WO2010134376A1 - Image pickup lens, image pickup device, and portable terminal - Google Patents

Image pickup lens, image pickup device, and portable terminal Download PDF

Info

Publication number
WO2010134376A1
WO2010134376A1 PCT/JP2010/054208 JP2010054208W WO2010134376A1 WO 2010134376 A1 WO2010134376 A1 WO 2010134376A1 JP 2010054208 W JP2010054208 W JP 2010054208W WO 2010134376 A1 WO2010134376 A1 WO 2010134376A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
substrate
image
block
Prior art date
Application number
PCT/JP2010/054208
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 山田
泰成 福田
大輔 棚橋
進 山口
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011514358A priority Critical patent/JPWO2010134376A1/en
Publication of WO2010134376A1 publication Critical patent/WO2010134376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to an imaging lens, an imaging device, and a portable terminal. More specifically, for example, including a wafer-scale lens suitable for mass production, an image sensor (for example, a solid-state image sensor such as a charge coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor).
  • CMOS complementary metal-oxide semiconductor
  • the present invention relates to an imaging device having an imaging lens that forms an optical image on a light receiving surface, an imaging device that captures an optical image formed by the imaging lens and the imaging lens, and a mobile terminal equipped with the imaging device.
  • Compact and thin imaging devices are now installed in portable terminals (for example, mobile phones and PDAs (Personal Digital Assistants), etc.) that are compact and thin electronic devices. Is possible not only for audio information but also for image information. 2. Description of the Related Art An increase in the number of pixels and functionality of an image sensor (for example, a solid-state image sensor such as a CCD image sensor) mounted on an image pickup apparatus is rapidly progressing. In order to make full use of the performance, an imaging lens for forming a subject image on the imaging element is also required to have high optical performance. In addition, with the downsizing of portable terminals, the downsizing of imaging lenses has been further promoted.
  • image sensor for example, a solid-state image sensor such as a CCD image sensor
  • ⁇ Plastic lenses suitable for mass production are used for imaging lenses to reduce costs. Since the plastic lens has good processability, it is easy to form an aspherical surface. Therefore, the use of an aspherical shape can meet the demand for higher performance. From such a viewpoint, an imaging lens including a plastic lens is usually used for an imaging device with a built-in portable terminal. Generally known as such an imaging lens are an imaging lens having three plastic lenses, a three-lens imaging lens including one glass lens and two plastic lenses. However, it is difficult to achieve both compactness of these optical systems and mass productivity required for portable terminals.
  • a large number of lens parts are simultaneously molded and cured on a parallel plate several inch wafer-like lens substrate with a mold, and then the lens substrate is passed through a lattice-like spacer member.
  • Development of a technique for mass-producing lens modules at low cost by sealing each other and cutting the integrated lens substrate and spacer member with a lattice frame of the spacer member is in progress.
  • a lens manufactured by such a manufacturing method is called a “wafer level lens”, and a lens module is called a “wafer level lens module”.
  • Patent Documents 1 and 2 propose imaging lenses that have an IR cut filter function in a lens element or the like and do not have an IR cut filter substrate.
  • Patent Documents 1 and 2 propose an imaging lens in which an IR cut coat is provided at the boundary between a lens substrate and a lens portion in a wafer level lens.
  • Patent Document 1 proposes an imaging lens using an IR absorbing glass as a lens substrate of a wafer level lens.
  • Patent Documents 1 and 2 if an IR cut coat is provided at the boundary between optical materials, the incident angle dependency of the wavelength characteristics increases, so that uniform IR cut characteristics can be obtained over the entire screen. It becomes difficult. In order to suppress changes in wavelength characteristics that strongly depend on the incident angle, a large number of coating layers are required, which causes an increase in cost. Further, as proposed in Patent Document 1, when an IR absorbing glass is used for a lens substrate, a sharp absorption characteristic cannot be obtained and it becomes difficult to reproduce the color tone of an object. It is also known that the filter substrate is omitted by providing an IR cut coat on the glass lens surface, but coating is performed at a low temperature on a lens part made of resin such as a wafer level lens. Therefore, it is difficult to realize sharp wavelength characteristics.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a thin and compact imaging lens having a high IR cut filter function, an imaging device including the imaging lens, and a portable terminal. .
  • the imaging lens of the first invention is formed of a material different from the lens substrate on at least one of a parallel plate lens substrate and an object side surface and an image side surface of the lens substrate,
  • An imaging lens including at least two lens blocks each including a lens unit having positive or negative power, wherein at least one of the lens blocks has a lens unit only on one surface of a lens substrate of the lens block. And having an IR cut filter film on the other surface.
  • An imaging lens according to a second aspect of the present invention is the imaging lens according to the first aspect, wherein the lens block is disposed opposite to the lens block having the IR cut filter film and adjacent to the IR cut filter film with an air gap.
  • One surface of the lens substrate facing the IR cut filter film is not provided with a lens portion, or a lens portion having a weaker power than the lens portion provided on the other surface is provided. It is characterized by being.
  • the imaging lens of a third invention is characterized in that, in the first invention, the imaging lens has a lens portion on the image surface side of the lens substrate of the lens block closest to the image surface side.
  • An imaging lens of a fourth invention is characterized in that, in any one of the first to third inventions, the following conditional expression is satisfied. 0.08 ⁇ BF / DI ⁇ 0.16 However, BF: Back focus amount, DI: Diameter of the image circle, It is.
  • the imaging lens according to a fifth aspect of the present invention is the imaging lens according to any one of the first to fourth aspects, wherein the lens block is located between the most image side lens block and the lens block adjacent to the object side of the lens block.
  • An IR cut filter film is provided on at least one optical surface constituting the air gap.
  • an air interval with respect to the lens blocks located adjacent to each other is formed outside the effective diameter of the lens portion of the lens block.
  • the spacer portion is adjusted.
  • the image pickup lens of a seventh invention is characterized in that, in any one of the first to sixth inventions, the lens substrate is made of a glass material.
  • the imaging lens according to an eighth aspect of the present invention is the imaging lens according to any one of the first to seventh aspects, wherein the lens substrates are sealed together via a lattice-shaped spacer member, the lens substrate integrated with the lens substrate,
  • the lens block is manufactured by a manufacturing method including a step of cutting a spacer member with a lattice frame of the spacer member.
  • An image pickup apparatus includes an image pickup lens according to any one of the first to eighth aspects of the invention, and an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal. And.
  • a mobile terminal includes the imaging device according to the ninth aspect.
  • At least one lens block is configured to have a lens portion only on one surface of the lens substrate and an IR cut filter film on the other surface of the lens substrate. It is possible to obtain a uniform IR cut characteristic on the entire screen due to the sharp wavelength characteristic in which the incidence angle dependency is suppressed while achieving a thin and compact size. Therefore, it is possible to realize a thin and compact imaging lens having a high IR cut filter function, an imaging device including the imaging lens, and a portable terminal. For example, the above-described effect can be realized at low cost by adopting the above-described configuration in an imaging lens composed of a wafer level lens capable of mass production.
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a manufacturing process of an imaging lens.
  • the optical block diagram which shows embodiment of the type which has a spacer function outside the effective diameter of a lens part.
  • the graph which shows the incident angle dependence of the transmittance
  • the imaging lens according to the present invention includes at least two lens blocks.
  • the “lens block” refers to an optical element that includes a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power.
  • the lens substrate and the lens portion assumed here are different in material.
  • IR cut filter film hereinafter also referred to as “IR cut coat”
  • the lens portion and the IR cut filter film cancel out the substrate distortion. be able to.
  • the thickness of the lens substrate can be made thinner than the filter plate used only for the purpose of the IR cut filter function, it is possible to reduce the thickness of the entire imaging lens.
  • the lens block has an IR cut filter function, it is not necessary to separately install an IR cut filter plate, and as a result, it is possible to reduce the thickness, the size and the cost.
  • the IR cut coat can be formed at a high temperature. Since the selection range of the material is wide, the wavelength characteristics can be improved.
  • the configuration in which the IR cut coat is applied to the boundary surface between the air and the lens substrate has a sharp wavelength in which the dependence on the incident angle is suppressed compared to the configuration in which the IR cut coat is applied to the boundary surface between the lens portion and the lens substrate. Due to the characteristics (that is, the wavelength characteristics change due to the change in the incident angle of the light beam on the IR cut filter film is small and sharp wavelength characteristics), it is possible to obtain a uniform IR cut characteristic on the entire screen.
  • a thin and compact imaging lens having a high IR cut filter function can be realized.
  • an imaging lens composed of a wafer level lens capable of mass production it is possible to achieve both a reduction in thickness and size and improvement in imaging performance at a low cost.
  • the graph of FIG. 8 shows the incident angle dependency of the transmittance characteristic of the IR cut coat.
  • the graph of FIG. 8 shows a case where a general IR cut coat is arranged at the boundary between air and a lens substrate (refractive index 1.52) (hereinafter referred to as “AL configuration”. ) And when sandwiched between two lens substrates (refractive index 1.52) (hereinafter referred to as “LL configuration”.
  • the transmittance characteristic is indicated by a broken line).
  • Simulation results of transmittance characteristics change when the light incident angle to the IR cut coat is changed to 0 °, 15 °, 30 ° (AL (0), AL (15), AL (30 ), LL (0), LL (15), LL (30):
  • the numbers in parentheses indicate the light incident angle (unit: °).
  • the IR cut coat has the same film configuration in the AL configuration and the LL configuration.
  • the characteristic variation ⁇ AL of the AL configuration is smaller than the characteristic variation ⁇ L-L of the LL configuration. Therefore, the AL configuration in which the IR cut coat is formed on the boundary surface between the air and the lens substrate can realize the IR cut filter function with the same number of coat layers and less change in transmittance characteristics due to the incident angle. .
  • the characteristic configuration described above it is possible to realize a thin and compact imaging lens having an high IR cut filter function and suitable for mass production at a low cost, and an imaging apparatus including the imaging lens. And if an imaging device provided with the imaging lens is used for digital equipment, such as a portable terminal, it can contribute to the compactness, cost reduction, high performance, etc.
  • digital equipment such as a portable terminal
  • the conditions for obtaining such effects in a well-balanced manner and achieving further improvements in optical performance, shortening the overall length, improving productivity, and the like will be described below.
  • the lens block is arranged so as to be adjacent to the lens block having the IR cut filter film with an air gap from the IR cut filter film, and on the lens block on the surface of the lens substrate on the IR cut filter film side. It is desirable that the lens unit is not provided or a lens unit having a weaker power than the lens unit provided on the other surface of the lens substrate is provided.
  • the two lens blocks located adjacent to each other in this way have the same power arrangement as that obtained by dividing a lens block having lens portions formed on both surfaces of the lens substrate into two by the lens substrate. Therefore, weakening the power of the opposing surface with respect to the IR cut coat provided on the other lens block makes it possible to absorb variations in the thickness of the lens substrate by adjusting the air spacing between the lens blocks. To do.
  • the adjustment procedure at the time of module assembly can be reduced, leading to cost reduction.
  • the power of the opposing lens part is large, even if an attempt is made to adjust the air gap between the substrates in order to correct the substrate thickness, the difference in the image plane position variation between the angles of view is large, and the image plane position can be adjusted over the entire screen. It is difficult to correct.
  • the power of the opposing lens portion is weakened with respect to the IR cut coat provided on the other lens block, the aberration performance of the entire imaging lens is controlled by adjusting the air gap between the lens blocks. (For example, correcting curvature of field or the like). As a result, it is possible to relax the error sensitivity of the surface shape of the lens portion, and this is also effective in reducing costs.
  • the shape of the surface facing the IR cut coat surface across the air gap preferably satisfies the following conditional expression (1). 0 ⁇ PB / DB ⁇ 0.04 (1)
  • PB Maximum height difference of the surface in the optical axis direction within the effective area of the surface facing the IR cut coat surface across the air interval
  • DB The effective radius lower limit value of the surface facing the IR cut coat surface across the air interval is , PB is 0, that is, the opposing surfaces are flat.
  • conditional expression (2) When the conditional expression (2) is satisfied, the height of the imaging lens can be reduced. If the lower limit of conditional expression (2) is not reached, the back focus amount becomes relatively small with respect to the image sensor size, so that the incident angle on the imaging surface of a light beam having a large angle of view becomes large, which causes shading. On the other hand, if the upper limit of conditional expression (2) is exceeded, the back focus amount becomes relatively large, and the proportion of the back focus increases when the height of the imaging lens is reduced. For this reason, it becomes difficult to achieve both low profile and imaging performance.
  • conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2).
  • an IR cut filter film on at least one optical surface that constitutes an air space between the lens block closest to the image plane and the lens block located adjacent to the object side.
  • the angle formed between the principal ray and the optical axis at each angle of view is smaller than the others, so if an IR cut filter film is provided on the optical surface, the wavelength of the IR cut filter accompanying the change in the incident angle A change in characteristics can be suppressed.
  • the difference in aberration fluctuation at each angle of view is small when adjusting the air gap, which is advantageous in terms of imaging performance control by adjusting the air gap.
  • all lens substrates are parallel plates. Since all lens substrates are parallel plates, processing is easy and all lens substrates have no power at the interface with the lens part, reducing the influence of surface accuracy on the focal position on the image plane. Can do. Further, it is desirable that the lens substrates are all parallel flat plates having the same thickness. By making the lens substrate of each lens block have the same thickness, the glass substrate can be polished under the same conditions. Therefore, mass production at low cost becomes possible.
  • the lens substrate is preferably made of a glass material. Since glass has a higher softening temperature than resin, if the lens substrate is made of glass, it does not easily change even if reflow treatment is performed, and the cost can be reduced. More preferably, the lens substrate is made of glass having a high softening temperature.
  • the lens part is preferably made of a resin material. As a material used for the lens portion, a resin material has better processability than a glass material and can be reduced in cost.
  • the resin material is an energy curable resin material.
  • the energy curable resin material here refers to a resin material that is cured by heat, a resin material that is cured by light, and the like, and various means for applying energy such as heat and light can be used for the curing.
  • UV curable resin material it is desirable to use a UV curable resin material as the energy curable resin material. If a UV curable resin material is used, mass productivity can be improved by shortening the curing time. In recent years, curable resin materials with excellent heat resistance have been developed. By using heat-resistant resins, camera modules that can withstand reflow processing can be used, and a more inexpensive camera module can be provided. Can do.
  • the reflow treatment here refers to printing solder paste on a printed circuit board (circuit board), placing a component (camera module) on it, applying heat to melt the solder, and external sensor terminals and circuit board This is a process of automatic welding.
  • an athermal resin (a resin material having a small refractive index change due to a temperature change) as an optical material constituting the lens portion.
  • the resin material has a large refractive index change at the time of temperature change, so that when the ambient temperature changes, there is a problem that the characteristics fluctuate due to the influence.
  • the influence of temperature change can be reduced by mixing inorganic fine particles in a resin material.
  • the size of the fine particles is smaller than the wavelength of the transmitted light beam. By doing so, scattering can be substantially prevented from occurring.
  • the refractive index of the resin material decreases as the temperature increases
  • the refractive index of the inorganic particles increases as the temperature increases.
  • a resin material with extremely low temperature dependency of the refractive index can be obtained.
  • a resin material in which such inorganic particles are dispersed as the material of the lens portion it is possible to suppress the characteristic fluctuation when the temperature changes.
  • the change A due to the temperature of the refractive index is expressed by the following equation (FA) by differentiating the refractive index n with respect to the temperature t based on the Lorentz-Lorentz equation.
  • the contribution of the second term is generally smaller than that of the first term in the formula (FA) and can be almost ignored.
  • the linear expansion coefficient ⁇ is 7 ⁇ 10 ⁇ 5
  • A ⁇ 1.2 ⁇ 10 ⁇ 4 [/ ° C.] It almost agrees with the value.
  • the absolute value can be suppressed to less than 6 ⁇ 10 ⁇ 5 [/ ° C.].
  • the imaging lens according to the present invention is suitable for use in a digital device with an image input function such as a portable terminal, and by combining this with an imaging device or the like, an image of a subject is optically captured as an electrical signal.
  • An imaging apparatus that outputs the image can be configured.
  • the imaging device is an optical device that constitutes the main component of a camera used for still image shooting and moving image shooting of a subject. For example, an imaging lens that forms an optical image of an object in order from the object (that is, subject) side, And an imaging device that converts an optical image formed by the imaging lens into an electrical signal.
  • an imaging lens having the above-described characteristic configuration is arranged so that an optical image of a subject is formed on the light receiving surface of the imaging element, and an imaging device having high performance at low cost and the same are provided.
  • a digital device for example, a portable terminal
  • the camera examples include a digital camera, a video camera, a surveillance camera, an in-vehicle camera, a videophone camera, and the like, and also a personal computer, a mobile terminal (for example, a mobile phone, a mobile computer, etc., small and portable information) Apparatus terminals), peripheral devices (scanners, printers, etc.), cameras incorporated in or external to other digital devices, and the like.
  • a mobile terminal for example, a mobile phone, a mobile computer, etc., small and portable information Apparatus terminals
  • peripheral devices scanners, printers, etc.
  • cameras incorporated in or external to other digital devices and the like.
  • a digital device with an image input function such as a mobile phone with a camera can be configured.
  • FIG. 5 shows a schematic cross-sectional example of a mobile terminal DU as an example of a digital device with an image input function.
  • the imaging device LU mounted on the portable terminal DU shown in FIG. 5 includes an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object, and a parallel plane in order from the object (subject) side.
  • a face plate PT corresponding to a cover glass or the like of the image pickup element SR
  • an image pickup element SR that converts an optical image IM formed on the light receiving surface SS by the image pickup lens LN into an electrical signal are provided.
  • the imaging device LU is usually arranged inside the body. However, when realizing the camera function, a form as necessary is adopted. It is possible.
  • the unitized imaging device LU can be configured to be detachable or rotatable with respect to the main body of the portable terminal DU.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the imaging lens LN is provided so that an optical image IM of the subject is formed on the light receiving surface SS of the imaging element SR, the optical image IM formed by the imaging lens LN is electrically converted by the imaging element SR. Converted to a signal.
  • the portable terminal DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, the signal is transmitted to another device through a cable or converted into an infrared signal.
  • the control unit 2 has a microcomputer, and centrally performs function control such as a photographing function and an image reproduction function, control of a lens moving mechanism for focusing, and the like.
  • control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 includes operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by an operator to the control unit 2.
  • An optical image IM is formed.
  • the optical image to be formed by the imaging lens LN is, for example, an optical low-pass filter (corresponding to the parallel flat plate PT in FIG. 5) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. By passing, the spatial frequency characteristic is adjusted so that so-called aliasing noise generated when converted into an electrical signal is minimized. Thereby, generation
  • the focus of the imaging lens LN may move the entire lens unit in the optical axis AX direction using an actuator, or may move a part of the lens in the optical axis AX direction.
  • the actuator can be downsized.
  • the focus function may be realized by performing a process of increasing the depth of focus by software from the information recorded in the image sensor SR without focusing the lens by moving the lens in the optical axis direction. In that case, the actuator is not necessary, and the miniaturization and the cost reduction can be realized at the same time.
  • the imaging lens LN includes a step of sealing the lens substrates with a lattice-shaped spacer member, and a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member.
  • the lens block is manufactured by a method.
  • the lens substrates are connected to each other via a lattice spacer member.
  • a reflow method or a replica method is used as a manufacturing method for manufacturing a plurality of imaging lenses LN.
  • a low softening point glass film is formed by the CVD (Chemical Vapor Deposition) method, fine processing is performed by lithography and dry etching, and glass reflow is performed by heat treatment, so that a large number of lenses are simultaneously formed on the glass substrate. Is done.
  • the replica method a large number of lenses are simultaneously formed on a lens wafer by transferring a large amount of lens shapes with a mold using a curable resin. In any method, a large number of lenses can be manufactured at the same time, so that the cost can be reduced.
  • the first Lens block when different lenses manufactured by the above-described method (two lenses having different lens parts manufactured by producing lens parts on a lens substrate and separated one by one) are bonded to each other, the first Lens block, a first parallel flat plate, a second parallel flat plate, and a second lens unit.
  • FIG. 6 is a schematic sectional view showing an example of the manufacturing process of the imaging lens LN.
  • the first lens block C1 includes a first lens substrate L12 made of a parallel plate, a plurality of first object side lens portions L11 formed on one plane thereof, and a plurality of first image sides formed on the other plane. And a lens portion L13.
  • the first lens substrate L12 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above.
  • the second lens block C2 includes a second lens substrate L22 made of a parallel plate and a plurality of second object side lens portions L21 bonded to one of the planes. Similar to the first lens substrate L12, the second lens substrate L22 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above.
  • the third lens block (not shown) is also configured in the same manner as the first and second lens blocks C1 and C2, but the above-described IR cut filter film is formed on any lens substrate.
  • an IR cut filter film CT (FIGS. 1 and 2) is applied to one surface of the third lens substrate L32.
  • the grid-like spacer member B1 defines a distance between the lens blocks and keeps the lens block constant.
  • the grid-like spacer member B1 is a three-stage grid, and each lens portion is disposed in a hole portion of the grid.
  • the substrate B2 is a wafer level sensor chip size package including a microlens array, or a plane parallel plate such as a sensor cover glass (corresponding to the plane parallel plate PT in FIG. 5).
  • the lens substrates are sealed on the substrate B2 via the spacer member B1, and the first lens substrate L12, the second lens substrate L22, the third lens substrate (not shown), and the spacer member B1 integrated with each other are separated from the spacer member B1.
  • a plurality of imaging lenses LN having a three-block configuration are obtained.
  • the imaging lens LN is separated from a state where a plurality of first lens blocks C1, second lens blocks C2, and third lens blocks (not shown) are assembled, adjustment and assembly of the lens interval can be performed. Since it is not necessary to carry out every LN, mass production becomes possible.
  • the spacer member B1 into a lattice shape, it can be used as a mark when separating it. This is in accordance with the gist of the present technical field, and can contribute to mass production of an inexpensive lens system.
  • FIGS. 1 and 2 show the lens configurations of the first and second embodiments of the imaging lens LN in optical cross sections, respectively.
  • the imaging lens LN of each embodiment is a single focus lens for imaging (for example, for a portable terminal) that forms an optical image IM with respect to the imaging element SR (FIG. 5).
  • the imaging lens LN is configured by three lens blocks of the first lens block C1, the second lens block C2, and the third lens block C3 in order from the object side. Yes.
  • the lens blocks C1 to C3 are configured as follows in order from the object side.
  • the first lens block C1 the first object side lens portion L11, the first lens substrate L12, and the first image side lens portion L13 are arranged in this order.
  • the second lens block C2 the second object side lens portion L21 and the second lens substrate L22 are arranged in this order.
  • the third lens block C3 the third lens substrate L32 and the third image side lens portion L33 are arranged in this order.
  • an IR cut filter film CT is formed on the back surface of the substrate surface on which the third image side lens portion L33 is formed.
  • the power arrangements of the first to third lens blocks C1 to C3 are paraxial and positive and negative, and the lens surfaces are all aspherical.
  • the nth object side lens portion Ln1 and the nth lens substrate Ln2 have different refractive indexes, and the nth lens substrate Ln2 and the nth image side lens portion Ln3 have different refractive indexes.
  • An aperture stop ST is disposed on the object side surface of the first lens substrate L12. Setting the aperture position on the lens substrate is effective in improving mass productivity and reducing costs, and can also reduce performance deterioration due to eccentricity. In addition, disposing the aperture stop ST on the object side surface of the first lens substrate L12 is effective in improving telecentricity.
  • a spacer may be formed of resin outside the effective diameter on the surface facing the IR cut filter film CT provided in the third lens block C3.
  • FIG. 7 shows an embodiment of a type having a spacer function outside the effective diameter of the lens portion.
  • the imaging lens LN has a configuration in which the second lens block C2 includes a second image side lens portion L23 made of a parallel plate.
  • a spacer portion SP is formed outside the effective diameter of the second image side lens portion L23.
  • the third image side lens portion L33 of the third lens block C3 on the final surface of the imaging lens LN, correction of field curvature and light rays to the imaging surface at the periphery of the screen can be achieved with a more compact configuration.
  • the incident angle can be set to an appropriate size.
  • Examples 1 and 2 listed here are numerical examples corresponding to the first and second embodiments, respectively, and are optical configuration diagrams showing the first and second embodiments (FIGS. 1 and 2). 2) shows the lens configurations of the corresponding Examples 1 and 2, respectively.
  • the coefficient of the term no notation in the aspherical surface data of the embodiment is 0, E-n for all data indicate that a ⁇ 10 -n.
  • z (c ⁇ h 2 ) / [1+ ⁇ 1 ⁇ (1 + K) ⁇ c 2 ⁇ h 2 ⁇ 1/2 ] + ⁇ (Aj ⁇ h j ) (AS)
  • z the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
  • c curvature at the surface vertex (the reciprocal of the radius of curvature r)
  • K conic constant
  • Aj j-order aspheric coefficient
  • the distance from the lens final surface to the paraxial image surface is expressed by an air conversion length, and the total lens length is obtained by adding the back focus to the distance from the lens front surface to the lens final surface.
  • the paraxial focal length of each lens block is shown as lens block data, and the values corresponding to the conditional expression (2) and related data in each embodiment are shown in Table 1.
  • 3 and 4 are aberration diagrams of Examples 1 and 2 (in-focus state), respectively.
  • (A) is a spherical aberration diagram
  • (B) is an astigmatism diagram
  • (C) is a distortion diagram.
  • the spherical aberration diagram shows the amount of spherical aberration with respect to the d-line (wavelength 587.56 nm) indicated by the solid line, the amount of spherical aberration with respect to the C-line (wavelength 656.28 nm) indicated by the alternate long and short dash line, and the g-line (wavelength 435.84 nm) indicated by the broken line.
  • the amount of spherical aberration is represented by the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: ⁇ 0.200 to 0.200 mm), and the vertical axis represents the height of incidence on the pupil.
  • a value obtained by normalizing the height by the maximum height (that is, the relative pupil height) is represented.
  • the broken line T is the tangential image plane with respect to the d line
  • the solid line S is the sagittal image plane with respect to the d line
  • the vertical axis represents the image height (IMG HT, unit: mm).
  • the horizontal axis represents the distortion with respect to the d-line (unit:%, horizontal axis scale: -5.0 to 5.0%), and the vertical axis represents the image height (IMG HT, unit: mm).
  • the maximum value of the image height IMG HT corresponds to the maximum image height y′max on the image plane IM (half the diagonal length of the light receiving surface SS of the image sensor SR).
  • the surfaces of all the lens portions in contact with air have an aspheric shape.
  • DU portable terminal LU imaging device LN imaging lens Cn nth lens block Ln1 nth object side lens unit Ln2 nth lens substrate Ln3 nth image side lens unit ST aperture stop (aperture)
  • SR Image sensor SS Light-receiving surface IM Image surface (optical image)
  • AX Optical axis B1 Spacer member SP Spacer part 1 Signal processing part 2 Control part 3 Memory 4 Operation part 5 Display part

Abstract

Provided is a thin and compact image pickup lens having a high IR cutting filter function. To this end, the image pickup lens (LN) comprises lens blocks Cn (n=1, 2, 3), wherein a lens substrate (Ln2) formed of a parallel plate and a lens portion (Ln1, Ln3) having a positive or negative power are made of different materials. The third lens block c3 has a lens portion (L33) on only one of the surfaces of the lens substrate (L32) and has an IR cutting filter film (CT) on the other surface of the lens substrate (L32).

Description

撮像レンズ、撮像装置及び携帯端末Imaging lens, imaging device, and portable terminal
 本発明は撮像レンズ、撮像装置及び携帯端末に関するものである。更に詳しくは、例えば大量生産に適したウェハスケールのレンズを含み、撮像素子(例えば、CCD(Charge Coupled Device)型イメージセンサ、CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子)の受光面上に光学像を形成する撮像レンズと、この撮像レンズと撮像レンズにより形成される光学像を取り込む撮像素子とを有する撮像装置と、撮像装置を搭載した携帯端末と、に関するものである。 The present invention relates to an imaging lens, an imaging device, and a portable terminal. More specifically, for example, including a wafer-scale lens suitable for mass production, an image sensor (for example, a solid-state image sensor such as a charge coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor). The present invention relates to an imaging device having an imaging lens that forms an optical image on a light receiving surface, an imaging device that captures an optical image formed by the imaging lens and the imaging lens, and a mobile terminal equipped with the imaging device.
 コンパクトで薄型の撮像装置が、コンパクトで薄型の電子機器である携帯端末(例えば、携帯電話機やPDA(Personal Digital Assistant)等)に搭載されるようになり、現在では遠隔地との相互の情報伝送が音声情報だけでなく画像情報についても可能となっている。撮像装置に搭載される撮像素子(例えば、CCD型イメージセンサ等の固体撮像素子)の高画素化・高機能化が急速に進んでいる。そして、その性能を十分に活かすため、撮像素子上に被写体像を形成するための撮像レンズにも高い光学性能が要求されている。また、携帯端末のコンパクト化に伴って、撮像レンズのコンパクト化も一層進められている。 Compact and thin imaging devices are now installed in portable terminals (for example, mobile phones and PDAs (Personal Digital Assistants), etc.) that are compact and thin electronic devices. Is possible not only for audio information but also for image information. 2. Description of the Related Art An increase in the number of pixels and functionality of an image sensor (for example, a solid-state image sensor such as a CCD image sensor) mounted on an image pickup apparatus is rapidly progressing. In order to make full use of the performance, an imaging lens for forming a subject image on the imaging element is also required to have high optical performance. In addition, with the downsizing of portable terminals, the downsizing of imaging lenses has been further promoted.
 撮像レンズには、大量生産に適したプラスチックレンズが低コスト化のために用いられるようになってきている。プラスチックレンズは加工性が良いので、非球面の形成が容易であるため、非球面形状の採用により高性能化の要求にも応えることができる。こういった観点から、携帯端末内蔵の撮像装置にはプラスチックレンズを含む撮像レンズが通常用いられている。そのような撮像レンズとして一般的によく知られているのが、プラスチックレンズ3枚構成の撮像レンズ、ガラスレンズ1枚とプラスチックレンズ2枚から成る3枚構成の撮像レンズ等である。しかしながら、これらの光学系の更なるコンパクト化と携帯端末に求められる量産性とを両立させることは困難である。 ¡Plastic lenses suitable for mass production are used for imaging lenses to reduce costs. Since the plastic lens has good processability, it is easy to form an aspherical surface. Therefore, the use of an aspherical shape can meet the demand for higher performance. From such a viewpoint, an imaging lens including a plastic lens is usually used for an imaging device with a built-in portable terminal. Generally known as such an imaging lens are an imaging lens having three plastic lenses, a three-lens imaging lens including one glass lens and two plastic lenses. However, it is difficult to achieve both compactness of these optical systems and mass productivity required for portable terminals.
 このような問題点を克服するため、平行平板の数インチのウェハ状レンズ基板に対し、大量のレンズ部を金型で同時に成形して硬化させた後、格子状のスペーサ部材を介してレンズ基板同士をシールし、一体化されたレンズ基板及びスペーサ部材を、スペーサ部材の格子枠で切断して、レンズモジュールを低コストで大量生産する技術の開発が進められている。こうした製法によって製造されたレンズは「ウェハレベルレンズ」と呼ばれており、また、レンズモジュールは「ウェハレベルレンズモジュール」と呼ばれている。 In order to overcome such problems, a large number of lens parts are simultaneously molded and cured on a parallel plate several inch wafer-like lens substrate with a mold, and then the lens substrate is passed through a lattice-like spacer member. Development of a technique for mass-producing lens modules at low cost by sealing each other and cutting the integrated lens substrate and spacer member with a lattice frame of the spacer member is in progress. A lens manufactured by such a manufacturing method is called a “wafer level lens”, and a lens module is called a “wafer level lens module”.
 また、撮像レンズのコンパクト化を進めていくと、光学系内に配置されるIR(InfraRed)カットフィルターの基板厚さの影響が大きくなる。つまり、IRカットフィルターのレンズ全長に占める割合が増大し、それが撮像レンズのコンパクト化を妨げる1つの要因となってしまう。そこで、撮像レンズの薄型・コンパクト化を目的として、レンズ素子等にIRカットフィルター機能を持たせ、IRカットフィルター基板を持たない撮像レンズが特許文献1、2で提案されている。例えば、特許文献1、2には、ウェハレベルレンズにおいてレンズ基板とレンズ部との境界にIRカットコートが設けられた撮像レンズが提案されている。また特許文献1には、IR吸収ガラスをウェハレベルレンズのレンズ基板に用いた撮像レンズが提案されている。 Further, as the imaging lens is made more compact, the influence of the substrate thickness of an IR (InfraRed) cut filter disposed in the optical system becomes larger. In other words, the ratio of the IR cut filter to the total lens length increases, which is one factor that hinders the downsizing of the imaging lens. In order to reduce the thickness and size of the imaging lens, Patent Documents 1 and 2 propose imaging lenses that have an IR cut filter function in a lens element or the like and do not have an IR cut filter substrate. For example, Patent Documents 1 and 2 propose an imaging lens in which an IR cut coat is provided at the boundary between a lens substrate and a lens portion in a wafer level lens. Patent Document 1 proposes an imaging lens using an IR absorbing glass as a lens substrate of a wafer level lens.
米国特許出願公開第2007/0024958号明細書US Patent Application Publication No. 2007/0024958 特表2008-508545号公報Special table 2008-508545 gazette
 特許文献1、2で提案されているように、光学材料間の境界にIRカットコートを設けると、波長特性の入射角度依存性が大きくなるため、画面全体で均一なIRカット特性を得ることが難しくなる。入射角度に強く依存する波長特性変化を抑制するには、多数のコート層が必要になるが、これはコストアップの原因になる。また、特許文献1で提案されているように、レンズ基板にIR吸収ガラスを用いると、シャープな吸収特性が得られず、物体の色調再現が困難になる。なお、ガラスレンズ表面にIRカットコートを設けることによりフィルター基板を省略したものも知られているが、ウェハレベルレンズのようにレンズ部が樹脂から成るものに対しては、低温状態でコーティングを行う必要があるため、シャープな波長特性の実現は困難である。 As proposed in Patent Documents 1 and 2, if an IR cut coat is provided at the boundary between optical materials, the incident angle dependency of the wavelength characteristics increases, so that uniform IR cut characteristics can be obtained over the entire screen. It becomes difficult. In order to suppress changes in wavelength characteristics that strongly depend on the incident angle, a large number of coating layers are required, which causes an increase in cost. Further, as proposed in Patent Document 1, when an IR absorbing glass is used for a lens substrate, a sharp absorption characteristic cannot be obtained and it becomes difficult to reproduce the color tone of an object. It is also known that the filter substrate is omitted by providing an IR cut coat on the glass lens surface, but coating is performed at a low temperature on a lens part made of resin such as a wafer level lens. Therefore, it is difficult to realize sharp wavelength characteristics.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、高いIRカットフィルター機能を有する薄型でコンパクトな撮像レンズ、それを備えた撮像装置及び携帯端末を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a thin and compact imaging lens having a high IR cut filter function, an imaging device including the imaging lens, and a portable terminal. .
 上記目的を達成するために、第1の発明の撮像レンズは、平行平板のレンズ基板と、前記レンズ基板の物体側面及び像側面のうちの少なくとも一方に、前記レンズ基板と異なる材料で形成され、正又は負のパワーを有するレンズ部と、を備えるレンズブロックを少なくとも2ブロック含む撮像レンズであって、少なくとも1つの前記レンズブロックが、該レンズブロックのレンズ基板の一方の面のみにレンズ部を有し、他方の面にIRカットフィルター膜を有することを特徴とする。 In order to achieve the above object, the imaging lens of the first invention is formed of a material different from the lens substrate on at least one of a parallel plate lens substrate and an object side surface and an image side surface of the lens substrate, An imaging lens including at least two lens blocks each including a lens unit having positive or negative power, wherein at least one of the lens blocks has a lens unit only on one surface of a lens substrate of the lens block. And having an IR cut filter film on the other surface.
 第2の発明の撮像レンズは、上記第1の発明において、前記IRカットフィルター膜を有するレンズブロックに対峙し、該IRカットフィルター膜から空気間隔を隔てて隣接して配置されているレンズブロックのレンズ基板の前記IRカットフィルター膜に対向する一方の面には、レンズ部が設けられていないか、又は、他方の面に設けられているレンズ部よりも弱いパワーを有するレンズ部が設けられていることを特徴とする。 An imaging lens according to a second aspect of the present invention is the imaging lens according to the first aspect, wherein the lens block is disposed opposite to the lens block having the IR cut filter film and adjacent to the IR cut filter film with an air gap. One surface of the lens substrate facing the IR cut filter film is not provided with a lens portion, or a lens portion having a weaker power than the lens portion provided on the other surface is provided. It is characterized by being.
 第3の発明の撮像レンズは、上記第1の発明において、最も像面側のレンズブロックのレンズ基板の像面側にレンズ部を有することを特徴とする。 The imaging lens of a third invention is characterized in that, in the first invention, the imaging lens has a lens portion on the image surface side of the lens substrate of the lens block closest to the image surface side.
 第4の発明の撮像レンズは、上記第1~第3のいずれか1つの発明において、以下の条件式を満足することを特徴とする。
0.08<BF/DI<0.16
 ただし、
BF:バックフォーカス量、
DI:イメージサークルの直径、
である。
An imaging lens of a fourth invention is characterized in that, in any one of the first to third inventions, the following conditional expression is satisfied.
0.08 <BF / DI <0.16
However,
BF: Back focus amount,
DI: Diameter of the image circle,
It is.
 第5の発明の撮像レンズは、上記第1~第4のいずれか1つの発明において、最も像面側のレンズブロックと、該レンズブロックの物体側に隣り合って位置するレンズブロックとの間の空気間隔を構成する少なくとも一方の光学面に、IRカットフィルター膜を有することを特徴とする。 The imaging lens according to a fifth aspect of the present invention is the imaging lens according to any one of the first to fourth aspects, wherein the lens block is located between the most image side lens block and the lens block adjacent to the object side of the lens block. An IR cut filter film is provided on at least one optical surface constituting the air gap.
 第6の発明の撮像レンズは、上記第1~第5のいずれか1つの発明において、互いに隣り合って位置するレンズブロックに対する空気間隔が、該レンズブロックが有するレンズ部の有効径外に形成されたスペーサ部分で調整されていることを特徴とする。 In the imaging lens of a sixth invention according to any one of the first to fifth inventions, an air interval with respect to the lens blocks located adjacent to each other is formed outside the effective diameter of the lens portion of the lens block. The spacer portion is adjusted.
 第7の発明の撮像レンズは、上記第1~第6のいずれか1つの発明において、前記レンズ基板がガラス材料から成ることを特徴とする。 The image pickup lens of a seventh invention is characterized in that, in any one of the first to sixth inventions, the lens substrate is made of a glass material.
 第8の発明の撮像レンズは、上記第1~第7のいずれか1つの発明において、格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることを特徴とする。 The imaging lens according to an eighth aspect of the present invention is the imaging lens according to any one of the first to seventh aspects, wherein the lens substrates are sealed together via a lattice-shaped spacer member, the lens substrate integrated with the lens substrate, The lens block is manufactured by a manufacturing method including a step of cutting a spacer member with a lattice frame of the spacer member.
 第9の発明の撮像装置は、上記第1~第8のいずれか1つの発明に係る撮像レンズと、前記撮像レンズにより受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備えていることを特徴とする。 An image pickup apparatus according to a ninth aspect of the invention includes an image pickup lens according to any one of the first to eighth aspects of the invention, and an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal. And.
 第10の発明の携帯端末は、上記第9の発明に係る撮像装置を備えたことを特徴とする。 A mobile terminal according to a tenth aspect includes the imaging device according to the ninth aspect.
 本発明によれば、少なくとも1つのレンズブロックが、レンズ基板の一方の面のみにレンズ部を有し、レンズ基板の他方の面にIRカットフィルター膜を有する構成になっているので、撮像レンズの薄型・コンパクト化を達成しつつ、入射角度依存性が抑制されたシャープな波長特性により、画面全体で均一なIRカット特性を得ることが可能となる。したがって、高いIRカットフィルター機能を有する薄型でコンパクトな撮像レンズ、それを備えた撮像装置及び携帯端末を実現することができる。例えば、大量生産の可能なウェハレベルレンズから成る撮像レンズに上記構成を採用することにより、上記効果を低コストで実現することが可能となる。 According to the present invention, at least one lens block is configured to have a lens portion only on one surface of the lens substrate and an IR cut filter film on the other surface of the lens substrate. It is possible to obtain a uniform IR cut characteristic on the entire screen due to the sharp wavelength characteristic in which the incidence angle dependency is suppressed while achieving a thin and compact size. Therefore, it is possible to realize a thin and compact imaging lens having a high IR cut filter function, an imaging device including the imaging lens, and a portable terminal. For example, the above-described effect can be realized at low cost by adopting the above-described configuration in an imaging lens composed of a wafer level lens capable of mass production.
第1の実施の形態(実施例1)の光学構成図。The optical block diagram of 1st Embodiment (Example 1). 第2の実施の形態(実施例2)の光学構成図。The optical block diagram of 2nd Embodiment (Example 2). 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 撮像装置を搭載した携帯端末の概略構成例を模式的断面で示す図。The figure which shows the example of schematic structure of the portable terminal carrying an imaging device in a typical cross section. 撮像レンズの製造工程の一例を示す概略断面図。FIG. 6 is a schematic cross-sectional view illustrating an example of a manufacturing process of an imaging lens. レンズ部の有効径外にスペーサ機能を有するタイプの実施の形態を示す光学構成図。The optical block diagram which shows embodiment of the type which has a spacer function outside the effective diameter of a lens part. IRカットコートの透過率特性の入射角度依存性を示すグラフ。The graph which shows the incident angle dependence of the transmittance | permeability characteristic of IR cut coat.
 以下、本発明に係る撮像レンズ、撮像装置及び携帯端末等を、図面を参照しつつ説明する。本発明に係る撮像レンズは、レンズブロックを少なくとも2ブロック含むものである。ただし、「レンズブロック」とは、平行平板であるレンズ基板と、その物体側面及び像側面のうちの少なくとも一方に形成され、正又は負のパワーを有するレンズ部と、を備える光学要素をいう。なお、ここで想定しているレンズ基板とレンズ部とは材料が異なっている。 Hereinafter, an imaging lens, an imaging device, a portable terminal, and the like according to the present invention will be described with reference to the drawings. The imaging lens according to the present invention includes at least two lens blocks. However, the “lens block” refers to an optical element that includes a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power. The lens substrate and the lens portion assumed here are different in material.
 本発明に係る撮像レンズは、上記のようにレンズブロックを少なくとも2ブロック含んでいるので、物体側から像側に向かってn番目(n=1、2、…)のレンズブロックを第nレンズブロックとすると、物体側から順に、第1レンズブロック、第2レンズブロック等を有するブロック配置になっている。そして、少なくとも1つのレンズブロックが、レンズ基板の一方の面のみにレンズ部を有し、レンズ基板の他方の面にIRカットフィルター膜(以下「IRカットコート」ともいう。)を有する構成にしている。 Since the imaging lens according to the present invention includes at least two lens blocks as described above, the nth (n = 1, 2,...) Lens block from the object side to the image side is the nth lens block. Then, the block arrangement has a first lens block, a second lens block, and the like in order from the object side. At least one lens block has a lens portion only on one surface of the lens substrate, and an IR cut filter film (hereinafter also referred to as “IR cut coat”) on the other surface of the lens substrate. Yes.
 上記のように、レンズ基板の一方の面のみにレンズ部を設け、レンズ基板の他方の面にIRカットフィルター膜を設けると、レンズ部とIRカットフィルター膜とで基板歪を打ち消し合うようにすることができる。これにより、IRカットフィルター機能のみを目的として使用されるフィルター板よりも、レンズ基板の厚さを薄くすることができるため、撮像レンズ全体の薄型化を達成することが可能である。しかも、レンズブロックがIRカットフィルター機能を有するので、IRカットフィルター板を別途設置する必要が無く、結果として、薄型・コンパクト化及び低コスト化が可能となる。 As described above, when the lens portion is provided only on one surface of the lens substrate and the IR cut filter film is provided on the other surface of the lens substrate, the lens portion and the IR cut filter film cancel out the substrate distortion. be able to. Thereby, since the thickness of the lens substrate can be made thinner than the filter plate used only for the purpose of the IR cut filter function, it is possible to reduce the thickness of the entire imaging lens. In addition, since the lens block has an IR cut filter function, it is not necessary to separately install an IR cut filter plate, and as a result, it is possible to reduce the thickness, the size and the cost.
 レンズ基板上にIRカットコートを施す構成では、レンズ基板がガラスの場合、IRカットコートを高温で成膜することが可能になるため、レンズ部上にIRカットコートを施す構成と比較すると、膜材料の選択の幅が広いため、波長特性の向上が可能である。また、空気とレンズ基板との境界面にIRカットコートを施す構成では、レンズ部とレンズ基板との境界面にIRカットコートを施す構成と比較すると、入射角度依存性が抑制されたシャープな波長特性(つまり、IRカットフィルター膜への光線入射角度変化による波長特性変化が小さく、かつ、鋭い波長特性)により、画面全体で均一なIRカット特性を得ることが可能となる。したがって、高いIRカットフィルター機能を有する薄型でコンパクトな撮像レンズを実現することができる。例えば、大量生産の可能なウェハレベルレンズから成る撮像レンズに上記構成を採用することにより、薄型・コンパクト化と撮像性能の向上とを低コストで両立させることが可能となる。 In the configuration in which the IR cut coat is applied on the lens substrate, when the lens substrate is made of glass, the IR cut coat can be formed at a high temperature. Since the selection range of the material is wide, the wavelength characteristics can be improved. In addition, the configuration in which the IR cut coat is applied to the boundary surface between the air and the lens substrate has a sharp wavelength in which the dependence on the incident angle is suppressed compared to the configuration in which the IR cut coat is applied to the boundary surface between the lens portion and the lens substrate. Due to the characteristics (that is, the wavelength characteristics change due to the change in the incident angle of the light beam on the IR cut filter film is small and sharp wavelength characteristics), it is possible to obtain a uniform IR cut characteristic on the entire screen. Therefore, a thin and compact imaging lens having a high IR cut filter function can be realized. For example, by adopting the above configuration in an imaging lens composed of a wafer level lens capable of mass production, it is possible to achieve both a reduction in thickness and size and improvement in imaging performance at a low cost.
 ここで、空気とレンズ基板との境界面にIRカットコートが設けられている場合と、レンズ部とレンズ基板との境界面にIRカットコートが設けられている場合と、の入射角度依存性の違いを説明する。図8のグラフに、IRカットコートの透過率特性の入射角度依存性を示す。 Here, the incident angle dependency between the case where the IR cut coat is provided on the boundary surface between the air and the lens substrate and the case where the IR cut coat is provided on the boundary surface between the lens portion and the lens substrate. Explain the difference. The graph of FIG. 8 shows the incident angle dependency of the transmittance characteristic of the IR cut coat.
 図8のグラフは、一般的なIRカットコートを、空気とレンズ基板(屈折率1.52)との境界に配置した場合(以下「A-L構成」という。図中、透過率特性を実線で示す。)と、2枚のレンズ基板(屈折率1.52)で挟んだ場合(以下「L-L構成」という。図中、透過率特性を破線で示す。)と、の2通りについて、IRカットコートに対する光線入射角度を0°、15°、30°に変化させたときの透過率特性変化のシミュレーション結果(A-L(0)、A-L(15)、A-L(30)、L-L(0)、L-L(15)、L-L(30):( )内の数字は光線入射角度(単位:°)を示す。)を示している。なお、A-L構成とL-L構成とでIRカットコートは同じ膜構成になっている。 The graph of FIG. 8 shows a case where a general IR cut coat is arranged at the boundary between air and a lens substrate (refractive index 1.52) (hereinafter referred to as “AL configuration”. ) And when sandwiched between two lens substrates (refractive index 1.52) (hereinafter referred to as “LL configuration”. In the figure, the transmittance characteristic is indicated by a broken line). Simulation results of transmittance characteristics change when the light incident angle to the IR cut coat is changed to 0 °, 15 °, 30 ° (AL (0), AL (15), AL (30 ), LL (0), LL (15), LL (30): The numbers in parentheses indicate the light incident angle (unit: °). The IR cut coat has the same film configuration in the AL configuration and the LL configuration.
 図8のグラフから分かるように、A-L構成の特性変化量ΔA-Lは、L-L構成の特性変化量ΔL-Lよりも小さくなっている。したがって、空気とレンズ基板との境界面にIRカットコートを形成したA-L構成の方が、同じコート層数で、入射角度による透過率特性変化が少ないIRカットフィルター機能を実現することができる。 As can be seen from the graph of FIG. 8, the characteristic variation ΔAL of the AL configuration is smaller than the characteristic variation ΔL-L of the LL configuration. Therefore, the AL configuration in which the IR cut coat is formed on the boundary surface between the air and the lens substrate can realize the IR cut filter function with the same number of coat layers and less change in transmittance characteristics due to the incident angle. .
 上述した特徴的構成によると、高いIRカットフィルター機能を有するとともに、低コストでの大量生産に適した薄型でコンパクトな撮像レンズ及びそれを備えた撮像装置を実現することが可能である。そして、その撮像レンズを備えた撮像装置を携帯端末等のデジタル機器に用いれば、そのコンパクト化,低コスト化,高性能化等に寄与することができる。こういった効果をバランス良く得るとともに、更なる光学性能等の向上、全長の短縮、製造性の向上等を達成するための条件等を以下に説明する。 According to the characteristic configuration described above, it is possible to realize a thin and compact imaging lens having an high IR cut filter function and suitable for mass production at a low cost, and an imaging apparatus including the imaging lens. And if an imaging device provided with the imaging lens is used for digital equipment, such as a portable terminal, it can contribute to the compactness, cost reduction, high performance, etc. The conditions for obtaining such effects in a well-balanced manner and achieving further improvements in optical performance, shortening the overall length, improving productivity, and the like will be described below.
 IRカットフィルター膜を有するレンズブロックに対し、そのIRカットフィルター膜から空気間隔を隔てて隣接するようにレンズブロックが配置されており、そのレンズブロックにおいてレンズ基板のIRカットフィルター膜側の面には、レンズ部が設けられていないか、又はレンズ基板の他方の面に設けられているレンズ部よりも弱いパワーを有するレンズ部が設けられていることが望ましい。このように隣り合って位置する2つのレンズブロックは、レンズ基板の両面にレンズ部が形成されたレンズブロックを、そのレンズ基板で2分割したものと同様のパワー配置を持つことになる。したがって、他方のレンズブロックに設けられているIRカットコートに対し、対向する面のパワーを弱くすることは、レンズ基板の厚さのバラツキをレンズブロック間の空気間隔調整により吸収することを可能にする。レンズ基板厚さが設計値からずれた場合、バックフォーカス長や像面湾曲量が変化するため、モジュール組み立て時の調整が複雑になり、コストアップにつながる。レンズブロック間の空気間隔を調整して、レンズブロック全体のバックフォーカス誤差や像面位置誤差を極力抑えることにより、モジュール組み立て時の調整手順を減らすことができ、コスト低減につながる。対向するレンズ部のパワーが大きい場合、基板厚さを補正するために基板間の空気間隔を調整しようとしても、画角間での像面位置変動量の差が大きく、画面全体にわたって像面位置を補正することが困難である。 The lens block is arranged so as to be adjacent to the lens block having the IR cut filter film with an air gap from the IR cut filter film, and on the lens block on the surface of the lens substrate on the IR cut filter film side. It is desirable that the lens unit is not provided or a lens unit having a weaker power than the lens unit provided on the other surface of the lens substrate is provided. The two lens blocks located adjacent to each other in this way have the same power arrangement as that obtained by dividing a lens block having lens portions formed on both surfaces of the lens substrate into two by the lens substrate. Therefore, weakening the power of the opposing surface with respect to the IR cut coat provided on the other lens block makes it possible to absorb variations in the thickness of the lens substrate by adjusting the air spacing between the lens blocks. To do. When the lens substrate thickness deviates from the design value, the back focus length and the curvature of field change, so that the adjustment at the time of module assembly becomes complicated, leading to an increase in cost. By adjusting the air space between the lens blocks to minimize the back focus error and image plane position error of the entire lens block, the adjustment procedure at the time of module assembly can be reduced, leading to cost reduction. When the power of the opposing lens part is large, even if an attempt is made to adjust the air gap between the substrates in order to correct the substrate thickness, the difference in the image plane position variation between the angles of view is large, and the image plane position can be adjusted over the entire screen. It is difficult to correct.
 その結果、レンズ基板厚さの公差を緩めることが可能になるため、コストの低減に効果がある。また、他方のレンズブロックに設けられているIRカットコートに対し、対向するレンズ部のパワーを弱くすれば、上記レンズブロック間の空気間隔を調整することにより、撮像レンズ全体の収差性能を制御すること(例えば像面湾曲等を補正すること)が可能になる。その結果、レンズ部の面形状の誤差感度を緩めることが可能になるため、この点でもコストの低減に効果がある。 As a result, it becomes possible to loosen the tolerance of the lens substrate thickness, which is effective in reducing the cost. Also, if the power of the opposing lens portion is weakened with respect to the IR cut coat provided on the other lens block, the aberration performance of the entire imaging lens is controlled by adjusting the air gap between the lens blocks. (For example, correcting curvature of field or the like). As a result, it is possible to relax the error sensitivity of the surface shape of the lens portion, and this is also effective in reducing costs.
 IRカットコート面と空気間隔を挟んで対向する面の形状は、下記条件式(1)を満たすことが望ましい。
0≦PB/DB<0.04 …(1)
PB:IRカットコート面と空気間隔を挟んで対向する面の有効領域内の光軸方向における面の最大高低差
DB:IRカットコート面と空気間隔を挟んで対向する面の有効半径
下限値は、PBが0、すなわち対向する面が平面であることを示す。上限値を超えた場合、対向する面のパワーが大きくなり、基板の厚さ誤差を空気間隔で調整した場合に、画角毎の像面位置の変動量の差が大きくなるため、基板厚さの公差を厳しくしなければならず、コストアップにつながる。
The shape of the surface facing the IR cut coat surface across the air gap preferably satisfies the following conditional expression (1).
0 ≦ PB / DB <0.04 (1)
PB: Maximum height difference of the surface in the optical axis direction within the effective area of the surface facing the IR cut coat surface across the air interval DB: The effective radius lower limit value of the surface facing the IR cut coat surface across the air interval is , PB is 0, that is, the opposing surfaces are flat. When the upper limit is exceeded, the power of the opposing surface increases, and when the substrate thickness error is adjusted by the air interval, the difference in the amount of variation in the image plane position for each angle of view increases. Tolerances in the product must be tightened, leading to increased costs.
 以下の条件式(2)を満足することが望ましい。
0.08<BF/DI<0.16 …(2)
 ただし、
BF:バックフォーカス量、
DI:イメージサークルの直径、
である。
It is desirable to satisfy the following conditional expression (2).
0.08 <BF / DI <0.16 (2)
However,
BF: Back focus amount,
DI: Diameter of the image circle,
It is.
 条件式(2)を満足することにより、撮像レンズの低背化が可能となる。条件式(2)の下限を下回ると、バックフォーカス量が撮像素子サイズに対して相対的に小さくなるため、画角の大きい光束の撮像面入射角度が大きくなり、シェーディングの原因となる。逆に、条件式(2)の上限を上回ると、バックフォーカス量が相対的に大きくなって、撮像レンズの低背化を図る場合にバックフォーカスの占める割合が大きくなる。このため、低背化と撮像性能との両立が困難になる。 When the conditional expression (2) is satisfied, the height of the imaging lens can be reduced. If the lower limit of conditional expression (2) is not reached, the back focus amount becomes relatively small with respect to the image sensor size, so that the incident angle on the imaging surface of a light beam having a large angle of view becomes large, which causes shading. On the other hand, if the upper limit of conditional expression (2) is exceeded, the back focus amount becomes relatively large, and the proportion of the back focus increases when the height of the imaging lens is reduced. For this reason, it becomes difficult to achieve both low profile and imaging performance.
 以下の条件式(2a)を満足することが更に望ましい。
0.08<BF/DI<0.155 …(2a)
 この条件式(2a)は、上記条件式(2)が規定している条件範囲のなかでも、上記観点等に基づいた更に好ましい条件範囲を規定している。
It is more desirable to satisfy the following conditional expression (2a).
0.08 <BF / DI <0.155 (2a)
The conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2).
 最も像面側のレンズブロックとその物体側に隣り合って位置するレンズブロックとの間の空気間隔を構成する少なくとも一方の光学面に、IRカットフィルター膜を有することが望ましい。像面付近では、各画角の主光線と光軸との成す角度が他と比較して小さいため、上記光学面にIRカットフィルター膜を持たせれば、入射角度変化に伴うIRカットフィルターの波長特性変化を抑制することができる。また、像面付近では各画角の光線が重なる領域が少ないため、空気間隔調整時に各画角での収差変動の差が小さいことから、空気間隔調整による撮像性能制御の面でも有利である。 It is desirable to have an IR cut filter film on at least one optical surface that constitutes an air space between the lens block closest to the image plane and the lens block located adjacent to the object side. In the vicinity of the image plane, the angle formed between the principal ray and the optical axis at each angle of view is smaller than the others, so if an IR cut filter film is provided on the optical surface, the wavelength of the IR cut filter accompanying the change in the incident angle A change in characteristics can be suppressed. In addition, since there are few regions where the light rays of each angle of view overlap in the vicinity of the image plane, the difference in aberration fluctuation at each angle of view is small when adjusting the air gap, which is advantageous in terms of imaging performance control by adjusting the air gap.
 全てのレンズ基板は平行平板であることが望ましい。全てのレンズ基板が平行平板であることによって加工が容易になる上、全てのレンズ基板がレンズ部との界面においてパワーを持たないため、像面での焦点位置に対する面精度の影響を低減することができる。また、レンズ基板は全て同じ厚みの平行平板であることが望ましい。各レンズブロックのレンズ基板の厚みを同一にすることで、ガラス基板の研磨を同じ条件で行うことが可能となる。したがって、低コストでの大量生産が可能となる。 It is desirable that all lens substrates are parallel plates. Since all lens substrates are parallel plates, processing is easy and all lens substrates have no power at the interface with the lens part, reducing the influence of surface accuracy on the focal position on the image plane. Can do. Further, it is desirable that the lens substrates are all parallel flat plates having the same thickness. By making the lens substrate of each lens block have the same thickness, the glass substrate can be polished under the same conditions. Therefore, mass production at low cost becomes possible.
 レンズ基板はガラス材料から成ることが望ましい。ガラスは樹脂に比べて軟化温度が高いため、レンズ基板をガラスで構成すると、リフロー処理を行っても容易に変異せず、また低コスト化が可能である。高軟化温度のガラスでレンズ基板を構成することが、更に望ましい。レンズ部は樹脂材料から成ることが望ましい。レンズ部に使用する材料として、樹脂材料はガラス材料に比べて加工成形性が良く、また低コスト化も可能である。 The lens substrate is preferably made of a glass material. Since glass has a higher softening temperature than resin, if the lens substrate is made of glass, it does not easily change even if reflow treatment is performed, and the cost can be reduced. More preferably, the lens substrate is made of glass having a high softening temperature. The lens part is preferably made of a resin material. As a material used for the lens portion, a resin material has better processability than a glass material and can be reduced in cost.
 上記樹脂材料はエネルギー硬化型の樹脂材料であることが望ましい。レンズ部をエネルギー硬化型の樹脂材料で構成することにより、ウェハ状のレンズ基板に対し金型で大量のレンズ部を同時に硬化させ形成することが可能となる。したがって、量産性を向上させることができる。ここでいうエネルギー硬化型の樹脂材料とは、熱によって硬化する樹脂材料、光によって硬化する樹脂材料等を指し、その硬化には熱、光等のエネルギーを与える種々の手段が使用可能である。 It is desirable that the resin material is an energy curable resin material. By configuring the lens portion with an energy curable resin material, it becomes possible to simultaneously cure and form a large number of lens portions with a mold on a wafer-like lens substrate. Therefore, mass productivity can be improved. The energy curable resin material here refers to a resin material that is cured by heat, a resin material that is cured by light, and the like, and various means for applying energy such as heat and light can be used for the curing.
 エネルギー硬化型の樹脂材料としては、UV硬化型の樹脂材料を用いることが望ましい。UV硬化型の樹脂材料を用いれば、硬化時間の短縮により量産性を改善することができる。また、近年では耐熱性に優れた硬化型の樹脂材料が開発されており、耐熱性の樹脂を用いることでリフロー処理に耐えるカメラモジュールに対応することができ、より安価なカメラモジュールを提供することができる。ここでいうリフロー処理とは、プリント基板(回路基板)上にペースト状のはんだを印刷し、その上に部品(カメラモジュール)を載せてから熱を加えてはんだを溶かし、センサー外部端子と回路基板とを自動溶接する処理のことである。 It is desirable to use a UV curable resin material as the energy curable resin material. If a UV curable resin material is used, mass productivity can be improved by shortening the curing time. In recent years, curable resin materials with excellent heat resistance have been developed. By using heat-resistant resins, camera modules that can withstand reflow processing can be used, and a more inexpensive camera module can be provided. Can do. The reflow treatment here refers to printing solder paste on a printed circuit board (circuit board), placing a component (camera module) on it, applying heat to melt the solder, and external sensor terminals and circuit board This is a process of automatic welding.
 レンズ部を構成する光学材料として、アサーマル樹脂(温度変化による屈折率変化の小さい樹脂材料)を用いることが望ましい。樹脂材料は温度変化時の屈折率変化が大きいため、周囲の温度が変化した際に、その影響を受けて特性が変動してしまうという問題を抱えている。しかし最近では、樹脂材料中に無機微粒子を混合させることにより、温度変化の影響を小さくできることが分かってきている。一般に、透明な樹脂材料に微粒子を混合させると、光の散乱が生じて透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにすることができる。 It is desirable to use an athermal resin (a resin material having a small refractive index change due to a temperature change) as an optical material constituting the lens portion. The resin material has a large refractive index change at the time of temperature change, so that when the ambient temperature changes, there is a problem that the characteristics fluctuate due to the influence. However, recently, it has been found that the influence of temperature change can be reduced by mixing inorganic fine particles in a resin material. In general, when fine particles are mixed in a transparent resin material, light scattering occurs and the transmittance decreases, so that it was difficult to use as an optical material. However, the size of the fine particles is smaller than the wavelength of the transmitted light beam. By doing so, scattering can be substantially prevented from occurring.
 また、樹脂材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して、互いに打ち消し合うように作用させることにより、屈折率変化が殆ど生じないようにすることができる。具体的には、母材となる樹脂材料に、最大長が20nm以下の無機粒子を分散させることにより、屈折率の温度依存性が極めて低い樹脂材料を得ることができる。例えば、アクリル樹脂に酸化ニオブ(Nb)の微粒子を分散させることにより、温度変化による屈折率変化を小さくすることができる。レンズ部の材料として、このような無機粒子を分散させた樹脂材料を用いることにより、温度変化時の特性変動を小さく抑えることが可能となる。 In addition, although the refractive index of the resin material decreases as the temperature increases, the refractive index of the inorganic particles increases as the temperature increases. Thus, by utilizing these temperature dependences and acting so as to cancel each other, almost no refractive index change can occur. Specifically, by dispersing inorganic particles having a maximum length of 20 nm or less in a resin material serving as a base material, a resin material with extremely low temperature dependency of the refractive index can be obtained. For example, by dispersing microparticles of niobium oxide in the acrylic resin (Nb 2 O 5), it is possible to reduce the refractive index change by a temperature change. By using a resin material in which such inorganic particles are dispersed as the material of the lens portion, it is possible to suppress the characteristic fluctuation when the temperature changes.
 次に、屈折率の温度による変化Aについて詳細に説明する。屈折率の温度による変化Aは、ローレンツ・ローレンツの式に基づいて、屈折率nを温度tで微分することにより、以下の式(FA)で表される。 Next, the change A due to the temperature of the refractive index will be described in detail. The change A due to the temperature of the refractive index is expressed by the following equation (FA) by differentiating the refractive index n with respect to the temperature t based on the Lorentz-Lorentz equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 …(FA)
 ただし、式(FA)中、
α:線膨張係数、
[R]:分子屈折、
である。
... (FA)
However, in formula (FA),
α: linear expansion coefficient,
[R]: molecular refraction,
It is.
 樹脂材料の場合は、一般に式(FA)中の第1項に比べて第2項の寄与が小さく、ほぼ無視することができる。例えば、PMMA(polymethyl methacrylate)樹脂の場合、線膨張係数αは7×10-5であり、上記式(FA)に代入すると、A=-1.2×10-4[/℃]となり、実測値と概ね一致する。具体的には、従来は-1.2×10-4[/℃]程度であった屈折率の温度による変化Aを、絶対値で8×10-5[/℃]未満に抑えることが好ましい。また、絶対値で6×10-5[/℃]未満に抑えることができれば更に好ましい。 In the case of a resin material, the contribution of the second term is generally smaller than that of the first term in the formula (FA) and can be almost ignored. For example, in the case of PMMA (polymethyl methacrylate) resin, the linear expansion coefficient α is 7 × 10 −5 , and when substituted into the above formula (FA), A = −1.2 × 10 −4 [/ ° C.] It almost agrees with the value. Specifically, it is preferable to suppress the change A due to the temperature of the refractive index, which was conventionally about −1.2 × 10 −4 [/ ° C.], to an absolute value of less than 8 × 10 −5 [/ ° C.]. . Further, it is more preferable if the absolute value can be suppressed to less than 6 × 10 −5 [/ ° C.].
 本発明に係る撮像レンズは、携帯端末等の画像入力機能付きデジタル機器への使用に適しており、これを撮像素子等と組み合わせることにより、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像装置を構成することができる。撮像装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を備えることにより構成される。そして、撮像素子の受光面上に被写体の光学像が形成されるように、前述した特徴的構成を有する撮像レンズが配置されることにより、低コストで高い性能を有する撮像装置やそれを備えたデジタル機器(例えば、携帯端末)を実現することができる。 The imaging lens according to the present invention is suitable for use in a digital device with an image input function such as a portable terminal, and by combining this with an imaging device or the like, an image of a subject is optically captured as an electrical signal. An imaging apparatus that outputs the image can be configured. The imaging device is an optical device that constitutes the main component of a camera used for still image shooting and moving image shooting of a subject. For example, an imaging lens that forms an optical image of an object in order from the object (that is, subject) side, And an imaging device that converts an optical image formed by the imaging lens into an electrical signal. Then, an imaging lens having the above-described characteristic configuration is arranged so that an optical image of a subject is formed on the light receiving surface of the imaging element, and an imaging device having high performance at low cost and the same are provided. A digital device (for example, a portable terminal) can be realized.
 カメラの例としては、デジタルカメラ、ビデオカメラ、監視カメラ、車載カメラ、テレビ電話用カメラ等が挙げられ、また、パーソナルコンピュータ、携帯端末(例えば、携帯電話、モバイルコンピュータ等の小型で携帯可能な情報機器端末)、これらの周辺機器(スキャナー、プリンター等)、その他のデジタル機器等に内蔵又は外付けされるカメラが挙げられる。これらの例から分かるように、撮像装置を用いることによりカメラを構成することができるだけでなく、各種機器に撮像装置を搭載することによりカメラ機能を付加することが可能である。例えば、カメラ付き携帯電話等の画像入力機能付きデジタル機器を構成することが可能である。 Examples of the camera include a digital camera, a video camera, a surveillance camera, an in-vehicle camera, a videophone camera, and the like, and also a personal computer, a mobile terminal (for example, a mobile phone, a mobile computer, etc., small and portable information) Apparatus terminals), peripheral devices (scanners, printers, etc.), cameras incorporated in or external to other digital devices, and the like. As can be seen from these examples, it is possible not only to configure a camera by using an imaging device, but also to add a camera function by mounting the imaging device on various devices. For example, a digital device with an image input function such as a mobile phone with a camera can be configured.
 図5に、画像入力機能付きデジタル機器の一例として、携帯端末DUの概略構成例を模式的断面で示す。図5に示す携帯端末DUに搭載されている撮像装置LUは、物体(被写体)側から順に、物体の光学像(像面)IMを形成する撮像レンズLN(AX:光軸)と、平行平面板PT(撮像素子SRのカバーガラス等に相当する。)と、撮像レンズLNにより受光面SS上に形成された光学像IMを電気的な信号に変換する撮像素子SRと、を備えている。この撮像装置LUで画像入力機能付きの携帯端末DUを構成する場合、通常そのボディ内部に撮像装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像装置LUを携帯端末DUの本体に対して着脱自在又は回動自在に構成することが可能である。 FIG. 5 shows a schematic cross-sectional example of a mobile terminal DU as an example of a digital device with an image input function. The imaging device LU mounted on the portable terminal DU shown in FIG. 5 includes an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object, and a parallel plane in order from the object (subject) side. A face plate PT (corresponding to a cover glass or the like of the image pickup element SR) and an image pickup element SR that converts an optical image IM formed on the light receiving surface SS by the image pickup lens LN into an electrical signal are provided. When a mobile terminal DU having an image input function is configured by the imaging device LU, the imaging device LU is usually arranged inside the body. However, when realizing the camera function, a form as necessary is adopted. It is possible. For example, the unitized imaging device LU can be configured to be detachable or rotatable with respect to the main body of the portable terminal DU.
 撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が用いられる。撮像レンズLNは、撮像素子SRの受光面SS上に被写体の光学像IMが形成されるように設けられているので、撮像レンズLNによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。 As the image sensor SR, for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the imaging lens LN is provided so that an optical image IM of the subject is formed on the light receiving surface SS of the imaging element SR, the optical image IM formed by the imaging lens LN is electrically converted by the imaging element SR. Converted to a signal.
 携帯端末DUは、撮像装置LUの他に、信号処理部1、制御部2、メモリ3、操作部4、表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリ3(半導体メモリ,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。制御部2はマイクロコンピュータを有しており、撮影機能、画像再生機能等の機能制御、フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影、動画撮影のうちの少なくとも一方を行うように、制御部2により撮像装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリ3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン)、操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The portable terminal DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, the signal is transmitted to another device through a cable or converted into an infrared signal. The control unit 2 has a microcomputer, and centrally performs function control such as a photographing function and an image reproduction function, control of a lens moving mechanism for focusing, and the like. For example, the control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 includes operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by an operator to the control unit 2.
 撮像レンズLNは、前述したようにレンズブロックを少なくとも2ブロック含み(物体側から順に、第nレンズブロックCn(n=1、2、…)から成る。)、撮像素子SRの受光面SS上に光学像IMを形成する構成になっている。撮像レンズLNで形成されるべき光学像は、例えば、撮像素子SRの画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルター(図5中の平行平面板PTに相当する。)を通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。これにより、色モアレの発生を抑えることができる。ただし、解像限界周波数周辺の性能を抑えてやれば、光学的ローパスフィルターを用いなくてもノイズの発生を懸念する必要がなく、また、ノイズがあまり目立たない表示系(例えば、携帯電話の液晶画面等)を用いてユーザーが撮影や鑑賞を行う場合には、光学的ローパスフィルターを用いる必要はない。 As described above, the imaging lens LN includes at least two lens blocks (consisting of an nth lens block Cn (n = 1, 2,... In order from the object side)) on the light receiving surface SS of the imaging element SR. An optical image IM is formed. The optical image to be formed by the imaging lens LN is, for example, an optical low-pass filter (corresponding to the parallel flat plate PT in FIG. 5) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. By passing, the spatial frequency characteristic is adjusted so that so-called aliasing noise generated when converted into an electrical signal is minimized. Thereby, generation | occurrence | production of a color moire can be suppressed. However, if the performance around the resolution limit frequency is suppressed, there is no need to worry about the generation of noise without using an optical low-pass filter, and a display system in which noise is not noticeable (for example, a liquid crystal of a mobile phone) When a user performs shooting or viewing using a screen or the like, it is not necessary to use an optical low-pass filter.
 撮像レンズLNのフォーカスは、アクチュエータを用いてレンズユニット全体を光軸AX方向に移動させてもよいし、レンズの一部を光軸AX方向に移動させてもよい。例えば、第1レンズブロックC1のみでフォーカスしてやれば、アクチュエータの小型化が可能である。また、レンズを光軸方向に移動させてフォーカスさせなくても、撮像素子SRに記録された情報から、ソフトウェアによって焦点深度を深くする処理等を行うことによって、フォーカス機能を実現してもよい。その場合、アクチュエータは必要なく、小型化と低コスト化を同時に実現することができる。 The focus of the imaging lens LN may move the entire lens unit in the optical axis AX direction using an actuator, or may move a part of the lens in the optical axis AX direction. For example, if focusing is performed only with the first lens block C1, the actuator can be downsized. Further, the focus function may be realized by performing a process of increasing the depth of focus by software from the information recorded in the image sensor SR without focusing the lens by moving the lens in the optical axis direction. In that case, the actuator is not necessary, and the miniaturization and the cost reduction can be realized at the same time.
 撮像レンズLNは、格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることが望ましい。例えば、全てのレンズがレンズブロックから成る撮像レンズLNでは、被写体像IMを形成する撮像レンズLN又はそれを含む撮像装置LUを複数製造する製造方法において、格子状のスペーサ部材を介してレンズ基板同士をシールする工程と、一体化されたレンズ基板及びスペーサ部材をそのスペーサ部材の格子枠で切断する工程と、を備えることにより、容易に生産することが可能となる。これにより、安価な撮像レンズの量産が可能となる。 The imaging lens LN includes a step of sealing the lens substrates with a lattice-shaped spacer member, and a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member. Preferably, the lens block is manufactured by a method. For example, in the imaging lens LN in which all the lenses are formed of lens blocks, in a manufacturing method for manufacturing a plurality of imaging lenses LN that form the subject image IM or imaging devices LU including the imaging lens LN, the lens substrates are connected to each other via a lattice spacer member. Can be easily produced by providing the step of sealing the lens substrate and the step of cutting the integrated lens substrate and spacer member with the lattice frame of the spacer member. Thereby, mass production of an inexpensive imaging lens becomes possible.
 撮像レンズLNを複数製造する製造方法には、例えばリフロー法やレプリカ法が用いられる。リフロー法では、CVD(Chemical Vapor Deposition)法による低軟化点ガラス成膜を行い、リソグラフィーとドライエッチングによる微細加工を行い、熱処理によるガラスリフローを行うことにより、ガラス基板上に多数のレンズが同時に作製される。レプリカ法では、レンズウェハ上に硬化性の樹脂を用いて金型で同時に大量のレンズ形状を転写することにより、多数のレンズが同時に作製される。いずれの方法によっても、多数のレンズを同時に作製することができるので、低コスト化が可能である。例えば、上述の方法で製造した異なるレンズ(レンズ基板上にレンズ部を作製して、1個ずつ切り離したもので、レンズ部が異なる2つのレンズ)を、平板部分同士で貼り合わせると、第1のレンズ部、第1の平行平板、第2の平行平板、第2のレンズ部の順に配列されたレンズブロックとなる。 For example, a reflow method or a replica method is used as a manufacturing method for manufacturing a plurality of imaging lenses LN. In the reflow method, a low softening point glass film is formed by the CVD (Chemical Vapor Deposition) method, fine processing is performed by lithography and dry etching, and glass reflow is performed by heat treatment, so that a large number of lenses are simultaneously formed on the glass substrate. Is done. In the replica method, a large number of lenses are simultaneously formed on a lens wafer by transferring a large amount of lens shapes with a mold using a curable resin. In any method, a large number of lenses can be manufactured at the same time, so that the cost can be reduced. For example, when different lenses manufactured by the above-described method (two lenses having different lens parts manufactured by producing lens parts on a lens substrate and separated one by one) are bonded to each other, the first Lens block, a first parallel flat plate, a second parallel flat plate, and a second lens unit.
 図6に、撮像レンズLNの製造工程の一例を概略断面図で示す。ただし、ここでは説明を簡単にするため3ブロック構成の場合(ただし、第3レンズブロックC3は省略する。)を例に挙げるが、4ブロック以上から成る撮像レンズLNの場合も同様にして製造することができる。第1レンズブロックC1は、平行平板から成る第1レンズ基板L12と、その一方の平面に形成された複数の第1物体側レンズ部L11と、他方の平面に形成された複数の第1像側レンズ部L13と、で構成されている。第1レンズ基板L12は1枚の平行平板で構成してもよく、上述したように2枚の平行平板を貼り合わせて構成してもよい。第2レンズブロックC2は、平行平板から成る第2レンズ基板L22と、その一方の平面に接着された複数の第2物体側レンズ部L21と、で構成されている。第1レンズ基板L12と同様、第2レンズ基板L22は1枚の平行平板で構成してもよく、上述したように2枚の平行平板を貼り合わせて構成してもよい。 FIG. 6 is a schematic sectional view showing an example of the manufacturing process of the imaging lens LN. However, here, in order to simplify the description, a case of a three-block configuration (however, the third lens block C3 is omitted) will be described as an example, but an imaging lens LN consisting of four or more blocks is manufactured in the same manner. be able to. The first lens block C1 includes a first lens substrate L12 made of a parallel plate, a plurality of first object side lens portions L11 formed on one plane thereof, and a plurality of first image sides formed on the other plane. And a lens portion L13. The first lens substrate L12 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above. The second lens block C2 includes a second lens substrate L22 made of a parallel plate and a plurality of second object side lens portions L21 bonded to one of the planes. Similar to the first lens substrate L12, the second lens substrate L22 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above.
 第3レンズブロック(不図示)に関しても、第1、第2レンズブロックC1、C2と同様にして構成されるが、いずれかのレンズ基板には前述のIRカットフィルター膜が形成される。例えば、後述する第1、第2の実施の形態のように、第3レンズ基板L32の片面にはIRカットフィルター膜CT(図1、図2)が施される。 The third lens block (not shown) is also configured in the same manner as the first and second lens blocks C1 and C2, but the above-described IR cut filter film is formed on any lens substrate. For example, as in first and second embodiments described later, an IR cut filter film CT (FIGS. 1 and 2) is applied to one surface of the third lens substrate L32.
 格子状のスペーサ部材B1は、各レンズブロック間隔を規定して一定に保つものであり、3段格子になっていて、格子の穴の部分に各レンズ部分が配置されている。基板B2は、マイクロレンズアレイを含むウェハレベルのセンサーチップサイズパッケージ、あるいはセンサーカバーガラス等の平行平面板(図5中の平行平面板PTに相当するもの)である。基板B2上でスペーサ部材B1を介してレンズ基板同士をシールし、一体化された第1レンズ基板L12、第2レンズ基板L22、第3レンズ基板(不図示)及びスペーサ部材B1を、スペーサ部材B1の格子枠(破線Qの位置)で切断すると、3ブロック構成の撮像レンズLNが複数得られる。このように、第1レンズブロックC1、第2レンズブロックC2及び第3レンズブロック(不図示)が複数組まれた状態から撮像レンズLNを切り離すようにすれば、レンズ間隔の調整や組み立てを撮像レンズLN毎に行う必要が無いので大量生産が可能となる。しかも、スペーサ部材B1を格子形状にすることにより、それを切り離す際の印とすることができる。これは本技術分野における趣旨に添うものであり、安価なレンズ系の量産に寄与することができる。 The grid-like spacer member B1 defines a distance between the lens blocks and keeps the lens block constant. The grid-like spacer member B1 is a three-stage grid, and each lens portion is disposed in a hole portion of the grid. The substrate B2 is a wafer level sensor chip size package including a microlens array, or a plane parallel plate such as a sensor cover glass (corresponding to the plane parallel plate PT in FIG. 5). The lens substrates are sealed on the substrate B2 via the spacer member B1, and the first lens substrate L12, the second lens substrate L22, the third lens substrate (not shown), and the spacer member B1 integrated with each other are separated from the spacer member B1. When cutting at a grid frame (position of broken line Q), a plurality of imaging lenses LN having a three-block configuration are obtained. As described above, when the imaging lens LN is separated from a state where a plurality of first lens blocks C1, second lens blocks C2, and third lens blocks (not shown) are assembled, adjustment and assembly of the lens interval can be performed. Since it is not necessary to carry out every LN, mass production becomes possible. In addition, by making the spacer member B1 into a lattice shape, it can be used as a mark when separating it. This is in accordance with the gist of the present technical field, and can contribute to mass production of an inexpensive lens system.
 次に、第1、第2の実施の形態を挙げて、撮像レンズLNの具体的な光学構成を更に詳しく説明する。図1、図2に、撮像レンズLNの第1、第2の実施の形態のレンズ構成をそれぞれ光学断面で示す。各実施の形態の撮像レンズLNはいずれも、撮像素子SR(図5)に対して光学像IMを形成する撮像用(例えば携帯端末用)の単焦点レンズである。第1、第2の実施の形態では、物体側から順に、第1レンズブロックC1と、第2レンズブロックC2と、第3レンズブロックC3と、の3つのレンズブロックで撮像レンズLNが構成されている。 Next, the specific optical configuration of the imaging lens LN will be described in more detail with reference to the first and second embodiments. FIGS. 1 and 2 show the lens configurations of the first and second embodiments of the imaging lens LN in optical cross sections, respectively. The imaging lens LN of each embodiment is a single focus lens for imaging (for example, for a portable terminal) that forms an optical image IM with respect to the imaging element SR (FIG. 5). In the first and second embodiments, the imaging lens LN is configured by three lens blocks of the first lens block C1, the second lens block C2, and the third lens block C3 in order from the object side. Yes.
 第1、第2の実施の形態において、各レンズブロックC1~C3は、物体側から順に以下のように構成されている。第1レンズブロックC1では、第1物体側レンズ部L11、第1レンズ基板L12及び第1像側レンズ部L13の順に配列されている。第2レンズブロックC2では、第2物体側レンズ部L21及び第2レンズ基板L22の順に配列されている。第3レンズブロックC3では、第3レンズ基板L32及び第3像側レンズ部L33の順に配列されている。また、第3レンズ基板L32において、第3像側レンズ部L33が形成されている基板面の裏面には、IRカットフィルター膜CTが形成されている。 In the first and second embodiments, the lens blocks C1 to C3 are configured as follows in order from the object side. In the first lens block C1, the first object side lens portion L11, the first lens substrate L12, and the first image side lens portion L13 are arranged in this order. In the second lens block C2, the second object side lens portion L21 and the second lens substrate L22 are arranged in this order. In the third lens block C3, the third lens substrate L32 and the third image side lens portion L33 are arranged in this order. In the third lens substrate L32, an IR cut filter film CT is formed on the back surface of the substrate surface on which the third image side lens portion L33 is formed.
 第1~第3レンズブロックC1~C3のパワー配置は近軸で正負負であり、レンズ面は全て非球面から成っている。第n物体側レンズ部Ln1と第nレンズ基板Ln2とでは屈折率が異なっており、第nレンズ基板Ln2と第n像側レンズ部Ln3とでは屈折率が異なっている。 The power arrangements of the first to third lens blocks C1 to C3 are paraxial and positive and negative, and the lens surfaces are all aspherical. The nth object side lens portion Ln1 and the nth lens substrate Ln2 have different refractive indexes, and the nth lens substrate Ln2 and the nth image side lens portion Ln3 have different refractive indexes.
 第1レンズ基板L12の物体側面上には、開口絞りSTが配置されている。レンズ基板上に絞り位置を設定することは、量産性の向上や低コスト化の達成に効果があり、偏心に対する性能劣化の低減も可能となる。また、第1レンズ基板L12の物体側面上に開口絞りSTを配置することは、テレセントリック性の向上に有効である。 An aperture stop ST is disposed on the object side surface of the first lens substrate L12. Setting the aperture position on the lens substrate is effective in improving mass productivity and reducing costs, and can also reduce performance deterioration due to eccentricity. In addition, disposing the aperture stop ST on the object side surface of the first lens substrate L12 is effective in improving telecentricity.
 第3レンズブロックC3に設けられているIRカットフィルター膜CTに対向する面には、有効径外に樹脂でスペーサを形成してもよい。図7に、レンズ部の有効径外にスペーサ機能を有するタイプの実施の形態を示す。この撮像レンズLNは、第2の実施の形態において、平行平板から成る第2像側レンズ部L23を第2レンズブロックC2に有する構成になっている。そして、第2像側レンズ部L23の有効径外には、スペーサ部分SPが形成されている。このように、隣り合って位置するレンズブロックに対する空気間隔が、レンズ部の有効径外に形成されたスペーサ部分で調整されることが望ましい。スペーサ部分SPで空気間隔を調整することにより、同一基板上に配置された複数のレンズモジュールの空気間隔調整を一括して行うことができる。したがって、コストの低減を効果的に行うことができる。 A spacer may be formed of resin outside the effective diameter on the surface facing the IR cut filter film CT provided in the third lens block C3. FIG. 7 shows an embodiment of a type having a spacer function outside the effective diameter of the lens portion. In the second embodiment, the imaging lens LN has a configuration in which the second lens block C2 includes a second image side lens portion L23 made of a parallel plate. A spacer portion SP is formed outside the effective diameter of the second image side lens portion L23. As described above, it is desirable that the air gap between the adjacent lens blocks is adjusted by the spacer portion formed outside the effective diameter of the lens portion. By adjusting the air interval with the spacer portion SP, the air interval of a plurality of lens modules arranged on the same substrate can be collectively adjusted. Therefore, cost can be effectively reduced.
 撮像レンズLNの最終面に、第3レンズブロックC3の第3像側レンズ部L33を設けることにより、よりコンパクトな構成で、像面湾曲の補正、及び、画面周辺部での撮像面への光線入射角度を適切な大きさにすることが可能となる。 By providing the third image side lens portion L33 of the third lens block C3 on the final surface of the imaging lens LN, correction of field curvature and light rays to the imaging surface at the periphery of the screen can be achieved with a more compact configuration. The incident angle can be set to an appropriate size.
 以下、本発明を実施した撮像レンズの構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1、2は、前述した第1、第2の実施の形態にそれぞれ対応する数値実施例であり、第1、第2の実施の形態を表す光学構成図(図1、図2)は、対応する実施例1、2のレンズ構成をそれぞれ示している。 Hereinafter, the configuration and the like of the imaging lens embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 and 2 listed here are numerical examples corresponding to the first and second embodiments, respectively, and are optical configuration diagrams showing the first and second embodiments (FIGS. 1 and 2). 2) shows the lens configurations of the corresponding Examples 1 and 2, respectively.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号,曲率半径r(mm)、軸上での面間隔d(mm)、d線(波長:587.56nm)に関する屈折率nd、d線に関するアッベ数vdを示す。面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、全てのデータに関してE-nは、×10-nであることを示す。
z=(c×h)/[1+{1-(1+K)×c×h1/2]+Σ(Aj×h) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h=x+y)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
c:面頂点での曲率(曲率半径rの逆数)、
K:円錐定数、
Aj:j次の非球面係数、
である。
In the construction data of each example, as surface data, in order from the left column, the surface number, the radius of curvature r (mm), the surface spacing d (mm) on the axis, and the refraction with respect to the d-line (wavelength: 587.56 nm). The Abbe number vd with respect to rate nd and d line is shown. A surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. . As aspheric data, an aspheric coefficient or the like is shown. Incidentally, the coefficient of the term no notation in the aspherical surface data of the embodiment is 0, E-n for all data indicate that a × 10 -n.
z = (c × h 2 ) / [1+ {1− (1 + K) × c 2 × h 2 } 1/2 ] + Σ (Aj × h j ) (AS)
However,
h: height (h 2 = x 2 + y 2 ) in a direction perpendicular to the z-axis (optical axis AX),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
c: curvature at the surface vertex (the reciprocal of the radius of curvature r),
K: conic constant,
Aj: j-order aspheric coefficient,
It is.
 各種データとして、焦点距離(f、mm)、Fナンバー(Fno.)、半画角(ω、°)、像高(y’max、mm)、レンズ全長(TL、mm)、バックフォーカス(BF、mm)を示す。バックフォーカスは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており、レンズ全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。さらに、レンズブロックデータとして各レンズブロックの近軸での焦点距離を示し、また、各実施例において条件式(2)に対応する値及びそれ関連するデータを表1に示す。 As various data, focal length (f, mm), F number (Fno.), Half angle of view (ω, °), image height (y′max, mm), total lens length (TL, mm), back focus (BF) , Mm). In the back focus, the distance from the lens final surface to the paraxial image surface is expressed by an air conversion length, and the total lens length is obtained by adding the back focus to the distance from the lens front surface to the lens final surface. Furthermore, the paraxial focal length of each lens block is shown as lens block data, and the values corresponding to the conditional expression (2) and related data in each embodiment are shown in Table 1.
 図3、図4はそれぞれ実施例1、2の収差図(無限遠合焦状態)である。図3、図4のそれぞれにおいて、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。球面収差図は、実線で示すd線(波長587.56nm)に対する球面収差量、一点鎖線で示すC線(波長656.28nm)に対する球面収差量、破線で示すg線(波長435.84nm)に対する球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(単位:mm、横軸スケール:-0.200~0.200mm)で表しており、縦軸は瞳への入射高さをその最大高さで規格化した値(すなわち相対瞳高さ)を表している。非点収差図において、破線Tはd線に対するタンジェンシャル像面、実線Sはd線に対するサジタル像面を、近軸像面からの光軸AX方向のズレ量(単位:mm、横軸スケール:-0.200~0.200mm)で表しており、縦軸は像高(IMG HT、単位:mm)を表している。歪曲収差図において、横軸はd線に対する歪曲(単位:%、横軸スケール:-5.0~5.0%)を表しており、縦軸は像高(IMG HT、単位:mm)を表している。なお、像高IMG HTの最大値は、像面IMにおける最大像高y’max(撮像素子SRの受光面SSの対角長の半分)に相当する。 3 and 4 are aberration diagrams of Examples 1 and 2 (in-focus state), respectively. 3 and 4, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C) is a distortion diagram. The spherical aberration diagram shows the amount of spherical aberration with respect to the d-line (wavelength 587.56 nm) indicated by the solid line, the amount of spherical aberration with respect to the C-line (wavelength 656.28 nm) indicated by the alternate long and short dash line, and the g-line (wavelength 435.84 nm) indicated by the broken line. The amount of spherical aberration is represented by the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: −0.200 to 0.200 mm), and the vertical axis represents the height of incidence on the pupil. A value obtained by normalizing the height by the maximum height (that is, the relative pupil height) is represented. In the astigmatism diagram, the broken line T is the tangential image plane with respect to the d line, the solid line S is the sagittal image plane with respect to the d line, and the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal scale: The vertical axis represents the image height (IMG HT, unit: mm). In the distortion diagram, the horizontal axis represents the distortion with respect to the d-line (unit:%, horizontal axis scale: -5.0 to 5.0%), and the vertical axis represents the image height (IMG HT, unit: mm). Represents. The maximum value of the image height IMG HT corresponds to the maximum image height y′max on the image plane IM (half the diagonal length of the light receiving surface SS of the image sensor SR).
 図1、図2にそれぞれ示す実施例1、2の撮像レンズLNは、物体側から順に、近軸で物体側に凸の形状を有する第1物体側レンズ部L11、開口絞りST、第1レンズ基板L12及び近軸で像側に凹の形状を有する第1像側レンズ部L13から成る第1レンズブロックC1と、近軸で物体側に凹の形状を有する第2物体側レンズ部L21及び第2レンズ基板L22から成る第2レンズブロックC2と、第3レンズ基板L32及び近軸で像側に凹の形状を有する第3像側レンズ部L33から成る第3レンズブロックC3と、で構成されている。また、空気と接する全てのレンズ部の面は非球面形状を成している。 The imaging lenses LN of Examples 1 and 2 shown in FIGS. 1 and 2, respectively, in order from the object side, a first object-side lens portion L11 having a paraxial convex shape on the object side, an aperture stop ST, and a first lens A first lens block C1 including a substrate L12 and a first image-side lens portion L13 having a concave shape on the image side with a paraxial axis, a second object-side lens portion L21 having a concave shape on the object side with a paraxial shape and a first axis. A second lens block C2 including a two-lens substrate L22, and a third lens block C3 including a third lens substrate L32 and a third image-side lens portion L33 having a paraxial concave shape on the image side. Yes. In addition, the surfaces of all the lens portions in contact with air have an aspheric shape.
 (実施例1)
単位:mm
 面データ
面番号  r     d   nd    νd
物面   ∞     ∞
1*   0.7537   0.3049  1.520   60.00
2(絞り)  ∞    0.3000  1.517   65.26
3     ∞    0.0880  1.580   40.00
4*   2.0355   0.2773
5*   -2.7244   0.0500  1.580   40.00
6     ∞    0.4756  1.517   65.26
7     ∞    0.0500
8     ∞    0.5242  1.517   65.26
9     ∞    0.4000  1.580   40.00
10* 1220.3090   0.2000
11    ∞    0.3500  1.471   65.20
12    ∞    0.0878
像面   ∞
 非球面データ
第1面
K=-0.3653,
A4= 1.5292E-02, A6= 1.4772E+00, A8=-6.3118E+00, A10= 1.1507E+01,
第4面
K=10.2658,
A4= 4.5056E-01, A6=-7.5131E-01, A8= 1.5895E+01, A10=-9.6312E+01,
第5面
K= 6.7493,
A4=-7.8989E-01, A6= 2.7821E+00, A8=-2.3786E+01, A10= 1.2869E+02,
第10面
K=30.0000,
A4=-4.2587E-02, A6= 1.6568E-01, A8=-4.2494E-01, A10= 4.3711E-01,
 各種データ
焦点距離f 2.651
FナンバーFno. 2.70
半画角ω 32.06
像高y'max 1.76
レンズ全長TL 3.108
バックフォーカスBF 0.53
 レンズブロックデータ
ブロック  面   焦点距離
1     1- 4    2.023
2     5- 7    -4.697
3     8-10  -2103.981
 (実施例2)
単位:mm
 面データ
面番号  r     d   nd    νd
物面   ∞     ∞
1*   0.7983   0.3518  1.520   60.00
2(絞り)  ∞    0.3000  1.517   65.26
3     ∞    0.0668  1.580   40.00
4*   2.1267   0.3458
5*   -2.6139   0.1890  1.580   40.00
6     ∞    0.3697  1.517   65.26
7     ∞    0.1200
8     ∞    0.5000  1.517   65.26
9     ∞    0.4388  1.580   40.00
10*   26.4629   0.0513
11    ∞    0.4500  1.516   64.14
12    ∞    0.0560
像面   ∞
 非球面データ
第1面
K=-0.7676,
A4= 7.3872E-02, A6= 1.5402E+00, A8=-5.2706E+00, A10= 9.4368E+00,
A12= 0.0000E+00, A14= 0.0000E+00, A16= 0.0000E+00,
第4面
K= 8.8070,
A4= 2.4493E-01, A6=-8.1297E-01, A8= 6.8594E+00, A10=-6.2622E+00,
A12= 0.0000E+00, A14= 0.0000E+00, A16= 0.0000E+00,
第5面
K=-13.9883,
A4=-3.8338E-01, A6=-1.1242E+00, A8= 7.2035E+00, A10=-3.3860E+01,
A12= 5.0951E+01, A14=-2.9532E+00, A16=-8.3835E+01,
第10面
K=49.9978,
A4=-7.1285E-02, A6= 3.9890E-02, A8=-2.8143E-02, A10= 6.7296E-03,
A12= 0.0000E+00, A14= 0.0000E+00, A16= 0.0000E+00,
 各種データ
焦点距離f 2.830
FナンバーFno. 2.88
半画角ω 30.74
像高y'max 1.76
レンズ全長TL 3.239
バックフォーカスBF 0.40
 レンズブロックデータ
ブロック  面   焦点距離
1     1- 4   2.162
2     5- 7  -5.027
3     8-10  -45.626
Example 1
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.7537 0.3049 1.520 60.00
2 (Aperture) ∞ 0.3000 1.517 65.26
3 ∞ 0.0880 1.580 40.00
4 * 2.0355 0.2773
5 * -2.7244 0.0500 1.580 40.00
6 ∞ 0.4756 1.517 65.26
7 ∞ 0.0500
8 ∞ 0.5242 1.517 65.26
9 ∞ 0.4000 1.580 40.00
10 * 1220.3090 0.2000
11 ∞ 0.3500 1.471 65.20
12 ∞ 0.0878
Image plane ∞
Aspheric data first surface
K = -0.3653,
A4 = 1.5292E-02, A6 = 1.4772E + 00, A8 = -6.3118E + 00, A10 = 1.1507E + 01,
4th page
K = 10.2658,
A4 = 4.5056E-01, A6 = -7.5131E-01, A8 = 1.5895E + 01, A10 = -9.6312E + 01,
5th page
K = 6.7493,
A4 = -7.8989E-01, A6 = 2.7821E + 00, A8 = -2.3786E + 01, A10 = 1.2869E + 02,
10th page
K = 30.0000,
A4 = -4.2587E-02, A6 = 1.6568E-01, A8 = -4.2494E-01, A10 = 4.3711E-01,
Various data focal lengths f 2.651
F number Fno. 2.70
Half angle of view ω 32.06
Statue height y'max 1.76
Total lens length TL 3.108
Back focus BF 0.53
Lens block data block surface Focal length
1 1- 4 2.023
2 5- 7 -4.697
3 8-10 -2103.981
(Example 2)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.7983 0.3518 1.520 60.00
2 (Aperture) ∞ 0.3000 1.517 65.26
3 ∞ 0.0668 1.580 40.00
4 * 2.1267 0.3458
5 * -2.6 139 0.1890 1.580 40.00
6 ∞ 0.3697 1.517 65.26
7 ∞ 0.1200
8 ∞ 0.5000 1.517 65.26
9 ∞ 0.4388 1.580 40.00
10 * 26.4629 0.0513
11 ∞ 0.4500 1.516 64.14
12 ∞ 0.0560
Image plane ∞
Aspheric data first surface
K = -0.7676,
A4 = 7.3872E-02, A6 = 1.5402E + 00, A8 = -5.2706E + 00, A10 = 9.4368E + 00,
A12 = 0.0000E + 00, A14 = 0.0000E + 00, A16 = 0.0000E + 00,
4th page
K = 8.8070,
A4 = 2.4493E-01, A6 = -8.1297E-01, A8 = 6.8594E + 00, A10 = -6.2622E + 00,
A12 = 0.0000E + 00, A14 = 0.0000E + 00, A16 = 0.0000E + 00,
5th page
K = -13.9883,
A4 = -3.8338E-01, A6 = -1.1242E + 00, A8 = 7.2035E + 00, A10 = -3.3860E + 01,
A12 = 5.0951E + 01, A14 = -2.9532E + 00, A16 = -8.3835E + 01,
10th page
K = 49.9978,
A4 = -7.1285E-02, A6 = 3.9890E-02, A8 = -2.8143E-02, A10 = 6.7296E-03,
A12 = 0.0000E + 00, A14 = 0.0000E + 00, A16 = 0.0000E + 00,
Various data focal length f 2.830
F number Fno. 2.88
Half angle of view ω 30.74
Statue height y'max 1.76
Total lens length TL 3.239
Back focus BF 0.40
Lens block data block surface Focal length
1 1- 4 2.162
2 5- 7 -5.027
3 8-10 -45.626
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 DU 携帯端末
 LU 撮像装置
 LN 撮像レンズ
 Cn 第nレンズブロック
 Ln1 第n物体側レンズ部
 Ln2 第nレンズ基板
 Ln3 第n像側レンズ部
 ST 開口絞り(絞り)
 SR 撮像素子
 SS 受光面
 IM 像面(光学像)
 AX 光軸
 B1 スペーサ部材
 SP スペーサ部分
 1 信号処理部
 2 制御部
 3 メモリ
 4 操作部
 5 表示部
DU portable terminal LU imaging device LN imaging lens Cn nth lens block Ln1 nth object side lens unit Ln2 nth lens substrate Ln3 nth image side lens unit ST aperture stop (aperture)
SR Image sensor SS Light-receiving surface IM Image surface (optical image)
AX Optical axis B1 Spacer member SP Spacer part 1 Signal processing part 2 Control part 3 Memory 4 Operation part 5 Display part

Claims (10)

  1.  平行平板のレンズ基板と、
     前記レンズ基板の物体側面及び像側面のうちの少なくとも一方に、前記レンズ基板と異なる材料で形成され、正又は負のパワーを有するレンズ部と、
     を備えるレンズブロックを少なくとも2ブロック含む撮像レンズであって、
     少なくとも1つの前記レンズブロックが、該レンズブロックのレンズ基板の一方の面のみにレンズ部を有し、他方の面にIRカットフィルター膜を有することを特徴とする撮像レンズ。
    A parallel plate lens substrate;
    A lens portion formed of a material different from that of the lens substrate on at least one of the object side surface and the image side surface of the lens substrate, and having a positive or negative power;
    An imaging lens including at least two lens blocks including:
    An imaging lens, wherein at least one of the lens blocks has a lens portion only on one surface of a lens substrate of the lens block and an IR cut filter film on the other surface.
  2.  前記IRカットフィルター膜を有するレンズブロックに対峙し、該IRカットフィルター膜から空気間隔を隔てて隣接して配置されているレンズブロックのレンズ基板の前記IRカットフィルター膜に対向する一方の面には、レンズ部が設けられていないか、又は、他方の面に設けられているレンズ部よりも弱いパワーを有するレンズ部が設けられていることを特徴とする請求項1記載の撮像レンズ。 Opposite to the lens block having the IR cut filter film, on one surface of the lens substrate of the lens block arranged adjacent to the IR cut filter film with an air gap facing the IR cut filter film, 2. The imaging lens according to claim 1, wherein the lens unit is not provided, or a lens unit having a weaker power than the lens unit provided on the other surface is provided.
  3.  最も像面側のレンズブロックのレンズ基板の像面側にレンズ部を有することを特徴とする請求項1記載の撮像レンズ。 The imaging lens according to claim 1, further comprising a lens portion on the image plane side of the lens substrate of the lens block closest to the image plane side.
  4.  以下の条件式を満足することを特徴とする請求項1から3のいずれか1項に記載の撮像レンズ。
    0.08<BF/DI<0.16
     ただし、
    BF:バックフォーカス量、
    DI:イメージサークルの直径、
    である。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.08 <BF / DI <0.16
    However,
    BF: Back focus amount,
    DI: Diameter of the image circle,
    It is.
  5.  最も像面側のレンズブロックと、該レンズブロックの物体側に隣り合って位置するレンズブロックとの間の空気間隔を構成する少なくとも一方の光学面に、IRカットフィルター膜を有することを特徴とする請求項1から4のいずれか1項に記載の撮像レンズ。 An IR cut filter film is provided on at least one optical surface constituting an air space between a lens block closest to the image plane and a lens block located adjacent to the object side of the lens block. The imaging lens according to any one of claims 1 to 4.
  6.  互いに隣り合って位置するレンズブロックに対する空気間隔が、該レンズブロックが有するレンズ部の有効径外に形成されたスペーサ部分で調整されていることを特徴とする請求項1から5のいずれか1項に記載の撮像レンズ。 6. The air space between lens blocks positioned adjacent to each other is adjusted by a spacer portion formed outside the effective diameter of a lens portion included in the lens block. The imaging lens described in 1.
  7.  前記レンズ基板がガラス材料から成ることを特徴とする請求項1から6のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 6, wherein the lens substrate is made of a glass material.
  8.  格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることを特徴とする請求項1から7のいずれか1項に記載の撮像レンズ。 The lens includes: a step of sealing the lens substrates through a lattice-shaped spacer member; and a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member. The imaging lens according to claim 1, wherein a block is manufactured.
  9.  請求項1から8のいずれか1項に記載の撮像レンズと、
     前記撮像レンズにより受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備えていることを特徴とする撮像装置。
    The imaging lens according to any one of claims 1 to 8,
    An image pickup apparatus comprising: an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal.
  10.  請求項9記載の撮像装置を備えたことを特徴とする携帯端末。 A portable terminal comprising the imaging device according to claim 9.
PCT/JP2010/054208 2009-05-18 2010-03-12 Image pickup lens, image pickup device, and portable terminal WO2010134376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514358A JPWO2010134376A1 (en) 2009-05-18 2010-03-12 Imaging lens, imaging device, and portable terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009119614 2009-05-18
JP2009-119614 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134376A1 true WO2010134376A1 (en) 2010-11-25

Family

ID=43126065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054208 WO2010134376A1 (en) 2009-05-18 2010-03-12 Image pickup lens, image pickup device, and portable terminal

Country Status (2)

Country Link
JP (1) JPWO2010134376A1 (en)
WO (1) WO2010134376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246265A1 (en) * 2019-06-07 2020-12-10 オムロン株式会社 Optical assembly for three-dimensional measurement device and three-dimensional measurement device equipped with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162829A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Wide angle imaging lens and imaging apparatus
JP2007017974A (en) * 2005-07-06 2007-01-25 Ashu Kogaku Kofun Yugenkoshi Miniaturized lens assembly and method for making the same
WO2008102776A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
WO2008102775A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162829A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Wide angle imaging lens and imaging apparatus
JP2007017974A (en) * 2005-07-06 2007-01-25 Ashu Kogaku Kofun Yugenkoshi Miniaturized lens assembly and method for making the same
WO2008102776A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
WO2008102775A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246265A1 (en) * 2019-06-07 2020-12-10 オムロン株式会社 Optical assembly for three-dimensional measurement device and three-dimensional measurement device equipped with same
JP2020201331A (en) * 2019-06-07 2020-12-17 オムロン株式会社 Optical assembly for three-dimensional measuring apparatus and three-dimensional measuring apparatus including the same

Also Published As

Publication number Publication date
JPWO2010134376A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5321954B2 (en) Imaging lens, imaging device, and portable terminal
JP4831222B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP5212354B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP4513924B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
WO2010010891A1 (en) Image pickup lens, image pickup device and portable terminal device
JP2011017764A (en) Imaging lens, imaging apparatus and portable terminal
JP4760109B2 (en) Imaging lens, imaging device, and portable terminal
JP5311043B2 (en) An imaging lens, an imaging device, a portable terminal, an imaging lens manufacturing method, and an imaging device manufacturing method.
WO2009101928A1 (en) Lens unit, image capturing lens, image capturing device, and portable terminal
WO2011118554A1 (en) Imaging lens, imaging optical device, and digital equipment
JP5434093B2 (en) Imaging lens, imaging device, and portable terminal
JP2011227362A (en) Imaging lens capable of shifting image, imaging optical device, and digital equipment
JP2011028213A (en) Image pickup lens, image pickup device and mobile terminal device
JP5648689B2 (en) Imaging lens and imaging apparatus
WO2010047178A1 (en) Imaging lens, imaging device, and portable terminal
WO2012160983A1 (en) Imaging lens, imaging device, and mobile terminal
WO2009101971A1 (en) Imaging lens, imaging device and portable terminal
JP2010266815A (en) Imaging lens, image capturing apparatus and mobile terminal
JP5391822B2 (en) Imaging lens, imaging device, and portable terminal
JP5267773B2 (en) IMAGING LENS, IMAGING DEVICE, DIGITAL DEVICE, AND IMAGING LENS MANUFACTURING METHOD
WO2010087084A1 (en) Image pickup lens, image pickup apapratus, and portable terminal
WO2010134376A1 (en) Image pickup lens, image pickup device, and portable terminal
WO2010140415A1 (en) Image taking lens, image taking device, and portable terminal
JP2010271340A (en) Imaging lens, imaging apparatus and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777612

Country of ref document: EP

Kind code of ref document: A1