WO2010134385A1 - 電子活性機能水を利用する燃焼方法及びその装置 - Google Patents

電子活性機能水を利用する燃焼方法及びその装置 Download PDF

Info

Publication number
WO2010134385A1
WO2010134385A1 PCT/JP2010/055877 JP2010055877W WO2010134385A1 WO 2010134385 A1 WO2010134385 A1 WO 2010134385A1 JP 2010055877 W JP2010055877 W JP 2010055877W WO 2010134385 A1 WO2010134385 A1 WO 2010134385A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fuel
combustion
vaporized
active functional
Prior art date
Application number
PCT/JP2010/055877
Other languages
English (en)
French (fr)
Inventor
一朗 島野
修康 塩谷
征也 佐澤
幸夫 加藤
保 後藤
靖 小林
雅幸 堀切
Original Assignee
東京ファーネス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京ファーネス工業株式会社 filed Critical 東京ファーネス工業株式会社
Publication of WO2010134385A1 publication Critical patent/WO2010134385A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a combustion method and apparatus using a novel electronically active functional water that separates and burns hydrogen constituting water.
  • the fuel used in the combustion method is a liquid fuel such as petroleum or a gaseous fuel such as propane, natural gas, and LPG, apart from solid fuel such as coal and charcoal.
  • Patent Documents 1 and 2 a method for effectively separating and extracting hydrogen constituting water is also known (see, for example, Patent Documents 1 and 2).
  • JP 2000-192272 A Japanese Patent No. 2566248
  • Patent Documents 1 and 2 are both methods for generating active hydrogen water or hydrogen gas, and do not use water itself as fuel.
  • the bond is so strong that water does not normally separate into hydrogen and oxygen unless heated to a temperature of 4,000 to several hundred degrees.
  • FESL electronically active functional water
  • the hydrogen component and the oxygen component constituting water are ionized and ionized, and are used as “water”.
  • FESL electronically active functional water
  • the present invention has been made paying attention to the above points, and by using electronically active functional water containing active hydrogen that is ionized as a fuel, the generation of CO 2 is drastically reduced and the global environment is polluted. It is an object of the present invention to provide a combustion method using an innovative electronically active functional water that can be completely prevented and its environment.
  • the present invention is achieved by providing the following configuration.
  • the combustion method using the electronically active functional water is characterized in that the supply of air is stopped and the supply of the preheating auxiliary fuel in the preheating auxiliary process is continued in an adjustable manner.
  • the water fuel discharge step is characterized in that, when water fuel is discharged as vaporized vapor from a discharge nozzle, the water fuel is heated in advance and heated in a vaporized water state. Combustion method using the electronically active functional water.
  • a water fuel discharge means for discharging an electronically active functional water in an ionized active state containing hydrogen ions and oxygen ions as water fuel from a discharge nozzle facing the combustion chamber;
  • Preheating auxiliary fuel is made up of preheating auxiliary means for discharging from a discharge nozzle facing the combustion chamber and igniting using air, and the vaporized water fuel is heated and ignited at a temperature equal to or higher than the boiling point.
  • the combustion apparatus using electronically active functional water is characterized in that the supply of air is stopped and the supply of the preheating auxiliary fuel of the preheating auxiliary means is adjustable.
  • the water fuel discharge means is provided with vaporized water heating and heat retaining means that heats the water fuel in advance and heats it in a vaporized state.
  • the vaporized water heating and heat retaining means includes a coiled electronically active functional water heating pipe heated by a heater and a water vapor tank provided with a heater communicating with the heating pipe, and the casing is entirely insulated.
  • the vaporized water heating and heat-retaining means is a heat-insulated housing including a heating pipe constituted by a coiled pipe mounted on the discharge nozzle of the preheating auxiliary means and a heater connected to the heating pipe.
  • ionically activated hydrogen ions and oxygen active functional water having oxygen ions are used as water fuel, and the hydrogenated and oxygen ions ionized by being discharged into a vaporized vaporized state of spray vaporization are preheated.
  • hydrogen ion gasification that is, transition to H 2 molecular state
  • separation from oxygen gas is generated, and the temperature is around 100 ° C. as a boundary. It becomes active, ignites and generates heat, and a high-temperature combustion state can be obtained.
  • the supply amount of electronically active functional water and fossil fuel can be adjusted according to the individual preference to vary the temperature control of the combustion state and applied to all existing combustion devices as water fuel And can function effectively.
  • the conventional fossil fuel acts only as an auxiliary fuel, and as an auxiliary fuel, at the beginning of ignition, it needs to be ignited by supplying air, but after ignition of the main fuel to the electronically active functional water, Ignition can be continued only by supplying oxygen in the electronically active functional water.
  • oxygen necessary for combustion is not oxygen in the air, but oxygen in the electronically active functional water acts.
  • water itself, which is an electronically active functional water, works exclusively as the main fuel, it eliminates the generation of CO and CO 2 as environmental pollution as much as possible, especially eliminates the generation of NO x , so-called the ideal fuel as internal combustion , Can be widely used for all combustion applications such as external combustion.
  • FIG. 1 is a system configuration diagram showing another example of a combustion apparatus that unitizes the supply of electronically active functional water when gaseous fuel is used.
  • FIG. 2 is a diagram of a main part including a configuration of electronically active functional water and liquid fuel that communicates with a discharge nozzle when using liquid fuel in the configuration of FIG. 1, (a) is a partial view, and (b) is a diagram of the discharge nozzle.
  • Enlarged sectional view Comparison diagram of the temperature rise graph showing the temperature rise state of the gas in the crucible and the temperature rise of the gas and water for 60 minutes after ignition
  • FIG. 7 is a temperature graph showing the combustion temperature generated at the outlet of the industrial furnace 1 over time in the embodiment using the gaseous fuel shown in FIG.
  • the preheating auxiliary means uses liquid fuel and the case where gaseous fuel is used are shown. Both fuels may be used in combination or separately.
  • 1 represents an industrial furnace which is a general combustion chamber, and is not limited to the shape and structure of the industrial furnace.
  • 2 is a discharge nozzle of preheating auxiliary means A that discharges liquid fuel such as petroleum in a vaporized state;
  • 3 is a discharge nozzle of preheating auxiliary means A that discharges gaseous fuel such as natural gas and propane;
  • Reference numeral 5 denotes a discharge nozzle of water fuel discharge means B arranged in parallel with the discharge nozzle 2 or 3 using electronically active functional water as water fuel, and the liquid of the preheating auxiliary means A with respect to the discharge nozzles 4 and 5.
  • the fuel discharge nozzles 2 are arranged in parallel, or the gaseous fuel nozzles 3 of the preheating auxiliary means A are annularly arranged around the nozzle 5 (FIG. 2A). , (B)).
  • a heat storage region C formed of a porous heat storage material is provided near the tip of the combustion gas soot to effectively promote the ignition combustion action of water fuel.
  • 6 is a tank of electronically active functional water having ionized hydrogen ions and oxygen ions
  • 7 is a pipe communicating from the tank 6 to the nozzle 2
  • a water flow meter 8 and a water pump 9 are disposed in the middle.
  • a manual opening / closing valve 10 an automatic opening / closing valve (automatic electromagnetic valve) 11, and the like are interposed.
  • Reference numeral 12 denotes a fuel tank that contains and fills fossil fuel oil.
  • Reference numeral 13 denotes a pipe that communicates with the nozzle 4 from the tank 12.
  • An oil flow meter 14 and an oil gear pump 15 are disposed in the middle, and a manual open / close valve 16.
  • An automatic opening / closing valve 17 or the like is interposed.
  • Reference numeral 18 denotes a fuel tank filled with gaseous fuel such as natural gas of fossil fuel, LPG, and 19 denotes a pipe that communicates with the nozzle 3 from the tank 18, and a gas flow meter 20 and other necessary equipment are interposed in the middle.
  • a plurality of automatic opening / closing valves 21 and manual opening / closing valves 22 are interposed.
  • 23 and 24 are burner bases having different structures when the preheating auxiliary means A is liquid or gas, and are provided with the introduction portions 25 of the discharge nozzles 2, 3, 4 and 5 described above. The ends of 13 and 19 are connected.
  • Reference numeral 26 denotes a control panel for controlling the preheating auxiliary means A for liquid fuel or gaseous fuel connected to the burner base 23 or 24, and also connected to thermocouples 27 and 28 for measuring the temperature of the combustion state of the industrial furnace 1. I'm allowed.
  • the liquid fuel or gaseous fuel of the preheating auxiliary means A is specified and ignited and burned in advance.
  • the electronically activated functional water is vaporized and vaporized in a sprayed state from the nozzle 2 or 3 by the water pump 9 into the industrial furnace 1 from the tank 6.
  • the electronically active functional water in the state is discharged, the ionized hydrogen ions immediately become hydrogen gas, and at the same time, oxygen ions are vaporized to generate oxygen gas, and combustion in the mixed explosion state of both gases is started.
  • the temperature in the industrial furnace 1 which is a combustion chamber rises rapidly.
  • the fuel of the preheating auxiliary means A is ignited and discharged from the discharge nozzle 4 or 5 to ignite the electronically active functional water.
  • the ignition temperature is extremely high at 500 ° C. to 600 ° C. in this case.
  • the opening degree of the valves 16, 17 or 21 and 22 in which the supply of liquid fuel or vaporized fuel of the preheating auxiliary means A is arranged in the pipes 13 and 19 is controlled.
  • the supply amount is decreased, and the supply of the electronically active functional water is increased, so that the hydrogen gas and the oxygen gas continue to be mixed and burned, and the temperature in the industrial furnace 1 is kept high. It is also possible to continue combustion.
  • the supply of air i.e., oxygen from a suction pump such as a blower for supplying air necessary for the initial combustion of the preheating auxiliary means A, is stopped by closing the valve to stop the supply.
  • FIG. 5 shows an example of a specific configuration for stably supplying water vaporization of electronically active functional water, that is, vaporized waterization.
  • the water fuel pumped from the tank 6 of the electronically active functional water is connected to the nozzle 2 or 3 in the furnace 1 via the check valve 37 and the water vaporizer D shown in the drawing after the solenoid valve 11. Supplied through.
  • the steaming apparatus D has the following configuration.
  • 29 is a heater
  • 30 is a coiled electronically active functional water heating pipe that communicates with the check valve 37
  • 31 is a heater that heats a steam tank 32 that communicates with the heating pipe
  • 33 is a safety valve
  • 34 is the steam tank.
  • 32 safety exhaust valves 35 and 36 are thermocouples attached before and after the steaming device D and are controlled by the controller E.
  • the above-described steaming device D is formed of a heat-insulated casing, and the water fuel is effectively heated by the heater 29 to be steamed to activate hydrogen ion molecules and oxygen ion molecules.
  • a constant water vapor pressure of 100 ° C. can be maintained, and the activated water vapor, that is, the vaporized water vapor, is retained and passed through the conduit 38 and is effectively supplied to the nozzle 2 or 3.
  • the electronically activated functional water pumped by the water pumping pump 9 opens the electromagnetic valve 11, passes through the check valve 37, is sent to the electronically active functional water heating pipe 30, and is vaporized by the heater 29, After being heated and kept warm in the steam tank 32 (for surge) by the heater 31, it is sent through the conduit 38 to the discharge nozzle 2 or 3 of the burner base 23 or 24 of the water fuel combustion pipe.
  • the heating pipe 30, the steam tank 32, and the heaters 29 and 31 are unitized as a configuration referred to as a steaming device D, and are combined with thermocouples 35 and 36, a safety valve 33, and the like and controlled by the controller E.
  • the heat source of the heaters 29 and 31 in the steaming device D is advantageously adopted by electric heating from the viewpoint of safety.
  • the heat in the furnace 1 and the heating tube F for utilizing the exhaust heat or the combustion chamber G are used. It is also possible to adopt a heating tube F of the circulation type in FIG.
  • a heating pipe that is, a heating pipe F is disposed in front of the tip of the burner base 23 or 24 of the combustion chamber G of the furnace 1 and heated by circulating electronically active functional water. And vaporized water, and led to a heat-insulated water vapor tank 32 having substantially the same structure as the water vaporizer D, maintaining a constant water vapor pressure of 100 ° C. to 130 ° C. An activated vaporized gas is supplied to the nozzle 2 or 3 through the conduit 38.
  • a structure with a compact steaming device Dx in which the heating pipe 30 heated by the heater 29 such as a heater is omitted can be sufficiently handled.
  • the heater 31 in FIG. 6 can be omitted and the steam tank 32 alone can be formed (not shown).
  • 39 is a unit that has the electronically active functional water tank 6 shown in FIG. 1 and can be supplied as main fuel to the heating pipe F in FIG. 6, and 40 is a gas fuel tank 18 for gaseous fuel shown in FIG.
  • the fuel supply line 40 and the air supply line 41 are provided with branch pipes 40a and 41a, respectively, for igniting and burning the gaseous fuel from the gaseous fuel tank 18 which is the preheating auxiliary means A in the furnace 1.
  • a pilot ignition system is configured, and includes both spark plugs 42 and an ignition transformer 43. Both lines 40 and 41 are supplied directly to the furnace 1 by effectively igniting a mixed gas of air and gaseous fuel by a pilot burner 44. More mixed gas can be instantly ignited.
  • This combustion state is apparently the combustion of only electronically active functional water, and it is assumed that the gaseous fuel is merely cooperating as auxiliary fuel.
  • reference numeral 48 is a flow meter constituting the unit 39
  • 49 is a pressure gauge
  • 50 is a valve for adjusting the flow rate of the fuel supply line 40
  • 51 is a flexible interposed between the fuel supply line 40 and the air supply line 41.
  • a pipe 52 indicates a heat insulating shielding plate that adjusts the opening degree of the opening of the furnace 1 to vary the combustion temperature.
  • the means for supplying the electronically active functional water to the furnace 1 and the means for supplying the liquid fuel to the furnace 1 are substantially the same as those shown in FIG. 1 and FIG. .
  • reference numeral 53 denotes a base of the discharge nozzle 2, and a gas intake 54 of gasified electronically active functional water is opened toward the discharge direction of the discharge nozzle 3.
  • Reference numeral 55 denotes a preheating auxiliary fuel inlet, which is opened perpendicular to the direction of the inlet 54.
  • the electronically active functional water is sufficiently heated to 100 ° C. or higher and is sufficiently heated by the heating pipe F of the discharge nozzle 2 while measuring the pressure by the pump 56, the pressure control valve 57 and the pressure gauge 58,
  • the vaporizers D and Dx are vaporized at a high temperature and enter the discharge nozzle 2 from the intake port 54 of the discharge nozzle 2.
  • the liquid fuel passes through the liquid fuel pipe 13 orthogonal to the discharge direction of the discharge nozzle 2. It is supplied from the intake 55 to the base of the discharge nozzle 2.
  • the liquid fuel intake 55 is depressurized by the action of the electronically active water vaporized at high temperature, and both gases are sprayed and mixed in the base 53 by a kind of siphon action. It can be discharged into the furnace 1 from the discharge nozzle 2 with a proper ignition and ignition function, and can be burned instantaneously to obtain the required combustion temperature.
  • a liquid strainer 59 a pressure regulating valve 57, and a pressure gauge 58 are interposed in the middle of the pipe 13 in the case of liquid fuel.
  • the electronically active functional water as the water fuel in the present invention is water having a large amount of free electron energy, and is composed of hydrogen (H) and oxygen (O) of H 2 O.
  • the water is unstable and easy to separate, and unlike ordinary water, radial icing called the bubble chamber phenomenon was observed as shown in the photograph in FIG.
  • This electronically active functional water is named, for example, Free Electron Range Liquid Liquid (FESL), and can be used as a water fuel by mixing high-concentration water with normal water as the raw water.
  • FESL Free Electron Range Liquid Liquid
  • FESL manufactured at a ratio of 1000 tap water to raw water 1 was used.
  • the calculation results in energy savings of about 20% or more, but considering the reduction of actual CO 2 and NO X , the energy saving is 30% or more.
  • Table 2 shows data obtained when a combustion experiment was performed by changing the blending amount of FESL and kerosene in the simultaneous combustion of FESL and kerosene. Average value of 5-second interval measurement data, combustion burner up to 30 liters / H.
  • NOx is 200 or less and CO 2 is 100 or less, NOx and CO 2 can be greatly reduced in any case.
  • Table 3 shows the transition of FESL and oil blending ratio and overall combustion costs.
  • the 30% price means, for example, that the price of FESL is 30 yen / liter when kerosene is 100 yen / liter, and it can be clearly seen that the fuel cost can be reduced.
  • the electronically active functional water to be used as fuel is to keep hydrogen ions and oxygen ions in the water in an activated state and separate and combine them to obtain combustion energy.
  • the existing fossil fuel is used as a preheating auxiliary means. However, the amount of use is much smaller and it is extremely efficient.
  • the electronically active functional water was the above-mentioned FESL water, put into a crucible 1A arranged on the furnace 1, and determined the heating measurement conditions as follows.
  • Temperature measurement conditions a) 50 liters of water in the crucible b) Measure the weight of the water tank 6 and gas cylinder 18 before ignition, measure the weight of the water tank 6 and gas cylinder 18 after completion, and use the gas and water. C) Measure gas and water consumption with gas flow meter and water flow meter d) Temperature measurement location and location There are 4 actual temperature measurement locations: (water temperature) (furnace floor) (furnace) Upper part) (exhaust gas) e) Once the combustion experiment is performed, cool the furnace body for at least one day (24 hours). Perform the combustion experiment from a completely cooled state.
  • the electronically active functional water in the present invention is not only the above-mentioned FESL, but also high-purity water, and by performing physical treatment such as electrical treatment or vibration stirring, hydrogen and oxygen are ionized at any time. It is available as ionized activated water.
  • the dissociation temperature of “water” is 500 ° C. or less, and energy is utilized by utilizing the difference from the dissociation temperature of ordinary “water”.
  • “FESL” is water in which free electrons are confined in water, and it is said that 4.1 ⁇ 10 21 free electrons are usually present in 1 liter of 2000-fold water. Therefore, according to the current manufacturing method, it is possible to make electronic water containing as much as 2000 times water (water that can be diluted to 2000 times) 2 times 3 times.
  • the above-mentioned electronically active functional water exists in nature, and it is activated by minerals and electromagnetic waves while flowing between rocks in groundwater and hot spring water that springs from deep underground. There is water with high energy contained.
  • the artificially made FESL is commercially available and can be made separately according to the purpose of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Air Supply (AREA)
  • Spray-Type Burners (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 水素、酸素より成る水を水素イオンと酸素イオンに電離して気化水化させ、燃料を用いて燃焼させて環境に最適な燃料として得る電子活性機能水を利用する燃焼方法であって、水素イオン及び酸素イオンを含む電離活性状態の電子活性機能水を水燃料として燃焼室に臨ませた吐出ノズルより気化水化の気化蒸気として吐出させる水燃料吐出工程と、液体ないし気体の予熱補助燃料を、前記燃焼室に臨ませた吐出ノズルより吐出させて、空気を用いて着火する予熱補助工程とより成り、前記気化水化される水燃料を沸点以上の温度で加熱着火させて、以後、空気の供給を停止し、前記予熱補助工程の予熱補助燃料の供給を調節自在に継続させて成ることを特徴とする電子活性機能水を利用する燃焼方法。

Description

電子活性機能水を利用する燃焼方法及びその装置
 本発明は、水を構成する水素を分離燃焼する新規な電子活性機能水を利用する燃焼方法及びその装置に関する。
 一般に燃焼方法に用いられる燃料は、石炭,木炭などの固形燃料は別として、多くは石油などの液体燃料またはプロパン,天然ガス,LPGなどの気体燃料である。
 しかし乍ら、之等の燃料は燃焼時に多量のCOやNOを空気中に排出して、環境汚染を助長するため、燃焼方法の改善や他のエネルギー、例えば太陽熱,電気エネルギーなどの有効利用を促進するなどの国家的対策が地球規模で叫ばれている。
 他方、水を組成する水素を有効に分離抽出する方法も知られている(例えば、特許文献1及び2参照)。
特開2000-192272号公報 特許第2566248号公報
 上記特許文献1及び2はいずれも、活性水素水または水素ガスの発生方法であって、水自体を燃料として利用するものではない。
 一般に、水は通常4千数百度の温度に加熱しないと水素と酸素に分離しない程、結合が強固であることが知られている。
 しかし乍ら、電離処理された水では、水素イオンと酸素イオンが活性状態で存在し、水素と酸素との結合状態が緩み、通常の十分の一程度の低い温度で分離することが分っている。
 本発明者等は、数多くの実証実験を行った結果、水を構成する水素成分、酸素成分をイオン活性化状態で電離状態の電子活性機能水(例えば、FESLなど)を用い、「水」に温度を加え100℃以上に上昇させて気化水化(蒸気化)させ、それに火炎などのショックを与えると、瞬時に水素と酸素に分離して水素が燃焼し、再び水素と酸素が4300℃以上に加熱しないと分離しない強烈な結合の強い水分子に戻り、その時点で大量のエネルギーを放出するという現象を発見した。
 本発明は、叙上の点に着目して成されたもので、電離される活性水素を含む電子活性機能水を燃料として利用することによりCOの発生を激減し、地球環境の汚染化を完全に防止できるようにした画期的な電子活性機能水を利用する燃焼方法及びその環境を提供するものである。
 本発明は以下の構成を備えることにより達成される。
 (1)水素イオン及び酸素イオンを含む電離活性状態の電子活性機能水を水燃料として燃焼室に臨ませた吐出ノズルより気化水化の気化蒸気として吐出させる水燃料吐出工程と、液体ないし気体の予熱補助燃料を、前記燃焼室に臨ませた吐出ノズルより吐出させて、空気を用いて着火する予熱補助工程とより成り、前記気化水化される水燃料を沸点以上の温度で加熱着火させて、以後、空気の供給を停止し、前記予熱補助工程の予熱補助燃料の供給を調節自在に継続させて成ることを特徴とする電子活性機能水を利用する燃焼方法。
 (2)水燃料吐出工程には、水燃料を吐出ノズルより気化蒸気として吐出する際に、予め水燃料を加熱し、気化水化させた状態として加熱することを特徴とする前記(1)記載の電子活性機能水を利用する燃焼方法。
 (3)水素イオン及び酸素イオンを含む電離活性状態の電子活性機能水を水燃料として燃焼室に臨ませた吐出ノズルより気化水化の気化蒸気として吐出させる水燃料吐出手段と、液体ないし気体の予熱補助燃料を、前記燃焼室に臨ませた吐出ノズルより吐出させて、空気を用いて着火する予熱補助手段とより成り、前記気化水化される水燃料を沸点以上の温度で加熱着火させて、以後、空気の供給を停止し、前記予熱補助手段の予熱補助燃料の供給を調節自在に成ることを特徴とする電子活性機能水を利用する燃焼装置。
 (4)水燃料吐出手段は、水燃料を吐出ノズルより気化蒸気として吐出する際に、予め水燃料を加熱し、気化水化させた状態として加熱する気化水化加熱保温手段を設けて成ることを特徴とする前記(3)記載の電子活性機能水を利用する燃焼装置。
 (5)気化水化加熱保温手段は、ヒータで加熱されるコイル状の電子活性機能水の加熱管と、この加熱管と通ずるヒータを備えた水蒸気タンクとを備え、全体を断熱処理された筐体構造の水蒸気化装置Dとして形成して成ることを特徴とする前記(4)記載の電子活性機能水を利用する燃焼装置。
 (6)気化水化加熱保温手段は、予熱補助手段の吐出ノズルに捲装されるコイル状のパイプで構成される加熱管とこの加熱管と接続される加熱ヒータを備えた断熱処理された筐体構造の水蒸気タンクの水蒸気化装置Dxとして形成して成ることを特徴とする前記(4)記載の電子活性機能水を利用する燃焼装置。
 本発明によれば、電離活性化された水素イオン及び酸素イオンを有する電子活性機能水を水燃料とし、噴霧気化蒸気状の気化水化状態に吐出させてイオン化された水素及び酸素イオンを予熱補助する既存の化石燃料を用いて燃焼加熱することにより、水素イオンのガス化、すなわちH分子状態への変移が促進され、酸素ガスとの分離が生成され、その温度は100℃近傍を境界として活発となり着火発熱し、高温燃焼状態を得ることができる。
 一旦、高温燃焼状態が得られると、電子活性機能水や化石燃料の供給量をそれぞれ各別に大小好みに調節して燃焼状態の温度調節を可変して、水燃料として既存のあらゆる燃焼装置に適用して有効に機能させることができる。
 即ち、本発明における、従来の化石燃料は、補助燃料としてのみ作用させ、補助燃料として着火初期には、空気の供給による発火を必要とするが、主燃料の電子活性機能水への着火後、電子活性機能水内の酸素の供給のみで着火を継続でき、換言すれば、燃焼に必要な酸素は、空気中の酸素ではなく、電子活性機能水中の酸素が作用するものと認められ、したがって、専ら、電子活性機能水である「水」そのものが主燃料として働くので、環境汚染であるCO,COの発生を極力無くし、特に、NOの発生を皆無とし、所謂、理想の燃料として内燃,外燃などのあらゆる燃焼用途に広く活用できる。
電子活性機能水を利用した燃焼装置の一実施例を示す液体燃料用及び気体燃料用を併記するシステム構成図 2種類(a)(b)のノズル構成図の正面図 (a)は電子活性機能水のバブルチェンバー現象の写真、(b)は同上の拡大写真 電子活性機能水と燃料ガスの混燃焼状態を示す写真 水燃料吐出手段の前段の水燃料の気化水化加熱保温手段の水蒸気の気化水化過程の説明図 図5の他例の炉内に加熱管を施工した場合を示す説明図 図1における構成のうち、気体燃料を用いた場合の電子活性機能水の供給をユニット化した燃焼装置の他例を示すシステム構成図 図1の構成のうち、液体燃料を用いた場合の吐出ノズルに通ずる電子活性機能水と液体燃料との構成を含む要部の図で、(a)は部分図、(b)は吐出ノズルの拡大断面図 着火時より60分間後に至る間の坩堝内の水の温度をガスのみとガスと水との昇温状態を示す昇温グラフの比較図 ガスのみと、ガスと水との排気温度の60分間の排気温度の比較図 図7に示す気体燃料を用いた場合の実施例において、工業炉1の排出口に生ずる燃焼温度を経時的に示す温度グラフ
 1   工業炉
 1A  坩堝
 2,3,4,5  吐出ノズル
 6   電子活性機能水のタンク
 7,13,19  配管
 8   水流量計
 9   水圧送ポンプ
 10  手動開閉バルブ
 11  自動開閉バルブ(自動電磁弁)
 12  液体用燃料タンク
 14  油流量計
 15  油ギアポンプ
 16,17,21,22  バルブ
 18  ガス用燃料タンク
 20  ガス流量計
 23,24  バーナー基体
 25  導入部
 26  制御盤
 27,28  熱電対
 29,30,31  加熱器
 32  水蒸気タンク
 33  安全弁
 34  安全排気弁
 35,36  熱電対
 37  逆止弁
 38  導管
 39  ユニット
 40  燃料供給ライン
 41  空気供給ライン
 40a,41a  分岐管
 42  点火プラグ
 43  点火トランス
 44  パイロットバーナー
 45,46  バルブ
 47  可変バルブ
 48  流量計
 49  圧力計
 50  バルブ
 51  フレキシブルパイプ
 52  断熱遮蔽板
 53  基部
 54  気体の取入れ口
 55  予熱補助燃料の取入れ口
 56  ポンプ
 57  圧力調節弁
 58  圧力計
 59  液用ストレーナー
 A   予熱補助手段
 B   水燃料吐出手段
 C   蓄熱領域
 D,Dx  水蒸気化装置
 E   コントローラ
 F   加熱管
 G   燃焼室内
 P   吸入ポンプ
 以下に、本発明に係る電子活性機能水を利用した燃焼装置の一実施例を説明する。
 なお、実施例では予熱補助手段を液体燃料を用いる場合と気体燃料を用いる場合とを併記して示した。両燃料は併用でも各別でもその使用方法はいずれでも構わない。
 1は一般の燃焼室である処の工業炉を示し、図示のものに限らずその形状,構造は何等特定されない。2は、石油などの液体燃料を噴霧気化させた状態で吐出させる予熱補助手段Aの吐出ノズル、3は、同じく天然ガス,プロパンなどの気体燃料を吐出させる予熱補助手段Aの吐出ノズル、4,5は、電子活性機能水を水燃料として、前記吐出ノズル2または3と並設される水燃料吐出手段Bの吐出ノズルを示し、この吐出ノズル4,5に対して前記予熱補助手段Aの液体燃料用の吐出ノズル2は並行に配設したり、または前記予熱補助手段Aの気体燃料用のノズル3は、当該ノズル5を中心として外周に環状に配設してある(図2(a),(b)参照)。
 なお、前記工業炉1の内部には、燃焼ガス焔の先端近くに、多孔構造の蓄熱材料で形成した蓄熱領域Cを付設して水燃料の着火燃焼作用を有効に促進させる。
 6は、電離された水素イオン及び酸素イオンを有する電子活性機能水のタンク、7は前記タンク6より前記ノズル2と通ずる配管を示し、中間に水流量計8,水圧送ポンプ9を配設すると共に、手動開閉バルブ10,自動開閉バルブ(自動電磁弁)11などを介装するものである。
 12は化石燃料の石油オイルを収納充填した燃料タンク、13は前記タンク12より前記ノズル4と通ずる配管を示し、中間に油流量計14,油ギアポンプ15を配設すると共に、手動開閉バルブ16,自動開閉バルブ17などを介装するものである。
 18は化石燃料の天然ガス,LPGなどの気体燃料を充填した燃料タンク、19は前記タンク18より前記ノズル3と通ずる配管を示し、中間にガス流量計20、その他の必要な機器を介装すると共に、複数の自動開閉バルブ21や手動開閉バルブ22を介在させるものである。
 23,24は予熱補助手段Aが液体または気体とした場合の異なる構造を施したバーナー基体であって、前記した吐出ノズル2,3,4,5の導入部25が設けられ、前記配管7,13,19の端部を接続している。
 26は前記バーナー基体23または24と接続される液体燃料または気体燃料の予熱補助手段Aを制御する制御盤を示し、併せて工業炉1の燃焼状態の温度を計測する熱電対27,28と接続させてある。
 叙上の構成の下に、予め予熱補助手段Aの液体燃料または気体燃料を特定して着火燃焼させる。次第に温度を工業炉1内で上昇させて100℃近傍に達した時点で、電子活性機能水をタンク6より工業炉1内に水圧送ポンプ9により、ノズル2または3より噴霧状態で気化水化状態の電子活性機能水を吐出させると電離化された水素イオンは直ちに水素ガスとなり、これと同時に酸素イオンも気化して酸素ガスを発生し、両ガスの混合爆発状態での燃焼が開始され、燃焼室である工業炉1内の温度は急激に上昇する。
 なお、電子活性機能水の気化水化気体を吐出ノズル2または3より吐出させた後に、予熱補助手段Aの燃料を着火させて、吐出ノズル4または5より吐出させて電子活性機能水に着火させる場合もあるが、この場合だと着火温度が500℃~600℃ときわめて高温となる。
 電子活性機能水の燃焼作用が開始した後、予熱補助手段Aの液体燃料または気化燃料の供給を配管13,19に配設に配設したバルブ16,17またはバルブ21,22の開度を制御盤26により、または手動操作により絞り、供給量を減少させ、電子活性機能水の供給を増加させることにより、水素ガスと酸素ガスが混合燃焼を続けて、工業炉1内の温度を高温状態での燃焼を継続させることも可能である。
 なお、基本的には、予熱補助手段Aの初期燃焼に必要な空気を送給するブロアのような吸入ポンプよりの空気、即ち酸素は、供給停止するためバルブを閉じることにより供給は停止する。これにより、工業炉1内での予熱補助手段Aの燃料は、電気活性機能水の解離された酸素分が、燃焼の継続に作用するものと認められる。
 つぎに、電子活性機能水の水蒸気化、即ち気化水化を安定に供給させるための具体的な構成の一例を図5に示す。
 電子活性機能水のタンク6より圧送される水燃料は、電磁弁11に続いて逆止弁37を介して図示の水蒸気化装置Dを介して、炉1内のノズル2または3に導管38を通って供給される。ここで前記水蒸気化装置Dは以下の構成を備える。
 29は加熱器、30は前記逆止弁37と通ずるコイル状の電子活性機能水加熱管、31は前記加熱管30と通ずる水蒸気タンク32を加熱する加熱器、33は安全弁、34は前記水蒸気タンク32の安全排気弁、35,36は水蒸気化装置Dの前後に取り付けられる熱電対を示し、コントローラEにより制御させるようになっている。
 上述の水蒸気化装置Dは、断熱処理された筐体で形成され、水燃料を加熱器29で有効に加熱し、水蒸気化し、水素イオン分子,酸素イオン分子を活性化し、つぎの水蒸気タンク32内で一定の水蒸気圧の100℃の温度状態を維持でき、この活性化状態の水蒸気、即ち気化水化気体を保持させて導管38を通り、前記ノズル2または3に有効に供給される。
 すなわち、水圧送ポンプ9により圧送された電子活性機能水は、電磁弁11を開いた後、逆止弁37を通り、電子活性機能水加熱管30に送り込まれ、加熱器29により水蒸気化され、加熱器31により水蒸気タンク32(サージ用)で加熱保温された後、導管38を経て、水燃料燃焼用配管のバーナー基体23または24の吐出ノズル2または3へ送られる。
 加熱管30,水蒸気タンク32,加熱器29,31は水蒸気化装置Dと称する構成としてユニット化し、熱電対35,36、安全弁33などを組み合わせ、コントローラEにより制御する。
 なお、水蒸気化装置D内の加熱器29,31の熱源は、安全面より電気加熱の採用が有力であるが、炉1内の熱及びその排熱利用の加熱管F或いは、燃焼室G内での循環方式の加熱管Fも採用出来る。
 即ち、図6によれば、炉1の燃焼室Gのバーナー基体23または24の先端前方に加熱用のパイプ、即ち加熱管Fを配設し、電子活性機能水を流通させて加熱し、水蒸気を発生させ、気化水化させると共に、前記水蒸気化装置Dと実質同等の構成の断熱処理された水蒸気タンク32に導き、一定の水蒸気圧の100℃~130℃の温度状態を維持して、この活性化状態の気化水化気体として導管38を通って、前記ノズル2または3に供給される。
 すなわち、前記水蒸気化装置Dと異なり、ヒータなどの加熱器29で加熱される加熱管30を欠除したコンパクトな水蒸気化装置Dxとした構造でも十分対応可能とするものである。
 なお、さらに、より小型化できる場合、図6における加熱器31を省いて、水蒸気タンク32のみとして形成することもできる(図示せず)。
 つぎに、図7の他の実施例について説明する。
 図面について、39は、図1に示す電子活性機能水のタンク6を備えて図6の加熱管Fに主燃料として供給できるユニット、40は、図1に示す気体燃料のガス用燃料タンク18の配管19を含む燃料供給ライン、41は、図1に示すブロアに相当する吸入ポンプPを含む予熱補助手段Aの燃料燃焼に必要な空気を供給する空気供給ラインを示している。
 ここで、前記燃料供給ライン40および空気供給ライン41には、それぞれ分岐管40a,41aが設けられ、炉1での予熱補助手段Aである気体燃料タンク18よりの気体燃料を着火燃焼させるためのパイロット着火システムを構成しており、点火プラグ42と点火トランス43を備え、空気と気体燃料との混合ガスをパイロットバーナー44により有効に着火させて、炉1へ直接供給される両ライン40,41よりの混合ガスを瞬時に着火させることができる。
 炉1内での両ライン40,41より供給される空気と燃料ガスとの燃焼が行われた後に、両分岐管40a,41aのバルブ45,46は、手動または自動で閉止し、専ら両ライン40,41よりの空気と燃料ガスによる燃焼作用が行われる。
 ついで、炉1内の電子活性機能水の加熱管Fや水蒸気化装置D,Dxで、解離状態の加熱活性蒸気が炉1内に吐出されるため、予め加熱燃焼状況の炉1内で電離解離状態の水内の酸素分子は、水素分子と遊離状態をより活発化し、次第に炉1内の温度を上昇させて行く。
 そして、電子活性機能水自らが燃焼作用を進行した時点で空気供給ライン41の可変バルブ47を閉じることにより、急激に炉1内の燃焼温度が上昇することが認められた。
 この燃焼状態は、明らかに電子活性機能水のみの燃焼であり、補助燃料として気体燃料は、単に協同しているに過ぎないと推察される。
 なお、図において、符号48はユニット39を構成する流量計、49は圧力計、50は燃料供給ライン40の流量を調節するバルブ、51は燃料供給ライン40,空気供給ライン41に介在させたフレキシブルパイプ、52は炉1の開口部の開口度を調節して燃焼温度を可変する断熱遮蔽板を示す。
 この断熱遮蔽板52の開口部の開度を1/3として炉1の温度を計測した処、図11に示すような急激な温度上昇を確認できた。気体燃料のみの場合と比較して温度の急激な上昇を認められた。
 つぎに、図8(a),(b)を参考にして石油,重油などの液体燃料を予熱補助燃料として用いる場合の他の実施例を説明する。
 なお、空気を吸入するシステム構成は、図1および図7に示す構成と同一であるので、その詳細は省く。
 併せて電子活性機能水の炉1への供給手段、並びに液体燃料の炉1への供給手段も図1および図7に示すものと実質同一であって、異なる処はないので説明の詳細は省く。
 図面について、53は、吐出ノズル2の基部で、電子活性機能水のガス化した気体の取入れ口54が、吐出ノズル3の吐出方向に向けて開口されている。55は予熱補助燃料の取入れ口で、前記取入れ口54の方向と直交して開口してある。
 叙上の構成において、電子活性機能水は十分加熱されて100℃以上になって、ポンプ56,圧力調節弁57および圧力計58で圧力計測しながら吐出ノズル2の加熱管Fで十分加熱され、水蒸気化装置D,Dxで気化高温状態となって吐出ノズル2の取入れ口54から吐出ノズル2に侵入し、併せて、液体燃料はこの吐出ノズル2の吐出方向と直交する液体燃料の配管13の取入れ口55より吐出ノズル2の基部に供給される。
 この場合、高温蒸気化された電子活性可能水の働きによって、液体燃料の取入れ口55は減圧作用を受け、一種のサイフォン作用により基部53内で、両気体が噴霧状態となって混合し、十分な発火,点火機能をもって吐出ノズル2より炉1内に吐出でき、瞬時にして燃焼して必要な燃焼温度を得ることができる。
 なお、液体燃料の場合の配管13の途中、液用ストレーナー59,圧力調整弁57,圧力計58を介在させることは勿論である。
 上述の構成に基づいて、以下に本発明に基づく燃焼方法を用いた実験例を示す。
 (1)水燃料としての電子活性機能水の入手
 本発明における水燃料としての電子活性機能水は、大量の自由電子エネルギーを持つ水で、HOの水素(H)と酸素(O)の結合が不安定で分離しやすくなっている水であって、通常の水と異なり、特に氷結時には図3の写真に示されるようにバブルチェンバー現象と呼ばれる放射状の氷結線が認められた。
 この電子活性機能水は、例えば、Free Electron Strange Liquid(FESL)と命名され、濃度により高濃度のものを原水として通常水と混合させて水燃料として使用できる。
 具体的には、原水1に対して水道水1000の割合で製造されたFESLを使用した。
 (2)電子活性機能水FESLを利用した水燃料における発熱量
  (a)FESL発熱量の計算
 水素の発熱量は28,800~34,000kcal/kgとする
 水の分子式はHO、分子量は18
 FESL1kg当りの水素量は1×2÷18=0.111kg
 したがってFESL中の水素燃焼による発熱量は、
 FESLの発熱量=(28,800~34,000)×0.111=3,200~3,800kcal/kg
  (b)FESLと灯油との同時燃焼(混焼)による発熱量
 FESL1リットルの発熱量=3,200~3,800kcal/リットル
 灯油1リットルの発熱量=8,800kcal/リットル
 FESL30%、灯油70%の割合で1リットル燃焼させた発熱量は、
(3,200~3,800)×0.3+8,800×0.7=7,120~7,300kcal/リットル
 FESL50%、灯油50%の割合で1リットル燃焼させた発熱量は、
(3,200~3,800)×0.5+8,800×0.5=6,000~6,300kcal/リットル
  (c)FESLと灯油の同時燃焼(混焼)による発熱量表
Figure JPOXMLDOC01-appb-T000001
 計算上約20%以上省エネとなるが、実質CO、NOの削減を考慮すると30%以上の省エネとなる。
 (3)炭酸ガスCO,窒素酸化物NOの削減
 FESLと灯油との同時燃焼において、FESLと灯油との配合量を変えて燃焼実験を行った場合のデータを表2に示す。5秒間隔測定データの平均値であり、燃焼バーナーは最大30リットル/H。
 なお、NOxは200以下、COは100以下が基準であるので、いずれの場合もNOx、COは大幅に削減できた。
 さらに、燃焼実験は、マイナスイオンの大量発生を確認できた。
Figure JPOXMLDOC01-appb-T000002
 (4)燃料費の大幅削減
 FESLと油同時燃焼時の配合率と燃焼費全体の推移を表3に示す。表中、30%価格とは、例えば灯油100円/リットルの場合、FESLの価格を30円/リットルとすることであり、明らかに燃料費を軽減できることが分る。
 その他、輸送時、灯油10トンを輸送する金額と、宅配便でFESL1リットルを輸送する場合とは、想像以上の価格相違が見出される。
Figure JPOXMLDOC01-appb-T000003
 以上の実験例からも分るように、化石燃料を燃焼することによる弊害として、地球温暖化が叫ばれている今日、地球上に無限に存在する水(HO)を水素と酸素に分離させて有効に燃焼させる燃料として活用することにより地球環境を改善できる。
 燃料とすべき電子活性機能水は、水中の水素イオン及び酸素イオンを活性化状態に保持して、分離結合させて燃焼エネルギーを得るようにしており、予熱補助手段として、既存の化石燃料を用いているが、その使用量も格段と少なくてすみ、きわめて効率的である。
 既存の燃焼設備に改良を加えるだけで利用できるので、実施化も簡単であるなど、画期的な燃焼方法及び装置として提供できる。
 以上の実施例の構成に基づいて、本発明に係る電子活性機能水の燃焼機能を明確にするため以下の実験を行った。
 電子活性機能水は、前記したFESLの水を用い、炉1上に配設される坩堝1A内に一定量入れ、加熱測定条件をつぎの通り定めて行った。
 (1)温度測定条件
  a)坩堝に水50リットル
  b)点火前に水タンク6、ガスボンベ18の重量を測定、終了後も水タンク6、ガスボンベ18の重量を測定し、ガス、水の使用量を確認する
  c)ガス流量計、水流量計でもガス、水の使用量を測定する
  d)温度の測定箇所及び位置
  実際の温度測定箇所は、4箇所で、(水温)(炉床)(炉内上部)(排ガス)
  e)一度燃焼実験を行った後は炉体を冷却する為、1日(24時間)以上冷却させる
  完全に冷え切った状態から燃焼実験を行う
 (2)内容
  a)ガス(LPG)のみで燃焼させる(以下、ガスのみという。)1時間
  b)ガスと電子活性機能水で燃焼させる(以下、ガスと水という。)1時間
 以上の条件の結果は、図7に示す対比グラフで分るように、LPGガス燃料を用いた場合の1時間後の坩堝1A内の水温は69.2℃しか上昇しなかったのに対し、ガスと水の燃料の場合の1時間の温度は93.4℃と著しい温度上昇が確認された。
 この結果からガス燃料の効率アップではなく、明らかに水燃料の働きが作用し30%以上のエネルギーの増加が確認された。
 なお、表4,表5及び図8にデータの詳細を示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 さらに、本発明における電子活性機能水は、前述したFESLだけでなく、純度の高い水を用い、電気的処理或いは振動攪拌などの物理的処理を行うなどにより、随時、水素,酸素のイオン化されて電離状態の活性水として入手可能である。
 要するに、以上の本発明は以下の技術内容に集約して説明できる。
 普通の水は電気分解で簡単に水素を取り出すことができるが、水中に電極を入れないで、その代わり電子を多量に含有している「FESL」を普通の「水」に投入することにより、水の分子の状態が電気分解と似たような現象を起こさせ、一般には普通の「水」の分子は4300℃以上の温度を加えないと水素と酸素とに解離しない強烈な結合に緩みを生じさせ、常に不安定な状態とすると共に、その上、電子を含んでいるその「水」に温度を加え、沸点の100℃以上に上昇させて気化水化(蒸気化)し、それに火災,温度等のショックを与えると、瞬時に水素と酸素が解離して水素が燃焼し、再び水素と酸素が4300℃以上に加熱しないと分離しない強烈な結合の強い水分子に戻る。その時点で炭素が酸素と燃焼結合して大量のエネルギーを出すのと同様に、水素が酸素と燃焼結合して大量のエネルギーを放出する。燃焼炎は高温で燃焼速度は速いので、普通の化石燃料の燃焼炎と異なるので、使用目的により燃焼装置の構造等を変更する必要がある。
 この発明により、水と化石燃料のみにて、空気を使わずに燃焼することが可能となり、最終的には排出ガスの殆ど出ない燃焼も可能となる。また、これを普通の燃焼の他、内燃機、特にタービン等にも広く利用することもできる。
 本発明によれば、「FESL」を使用することにより、「水」の解離温度が500℃以下になることに注目して、普通の「水」の解離温度との差を利用してエネルギーを取り出すものであり、また「FESL」は、水中に自由電子を閉じ込めた水のことであり、通常2000倍水1リットル中に4.1×1021個の自由電子が存在しているとされており、現在の製法によると2000倍水(2000倍に希釈可能水)の2倍3倍……と多く含んでいる電子水を作ることができる。
 上記電子活性機能水は、自然界にも存在しており、地下深くから湧き出る地下水,温泉水にも岩盤の間を流れながら、鉱物と電磁波により活性化され、含有量はまちまちであるが、電子を含んだエネルギーの高い水が存在している。
 これを人為的に作ったものが市販されている「FESL」であり、使用目的によりそれぞれ作り分けることが可能である。

Claims (6)

  1.  水素イオン及び酸素イオンを含む電離活性状態の電子活性機能水を水燃料として燃焼室に臨ませた吐出ノズルより気化水化の気化蒸気として吐出させる水燃料吐出工程と、液体ないし気体の予熱補助燃料を、前記燃焼室に臨ませた吐出ノズルより吐出させて、空気を用いて着火する予熱補助工程とより成り、前記気化水化される水燃料を沸点以上の温度で加熱着火させて、以後、空気の供給を停止し、前記予熱補助工程の予熱補助燃料の供給を調節自在に継続させて成ることを特徴とする電子活性機能水を利用する燃焼方法。
  2.  水燃料吐出工程には、水燃料を吐出ノズルより気化蒸気として吐出する際に、予め水燃料を加熱し、気化水化させた状態として加熱することを特徴とする請求項1記載の電子活性機能水を利用する燃焼方法。
  3.  水素イオン及び酸素イオンを含む電離活性状態の電子活性機能水を水燃料として燃焼室に臨ませた吐出ノズルより気化水化の気化蒸気として吐出させる水燃料吐出手段と、液体ないし気体の予熱補助燃料を、前記燃焼室に臨ませた吐出ノズルより吐出させて、空気を用いて着火する予熱補助手段とより成り、前記気化水化される水燃料を沸点以上の温度で加熱着火させて、以後、空気の供給を停止し、前記予熱補助手段の予熱補助燃料の供給を調節自在に成ることを特徴とする電子活性機能水を利用する燃焼装置。
  4.  水燃料吐出手段は、水燃料を吐出ノズルより気化蒸気として吐出する際に、予め水燃料を加熱し、気化水化させた状態として加熱する気化水化加熱保温手段を設けて成ることを特徴とする請求項3記載の電子活性機能水を利用する燃焼装置。
  5.  気化水化加熱保温手段は、ヒータで加熱されるコイル状の電子活性機能水の加熱管と、この加熱管と通ずるヒータを備えた水蒸気タンクとを備え、全体を断熱処理された筐体構造の水蒸気化装置Dとして形成して成ることを特徴とする請求項4記載の電子活性機能水を利用する燃焼装置。
  6.  気化水化加熱保温手段は、予熱補助手段の吐出ノズルに捲装されるコイル状のパイプで構成される加熱管とこの加熱管と接続される加熱ヒータを備えた断熱処理された筐体構造の水蒸気タンクの水蒸気化装置Dxとして形成して成ることを特徴とする請求項4記載の電子活性機能水を利用する燃焼装置。
PCT/JP2010/055877 2009-05-19 2010-03-31 電子活性機能水を利用する燃焼方法及びその装置 WO2010134385A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009120978 2009-05-19
JP2009-120978 2009-05-19
JP2009196379 2009-08-27
JP2009-196379 2009-08-27
JP2010-023821 2010-02-05
JP2010023821A JP2011069600A (ja) 2009-05-19 2010-02-05 電子活性機能水を利用する燃焼方法及びその装置

Publications (1)

Publication Number Publication Date
WO2010134385A1 true WO2010134385A1 (ja) 2010-11-25

Family

ID=43126074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055877 WO2010134385A1 (ja) 2009-05-19 2010-03-31 電子活性機能水を利用する燃焼方法及びその装置

Country Status (2)

Country Link
JP (1) JP2011069600A (ja)
WO (1) WO2010134385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796698B (zh) * 2019-05-28 2023-03-21 德田美幸 反應器、等離子氣體、容器、發電機組以及反應方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110131A (ja) * 1974-02-08 1975-08-29
JPS55141746U (ja) * 1979-11-24 1980-10-09
JPS59153011A (ja) * 1983-02-18 1984-08-31 Orion Mach Co Ltd 液体燃料燃焼装置
JPS61250408A (ja) * 1985-04-28 1986-11-07 Kazunori Fujigami 気化水の燃焼法並びにその装置
JP2003340437A (ja) * 2002-05-23 2003-12-02 Toshiyasu Sato 水の燃焼方法
JP2005069568A (ja) * 2003-08-25 2005-03-17 Ryokichi Tamaoki 水を副燃料とする構成のボイラーの燃焼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110131A (ja) * 1974-02-08 1975-08-29
JPS55141746U (ja) * 1979-11-24 1980-10-09
JPS59153011A (ja) * 1983-02-18 1984-08-31 Orion Mach Co Ltd 液体燃料燃焼装置
JPS61250408A (ja) * 1985-04-28 1986-11-07 Kazunori Fujigami 気化水の燃焼法並びにその装置
JP2003340437A (ja) * 2002-05-23 2003-12-02 Toshiyasu Sato 水の燃焼方法
JP2005069568A (ja) * 2003-08-25 2005-03-17 Ryokichi Tamaoki 水を副燃料とする構成のボイラーの燃焼方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796698B (zh) * 2019-05-28 2023-03-21 德田美幸 反應器、等離子氣體、容器、發電機組以及反應方法

Also Published As

Publication number Publication date
JP2011069600A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
US8893468B2 (en) Processing fuel and water
EP2246618A2 (en) Combustion apparatus for fan heaters and boilers
US6012915A (en) Method of combusting a water/fossil fuel mixed emulsion and combustion apparatus
JP2023060382A (ja) ガスタービンの燃焼器
CN102588963B (zh) 醇基燃料二次汽化节能燃烧装置
KR101998193B1 (ko) 수소 함유 가스 연료를 생성하기 위한 다단계 방법 및 열 가스 발전기 플랜트
WO2012154070A1 (en) Process for achieving total combustion with the help of injectors and injectors
JP2018031067A (ja) 「加圧された水蒸気とhhoガスを含む混合気体」の発生装置とその利用方法
US20070169759A1 (en) Vapor fuel combustion system
WO2010134385A1 (ja) 電子活性機能水を利用する燃焼方法及びその装置
KR100725329B1 (ko) 과열증기를 이용한 연료연소장치의 예열 겸용 점화장치
KR101467542B1 (ko) 브라운 가스를 이용한 혼합 연소 시스템 및 혼합 연소 방법
JP2012237541A (ja) 酸水素ガス等を用いた燃焼装置。
UA150817U (uk) Спосіб спалювання рідини разом із паливом
JP3127046U (ja) プラズマガスバーナー
JPH1121572A (ja) 化石燃料の燃焼方法及び燃焼装置
CN206282932U (zh) 一种火焰燃料电池的液体燃料空气比控制装置
KR101763332B1 (ko) 액체연료 버너
KR100886568B1 (ko) 액화산소를 열원으로 하는 완전연소식 고효율 보일러의 연소방법
KR101032832B1 (ko) 액화산소를 열원으로 하는 완전연소식 고효율 열풍기의 연소방법
CN111086973B (zh) 一种制氢工艺及其应用
CN220911444U (zh) 甲醇掺氢燃烧系统
KR102531566B1 (ko) 가스 에멜전 연소장치
CN205714493U (zh) 一种柴油机锅炉混合动力系统
KR20100119928A (ko) 순수산소를 이용한 고효율 보일러의 순수산소 연료 혼합가스 연소방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777620

Country of ref document: EP

Kind code of ref document: A1