoropolymer, after emulsion polymerization using PFOAs, a hydrocarbon-based surfactant such as sodium lauryl sulfate or polyoxyethylene alkyl ether is added to the resulting emulsion of the fluoropolymer. In addition, after stabilization, a technique has been developed in which PFOAs are removed to obtain a fluoropolymer aqueous dispersion having a significantly low PFOA content.
しかしながら、PFOA類の少ない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは、ペーストが異常に増粘する結果、均質な塗膜を集電体表面に塗布することができず、曲げや巻取り等の加工性に優れ、良好な蓄電素子特性を発現できる電極コンポジット層を形成することが出来ない問題があった。
かかる問題の解決方法として、疎水的な導電性炭素質材料の疎水性を弱めたり、親水性を付与する等の対策が導電性炭素質材料を水中に微細化して分散させるのに有効であると考えられた。 However, an aqueous paste using a fluorine-containing polymer aqueous dispersion containing a small amount of PFOA as a binder cannot be applied to the surface of the current collector as a result of abnormally thickening of the paste. There has been a problem that it is not possible to form an electrode composite layer that is excellent in workability such as winding and that can exhibit good characteristics of an electric storage element.
As a solution to this problem, measures such as weakening the hydrophobicity of the hydrophobic conductive carbonaceous material or imparting hydrophilicity are effective to make the conductive carbonaceous material finely dispersed in water. it was thought.
かかる問題の解決方法として、疎水的な導電性炭素質材料の疎水性を弱めたり、親水性を付与する等の対策が導電性炭素質材料を水中に微細化して分散させるのに有効であると考えられた。 However, an aqueous paste using a fluorine-containing polymer aqueous dispersion containing a small amount of PFOA as a binder cannot be applied to the surface of the current collector as a result of abnormally thickening of the paste. There has been a problem that it is not possible to form an electrode composite layer that is excellent in workability such as winding and that can exhibit good characteristics of an electric storage element.
As a solution to this problem, measures such as weakening the hydrophobicity of the hydrophobic conductive carbonaceous material or imparting hydrophilicity are effective to make the conductive carbonaceous material finely dispersed in water. it was thought.
疎水性の極めて強いアセチレンブラックの表面をオゾン処理して表面親水化したアセチレンブラック等のカーボンブラック類(本明細書において、カーボンブラックとは通常黒色を呈する炭素質材料であり、カーボンブラック類とは、導電性炭素質材料の総称であり、アセチレンブラックやケッチェンブラック等が含まれる。)を用いることにより、分散性良好な水性ペーストが調製でき、良好な電池特性を発現できる電極を形成できたとしている(例えば、特許文献3を参照。)。しかしながら、かかる表面処理はカーボンブラック類の電子伝導性を低下させることから、電極活物質と表面酸化処理されたカーボンブラックが分散された電極では、電池特性は向上しなかった。
Carbon blacks such as acetylene black, etc., whose surface has been hydrophilized by treating the surface of acetylene black with extremely strong hydrophobicity (in this specification, carbon black is a carbonaceous material that normally exhibits black color, and what are carbon blacks? , Which is a general term for conductive carbonaceous materials, including acetylene black, ketjen black, etc.), an aqueous paste with good dispersibility could be prepared, and an electrode capable of exhibiting good battery characteristics could be formed. (For example, refer to Patent Document 3). However, since such surface treatment reduces the electronic conductivity of the carbon blacks, the battery characteristics were not improved with the electrode in which the electrode active material and the surface oxidized carbon black were dispersed.
本発明は、電極活物質、導電助剤及び結着剤がそれぞれ微細化されて均質に分散され、高い加工性を有して、APFOに代表されるPFOA類の含有量の極めて少ないか又は含有しない蓄電素子電極形成用水性ペースト、及び該水性ペーストから形成された蓄電素子電極を提供することを目的とする。
In the present invention, the electrode active material, the conductive additive, and the binder are each finely divided and uniformly dispersed, have high processability, and contain very little or no PFOA, which is represented by APFO. An object of the present invention is to provide an aqueous paste for forming a storage element electrode, and a storage element electrode formed from the aqueous paste.
本発明者は、導電助剤として極めて疎水性の強いアセチレンブラック等の導電性炭素質材料に代えて、親水性を有する導電性炭素質材料(以下、本発明において親水性を有する導電性炭素質材料とは、下記の親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを指す。)を用いることにより、PFOA類や環境負荷の高い有機溶剤等を用いることなく、上記課題を解決できることを見出して本発明を完成するに至った。
すなわち、本発明は、以下の構成の蓄電素子電極形成用水性ペーストおよびそれから形成される蓄電素子を提供する。 The present inventor used a conductive carbonaceous material having hydrophilicity (hereinafter referred to as conductive carbonaceous material having hydrophilicity in the present invention) instead of a conductive carbonaceous material such as acetylene black having a strong hydrophobic property as a conductive assistant. The material refers to a conductive carbonaceous material determined to have hydrophilicity in the following hydrophilicity evaluation test.), So that it is possible to use PFOAs, organic solvents with high environmental impact, and the like. The inventors have found that the above problems can be solved and have completed the present invention.
That is, this invention provides the aqueous | water-based paste for electrical storage element electrode formation of the following structures, and the electrical storage element formed from it.
すなわち、本発明は、以下の構成の蓄電素子電極形成用水性ペーストおよびそれから形成される蓄電素子を提供する。 The present inventor used a conductive carbonaceous material having hydrophilicity (hereinafter referred to as conductive carbonaceous material having hydrophilicity in the present invention) instead of a conductive carbonaceous material such as acetylene black having a strong hydrophobic property as a conductive assistant. The material refers to a conductive carbonaceous material determined to have hydrophilicity in the following hydrophilicity evaluation test.), So that it is possible to use PFOAs, organic solvents with high environmental impact, and the like. The inventors have found that the above problems can be solved and have completed the present invention.
That is, this invention provides the aqueous | water-based paste for electrical storage element electrode formation of the following structures, and the electrical storage element formed from it.
[1]電極活物質、導電助剤及び結着剤を含有し、前記導電助剤が下記の親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを特徴とする蓄電素子電極形成用水性ペースト。
親水性評価試験:
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とする。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。 [1] A conductive carbonaceous material that contains an electrode active material, a conductive additive, and a binder, and that is determined to have hydrophilicity in the following hydrophilicity evaluation test. An aqueous paste for forming a storage element electrode.
Hydrophilic evaluation test:
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel was shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. Separated, dried at 120 ° C. for 24 hours, weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Is determined to have hydrophilicity.
親水性評価試験:
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とする。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。 [1] A conductive carbonaceous material that contains an electrode active material, a conductive additive, and a binder, and that is determined to have hydrophilicity in the following hydrophilicity evaluation test. An aqueous paste for forming a storage element electrode.
Hydrophilic evaluation test:
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel was shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. Separated, dried at 120 ° C. for 24 hours, weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Is determined to have hydrophilicity.
[2]前記親水性を有する導電性炭素質材料がホウ素変性の導電性炭素質材料である前記[1]に記載の蓄電素子電極形成用水性ペースト。
[3]ホウ素含有量が、0.01~10質量%である前記[2]に記載の蓄電素子電極形成用水性ペースト。
[4]前記導電性炭素質材料が、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー、カーボンチューブ、及びカーボンコイルからなる群から選ばれる1種以上である、前記[1]~[3]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[5]前記結着剤がポリマーの水性分散液である前記[1]~[4]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[6]前記結着剤が含フッ素ポリマーの水性分散液である前記[1]~[4]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[7]前記含フッ素ポリマーの水性分散液が、結晶性含フッ素ポリマーの水性分散液と非晶性含フッ素ポリマーの水性分散液を混合して調製したものである前記[6]に記載の蓄電素子電極形成用水性ペースト。
[8]さらに、界面活性剤類を含有し、該界面活性剤類が、カルボン酸塩型、スルホン酸塩型、硫酸塩型、リン酸塩型等のアニオン界面活性剤類;四級アンモニウム塩型、イミダゾリニウム塩型、ピロジニウム塩型等のカチオン界面活性剤類;ベタイン型、アミノカルボン酸塩型、イミダゾリン誘導体型、アルキルアミンオキサイド型等の両性界面活性剤類;及び、エーテル型、エーテルエステル型、エステル型、含窒素型、エチレンオキサイドとプロピレンオキサイドのブロックコポリマー等のノニオン界面活性剤類からなる群から選ばれる1種以上である、[1]~[7]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[9]さらに、水溶性高分子化合物を含有し、該水溶性高分子化合物が、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類;オリゴ糖、デキストリン、水溶性食物繊維等の糖類;クラウンエーテル類;ポリアクリル酸類;ポリエチレンオキサイド;及び、ポリビニルアルコールからなる群から選ばれる1種以上である、[1]~[8]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[10]上記[1]~[9]のいずれかに記載の蓄電素子電極形成用水性ペーストから形成された蓄電素子電極を有することを特徴とする蓄電素子。 [2] The aqueous paste for forming a storage element electrode according to [1], wherein the hydrophilic conductive carbonaceous material is a boron-modified conductive carbonaceous material.
[3] The aqueous paste for forming a storage element electrode according to [2], wherein the boron content is 0.01 to 10% by mass.
[4] The conductive carbonaceous material is acetylene black, thermal black, furnace black, channel black, lamp black, graphite such as natural graphite, artificial graphite, ketjen black, needle coke, carbon fiber, carbon tube, and The aqueous paste for forming a storage element electrode according to any one of [1] to [3], which is at least one selected from the group consisting of carbon coils.
[5] The aqueous paste for forming a storage element electrode according to any one of [1] to [4], wherein the binder is an aqueous dispersion of a polymer.
[6] The aqueous paste for forming a storage element electrode according to any one of [1] to [4], wherein the binder is an aqueous dispersion of a fluorine-containing polymer.
[7] The electricity storage according to [6], wherein the aqueous dispersion of the fluorine-containing polymer is prepared by mixing an aqueous dispersion of the crystalline fluorine-containing polymer and an aqueous dispersion of the amorphous fluorine-containing polymer. An aqueous paste for device electrode formation.
[8] Further, surfactants are contained, and the surfactants are anionic surfactants of carboxylate type, sulfonate type, sulfate type, phosphate type, etc .; quaternary ammonium salts Type, imidazolinium salt type, pyrodinium salt type cationic surfactants; betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type amphoteric surfactants; and ether type, ether Any one of [1] to [7], which is one or more selected from the group consisting of nonionic surfactants such as ester type, ester type, nitrogen-containing type, block copolymer of ethylene oxide and propylene oxide, etc. The aqueous paste for electricity storage element electrode formation of description.
[9] Further containing a water-soluble polymer compound, wherein the water-soluble polymer compound is a cellulose such as methyl cellulose, carboxymethyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose; oligosaccharide, dextrin, water-soluble dietary fiber The storage element electrode formation according to any one of [1] to [8], which is at least one selected from the group consisting of saccharides such as: crown ethers; polyacrylic acids; polyethylene oxide; and polyvinyl alcohol Aqueous paste for use.
[10] A power storage device comprising a power storage device electrode formed from the aqueous paste for forming a power storage device electrode according to any one of [1] to [9].
[3]ホウ素含有量が、0.01~10質量%である前記[2]に記載の蓄電素子電極形成用水性ペースト。
[4]前記導電性炭素質材料が、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー、カーボンチューブ、及びカーボンコイルからなる群から選ばれる1種以上である、前記[1]~[3]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[5]前記結着剤がポリマーの水性分散液である前記[1]~[4]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[6]前記結着剤が含フッ素ポリマーの水性分散液である前記[1]~[4]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[7]前記含フッ素ポリマーの水性分散液が、結晶性含フッ素ポリマーの水性分散液と非晶性含フッ素ポリマーの水性分散液を混合して調製したものである前記[6]に記載の蓄電素子電極形成用水性ペースト。
[8]さらに、界面活性剤類を含有し、該界面活性剤類が、カルボン酸塩型、スルホン酸塩型、硫酸塩型、リン酸塩型等のアニオン界面活性剤類;四級アンモニウム塩型、イミダゾリニウム塩型、ピロジニウム塩型等のカチオン界面活性剤類;ベタイン型、アミノカルボン酸塩型、イミダゾリン誘導体型、アルキルアミンオキサイド型等の両性界面活性剤類;及び、エーテル型、エーテルエステル型、エステル型、含窒素型、エチレンオキサイドとプロピレンオキサイドのブロックコポリマー等のノニオン界面活性剤類からなる群から選ばれる1種以上である、[1]~[7]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[9]さらに、水溶性高分子化合物を含有し、該水溶性高分子化合物が、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類;オリゴ糖、デキストリン、水溶性食物繊維等の糖類;クラウンエーテル類;ポリアクリル酸類;ポリエチレンオキサイド;及び、ポリビニルアルコールからなる群から選ばれる1種以上である、[1]~[8]のいずれか1項に記載の蓄電素子電極形成用水性ペースト。
[10]上記[1]~[9]のいずれかに記載の蓄電素子電極形成用水性ペーストから形成された蓄電素子電極を有することを特徴とする蓄電素子。 [2] The aqueous paste for forming a storage element electrode according to [1], wherein the hydrophilic conductive carbonaceous material is a boron-modified conductive carbonaceous material.
[3] The aqueous paste for forming a storage element electrode according to [2], wherein the boron content is 0.01 to 10% by mass.
[4] The conductive carbonaceous material is acetylene black, thermal black, furnace black, channel black, lamp black, graphite such as natural graphite, artificial graphite, ketjen black, needle coke, carbon fiber, carbon tube, and The aqueous paste for forming a storage element electrode according to any one of [1] to [3], which is at least one selected from the group consisting of carbon coils.
[5] The aqueous paste for forming a storage element electrode according to any one of [1] to [4], wherein the binder is an aqueous dispersion of a polymer.
[6] The aqueous paste for forming a storage element electrode according to any one of [1] to [4], wherein the binder is an aqueous dispersion of a fluorine-containing polymer.
[7] The electricity storage according to [6], wherein the aqueous dispersion of the fluorine-containing polymer is prepared by mixing an aqueous dispersion of the crystalline fluorine-containing polymer and an aqueous dispersion of the amorphous fluorine-containing polymer. An aqueous paste for device electrode formation.
[8] Further, surfactants are contained, and the surfactants are anionic surfactants of carboxylate type, sulfonate type, sulfate type, phosphate type, etc .; quaternary ammonium salts Type, imidazolinium salt type, pyrodinium salt type cationic surfactants; betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type amphoteric surfactants; and ether type, ether Any one of [1] to [7], which is one or more selected from the group consisting of nonionic surfactants such as ester type, ester type, nitrogen-containing type, block copolymer of ethylene oxide and propylene oxide, etc. The aqueous paste for electricity storage element electrode formation of description.
[9] Further containing a water-soluble polymer compound, wherein the water-soluble polymer compound is a cellulose such as methyl cellulose, carboxymethyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose; oligosaccharide, dextrin, water-soluble dietary fiber The storage element electrode formation according to any one of [1] to [8], which is at least one selected from the group consisting of saccharides such as: crown ethers; polyacrylic acids; polyethylene oxide; and polyvinyl alcohol Aqueous paste for use.
[10] A power storage device comprising a power storage device electrode formed from the aqueous paste for forming a power storage device electrode according to any one of [1] to [9].
本発明の蓄電素子電極形成用水性ペーストにおいて、導電助剤は、微細化して均質に水性ペースト中に分散されている。本発明の蓄電素子電極形成用水性ペーストは、基板上に塗工された後も微細化された複数の成分が均質に分散された状態を保持したまま電極コンポジット層を形成でき、生体内残留や蓄積性を有し、環境面で懸念される、PFOA類を使用する必要が無いことから蓄電素子の製造に有用である。
さらに、得られた蓄電素子電極は、基板との密着性に優れ、耐溶剤性、耐熱性に優れ、高い加工性を有し、それぞれ微細化された電極活物質、導電助剤、及び結着剤が均質に分散されるので、スムースな界面電荷移動反応とイオン伝導、電子伝導を担うように機能し、良好な蓄電素子特性を発現する。 In the aqueous paste for forming a storage element electrode according to the present invention, the conductive auxiliary agent is refined and uniformly dispersed in the aqueous paste. The aqueous paste for forming a storage element electrode of the present invention can form an electrode composite layer while maintaining a state in which a plurality of finely divided components are uniformly dispersed even after being coated on a substrate, Since it is not necessary to use PFOA, which has a storage property and is an environmental concern, it is useful for the production of a storage element.
Further, the obtained electricity storage device electrode has excellent adhesion to the substrate, excellent solvent resistance, heat resistance, high workability, and refined electrode active material, conductive additive, and binder, respectively. Since the agent is uniformly dispersed, the agent functions to perform smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and exhibits excellent power storage device characteristics.
さらに、得られた蓄電素子電極は、基板との密着性に優れ、耐溶剤性、耐熱性に優れ、高い加工性を有し、それぞれ微細化された電極活物質、導電助剤、及び結着剤が均質に分散されるので、スムースな界面電荷移動反応とイオン伝導、電子伝導を担うように機能し、良好な蓄電素子特性を発現する。 In the aqueous paste for forming a storage element electrode according to the present invention, the conductive auxiliary agent is refined and uniformly dispersed in the aqueous paste. The aqueous paste for forming a storage element electrode of the present invention can form an electrode composite layer while maintaining a state in which a plurality of finely divided components are uniformly dispersed even after being coated on a substrate, Since it is not necessary to use PFOA, which has a storage property and is an environmental concern, it is useful for the production of a storage element.
Further, the obtained electricity storage device electrode has excellent adhesion to the substrate, excellent solvent resistance, heat resistance, high workability, and refined electrode active material, conductive additive, and binder, respectively. Since the agent is uniformly dispersed, the agent functions to perform smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and exhibits excellent power storage device characteristics.
本発明における導電助剤は、親水性評価試験で親水性を有すると判定される導電性炭素質材料である。
本発明の親水性評価試験を下記に示す。
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置する。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とする。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。 The conductive auxiliary agent in the present invention is a conductive carbonaceous material determined to have hydrophilicity in a hydrophilicity evaluation test.
The hydrophilicity evaluation test of the present invention is shown below.
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel is shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. It separated Te, weighed and dried for 24 hours at 120 ° C., to its mass and W 2. When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Is determined to have hydrophilicity.
本発明の親水性評価試験を下記に示す。
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置する。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とする。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。 The conductive auxiliary agent in the present invention is a conductive carbonaceous material determined to have hydrophilicity in a hydrophilicity evaluation test.
The hydrophilicity evaluation test of the present invention is shown below.
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel is shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. It separated Te, weighed and dried for 24 hours at 120 ° C., to its mass and W 2. When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Is determined to have hydrophilicity.
上記親水性評価試験で、導電性炭素質材料が親水性を有するか否かは明確に評価できる。
通常、親水性を有し、水と混和するものは、振とうして1分未満の時間で水中に沈むが、親水性を有しないものは1日間連続して振とうしても水中に沈まない。該評価試験で親水性ありと判定された導電性炭素質材料からは、いずれも微細化されて均質に分散された良好な蓄電素子電極形成用水性ペーストが調製できる。
(W2/W1)×100の値は、好ましくは、2以上であり、より好ましくは、5以上であり、最も好ましくは、10以上である。(W2/W1)×100の上限値は、100である。 In the hydrophilicity evaluation test, it can be clearly evaluated whether or not the conductive carbonaceous material has hydrophilicity.
Usually, those that are hydrophilic and miscible with water will sink in water in less than a minute after shaking, while those that are not hydrophilic will sink in water even if shaken continuously for one day. Absent. From the conductive carbonaceous material determined to be hydrophilic in the evaluation test, a good aqueous paste for forming a storage element electrode can be prepared which is finely divided and uniformly dispersed.
The value of (W 2 / W 1 ) × 100 is preferably 2 or more, more preferably 5 or more, and most preferably 10 or more. The upper limit of (W 2 / W 1 ) × 100 is 100.
通常、親水性を有し、水と混和するものは、振とうして1分未満の時間で水中に沈むが、親水性を有しないものは1日間連続して振とうしても水中に沈まない。該評価試験で親水性ありと判定された導電性炭素質材料からは、いずれも微細化されて均質に分散された良好な蓄電素子電極形成用水性ペーストが調製できる。
(W2/W1)×100の値は、好ましくは、2以上であり、より好ましくは、5以上であり、最も好ましくは、10以上である。(W2/W1)×100の上限値は、100である。 In the hydrophilicity evaluation test, it can be clearly evaluated whether or not the conductive carbonaceous material has hydrophilicity.
Usually, those that are hydrophilic and miscible with water will sink in water in less than a minute after shaking, while those that are not hydrophilic will sink in water even if shaken continuously for one day. Absent. From the conductive carbonaceous material determined to be hydrophilic in the evaluation test, a good aqueous paste for forming a storage element electrode can be prepared which is finely divided and uniformly dispersed.
The value of (W 2 / W 1 ) × 100 is preferably 2 or more, more preferably 5 or more, and most preferably 10 or more. The upper limit of (W 2 / W 1 ) × 100 is 100.
親水性を有する導電性炭素質材料の好適な具体例としては、ホウ素変性の導電性炭素質材料が挙げられる。ホウ素変性の導電性炭素質材料としては、蓄電素子としての高い特性を発現し、その特性を長期に亘って維持できることから、ホウ素変性アセチレンブラックが特に好ましい。
かかるホウ素変性の導電性炭素質材料の合成方法は公知(特許第3667144号)であり、本発明では好ましく採用できる。例えば、粉砕したカーボンブラック類と粉砕した炭化ホウ素を混合した後、2500℃程で加熱することにより、ホウ素変性カーボンブラック類を製造できる。カーボンブラック類としては、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック等が用いられる。また、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー等のその他の炭素質材料もカーボンブラック類として使用できる。 Preferable specific examples of the conductive carbonaceous material having hydrophilicity include boron-modified conductive carbonaceous material. As the boron-modified conductive carbonaceous material, boron-modified acetylene black is particularly preferable because it exhibits high characteristics as a power storage element and can maintain the characteristics over a long period of time.
A method for synthesizing such a boron-modified conductive carbonaceous material is known (Japanese Patent No. 3667144) and can be preferably used in the present invention. For example, boron-modified carbon blacks can be produced by mixing pulverized carbon blacks and pulverized boron carbide and then heating at about 2500 ° C. As carbon blacks, acetylene black, thermal black, furnace black, channel black, lamp black and the like are used. In addition, graphites such as natural graphite and artificial graphite, and other carbonaceous materials such as ketjen black, needle coke and carbon fiber can also be used as carbon blacks.
かかるホウ素変性の導電性炭素質材料の合成方法は公知(特許第3667144号)であり、本発明では好ましく採用できる。例えば、粉砕したカーボンブラック類と粉砕した炭化ホウ素を混合した後、2500℃程で加熱することにより、ホウ素変性カーボンブラック類を製造できる。カーボンブラック類としては、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック等が用いられる。また、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー等のその他の炭素質材料もカーボンブラック類として使用できる。 Preferable specific examples of the conductive carbonaceous material having hydrophilicity include boron-modified conductive carbonaceous material. As the boron-modified conductive carbonaceous material, boron-modified acetylene black is particularly preferable because it exhibits high characteristics as a power storage element and can maintain the characteristics over a long period of time.
A method for synthesizing such a boron-modified conductive carbonaceous material is known (Japanese Patent No. 3667144) and can be preferably used in the present invention. For example, boron-modified carbon blacks can be produced by mixing pulverized carbon blacks and pulverized boron carbide and then heating at about 2500 ° C. As carbon blacks, acetylene black, thermal black, furnace black, channel black, lamp black and the like are used. In addition, graphites such as natural graphite and artificial graphite, and other carbonaceous materials such as ketjen black, needle coke and carbon fiber can also be used as carbon blacks.
さらに、ホウ素変性の導電性炭素質材料としては、アセチレンガスと気化したホウ酸トリメチルの混合ガスを2000℃程に加熱した円筒炉に噴霧して加熱分解させて合成される、ホウ素がほぼ原子オーダーで固溶された、ホウ素変性のアセチレンブラックも使用できる。このホウ素変性アセチレンブラックでは、アセチレンガスとホウ酸トリメチルの混合量を調整することによりホウ素含有量を種々制御することもできる。
Furthermore, as a boron-modified conductive carbonaceous material, boron is synthesized by spraying a mixed gas of acetylene gas and vaporized trimethyl borate onto a cylindrical furnace heated to about 2000 ° C. and thermally decomposing it. Boron-modified acetylene black solid-dissolved in (3) can also be used. In this boron-modified acetylene black, the boron content can be variously controlled by adjusting the mixing amount of acetylene gas and trimethyl borate.
本発明に用いられるホウ素変性の導電性炭素質材料のホウ素含有量は、平均して0.01~10質量%であるのが好ましい。0.01質量%より少ないと、本発明の親水性評価試験では親水性を有しないと判定され、親水性が十分でなく、水への分散も困難となる。一方、10質量%を越えてホウ素を含有すると、電子伝導性を損ねることから好ましくない。より好ましくは0.05~5質量%であり、さらに好ましくは0.1~3質量%であり、最も好ましくは0.15~2質量%である。この範囲にあると、水への分散性が高く、均質な分散状態を安定して保持することができ、ホウ素を含有しない導電性炭素質材料より高い導電性を発現できる。
The boron content of the boron-modified conductive carbonaceous material used in the present invention is preferably 0.01 to 10% by mass on average. If it is less than 0.01% by mass, it is determined that the hydrophilicity evaluation test of the present invention does not have hydrophilicity, the hydrophilicity is not sufficient, and dispersion in water becomes difficult. On the other hand, if boron is contained in excess of 10% by mass, the electron conductivity is impaired, which is not preferable. More preferably, the content is 0.05 to 5% by mass, still more preferably 0.1 to 3% by mass, and most preferably 0.15 to 2% by mass. Within this range, the dispersibility in water is high, a homogeneous dispersion state can be stably maintained, and higher conductivity can be exhibited than a conductive carbonaceous material not containing boron.
ホウ素変性のアセチレンブラック等が親水性となるメカニズムはまだ良くわかっていないが、ホウ素固溶によりアセチレンブラックの不対電子が増加して電子伝導性を高め、かつ高まった極性が水との親和性を発現して水にぬれるようになったものと解釈される。ホウ素変性のアセチレンブラックは、表面酸化処理やスルホン化処理等のような親水性官能基を表面に形成させて親水性を発現しているのではないため、吸湿性はアセチレンブラックそのものの特性を維持して低いので、塗膜が乾燥し易く好ましい。
The mechanism by which boron-modified acetylene black, etc. becomes hydrophilic is not yet well understood. However, the unpaired electrons of acetylene black increase due to solid solution of boron to increase electron conductivity, and the increased polarity is compatible with water. It is interpreted that it became soaked in water. Boron-modified acetylene black does not express hydrophilicity by forming hydrophilic functional groups on the surface, such as surface oxidation treatment or sulfonation treatment, so hygroscopicity maintains the characteristics of acetylene black itself Therefore, the coating film is preferable because it is easy to dry.
親水性を有する導電性炭素質材料の他の具体例としては、例えば、表面にアルコールや界面活性剤等を吸着させてから水性分散媒中に分散したカーボンブラック(米国特許5571311号明細書)、表面にノニオン性、アニオン性、カチオン性等の親水基をグラフト重合したカーボンブラック(特開平5-230410号公報、特開平6-128517号公報、特開平6-166954号公報等)、硫酸、三硫化イオウ、スルホン化ピリジン塩等のスルホン化剤で処理して、表面にスルホン基を導入したカーボンブラック(特開平10-120958号公報、特開2002-324557号公報等)、オゾン処理やプラズマ処理等の気相法或いは硝酸、過酸化水素水、過塩素酸ソーダ等で処理する液相法により酸化処理したカーボンブラック(特開平10-110112号公報、特開2004-253379号公報等)、水素や水素化リチウムアルミニウム等の還元剤で処理したカーボンブラック(特開2002-129065号公報、特開2004-339428号公報等)などが挙げられる。本発明にはこれらいずれの方法で親水性を付与された導電性炭素質材料も使用可能である。
親水性を有する導電性炭素質材料の平均粒径は、通常3~1000nmが好ましく、5~200nmがより好ましい。 Other specific examples of the conductive carbonaceous material having hydrophilicity include, for example, carbon black (US Pat. No. 5,571,311) dispersed in an aqueous dispersion medium after adsorbing alcohol, surfactant or the like on the surface. Carbon black grafted with nonionic, anionic or cationic hydrophilic groups on the surface (JP-A-5-230410, JP-A-6-128517, JP-A-6-166554, etc.), sulfuric acid, three Carbon black (JP-A-10-120958, JP-A-2002-324557, etc.) treated with a sulfonating agent such as sulfur sulfide or sulfonated pyridine salt to introduce a sulfone group on the surface, ozone treatment or plasma treatment Carbon black oxidized by the gas phase method such as nitric acid, hydrogen peroxide solution, sodium perchlorate, etc. (Japanese Patent Laid-Open No. 10-110112, Japanese Patent Laid-Open No. 2004-253379, etc.), carbon black treated with a reducing agent such as hydrogen or lithium aluminum hydride (Japanese Patent Laid-Open No. 2002-129065, Japanese Patent Laid-Open No. 2004-339428) Etc.). In the present invention, a conductive carbonaceous material imparted with hydrophilicity by any of these methods can be used.
The average particle diameter of the conductive carbonaceous material having hydrophilicity is usually preferably 3 to 1000 nm, and more preferably 5 to 200 nm.
親水性を有する導電性炭素質材料の平均粒径は、通常3~1000nmが好ましく、5~200nmがより好ましい。 Other specific examples of the conductive carbonaceous material having hydrophilicity include, for example, carbon black (US Pat. No. 5,571,311) dispersed in an aqueous dispersion medium after adsorbing alcohol, surfactant or the like on the surface. Carbon black grafted with nonionic, anionic or cationic hydrophilic groups on the surface (JP-A-5-230410, JP-A-6-128517, JP-A-6-166554, etc.), sulfuric acid, three Carbon black (JP-A-10-120958, JP-A-2002-324557, etc.) treated with a sulfonating agent such as sulfur sulfide or sulfonated pyridine salt to introduce a sulfone group on the surface, ozone treatment or plasma treatment Carbon black oxidized by the gas phase method such as nitric acid, hydrogen peroxide solution, sodium perchlorate, etc. (Japanese Patent Laid-Open No. 10-110112, Japanese Patent Laid-Open No. 2004-253379, etc.), carbon black treated with a reducing agent such as hydrogen or lithium aluminum hydride (Japanese Patent Laid-Open No. 2002-129065, Japanese Patent Laid-Open No. 2004-339428) Etc.). In the present invention, a conductive carbonaceous material imparted with hydrophilicity by any of these methods can be used.
The average particle diameter of the conductive carbonaceous material having hydrophilicity is usually preferably 3 to 1000 nm, and more preferably 5 to 200 nm.
本発明に用いられる結着剤としては、結晶性樹脂や非晶性樹脂、若しくはゴム、エラストマー等のポリマーが水に分散された水性分散液であるのが好ましい。ポリマーとしてはフッ素を含有しないポリマーもフッ素を含有するポリマーも好ましく使用できる。フッ素を含有しない結着剤用ポリマーとしては、天然ゴム類;スチレンブタジエン共重合体、アクリル変性スチレンブタジエン共重合体、酢酸ビニル共重合体、ニトリルブチルゴム、水素化ニトリルブチルゴム、アクリルゴム、エピクロルヒドリンゴム、ポリウレタン等の合成ゴム・エラストマー類;アクリル樹脂、メタクリル樹脂、ビニル樹脂、ポリオレフィン、ポリカーボネート、ナイロン、ポリイミド等の合成樹脂類等が挙げられる。
The binder used in the present invention is preferably an aqueous dispersion in which a crystalline resin, an amorphous resin, or a polymer such as rubber or elastomer is dispersed in water. As the polymer, a polymer containing no fluorine or a polymer containing fluorine can be preferably used. Fluorine-free binder polymers include natural rubbers: styrene butadiene copolymers, acrylic modified styrene butadiene copolymers, vinyl acetate copolymers, nitrile butyl rubber, hydrogenated nitrile butyl rubber, acrylic rubber, epichlorohydrin rubber, Synthetic rubbers and elastomers such as polyurethane; and synthetic resins such as acrylic resin, methacrylic resin, vinyl resin, polyolefin, polycarbonate, nylon, and polyimide.
本発明における結着剤としては、含フッ素ポリマーの水性分散液がより好ましい。含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、一般式(1):CF2=C(ORf)nF2-n(式中、Rfは炭素数1~8のパーフルオロアルキル基または分子内に1個以上のエーテル結合を含むパーフルオロアルキルオキシアルキル基であり、nは1又は2であり、いずれの炭素鎖も直鎖状、分岐状或いは環状構造を有しても良い。)で表されるパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、及びクロロトリフルオロエチレンからなる群から選ばれる少なくとも1種又は2種以上の組み合わせの含フッ素モノマーの重合体又は共重合体が挙げられる。
As the binder in the present invention, an aqueous dispersion of a fluorine-containing polymer is more preferable. Examples of the fluorine-containing polymer include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, general formula (1): CF 2 ═C (OR f ) n F 2-n (wherein R f has 1 to 8 carbon atoms) A perfluoroalkyl group or a perfluoroalkyloxyalkyl group containing one or more ether bonds in the molecule, n is 1 or 2, and any carbon chain has a linear, branched or cyclic structure. Or a combination of at least one or a combination of two or more fluorine-containing monomers selected from the group consisting of perfluoro (alkyl or alkyloxyalkyl vinyl ethers) represented by chlorotrifluoroethylene. A polymer is mentioned.
また、上記含フッ素モノマー以外に、一般式(2):CH2=CHOR(式中、Rは炭素数1~8のアルキル基又はエーテル結合を1個以上含むアルキルオキシアルキル基であり、いずれの炭素鎖も直鎖状、分岐状或いは環状構造を有しても良い。)で表されるアルキル又はアルキルオキシアルキルビニルエーテル類、及びエチレン、プロピレン等の共重合性モノマーの1種または2種以上を共重合させても良い。
共重合性モノマーとしては、上記のモノマー以外に、1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が挙げられる。 In addition to the fluorine-containing monomer, the general formula (2): CH 2 = CHOR (wherein R is an alkyloxyalkyl group having 1 to 8 carbon atoms or one or more ether bonds, The carbon chain may also have a linear, branched, or cyclic structure.) One or two or more kinds of alkyl or alkyloxyalkyl vinyl ethers represented by formula (1) and copolymerizable monomers such as ethylene and propylene. It may be copolymerized.
As the copolymerizable monomer, in addition to the above monomers, 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid And itaconic acid.
共重合性モノマーとしては、上記のモノマー以外に、1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が挙げられる。 In addition to the fluorine-containing monomer, the general formula (2): CH 2 = CHOR (wherein R is an alkyloxyalkyl group having 1 to 8 carbon atoms or one or more ether bonds, The carbon chain may also have a linear, branched, or cyclic structure.) One or two or more kinds of alkyl or alkyloxyalkyl vinyl ethers represented by formula (1) and copolymerizable monomers such as ethylene and propylene. It may be copolymerized.
As the copolymerizable monomer, in addition to the above monomers, 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid And itaconic acid.
本発明の蓄電素子電極形成用水性ペースト(以下、本発明の水性ペーストということがある。)の結着剤として含フッ素ポリマーを用いる場合、均質に分散された電極活物質と導電助剤を長期に安定して担持し、かつ集電体とかかる電極コンポジット層の密着性をさらに高める目的から、結晶性含フッ素ポリマーと非晶性含フッ素ポリマーを混合して用いることも好ましい。
結晶性含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、上記一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等が挙げられる。これらのモノマー中から選ばれた1種を重合して得られる結晶性ホモポリマーか、前記モノマーの少なくとも2種を重合して得られる結晶性コポリマーが好適である。 When a fluorine-containing polymer is used as the binder of the aqueous paste for forming an electricity storage element electrode of the present invention (hereinafter sometimes referred to as the aqueous paste of the present invention), a homogeneously dispersed electrode active material and a conductive assistant are used for a long time. It is also preferable to use a mixture of a crystalline fluorine-containing polymer and an amorphous fluorine-containing polymer for the purpose of stably supporting the electrode and further improving the adhesion between the current collector and the electrode composite layer.
Examples of the crystalline fluorine-containing polymer include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the above general formula (1), chlorotrifluoroethylene, and the like. A crystalline homopolymer obtained by polymerizing one selected from these monomers or a crystalline copolymer obtained by polymerizing at least two of the monomers is preferred.
結晶性含フッ素ポリマーとしては、テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、上記一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等が挙げられる。これらのモノマー中から選ばれた1種を重合して得られる結晶性ホモポリマーか、前記モノマーの少なくとも2種を重合して得られる結晶性コポリマーが好適である。 When a fluorine-containing polymer is used as the binder of the aqueous paste for forming an electricity storage element electrode of the present invention (hereinafter sometimes referred to as the aqueous paste of the present invention), a homogeneously dispersed electrode active material and a conductive assistant are used for a long time. It is also preferable to use a mixture of a crystalline fluorine-containing polymer and an amorphous fluorine-containing polymer for the purpose of stably supporting the electrode and further improving the adhesion between the current collector and the electrode composite layer.
Examples of the crystalline fluorine-containing polymer include tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the above general formula (1), chlorotrifluoroethylene, and the like. A crystalline homopolymer obtained by polymerizing one selected from these monomers or a crystalline copolymer obtained by polymerizing at least two of the monomers is preferred.
非晶性含フッ素ポリマーとしては、下記の第1の群のモノマーから選ばれた少なくとも2種を重合して得られる非晶性コポリマー、あるいは下記の第1の群のモノマーから選ばれた少なくとも1種と、下記の第2の群のモノマーから選ばれた少なくとも1種を共重合して得られる非晶性コポリマーなどが好適である。
第1の群のモノマー:テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、上記一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等。
第2の群のモノマー:上記一般式(2)のアルキル又はアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン等。 The amorphous fluorine-containing polymer is an amorphous copolymer obtained by polymerizing at least two selected from the following first group monomers, or at least one selected from the following first group monomers: Amorphous copolymers obtained by copolymerizing a seed and at least one selected from the following second group of monomers are preferred.
Monomers of the first group: tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the above general formula (1), chlorotrifluoroethylene and the like.
Second group of monomers: alkyl or alkyloxyalkyl vinyl ethers of the above general formula (2), ethylene, propylene and the like.
第1の群のモノマー:テトラフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、上記一般式(1)のパーフルオロ(アルキル又はアルキルオキシアルキルビニルエーテル)類、クロロトリフルオロエチレン等。
第2の群のモノマー:上記一般式(2)のアルキル又はアルキルオキシアルキルビニルエーテル類、エチレン、プロピレン等。 The amorphous fluorine-containing polymer is an amorphous copolymer obtained by polymerizing at least two selected from the following first group monomers, or at least one selected from the following first group monomers: Amorphous copolymers obtained by copolymerizing a seed and at least one selected from the following second group of monomers are preferred.
Monomers of the first group: tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl or alkyloxyalkyl vinyl ethers) of the above general formula (1), chlorotrifluoroethylene and the like.
Second group of monomers: alkyl or alkyloxyalkyl vinyl ethers of the above general formula (2), ethylene, propylene and the like.
結晶性含フッ素ポリマーと非晶性含フッ素ポリマーは、上記モノマーと共に共重合可能なその他の共重合性モノマーを共重合したものであってもよい。共重合可能なその他の共重合性モノマーとしては、1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル、無水マレイン酸、無水イタコン酸、マレイン酸、イタコン酸等が挙げられる。
結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの混合割合(質量比)は、0.1:9.9~9.9:0.1の範囲が好ましく、0.2:9.8~9.8:0.2の範囲がより好ましく、0.3:9.7~9.7:0.3の範囲がさらに好ましい。結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの比率がこの範囲にあると、蓄電素子電極は基板との密着性に優れ、耐溶剤性、耐熱性に優れる。 The crystalline fluorine-containing polymer and the amorphous fluorine-containing polymer may be those obtained by copolymerizing other copolymerizable monomers copolymerizable with the above monomers. Other copolymerizable monomers that can be copolymerized include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid And itaconic acid.
The mixing ratio (mass ratio) of the crystalline fluoropolymer and the amorphous fluoropolymer is preferably in the range of 0.1: 9.9 to 9.9: 0.1, and 0.2: 9.8 to 9 The range of .8: 0.2 is more preferable, and the range of 0.3: 9.7 to 9.7: 0.3 is more preferable. When the ratio of the crystalline fluorine-containing polymer to the amorphous fluorine-containing polymer is within this range, the electricity storage device electrode is excellent in adhesion to the substrate and excellent in solvent resistance and heat resistance.
結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの混合割合(質量比)は、0.1:9.9~9.9:0.1の範囲が好ましく、0.2:9.8~9.8:0.2の範囲がより好ましく、0.3:9.7~9.7:0.3の範囲がさらに好ましい。結晶性含フッ素ポリマーと非晶性含フッ素ポリマーの比率がこの範囲にあると、蓄電素子電極は基板との密着性に優れ、耐溶剤性、耐熱性に優れる。 The crystalline fluorine-containing polymer and the amorphous fluorine-containing polymer may be those obtained by copolymerizing other copolymerizable monomers copolymerizable with the above monomers. Other copolymerizable monomers that can be copolymerized include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, vinyl methacrylate, maleic anhydride, itaconic anhydride, maleic acid And itaconic acid.
The mixing ratio (mass ratio) of the crystalline fluoropolymer and the amorphous fluoropolymer is preferably in the range of 0.1: 9.9 to 9.9: 0.1, and 0.2: 9.8 to 9 The range of .8: 0.2 is more preferable, and the range of 0.3: 9.7 to 9.7: 0.3 is more preferable. When the ratio of the crystalline fluorine-containing polymer to the amorphous fluorine-containing polymer is within this range, the electricity storage device electrode is excellent in adhesion to the substrate and excellent in solvent resistance and heat resistance.
含フッ素ポリマーの水性分散液の製造は通常乳化重合により成される。この乳化重合における乳化剤としては、連鎖移動定数の小さいPFOA類や含フッ素エーテルカルボン酸化合物類等のフッ素系乳化剤が使用される。乳化重合後これらフッ素系乳化剤を取り除き、炭化水素系乳化剤で分散安定化する。フッ素系乳化剤の除去は公知の方法で行うことができる。アニオン界面活性剤から成るフッ素系乳化剤はアニオン交換樹脂に吸着させて除去することができる。またED法(Electro-decantation法)や相分離法(ふっ素樹脂ハンドブック(里川孝臣編集、日刊工業新聞社1990年発行)に記載されている。)を用いた濃縮を行うことによってもフッ素系乳化剤を除去することができる。
本発明の蓄電素子電極形成用水性ペーストには、かかる方法でフッ素系乳化剤を除去或いは低減された含フッ素ポリマーの水性分散液を好適に用いることができる。
結着剤としてポリマーの水性分散液を用いる場合、ポリマーの水性分散液のポリマー濃度は、通常10~80質量%が好ましく、20~70質量%がより好ましい。 Production of an aqueous dispersion of a fluorine-containing polymer is usually carried out by emulsion polymerization. As the emulsifier in this emulsion polymerization, fluorinated emulsifiers such as PFOA and fluorine-containing ether carboxylic acid compounds having a small chain transfer constant are used. After the emulsion polymerization, these fluorine-based emulsifiers are removed, and the dispersion is stabilized with a hydrocarbon-based emulsifier. The removal of the fluorine-based emulsifier can be performed by a known method. The fluorine-based emulsifier composed of an anionic surfactant can be removed by adsorbing to an anion exchange resin. The fluorine-based emulsifier can also be obtained by concentration using an ED method (Electro-decantation method) or a phase separation method (described in fluorine resin handbook (edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990)). Can be removed.
For the aqueous paste for forming a storage element electrode of the present invention, an aqueous dispersion of a fluorine-containing polymer from which a fluorine-based emulsifier has been removed or reduced by such a method can be suitably used.
When an aqueous polymer dispersion is used as the binder, the polymer concentration of the aqueous polymer dispersion is usually preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
本発明の蓄電素子電極形成用水性ペーストには、かかる方法でフッ素系乳化剤を除去或いは低減された含フッ素ポリマーの水性分散液を好適に用いることができる。
結着剤としてポリマーの水性分散液を用いる場合、ポリマーの水性分散液のポリマー濃度は、通常10~80質量%が好ましく、20~70質量%がより好ましい。 Production of an aqueous dispersion of a fluorine-containing polymer is usually carried out by emulsion polymerization. As the emulsifier in this emulsion polymerization, fluorinated emulsifiers such as PFOA and fluorine-containing ether carboxylic acid compounds having a small chain transfer constant are used. After the emulsion polymerization, these fluorine-based emulsifiers are removed, and the dispersion is stabilized with a hydrocarbon-based emulsifier. The removal of the fluorine-based emulsifier can be performed by a known method. The fluorine-based emulsifier composed of an anionic surfactant can be removed by adsorbing to an anion exchange resin. The fluorine-based emulsifier can also be obtained by concentration using an ED method (Electro-decantation method) or a phase separation method (described in fluorine resin handbook (edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990)). Can be removed.
For the aqueous paste for forming a storage element electrode of the present invention, an aqueous dispersion of a fluorine-containing polymer from which a fluorine-based emulsifier has been removed or reduced by such a method can be suitably used.
When an aqueous polymer dispersion is used as the binder, the polymer concentration of the aqueous polymer dispersion is usually preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
本発明に用いられる電極活物質としては、種々の蓄電素子類の電極活物質が挙げられる。例えば、リチウム電池類の正極活物質としては、一般的には金属酸化物類、金属硫化物類、導電性有機化合物類等が用いられる。特にリチウム金属複合酸化物やリチウム金属フォスフォオリビン類等の金属酸化物類は、安定した電池特性を長期に亘って発現できることから好ましく用いられる。これらの金属酸化物類は、Liと他の1種の金属の複合酸化物として使用されることもあるが、Liと他の複数の金属からなる複合酸化物としても用いられる。例えばリチウムニッケル複合酸化物類であると、LiNiO2をそのままリチウムイオン電池の正極とすることはほとんど無く、リチウムやニッケルの一部をCo、Mn、Al、B、Cr、Cu、F、Fe、Ga、Mg、Mo、Nb、O、Sn、Ti、V、Zn、Zr、及びその他の元素からなる群から選ばれる1種あるいは複数の元素で置き換えられた材料が好ましく用いられる。
Examples of the electrode active material used in the present invention include electrode active materials of various power storage elements. For example, metal oxides, metal sulfides, conductive organic compounds and the like are generally used as the positive electrode active material for lithium batteries. In particular, metal oxides such as lithium metal composite oxides and lithium metal phosphoolivines are preferably used because stable battery characteristics can be expressed over a long period of time. These metal oxides are sometimes used as a composite oxide of Li and another metal, but are also used as a composite oxide composed of Li and other metals. For example, some lithium nickel composite oxides, it is hardly to the positive electrode of the intact lithium ion batteries LiNiO 2, Co part of lithium or nickel, Mn, Al, B, Cr , Cu, F, Fe, A material substituted with one or more elements selected from the group consisting of Ga, Mg, Mo, Nb, O, Sn, Ti, V, Zn, Zr, and other elements is preferably used.
リチウム電池類の負極活物質としては、黒鉛系炭素、非黒鉛系炭素、金属系等の材料があり、いずれの材料も本発明に好ましく適用できる。例えば黒鉛系炭素、非黒鉛系炭素などの炭素質材料としては、天然黒鉛、人造黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ炭化物、石油系ピッチ炭化物、ニードルコークス、ピッチコークス。フェノール樹脂やセルロース等の炭化物及びこれら炭化物の部分黒鉛化物、ファーネスブラック、アセチレンブラック、炭素繊維等が挙げられる。また、金属系の材料としては、スズ系、シリコン系、チタン系、金属窒化物、リチウム、リチウム合金等が挙げられる。
電気二重層キャパシタ用電極活物質としては活性炭が用いられ、本発明においても好適に用いられる。負荷特性や静電容量を高める目的からホウ酸処理を施す提案等もあり、本発明においても、これら改質された活性炭が好適に用いられる。
ニッケル水素電池用活物質としては、正極にニッケル水酸化物やコバルト酸化物を複合化させたニッケル水酸化物を、負極にニッケル系やチタン系水素吸蔵合金を用いており、本発明においても好適に用いられる。
電極活物質の平均粒径は、通常0.05~500μmが好ましく、0.1~100μmがより好ましい。 Examples of the negative electrode active material for lithium batteries include graphite-based carbon, non-graphite-based carbon, and metal-based materials, and any material can be preferably applied to the present invention. Examples of carbonaceous materials such as graphite-based carbon and non-graphite-based carbon include natural graphite, artificial graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, and pitch coke. Examples thereof include carbides such as phenol resin and cellulose, partially graphitized products of these carbides, furnace black, acetylene black, and carbon fibers. Examples of the metal material include tin, silicon, titanium, metal nitride, lithium, and lithium alloy.
Activated carbon is used as the electrode active material for the electric double layer capacitor, and it is also preferably used in the present invention. There are also proposals to perform boric acid treatment for the purpose of increasing load characteristics and capacitance, and these modified activated carbons are also preferably used in the present invention.
As an active material for a nickel metal hydride battery, a nickel hydroxide compounded with nickel hydroxide or cobalt oxide is used for the positive electrode, and a nickel-based or titanium-based hydrogen storage alloy is used for the negative electrode. Used for.
The average particle diameter of the electrode active material is usually preferably 0.05 to 500 μm, more preferably 0.1 to 100 μm.
電気二重層キャパシタ用電極活物質としては活性炭が用いられ、本発明においても好適に用いられる。負荷特性や静電容量を高める目的からホウ酸処理を施す提案等もあり、本発明においても、これら改質された活性炭が好適に用いられる。
ニッケル水素電池用活物質としては、正極にニッケル水酸化物やコバルト酸化物を複合化させたニッケル水酸化物を、負極にニッケル系やチタン系水素吸蔵合金を用いており、本発明においても好適に用いられる。
電極活物質の平均粒径は、通常0.05~500μmが好ましく、0.1~100μmがより好ましい。 Examples of the negative electrode active material for lithium batteries include graphite-based carbon, non-graphite-based carbon, and metal-based materials, and any material can be preferably applied to the present invention. Examples of carbonaceous materials such as graphite-based carbon and non-graphite-based carbon include natural graphite, artificial graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, and pitch coke. Examples thereof include carbides such as phenol resin and cellulose, partially graphitized products of these carbides, furnace black, acetylene black, and carbon fibers. Examples of the metal material include tin, silicon, titanium, metal nitride, lithium, and lithium alloy.
Activated carbon is used as the electrode active material for the electric double layer capacitor, and it is also preferably used in the present invention. There are also proposals to perform boric acid treatment for the purpose of increasing load characteristics and capacitance, and these modified activated carbons are also preferably used in the present invention.
As an active material for a nickel metal hydride battery, a nickel hydroxide compounded with nickel hydroxide or cobalt oxide is used for the positive electrode, and a nickel-based or titanium-based hydrogen storage alloy is used for the negative electrode. Used for.
The average particle diameter of the electrode active material is usually preferably 0.05 to 500 μm, more preferably 0.1 to 100 μm.
本発明の水性ペーストは、電極活物質の含有量に制限はないが、一般的には水性ペースト全体量に対して、5~65質量%、好ましくは10~60質量%の範囲で調製される。5質量%より少なくても形成された電極自体に特性上の不具合は無いが、生産性が低く非効率であることから好ましくない。
導電助剤や結着剤の含有量は、電極活物質の種類やその特性に応じて決定されるものであるが、導電助剤の含有量は、通常は電極活物質の質量に対して0.01~15質量%が好ましく、より好ましくは0.1~12質量%であり、結着剤の含有量は、通常は電極活物質の質量に対して0.01~15質量%が好ましく、より好ましくは0.1~12質量%である。
蓄電素子の特性を担う主たる材料は電極活物質である。したがって蓄電容量に寄与しない電極活物質以外の材料は、求められる機能を発現できる最小量の添加が好ましい。 The aqueous paste of the present invention is not limited in the content of the electrode active material, but is generally prepared in the range of 5 to 65% by mass, preferably 10 to 60% by mass with respect to the total amount of the aqueous paste. . Even if the amount is less than 5% by mass, the formed electrode itself has no problem in characteristics, but it is not preferable because of low productivity and inefficiency.
The content of the conductive assistant and the binder is determined according to the type of electrode active material and its characteristics, but the content of the conductive assistant is usually 0 with respect to the mass of the electrode active material. 0.01 to 15% by mass is preferable, and more preferably 0.1 to 12% by mass. The content of the binder is usually preferably 0.01 to 15% by mass with respect to the mass of the electrode active material, More preferably, the content is 0.1 to 12% by mass.
The main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function.
導電助剤や結着剤の含有量は、電極活物質の種類やその特性に応じて決定されるものであるが、導電助剤の含有量は、通常は電極活物質の質量に対して0.01~15質量%が好ましく、より好ましくは0.1~12質量%であり、結着剤の含有量は、通常は電極活物質の質量に対して0.01~15質量%が好ましく、より好ましくは0.1~12質量%である。
蓄電素子の特性を担う主たる材料は電極活物質である。したがって蓄電容量に寄与しない電極活物質以外の材料は、求められる機能を発現できる最小量の添加が好ましい。 The aqueous paste of the present invention is not limited in the content of the electrode active material, but is generally prepared in the range of 5 to 65% by mass, preferably 10 to 60% by mass with respect to the total amount of the aqueous paste. . Even if the amount is less than 5% by mass, the formed electrode itself has no problem in characteristics, but it is not preferable because of low productivity and inefficiency.
The content of the conductive assistant and the binder is determined according to the type of electrode active material and its characteristics, but the content of the conductive assistant is usually 0 with respect to the mass of the electrode active material. 0.01 to 15% by mass is preferable, and more preferably 0.1 to 12% by mass. The content of the binder is usually preferably 0.01 to 15% by mass with respect to the mass of the electrode active material, More preferably, the content is 0.1 to 12% by mass.
The main material responsible for the characteristics of the storage element is an electrode active material. Therefore, materials other than the electrode active material that do not contribute to the storage capacity are preferably added in the minimum amount capable of expressing the required function.
本発明の水性ペーストにおいて、親水性を有する導電性炭素質材料を水に分散させるために分散剤又は分散安定剤を用いることが好ましい。分散剤或いは分散安定剤としては、フッ素を含有した分散剤以外の汎用の一般的な界面活性剤や水溶性高分子化合物等が挙げられる。これにより、前述のフッ素を含有する分散剤を用いなくとも、親水性を有する導電性炭素質材料を水中に微細化して均質に分散させることができる。この分散状態は電極活物質や結着剤等の共存下でも変ることがない。
分散剤としては、結着剤である水性分散液に含有される分散剤であってもよい。また、その他にも界面活性剤類を本発明の蓄電素子電極形成用水性ペーストに添加して使用することもできる。また、水溶性高分子としては、水性スラリーからの塗工加工性を高める目的で選択される水溶性高分子であってもよい。 In the aqueous paste of the present invention, it is preferable to use a dispersant or a dispersion stabilizer in order to disperse the hydrophilic conductive carbonaceous material in water. Examples of the dispersant or the dispersion stabilizer include general-purpose general surfactants and water-soluble polymer compounds other than the fluorine-containing dispersant. Thereby, even if it does not use the dispersing agent containing the above-mentioned fluorine, the conductive carbonaceous material which has hydrophilicity can be refined | miniaturized in water, and can be uniformly disperse | distributed. This dispersed state does not change even in the presence of an electrode active material or a binder.
The dispersant may be a dispersant contained in an aqueous dispersion that is a binder. In addition, surfactants can also be used by adding to the aqueous paste for forming a storage element electrode of the present invention. Further, the water-soluble polymer may be a water-soluble polymer selected for the purpose of improving the coating processability from the aqueous slurry.
分散剤としては、結着剤である水性分散液に含有される分散剤であってもよい。また、その他にも界面活性剤類を本発明の蓄電素子電極形成用水性ペーストに添加して使用することもできる。また、水溶性高分子としては、水性スラリーからの塗工加工性を高める目的で選択される水溶性高分子であってもよい。 In the aqueous paste of the present invention, it is preferable to use a dispersant or a dispersion stabilizer in order to disperse the hydrophilic conductive carbonaceous material in water. Examples of the dispersant or the dispersion stabilizer include general-purpose general surfactants and water-soluble polymer compounds other than the fluorine-containing dispersant. Thereby, even if it does not use the dispersing agent containing the above-mentioned fluorine, the conductive carbonaceous material which has hydrophilicity can be refined | miniaturized in water, and can be uniformly disperse | distributed. This dispersed state does not change even in the presence of an electrode active material or a binder.
The dispersant may be a dispersant contained in an aqueous dispersion that is a binder. In addition, surfactants can also be used by adding to the aqueous paste for forming a storage element electrode of the present invention. Further, the water-soluble polymer may be a water-soluble polymer selected for the purpose of improving the coating processability from the aqueous slurry.
界面活性剤としては、カルボン酸塩型、スルホン酸塩型、硫酸塩型、リン酸塩型等のアニオン界面活性剤類;四級アンモニウム塩型、イミダゾリニウム塩型、ピロジニウム塩型等のカチオン界面活性剤類;ベタイン型、アミノカルボン酸塩型、イミダゾリン誘導体型、アルキルアミンオキサイド型等の両性界面活性剤類;エーテル型、エーテルエステル型、エステル型、含窒素型、エチレンオキサイドとプロピレンオキサイドのブロックコポリマー等のノニオン界面活性剤類等が挙げられる。これらのうち、環境への影響が小さい点等から、アニオン界面活性剤及びノニオン界面活性剤が好ましい。
界面活性剤の含有量は、水性ペーストの全体量に対して総合して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
水溶性高分子化合物としては、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類;オリゴ糖、デキストリン、水溶性食物繊維等の糖類;クラウンエーテル類;ポリアクリル酸類;ポリエチレンオキサイド;ポリビニルアルコール等が挙げられる。中でもカルボキシメチルセルロースは分散安定剤としても良好に機能することから本発明に好適に使用できる。
水溶性高分子化合物の含有量は、水性ペーストの全体量に対して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 As the surfactant, anionic surfactants such as carboxylate type, sulfonate type, sulfate type, and phosphate type; cations such as quaternary ammonium salt type, imidazolinium salt type, and pyrodinium salt type Surfactants: amphoteric surfactants such as betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type; ether type, ether ester type, ester type, nitrogen-containing type, ethylene oxide and propylene oxide Nonionic surfactants such as block copolymers are exemplified. Of these, anionic surfactants and nonionic surfactants are preferred because they have a small impact on the environment.
The total content of the surfactant is preferably 0.01 to 10% by mass and more preferably 0.05 to 5% by mass with respect to the total amount of the aqueous paste.
Examples of water-soluble polymer compounds include celluloses such as methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose; saccharides such as oligosaccharides, dextrin, and water-soluble dietary fibers; crown ethers; polyacrylic acids; ; Polyvinyl alcohol etc. are mentioned. Among them, carboxymethyl cellulose can be suitably used in the present invention because it functions well as a dispersion stabilizer.
The content of the water-soluble polymer compound is preferably 0.01 to 10% by mass and more preferably 0.05 to 5% by mass with respect to the total amount of the aqueous paste.
界面活性剤の含有量は、水性ペーストの全体量に対して総合して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
水溶性高分子化合物としては、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類;オリゴ糖、デキストリン、水溶性食物繊維等の糖類;クラウンエーテル類;ポリアクリル酸類;ポリエチレンオキサイド;ポリビニルアルコール等が挙げられる。中でもカルボキシメチルセルロースは分散安定剤としても良好に機能することから本発明に好適に使用できる。
水溶性高分子化合物の含有量は、水性ペーストの全体量に対して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 As the surfactant, anionic surfactants such as carboxylate type, sulfonate type, sulfate type, and phosphate type; cations such as quaternary ammonium salt type, imidazolinium salt type, and pyrodinium salt type Surfactants: amphoteric surfactants such as betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type; ether type, ether ester type, ester type, nitrogen-containing type, ethylene oxide and propylene oxide Nonionic surfactants such as block copolymers are exemplified. Of these, anionic surfactants and nonionic surfactants are preferred because they have a small impact on the environment.
The total content of the surfactant is preferably 0.01 to 10% by mass and more preferably 0.05 to 5% by mass with respect to the total amount of the aqueous paste.
Examples of water-soluble polymer compounds include celluloses such as methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose; saccharides such as oligosaccharides, dextrin, and water-soluble dietary fibers; crown ethers; polyacrylic acids; ; Polyvinyl alcohol etc. are mentioned. Among them, carboxymethyl cellulose can be suitably used in the present invention because it functions well as a dispersion stabilizer.
The content of the water-soluble polymer compound is preferably 0.01 to 10% by mass and more preferably 0.05 to 5% by mass with respect to the total amount of the aqueous paste.
本発明の水性ペーストにおいて、電極コンポジットと集電体間の密着性を高める目的から、水性媒体として、水の他に、水より沸点の高い水溶性化合物を添加することができる。例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラメチレンスルホン、N-メチルピロリドン、エチレングリコール類、プロピレングリコール類、グリセリン等の有機溶媒を例示できる。有機溶媒の含有割合は、通常、水と有機溶媒の合計量に対して0~50質量%が好ましく、0~35質量%がより好ましい。
本発明の水性ペーストにおいて、水性媒体の含有割合は、30~90質量%が好ましく、33~70質量%がより好ましい。
本発明の水性ペーストは、電極活物質、導電助剤としての親水性を有する導電性炭素質材料、結着剤及び水性媒体を、さらに、必要に応じて上記した他の成分を混合することにより、製造することができる。なお、結着剤としてポリマーの水性分散液を用いる場合、このポリマーの水性分散液に水性媒体が含まれているので、別の水性媒体を加えなくてもよいし、水性媒体を追加してもよい。 In the aqueous paste of the present invention, for the purpose of improving the adhesion between the electrode composite and the current collector, a water-soluble compound having a boiling point higher than that of water can be added as an aqueous medium in addition to water. Examples thereof include organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetramethylene sulfone, N-methylpyrrolidone, ethylene glycols, propylene glycols and glycerin. The content of the organic solvent is usually preferably 0 to 50% by mass and more preferably 0 to 35% by mass with respect to the total amount of water and the organic solvent.
In the aqueous paste of the present invention, the content of the aqueous medium is preferably 30 to 90% by mass, and more preferably 33 to 70% by mass.
The aqueous paste of the present invention is obtained by mixing an electrode active material, a conductive carbonaceous material having hydrophilicity as a conductive additive, a binder and an aqueous medium, and further mixing other components as necessary. Can be manufactured. When an aqueous polymer dispersion is used as the binder, an aqueous medium is contained in the aqueous polymer dispersion. Therefore, it is not necessary to add another aqueous medium or add an aqueous medium. Good.
本発明の水性ペーストにおいて、水性媒体の含有割合は、30~90質量%が好ましく、33~70質量%がより好ましい。
本発明の水性ペーストは、電極活物質、導電助剤としての親水性を有する導電性炭素質材料、結着剤及び水性媒体を、さらに、必要に応じて上記した他の成分を混合することにより、製造することができる。なお、結着剤としてポリマーの水性分散液を用いる場合、このポリマーの水性分散液に水性媒体が含まれているので、別の水性媒体を加えなくてもよいし、水性媒体を追加してもよい。 In the aqueous paste of the present invention, for the purpose of improving the adhesion between the electrode composite and the current collector, a water-soluble compound having a boiling point higher than that of water can be added as an aqueous medium in addition to water. Examples thereof include organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetramethylene sulfone, N-methylpyrrolidone, ethylene glycols, propylene glycols and glycerin. The content of the organic solvent is usually preferably 0 to 50% by mass and more preferably 0 to 35% by mass with respect to the total amount of water and the organic solvent.
In the aqueous paste of the present invention, the content of the aqueous medium is preferably 30 to 90% by mass, and more preferably 33 to 70% by mass.
The aqueous paste of the present invention is obtained by mixing an electrode active material, a conductive carbonaceous material having hydrophilicity as a conductive additive, a binder and an aqueous medium, and further mixing other components as necessary. Can be manufactured. When an aqueous polymer dispersion is used as the binder, an aqueous medium is contained in the aqueous polymer dispersion. Therefore, it is not necessary to add another aqueous medium or add an aqueous medium. Good.
本発明の水性ペーストから蓄電素子電極を形成する方法としては、例えば、基板に本発明の水性ペーストを塗布し、乾燥し、熱処理する方法が挙げられる。基板としては、リチウムイオン電池の正極にアルミニウム箔、負極に銅箔、キャパシタ電極にはアルミニウム箔、ニッケル水素電池電極にはニッケル箔やニッケルメッシュ等が用いられる。本発明の水性ペーストからはこれらいずれの基板にも良好な電極コンポジット層を形成できる。その他の基板上にも良好な塗膜を形成できる。
本発明の蓄電素子としては、リチウムイオン電池、リチウムポリマー電池、リチウム一次電池といったリチウム電池類;ニッケル水素電池等の一次、二次電池類;電気二重層キャパシタ等のキャパシタ類が挙げられる。これら蓄電素子の電極コンポジット層形成に本発明の水性ペーストは好適に用いられる。 Examples of a method for forming a storage element electrode from the aqueous paste of the present invention include a method of applying the aqueous paste of the present invention to a substrate, drying, and heat-treating. As the substrate, an aluminum foil is used for the positive electrode of the lithium ion battery, a copper foil is used for the negative electrode, an aluminum foil is used for the capacitor electrode, and a nickel foil or a nickel mesh is used for the nickel metal hydride battery electrode. A good electrode composite layer can be formed on any of these substrates from the aqueous paste of the present invention. A good coating film can be formed on other substrates.
Examples of the electricity storage device of the present invention include lithium batteries such as lithium ion batteries, lithium polymer batteries, and lithium primary batteries; primary and secondary batteries such as nickel metal hydride batteries; and capacitors such as electric double layer capacitors. The aqueous paste of the present invention is suitably used for forming an electrode composite layer of these electricity storage elements.
本発明の蓄電素子としては、リチウムイオン電池、リチウムポリマー電池、リチウム一次電池といったリチウム電池類;ニッケル水素電池等の一次、二次電池類;電気二重層キャパシタ等のキャパシタ類が挙げられる。これら蓄電素子の電極コンポジット層形成に本発明の水性ペーストは好適に用いられる。 Examples of a method for forming a storage element electrode from the aqueous paste of the present invention include a method of applying the aqueous paste of the present invention to a substrate, drying, and heat-treating. As the substrate, an aluminum foil is used for the positive electrode of the lithium ion battery, a copper foil is used for the negative electrode, an aluminum foil is used for the capacitor electrode, and a nickel foil or a nickel mesh is used for the nickel metal hydride battery electrode. A good electrode composite layer can be formed on any of these substrates from the aqueous paste of the present invention. A good coating film can be formed on other substrates.
Examples of the electricity storage device of the present invention include lithium batteries such as lithium ion batteries, lithium polymer batteries, and lithium primary batteries; primary and secondary batteries such as nickel metal hydride batteries; and capacitors such as electric double layer capacitors. The aqueous paste of the present invention is suitably used for forming an electrode composite layer of these electricity storage elements.
本発明の水性ペーストを塗布して形成されたコンポジット電極は、上述のとおり電極活物質、導電助剤、結着剤、その他のコンポジット構成成分をミクロに均質に分散した構造を実現できることから、スムースな電荷移動反応を発現できる。こうした特長を持つ本発明の電極を用いた蓄電素子は、大きな充放電容量と高いエネルギー密度を持ち、優れたサイクル特性、高負荷特性、低温特性、高温特性、安全性を実現できる。特に、高エネルギー密度及び高負荷特性と、信頼性の高い安全性を両立できることから、中・大型の蓄電素子においても高出力、高エネルギー密度、高い信頼性と安全性を実現できる。
Since the composite electrode formed by applying the aqueous paste of the present invention can realize a structure in which the electrode active material, the conductive additive, the binder, and other composite components are uniformly dispersed as described above, it is smooth. Can develop a positive charge transfer reaction. A power storage device using the electrode of the present invention having such features has a large charge / discharge capacity and a high energy density, and can realize excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. In particular, since both high energy density and high load characteristics and highly reliable safety can be achieved, high output, high energy density, high reliability and safety can be realized even in medium and large-sized power storage devices.
以下に実施例によって本発明を更に具体的に説明するが、本発明はこれらによって制限されるものではない。
[親水性の評価試験方法]
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とした。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定した。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[Hydrophilicity evaluation test method]
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel was shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. The sample was dried at 120 ° C. for 24 hours and weighed, and the mass was defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Was determined to have hydrophilicity.
[親水性の評価試験方法]
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置した。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とした。分液ロートに投入した導電性炭素質材料粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定した。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[Hydrophilicity evaluation test method]
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel was shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. The sample was dried at 120 ° C. for 24 hours and weighed, and the mass was defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separating funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material Was determined to have hydrophilicity.
(1)ホウ素変性アセチレンブラック(A)の合成
750~800℃に制御したチューブ炉に、アセチレンガスを200リットル/時間、ホウ酸トリメチルを6ミリリットル/時間の供給速度で噴霧し、ホウ素含有のアセチレンブラックを得た。このホウ素含有のアセチレンブラックをアルゴン雰囲気下2800℃にて処理してホウ素を固溶させたアセチレンブラック(A)を得た。このアセチレンブラック(A)はホウ素含有量0.13質量%、及び炭素含有量95.0質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が10であって親水性を有すると判定された。 (1) Synthesis of boron-modified acetylene black (A) A tube furnace controlled at 750 to 800 ° C. was sprayed with acetylene gas at a supply rate of 200 liters / hour and trimethyl borate at 6 milliliters / hour, and boron-containing acetylene. Got black. This boron-containing acetylene black was treated at 2800 ° C. in an argon atmosphere to obtain acetylene black (A) in which boron was dissolved. This acetylene black (A) has a boron content of 0.13% by mass and a carbon content of 95.0% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was determined to be 10 and hydrophilic.
750~800℃に制御したチューブ炉に、アセチレンガスを200リットル/時間、ホウ酸トリメチルを6ミリリットル/時間の供給速度で噴霧し、ホウ素含有のアセチレンブラックを得た。このホウ素含有のアセチレンブラックをアルゴン雰囲気下2800℃にて処理してホウ素を固溶させたアセチレンブラック(A)を得た。このアセチレンブラック(A)はホウ素含有量0.13質量%、及び炭素含有量95.0質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が10であって親水性を有すると判定された。 (1) Synthesis of boron-modified acetylene black (A) A tube furnace controlled at 750 to 800 ° C. was sprayed with acetylene gas at a supply rate of 200 liters / hour and trimethyl borate at 6 milliliters / hour, and boron-containing acetylene. Got black. This boron-containing acetylene black was treated at 2800 ° C. in an argon atmosphere to obtain acetylene black (A) in which boron was dissolved. This acetylene black (A) has a boron content of 0.13% by mass and a carbon content of 95.0% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was determined to be 10 and hydrophilic.
(2)ホウ素変性アセチレンブラック(B)の合成
ホウ酸トリメチル供給速度を12ミリリットル/時間としたことを除き、(A)の合成の場合と同様にしてホウ素を固溶させたアセチレンブラック(B)を得た。このアセチレンブラック(B)はホウ素含有量0.37質量%、及び炭素含有量95.1質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が30であって親水性を有すると判定された。
(3)ホウ素変性アセチレンブラック(C)の合成
ホウ酸トリメチル供給速度を36ミリリットル/時間としたことを除き、(A)の合成の場合と同様にしてホウ素を固溶させたアセチレンブラック(C)を得た。このアセチレンブラック(C)はホウ素含有量1.21質量%、及び炭素含有量94.3質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が75であって親水性を有すると判定された。
その他に市販の電池用途向けアセチレンブラックとケッチェンブラックを入手した。これらのホウ素含有量は検出限界未満で、ほぼ0質量%と判断した。また本発明の親水性評価試験の結果は(W2/W1)×100の値がどちらも0であって全く親水性を有しないと判定された。 (2) Synthesis of boron-modified acetylene black (B) Acetylene black (B) in which boron is dissolved in the same manner as in the synthesis of (A) except that the trimethyl borate supply rate is 12 ml / hour. Got. This acetylene black (B) has a boron content of 0.37% by mass and a carbon content of 95.1% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was 30 and was determined to have hydrophilicity.
(3) Synthesis of boron-modified acetylene black (C) Acetylene black (C) in which boron is dissolved in the same manner as in the synthesis of (A) except that the trimethyl borate supply rate is 36 ml / hour. Got. This acetylene black (C) has a boron content of 1.21% by mass and a carbon content of 94.3% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was determined to have a hydrophilicity of 75.
In addition, commercially available acetylene black and ketjen black for battery use were obtained. These boron contents were less than the detection limit and were judged to be almost 0% by mass. In addition, as a result of the hydrophilicity evaluation test of the present invention, both of the values of (W 2 / W 1 ) × 100 were 0, and it was determined that the hydrophilic property was not hydrophilic at all.
ホウ酸トリメチル供給速度を12ミリリットル/時間としたことを除き、(A)の合成の場合と同様にしてホウ素を固溶させたアセチレンブラック(B)を得た。このアセチレンブラック(B)はホウ素含有量0.37質量%、及び炭素含有量95.1質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が30であって親水性を有すると判定された。
(3)ホウ素変性アセチレンブラック(C)の合成
ホウ酸トリメチル供給速度を36ミリリットル/時間としたことを除き、(A)の合成の場合と同様にしてホウ素を固溶させたアセチレンブラック(C)を得た。このアセチレンブラック(C)はホウ素含有量1.21質量%、及び炭素含有量94.3質量%であり、本発明の親水性評価試験の結果は(W2/W1)×100の値が75であって親水性を有すると判定された。
その他に市販の電池用途向けアセチレンブラックとケッチェンブラックを入手した。これらのホウ素含有量は検出限界未満で、ほぼ0質量%と判断した。また本発明の親水性評価試験の結果は(W2/W1)×100の値がどちらも0であって全く親水性を有しないと判定された。 (2) Synthesis of boron-modified acetylene black (B) Acetylene black (B) in which boron is dissolved in the same manner as in the synthesis of (A) except that the trimethyl borate supply rate is 12 ml / hour. Got. This acetylene black (B) has a boron content of 0.37% by mass and a carbon content of 95.1% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was 30 and was determined to have hydrophilicity.
(3) Synthesis of boron-modified acetylene black (C) Acetylene black (C) in which boron is dissolved in the same manner as in the synthesis of (A) except that the trimethyl borate supply rate is 36 ml / hour. Got. This acetylene black (C) has a boron content of 1.21% by mass and a carbon content of 94.3% by mass. The result of the hydrophilicity evaluation test of the present invention is (W 2 / W 1 ) × 100. It was determined to have a hydrophilicity of 75.
In addition, commercially available acetylene black and ketjen black for battery use were obtained. These boron contents were less than the detection limit and were judged to be almost 0% by mass. In addition, as a result of the hydrophilicity evaluation test of the present invention, both of the values of (W 2 / W 1 ) × 100 were 0, and it was determined that the hydrophilic property was not hydrophilic at all.
(4)フッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(D)の製造
100Lの耐圧重合槽にパラフィンワックス736g、超純水59L、及びAPFO15gを仕込んだ。70℃に昇温後、窒素パージしてから脱気し、撹拌しながらテトラフルオロエチレンを内圧1.9MPaまで導入した。これに0.5質量%コハク酸パーオキシド水溶液の1Lを圧入して重合開始した。重合はテトラフルオロエチレンを供給しながら重合圧力1.9MPaに保持して45分間行った。その後、90℃まで昇温して2.5質量%のAPFO水溶液1Lを加え、95分間継続した。得られた乳濁液から凝集物やパラフィン等を除去し、ポリテトラフルオロエチレン(以下、PTFEと称する。)含有量26.0質量%、及びAPFO含有量0.12質量%の結着剤用の結晶性含フッ素ポリマー水性分散液(D)25.1kgを得た。(D)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (4) Production of Crystalline Fluoropolymer Aqueous Dispersion (D) Containing Fluorosurfactant 7100 g of paraffin wax, 59 L of ultrapure water, and 15 g of APFO were charged into a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, tetrafluoroethylene was introduced to an internal pressure of 1.9 MPa while stirring. 1 L of 0.5% by mass aqueous succinic acid peroxide solution was injected into this to initiate polymerization. The polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying tetrafluoroethylene. Thereafter, the temperature was raised to 90 ° C., 1 L of a 2.5 mass% APFO aqueous solution was added, and the mixture was continued for 95 minutes. Agglomerates, paraffin and the like are removed from the obtained emulsion, and used for a binder having a polytetrafluoroethylene (hereinafter referred to as PTFE) content of 26.0% by mass and an APFO content of 0.12% by mass. 25.1 kg of an aqueous crystalline fluoropolymer dispersion (D) was obtained. As a result of thermal analysis, the polymer taken out from a part of (D), purified and dried was a crystalline polymer having a melting point of 327 ° C.
100Lの耐圧重合槽にパラフィンワックス736g、超純水59L、及びAPFO15gを仕込んだ。70℃に昇温後、窒素パージしてから脱気し、撹拌しながらテトラフルオロエチレンを内圧1.9MPaまで導入した。これに0.5質量%コハク酸パーオキシド水溶液の1Lを圧入して重合開始した。重合はテトラフルオロエチレンを供給しながら重合圧力1.9MPaに保持して45分間行った。その後、90℃まで昇温して2.5質量%のAPFO水溶液1Lを加え、95分間継続した。得られた乳濁液から凝集物やパラフィン等を除去し、ポリテトラフルオロエチレン(以下、PTFEと称する。)含有量26.0質量%、及びAPFO含有量0.12質量%の結着剤用の結晶性含フッ素ポリマー水性分散液(D)25.1kgを得た。(D)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (4) Production of Crystalline Fluoropolymer Aqueous Dispersion (D) Containing Fluorosurfactant 7100 g of paraffin wax, 59 L of ultrapure water, and 15 g of APFO were charged into a 100 L pressure-resistant polymerization tank. After raising the temperature to 70 ° C., purging with nitrogen and then degassing, tetrafluoroethylene was introduced to an internal pressure of 1.9 MPa while stirring. 1 L of 0.5% by mass aqueous succinic acid peroxide solution was injected into this to initiate polymerization. The polymerization was carried out for 45 minutes while maintaining the polymerization pressure at 1.9 MPa while supplying tetrafluoroethylene. Thereafter, the temperature was raised to 90 ° C., 1 L of a 2.5 mass% APFO aqueous solution was added, and the mixture was continued for 95 minutes. Agglomerates, paraffin and the like are removed from the obtained emulsion, and used for a binder having a polytetrafluoroethylene (hereinafter referred to as PTFE) content of 26.0% by mass and an APFO content of 0.12% by mass. 25.1 kg of an aqueous crystalline fluoropolymer dispersion (D) was obtained. As a result of thermal analysis, the polymer taken out from a part of (D), purified and dried was a crystalline polymer having a melting point of 327 ° C.
(5)微量のフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(E)の製造
上記(D)の水性分散液に0.2kgのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、0.3kgのアニオン交換樹脂(三菱化学社製、ダイアイオンWA-30)を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。次いで、ろ液に28質量%アンモニア水0.04kgを加え、相分離法により80℃にて10時間濃縮した。次いで、上澄み液を除去した後0.1kgの前記ノニオン界面活性剤を新たに加えて、PTFE含有量59.7質量%、及びAPFO含有量0.01質量%の結着剤用の結晶性含フッ素ポリマー水性分散液(E)10.5kgを得た。(E)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (5) Production of crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of fluorosurfactant 0.2 kg of polyoxyethylene (average polymerization degree 9) lauryl ether in the aqueous dispersion of (D) above The nonionic surfactant containing the main component is added and dissolved, 0.3 kg of anion exchange resin (Mitsubishi Chemical Corporation, Diaion WA-30) is dispersed, stirred for 24 hours, and filtered to obtain the anion exchange resin. Removed. Subsequently, 0.04 kg of 28 mass% ammonia water was added to the filtrate, and it concentrated at 80 degreeC for 10 hours by the phase-separation method. Next, after removing the supernatant, 0.1 kg of the nonionic surfactant is newly added, and the crystalline content for the binder having a PTFE content of 59.7% by mass and an APFO content of 0.01% by mass is added. 10.5 kg of fluoropolymer aqueous dispersion (E) was obtained. As a result of thermal analysis, the polymer taken out from a part of (E), purified and dried was a crystalline polymer having a melting point of 327 ° C.
上記(D)の水性分散液に0.2kgのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、0.3kgのアニオン交換樹脂(三菱化学社製、ダイアイオンWA-30)を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。次いで、ろ液に28質量%アンモニア水0.04kgを加え、相分離法により80℃にて10時間濃縮した。次いで、上澄み液を除去した後0.1kgの前記ノニオン界面活性剤を新たに加えて、PTFE含有量59.7質量%、及びAPFO含有量0.01質量%の結着剤用の結晶性含フッ素ポリマー水性分散液(E)10.5kgを得た。(E)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (5) Production of crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of fluorosurfactant 0.2 kg of polyoxyethylene (average polymerization degree 9) lauryl ether in the aqueous dispersion of (D) above The nonionic surfactant containing the main component is added and dissolved, 0.3 kg of anion exchange resin (Mitsubishi Chemical Corporation, Diaion WA-30) is dispersed, stirred for 24 hours, and filtered to obtain the anion exchange resin. Removed. Subsequently, 0.04 kg of 28 mass% ammonia water was added to the filtrate, and it concentrated at 80 degreeC for 10 hours by the phase-separation method. Next, after removing the supernatant, 0.1 kg of the nonionic surfactant is newly added, and the crystalline content for the binder having a PTFE content of 59.7% by mass and an APFO content of 0.01% by mass is added. 10.5 kg of fluoropolymer aqueous dispersion (E) was obtained. As a result of thermal analysis, the polymer taken out from a part of (E), purified and dried was a crystalline polymer having a melting point of 327 ° C.
(6)微量のフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(F)の製造
APFOの15gに代えてC2F5OCF2CF2OCF2COONH4(以下、EEAと称する。)の33gを用い、水性分散液(D)の製造の場合と同様にしてPTFE含有量24.3質量%である水性分散液を製造した。この水性分散液から、0.3kgのアニオン交換樹脂に替えて0.5kgのアニオン交換樹脂を、新たに添加するノニオン界面活性剤に代えてラウリル硫酸ナトリウムから成るアニオン界面活性剤を用い、水性分散液(E)の製造の場合と同様にしてフッ素系乳化剤の除去と濃縮を行い、PTFE含有量57.8質量%、及びEEA含質量0.005質量%である結着剤用の結晶性含フッ素ポリマー水性分散液(F)10.9kgを得た。(F)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (6) Production of crystalline fluoropolymer aqueous dispersion (F) containing a trace amount of a fluorosurfactant C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 (hereinafter referred to as EEA) instead of 15 g of APFO .) Was used to produce an aqueous dispersion having a PTFE content of 24.3% by mass in the same manner as in the production of the aqueous dispersion (D). From this aqueous dispersion, 0.5 kg of anion exchange resin is used instead of 0.3 kg of anion exchange resin, and an anionic surfactant made of sodium lauryl sulfate is used instead of the newly added nonionic surfactant. In the same manner as in the production of the liquid (E), the fluoroemulsifier is removed and concentrated, and the crystalline content for the binder having a PTFE content of 57.8% by mass and an EEA content of 0.005% by mass is obtained. 10.9 kg of fluoropolymer aqueous dispersion (F) was obtained. As a result of thermal analysis, the polymer taken out from a part of (F), purified and dried was a crystalline polymer having a melting point of 327 ° C.
APFOの15gに代えてC2F5OCF2CF2OCF2COONH4(以下、EEAと称する。)の33gを用い、水性分散液(D)の製造の場合と同様にしてPTFE含有量24.3質量%である水性分散液を製造した。この水性分散液から、0.3kgのアニオン交換樹脂に替えて0.5kgのアニオン交換樹脂を、新たに添加するノニオン界面活性剤に代えてラウリル硫酸ナトリウムから成るアニオン界面活性剤を用い、水性分散液(E)の製造の場合と同様にしてフッ素系乳化剤の除去と濃縮を行い、PTFE含有量57.8質量%、及びEEA含質量0.005質量%である結着剤用の結晶性含フッ素ポリマー水性分散液(F)10.9kgを得た。(F)の一部から取り出し、精製、乾燥したポリマーは、熱分析した結果、融点が327℃の結晶性ポリマーであった。 (6) Production of crystalline fluoropolymer aqueous dispersion (F) containing a trace amount of a fluorosurfactant C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 (hereinafter referred to as EEA) instead of 15 g of APFO .) Was used to produce an aqueous dispersion having a PTFE content of 24.3% by mass in the same manner as in the production of the aqueous dispersion (D). From this aqueous dispersion, 0.5 kg of anion exchange resin is used instead of 0.3 kg of anion exchange resin, and an anionic surfactant made of sodium lauryl sulfate is used instead of the newly added nonionic surfactant. In the same manner as in the production of the liquid (E), the fluoroemulsifier is removed and concentrated, and the crystalline content for the binder having a PTFE content of 57.8% by mass and an EEA content of 0.005% by mass is obtained. 10.9 kg of fluoropolymer aqueous dispersion (F) was obtained. As a result of thermal analysis, the polymer taken out from a part of (F), purified and dried was a crystalline polymer having a melting point of 327 ° C.
(7)微量のフッ素系界面活性剤を含有した非晶性含フッ素ポリマー水性分散液(G)の製造
3Lの耐圧重合槽にイオン交換水1.5L、リン酸水素二ナトリウム12水和物40g、水酸化ナトリウム0.5g、第3級ブタノール198g、APFO7g、及び過硫酸アンモニウム2.5gを仕込んで溶解させた。続いて0.4gのエチレンジアミン四酢酸二ナトリウム塩・2水和物と0.3gの硫酸第一鉄7水和物を溶解させた水溶液200gを投入後、撹拌しながらモル比85/15のテトラフルオロエチレン/プロピレン混合ガスを投入して内圧2.5MPaとし、2.5質量%のロンガリット水溶液を添加して重合開始した。重合はモル比56/44のテトラフルオロエチレン/プロピレン混合ガス800gを追加供給しながら重合圧2.5MPaに保持して5.5時間行った。得られた乳濁液から凝集物等を除去し、テトラフルオロエチレンとプロピレンのコポリマー含有量30.8質量%、及びAPFO0.3質量%である水性分散液を製造した。この水性分散液に20gのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、35gの前記アニオン交換樹脂を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28質量%アンモニア水5gを加え、相分離法により80℃にて10時間濃縮した。次いで、上澄み液を除去した後10gの前記アニオン界面活性剤を新たに加えて、コポリマー含有量60.3質量%、及びAPFO含有量0.01質量%である結着剤用非晶性含フッ素ポリマー水性分散液(G)1150gを得た。水性分散液(G)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率56.3/43.7で結晶融点を持たない非晶性コポリマーであった。 (7) Production of Amorphous Fluoropolymer Aqueous Dispersion (G) Containing a Small Amount of Fluorosurfactant 1.5 L of ion-exchanged water and 40 g of disodium hydrogen phosphate 12 hydrate in a 3 L pressure-resistant polymerization tank Sodium hydroxide 0.5 g, tertiary butanol 198 g, APFO 7 g, and ammonium persulfate 2.5 g were charged and dissolved. Subsequently, 200 g of an aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved was added, and the mixture was stirred and tetrahydrate with a molar ratio of 85/15. A fluoroethylene / propylene mixed gas was charged to an internal pressure of 2.5 MPa, and 2.5% by mass of a Rongalite aqueous solution was added to initiate polymerization. The polymerization was carried out for 5.5 hours while maintaining a polymerization pressure of 2.5 MPa while additionally supplying 800 g of a tetrafluoroethylene / propylene mixed gas having a molar ratio of 56/44. Aggregates and the like were removed from the obtained emulsion to prepare an aqueous dispersion having a tetrafluoroethylene / propylene copolymer content of 30.8% by mass and APFO of 0.3% by mass. To this aqueous dispersion, a nonionic surfactant mainly composed of 20 g of polyoxyethylene (average degree of polymerization 9) lauryl ether was added and dissolved. 35 g of the anion exchange resin was dispersed and stirred for 24 hours, followed by filtration. The anion exchange resin was removed. To the filtrate, 5 g of 28% by mass aqueous ammonia was added and concentrated at 80 ° C. for 10 hours by a phase separation method. Next, after removing the supernatant, 10 g of the anionic surfactant is newly added, and the amorphous fluorine-containing binder for binder having a copolymer content of 60.3% by mass and an APFO content of 0.01% by mass. 1150 g of polymer aqueous dispersion (G) was obtained. The polymer taken out of a part of the aqueous dispersion (G), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 56.3 / 43.7 and no crystal melting point.
3Lの耐圧重合槽にイオン交換水1.5L、リン酸水素二ナトリウム12水和物40g、水酸化ナトリウム0.5g、第3級ブタノール198g、APFO7g、及び過硫酸アンモニウム2.5gを仕込んで溶解させた。続いて0.4gのエチレンジアミン四酢酸二ナトリウム塩・2水和物と0.3gの硫酸第一鉄7水和物を溶解させた水溶液200gを投入後、撹拌しながらモル比85/15のテトラフルオロエチレン/プロピレン混合ガスを投入して内圧2.5MPaとし、2.5質量%のロンガリット水溶液を添加して重合開始した。重合はモル比56/44のテトラフルオロエチレン/プロピレン混合ガス800gを追加供給しながら重合圧2.5MPaに保持して5.5時間行った。得られた乳濁液から凝集物等を除去し、テトラフルオロエチレンとプロピレンのコポリマー含有量30.8質量%、及びAPFO0.3質量%である水性分散液を製造した。この水性分散液に20gのポリオキシエチレン(平均重合度9)ラウリルエーテルを主成分としたノニオン界面活性剤を加えて溶解させ、35gの前記アニオン交換樹脂を分散させて24時間撹拌後、ろ過してアニオン交換樹脂を取り除いた。ろ液に28質量%アンモニア水5gを加え、相分離法により80℃にて10時間濃縮した。次いで、上澄み液を除去した後10gの前記アニオン界面活性剤を新たに加えて、コポリマー含有量60.3質量%、及びAPFO含有量0.01質量%である結着剤用非晶性含フッ素ポリマー水性分散液(G)1150gを得た。水性分散液(G)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率56.3/43.7で結晶融点を持たない非晶性コポリマーであった。 (7) Production of Amorphous Fluoropolymer Aqueous Dispersion (G) Containing a Small Amount of Fluorosurfactant 1.5 L of ion-exchanged water and 40 g of disodium hydrogen phosphate 12 hydrate in a 3 L pressure-resistant polymerization tank Sodium hydroxide 0.5 g, tertiary butanol 198 g, APFO 7 g, and ammonium persulfate 2.5 g were charged and dissolved. Subsequently, 200 g of an aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved was added, and the mixture was stirred and tetrahydrate with a molar ratio of 85/15. A fluoroethylene / propylene mixed gas was charged to an internal pressure of 2.5 MPa, and 2.5% by mass of a Rongalite aqueous solution was added to initiate polymerization. The polymerization was carried out for 5.5 hours while maintaining a polymerization pressure of 2.5 MPa while additionally supplying 800 g of a tetrafluoroethylene / propylene mixed gas having a molar ratio of 56/44. Aggregates and the like were removed from the obtained emulsion to prepare an aqueous dispersion having a tetrafluoroethylene / propylene copolymer content of 30.8% by mass and APFO of 0.3% by mass. To this aqueous dispersion, a nonionic surfactant mainly composed of 20 g of polyoxyethylene (average degree of polymerization 9) lauryl ether was added and dissolved. 35 g of the anion exchange resin was dispersed and stirred for 24 hours, followed by filtration. The anion exchange resin was removed. To the filtrate, 5 g of 28% by mass aqueous ammonia was added and concentrated at 80 ° C. for 10 hours by a phase separation method. Next, after removing the supernatant, 10 g of the anionic surfactant is newly added, and the amorphous fluorine-containing binder for binder having a copolymer content of 60.3% by mass and an APFO content of 0.01% by mass. 1150 g of polymer aqueous dispersion (G) was obtained. The polymer taken out of a part of the aqueous dispersion (G), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 56.3 / 43.7 and no crystal melting point.
(8)微量のフッ素系界面活性剤を含有した非晶性含フッ素ポリマー水性分散液(H)の製造
APFOの7gに代えてEEAの8gを用い水性分散液(G)の製造と同様にして、コポリマー含有量61.9質量%、及びEEA含有量0.01質量%である結着剤用の非晶性含フッ素ポリマー水性分散液(H)1050gを得た。水性分散液(H)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率55.8/44.2で、結晶融点を持たない非晶性コポリマーであった。 (8) Production of Amorphous Fluoropolymer Aqueous Dispersion (H) Containing a Trace Amount of Fluorosurfactant 8G of EEA was used instead of 7 g of APFO in the same manner as in the production of aqueous dispersion (G). 1050 g of an amorphous fluoropolymer aqueous dispersion (H) for a binder having a copolymer content of 61.9% by mass and an EEA content of 0.01% by mass was obtained. A polymer taken out of a part of the aqueous dispersion (H), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 55.8 / 44.2 and no crystalline melting point.
APFOの7gに代えてEEAの8gを用い水性分散液(G)の製造と同様にして、コポリマー含有量61.9質量%、及びEEA含有量0.01質量%である結着剤用の非晶性含フッ素ポリマー水性分散液(H)1050gを得た。水性分散液(H)の一部から取り出し、精製、乾燥したポリマーは、テトラフルオロエチレン/プロピレン共重合モル比率55.8/44.2で、結晶融点を持たない非晶性コポリマーであった。 (8) Production of Amorphous Fluoropolymer Aqueous Dispersion (H) Containing a Trace Amount of Fluorosurfactant 8G of EEA was used instead of 7 g of APFO in the same manner as in the production of aqueous dispersion (G). 1050 g of an amorphous fluoropolymer aqueous dispersion (H) for a binder having a copolymer content of 61.9% by mass and an EEA content of 0.01% by mass was obtained. A polymer taken out of a part of the aqueous dispersion (H), purified and dried was an amorphous copolymer having a tetrafluoroethylene / propylene copolymer molar ratio of 55.8 / 44.2 and no crystalline melting point.
(9)フッ素系界面活性剤を含有しない非晶性含フッ素ポリマー水性分散液(I)の製造 3Lの耐圧重合槽にイオン交換水1.0L、炭酸カリウム2.2g、過硫酸アンモニウム0.7g、ポリオキシエチレンアルキルエーテル31g、ラウリル硫酸ナトリウム1g、エチルビニルエーテル161g、シクロヘキシルビニルエーテル178g、及び4-ヒドロキシブチルビニルエーテル141gを仕込み、冷却と窒素ガス加圧を繰り返して脱気した。その後、クロロトリフルオロエチレン482gを仕込んで、30℃にて12時間重合反応を行った。得られた乳濁液から凝集物を除去し、ポリマー含有量50.1質量%である結着剤用の非晶性含フッ素ポリマー水性分散液(I)1250gを得た。水性分散液(I)の一部から取り出し、精製、乾燥したポリマーは、結晶融点を持たない非晶性コポリマーであった。
(9) Production of Amorphous Fluoropolymer Aqueous Dispersion (I) Containing No Fluorosurfactant: 1.0 L of ion exchange water, 2.2 g of potassium carbonate, 0.7 g of ammonium persulfate in a 3 L pressure-resistant polymerization tank, 31 g of polyoxyethylene alkyl ether, 1 g of sodium lauryl sulfate, 161 g of ethyl vinyl ether, 178 g of cyclohexyl vinyl ether, and 141 g of 4-hydroxybutyl vinyl ether were charged, and degassing was repeated by repeating cooling and nitrogen gas pressurization. Thereafter, 482 g of chlorotrifluoroethylene was charged, and a polymerization reaction was performed at 30 ° C. for 12 hours. Aggregates were removed from the obtained emulsion to obtain 1250 g of an amorphous fluoropolymer aqueous dispersion (I) for a binder having a polymer content of 50.1% by mass. The polymer taken out from a part of the aqueous dispersion (I), purified and dried was an amorphous copolymer having no crystalline melting point.
(10)フッ素系界面活性剤を含有しない非晶性の炭化水素系ポリマー水性分散液(J)の製造
3Lの耐圧反応槽にイオン交換水1000g、ドデシルベンゼンスルホン酸ナトリウム2.5g、過硫酸カリウム5g、重亜硫酸ナトリウム2.5g、スチレン235g、ブタジエン195g、メタクリル酸メチル50g、及びイタコン酸20gを仕込み、冷却と窒素ガス加圧を繰り返して脱気した。その後、45℃にて6時間重合反応を行った。得られた乳濁液から凝集物を除去し、ポリマー含有量35.5質量%である結着剤用アクリル変性スチレンブタジエンゴム水性分散液(J)1300gを得た。水性分散液(J)の一部から取り出し、精製、乾燥したポリマーは、結晶融点を持たない非晶性コポリマーであった。 (10) Production of Amorphous Hydrocarbon Polymer Aqueous Dispersion (J) Containing No Fluorosurfactant 1000 g of ion-exchanged water, 2.5 g of sodium dodecylbenzenesulfonate, potassium persulfate in a 3 L pressure resistant reactor 5 g, 2.5 g of sodium bisulfite, 235 g of styrene, 195 g of butadiene, 50 g of methyl methacrylate, and 20 g of itaconic acid were charged, and deaeration was repeated by repeating cooling and nitrogen gas pressurization. Thereafter, a polymerization reaction was carried out at 45 ° C. for 6 hours. Aggregates were removed from the obtained emulsion to obtain 1300 g of an acrylic modified styrene butadiene rubber aqueous dispersion (J) for a binder having a polymer content of 35.5% by mass. The polymer taken out from a part of the aqueous dispersion (J), purified and dried was an amorphous copolymer having no crystalline melting point.
3Lの耐圧反応槽にイオン交換水1000g、ドデシルベンゼンスルホン酸ナトリウム2.5g、過硫酸カリウム5g、重亜硫酸ナトリウム2.5g、スチレン235g、ブタジエン195g、メタクリル酸メチル50g、及びイタコン酸20gを仕込み、冷却と窒素ガス加圧を繰り返して脱気した。その後、45℃にて6時間重合反応を行った。得られた乳濁液から凝集物を除去し、ポリマー含有量35.5質量%である結着剤用アクリル変性スチレンブタジエンゴム水性分散液(J)1300gを得た。水性分散液(J)の一部から取り出し、精製、乾燥したポリマーは、結晶融点を持たない非晶性コポリマーであった。 (10) Production of Amorphous Hydrocarbon Polymer Aqueous Dispersion (J) Containing No Fluorosurfactant 1000 g of ion-exchanged water, 2.5 g of sodium dodecylbenzenesulfonate, potassium persulfate in a 3 L pressure resistant reactor 5 g, 2.5 g of sodium bisulfite, 235 g of styrene, 195 g of butadiene, 50 g of methyl methacrylate, and 20 g of itaconic acid were charged, and deaeration was repeated by repeating cooling and nitrogen gas pressurization. Thereafter, a polymerization reaction was carried out at 45 ° C. for 6 hours. Aggregates were removed from the obtained emulsion to obtain 1300 g of an acrylic modified styrene butadiene rubber aqueous dispersion (J) for a binder having a polymer content of 35.5% by mass. The polymer taken out from a part of the aqueous dispersion (J), purified and dried was an amorphous copolymer having no crystalline melting point.
(11)リチウムイオン電池用正極活物質(K)[リチウム(ニッケル・マンガン・コバルト)複合酸化物]の合成
炭酸ニッケルを大気中700℃にて15時間焼成して調製した酸化ニッケル3.3モル、炭酸マンガンを大気中700℃にて15時間焼成して調製した二酸化マンガン3.3モル、結晶性の低いオキシ水酸化コバルト3.3モル、及び炭酸リチウム5.1モルを純水に分散させ、直径0.1mmのジルコニアビーズで2時間ビーズミル処理した後、噴霧乾燥して乾燥粉を得た。これを大気中850℃にて15時間焼成し、平均粒径3.6μmであるリチウム(ニッケル・マンガン・コバルト)複合酸化物を得た。 (11) Synthesis of positive electrode active material for lithium ion battery (K) [lithium (nickel / manganese / cobalt) composite oxide] 3.3 mol of nickel oxide prepared by baking nickel carbonate at 700 ° C. for 15 hours in the air Then, 3.3 mol of manganese dioxide prepared by baking manganese carbonate at 700 ° C. for 15 hours in the atmosphere, 3.3 mol of cobalt oxyhydroxide having low crystallinity, and 5.1 mol of lithium carbonate were dispersed in pure water. The bead mill was treated with zirconia beads having a diameter of 0.1 mm for 2 hours and then spray-dried to obtain a dry powder. This was calcined in the atmosphere at 850 ° C. for 15 hours to obtain a lithium (nickel / manganese / cobalt) composite oxide having an average particle size of 3.6 μm.
炭酸ニッケルを大気中700℃にて15時間焼成して調製した酸化ニッケル3.3モル、炭酸マンガンを大気中700℃にて15時間焼成して調製した二酸化マンガン3.3モル、結晶性の低いオキシ水酸化コバルト3.3モル、及び炭酸リチウム5.1モルを純水に分散させ、直径0.1mmのジルコニアビーズで2時間ビーズミル処理した後、噴霧乾燥して乾燥粉を得た。これを大気中850℃にて15時間焼成し、平均粒径3.6μmであるリチウム(ニッケル・マンガン・コバルト)複合酸化物を得た。 (11) Synthesis of positive electrode active material for lithium ion battery (K) [lithium (nickel / manganese / cobalt) composite oxide] 3.3 mol of nickel oxide prepared by baking nickel carbonate at 700 ° C. for 15 hours in the air Then, 3.3 mol of manganese dioxide prepared by baking manganese carbonate at 700 ° C. for 15 hours in the atmosphere, 3.3 mol of cobalt oxyhydroxide having low crystallinity, and 5.1 mol of lithium carbonate were dispersed in pure water. The bead mill was treated with zirconia beads having a diameter of 0.1 mm for 2 hours and then spray-dried to obtain a dry powder. This was calcined in the atmosphere at 850 ° C. for 15 hours to obtain a lithium (nickel / manganese / cobalt) composite oxide having an average particle size of 3.6 μm.
(12)リチウムイオン電池正極活物質(L)[リチウム鉄フォスフェート]の合成
313.1gの85%リン酸を純水1000gで希釈した。このリン酸水溶液を撹拌しながら100.3gの炭酸リチウムを加えて溶解させ、リン酸リチウムの水溶液を得た。
この水溶液に鉄1当量あたりの分子量が92.4であるオキシ水酸化鉄を加え、さらに純水400gを追加してリチウム鉄フォスフェート用原料の水性ペーストを得た。この水性ペーストを直径0.5mmのジルコニアビーズを用いて1時間ビーズミル処理した後、数平均分子量8500のデキストリン51.4gを115gの純水に溶かした水溶液を加えて溶解させてから噴霧乾燥し、乾燥粉を得た。この乾燥粉を、水素ガスを5体積%含有する窒素ガスを0.8リットル/分の流速で供給しながら5℃/分の昇温速度で600℃まで加熱し、600℃にて5時間保持した。その後、5℃/分の降温速度の設定で冷却して、平均粒径が4.2μmであるリチウム鉄フォスフェートを得た。 (12) Synthesis of Lithium Ion Battery Positive Electrode Active Material (L) [Lithium Iron Phosphate] 313.1 g of 85% phosphoric acid was diluted with 1000 g of pure water. While stirring this aqueous phosphoric acid solution, 100.3 g of lithium carbonate was added and dissolved to obtain an aqueous solution of lithium phosphate.
To this aqueous solution, iron oxyhydroxide having a molecular weight of 92.4 per equivalent of iron was added, and 400 g of pure water was further added to obtain an aqueous paste as a raw material for lithium iron phosphate. This aqueous paste was subjected to bead mill treatment with zirconia beads having a diameter of 0.5 mm for 1 hour, and then an aqueous solution prepared by dissolving 51.4 g of dextrin having a number average molecular weight of 8500 in 115 g of pure water was dissolved and spray-dried. A dry powder was obtained. The dry powder was heated to 600 ° C. at a temperature rising rate of 5 ° C./min while supplying nitrogen gas containing 5% by volume of hydrogen gas at a flow rate of 0.8 liter / min, and held at 600 ° C. for 5 hours. did. Then, it cooled by the setting of the temperature-fall rate of 5 degree-C / min, and obtained the lithium iron phosphate whose average particle diameter is 4.2 micrometers.
313.1gの85%リン酸を純水1000gで希釈した。このリン酸水溶液を撹拌しながら100.3gの炭酸リチウムを加えて溶解させ、リン酸リチウムの水溶液を得た。
この水溶液に鉄1当量あたりの分子量が92.4であるオキシ水酸化鉄を加え、さらに純水400gを追加してリチウム鉄フォスフェート用原料の水性ペーストを得た。この水性ペーストを直径0.5mmのジルコニアビーズを用いて1時間ビーズミル処理した後、数平均分子量8500のデキストリン51.4gを115gの純水に溶かした水溶液を加えて溶解させてから噴霧乾燥し、乾燥粉を得た。この乾燥粉を、水素ガスを5体積%含有する窒素ガスを0.8リットル/分の流速で供給しながら5℃/分の昇温速度で600℃まで加熱し、600℃にて5時間保持した。その後、5℃/分の降温速度の設定で冷却して、平均粒径が4.2μmであるリチウム鉄フォスフェートを得た。 (12) Synthesis of Lithium Ion Battery Positive Electrode Active Material (L) [Lithium Iron Phosphate] 313.1 g of 85% phosphoric acid was diluted with 1000 g of pure water. While stirring this aqueous phosphoric acid solution, 100.3 g of lithium carbonate was added and dissolved to obtain an aqueous solution of lithium phosphate.
To this aqueous solution, iron oxyhydroxide having a molecular weight of 92.4 per equivalent of iron was added, and 400 g of pure water was further added to obtain an aqueous paste as a raw material for lithium iron phosphate. This aqueous paste was subjected to bead mill treatment with zirconia beads having a diameter of 0.5 mm for 1 hour, and then an aqueous solution prepared by dissolving 51.4 g of dextrin having a number average molecular weight of 8500 in 115 g of pure water was dissolved and spray-dried. A dry powder was obtained. The dry powder was heated to 600 ° C. at a temperature rising rate of 5 ° C./min while supplying nitrogen gas containing 5% by volume of hydrogen gas at a flow rate of 0.8 liter / min, and held at 600 ° C. for 5 hours. did. Then, it cooled by the setting of the temperature-fall rate of 5 degree-C / min, and obtained the lithium iron phosphate whose average particle diameter is 4.2 micrometers.
(13)リチウムイオン電池負極活物質(M)[不均化シリコン]の合成
平均粒径0.38μmの一酸化ケイ素240gを630gの純水に加えて撹拌し、得られたペーストから噴霧乾燥して乾燥粉を調製した。この乾燥粉をアルゴンガスを1リットル/分の流速で供給しながら5℃/分の昇温速度で1200℃まで加熱し、1200℃にて5時間保持した。その後、5℃/分の降温速度の設定で冷却して、平均粒径が4.2μmである不均化シリコンを得た。
その他、リチウムイオン二次電池用正極活物質であるリチウムコバルト複合酸化物、リチウムイオン二次電池用負極活物質である天然黒鉛、ニッケル水素二次電池用正極活物質である水酸化ニッケル、電気二重層キャパシタ用電極活物質である活性炭は市販品を用いた。 (13) Synthesis of Lithium Ion Battery Negative Electrode Active Material (M) [Disproportionated Silicon] 240 g of silicon monoxide having an average particle size of 0.38 μm was added to 630 g of pure water, stirred, and spray-dried from the obtained paste. To prepare a dry powder. The dry powder was heated to 1200 ° C. at a temperature rising rate of 5 ° C./min while supplying argon gas at a flow rate of 1 liter / min, and held at 1200 ° C. for 5 hours. Thereafter, cooling was performed at a temperature decrease rate of 5 ° C./min to obtain disproportionated silicon having an average particle diameter of 4.2 μm.
In addition, lithium cobalt composite oxide as a positive electrode active material for a lithium ion secondary battery, natural graphite as a negative electrode active material for a lithium ion secondary battery, nickel hydroxide as a positive electrode active material for a nickel hydrogen secondary battery, A commercial product was used as the activated carbon as the electrode active material for the multilayer capacitor.
平均粒径0.38μmの一酸化ケイ素240gを630gの純水に加えて撹拌し、得られたペーストから噴霧乾燥して乾燥粉を調製した。この乾燥粉をアルゴンガスを1リットル/分の流速で供給しながら5℃/分の昇温速度で1200℃まで加熱し、1200℃にて5時間保持した。その後、5℃/分の降温速度の設定で冷却して、平均粒径が4.2μmである不均化シリコンを得た。
その他、リチウムイオン二次電池用正極活物質であるリチウムコバルト複合酸化物、リチウムイオン二次電池用負極活物質である天然黒鉛、ニッケル水素二次電池用正極活物質である水酸化ニッケル、電気二重層キャパシタ用電極活物質である活性炭は市販品を用いた。 (13) Synthesis of Lithium Ion Battery Negative Electrode Active Material (M) [Disproportionated Silicon] 240 g of silicon monoxide having an average particle size of 0.38 μm was added to 630 g of pure water, stirred, and spray-dried from the obtained paste. To prepare a dry powder. The dry powder was heated to 1200 ° C. at a temperature rising rate of 5 ° C./min while supplying argon gas at a flow rate of 1 liter / min, and held at 1200 ° C. for 5 hours. Thereafter, cooling was performed at a temperature decrease rate of 5 ° C./min to obtain disproportionated silicon having an average particle diameter of 4.2 μm.
In addition, lithium cobalt composite oxide as a positive electrode active material for a lithium ion secondary battery, natural graphite as a negative electrode active material for a lithium ion secondary battery, nickel hydroxide as a positive electrode active material for a nickel hydrogen secondary battery, A commercial product was used as the activated carbon as the electrode active material for the multilayer capacitor.
(例1)(比較例)
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(D)の7.1g(ポリマー成分は1.85gに相当)を加え、上記と同様にして1分間撹拌して分散し、電極形成用水性ペーストモデル(1)を得た。水性ペーストモデル(1)の電極形成用水性ペーストとしての適合性は分散液粘度を測定して調べた。その結果を表1に示した。
なお電極形成用水性ペーストとしての適合性は、導電助剤分散液に結着剤用ポリマー分散液を添加した時の粘度変化から判定できることが経験的に知られている。すなわち添加前後の粘度変化が±20%未満であれば、電極形成用水性ペーストに適合する導電助剤と結着剤及び分散安定剤の組み合わせであると判定される。
表1より水性ペーストモデル(1)は電極形成用の水性ペーストに適合するといえるが、PFOA規制をクリアーできないAPFOを比較的高濃度に含有することから、使用不可である。 (Example 1) (Comparative example)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. To this was added 7.1 g of a crystalline fluoropolymer aqueous dispersion (D) containing a fluorosurfactant (the polymer component corresponds to 1.85 g), and the mixture was stirred and dispersed for 1 minute in the same manner as above. An electrode-forming aqueous paste model (1) was obtained. The suitability of the aqueous paste model (1) as an aqueous paste for electrode formation was examined by measuring the dispersion viscosity. The results are shown in Table 1.
It is empirically known that the suitability as an electrode-forming aqueous paste can be determined from a change in viscosity when a binder polymer dispersion is added to a conductive additive dispersion. That is, if the viscosity change before and after the addition is less than ± 20%, it is determined that the combination of the conductive aid, the binder, and the dispersion stabilizer that are compatible with the aqueous paste for electrode formation.
From Table 1, it can be said that the aqueous paste model (1) is compatible with the aqueous paste for electrode formation, but it cannot be used because it contains APFO that cannot satisfy the PFOA regulations at a relatively high concentration.
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤を含有した結晶性含フッ素ポリマー水性分散液(D)の7.1g(ポリマー成分は1.85gに相当)を加え、上記と同様にして1分間撹拌して分散し、電極形成用水性ペーストモデル(1)を得た。水性ペーストモデル(1)の電極形成用水性ペーストとしての適合性は分散液粘度を測定して調べた。その結果を表1に示した。
なお電極形成用水性ペーストとしての適合性は、導電助剤分散液に結着剤用ポリマー分散液を添加した時の粘度変化から判定できることが経験的に知られている。すなわち添加前後の粘度変化が±20%未満であれば、電極形成用水性ペーストに適合する導電助剤と結着剤及び分散安定剤の組み合わせであると判定される。
表1より水性ペーストモデル(1)は電極形成用の水性ペーストに適合するといえるが、PFOA規制をクリアーできないAPFOを比較的高濃度に含有することから、使用不可である。 (Example 1) (Comparative example)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. To this was added 7.1 g of a crystalline fluoropolymer aqueous dispersion (D) containing a fluorosurfactant (the polymer component corresponds to 1.85 g), and the mixture was stirred and dispersed for 1 minute in the same manner as above. An electrode-forming aqueous paste model (1) was obtained. The suitability of the aqueous paste model (1) as an aqueous paste for electrode formation was examined by measuring the dispersion viscosity. The results are shown in Table 1.
It is empirically known that the suitability as an electrode-forming aqueous paste can be determined from a change in viscosity when a binder polymer dispersion is added to a conductive additive dispersion. That is, if the viscosity change before and after the addition is less than ± 20%, it is determined that the combination of the conductive aid, the binder, and the dispersion stabilizer that are compatible with the aqueous paste for electrode formation.
From Table 1, it can be said that the aqueous paste model (1) is compatible with the aqueous paste for electrode formation, but it cannot be used because it contains APFO that cannot satisfy the PFOA regulations at a relatively high concentration.
(例2)(比較例)
結晶性含フッ素ポリマー水性分散液(D)に替えてフッ素系界面活性剤を微量含有する結晶性含フッ素ポリマー水性分散液(E)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(2)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないと判定された。 (Example 2) (Comparative example)
Instead of the crystalline fluoropolymer aqueous dispersion (D), 3.1 g of the crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of a fluorosurfactant (the polymer component corresponds to 1.85 g) is used. Except that, an aqueous paste model for electrode formation (2) was prepared in the same manner as in Example 1, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste containing a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorine-containing polymer aqueous dispersion containing only a small amount of a fluorosurfactant is an aqueous solution for electrode formation. It was determined not to fit the paste.
結晶性含フッ素ポリマー水性分散液(D)に替えてフッ素系界面活性剤を微量含有する結晶性含フッ素ポリマー水性分散液(E)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(2)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないと判定された。 (Example 2) (Comparative example)
Instead of the crystalline fluoropolymer aqueous dispersion (D), 3.1 g of the crystalline fluoropolymer aqueous dispersion (E) containing a trace amount of a fluorosurfactant (the polymer component corresponds to 1.85 g) is used. Except that, an aqueous paste model for electrode formation (2) was prepared in the same manner as in Example 1, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste containing a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorine-containing polymer aqueous dispersion containing only a small amount of a fluorosurfactant is an aqueous solution for electrode formation. It was determined not to fit the paste.
(例3)(比較例)
結晶性含フッ素ポリマー水性分散液(E)に代えてフッ素系界面活性剤を微量含有する非晶性含フッ素ポリマー水性分散液(G)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(3)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量有する非晶性含フッ素ポリマー水性分散液(G)を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 3) (Comparative example)
In place of the crystalline fluoropolymer aqueous dispersion (E), 3.1 g of the amorphous fluoropolymer aqueous dispersion (G) containing a trace amount of a fluorosurfactant (corresponding to 1.85 g of the polymer component) Except that it was used, an electrode forming aqueous paste model (3) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using an amorphous fluoropolymer aqueous dispersion (G) having a trace amount of a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorosurfactant as an electrode is used as an electrode. It was found to be incompatible with the aqueous pastes for use.
結晶性含フッ素ポリマー水性分散液(E)に代えてフッ素系界面活性剤を微量含有する非晶性含フッ素ポリマー水性分散液(G)の3.1g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(3)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を微量有する非晶性含フッ素ポリマー水性分散液(G)を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 3) (Comparative example)
In place of the crystalline fluoropolymer aqueous dispersion (E), 3.1 g of the amorphous fluoropolymer aqueous dispersion (G) containing a trace amount of a fluorosurfactant (corresponding to 1.85 g of the polymer component) Except that it was used, an electrode forming aqueous paste model (3) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using an amorphous fluoropolymer aqueous dispersion (G) having a trace amount of a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluorosurfactant as an electrode is used as an electrode. It was found to be incompatible with the aqueous pastes for use.
(例4)(比較例)
非晶性含フッ素ポリマー水性分散液(G)に代えてフッ素系界面活性剤を含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(4)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 4) (Comparative example)
In place of the amorphous fluoropolymer aqueous dispersion (G), 3.7 g of the amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (the polymer component corresponds to 1.85 g) Except that it was used, an electrode forming aqueous paste model (4) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
非晶性含フッ素ポリマー水性分散液(G)に代えてフッ素系界面活性剤を含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(4)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 4) (Comparative example)
In place of the amorphous fluoropolymer aqueous dispersion (G), 3.7 g of the amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (the polymer component corresponds to 1.85 g) Except that it was used, an electrode forming aqueous paste model (4) was prepared in the same manner as in Example 1, and the compatibility as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
(例5)(比較例)
非晶性含フッ素ポリマー水性分散液(I)に代えてフッ素系界面活性剤は含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(5)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 5) (Comparative example)
Instead of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of an amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (corresponding to 1.85 g of the polymer component) ) Was used in the same manner as in Example 1 to prepare an aqueous paste model for electrode formation (5), and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
非晶性含フッ素ポリマー水性分散液(I)に代えてフッ素系界面活性剤は含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例1と同様にして電極形成用水性ペーストモデル(5)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のアセチレンブラックからなる導電助剤とフッ素系界面活性剤を含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 5) (Comparative example)
Instead of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of an amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (corresponding to 1.85 g of the polymer component) ) Was used in the same manner as in Example 1 to prepare an aqueous paste model for electrode formation (5), and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose acetylene black having no hydrophilicity and a fluoropolymer aqueous dispersion containing no fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
(例6)(比較例)
市販アセチレンブラックに代えて市販のケッチェンブラックの2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(6)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のケッチェンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さないポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 6) (Comparative example)
An aqueous paste model for electrode formation (6) was prepared in the same manner as in Example 2 except that 2.3 g of commercially available ketjen black was used instead of commercially available acetylene black, and suitability as an aqueous paste for electrode formation was prepared. I investigated. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose ketjen black having no hydrophilicity and a polymer aqueous dispersion containing only a small amount of a fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
市販アセチレンブラックに代えて市販のケッチェンブラックの2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(6)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有さない汎用のケッチェンブラックからなる導電助剤とフッ素系界面活性剤を微量しか有さないポリマー水性分散液を結着剤とした水性ペーストは電極形成用の水性ペーストには適合しないことがわかった。 (Example 6) (Comparative example)
An aqueous paste model for electrode formation (6) was prepared in the same manner as in Example 2 except that 2.3 g of commercially available ketjen black was used instead of commercially available acetylene black, and suitability as an aqueous paste for electrode formation was prepared. I investigated. The results are shown in Table 1. From Table 1, an aqueous paste using a conductive auxiliary agent made of general-purpose ketjen black having no hydrophilicity and a polymer aqueous dispersion containing only a small amount of a fluorosurfactant as a binder is an aqueous paste for electrode formation. It turned out not to fit.
(例7)
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が10であるホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(7)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 7)
Example except that 2.3 g of boron-modified acetylene black (A) having a value of (W 2 / W 1 ) × 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (7) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が10であるホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(7)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 7)
Example except that 2.3 g of boron-modified acetylene black (A) having a value of (W 2 / W 1 ) × 100 of 10 of the hydrophilicity evaluation test of the present invention of 10 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (7) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例8)
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が30であるホウ素変性アセチレンブラック(B)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(8)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 8)
Example except that 2.3 g of boron-modified acetylene black (B) having a value of (W 2 / W 1 ) × 100 of 30 of the hydrophilicity evaluation test of the present invention of 30 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (8) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が30であるホウ素変性アセチレンブラック(B)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(8)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 8)
Example except that 2.3 g of boron-modified acetylene black (B) having a value of (W 2 / W 1 ) × 100 of 30 of the hydrophilicity evaluation test of the present invention of 30 was used instead of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (8) was prepared, and the suitability as an electrode forming aqueous paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例9)
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が75であるホウ素変性アセチレンブラック(C)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(9)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 9)
Example except that 2.3 g of boron-modified acetylene black (C) having a value of (W 2 / W 1 ) × 100 of 75 of the hydrophilicity evaluation test of the present invention was used in place of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (9) was prepared and examined for suitability as an electrode forming aqueous paste. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
市販アセチレンブラックに代えて、本発明の親水性評価試験の結果(W2/W1)×100の値が75であるホウ素変性アセチレンブラック(C)の2.3gを用いたことを除き、例2と同様にして電極形成用水性ペーストモデル(9)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 9)
Example except that 2.3 g of boron-modified acetylene black (C) having a value of (W 2 / W 1 ) × 100 of 75 of the hydrophilicity evaluation test of the present invention was used in place of commercially available acetylene black In the same manner as in No. 2, an electrode forming aqueous paste model (9) was prepared and examined for suitability as an electrode forming aqueous paste. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例10)
結晶性含フッ素ポリマー水性分散液(E)に代えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の1.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の1.5g(結晶性ポリマーと非晶性ポリマーの質量比率は5対5で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例8と同様にして電極形成用水性ペーストモデル(10)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 10)
Instead of the crystalline fluoropolymer aqueous dispersion (E), the fluorosurfactant is contained in a trace amount as in 1.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount of the fluorosurfactant. 1.5 g of the amorphous fluorine-containing polymer aqueous dispersion (H) containing only the content (the mass ratio of the crystalline polymer to the amorphous polymer is 5 to 5, corresponding to 1.85 g of both polymers) Except that, an aqueous paste model for electrode formation (10) was prepared in the same manner as in Example 8, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
結晶性含フッ素ポリマー水性分散液(E)に代えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の1.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の1.5g(結晶性ポリマーと非晶性ポリマーの質量比率は5対5で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例8と同様にして電極形成用水性ペーストモデル(10)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 10)
Instead of the crystalline fluoropolymer aqueous dispersion (E), the fluorosurfactant is contained in a trace amount as in 1.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount of the fluorosurfactant. 1.5 g of the amorphous fluorine-containing polymer aqueous dispersion (H) containing only the content (the mass ratio of the crystalline polymer to the amorphous polymer is 5 to 5, corresponding to 1.85 g of both polymers) Except that, an aqueous paste model for electrode formation (10) was prepared in the same manner as in Example 8, and the suitability as an aqueous paste for electrode formation was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例11)
ホウ素変性アセチレンブラック(B)に代えてホウ素変性アセチレンブラック(C)の2.3gを、結晶性含フッ素ポリマー水性分散液(F)の1.6gと非晶性含フッ素ポリマー水性分散液(H)の1.5gに代えて、結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例10と同様にして電極形成用水性ペーストモデル(11)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 11)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C), 1.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion (H ) Of 1.5 g of the crystalline fluoropolymer aqueous dispersion (F) and 2.7 g of the amorphous fluoropolymer aqueous dispersion (H) (crystalline polymer and amorphous polymer) The electrode forming aqueous paste model (11) was prepared in the same manner as in Example 10 except that the weight ratio of 1: 9 was used and the polymer of both was equivalent to 1.85 g. The suitability as a paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
ホウ素変性アセチレンブラック(B)に代えてホウ素変性アセチレンブラック(C)の2.3gを、結晶性含フッ素ポリマー水性分散液(F)の1.6gと非晶性含フッ素ポリマー水性分散液(H)の1.5gに代えて、結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例10と同様にして電極形成用水性ペーストモデル(11)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 11)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C), 1.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion (H ) Of 1.5 g of the crystalline fluoropolymer aqueous dispersion (F) and 2.7 g of the amorphous fluoropolymer aqueous dispersion (H) (crystalline polymer and amorphous polymer) The electrode forming aqueous paste model (11) was prepared in the same manner as in Example 10 except that the weight ratio of 1: 9 was used and the polymer of both was equivalent to 1.85 g. The suitability as a paste was examined. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a fluoropolymer aqueous dispersion having only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例12)
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに代えて、結晶性含フッ素ポリマー水性分散液(F)の2.9gと非晶性含フッ素ポリマー水性分散液(H)の0.3g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例11と同様にして電極形成用水性ペーストモデル(12)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さないポリマー含フッ素水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 12)
Instead of 0.3 g of the crystalline fluoropolymer aqueous dispersion (F) and 2.7 g of the amorphous fluoropolymer aqueous dispersion (H), the crystalline fluoropolymer aqueous dispersion (F) of 2. 9 g and 0.3 g of the amorphous fluorine-containing polymer aqueous dispersion (H) (the mass ratio of the crystalline polymer to the amorphous polymer is 9 to 1, corresponding to 1.85 g of both polymers). Except for this, an aqueous paste model for electrode formation (12) was prepared in the same manner as in Example 11 and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a polymer-containing aqueous dispersion containing only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに代えて、結晶性含フッ素ポリマー水性分散液(F)の2.9gと非晶性含フッ素ポリマー水性分散液(H)の0.3g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例11と同様にして電極形成用水性ペーストモデル(12)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を微量しか有さないポリマー含フッ素水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 12)
Instead of 0.3 g of the crystalline fluoropolymer aqueous dispersion (F) and 2.7 g of the amorphous fluoropolymer aqueous dispersion (H), the crystalline fluoropolymer aqueous dispersion (F) of 2. 9 g and 0.3 g of the amorphous fluorine-containing polymer aqueous dispersion (H) (the mass ratio of the crystalline polymer to the amorphous polymer is 9 to 1, corresponding to 1.85 g of both polymers). Except for this, an aqueous paste model for electrode formation (12) was prepared in the same manner as in Example 11 and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste using a polymer-containing aqueous dispersion containing only a small amount of a fluorosurfactant as a binder can be used for electrode formation. It was found that it can be suitably used as an aqueous paste.
(例13)
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例12と同様にして電極形成用水性ペーストモデル(13)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 13)
In place of 0.3 g of the crystalline fluorine-containing polymer aqueous dispersion (F) and 2.7 g of the amorphous fluorine-containing polymer aqueous dispersion (H), the amorphous fluorine-containing material does not contain any fluorosurfactant. An electrode-forming aqueous paste model (13) was prepared in the same manner as in Example 12 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component corresponds to 1.85 g) was used. The suitability as an aqueous paste was examined. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive aid, an aqueous paste for electrode formation can be used even with an aqueous paste containing a fluoropolymer aqueous dispersion containing no fluorosurfactant. It was found that it can be suitably used as.
結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例12と同様にして電極形成用水性ペーストモデル(13)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない含フッ素ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 13)
In place of 0.3 g of the crystalline fluorine-containing polymer aqueous dispersion (F) and 2.7 g of the amorphous fluorine-containing polymer aqueous dispersion (H), the amorphous fluorine-containing material does not contain any fluorosurfactant. An electrode-forming aqueous paste model (13) was prepared in the same manner as in Example 12 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component corresponds to 1.85 g) was used. The suitability as an aqueous paste was examined. The results are shown in Table 1. Table 1 shows that when boron-modified acetylene black having hydrophilicity is used as a conductive aid, an aqueous paste for electrode formation can be used even with an aqueous paste containing a fluoropolymer aqueous dispersion containing no fluorosurfactant. It was found that it can be suitably used as.
(例14)
非晶性含フッ素ポリマー水性分散液(I)の3.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例13と同様にして電極形成用水性ペーストモデル(14)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない炭化水素系ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 14)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous paste model for electrode formation (14) was prepared in the same manner as in Example 13 and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste for forming an electrode can be used even with an aqueous paste using a hydrocarbon-based polymer aqueous dispersion containing no fluorosurfactant as a binder. It turned out that it can be used conveniently as a paste.
非晶性含フッ素ポリマー水性分散液(I)の3.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例13と同様にして電極形成用水性ペーストモデル(14)を調製し、電極形成用水性ペーストとしての適合性を調べた。その結果を表1に示した。表1より親水性を有するホウ素変性のアセチレンブラックを導電助剤に用いると、フッ素系界面活性剤を全く含有しない炭化水素系ポリマー水性分散液を結着剤とした水性ペーストでも、電極形成用水性ペーストとして好適に使用可能であることがわかった。 (Example 14)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (J) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous paste model for electrode formation (14) was prepared in the same manner as in Example 13 and examined for suitability as an aqueous paste for electrode formation. The results are shown in Table 1. From Table 1, when boron-modified acetylene black having hydrophilicity is used as a conductive additive, an aqueous paste for forming an electrode can be used even with an aqueous paste using a hydrocarbon-based polymer aqueous dispersion containing no fluorosurfactant as a binder. It turned out that it can be used conveniently as a paste.
(例15)(比較例)
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(E)の2.5gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(G)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)及び25gのイオン交換水に分散させたリチウムイオン電池用正極活物質(K)の60gを加えて上記と同様にして1分間撹拌し、電極形成用水性ペースト(15)を得た。 (Example 15) (Comparative example)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. Similarly to 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) containing only a trace amount of the fluorosurfactant, an amorphous fluoropolymer aqueous dispersion containing only a trace amount of the fluorosurfactant (E) G) 0.6 g (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2 and corresponds to 1.85 g of both polymers) and the positive electrode active for lithium ion battery dispersed in 25 g of ion-exchanged water 60 g of the substance (K) was added and stirred for 1 minute in the same manner as above to obtain an aqueous paste for electrode formation (15).
カルボキシメチルセルロース0.74gをイオン交換水75gに溶解した後、市販アセチレンブラック2.3gを加え、ディスクタービン翼を取り付けたスリーワンモーターを450rpmの速度で回転させながら1分間撹拌して分散させた。これにフッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(E)の2.5gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(G)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)及び25gのイオン交換水に分散させたリチウムイオン電池用正極活物質(K)の60gを加えて上記と同様にして1分間撹拌し、電極形成用水性ペースト(15)を得た。 (Example 15) (Comparative example)
After 0.74 g of carboxymethylcellulose was dissolved in 75 g of ion-exchanged water, 2.3 g of commercially available acetylene black was added and dispersed by stirring for 1 minute while rotating a three-one motor equipped with a disk turbine blade at a speed of 450 rpm. Similarly to 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) containing only a trace amount of the fluorosurfactant, an amorphous fluoropolymer aqueous dispersion containing only a trace amount of the fluorosurfactant (E) G) 0.6 g (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2 and corresponds to 1.85 g of both polymers) and the positive electrode active for lithium ion battery dispersed in 25 g of ion-exchanged water 60 g of the substance (K) was added and stirred for 1 minute in the same manner as above to obtain an aqueous paste for electrode formation (15).
続いてアルミシート上にペースト(15)を塗工して120℃にて2時間乾燥後、300℃にて10分間熱処理してロールプレス圧延し、電極コンポジット層膜厚を120μmに調整した。得られた電極板から幅2cm、長さ10cmの大きさに切り抜いた試験片を直径2mmの丸棒に沿って100回折り曲げ、電極コンポジット層の強度と電極活物質保持力を調べた。基板との密着性は、100マスの碁盤目状に浅く切り込みを入れ、粘着テープ(セロテープ(登録商標))を軽く接着させてから引き剥がして残存する目数を計測して評価した。残存数は、100目に対する残存目数の割合で示し、分母100に対し分子の数が多いほうが残存率が高く、密着性が高いことになる。
その結果を表2に示した。表2よりペースト(15)から形成されたリチウムイオン電池用正極板は電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これはフッ素系分散剤が少ないため、ペースト(15)では電極活物質、疎水性の高い導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 Subsequently, the paste (15) was applied onto the aluminum sheet, dried at 120 ° C. for 2 hours, then heat-treated at 300 ° C. for 10 minutes and roll-press-rolled to adjust the electrode composite layer thickness to 120 μm. A test piece cut out to a size of 2 cm in width and 10 cm in length from the obtained electrode plate was bent 100 times along a round bar having a diameter of 2 mm, and the strength of the electrode composite layer and the electrode active material holding power were examined. The adhesion to the substrate was evaluated by measuring the number of remaining eyes by cutting off a 100-cell grid pattern and making an adhesive tape (cello tape (registered trademark)) lightly adhered and then peeled off. The remaining number is indicated by the ratio of the number of remaining eyes to the 100th. The larger the number of numerators relative to the denominator 100, the higher the remaining ratio and the higher the adhesion.
The results are shown in Table 2. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (15) had low electrode active material carrying ability and adhesion to the substrate, and was difficult to use in a battery. It was judged that this was because the electrode active material, the highly hydrophobic conductive assistant and the binder could not be uniformly dispersed and mixed in the paste (15) due to the small amount of the fluorine-based dispersant.
その結果を表2に示した。表2よりペースト(15)から形成されたリチウムイオン電池用正極板は電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これはフッ素系分散剤が少ないため、ペースト(15)では電極活物質、疎水性の高い導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 Subsequently, the paste (15) was applied onto the aluminum sheet, dried at 120 ° C. for 2 hours, then heat-treated at 300 ° C. for 10 minutes and roll-press-rolled to adjust the electrode composite layer thickness to 120 μm. A test piece cut out to a size of 2 cm in width and 10 cm in length from the obtained electrode plate was bent 100 times along a round bar having a diameter of 2 mm, and the strength of the electrode composite layer and the electrode active material holding power were examined. The adhesion to the substrate was evaluated by measuring the number of remaining eyes by cutting off a 100-cell grid pattern and making an adhesive tape (cello tape (registered trademark)) lightly adhered and then peeled off. The remaining number is indicated by the ratio of the number of remaining eyes to the 100th. The larger the number of numerators relative to the denominator 100, the higher the remaining ratio and the higher the adhesion.
The results are shown in Table 2. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (15) had low electrode active material carrying ability and adhesion to the substrate, and was difficult to use in a battery. It was judged that this was because the electrode active material, the highly hydrophobic conductive assistant and the binder could not be uniformly dispersed and mixed in the paste (15) due to the small amount of the fluorine-based dispersant.
(例16)(比較例)
結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに代えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(16)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(16)では、電極活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 (Example 16) (Comparative example)
In place of 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) and 0.6 g of the amorphous fluoropolymer aqueous dispersion (G), amorphous fluorine-free containing no fluorosurfactant An aqueous electrode-forming paste (16) was prepared in the same manner as in Example 15 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component was equivalent to 1.85 g) was used. An electrode plate was obtained. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. It was judged that this was because the paste (16) containing only the hydrocarbon-based dispersant could not uniformly disperse and mix the electrode active material, the conductive additive, and the binder.
結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに代えて、フッ素系界面活性剤を全く含有しない非晶性含フッ素ポリマー水性分散液(I)の3.7g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(16)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(16)では、電極活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 (Example 16) (Comparative example)
In place of 2.5 g of the crystalline fluoropolymer aqueous dispersion (E) and 0.6 g of the amorphous fluoropolymer aqueous dispersion (G), amorphous fluorine-free containing no fluorosurfactant An aqueous electrode-forming paste (16) was prepared in the same manner as in Example 15 except that 3.7 g of the polymer aqueous dispersion (I) (the polymer component was equivalent to 1.85 g) was used. An electrode plate was obtained. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. It was judged that this was because the paste (16) containing only the hydrocarbon-based dispersant could not uniformly disperse and mix the electrode active material, the conductive additive, and the binder.
(例17)(比較例)
非晶性含フッ素ポリマー水性分散液(I)の3.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(I)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(17)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(17)では電極活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 (Example 17) (Comparative example)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (I) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous electrode forming paste (17) was prepared in the same manner as in Example 15 to obtain an electrode plate for a lithium ion battery. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. It was judged that this was because the electrode active material, the conductive additive and the binder could not be uniformly dispersed and mixed in the paste (17) containing only the hydrocarbon-based dispersant.
非晶性含フッ素ポリマー水性分散液(I)の3.7gに代えて、フッ素系界面活性剤を全く含有しない非晶性の炭化水素系ポリマー水性分散液(I)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例15と同様にして電極形成用水性ペースト(17)を調製してリチウムイオン電池用電極板を得た。しかしながらこの電極板は、電極活物質担持力及び基板との密着性が共に低く、電池への使用は困難であった。これは炭化水素系分散剤しか含有しないペースト(17)では電極活物質、導電助剤、結着剤を均質に分散・混合することができなかったためであると判断された。 (Example 17) (Comparative example)
Instead of 3.7 g of the amorphous fluoropolymer aqueous dispersion (I), 5.2 g of the amorphous hydrocarbon polymer aqueous dispersion (I) containing no fluorosurfactant (polymer component) Was equivalent to 1.85 g), and an aqueous electrode forming paste (17) was prepared in the same manner as in Example 15 to obtain an electrode plate for a lithium ion battery. However, this electrode plate has low electrode active material carrying ability and adhesion to the substrate, and is difficult to use for batteries. It was judged that this was because the electrode active material, the conductive additive and the binder could not be uniformly dispersed and mixed in the paste (17) containing only the hydrocarbon-based dispersant.
(例18)
市販アセチレンブラックに代えてホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例15と同様にして電極形成用水性ペースト(18)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(18)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 18)
An electrode-forming aqueous paste (18) was prepared in the same manner as in Example 15 except that 2.3 g of boron-modified acetylene black (A) was used in place of commercially available acetylene black to obtain an electrode plate for a lithium ion battery. It was. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (18) had good electrode active material carrying ability and adhesion to the substrate. This is because the use of boron-modified acetylene black, which has a hydrophilic property that is relatively easy to disperse in water, makes it possible to prepare an aqueous paste for electrode formation with good dispersion, with little use of a fluorosurfactant. It was determined that it was due to the accident.
市販アセチレンブラックに代えてホウ素変性アセチレンブラック(A)の2.3gを用いたことを除き、例15と同様にして電極形成用水性ペースト(18)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(18)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 18)
An electrode-forming aqueous paste (18) was prepared in the same manner as in Example 15 except that 2.3 g of boron-modified acetylene black (A) was used in place of commercially available acetylene black to obtain an electrode plate for a lithium ion battery. It was. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (18) had good electrode active material carrying ability and adhesion to the substrate. This is because the use of boron-modified acetylene black, which has a hydrophilic property that is relatively easy to disperse in water, makes it possible to prepare an aqueous paste for electrode formation with good dispersion, with little use of a fluorosurfactant. It was determined that it was due to the accident.
(例19)
ホウ素変性アセチレンブラック(A)に代えてホウ素変性アセチレンブラック(B)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに代えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の2.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例18と同様にして電極形成用水性ペースト(19)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(19)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(19)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 19)
Instead of boron-modified acetylene black (A), 2.3 g of boron-modified acetylene black (B) was used, and 2.5 g of crystalline fluoropolymer aqueous dispersion (E) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of G), a fluorosurfactant containing only a trace amount is similar to 2.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount. Except for using 0.6 g of the aqueous fluoropolymer dispersion (H) (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2, corresponding to 1.85 g of both polymers). In the same manner as in No. 18, an electrode-forming aqueous paste (19) was prepared to obtain an electrode plate for a lithium ion battery. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (19) had good electrode active material carrying ability and adhesion to the substrate. This is because, in the paste (19), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersibility without using almost any fluorosurfactant. It was judged that the aqueous paste was prepared.
ホウ素変性アセチレンブラック(A)に代えてホウ素変性アセチレンブラック(B)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(E)の2.5gと非晶性含フッ素ポリマー水性分散液(G)の0.6gに代えて、フッ素系界面活性剤は微量しか含有しない結晶性含フッ素ポリマー水性分散液(F)の2.6gと同様にフッ素系界面活性剤は微量しか含有しない非晶性含フッ素ポリマー水性分散液(H)の0.6g(結晶性ポリマーと非晶性ポリマーの比率は8対2で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例18と同様にして電極形成用水性ペースト(19)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(19)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(19)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 19)
Instead of boron-modified acetylene black (A), 2.3 g of boron-modified acetylene black (B) was used, and 2.5 g of crystalline fluoropolymer aqueous dispersion (E) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of G), a fluorosurfactant containing only a trace amount is similar to 2.6 g of the crystalline fluoropolymer aqueous dispersion (F) containing only a trace amount. Except for using 0.6 g of the aqueous fluoropolymer dispersion (H) (the ratio of the crystalline polymer to the amorphous polymer is 8 to 2, corresponding to 1.85 g of both polymers). In the same manner as in No. 18, an electrode-forming aqueous paste (19) was prepared to obtain an electrode plate for a lithium ion battery. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (19) had good electrode active material carrying ability and adhesion to the substrate. This is because, in the paste (19), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersibility without using almost any fluorosurfactant. It was judged that the aqueous paste was prepared.
(例20)
ホウ素変性アセチレンブラック(B)に代えてホウ素変性アセチレンブラック(C)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに代えて、(F)の2.2gとフッ素系界面活性剤は全く含有しない非晶性含フッ素ポリマー水性分散液(I)の1.1g(結晶性ポリマーと非晶性ポリマーの比率は7対3で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例19と同様にして電極形成用水性ペースト(20)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(20)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(20)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 20)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C) was used. 2.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of H), 2.2 g of (F) and 1.1 g of amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (crystalline polymer and amorphous) The electrode-forming aqueous paste (20) was prepared in the same manner as in Example 19 except that the ratio of the conductive polymer was 7 to 3, and the amount of both polymers was equivalent to 1.85 g. An electrode plate was obtained. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (20) had good electrode active material carrying power and adhesion to the substrate. This is because, in the paste (20), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersion even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.
ホウ素変性アセチレンブラック(B)に代えてホウ素変性アセチレンブラック(C)の2.3gを用い、結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに代えて、(F)の2.2gとフッ素系界面活性剤は全く含有しない非晶性含フッ素ポリマー水性分散液(I)の1.1g(結晶性ポリマーと非晶性ポリマーの比率は7対3で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例19と同様にして電極形成用水性ペースト(20)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(20)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(20)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 20)
Instead of boron-modified acetylene black (B), 2.3 g of boron-modified acetylene black (C) was used. 2.6 g of crystalline fluoropolymer aqueous dispersion (F) and amorphous fluoropolymer aqueous dispersion ( In place of 0.6 g of H), 2.2 g of (F) and 1.1 g of amorphous fluoropolymer aqueous dispersion (I) containing no fluorosurfactant (crystalline polymer and amorphous) The electrode-forming aqueous paste (20) was prepared in the same manner as in Example 19 except that the ratio of the conductive polymer was 7 to 3, and the amount of both polymers was equivalent to 1.85 g. An electrode plate was obtained. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (20) had good electrode active material carrying power and adhesion to the substrate. This is because, in the paste (20), the use of boron-modified acetylene black having hydrophilicity, which is relatively easy to disperse in water, makes it possible to form an electrode with good dispersion even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.
(例21)
結晶性含フッ素ポリマー水性分散液(F)の2.2gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに代えて、(F)の2.9gとフッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の0.5g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(21)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(21)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(21)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 21)
Instead of 2.2 g of the crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of the amorphous fluoropolymer aqueous dispersion (I), 2.9 g of (F) and the fluorosurfactant are 0.5 g of amorphous hydrocarbon polymer aqueous dispersion (J) not containing at all (mass ratio of crystalline polymer to amorphous polymer is 9 to 1, corresponding to 1.85 g of both polymers) A lithium ion battery electrode plate was obtained by preparing an aqueous electrode-forming paste (21) in the same manner as in Example 20 except that was used. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (21) had good electrode active material carrying ability and adhesion to the substrate. This is because, even in the paste (21), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersibility even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.
結晶性含フッ素ポリマー水性分散液(F)の2.2gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに代えて、(F)の2.9gとフッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の0.5g(結晶性ポリマーと非晶性ポリマーの質量比率は9対1で、両者のポリマー合わせて1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(21)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(21)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(21)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤をほとんど使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 21)
Instead of 2.2 g of the crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of the amorphous fluoropolymer aqueous dispersion (I), 2.9 g of (F) and the fluorosurfactant are 0.5 g of amorphous hydrocarbon polymer aqueous dispersion (J) not containing at all (mass ratio of crystalline polymer to amorphous polymer is 9 to 1, corresponding to 1.85 g of both polymers) A lithium ion battery electrode plate was obtained by preparing an aqueous electrode-forming paste (21) in the same manner as in Example 20 except that was used. From Table 2, the positive electrode plate for a lithium ion battery formed from the paste (21) had good electrode active material carrying ability and adhesion to the substrate. This is because, even in the paste (21), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersibility even with little use of a fluorosurfactant. It was judged that the aqueous paste was prepared.
(例22)
結晶性含フッ素ポリマー水性分散液(F)の2.9gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに代えて、フッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(22)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(22)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(22)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤を全く使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 22)
In place of 2.9 g of crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of amorphous fluoropolymer aqueous dispersion (I), amorphous carbonization containing no fluorosurfactant An aqueous electrode-forming paste (22) was prepared in the same manner as in Example 20 except that 5.2 g (the polymer component was equivalent to 1.85 g) of the aqueous hydrogen-based polymer dispersion (J) was used. A battery electrode plate was obtained. From Table 2, the lithium ion battery positive electrode plate formed from the paste (22) had good electrode active material carrying power and adhesion to the substrate. This is because, even in the paste (22), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersion without using any fluorosurfactant. It was judged that the aqueous paste was prepared.
結晶性含フッ素ポリマー水性分散液(F)の2.9gと非晶性含フッ素ポリマー水性分散液(I)の1.1gに代えて、フッ素系界面活性剤は全く含有しない非晶性の炭化水素系ポリマー水性分散液(J)の5.2g(ポリマー成分は1.85gに相当)を用いたことを除き、例20と同様にして電極形成用水性ペースト(22)を調製してリチウムイオン電池用電極板を得た。表2よりペースト(22)から形成されたリチウムイオン電池用正極板は、良好な電極活物質担持力と基板との密着力を有していた。これは、ペースト(22)においても水への分散が比較的容易な親水性を有したホウ素変性アセチレンブラックを用いたことにより、フッ素系界面活性剤を全く使用しなくとも、分散良好な電極形成用水性ペーストを調製できたためによると判断された。 (Example 22)
In place of 2.9 g of crystalline fluoropolymer aqueous dispersion (F) and 1.1 g of amorphous fluoropolymer aqueous dispersion (I), amorphous carbonization containing no fluorosurfactant An aqueous electrode-forming paste (22) was prepared in the same manner as in Example 20 except that 5.2 g (the polymer component was equivalent to 1.85 g) of the aqueous hydrogen-based polymer dispersion (J) was used. A battery electrode plate was obtained. From Table 2, the lithium ion battery positive electrode plate formed from the paste (22) had good electrode active material carrying power and adhesion to the substrate. This is because, even in the paste (22), boron-modified acetylene black having hydrophilicity that is relatively easy to disperse in water is used, so that it is possible to form an electrode with good dispersion without using any fluorosurfactant. It was judged that the aqueous paste was prepared.
(例23)
リチウムイオン電池用正極活物質(K)に代えてリチウムイオン電池用正極活物質(L)を用いたことを除いて、例19と同様にして電極形成用ペースト(23)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例24)
リチウムイオン電池用正極活物質(K)に代えて市販のリチウムコバルト複合酸化物(平均粒径5.8μm)を用いたことを除いて、例19と同様にして電極形成用ペースト(24)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 23)
An electrode forming paste (23) was prepared in the same manner as in Example 19 except that the positive electrode active material (L) for lithium ion batteries was used in place of the positive electrode active material (K) for lithium ion batteries. A battery electrode plate was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 24)
An electrode forming paste (24) was prepared in the same manner as in Example 19 except that a commercially available lithium cobalt composite oxide (average particle size 5.8 μm) was used instead of the positive electrode active material (K) for the lithium ion battery. It prepared and obtained the electrode plate for lithium ion batteries. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
リチウムイオン電池用正極活物質(K)に代えてリチウムイオン電池用正極活物質(L)を用いたことを除いて、例19と同様にして電極形成用ペースト(23)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例24)
リチウムイオン電池用正極活物質(K)に代えて市販のリチウムコバルト複合酸化物(平均粒径5.8μm)を用いたことを除いて、例19と同様にして電極形成用ペースト(24)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 23)
An electrode forming paste (23) was prepared in the same manner as in Example 19 except that the positive electrode active material (L) for lithium ion batteries was used in place of the positive electrode active material (K) for lithium ion batteries. A battery electrode plate was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 24)
An electrode forming paste (24) was prepared in the same manner as in Example 19 except that a commercially available lithium cobalt composite oxide (average particle size 5.8 μm) was used instead of the positive electrode active material (K) for the lithium ion battery. It prepared and obtained the electrode plate for lithium ion batteries. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(例25)
リチウムイオン電池用正極活物質(K)に代えて市販の活性炭(BET比表面積が2900m2/g)を用いたことを除いて、例19と同様にして電極形成用ペースト(25)を調製し、電気二重層キャパシタ用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例26)
結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに代えて、結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を、リチウムイオン電池用正極活物質(K)の60gに変えてリチウムイオン電池用負極活物質(M)の30gと市販の天然黒鉛(平均粒径3.3μm)30gを用いたことを除き、例19と同様にして電極形成用ペースト(26)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 25)
A paste for electrode formation (25) was prepared in the same manner as in Example 19 except that commercially available activated carbon (BET specific surface area was 2900 m 2 / g) was used instead of the positive electrode active material (K) for lithium ion batteries. An electrode plate for an electric double layer capacitor was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 26)
Instead of 2.6 g of the crystalline fluorine-containing polymer aqueous dispersion (F) and 0.6 g of the amorphous fluorine-containing polymer aqueous dispersion (H), 0. 3 g and 2.7 g of the amorphous fluorine-containing polymer aqueous dispersion (H) (the mass ratio of the crystalline polymer to the amorphous polymer is 1: 9, corresponding to 1.85 g of both polymers) Example 19 except that 30 g of the negative electrode active material (M) for lithium ion batteries and 30 g of commercially available natural graphite (average particle size 3.3 μm) were used instead of 60 g of the positive electrode active material (K) for ion batteries. Similarly, an electrode forming paste (26) was prepared to obtain an electrode plate for a lithium ion battery. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
リチウムイオン電池用正極活物質(K)に代えて市販の活性炭(BET比表面積が2900m2/g)を用いたことを除いて、例19と同様にして電極形成用ペースト(25)を調製し、電気二重層キャパシタ用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。
(例26)
結晶性含フッ素ポリマー水性分散液(F)の2.6gと非晶性含フッ素ポリマー水性分散液(H)の0.6gに代えて、結晶性含フッ素ポリマー水性分散液(F)の0.3gと非晶性含フッ素ポリマー水性分散液(H)の2.7g(結晶性ポリマーと非晶性ポリマーの質量比率は1対9で、両者のポリマー合わせて1.85gに相当)を、リチウムイオン電池用正極活物質(K)の60gに変えてリチウムイオン電池用負極活物質(M)の30gと市販の天然黒鉛(平均粒径3.3μm)30gを用いたことを除き、例19と同様にして電極形成用ペースト(26)を調製し、リチウムイオン電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 25)
A paste for electrode formation (25) was prepared in the same manner as in Example 19 except that commercially available activated carbon (BET specific surface area was 2900 m 2 / g) was used instead of the positive electrode active material (K) for lithium ion batteries. An electrode plate for an electric double layer capacitor was obtained. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(Example 26)
Instead of 2.6 g of the crystalline fluorine-containing polymer aqueous dispersion (F) and 0.6 g of the amorphous fluorine-containing polymer aqueous dispersion (H), 0. 3 g and 2.7 g of the amorphous fluorine-containing polymer aqueous dispersion (H) (the mass ratio of the crystalline polymer to the amorphous polymer is 1: 9, corresponding to 1.85 g of both polymers) Example 19 except that 30 g of the negative electrode active material (M) for lithium ion batteries and 30 g of commercially available natural graphite (average particle size 3.3 μm) were used instead of 60 g of the positive electrode active material (K) for ion batteries. Similarly, an electrode forming paste (26) was prepared to obtain an electrode plate for a lithium ion battery. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(例27)
ホウ素変性アセチレンブラック(B)の2.3gに代えて、オキシ水酸化コバルトの4.0gとホウ素変性アセチレンブラック(C)の0.5gを、リチウムイオン電池負極活物質(M)の30gと市販の天然黒鉛30gに代えて市販の水酸化ニッケル(平均粒径8.0μm)60gを用いたことを除き、例25と同様にして電極形成用ペースト(25)を調製し、ニッケル水素電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 27)
Instead of 2.3 g of boron-modified acetylene black (B), 4.0 g of cobalt oxyhydroxide and 0.5 g of boron-modified acetylene black (C), 30 g of lithium ion battery negative electrode active material (M) and commercially available A paste for electrode formation (25) was prepared in the same manner as in Example 25 except that 60 g of commercially available nickel hydroxide (average particle size: 8.0 μm) was used instead of 30 g of natural graphite. I got a plate. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
ホウ素変性アセチレンブラック(B)の2.3gに代えて、オキシ水酸化コバルトの4.0gとホウ素変性アセチレンブラック(C)の0.5gを、リチウムイオン電池負極活物質(M)の30gと市販の天然黒鉛30gに代えて市販の水酸化ニッケル(平均粒径8.0μm)60gを用いたことを除き、例25と同様にして電極形成用ペースト(25)を調製し、ニッケル水素電池用電極板を得た。この電極板も良好な電極活物質担持力と基板との密着性を有していた。 (Example 27)
Instead of 2.3 g of boron-modified acetylene black (B), 4.0 g of cobalt oxyhydroxide and 0.5 g of boron-modified acetylene black (C), 30 g of lithium ion battery negative electrode active material (M) and commercially available A paste for electrode formation (25) was prepared in the same manner as in Example 25 except that 60 g of commercially available nickel hydroxide (average particle size: 8.0 μm) was used instead of 30 g of natural graphite. I got a plate. This electrode plate also had good electrode active material carrying power and adhesion to the substrate.
(例28)
例20の電極板を所定の大きさに打抜くと正極板が得られ、リチウム箔を所定の大きさに切り出すと負極板が得られる。こうして得られる正極板、負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレーターを介してステンレス製セルケースに収納し、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入するとリチウム二次電池のモデルセルとなる。このモデルセルを充放電試験機に取り付け、25℃において充電電量0.6mA/cm2で電池電圧4.3Vになるまで充電した後、放電電量2.0mA/cm2(1.25Cレートに相当)で2.0Vになるまで放電する充放電の繰り返しを行うと、このモデルセルは蓄電素子特性良好なリチウム二次電池であることがかわる。 (Example 28)
When the electrode plate of Example 20 is punched to a predetermined size, a positive electrode plate is obtained, and when the lithium foil is cut to a predetermined size, a negative electrode plate is obtained. A lead wire is attached to each of the positive electrode plate and the negative electrode plate thus obtained, accommodated in a stainless steel cell case via a polyolefin separator, and 1 mol / liter of lithium hexafluorophosphate is dissolved in a mixed solution of ethylene carbonate and diethylene carbonate. When the electrolyte solution is injected, it becomes a model cell of a lithium secondary battery. Attach the model cell charge and discharge tester, corresponds to the charge coulometry 0.6 mA / cm 2 was charged to a battery voltage 4.3V, the discharge coulometric 2.0mA / cm 2 (1.25C rate at 25 ° C. ), The model cell is a lithium secondary battery with good storage element characteristics.
例20の電極板を所定の大きさに打抜くと正極板が得られ、リチウム箔を所定の大きさに切り出すと負極板が得られる。こうして得られる正極板、負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレーターを介してステンレス製セルケースに収納し、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入するとリチウム二次電池のモデルセルとなる。このモデルセルを充放電試験機に取り付け、25℃において充電電量0.6mA/cm2で電池電圧4.3Vになるまで充電した後、放電電量2.0mA/cm2(1.25Cレートに相当)で2.0Vになるまで放電する充放電の繰り返しを行うと、このモデルセルは蓄電素子特性良好なリチウム二次電池であることがかわる。 (Example 28)
When the electrode plate of Example 20 is punched to a predetermined size, a positive electrode plate is obtained, and when the lithium foil is cut to a predetermined size, a negative electrode plate is obtained. A lead wire is attached to each of the positive electrode plate and the negative electrode plate thus obtained, accommodated in a stainless steel cell case via a polyolefin separator, and 1 mol / liter of lithium hexafluorophosphate is dissolved in a mixed solution of ethylene carbonate and diethylene carbonate. When the electrolyte solution is injected, it becomes a model cell of a lithium secondary battery. Attach the model cell charge and discharge tester, corresponds to the charge coulometry 0.6 mA / cm 2 was charged to a battery voltage 4.3V, the discharge coulometric 2.0mA / cm 2 (1.25C rate at 25 ° C. ), The model cell is a lithium secondary battery with good storage element characteristics.
本発明の蓄電素子電極形成用水性ペーストは、基板上に塗工された後も微細化された複数の成分が均質に分散された状態を保持したまま電極コンポジット層を形成でき、それぞれ微細化された電極活物質、導電助剤、及び結着剤が均質に分散されるので、スムースな界面電荷移動反応とイオン伝導、及び電子伝導を担うように機能し、良好な蓄電素子特性を発現する効果を奏する。さらに、生体内残留や蓄積性を有し、環境面で懸念される、PFOA類を使用する必要が無いことから産業上有用である。
なお、2008年2月8日に出願された日本特許出願2008-029626号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The aqueous paste for forming a storage element electrode of the present invention can form an electrode composite layer while maintaining a state in which a plurality of finely divided components are uniformly dispersed even after being coated on a substrate. Electrode active material, conductive additive, and binder are homogeneously dispersed, functioning to carry out smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and exhibiting good storage element characteristics Play. Furthermore, it is industrially useful because it does not need to use PFOAs, which have in-vivo residues and accumulation properties, and are environmentally concerned.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-029626 filed on Feb. 8, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.
なお、2008年2月8日に出願された日本特許出願2008-029626号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The aqueous paste for forming a storage element electrode of the present invention can form an electrode composite layer while maintaining a state in which a plurality of finely divided components are uniformly dispersed even after being coated on a substrate. Electrode active material, conductive additive, and binder are homogeneously dispersed, functioning to carry out smooth interfacial charge transfer reaction, ionic conduction, and electronic conduction, and exhibiting good storage element characteristics Play. Furthermore, it is industrially useful because it does not need to use PFOAs, which have in-vivo residues and accumulation properties, and are environmentally concerned.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-029626 filed on Feb. 8, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.
Claims (10)
- 電極活物質、導電助剤及び結着剤を含有し、前記導電助剤が下記の親水性評価試験で親水性を有すると判定された導電性炭素質材料であることを特徴とする蓄電素子電極形成用水性ペースト。
親水性評価試験:
120℃にて24時間乾燥させた導電性炭素質材料粉体10mgを正確に秤量し、その質量をW1とする。次に、500mlの分液ロート中にその上口から、上記の導電性炭素質材料粉体、及び300gのイオン交換水を加え、さらに30gのイオン交換水を加えて分液ロートの内壁面に付着した導電性炭素質材料粉体を流し込む。次いで、該分液ロートを1分間振とうさせた後30分間静置する。次いで、分液ロートのコックを開けて底部からイオン交換水と、イオン交換水と混和した導電性炭素質材料粉体の300gを抜き取り、この抜き取った液から導電性炭素質材料粉体をろ過して分離し、120℃にて24時間乾燥させて秤量し、その質量をW2とする。分液ロートに投入した導電性炭素質材料の粉体の投入質量W1と水と混和した質量W2が、(W2/W1)×100≧1の関係を満たす時、導電性炭素質材料は親水性を有すると判定する。 An electrical storage element electrode comprising an electrode active material, a conductive assistant and a binder, wherein the conductive assistant is a conductive carbonaceous material determined to have hydrophilicity in the following hydrophilicity evaluation test Aqueous paste for forming.
Hydrophilic evaluation test:
10 mg of conductive carbonaceous material powder dried at 120 ° C. for 24 hours is accurately weighed, and its mass is defined as W 1 . Next, the above conductive carbonaceous material powder and 300 g of ion exchange water are added into the 500 ml separatory funnel from the upper mouth, and 30 g of ion exchange water is further added to the inner wall surface of the separatory funnel. Pour the adhering conductive carbonaceous material powder. Next, the separating funnel is shaken for 1 minute and then allowed to stand for 30 minutes. Next, the cock of the separatory funnel is opened, and ion-exchanged water and 300 g of conductive carbonaceous material powder mixed with ion-exchanged water are extracted from the bottom, and the conductive carbonaceous material powder is filtered from the extracted liquid. Separated, dried at 120 ° C. for 24 hours, weighed, and the mass is defined as W 2 . When the charged mass W 1 of the conductive carbonaceous material powder charged into the separatory funnel and the mass W 2 mixed with water satisfy the relationship of (W 2 / W 1 ) × 100 ≧ 1, the conductive carbonaceous material The material is determined to be hydrophilic. - 前記親水性を有する導電性炭素質材料がホウ素変性の導電性炭素質材料である請求項1に記載の蓄電素子電極形成用水性ペースト。 The aqueous paste for forming a storage element electrode according to claim 1, wherein the conductive carbonaceous material having hydrophilicity is a boron-modified conductive carbonaceous material.
- ホウ素含有量が、0.01~10質量%である請求項2に記載の蓄電素子電極形成用水性ペースト。 The aqueous paste for forming a storage element electrode according to claim 2, wherein the boron content is 0.01 to 10% by mass.
- 前記導電性炭素質材料が、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラック、天然黒鉛、人造黒鉛等のグラファイト類、ケッチェンブラック、ニードルコークス、カーボンファイバー、カーボンチューブ、及びカーボンコイルからなる群から選ばれる1種以上である、請求項1~3のいずれか1項に記載の蓄電素子電極形成用水性ペースト。 The conductive carbonaceous material includes acetylene black, thermal black, furnace black, channel black, lamp black, graphite such as natural graphite, artificial graphite, ketjen black, needle coke, carbon fiber, carbon tube, and carbon coil. The aqueous paste for forming a storage element electrode according to any one of claims 1 to 3, which is at least one member selected from the group consisting of:
- 前記結着剤がポリマーの水性分散液である請求項1~4のいずれか1項に記載の蓄電素子電極形成用水性ペースト。 The aqueous paste for forming a storage element electrode according to any one of claims 1 to 4, wherein the binder is an aqueous dispersion of a polymer.
- 前記結着剤が含フッ素ポリマーの水性分散液である請求項1~4のいずれか1項に記載の蓄電素子電極形成用水性ペースト。 The aqueous paste for forming a storage element electrode according to any one of claims 1 to 4, wherein the binder is an aqueous dispersion of a fluorine-containing polymer.
- 前記含フッ素ポリマーの水性分散液が結晶性含フッ素ポリマーの水性分散液と非晶性含フッ素ポリマーの水性分散液を混合して調製したものである請求項6に記載の蓄電素子電極形成用水性ペースト。 The aqueous storage element electrode forming water according to claim 6, wherein the aqueous dispersion of the fluoropolymer is prepared by mixing an aqueous dispersion of a crystalline fluoropolymer and an aqueous dispersion of an amorphous fluoropolymer. paste.
- さらに、界面活性剤類を含有し、該界面活性剤類が、カルボン酸塩型、スルホン酸塩型、硫酸塩型、リン酸塩型等のアニオン界面活性剤類;四級アンモニウム塩型、イミダゾリニウム塩型、ピロジニウム塩型等のカチオン界面活性剤類;ベタイン型、アミノカルボン酸塩型、イミダゾリン誘導体型、アルキルアミンオキサイド型等の両性界面活性剤類;及び、エーテル型、エーテルエステル型、エステル型、含窒素型、エチレンオキサイドとプロピレンオキサイドのブロックコポリマー等のノニオン界面活性剤類からなる群から選ばれる1種以上である、請求項1~7のいずれか1項に記載の蓄電素子電極形成用水性ペースト。 Further, it contains surfactants, and the surfactants are anionic surfactants such as carboxylate type, sulfonate type, sulfate type and phosphate type; quaternary ammonium salt type, imidazo Cationic surfactants such as linium salt type and pyrodinium salt type; amphoteric surfactants such as betaine type, aminocarboxylate type, imidazoline derivative type, alkylamine oxide type; and ether type, ether ester type, The electricity storage device electrode according to any one of claims 1 to 7, which is at least one selected from the group consisting of nonionic surfactants such as ester type, nitrogen-containing type, block copolymer of ethylene oxide and propylene oxide. Aqueous paste for forming.
- さらに、水溶性高分子化合物を含有し、該水溶性高分子化合物が、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシポロピルメチルセルロース等のセルロース類;オリゴ糖、デキストリン、水溶性食物繊維等の糖類;クラウンエーテル類;ポリアクリル酸類;ポリエチレンオキサイド;及び、ポリビニルアルコールからなる群から選ばれる1種以上である、請求項1~8のいずれか1項に記載の蓄電素子電極形成用水性ペースト。 Furthermore, it contains a water-soluble polymer compound, and the water-soluble polymer compound is a cellulose such as methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose; saccharides such as oligosaccharides, dextrin, and water-soluble dietary fibers. The aqueous paste for forming a storage element electrode according to any one of claims 1 to 8, which is at least one selected from the group consisting of crown ethers; polyacrylic acids; polyethylene oxide; and polyvinyl alcohol.
- 請求項1~9のいずれか1項に記載の蓄電素子電極形成用水性ペーストから形成された蓄電素子電極を有することを特徴とする蓄電素子。 A power storage element comprising a power storage element electrode formed from the aqueous paste for forming a power storage element electrode according to any one of claims 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008029626A JP2011086378A (en) | 2008-02-08 | 2008-02-08 | Aqueous paste for forming electrode of electrical storage device |
JP2008-029626 | 2008-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098986A1 true WO2009098986A1 (en) | 2009-08-13 |
Family
ID=40952063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051382 WO2009098986A1 (en) | 2008-02-08 | 2009-01-28 | Aqueous paste for forming electrode of electrical storage device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011086378A (en) |
WO (1) | WO2009098986A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015133586A1 (en) * | 2014-03-05 | 2015-09-11 | 日本ケミコン株式会社 | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
WO2015133583A1 (en) * | 2014-03-05 | 2015-09-11 | 日本ケミコン株式会社 | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
WO2015141288A1 (en) * | 2014-03-17 | 2015-09-24 | トヨタ自動車株式会社 | Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery |
EP2624341A4 (en) * | 2010-09-30 | 2015-10-07 | Asahi Glass Co Ltd | Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same |
WO2016076369A1 (en) * | 2014-11-13 | 2016-05-19 | 旭硝子株式会社 | Binder composition for power storage device, and manufacturing method for same |
WO2021253302A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Conductive composition for secondary battery |
WO2021253887A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201043672A (en) * | 2009-03-30 | 2010-12-16 | Jsr Corp | Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device |
JP6222098B2 (en) * | 2012-10-19 | 2017-11-01 | 旭硝子株式会社 | Method for producing binder composition for electricity storage device |
JP2018005972A (en) * | 2014-11-14 | 2018-01-11 | 旭硝子株式会社 | Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery |
KR20170082496A (en) * | 2014-11-14 | 2017-07-14 | 아사히 가라스 가부시키가이샤 | Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery |
JP6657758B2 (en) * | 2015-10-15 | 2020-03-04 | 株式会社豊田自動織機 | Intermediate composition, slurry for negative electrode, and method for producing negative electrode |
JP6808948B2 (en) * | 2016-02-26 | 2021-01-06 | 株式会社豊田中央研究所 | Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery |
JP6868751B1 (en) * | 2019-12-24 | 2021-05-12 | 昭和電工株式会社 | Non-aqueous secondary battery Electrodes, electrode slurries, and non-aqueous secondary batteries |
CN111129499A (en) * | 2019-12-30 | 2020-05-08 | 宣城研一新能源科技有限公司 | Water-based conductive adhesive for lithium battery and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213022A (en) * | 1995-02-09 | 1996-08-20 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JPH0922727A (en) * | 1995-07-06 | 1997-01-21 | Toshiba Battery Co Ltd | Manufacture of lithium secondary battery of hybrid solid polymer electrolyte type |
JP2002203551A (en) * | 2000-12-28 | 2002-07-19 | Gs-Melcotec Co Ltd | Non-aqueous electrolyte battery |
JP2002319404A (en) * | 2001-04-23 | 2002-10-31 | Ube Ind Ltd | Secondary battery positive electrode conductive material and its manufacturing method |
JP2003308844A (en) * | 2002-04-18 | 2003-10-31 | Hitachi Maxell Ltd | Nonaqueous secondary battery and its positive electrode |
WO2006126665A1 (en) * | 2005-05-26 | 2006-11-30 | Zeon Corporation | Electrode material for electrochemical device and composite particle |
JP2007042620A (en) * | 2005-07-04 | 2007-02-15 | Showa Denko Kk | Negative electrode for lithium secondary battery, manufacturing method of negative electrode composition, and lithium secondary battery |
-
2008
- 2008-02-08 JP JP2008029626A patent/JP2011086378A/en active Pending
-
2009
- 2009-01-28 WO PCT/JP2009/051382 patent/WO2009098986A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213022A (en) * | 1995-02-09 | 1996-08-20 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JPH0922727A (en) * | 1995-07-06 | 1997-01-21 | Toshiba Battery Co Ltd | Manufacture of lithium secondary battery of hybrid solid polymer electrolyte type |
JP2002203551A (en) * | 2000-12-28 | 2002-07-19 | Gs-Melcotec Co Ltd | Non-aqueous electrolyte battery |
JP2002319404A (en) * | 2001-04-23 | 2002-10-31 | Ube Ind Ltd | Secondary battery positive electrode conductive material and its manufacturing method |
JP2003308844A (en) * | 2002-04-18 | 2003-10-31 | Hitachi Maxell Ltd | Nonaqueous secondary battery and its positive electrode |
WO2006126665A1 (en) * | 2005-05-26 | 2006-11-30 | Zeon Corporation | Electrode material for electrochemical device and composite particle |
JP2007042620A (en) * | 2005-07-04 | 2007-02-15 | Showa Denko Kk | Negative electrode for lithium secondary battery, manufacturing method of negative electrode composition, and lithium secondary battery |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2624341A4 (en) * | 2010-09-30 | 2015-10-07 | Asahi Glass Co Ltd | Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same |
US9214665B2 (en) | 2010-09-30 | 2015-12-15 | Asahi Glass Company, Limited | Positive electrode material mixture, and positive electrode for non-aqueous secondary battery and secondary battery, employing it |
CN106063006A (en) * | 2014-03-05 | 2016-10-26 | 日本贵弥功株式会社 | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
US10784514B2 (en) | 2014-03-05 | 2020-09-22 | Nippon Chemi-Con Corporation | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
JP2015181089A (en) * | 2014-03-05 | 2015-10-15 | 日本ケミコン株式会社 | Conductive carbon, electrode material including conductive carbon, and electrode using the electrode material |
WO2015133583A1 (en) * | 2014-03-05 | 2015-09-11 | 日本ケミコン株式会社 | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
WO2015133586A1 (en) * | 2014-03-05 | 2015-09-11 | 日本ケミコン株式会社 | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
JPWO2015133586A1 (en) * | 2014-03-05 | 2017-04-06 | 日本ケミコン株式会社 | Conductive carbon, electrode material containing this conductive carbon, and electrode using this electrode material |
US10573896B2 (en) | 2014-03-05 | 2020-02-25 | Nippon Chemi-Con Corporation | Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material |
WO2015141288A1 (en) * | 2014-03-17 | 2015-09-24 | トヨタ自動車株式会社 | Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery |
JP2015176831A (en) * | 2014-03-17 | 2015-10-05 | トヨタ自動車株式会社 | positive electrode for lithium ion secondary batteries, and lithium ion secondary battery |
WO2016076369A1 (en) * | 2014-11-13 | 2016-05-19 | 旭硝子株式会社 | Binder composition for power storage device, and manufacturing method for same |
WO2021253302A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Conductive composition for secondary battery |
WO2021254155A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Conductive composition for secondary battery |
WO2021253887A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
WO2021253885A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
WO2021253884A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
WO2021253888A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
US12057585B2 (en) | 2020-06-17 | 2024-08-06 | Grst International Limited | Conductive composition for secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2011086378A (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009098986A1 (en) | Aqueous paste for forming electrode of electrical storage device | |
JP5228524B2 (en) | Aqueous paste for forming electricity storage element electrodes with low environmental impact | |
JP5854092B2 (en) | Electrodes for electrochemical devices | |
CN108028358B (en) | Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoat-coated current collector for secondary battery electrode, electrode for secondary battery, and secondary battery | |
KR101998905B1 (en) | Electrode-forming composition | |
WO2010008058A1 (en) | Anode composite for nonaqueous electrolyte cell | |
CN114600265B (en) | Paste for secondary battery, paste for secondary battery positive electrode, secondary battery, and method for producing paste for secondary battery | |
JP2012252824A (en) | Method for manufacturing electrode for power storage device, and power storage device | |
CN114008825A (en) | Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery | |
JP2011258333A (en) | Method of manufacturing electrode composite for secondary battery, electrode for secondary battery and secondary battery | |
KR20150071452A (en) | A method for manufacturing a slurry an anode of lithium ion secondary battery | |
JP2012094331A (en) | Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device | |
WO2010134465A1 (en) | Fluorine-containing binder | |
JP2013178926A (en) | Positive electrode mixture for nonaqueous secondary battery | |
JP2009295405A (en) | Method for manufacturing aqueous paste for forming power storage element electrode | |
JPWO2019026690A1 (en) | Electrode active material for non-aqueous secondary battery and method for producing the same | |
JP2016143552A (en) | Composition for power storage device, slurry for power storage device electrode, and storage device electrode and power storage device | |
WO2020158887A1 (en) | Method for manufacturing electrode active material for non-aqueous secondary cell | |
WO2020158885A1 (en) | Electrode active material for non-aqueous secondary battery and method for producing same | |
JP6394027B2 (en) | Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery | |
WO2022045154A1 (en) | Binder composition for electrochemical elements, conductive material dispersion liquid for electrochemical elements, slurry for electrochemical element electrodes, electrode for electrochemical elements, and electrochemical element | |
JP2016143553A (en) | Slurry for power storage device electrode, power storage device electrode, and power storage device | |
WO2018221197A1 (en) | Binder composition for power storage device, slurry for electrode of power storage device, electrode of power storage device, and power storage device | |
WO2024154810A1 (en) | Tetrafluoroethylene-based polymer composition, binder for electrochemical devices, electrode mix, electrode, and secondary battery | |
WO2022113859A1 (en) | Paste for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09709340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09709340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |