WO2010134296A1 - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
WO2010134296A1
WO2010134296A1 PCT/JP2010/003224 JP2010003224W WO2010134296A1 WO 2010134296 A1 WO2010134296 A1 WO 2010134296A1 JP 2010003224 W JP2010003224 W JP 2010003224W WO 2010134296 A1 WO2010134296 A1 WO 2010134296A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact tool
gear
shaft
output shaft
torque
Prior art date
Application number
PCT/JP2010/003224
Other languages
French (fr)
Japanese (ja)
Inventor
ストーンエドウィン
ジョン ローリンズフィリップ
リー クロスリーピーター
田辺晴之
田頭康範
Original Assignee
リョービ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0908645.5A external-priority patent/GB0908645D0/en
Priority claimed from GBGB0915483.2A external-priority patent/GB0915483D0/en
Application filed by リョービ株式会社 filed Critical リョービ株式会社
Priority to CN201080016096.0A priority Critical patent/CN102387896B/en
Priority to JP2011514319A priority patent/JP5496190B2/en
Publication of WO2010134296A1 publication Critical patent/WO2010134296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket

Definitions

  • the present invention relates to a power tool, and more particularly to an improved impact tool that applies impact torque.
  • a rotation mechanism including a hammer 10 and an anvil 11 is generally used.
  • the hammer 10 is connected to the input shaft via a cam mechanism, and is rotated by a motor until it collides with an anvil 11 connected to a fastener to be tightened.
  • the output shaft rotates by a predetermined amount due to the transmission of angular momentum.
  • the hammer 10 decelerates due to the collision with the anvil 11, the hammer 10 is separated from the anvil 11 by the cam mechanism, whereby the hammer 10 is accelerated again and can repeat the collision operation.
  • Patent Document 1 As a prior art document disclosing the conventional impact tool provided with the above-described hammer 10 or the like, for example, there is the following Patent Document 1 or the like.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to enable a variable output rotational motion including intermittent motion and forward / reverse motion for a constant input rotational motion.
  • the object is to address these problems by using a constantly meshing gearbox including non-circular gears.
  • An impact tool is an impact tool that provides a rotational motion having a periodically changing angular velocity and / or torque designed to be connected to a ground at a given condition, wherein the angular velocity and / or Or an input shaft providing a rotational motion in which the torque is substantially constant during one revolution, an output shaft in which the angular velocity varies as a function of the angle of the input shaft, and the rotational motion of the input shaft as the output shaft.
  • Two pairs including a first gear pair (1, 2) associated with the input shaft and a second gear pair (3, 4) associated with the output shaft.
  • a gear box including the above gears (1, 2, 3, 4), and the gears (1, 2, 3, 4) have radiuses r 1 ( ⁇ ) and r 2 ( ⁇ ) of pitch circles, respectively.
  • r (Theta), and r 4 have a (theta)
  • the theta is represents the angular position of the planetary shaft (7) connecting the gear (2) and a wheel (3)
  • the radius of 4 is at least an angle range of 0 ⁇ ⁇ ⁇ 2 ⁇
  • the output cycle frequency is sqrt (2 ⁇ (1-2 ⁇ )) wn Is preferably set to be larger than the calculation cycle frequency defined by Note that “sqrt” in the above equation indicates a square root (the same applies hereinafter).
  • the impact tool according to the present invention is an impact tool that provides a rotational motion having a periodically changing angular velocity and / or torque designed to be connected to a ground under a given condition, And / or an input shaft that provides a rotational motion in which the torque is substantially constant during one revolution, an output shaft in which the angular velocity varies as a function of the angle of the input shaft, and the rotational motion of the input shaft
  • a drive train for transmitting to the output shaft comprising: a first gear pair (1, 2) associated with the input shaft; and a second gear pair (3, 4) associated with the output shaft.
  • a gear box having two or more pairs of gears (1, 2, 3, 4), a rotational natural vibration of a system including a damping ratio ⁇ and a connection wn to an impact tool and ground
  • the output cycle frequency, sqrt (2 ⁇ (1-2 ⁇ )) wn It is set so that it may become larger than the calculation cycle frequency defined by.
  • the connection to the ground is provided by a user, and the output cycle frequency is a frequency greater than 14 Hz.
  • the impact tool is used for tightening a screw, and the forward rotation motion (rotational motion in the tightening direction of the screw) of the output shaft is caused by the tool member and the screw.
  • the forward rotation motion rotational motion in the tightening direction of the screw
  • the impact tool according to the present invention is configured such that, when in use, the cycle frequency is substantially larger than the natural frequency of the entire system.
  • the time during which the output shaft is rotating and the time during which the output shaft is stopped in order to reduce the torque acting on the ground can be set freely.
  • the output torque for sensing the torque on the input side and calculating the torque on the output side using the known gear ratio and information on the angular position of the system therefrom may be further provided.
  • the impact tool is used for tightening a screw, and avoids separating the tool member from the screw during a driving period between non-driving periods.
  • the rotation angle of the output shaft can be configured to be sufficiently small.
  • the impact tool is used for tightening a screw, and a reverse rotation angle of the output shaft is slightly separated between the tool member and the screw during a driving period. Thereafter, the tool member and the screw can be re-engaged.
  • the rotating body (186) included in the gear box has a planetary shaft (7 (174)) connecting the gear (2 (173)) and the gear (3 (172)).
  • the balance weight part (186a) for balancing with can be provided.
  • FIG. 1 is a conceptual diagram for explaining the configuration of a non-circular gearbox according to the present embodiment.
  • FIG. 2 is a graph showing the gear ratio as a function of the input angle ⁇ .
  • FIG. 3 is a diagram illustrating a form in which the non-circular gears of the present embodiment are arranged in a planetary gear box configuration.
  • FIG. 4 is a diagram showing a general screw head and an end face of a screw driving bit.
  • FIG. 5 is a block diagram illustrating the configuration of the impact tool according to this embodiment.
  • FIG. 6 is a graph showing the relationship between the natural frequency and the cycle frequency of the entire system according to this embodiment.
  • FIG. 7 is a diagram showing another example embodiment that can be taken by the present invention.
  • FIG. 1 is a conceptual diagram for explaining the configuration of a non-circular gearbox according to the present embodiment.
  • FIG. 2 is a graph showing the gear ratio as a function of the input angle ⁇ .
  • FIG. 3 is a diagram illustrating
  • FIG. 8 is a diagram showing still another embodiment example that the present invention can take.
  • FIG. 9 is a diagram showing an example of a non-circular planetary gear / non-circular sun gear pair for realizing the present invention.
  • FIG. 10 is a vertical cross-sectional right side view showing the overall configuration of the impact tool according to the present embodiment.
  • FIG. 11 is an exploded exploded perspective view of a main part for explaining a main part configuration of the impact tool according to the present embodiment.
  • FIG. 12 is a diagram showing a non-circular planetary gear according to the present embodiment, where (a) in the drawing shows a rear side surface, and (b) in the drawing shows a cross section.
  • FIG. 10 is a vertical cross-sectional right side view showing the overall configuration of the impact tool according to the present embodiment.
  • FIG. 11 is an exploded exploded perspective view of a main part for explaining a main part configuration of the impact tool according to the present embodiment.
  • FIG. 12 is a diagram showing a non-cir
  • FIG. 13 is a view showing a non-circular sun gear with an output shaft according to the present embodiment, in which (a) in the drawing shows a rear side surface and (b) in the drawing shows a cross section.
  • FIG. 14 is a diagram for explaining a noise measurement method.
  • FIG. 15 is a diagram showing still another embodiment example that can be taken by the present invention.
  • FIG. 16 is a diagram illustrating a rotation mechanism composed of a hammer and an anvil generally used as means for realizing intermittent drive.
  • FIG. 5 is a block diagram illustrating the configuration of the impact tool according to the present embodiment.
  • the impact tool according to this embodiment uses, for example, a motor (electromagnetic, pneumatic, or other power) coupled to a conventional gear box 25 by a motor shaft 16 to achieve desired average torque characteristics and average speed characteristics. Motor 14).
  • a motor electromagnettic, pneumatic, or other power
  • the input shaft 26 installed in the gear box 25 provides driving force to the non-circular gear box 18 including non-circular gears, and then the non-circular gear box 18 drives the output shaft 17.
  • the ratio between the input angular velocity and the output angular velocity of the non-circular gear box 18 can be expressed as a function of the angle of the input shaft 26.
  • the output shaft 17 is generally separably connected to a mechanical fastener such as a nut or screw that is a target for transmitting impact torque.
  • FIG. 1 is a conceptual diagram for explaining a configuration of a non-circular gear box 18 according to the present embodiment.
  • the non-circular gearbox 18 includes an input gear 23 and an output gear 24, each of which has a radius that varies over their entire circumference.
  • ⁇ 1 is the input angular velocity provided by the input shaft 26 installed in the conventional gearbox 25
  • R is the gear ratio
  • ⁇ 2 is the output angular velocity of the output shaft 17.
  • r 1 is the radius of the pitch circle of the input gear 23
  • r 2 is the radius of the pitch circle of the output gear 24.
  • a constant speed input provides an output speed that varies with both the angle and time of the input shaft 26.
  • the torque is T 1 as input torque and T 2 as output torque.
  • T 2 T 1 / R ( ⁇ ) This varying gear ratio makes it possible to provide a varying torque output.
  • the output cycle frequency is sqrt (2 ⁇ (1-2 ⁇ )) wn (“Calculated cycle frequency range (Calculated Cycle Frequency Range) ”) Is set to be larger than
  • is the damping ratio
  • wn is the rotational natural frequency of the system including the impact tool and the connection to the ground 21.
  • this calculation cycle frequency range can be shown to be a frequency greater than 14 Hz.
  • a further improvement of this embodiment is that the above-described non-circular gears 23 and 24 are arranged in a planetary gear box configuration.
  • the pair of circular gears 1 and 2 can be combined with a pair of non-circular gears 3 and 4.
  • the configuration shown in FIG. 3 is reversed so that the pair of gears indicated by reference numerals 1 and 2 are non-circular gears and the pair of gears indicated by reference numerals 3 and 4 are circular gears. You can also. Further, all the gears can be non-circular gears.
  • the input shaft 5 is rigidly connected to the drive arm 6.
  • the drive arm 6 rotates by the same amount.
  • the planetary shaft 7 circulates around the axis of the input shaft 5 with a constant radius.
  • Planetary shaft 7 rotates freely about its own axis when driven by drive arm 6.
  • the driven planetary gear 2 is rigidly connected to the planetary shaft 7.
  • the angle of the planetary shaft 7 is called ⁇ .
  • the driven planetary gear 2 moves around the stationary sun gear 1
  • the driven planetary gear 2 thereby rotates about its axis, thereby driving the rotation of the planetary shaft 7.
  • This rotation drives the drive planetary gear 3 rigidly connected to the planetary shaft 7.
  • the drive planetary gear 3 then rotates the output sun gear 4 thereby driving the rotation of the output shaft 27.
  • the inertia associated with the input shaft 5 accelerates during the non-driving period and decelerates during the driving period.
  • the torque at the output shaft 27 is a combination of, for example, a drive torque provided by a motor and a reaction to inertia deceleration. Therefore, such a configuration makes it possible to apply a higher torque than direct driving by a motor.
  • the dependent form of the gear pitch circle radius can be chosen so that the speed increases slowly enough. By increasing the speed relatively slowly, very high accelerations are avoided, resulting in a reduction in noise and vibration.
  • the continuous drive of screwing may cause a disconnection of the connection between the output shaft interface (often referred to as “bit”) and the driven part (screw head), This is a phenomenon known in the art as “cam-out”.
  • bit and screw head separation in a given cycle is avoided by first advancing by a small amount during each drive cycle.
  • the bit and screw head re-engage, limiting or preventing camout over multiple cycles. This is shown in FIG. FIG. 4 shows an end view of a typical screw head 8 and screw drive bit 9. They are initially well aligned and during drive they begin to separate, and after the drive period, reverse rotation facilitates re-engagement.
  • the motor 14 can transmit torque to the case 15 by a certain method, for example, electromagnetic field or air pressure.
  • the motor 14 drives a non-circular gearbox 18 of one of the types described above via a connecting shaft (motor shaft 16).
  • This non-circular gearbox 18 is mechanically or otherwise connected to the case 15 and the output shaft 17 and from there to a certain tool member 22.
  • the “cycle period” of the output shaft 17 at the peak torque transmitted to the ground 21 (the reciprocal of this is the “cycle frequency”). ) Can be achieved.
  • this system is considered to be fixed to the ground 21 by a system approximate to the torsion spring 12 and the torsion damper 13, for example, a human arm, and has a certain rotational inertia
  • the natural frequency and cycle frequency of the entire system Determines the peak torque applied to ground 21.
  • the ground 21 receives the same peak torque that the tool member 22 receives.
  • the cycle frequency and the natural frequency of the system converge, the peak torque received by the ground 21 further increases. However, when the cycle frequency increases beyond the natural frequency of the entire system, the torque received by the ground 21 becomes lower than the peak torque.
  • FIG. 6 shows this effect at a natural frequency of 14 Hz
  • the y-axis shows the “transmission rate” defined as the ratio of the output force to the input force, and is shown in dB. Therefore, by appropriately selecting the gear type, the cycle frequency can be selected to achieve this advantageous behavior.
  • the magnitude of the transmitted torque is determined by the ratio of the time during which the output shaft 17 is rotating and the time during which the output shaft 17 is stopped. Since the entire impact must be stored between the ground 21 and the tool member 22, if a high torque is applied to the tool member 22 for a short time, this is applied to the ground 21 for a longer time. Can be balanced with the much lower torques that are available.
  • the impact tool according to the present embodiment has means for allowing the ratio of the time during which the output shaft 17 is rotating and the time during which the output shaft 17 is stopped to be freely set in order to reduce the torque acting on the ground. By providing, the torque on the output side can be controlled.
  • the configuration based on this embodiment has a correlation between input torque and output torque.
  • the input side torque can be sensed and the output side torque can be calculated therefrom using the known gear ratio and information about the angular position of the system.
  • the impact tool according to the present embodiment further includes means for indirectly sensing the output torque, whereby the output side torque can be calculated.
  • the present invention includes electronic torque sensing.
  • This embodiment described above is that it is less noisy than existing impact tools due to the removal of the impact mechanism and more gradual acceleration of the output shaft. Similarly, this embodiment reduces vibrations created by the device. Furthermore, this embodiment has a low loss by replacing the highly impaired collision and sliding contact with the rolling contact of the gear. This further provides the advantage of low wear and even longer life.
  • the impact tool according to this embodiment described above can provide benefits to power tools in general including a driver drill and an impact driver. Furthermore, such a system can be used when a rotary reciprocation is required, for example in the case of a hedge trimming machine.
  • the present embodiment can be applied to other devices, particularly a reciprocating saw device, by using a rack and pinion to realize a simple “rotation-linear” conversion.
  • another advantage of this embodiment is that the characteristics of the device based on this embodiment allow higher output torque than a prior art direct drive device such as a driver drill for a given combination of motor and gearbox.
  • the device size can be reduced when the torques are equal.
  • the use of the impact mechanism of this embodiment further reduces the torque applied by the device to the mechanical “ground (eg user)” for a given output torque when compared to a direct drive device such as a driver drill. Can be made.
  • contact may be lost (such as threading a screw using a bit)
  • this causes loss of engagement because reversal allows re-engagement between the bit and the screw head. Can be avoided.
  • FIG. 1 A specific embodiment suitable for many applications including, for example, use as a replacement tool for a type of power tool known as an impact driver is shown in FIG.
  • the input shaft 71 drives a rotator 78 in which the planetary shaft 74 is mounted, and the planetary shaft 74 is free to rotate about its own axis.
  • a circular planetary gear 73 and a non-circular planetary gear 72 are mounted on the planetary shaft 74. These gears 72 and 73 are connected to each other. When a considerable torque capacity from the gear box is required, the gears 72 and 73 are preferably connected by being integrally formed.
  • the circular planetary gear 73 is rotated by the action of a circular sun gear 76 connected to the mechanical ground.
  • the non-circular planetary gear 72 is driven by the circular planetary gear 73.
  • the non-circular planetary gear 72 drives the non-circular sun gear 75.
  • the non-circular sun gear 75 is connected to the output shaft 77 and drives the output shaft 77.
  • FIG. 7 has considerable advantages over the configuration shown in FIG.
  • the vertical load at both ends of the planetary shaft 74 is reduced for a given moment applied to the planetary shaft 74, forming a higher strength gearbox, and more Enables a lighter and more compact gearbox structure.
  • this configuration allows the circular planetary gear 73 and the non-circular planetary gear 72 to be formed as a single part without having to accommodate a bearing between these gears 72,73. Since a considerable torque is transmitted between the gears 72 and 73, the strength of the unit is increased by this configuration.
  • FIG. 8 shows an additional reduction gearbox constructed directly on the rotating body 86.
  • the input shaft 85 drives a sun gear 81, which acts on one or more planetary gears 82, which travel in a circular internal gear 84 connected to ground.
  • a shaft 83 of the planetary gear 82 provides rotational drive about the axis of the rotator 86. Further, the shaft 83 can be conveniently installed on the rotating body 86. This achieves considerable simplification and size reduction compared to installing an additional separate reduction gearbox at the input of the configuration shown in FIG.
  • each gear 91, 92 has 14 teeth of a substantially similar module.
  • the output shaft reference numeral 77 in FIG. 7 and reference numeral 87 in FIG. 8 is rotated forward by 95 degrees, and thereafter, the output shafts 77 and 87 are reversed by 10 degrees.
  • the forward rotation angle and the reverse rotation angle of the output shafts 77 and 87 described above vary depending on the configuration conditions of the gear group constituting the present invention.
  • the fact that the reverse angle of the output shafts 77 and 87 is generally about 10 degrees is merely an example of representative numerical values.
  • the configuration shown in FIG. 8 can be used.
  • the pitch circle diameter of the circular sun gear 81 is 5 mm
  • the pitch circle diameter of the circular planetary gear 82 is 17.5 mm
  • the pitch circle diameter of the circular internal gear 84 is 40 mm
  • the speed is reduced between the input shaft 85 and the rotating body 86.
  • a ratio of 9: 1 is achieved.
  • the input shaft 85 is rotated at 14,000 rpm (a non-anomalous speed of a prior art motor used with similar power tools)
  • the drive / reverse cycle occurs at 34 Hz.
  • the mechanism for limiting and preventing the cam-out phenomenon over a plurality of cycles has been described with reference to FIG. That is, in this embodiment, the bit and screw head separation in a given cycle is avoided by first rotating it forward by a small amount during each driving cycle. Furthermore, even if they begin to separate during driving, re-engagement can be facilitated by reverse rotation after the driving period. Further, it has been described that these operations are realized by a two-gear drive train or the like that is always meshed and installed in the non-circular gear box 18. However, further suitable improvements can be made to the above-described embodiments, for example, the output shaft between non-drive periods to avoid separating the tool member from the screw during the drive period.
  • the rotation angle is sufficiently small.
  • the reverse angle of the output shaft is configured to re-engage the tool member and the screw after a slight separation between the tool member and the screw during the driving period. is there. Such improvement makes it possible to reliably prevent the cam-out phenomenon.
  • FIG. 15 is shown as a modification of the embodiment shown in FIG.
  • the non-circular planetary gear 72 and the non-circular sun gear 75 are arranged on the output shaft 77 side, and the circular planetary gear 73 and the circular sun gear 76 are arranged on the input shaft 71 side.
  • a rotating body 78 is installed at the tip of the input shaft 71.
  • the planetary shaft 74 attached to the rotating body 78 performs planetary motion.
  • This planetary shaft 74 rotates freely about its own axis.
  • a non-circular planetary gear 72 and a circular planetary gear 73 are mounted on the planetary shaft 74. These gears 72 and 73 are connected and fixed to each other with respect to the planetary shaft 74.
  • the circular planetary gear 73 is rotated by the action of a circular sun gear 76 connected to the mechanical ground. Therefore, the non-circular planetary gear 72 is rotationally driven as the circular planetary gear 73 rotates. As a result, the non-circular planetary gear 72 drives the non-circular sun gear 75.
  • the output shaft 77 Since the output shaft 77 is connected to the non-circular sun gear 75, the output shaft 77 is rotationally driven as the non-circular sun gear 75 is rotationally driven. Note that the embodiment shown in FIG. 15 has the advantage that the balance of rotational motion is good because a plurality of non-circular planetary gears 72 are arranged so as to be symmetrical with respect to the non-circular sun gear 75. Yes.
  • FIG. 10 is a vertical cross-sectional right side view showing the overall configuration of the impact tool according to the present embodiment.
  • FIG. 11 is an exploded exploded perspective view of a main part for explaining a main part configuration of the impact tool according to the present embodiment.
  • FIG. 12 is a diagram showing a non-circular planetary gear according to the present embodiment
  • FIG. 13 is a diagram showing a non-circular sun gear with an output shaft according to the present embodiment. (B) in a figure has shown the cross section.
  • the impact tool 100 is a battery-type impact tool 100, and is detachably attached to a housing 110 that houses a drive source such as a motor 111 and a lower end portion of the housing 110. And a battery pack 130 for supplying driving power to the motor 111.
  • the housing 110 includes a housing upper body 110a that houses the drive mechanism 115 corresponding to the motor 111 and the non-circular gear box 18 according to the above-described embodiment, a housing central body 110b that receives a grip from the user, and a battery pack 130. And a housing lower body 110c having a connection mechanism. Power wiring is provided from the housing lower body 110 c to the housing upper body 110 a via the housing central body 110 b, so that driving power charged in the battery pack 130 can be supplied to the motor 111. Further, an operation switch 112 is provided on the upper front side of the housing central body 110b, and a user who holds the housing central body 110b can operate the operation switch 112 suitably.
  • the drive mechanism 115 installed in front of the motor 111 is a specific implementation of the mechanism of the present invention described with reference to FIGS. That is, the drive mechanism 115 according to the present embodiment includes a sun gear 181 connected to a motor shaft 111a included in the motor 111, two planetary gears 182 and 182 meshingly connected around the sun gear 181 and two planetary gears.
  • the gears 182 and 182 further include a circular internal gear 184 that surrounds the outer periphery.
  • the motor shaft 111a rotates by supplying electric power to the motor 111, the motor shaft 111a drives the sun gear 181.
  • the sun gear 181 acts on the two planetary gears 182 and 182, and the planetary gears 182 and 182 It moves in the circular internal gear 184 connected to the housing upper body 110a.
  • a rotating body 186 is installed in front of the two planetary gears 182 and 182.
  • the shaft 183 of the planetary gear 182 is connected to this rotating body 186 and provides rotational drive about the axis of the rotating body 186.
  • a planetary shaft 174 is installed at a position eccentric from the rotation center of the rotating body 186.
  • the planetary shaft 174 is installed in a form that is accommodated inside the rotating body 186, and both shaft ends of the planetary shaft 174 are bearings 174 a and 174 b such as needle bearings installed in the rotating body 186. It is pivotally supported by.
  • the planetary shaft 174 is provided with a circular planetary gear 173 at the front shaft end and a non-circular planetary gear 172 at the rear shaft end. These gears 172 and 173 are rigidly connected to each other, and can rotate freely around the axis of the planetary shaft 174.
  • the circular planetary gear 173 meshes with a circular sun gear 176 fixedly connected to the housing upper body 110a as a mechanical ground. That is, when the rotating body 186 is driven to rotate by the rotation of the two planetary gears 182 and 182, the planetary shaft 174 circulates around the circular sun gear 176, and as a result, the circular sun gear 176 that is fixedly installed.
  • the circular planetary gear 173 rotates and revolves around.
  • the non-circular planetary gear 172 is also rotated in the same manner. Since the non-circular planetary gear 172 meshes with the non-circular sun gear 175 connected to the output shaft 177, the non-circular sun gear 175 is rotationally driven in accordance with the rotational drive of the non-circular planetary gear 172, and as a result As a result, the output shaft 177 is rotationally driven. Note that the rotation axis center of the output shaft 177 connected to the non-circular sun gear 175 overlaps the rotation center axis of the rotating body 186.
  • the shaft end on the rear side of the output shaft 177 is supported by a bearing installed in the rotating body 186, and the shaft end on the front side is connected to the bit holder 179. Therefore, a tool such as a driver installed in the bit holder 179 rotates in accordance with the rotational drive of the output shaft 177 so that the work can be performed on the outside.
  • the rotating body 186 is rotationally driven in accordance with the planetary movement of the planetary gear 182, but the planetary shaft 174 installed therein is eccentrically installed. Further, the planetary shaft 174 is provided with weight members such as a non-circular planetary gear 172 and a circular planetary gear 173. Therefore, in order for the rotator 186 to preferably rotate, it is necessary to provide a balance weight for balancing with a weight member such as the planetary shaft 174. Therefore, in the rotating body 186 according to the present embodiment, as shown in FIG. 11, the balance body portion having a half structure at the center of the body of the rotating body and having a half structure at a position facing the installation position of the planetary shaft 174. The structure which provides 186a was employ
  • the motor shaft 111a is rotationally driven by the drive of the motor 111, and the rotational force of the motor shaft 111a rotates the sun gear 181.
  • the sun gear 181 rotates
  • the two planetary gears 182 and 182 installed between the sun gear 181 and the circular internal gear 184 perform planetary motion. Since the shaft 183 of the planetary gear 182 is connected to the rotating body 186, the rotating body 186 is rotationally driven by the planetary gears 182 and 182 performing planetary motion.
  • the circular planetary gear 173 is rotated by the action of the circular sun gear 176 fixedly connected to the housing upper body 110a. It is rotationally driven in the same manner as the planetary gear 173. Since the non-circular planetary gear 172 and the circular planetary gear 173 are installed with respect to the planetary shaft 174 installed inside the rotating body 186, the two gears 172 and 173 move around the axis of the planetary shaft 174. While rotating freely, the rotary body 186 rotates around the rotation center axis.
  • the non-circular planetary gear 172 that performs planetary movement is engaged with the non-circular sun gear 175, and the output shaft 177 is connected to the non-circular sun gear 175. Then, since the non-circular sun gear 175 rotates in accordance with the planetary motion of the non-circular planet gear 172, the rotational driving force is transmitted to the output shaft 177, and a predetermined torque can be applied to the outside. ing.
  • the output shaft 177 is caused by the action of the non-circular planetary gear 172 and the non-circular sun gear 175 which are two non-circular gears.
  • reverse operation is performed in a predetermined cycle period. By such an operation, a suitable effect such as prevention of come-out can be obtained.
  • the impact tool 100 has a configuration in which a mechanism as an impact tool is realized by a plurality of non-circular gears. It has the favorable advantage of low noise at times. This advantage is made clear by the analysis result of the comparative measurement of noise using the conventional impact tool and the impact tool 100 of the present embodiment shown in FIG. 14 and Table 1.
  • FIG. 14 is a diagram for explaining a noise measurement method.
  • the noise measurement method implemented this time is to measure the noise generated when a wood screw of ⁇ 4.5 ⁇ 90 mm is fastened to a test piece 190 made of dry rice pine (Dry Pine).
  • the measurement position of the noise was set to a position 1 m away from the impact tool with respect to the rear direction, left direction, upper direction, and lower direction of the impact tool.
  • an A characteristic frequency weighted sound pressure level (A weighted sound pressure level) is added.
  • the impact tool used for the noise measurement is an impact tool including the impact tool 100 according to the present embodiment described with reference to FIG. 10 and the like, the conventional hammer 10 represented by the above-mentioned Patent Document 1, and the like.
  • Table 1 shows the measurement results of noise measured based on the above conditions.
  • Table 1 is a table comparing noise measurement results under load.
  • the impact tool 100 according to the present example had a lower noise level at all measurement positions than the impact tool (impact driver) according to the prior art. Further, even when the average values of the measured noise results are compared, the impact tool 100 according to the present embodiment achieves lower noise with a difference of 5.0 dB (A), and the superiority of the present invention is achieved. confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Drilling And Boring (AREA)
  • Portable Power Tools In General (AREA)

Abstract

Disclosed is an impact tool which is a power tool that is designed to be connected to the ground under a given condition and provides a rotational motion with an angular speed and/or torque which changes periodically. The impact tool is configured such that when gears (1, 2, 3, 4) respectively have pitch circle radii r1(Θ), r2(Θ), r3(Θ) and r4(Θ), Θ represents the angular position of a planet shaft (7) which connects the gear (2) and the gear (3), and the radii of the gears (1, 2, 3, 4) fall within the angular range of at least 0≤Θ≤2π, a drive train is configured so as to satisfy the following inequality: r1(Θ)·r3(Θ)/ r2(Θ)·r4(Θ)>1, and thereby the direction of the rotation of an output shaft is reversed during at least some part of a drive cycle. The impact tool which resolves conventional problems including high noise, high vibration, high loss, and high abrasion can be provided by the abovementioned configuration.

Description

インパクト工具Impact tools
 本発明は、動力工具に関し、詳細には衝撃トルクを加える改良型のインパクト工具に関する。 The present invention relates to a power tool, and more particularly to an improved impact tool that applies impact torque.
 ナット、ボルト、ねじなどの締結具にトルクを加える一般的な動力工具は、連続駆動又は断続駆動の手段を使用する。連続駆動と比較すると、断続駆動に基づく断続的な出力回転を提供するインパクト工具は、より高いピークトルクを締結具に加えることができ、それと同時に、ユーザに与えるトルク(反動)を比較的低くすることができる。また、この種のインパクト工具は、工具サイズがコンパクトであるという利点を有しており、さらに、断続駆動を実現する構成は、一般的に、木材にねじを螺入するなどの用途において、駆動部分(ビット)と被駆動部分(ねじ頭)との間の係合を維持するのに役立つ。これは、駆動部分(ビット)の非駆動期間中に、駆動部分(ビット)と被駆動部分(ねじ頭)とが再係合することによる。 ¡General power tools that apply torque to fasteners such as nuts, bolts, and screws use either continuous drive or intermittent drive means. Compared to continuous drive, impact tools that provide intermittent output rotation based on intermittent drive can apply higher peak torque to the fastener, while at the same time providing relatively low torque (rebound) to the user. be able to. In addition, this type of impact tool has the advantage that the tool size is compact, and the configuration that realizes intermittent drive is generally used in applications such as screwing screws into wood. It helps to maintain the engagement between the part (bit) and the driven part (screw head). This is because the drive portion (bit) and the driven portion (screw head) are re-engaged during the non-drive period of the drive portion (bit).
 断続駆動を実現する手段としては、一般的に、ハンマ10及びアンビル11から成る回転機構(図16参照)が利用されている。ハンマ10は、入力シャフトにカム機構を介して接続されており、そこから締め付け対象の締結具に接続されたアンビル11に衝突するまで、モータによって回転させられる。衝撃を受けたとき、出力シャフトは、角運動量の伝達によって所定量だけ回転する。アンビル11への衝突によりハンマ10が減速するとカム機構により、ハンマ10はアンビル11から分離され、それにより、ハンマ10は再び加速して衝突動作を繰り返すことができる。 As a means for realizing intermittent driving, a rotation mechanism (see FIG. 16) including a hammer 10 and an anvil 11 is generally used. The hammer 10 is connected to the input shaft via a cam mechanism, and is rotated by a motor until it collides with an anvil 11 connected to a fastener to be tightened. When subjected to an impact, the output shaft rotates by a predetermined amount due to the transmission of angular momentum. When the hammer 10 decelerates due to the collision with the anvil 11, the hammer 10 is separated from the anvil 11 by the cam mechanism, whereby the hammer 10 is accelerated again and can repeat the collision operation.
 なお、上述したハンマ10等を備えた従来のインパクト工具を開示する先行技術文献として、例えば下記特許文献1等が存在している。 In addition, as a prior art document disclosing the conventional impact tool provided with the above-described hammer 10 or the like, for example, there is the following Patent Document 1 or the like.
特開2000-42936号公報JP 2000-42936 A 米国特許第3424021号明細書US Pat. No. 3,342,021
 しかしながら、上述した断続駆動の手段を使用するインパクト工具の問題点は、それらの工具が一般的に、高騒音、高振動、高減損及び高摩耗を伴うことである。 However, the problem with impact tools that use the intermittent drive means described above is that they are typically accompanied by high noise, high vibration, high loss and high wear.
 本発明は、上記問題点の存在に鑑みて成されたものであって、その目的は、一定の入力回転運動に対して、断続運動及び正逆転運動を含む変化する出力回転運動を可能にする非円形歯車を含む常時噛み合い式のギヤボックスを用いることによって、これらの問題点に対処することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to enable a variable output rotational motion including intermittent motion and forward / reverse motion for a constant input rotational motion. The object is to address these problems by using a constantly meshing gearbox including non-circular gears.
 以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照番号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。 Hereinafter, the present invention will be described. In addition, in order to make an understanding of this invention easy, the reference number of an accompanying drawing is attached in parenthesis writing, However, This invention is not limited to the form of illustration by it.
 本発明に係るインパクト工具は、グラウンドに所与の条件で接続されるように設計された周期的に変化する角速度及び/又はトルクを有する回転運動を提供するインパクト工具であって、前記角速度及び/又はトルクが1回転の期間中実質的に一定である回転運動を提供する入力シャフトと、前記角速度が前記入力シャフトの角度の関数として変化する出力シャフトと、前記入力シャフトの回転運動を前記出力シャフトに伝達する駆動列であって、前記入力シャフトに関連づけられた第1の歯車対(1、2)と、前記出力シャフトに関連づけられた第2の歯車対(3、4)とを含む2対以上の歯車(1、2、3、4)を備えるギヤボックスと、を含み、前記歯車(1、2、3、4)が、それぞれピッチ円の半径r(Θ)、r(Θ)、r(Θ)及びr(Θ)を有し、前記Θが、歯車(2)と歯車(3)とを接続する遊星シャフト(7)の角度位置を表し、前記歯車(1、2、3、4)の半径が、少なくとも0≦Θ≦2πの角度範囲であるとき、下記不等式、
 r(Θ)・r(Θ)/r(Θ)・r(Θ)>1
を満足するように前記駆動列が構成されることで、駆動サイクルの少なくともある部分の間において前記出力シャフトの回転方向が逆転することを特徴とする。
An impact tool according to the present invention is an impact tool that provides a rotational motion having a periodically changing angular velocity and / or torque designed to be connected to a ground at a given condition, wherein the angular velocity and / or Or an input shaft providing a rotational motion in which the torque is substantially constant during one revolution, an output shaft in which the angular velocity varies as a function of the angle of the input shaft, and the rotational motion of the input shaft as the output shaft. Two pairs including a first gear pair (1, 2) associated with the input shaft and a second gear pair (3, 4) associated with the output shaft. A gear box including the above gears (1, 2, 3, 4), and the gears (1, 2, 3, 4) have radiuses r 1 (Θ) and r 2 (Θ) of pitch circles, respectively. , r (Theta), and r 4 have a (theta), the theta is represents the angular position of the planetary shaft (7) connecting the gear (2) and a wheel (3), the gears (1, 2, 3, When the radius of 4) is at least an angle range of 0 ≦ Θ ≦ 2π, the following inequality:
r 1 (Θ) · r 3 (Θ) / r 2 (Θ) · r 4 (Θ)> 1
By configuring the drive train so as to satisfy the above, the rotational direction of the output shaft is reversed during at least a part of the drive cycle.
 本発明に係るインパクト工具において、ζを減衰比、wnをインパクト工具とグラウンドへの接続とを含む系の回転固有振動数としたときに、出力サイクル振動数が、
 sqrt(2×(1-2ζ))wn
によって定義される計算サイクル振動数よりも大きくなるように設定されることが好適である。なお、上式中の「sqrt」は、平方根(square root)を示している(以下同様)。
In the impact tool according to the present invention, when ζ is the damping ratio and wn is the rotational natural frequency of the system including the impact tool and connection to the ground, the output cycle frequency is
sqrt (2 × (1-2ζ)) wn
Is preferably set to be larger than the calculation cycle frequency defined by Note that “sqrt” in the above equation indicates a square root (the same applies hereinafter).
 また、本発明に係るインパクト工具は、グラウンドに所与の条件で接続されるように設計された周期的に変化する角速度及び/又はトルクを有する回転運動を提供するインパクト工具であって、前記角速度及び/又はトルクが1回転の期間中実質的に一定である回転運動を提供する入力シャフトと、前記角速度が前記入力シャフトの角度の関数として変化する出力シャフトと、前記入力シャフトの回転運動を前記出力シャフトに伝達する駆動列であって、前記入力シャフトに関連づけられた第1の歯車対(1、2)と、前記出力シャフトに関連づけられた第2の歯車対(3、4)とを含む2対以上の歯車(1、2、3、4)を備えるギヤボックスと、を含み、ζを減衰比、wnをインパクト工具とグラウンドへの接続とを含む系の回転固有振動数としたときに、出力サイクル振動数が、
 sqrt(2×(1-2ζ))wn
によって定義される計算サイクル振動数よりも大きくなるように設定されることを特徴とする。
The impact tool according to the present invention is an impact tool that provides a rotational motion having a periodically changing angular velocity and / or torque designed to be connected to a ground under a given condition, And / or an input shaft that provides a rotational motion in which the torque is substantially constant during one revolution, an output shaft in which the angular velocity varies as a function of the angle of the input shaft, and the rotational motion of the input shaft A drive train for transmitting to the output shaft, comprising: a first gear pair (1, 2) associated with the input shaft; and a second gear pair (3, 4) associated with the output shaft. And a gear box having two or more pairs of gears (1, 2, 3, 4), a rotational natural vibration of a system including a damping ratio ζ and a connection wn to an impact tool and ground When the number, the output cycle frequency,
sqrt (2 × (1-2ζ)) wn
It is set so that it may become larger than the calculation cycle frequency defined by.
 本発明に係るインパクト工具では、前記グラウンドへの接続がユーザによって提供され、前記出力サイクル振動数が、14Hzよりも大きい振動数であることが好適である。 In the impact tool according to the present invention, it is preferable that the connection to the ground is provided by a user, and the output cycle frequency is a frequency greater than 14 Hz.
 また、本発明に係るインパクト工具において、当該インパクト工具は、ねじを締め付けるために使用されるものであり、前記出力シャフトの正転運動(ねじの締め付け方向への回転運動)が工具部材と前記ねじとの分離を引き起こし、その後の逆転運動が、前記工具部材と前記ねじとの再係合を引き起こすように構成することができる。 In the impact tool according to the present invention, the impact tool is used for tightening a screw, and the forward rotation motion (rotational motion in the tightening direction of the screw) of the output shaft is caused by the tool member and the screw. Can be configured such that subsequent reverse movement causes re-engagement of the tool member with the screw.
 さらに、本発明に係るインパクト工具では、使用時において、サイクル振動数が系全体の固有振動数よりも実質的に大きくなるように構成されていることが好適である。 Furthermore, it is preferable that the impact tool according to the present invention is configured such that, when in use, the cycle frequency is substantially larger than the natural frequency of the entire system.
 またさらに、本発明に係るインパクト工具では、グラウンド(例えば、把持しているユーザ)に作用するトルクを低減するために、前記出力シャフトが回転している時間と前記出力シャフトが停止している時間の比を設定自在とすることができる。 Furthermore, in the impact tool according to the present invention, the time during which the output shaft is rotating and the time during which the output shaft is stopped in order to reduce the torque acting on the ground (for example, the user who is gripping). The ratio can be set freely.
 さらにまた、本発明に係るインパクト工具では、入力側のトルクを感知し、そこから既知の歯車比と系の角度位置についての情報とを使用して出力側のトルクを計算するための、出力トルクを間接的に感知する手段をさらに備えることができる。 Furthermore, in the impact tool according to the present invention, the output torque for sensing the torque on the input side and calculating the torque on the output side using the known gear ratio and information on the angular position of the system therefrom. There may be further provided means for indirectly sensing.
 また、本発明に係るインパクト工具において、当該インパクト工具は、ねじを締め付けるために使用されるものであり、非駆動期間同士の合間の駆動期間中に前記工具部材を前記ねじから分離することを回避するために、前記出力シャフトの回転角が、十分に小さくなるように構成することができる。 Further, in the impact tool according to the present invention, the impact tool is used for tightening a screw, and avoids separating the tool member from the screw during a driving period between non-driving periods. In order to achieve this, the rotation angle of the output shaft can be configured to be sufficiently small.
 また、本発明に係るインパクト工具において、当該インパクト工具は、ねじを締め付けるために使用されるものであり、前記出力シャフトの逆転角度が、駆動期間中における前記工具部材と前記ねじとのわずかな分離の後に、前記工具部材と前記ねじとを再係合させるように構成することができる。 Further, in the impact tool according to the present invention, the impact tool is used for tightening a screw, and a reverse rotation angle of the output shaft is slightly separated between the tool member and the screw during a driving period. Thereafter, the tool member and the screw can be re-engaged.
 さらに、本発明に係るインパクト工具では、前記ギヤボックスに含まれる回転体(186)が、歯車(2(173))と歯車(3(172))とを接続する遊星シャフト(7(174))とのバランスを取るためのバランスウェイト部(186a)を備えることとすることができる。 Further, in the impact tool according to the present invention, the rotating body (186) included in the gear box has a planetary shaft (7 (174)) connecting the gear (2 (173)) and the gear (3 (172)). The balance weight part (186a) for balancing with can be provided.
 本発明によれば、高騒音、高振動、高減損及び高摩耗といった従来の問題点を解消したインパクト工具を提供することができる。 According to the present invention, it is possible to provide an impact tool that has solved the conventional problems such as high noise, high vibration, high loss and high wear.
図1は、本実施形態に係る非円形ギヤボックスの構成を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining the configuration of a non-circular gearbox according to the present embodiment. 図2は、入力の角度Θの関数として変化する歯車比を示したグラフ図である。FIG. 2 is a graph showing the gear ratio as a function of the input angle Θ. 図3は、本実施形態の非円形歯車を遊星ギヤボックス構成で配置した形態を例示する図である。FIG. 3 is a diagram illustrating a form in which the non-circular gears of the present embodiment are arranged in a planetary gear box configuration. 図4は、一般的なねじ頭とねじ駆動ビットの端面を示す図である。FIG. 4 is a diagram showing a general screw head and an end face of a screw driving bit. 図5は、本実施形態に係るインパクト工具の構成を例示するブロック図である。FIG. 5 is a block diagram illustrating the configuration of the impact tool according to this embodiment. 図6は、本実施形態に係る系全体の固有振動数とサイクル振動数との間の関係を示すグラフ図である。FIG. 6 is a graph showing the relationship between the natural frequency and the cycle frequency of the entire system according to this embodiment. 図7は、本発明が取り得る別の実施形態例を示す図である。FIG. 7 is a diagram showing another example embodiment that can be taken by the present invention. 図8は、本発明が取り得るさらに別の実施形態例を示す図である。FIG. 8 is a diagram showing still another embodiment example that the present invention can take. 図9は、本発明を実現する非円形遊星歯車/非円形太陽歯車対の一例を示す図である。FIG. 9 is a diagram showing an example of a non-circular planetary gear / non-circular sun gear pair for realizing the present invention. 図10は、本実施例に係るインパクト工具の全体構成を示す縦断面右側面図である。FIG. 10 is a vertical cross-sectional right side view showing the overall configuration of the impact tool according to the present embodiment. 図11は、本実施例に係るインパクト工具の要部構成を説明するための要部分解斜視展開図である。FIG. 11 is an exploded exploded perspective view of a main part for explaining a main part configuration of the impact tool according to the present embodiment. 図12は、本実施例に係る非円形遊星歯車を示す図であり、図中の(a)が後方側面を、図中の(b)が断面を示している。FIG. 12 is a diagram showing a non-circular planetary gear according to the present embodiment, where (a) in the drawing shows a rear side surface, and (b) in the drawing shows a cross section. 図13は、本実施例に係る出力シャフト付きの非円形太陽歯車を示す図であり、図中の(a)が後方側面を、図中の(b)が断面を示している。FIG. 13 is a view showing a non-circular sun gear with an output shaft according to the present embodiment, in which (a) in the drawing shows a rear side surface and (b) in the drawing shows a cross section. 図14は、騒音測定方法を説明するための図である。FIG. 14 is a diagram for explaining a noise measurement method. 図15は、本発明が取り得るさらにまた別の実施形態例を示す図である。FIG. 15 is a diagram showing still another embodiment example that can be taken by the present invention. 図16は、断続駆動を実現する手段として一般的に用いられる、ハンマ及びアンビルから成る回転機構を例示する図である。FIG. 16 is a diagram illustrating a rotation mechanism composed of a hammer and an anvil generally used as means for realizing intermittent drive.
 以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .
 図5は、本実施形態に係るインパクト工具の構成を例示するブロック図である。本実施形態に係るインパクト工具は、所望の平均トルク特性及び平均速度特性を達成するように、例えば、モータシャフト16によって従来のギヤボックス25に結合されたモータ(電磁気、空気圧又は他の動力を使用するモータ)14を備えている。 FIG. 5 is a block diagram illustrating the configuration of the impact tool according to the present embodiment. The impact tool according to this embodiment uses, for example, a motor (electromagnetic, pneumatic, or other power) coupled to a conventional gear box 25 by a motor shaft 16 to achieve desired average torque characteristics and average speed characteristics. Motor 14).
 ギヤボックス25に設置された入力シャフト26は、非円形歯車を含む非円形ギヤボックス18に駆動力を提供し、次いで、非円形ギヤボックス18が出力シャフト17を駆動する。この非円形ギヤボックス18の入力角速度と出力角速度との比は、入力シャフト26の角度の関数として表すことができる。出力シャフト17は、衝撃トルクを伝達する対象である工具部材22、例えばナット又はねじなどといった機械式締結具に、一般的に分離可能に接続される。 The input shaft 26 installed in the gear box 25 provides driving force to the non-circular gear box 18 including non-circular gears, and then the non-circular gear box 18 drives the output shaft 17. The ratio between the input angular velocity and the output angular velocity of the non-circular gear box 18 can be expressed as a function of the angle of the input shaft 26. The output shaft 17 is generally separably connected to a mechanical fastener such as a nut or screw that is a target for transmitting impact torque.
 図1は、本実施形態に係る非円形ギヤボックス18の構成を説明するための概念図である。図1に示されているように、非円形ギヤボックス18は、入力歯車23及び出力歯車24を含み、これらの歯車23、24は、それぞれ、それらの全周にわたって変化する半径を有する。ここで、歯車比を以下のように定義する。
 ω=Rω
FIG. 1 is a conceptual diagram for explaining a configuration of a non-circular gear box 18 according to the present embodiment. As shown in FIG. 1, the non-circular gearbox 18 includes an input gear 23 and an output gear 24, each of which has a radius that varies over their entire circumference. Here, the gear ratio is defined as follows.
ω 2 = Rω 1
 上式で、ωは従来のギヤボックス25に設置された入力シャフト26によって提供される入力角速度であり、Rは歯車比であり、ωは出力シャフト17の出力角速度である。図1にて示されているような2歯車駆動列では、対合した2つの歯車23、24のその時点の接触点における半径の比から、以下のように歯車比を知ることができる。
 R=r/r
Where ω 1 is the input angular velocity provided by the input shaft 26 installed in the conventional gearbox 25, R is the gear ratio, and ω 2 is the output angular velocity of the output shaft 17. In the two-gear drive train as shown in FIG. 1, the gear ratio can be known as follows from the ratio of the radii at the current contact points of the two gears 23 and 24 that are mated.
R = r 1 / r 2
 上式で、rは入力歯車23のピッチ円の半径であり、rは出力歯車24のピッチ円の半径である。角度Θの関数として半径が変化する一対の非円形歯車を有することにより、入力の角度Θの関数として変化する歯車比(図2参照)を達成することが可能であり、したがって、全体としてR、r及びrを、R(Θ)、r(Θ)及びr(Θ)に置き換えることとする。 In the above equation, r 1 is the radius of the pitch circle of the input gear 23, and r 2 is the radius of the pitch circle of the output gear 24. By having a pair of non-circular gears that vary in radius as a function of angle Θ, it is possible to achieve a gear ratio (see FIG. 2) that varies as a function of input angle Θ, and therefore R, Let r 1 and r 2 be replaced with R (Θ), r 1 (Θ) and r 2 (Θ).
 ここで説明する構成では、一定速度の入力が、入力シャフト26の角度と時間の両方に対して変化する出力速度を与える。そして、トルクは、Tを入力トルク、Tを出力トルクとすると、
 T=T/R(Θ)
によって与えられるため、この変化する歯車比により、変化するトルク出力を提供することを可能にする。
In the arrangement described here, a constant speed input provides an output speed that varies with both the angle and time of the input shaft 26. The torque is T 1 as input torque and T 2 as output torque.
T 2 = T 1 / R (Θ)
This varying gear ratio makes it possible to provide a varying torque output.
 グラウンド21に伝達されるトルクが、出力によって加えられるトルクよりも低いことを保証するため、出力サイクル振動数は、
 sqrt(2×(1-2ζ))wn
(「計算サイクル振動数範囲(Calculated
Cycle Frequency Range)」と呼ばれる)
よりも大きくなるように設定される。上式で、ζは減衰比、wnはインパクト工具とグラウンド21への接続とを含む系の回転固有振動数である。本実施形態に係るインパクト工具のユーザの場合、この計算サイクル振動数範囲は、14Hzよりも大きい振動数であると示すことができる。
In order to ensure that the torque transmitted to the ground 21 is lower than the torque applied by the output, the output cycle frequency is
sqrt (2 × (1-2ζ)) wn
("Calculated cycle frequency range (Calculated
Cycle Frequency Range) ”)
Is set to be larger than In the above equation, ζ is the damping ratio, and wn is the rotational natural frequency of the system including the impact tool and the connection to the ground 21. In the case of a user of an impact tool according to the present embodiment, this calculation cycle frequency range can be shown to be a frequency greater than 14 Hz.
 本実施形態のさらなる改良点は、上述した非円形歯車23、24を遊星ギヤボックス構成で配置したことである。図3に示すように、一対の円形歯車1、2は、一対の非円形歯車3、4と組み合わせることができる。なお、変形例として、図3で示した構成を逆にし、符号1、2で示した一対の歯車が非円形歯車、符号3、4で示した一対の歯車が円形歯車であるようにすることもできる。さらに、全ての歯車を非円形歯車とすることもできる。 A further improvement of this embodiment is that the above-described non-circular gears 23 and 24 are arranged in a planetary gear box configuration. As shown in FIG. 3, the pair of circular gears 1 and 2 can be combined with a pair of non-circular gears 3 and 4. As a modification, the configuration shown in FIG. 3 is reversed so that the pair of gears indicated by reference numerals 1 and 2 are non-circular gears and the pair of gears indicated by reference numerals 3 and 4 are circular gears. You can also. Further, all the gears can be non-circular gears.
 入力シャフト5は、駆動アーム6に剛連結されており、その結果、入力シャフト5が回転したときに、駆動アーム6は同じ量だけ回転する。これにより、遊星シャフト7は、入力シャフト5の軸の周りを一定の半径で周回する。遊星シャフト7は、駆動アーム6によって駆動されたときに、それ自体の軸の周りを自由に回転する。被駆動遊星歯車2は、遊星シャフト7に剛連結される。この遊星シャフト7の角度をΘと呼ぶことにする。被駆動遊星歯車2が静止太陽歯車1の周りを移動すると、それにより、被駆動遊星歯車2がその軸に対して回転し、それによって遊星シャフト7の回転を駆動する。この回転が、遊星シャフト7に剛連結された駆動遊星歯車3を駆動する。次いで、駆動遊星歯車3が、出力太陽歯車4を回転させ、それによって出力シャフト27の回転を駆動する。 The input shaft 5 is rigidly connected to the drive arm 6. As a result, when the input shaft 5 rotates, the drive arm 6 rotates by the same amount. As a result, the planetary shaft 7 circulates around the axis of the input shaft 5 with a constant radius. Planetary shaft 7 rotates freely about its own axis when driven by drive arm 6. The driven planetary gear 2 is rigidly connected to the planetary shaft 7. The angle of the planetary shaft 7 is called Θ. As the driven planetary gear 2 moves around the stationary sun gear 1, the driven planetary gear 2 thereby rotates about its axis, thereby driving the rotation of the planetary shaft 7. This rotation drives the drive planetary gear 3 rigidly connected to the planetary shaft 7. The drive planetary gear 3 then rotates the output sun gear 4 thereby driving the rotation of the output shaft 27.
 図3に示すような歯車配置は、従来技術、例えば上掲した特許文献2によって知られている。 The gear arrangement as shown in FIG. 3 is known from the prior art, for example, Patent Document 2 listed above.
 このような系の歯車比は以下のとおりである。
 R(Θ)=1-r(Θ)・r(Θ)/r(Θ)・r(Θ)
The gear ratio of such a system is as follows.
R (Θ) = 1−r 1 (Θ) · r 3 (Θ) / r 2 (Θ) · r 4 (Θ)
 上式で、Θは遊星シャフト7の角度である。歯車1、2、3及び4が円形であれば、r(Θ)=r=一定、r(Θ)=r=一定、r(Θ)=r=一定、r(Θ)=r=一定であり、したがって、歯車比R(Θ)=R=一定となる。しかしながら、前述のように一対の歯車を非円形とした場合には、R(Θ)は一般にΘの関数として変化する。また、ある時間範囲の間、r(Θ)=r(Θ)及びr(Θ)=r(Θ)である場合には、R(Θ)=0であり、出力は停止し、その一方で入力は回転し続ける。これによって断続的な駆動が得られる。 Where Θ is the angle of the planetary shaft 7. If the gears 1, 2, 3 and 4 are circular, r 1 (Θ) = r 1 = constant, r 2 (Θ) = r 2 = constant, r 3 (Θ) = r 3 = constant, r 4 ( Θ) = r 4 = constant, and therefore the gear ratio R (Θ) = R = constant. However, when the pair of gears is non-circular as described above, R (Θ) generally varies as a function of Θ. Also, during a certain time range, if r 1 (Θ) = r 4 (Θ) and r 2 (Θ) = r 3 (Θ), then R (Θ) = 0 and the output stops. On the other hand, the input continues to rotate. As a result, intermittent driving is obtained.
 入力シャフト5に付随する慣性は、非駆動期間中は加速し、駆動期間中は減速する。そのため、出力シャフト27におけるトルクは、例えばモータによって提供される駆動トルクと慣性の減速に対する反作用との組み合せである。したがって、このような構成は、モータによる直接駆動よりも高いトルクを加えることを可能にする。 The inertia associated with the input shaft 5 accelerates during the non-driving period and decelerates during the driving period. Thus, the torque at the output shaft 27 is a combination of, for example, a drive torque provided by a motor and a reaction to inertia deceleration. Therefore, such a configuration makes it possible to apply a higher torque than direct driving by a motor.
 なお、静止太陽歯車1上の内歯車形式、及び/又は、出力太陽歯車4上の内歯車形式を有する同様のシステムを実現することも可能である。 It is also possible to realize a similar system having an internal gear type on the stationary sun gear 1 and / or an internal gear type on the output sun gear 4.
 さらに、歯車ピッチ円半径の依存形式r(Θ)(n=1、2、3、4)は、出力速度の変化率に影響を与える。速度の急変を回避するために、速度が十分にゆっくりと増大するように、歯車ピッチ円半径の依存形式を選択することができる。速度を比較的にゆっくりと増大させることによって、非常に高い加速が回避されるので、その結果として騒音及び振動が低減する。 Furthermore, the dependent form r n (Θ) (n = 1, 2, 3, 4) of the gear pitch circle radius affects the rate of change of the output speed. In order to avoid sudden changes in speed, the dependent form of the gear pitch circle radius can be chosen so that the speed increases slowly enough. By increasing the speed relatively slowly, very high accelerations are avoided, resulting in a reduction in noise and vibration.
 他に採り得る変更形態としては、サイクル中のΘ=Θrev1からΘ=Θrev2(0≦Θrev1,Θrev2≦2π)のある角度又はある角度範囲で、r(Θ)・r(Θ)>r(Θ)・r(Θ)となり、いくつかの点で、r(Θ)・r(Θ)<r(Θ)・r(Θ)となるように、ピッチ円半径を選択することを含む(すなわち、0≦Θ≦2πの角度範囲であるときに、r(Θ)・r(Θ)/r(Θ)・r(Θ)>1である場合と、r(Θ)・r(Θ)/r(Θ)・r(Θ)<1である場合とを含む。)。こうすると、Θrev1<Θ<Θrev2であるときには、常に回転方向を逆転させる出力が得られる。これを、木材にねじを螺入するなどの用途で利用することができる。ねじの螺入中に、ねじを螺入する連続駆動は、出力シャフト・インタフェース(しばしば、「ビット」と呼ばれる)と被駆動部分(ねじ頭)との間の接続の分離を引き起こすことがあり、これは、当技術分野では「カムアウト(cam-out)」として知られている現象である。本発明では、最初に、それぞれの駆動サイクル中に少量だけ前進させることによって、所与のサイクルでのビットとねじ頭の分離が回避される。さらに、非駆動中に、ある角度にわたって逆転させることによって、ビットとねじ頭は再係合し、複数のサイクルにわたるカムアウトを制限し、又は防ぐ。この様子が、図4に示されている。図4には、一般的なねじ頭8とねじ駆動ビット9の端面図が示されている。これらは最初、十分に位置合わせされており、駆動中にそれらは分離し始め、駆動期間の後、逆転が再係合を容易にする。 Other possible modifications are the angle r 1 (Θ) · r 3 (within an angle or range of angles from Θ = Θ rev1 to Θ = Θ rev2 (0 ≦ Θ rev1 , Θ rev2 ≦ 2π) during the cycle. Θ)> r 2 (Θ) · r 4 (Θ), and at some point, r 1 (Θ) · r 3 (Θ) <r 2 (Θ) · r 4 (Θ), Including selecting a pitch circle radius (ie, r 1 (Θ) · r 3 (Θ) / r 2 (Θ) · r 4 (Θ)> 1 when the angle range is 0 ≦ Θ ≦ 2π) And r 1 (Θ) · r 3 (Θ) / r 2 (Θ) · r 4 (Θ) <1. In this way, when Θ rev1 <Θ <Θ rev2 , an output that always reverses the rotation direction is obtained. This can be used for applications such as screwing screws into wood. During screwing, the continuous drive of screwing may cause a disconnection of the connection between the output shaft interface (often referred to as “bit”) and the driven part (screw head), This is a phenomenon known in the art as “cam-out”. In the present invention, the bit and screw head separation in a given cycle is avoided by first advancing by a small amount during each drive cycle. In addition, by reversing over an angle during non-drive, the bit and screw head re-engage, limiting or preventing camout over multiple cycles. This is shown in FIG. FIG. 4 shows an end view of a typical screw head 8 and screw drive bit 9. They are initially well aligned and during drive they begin to separate, and after the drive period, reverse rotation facilitates re-engagement.
 モータ14が、ある方法、例えば電磁場又は空気圧によってケース15にトルクを伝達することができる構成を考えてみる。前記モータ14は、ある連結シャフト(モータシャフト16)を介して、前述のタイプのうちの1つのタイプの非円形ギヤボックス18を駆動する。この非円形ギヤボックス18は、機械的に又は他の方式で、ケース15及び出力シャフト17に接続され、そこから、ある工具部材22に接続される。 Consider a configuration in which the motor 14 can transmit torque to the case 15 by a certain method, for example, electromagnetic field or air pressure. The motor 14 drives a non-circular gearbox 18 of one of the types described above via a connecting shaft (motor shaft 16). This non-circular gearbox 18 is mechanically or otherwise connected to the case 15 and the output shaft 17 and from there to a certain tool member 22.
 ある1つの駆動期間の始めから次の駆動期間までにかかる全時間を考えると、グラウンド21に伝達されるピークトルクにおける出力シャフト17の「サイクル周期」(これの逆数が「サイクル振動数」である)の利益を達成することができる。この系が、ねじりばね12及びねじりダンパ13に近似の系、例えば人間の腕によってグラウンド21に固定されているとみなされ、ある回転慣性を有する場合、系全体の固有振動数とサイクル振動数との間の関係が、グラウンド21に加えられるピークトルクを決定する。サイクル振動数が無限である極端なケースでは、グラウンド21は、工具部材22が受けるのと同じピークトルクを受ける。サイクル振動数と系の固有振動数が収束すると、グラウンド21が受けるピークトルクはさらに増大する。しかしながら、サイクル振動数が系全体の固有振動数を超えて増大すると、グラウンド21が受けるトルクは、ピークトルクよりも低くなる。 Considering the total time taken from the start of one drive period to the next drive period, the “cycle period” of the output shaft 17 at the peak torque transmitted to the ground 21 (the reciprocal of this is the “cycle frequency”). ) Can be achieved. When this system is considered to be fixed to the ground 21 by a system approximate to the torsion spring 12 and the torsion damper 13, for example, a human arm, and has a certain rotational inertia, the natural frequency and cycle frequency of the entire system Determines the peak torque applied to ground 21. In the extreme case where the cycle frequency is infinite, the ground 21 receives the same peak torque that the tool member 22 receives. When the cycle frequency and the natural frequency of the system converge, the peak torque received by the ground 21 further increases. However, when the cycle frequency increases beyond the natural frequency of the entire system, the torque received by the ground 21 becomes lower than the peak torque.
 図6は、固有振動数14Hzでのこの効果を示し、y軸は、入力された力に対する出力された力の比と定義される「伝達率」を示し、dBで示されている。したがって、歯車形式を適当に選択することによって、この有利な振る舞いを達成するように、サイクル振動数を選択することができる。さらに、伝達されるトルクの大きさは、出力シャフト17が回転している時間と出力シャフト17が停止している時間の比によって決定される。全衝撃は、グラウンド21と工具部材22との間で保存されなければならないため、高トルクが短時間の間、工具部材22に加えられる場合には、これを、より長時間にわたってグラウンド21に加えられるはるかに低いトルクと釣り合わせることができる。つまり、本実施形態に係るインパクト工具が、グラウンドに作用するトルクを低減するために、出力シャフト17が回転している時間と出力シャフト17が停止している時間の比を設定自在とする手段を備えることによって、出力側のトルクを制御することができる。 FIG. 6 shows this effect at a natural frequency of 14 Hz, and the y-axis shows the “transmission rate” defined as the ratio of the output force to the input force, and is shown in dB. Therefore, by appropriately selecting the gear type, the cycle frequency can be selected to achieve this advantageous behavior. Further, the magnitude of the transmitted torque is determined by the ratio of the time during which the output shaft 17 is rotating and the time during which the output shaft 17 is stopped. Since the entire impact must be stored between the ground 21 and the tool member 22, if a high torque is applied to the tool member 22 for a short time, this is applied to the ground 21 for a longer time. Can be balanced with the much lower torques that are available. That is, the impact tool according to the present embodiment has means for allowing the ratio of the time during which the output shaft 17 is rotating and the time during which the output shaft 17 is stopped to be freely set in order to reduce the torque acting on the ground. By providing, the torque on the output side can be controlled.
 上述した実施形態の他の利点としては、入力と出力の間で常時噛み合いが達成されることである。入力トルクと出力トルクの間に相関関係がない従来のインパクト工具とは違い、本実施形態に基づく構成は、入力トルクと出力トルクとの間に相関関係がある。これによって、入力側のトルクを感知し、そこから既知の歯車比と系の角度位置についての情報とを使用して出力側のトルクを計算することができる。つまり、本実施形態に係るインパクト工具が出力トルクを間接的に感知する手段をさらに備えることによって、出力側のトルクを計算することができる。 Another advantage of the above-described embodiment is that a constant mesh between the input and output is achieved. Unlike the conventional impact tool in which there is no correlation between input torque and output torque, the configuration based on this embodiment has a correlation between input torque and output torque. Thereby, the input side torque can be sensed and the output side torque can be calculated therefrom using the known gear ratio and information about the angular position of the system. That is, the impact tool according to the present embodiment further includes means for indirectly sensing the output torque, whereby the output side torque can be calculated.
 上述したこれらの手段は、例えば締結具に加えられるトルクを制御する際に有用である。電磁モータが使用される場合、電流及び電圧についての情報からモータのトルクを得ることができる。したがって、本実施形態の一例として、本発明は電子トルクセンシングを含む。 These means described above are useful, for example, in controlling the torque applied to the fastener. When an electromagnetic motor is used, the motor torque can be derived from information about current and voltage. Therefore, as an example of this embodiment, the present invention includes electronic torque sensing.
 上述した本実施形態の1つの利点は、インパクト機構の除去及び出力シャフトのより緩やかな加速のため、既存のインパクト工具に比べて低騒音であることである。同様に、本実施形態は、デバイスによって生み出される振動を低減させる。さらに、高減損の衝突及び摺接を、歯車の転がり接触に置き換えることにより、本実施形態は低い減損を有する。これはさらに、低摩耗の利点をもたらし、さらには長寿命をもたらす。 One advantage of this embodiment described above is that it is less noisy than existing impact tools due to the removal of the impact mechanism and more gradual acceleration of the output shaft. Similarly, this embodiment reduces vibrations created by the device. Furthermore, this embodiment has a low loss by replacing the highly impaired collision and sliding contact with the rolling contact of the gear. This further provides the advantage of low wear and even longer life.
 当業者であれば、上述した本実施形態に係るインパクト工具が、ドライバ・ドリル及びインパクト・ドライバを含む動力工具全般に対して利益をもたらすことができることを理解するであろう。さらに、回転往復動作が必要な場合、例えば生垣刈込み機(ヘッジトリマ)の場合に、このようなシステムを使用することができる。 Those skilled in the art will appreciate that the impact tool according to this embodiment described above can provide benefits to power tools in general including a driver drill and an impact driver. Furthermore, such a system can be used when a rotary reciprocation is required, for example in the case of a hedge trimming machine.
 また例えば、ラック・ピニオンを使用して、単純な「回転-直線」変換を実現することにより、本実施形態を他のデバイス、とりわけ往復動鋸デバイスに適用することも可能である。 Also, for example, the present embodiment can be applied to other devices, particularly a reciprocating saw device, by using a rack and pinion to realize a simple “rotation-linear” conversion.
 さらに、本実施形態の他の利点は、本実施形態に基づくデバイスの特性が、モータ及びギヤボックスの所与の組み合せに関して、ドライバ・ドリルなどの従来技術の直接駆動デバイスよりも高い出力トルクを可能にしており、これにより、トルクが等しい場合にはデバイスのサイズを低減させることができることにある。本実施形態の衝撃機構の使用はさらに、ドライバ・ドリルなどの直接駆動デバイスと比較したときに、所与の出力トルクに関して、デバイスによって機械的な「グラウンド(例えばユーザ)」に加えられるトルクを低減させることができる。またさらに、(ビットを使用したねじの螺入など)接触が失われる可能性がある用途では、逆転がビットとねじ頭の間の再係合を可能にするので、これにより、係合が失われることを回避することができる。 In addition, another advantage of this embodiment is that the characteristics of the device based on this embodiment allow higher output torque than a prior art direct drive device such as a driver drill for a given combination of motor and gearbox. Thus, the device size can be reduced when the torques are equal. The use of the impact mechanism of this embodiment further reduces the torque applied by the device to the mechanical “ground (eg user)” for a given output torque when compared to a direct drive device such as a driver drill. Can be made. Still further, in applications where contact may be lost (such as threading a screw using a bit), this causes loss of engagement because reversal allows re-engagement between the bit and the screw head. Can be avoided.
 以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は改良を加えることが可能である。 The preferred embodiments of the present invention have been described above, but the technical scope of the present invention is not limited to the scope described in the above embodiments. Various modifications or improvements can be added to the embodiment.
 例えば、インパクト・ドライバとして知られているタイプの動力工具の代替工具として使用することを含む多くの用途に対して適当な特定の実施形態が、図7に示されている。入力シャフト71は、遊星シャフト74がその中に装着された回転体78を駆動し、遊星シャフト74は、それ自体の軸の周りを自由に回転する。遊星シャフト74には、円形遊星歯車73及び非円形遊星歯車72が装着されている。これらの歯車72、73は互いに接続され、ギヤボックスからの相当なトルク能力が必要な場合には、一体に形成することによって接続されることが好ましい。円形遊星歯車73は、メカニカル・グラウンドに接続された円形太陽歯車76の作用によって回転する。したがって、非円形遊星歯車72は、円形遊星歯車73によって駆動される。その結果、非円形遊星歯車72が非円形太陽歯車75を駆動する。この非円形太陽歯車75は、出力シャフト77に接続されるとともに、出力シャフト77を駆動する。 A specific embodiment suitable for many applications including, for example, use as a replacement tool for a type of power tool known as an impact driver is shown in FIG. The input shaft 71 drives a rotator 78 in which the planetary shaft 74 is mounted, and the planetary shaft 74 is free to rotate about its own axis. A circular planetary gear 73 and a non-circular planetary gear 72 are mounted on the planetary shaft 74. These gears 72 and 73 are connected to each other. When a considerable torque capacity from the gear box is required, the gears 72 and 73 are preferably connected by being integrally formed. The circular planetary gear 73 is rotated by the action of a circular sun gear 76 connected to the mechanical ground. Therefore, the non-circular planetary gear 72 is driven by the circular planetary gear 73. As a result, the non-circular planetary gear 72 drives the non-circular sun gear 75. The non-circular sun gear 75 is connected to the output shaft 77 and drives the output shaft 77.
 図7にて示した実施形態は、図3に示された構成に比べて相当の利点を有する。機構の入力シャフト71端ではなく、出力シャフト77端で円形太陽歯車76をグラウンドに接続することは、回転体78内の両端で遊星シャフト74を支持することを可能にする。回転体78内の両端で遊星シャフト74を支持することによって、遊星シャフト74に加わる所与のモーメントに関して、遊星シャフト74の両端の垂直荷重が低減され、より高強度のギヤボックスを形成し、より軽くよりコンパクトなギヤボックス構造を可能にする。さらにこの構成は、これらの歯車72、73の間に軸受を収容する必要なしに、円形遊星歯車73と非円形遊星歯車72を単一部品として形成することを可能にする。これらの歯車72、73間においては、相当のトルクが伝達されるため、かかる構成によって、このユニットの強度が高められる。 The embodiment shown in FIG. 7 has considerable advantages over the configuration shown in FIG. Connecting the circular sun gear 76 to ground at the output shaft 77 end, rather than the input shaft 71 end of the mechanism, allows the planetary shaft 74 to be supported at both ends in the rotator 78. By supporting the planetary shaft 74 at both ends in the rotator 78, the vertical load at both ends of the planetary shaft 74 is reduced for a given moment applied to the planetary shaft 74, forming a higher strength gearbox, and more Enables a lighter and more compact gearbox structure. Furthermore, this configuration allows the circular planetary gear 73 and the non-circular planetary gear 72 to be formed as a single part without having to accommodate a bearing between these gears 72,73. Since a considerable torque is transmitted between the gears 72 and 73, the strength of the unit is increased by this configuration.
 入力シャフト上に追加の減速ギヤボックスが必要な場合には、系全体のサイズを低減させる可能性もある。図8に示されたさらに別の実施形態は、回転体86上に直接に構築された追加の減速ギヤボックスを示す。入力シャフト85は太陽歯車81を駆動し、太陽歯車81は1つ又は複数の遊星歯車82に作用し、遊星歯車82は、グラウンドに接続された円形内歯車84内を移動する。遊星歯車82のシャフト83が、回転体86の軸の周りの回転駆動を提供する。また、回転体86には、シャフト83を都合よく設置することができる。このことは、図3に示された構成の入力に追加の別個の減速ギヤボックスを取り付けることに比べて、相当な単純化及びサイズ低減を達成する。 ¡If an additional reduction gearbox is required on the input shaft, the overall system size may be reduced. Yet another embodiment shown in FIG. 8 shows an additional reduction gearbox constructed directly on the rotating body 86. The input shaft 85 drives a sun gear 81, which acts on one or more planetary gears 82, which travel in a circular internal gear 84 connected to ground. A shaft 83 of the planetary gear 82 provides rotational drive about the axis of the rotator 86. Further, the shaft 83 can be conveniently installed on the rotating body 86. This achieves considerable simplification and size reduction compared to installing an additional separate reduction gearbox at the input of the configuration shown in FIG.
 従来技術のインパクト・ドライバで4.5×90mmのねじを乾燥した松材に螺入する場合、螺入の中間点(ねじの約45mmが木材に螺入されたとき)において、一般的にハンマ1回の衝突によってねじが90度回転することがわかっている。1回の衝突に要する時間は、15msなので、このパルス列の振動数は67Hzである。これは、工具/ユーザ系の固有振動数よりもかなり高い。また、ユーザに伝達されるトルクは、ねじに加えられるトルクを時間平均したものになる。したがって、ユーザは、ねじに加えられる高トルク・パルスを受けない。さらに、一般的なインパクト・ドライバの分析は、ワースト・ケース条件であるカムアウト条件下では、ねじに対するビットの10度の逆転が一般的であることがわかった。 When a 4.5 x 90 mm screw is screwed into a dried pine with a prior art impact driver, it is generally a hammer at the midpoint of the screwing (when approximately 45 mm of the screw is screwed into wood). It is known that the screw rotates 90 degrees with a single collision. Since the time required for one collision is 15 ms, the frequency of this pulse train is 67 Hz. This is much higher than the natural frequency of the tool / user system. Further, the torque transmitted to the user is a time average of the torque applied to the screw. Thus, the user is not subjected to high torque pulses applied to the screw. In addition, a general impact driver analysis has found that a 10 degree reversal of the bit to the screw is common under the worst case camout condition.
 適当な非円形歯車形式及び円形歯車サイズを選択することにより、前述の従来技術のインパクト・ドライバの振る舞いを、本発明を使用して、歯が常に係合したままの(衝突のない)ギヤボックス内において、同様の振る舞いとすることが可能である。これを達成する非円形遊星歯車91/非円形太陽歯車92対の一例が、図9に示されている。それぞれの歯車91、92は、実質的に同様のモジュールの14個の歯を有する。これらの歯車91、92を、図7又は図8に示されたタイプのギヤボックス内において、遊星:太陽比=0.765の円形歯車(例えば、ピッチ円径13mmの円形遊星歯車とピッチ円径17mmの円形太陽歯車)と組み合わせることができる。この構成は、出力シャフト(図7の符号77及び図8の符号87)を95度正転させ、その後に、前記出力シャフト77、87を10度逆転させる。 By selecting the appropriate non-circular gear type and circular gear size, the behavior of the prior art impact driver described above can be used to create a gear box with teeth always engaged (no collision) using the present invention. It is possible to have a similar behavior within. An example of a non-circular planetary gear 91 / non-circular sun gear 92 pair that accomplishes this is shown in FIG. Each gear 91, 92 has 14 teeth of a substantially similar module. These gears 91 and 92 are arranged in a gear box of the type shown in FIG. 7 or FIG. 8 in a circular gear having a planetary-sun ratio = 0.765 (for example, a circular planetary gear having a pitch circle diameter of 13 mm and a pitch circle diameter). 17 mm circular sun gear). In this configuration, the output shaft (reference numeral 77 in FIG. 7 and reference numeral 87 in FIG. 8) is rotated forward by 95 degrees, and thereafter, the output shafts 77 and 87 are reversed by 10 degrees.
 なお、上述した出力シャフト77、87の正転角度と逆転角度については、本発明を構成する歯車群の構成条件等によって変化するものである。例えば、出力シャフト77、87の逆転角度が一般的に10度程度になることは代表的な数値を例示したに過ぎない。本発明の構成部材をその発明思想の範囲内で適宜変更することにより、本発明に係るインパクト工具の振る舞いを種々の設定に変更することが可能である。 Note that the forward rotation angle and the reverse rotation angle of the output shafts 77 and 87 described above vary depending on the configuration conditions of the gear group constituting the present invention. For example, the fact that the reverse angle of the output shafts 77 and 87 is generally about 10 degrees is merely an example of representative numerical values. By appropriately changing the constituent members of the present invention within the scope of the inventive idea, the behavior of the impact tool according to the present invention can be changed to various settings.
 これらの形式が図7に示された構成で使用されるとき、入力シャフト71を1,556rpmで駆動すると、出力シャフト77の駆動/逆転サイクルは、34Hzで起こる。この構成は、従来技術のデバイスの衝突なしでこれを達成できるので、操作中のより低い騒音レベルを達成した。 When these types are used in the configuration shown in FIG. 7, when the input shaft 71 is driven at 1,556 rpm, the drive / reverse cycle of the output shaft 77 occurs at 34 Hz. This configuration achieved this lower noise level during operation as this can be achieved without collision of prior art devices.
 あるいは、図8に示された構成を使用することもできる。円形太陽歯車81のピッチ円径が5mm、円形遊星歯車82のピッチ円径が17.5mm、円形内歯車84のピッチ円径が40mmである場合、入力シャフト85と回転体86の間では、減速比9:1が達成される。したがって、入力シャフト85を14,000rpm(同様の動力工具で用いられる従来技術に係るモータの異常ではない速度)で回転させた場合、駆動/逆転サイクルは、34Hzで起こる。 Alternatively, the configuration shown in FIG. 8 can be used. When the pitch circle diameter of the circular sun gear 81 is 5 mm, the pitch circle diameter of the circular planetary gear 82 is 17.5 mm, and the pitch circle diameter of the circular internal gear 84 is 40 mm, the speed is reduced between the input shaft 85 and the rotating body 86. A ratio of 9: 1 is achieved. Thus, when the input shaft 85 is rotated at 14,000 rpm (a non-anomalous speed of a prior art motor used with similar power tools), the drive / reverse cycle occurs at 34 Hz.
 したがって、ドライバ・ドリルと比べたときに、インパクト・ドライバの有益な特性を達成することが可能である。これらの有益な特性には、同様のねじ螺入時間、少ないカムアウトの発生、ねじに加えられる高いピークトルク及びその一方でユーザに加えられるより低いピークトルク、ならびに所与のトルク出力に対するサイズの低減が含まれる。さらに、インパクト・ドライバに比べ、大幅に低騒音、低振動、高効率及び低摩耗が達成される。 Therefore, it is possible to achieve the beneficial characteristics of an impact driver when compared to a driver drill. These beneficial properties include similar screw threading times, less camout, high peak torque applied to the screw and lower peak torque applied to the user, and size reduction for a given torque output Is included. Furthermore, significantly lower noise, lower vibration, higher efficiency and lower wear are achieved compared to impact drivers.
 なお、上述した実施形態では、図4等を用いて、複数のサイクルにわたるカムアウト現象を制限及び防止する機構について説明した。すなわち、本実施形態では、最初に、それぞれの駆動サイクル中に少量だけ正転運動させることによって、所与のサイクルでのビットとねじ頭の分離が回避される。さらに、駆動中にそれらが分離し始めても、駆動期間の後、逆転によって再係合を容易にすることができる。また、これらの動作が、非円形ギヤボックス18内に設置された常時噛み合った2歯車駆動列等によって実現されることを説明した。ただし、上述した実施形態には、さらなる好適な改良を加えることが可能であり、例えば、駆動期間中に工具部材をねじから分離することを回避するために、非駆動期間同士の合間の出力シャフトの回転角が、十分に小さくなるように構成することが好ましい。また、別の改良例として、出力シャフトの逆転角度が、駆動期間中における工具部材とねじとのわずかな分離の後に、工具部材とねじとを再係合させるように構成されることも好適である。このような改良によって、カムアウト現象を確実に防止することが可能となる。 In the above-described embodiment, the mechanism for limiting and preventing the cam-out phenomenon over a plurality of cycles has been described with reference to FIG. That is, in this embodiment, the bit and screw head separation in a given cycle is avoided by first rotating it forward by a small amount during each driving cycle. Furthermore, even if they begin to separate during driving, re-engagement can be facilitated by reverse rotation after the driving period. Further, it has been described that these operations are realized by a two-gear drive train or the like that is always meshed and installed in the non-circular gear box 18. However, further suitable improvements can be made to the above-described embodiments, for example, the output shaft between non-drive periods to avoid separating the tool member from the screw during the drive period. It is preferable that the rotation angle is sufficiently small. As another improvement, it is also preferable that the reverse angle of the output shaft is configured to re-engage the tool member and the screw after a slight separation between the tool member and the screw during the driving period. is there. Such improvement makes it possible to reliably prevent the cam-out phenomenon.
 また、図7及び図8等で例示した構成は本発明が取り得る一形態を例示したにすぎない。本発明は、上述した基本構成を有し、同様の作用効果を発揮する範囲内において、種々の変形形態を採用することができる。例えば、図7で示した実施形態の変形例として、図15を示す。図15にて示される実施形態は、非円形遊星歯車72及び非円形太陽歯車75を出力シャフト77側に配置し、円形遊星歯車73及び円形太陽歯車76を入力シャフト71側に配置した点で、図7と異なっている。図15に示されている実施形態では、入力シャフト71の先端に回転体78が設置されている。入力シャフト71が回転体78を駆動すると、回転体78に装着された遊星シャフト74が遊星運動を行う。この遊星シャフト74は、それ自体の軸の周りを自由に回転する。また、遊星シャフト74には、非円形遊星歯車72及び円形遊星歯車73が装着されている。これらの歯車72、73は、遊星シャフト74に対して互いに接続固定されている。円形遊星歯車73は、メカニカル・グラウンドに接続された円形太陽歯車76の作用によって回転する。したがって、非円形遊星歯車72は、円形遊星歯車73の回転運動に伴って回転駆動される。その結果、非円形遊星歯車72が非円形太陽歯車75を駆動する。この非円形太陽歯車75には、出力シャフト77が接続されているので、非円形太陽歯車75の回転駆動に伴って出力シャフト77が回転駆動することとなる。なお、図15で示した実施形態は、非円形遊星歯車72が非円形太陽歯車75に対して対称位置となるように複数配置されているので、回転運動のバランスが良いという利点を有している。 Further, the configuration illustrated in FIG. 7 and FIG. 8 and the like merely exemplifies one form that the present invention can take. The present invention has the above-described basic configuration, and various modifications can be employed within the scope of exhibiting the same operational effects. For example, FIG. 15 is shown as a modification of the embodiment shown in FIG. In the embodiment shown in FIG. 15, the non-circular planetary gear 72 and the non-circular sun gear 75 are arranged on the output shaft 77 side, and the circular planetary gear 73 and the circular sun gear 76 are arranged on the input shaft 71 side. It is different from FIG. In the embodiment shown in FIG. 15, a rotating body 78 is installed at the tip of the input shaft 71. When the input shaft 71 drives the rotating body 78, the planetary shaft 74 attached to the rotating body 78 performs planetary motion. This planetary shaft 74 rotates freely about its own axis. A non-circular planetary gear 72 and a circular planetary gear 73 are mounted on the planetary shaft 74. These gears 72 and 73 are connected and fixed to each other with respect to the planetary shaft 74. The circular planetary gear 73 is rotated by the action of a circular sun gear 76 connected to the mechanical ground. Therefore, the non-circular planetary gear 72 is rotationally driven as the circular planetary gear 73 rotates. As a result, the non-circular planetary gear 72 drives the non-circular sun gear 75. Since the output shaft 77 is connected to the non-circular sun gear 75, the output shaft 77 is rotationally driven as the non-circular sun gear 75 is rotationally driven. Note that the embodiment shown in FIG. 15 has the advantage that the balance of rotational motion is good because a plurality of non-circular planetary gears 72 are arranged so as to be symmetrical with respect to the non-circular sun gear 75. Yes.
 その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 It is apparent from the scope of the claims that the embodiment added with such changes or improvements can also be included in the technical scope of the present invention.
 次に、図7及び図8を用いて例示した実施形態を具体的にインパクト工具に適用した実施例について、図10~図13を用いて説明することとする。ここで、図10は、本実施例に係るインパクト工具の全体構成を示す縦断面右側面図である。また、図11は、本実施例に係るインパクト工具の要部構成を説明するための要部分解斜視展開図である。さらに、図12は本実施例に係る非円形遊星歯車を、図13は本実施例に係る出力シャフト付きの非円形太陽歯車を示す図であり、それぞれの図中の(a)が後方側面を、図中の(b)が断面を示している。 Next, an example in which the embodiment illustrated with reference to FIGS. 7 and 8 is specifically applied to an impact tool will be described with reference to FIGS. Here, FIG. 10 is a vertical cross-sectional right side view showing the overall configuration of the impact tool according to the present embodiment. FIG. 11 is an exploded exploded perspective view of a main part for explaining a main part configuration of the impact tool according to the present embodiment. Further, FIG. 12 is a diagram showing a non-circular planetary gear according to the present embodiment, and FIG. 13 is a diagram showing a non-circular sun gear with an output shaft according to the present embodiment. (B) in a figure has shown the cross section.
 図10及び図11に示すように、本実施例のインパクト工具100は、バッテリ式のインパクト工具100であって、モータ111等の駆動源を収容するハウジング110と、ハウジング110の下端部に着脱自在に設置されることによって当該モータ111に対する駆動電力の供給を行うバッテリパック130とを備えている。 As shown in FIGS. 10 and 11, the impact tool 100 according to the present embodiment is a battery-type impact tool 100, and is detachably attached to a housing 110 that houses a drive source such as a motor 111 and a lower end portion of the housing 110. And a battery pack 130 for supplying driving power to the motor 111.
 ハウジング110は、モータ111や上述した本実施形態に係る非円形ギヤボックス18に相当する駆動機構部115を収容するハウジング上部体110aと、ユーザからの把持を受けるハウジング中央体110bと、バッテリパック130との接続機構を備えるハウジング下部体110cとによって構成されている。ハウジング下部体110cからハウジング中央体110bを経由してハウジング上部体110aまで電力配線が施されており、バッテリパック130に充電された駆動電力をモータ111に対して供給できるようになっている。また、ハウジング中央体110bの上方前面側には、操作スイッチ112が設けられており、ハウジング中央体110bを把持したユーザは、この操作スイッチ112を好適に操作できるようになっている。 The housing 110 includes a housing upper body 110a that houses the drive mechanism 115 corresponding to the motor 111 and the non-circular gear box 18 according to the above-described embodiment, a housing central body 110b that receives a grip from the user, and a battery pack 130. And a housing lower body 110c having a connection mechanism. Power wiring is provided from the housing lower body 110 c to the housing upper body 110 a via the housing central body 110 b, so that driving power charged in the battery pack 130 can be supplied to the motor 111. Further, an operation switch 112 is provided on the upper front side of the housing central body 110b, and a user who holds the housing central body 110b can operate the operation switch 112 suitably.
 モータ111の前方に設置された駆動機構部115は、図7及び図8を用いて説明した本発明の機構を具体的に実現したものである。すなわち、本実施例に係る駆動機構部115は、モータ111が備えるモータ軸111aに接続する太陽歯車181と、この太陽歯車181の周りに噛み合い接続する2つの遊星歯車182,182と、2つの遊星歯車182,182のさらに外周を取り囲む円形内歯車184とを備えている。モータ111への電力供給によってモータ軸111aが回転すると、モータ軸111aは太陽歯車181を駆動し、太陽歯車181は2つの遊星歯車182,182に作用し、遊星歯車182,182は、メカニカル・グラウンドとしてのハウジング上部体110aに接続された円形内歯車184内を移動する。 The drive mechanism 115 installed in front of the motor 111 is a specific implementation of the mechanism of the present invention described with reference to FIGS. That is, the drive mechanism 115 according to the present embodiment includes a sun gear 181 connected to a motor shaft 111a included in the motor 111, two planetary gears 182 and 182 meshingly connected around the sun gear 181 and two planetary gears. The gears 182 and 182 further include a circular internal gear 184 that surrounds the outer periphery. When the motor shaft 111a rotates by supplying electric power to the motor 111, the motor shaft 111a drives the sun gear 181. The sun gear 181 acts on the two planetary gears 182 and 182, and the planetary gears 182 and 182 It moves in the circular internal gear 184 connected to the housing upper body 110a.
 2つの遊星歯車182,182の前方には、回転体186が設置されている。遊星歯車182のシャフト183がこの回転体186と接続しており、回転体186の軸の周りの回転駆動を提供する。 A rotating body 186 is installed in front of the two planetary gears 182 and 182. The shaft 183 of the planetary gear 182 is connected to this rotating body 186 and provides rotational drive about the axis of the rotating body 186.
 回転体186の回転中心から偏心した位置には、遊星シャフト174が設置されている。この遊星シャフト174は、回転体186の内部に収容される形式にて設置されており、遊星シャフト174の両方の軸端部は、回転体186内に設置されたニードルベアリング等の軸受174a,174bにて軸支されている。 A planetary shaft 174 is installed at a position eccentric from the rotation center of the rotating body 186. The planetary shaft 174 is installed in a form that is accommodated inside the rotating body 186, and both shaft ends of the planetary shaft 174 are bearings 174 a and 174 b such as needle bearings installed in the rotating body 186. It is pivotally supported by.
 また、遊星シャフト174には、前方側の軸端部に円形遊星歯車173が、後方側の軸端部に非円形遊星歯車172が装着されている。これらの歯車172、173は互いに剛体接続されており、さらに、遊星シャフト174の軸の周りを自由に回転することができるようになっている。 Further, the planetary shaft 174 is provided with a circular planetary gear 173 at the front shaft end and a non-circular planetary gear 172 at the rear shaft end. These gears 172 and 173 are rigidly connected to each other, and can rotate freely around the axis of the planetary shaft 174.
 円形遊星歯車173は、メカニカル・グラウンドとしてのハウジング上部体110aに固定接続された円形太陽歯車176と噛み合っている。すなわち、2つの遊星歯車182,182の回転によって回転体186が回転駆動されると、遊星シャフト174が円形太陽歯車176の周りを周回することとなり、その結果、この固定設置された円形太陽歯車176の周りを円形遊星歯車173が自転しながら公転することとなる。 The circular planetary gear 173 meshes with a circular sun gear 176 fixedly connected to the housing upper body 110a as a mechanical ground. That is, when the rotating body 186 is driven to rotate by the rotation of the two planetary gears 182 and 182, the planetary shaft 174 circulates around the circular sun gear 176, and as a result, the circular sun gear 176 that is fixedly installed. The circular planetary gear 173 rotates and revolves around.
 円形遊星歯車173の上記回転駆動に伴って、非円形遊星歯車172も同様に回転駆動される。この非円形遊星歯車172には、出力シャフト177に接続された非円形太陽歯車175が噛み合っているので、非円形遊星歯車172の回転駆動に応じて非円形太陽歯車175が回転駆動され、その結果として出力シャフト177が回転駆動されることとなる。なお、非円形太陽歯車175に接続する出力シャフト177の回転軸中心は、回転体186の回転中心軸と重畳している。また、出力シャフト177の後方側の軸端部は回転体186内に設置された軸受にて支持されており、前方側の軸端部はビットホルダ179に接続されている。したがって、ビットホルダ179に設置されるドライバ等の工具は、出力シャフト177の回転駆動に応じて回転することとなり、外部に対して作業が実施できるようになっている。 As the circular planetary gear 173 is rotated, the non-circular planetary gear 172 is also rotated in the same manner. Since the non-circular planetary gear 172 meshes with the non-circular sun gear 175 connected to the output shaft 177, the non-circular sun gear 175 is rotationally driven in accordance with the rotational drive of the non-circular planetary gear 172, and as a result As a result, the output shaft 177 is rotationally driven. Note that the rotation axis center of the output shaft 177 connected to the non-circular sun gear 175 overlaps the rotation center axis of the rotating body 186. The shaft end on the rear side of the output shaft 177 is supported by a bearing installed in the rotating body 186, and the shaft end on the front side is connected to the bit holder 179. Therefore, a tool such as a driver installed in the bit holder 179 rotates in accordance with the rotational drive of the output shaft 177 so that the work can be performed on the outside.
 なお、上述したように、回転体186は遊星歯車182の遊星運動に伴って回転駆動されることとなるが、その内部に設置される遊星シャフト174は偏心して設置されている。また、遊星シャフト174には、非円形遊星歯車172と円形遊星歯車173という重量部材が設置されている。したがって、回転体186が好適に回転運動をするためには、遊星シャフト174等の重量部材とバランスを取るためのバランスウェイトを設ける必要があった。そこで、本実施例に係る回転体186では、図11に示すように、回転体の胴体中央部分を半割構造とし、遊星シャフト174の設置位置と対向する位置に半割構造からなるバランスウェイト部186aを設ける構成を採用した。このバランスウェイト部186aの設置によって、回転体186は安定した回転運動を行えるようになり、安定した操作性を有するインパクト工具100を実現することが可能となった。 Note that, as described above, the rotating body 186 is rotationally driven in accordance with the planetary movement of the planetary gear 182, but the planetary shaft 174 installed therein is eccentrically installed. Further, the planetary shaft 174 is provided with weight members such as a non-circular planetary gear 172 and a circular planetary gear 173. Therefore, in order for the rotator 186 to preferably rotate, it is necessary to provide a balance weight for balancing with a weight member such as the planetary shaft 174. Therefore, in the rotating body 186 according to the present embodiment, as shown in FIG. 11, the balance body portion having a half structure at the center of the body of the rotating body and having a half structure at a position facing the installation position of the planetary shaft 174. The structure which provides 186a was employ | adopted. By installing the balance weight portion 186a, the rotating body 186 can perform a stable rotational movement, and the impact tool 100 having stable operability can be realized.
 次に、本実施例に係るインパクト工具100の動作について、図10を参照して説明を行う。 Next, the operation of the impact tool 100 according to the present embodiment will be described with reference to FIG.
 本実施例に係るインパクト工具100では、モータ111の駆動によってモータ軸111aが回転駆動し、当該モータ軸111aの回転力が太陽歯車181を回転させる。太陽歯車181が回転すると、太陽歯車181と円形内歯車184との間に設置された2つの遊星歯車182,182が遊星運動を行う。遊星歯車182が有するシャフト183は回転体186と接続しているので、2つの遊星歯車182,182が遊星運動を行うことで回転体186が回転駆動する。 In the impact tool 100 according to the present embodiment, the motor shaft 111a is rotationally driven by the drive of the motor 111, and the rotational force of the motor shaft 111a rotates the sun gear 181. When the sun gear 181 rotates, the two planetary gears 182 and 182 installed between the sun gear 181 and the circular internal gear 184 perform planetary motion. Since the shaft 183 of the planetary gear 182 is connected to the rotating body 186, the rotating body 186 is rotationally driven by the planetary gears 182 and 182 performing planetary motion.
 回転体186が回転駆動すると、ハウジング上部体110aに固定接続された円形太陽歯車176の作用によって円形遊星歯車173が回転し、この円形遊星歯車173と剛体接続された非円形遊星歯車172も、円形遊星歯車173と同様に回転駆動する。非円形遊星歯車172と円形遊星歯車173は、回転体186の内部に設置された遊星シャフト174に対して設置されているので、これら2つの歯車172、173は、遊星シャフト174の軸の周りを自由に回転しながら、回転体186の回転中心軸周りを周回運動することとなる。 When the rotating body 186 is driven to rotate, the circular planetary gear 173 is rotated by the action of the circular sun gear 176 fixedly connected to the housing upper body 110a. It is rotationally driven in the same manner as the planetary gear 173. Since the non-circular planetary gear 172 and the circular planetary gear 173 are installed with respect to the planetary shaft 174 installed inside the rotating body 186, the two gears 172 and 173 move around the axis of the planetary shaft 174. While rotating freely, the rotary body 186 rotates around the rotation center axis.
 以上のように遊星運動する非円形遊星歯車172には、非円形太陽歯車175が噛み合っており、さらにこの非円形太陽歯車175には、出力シャフト177が接続している。そして、非円形遊星歯車172の遊星運動に応じて非円形太陽歯車175が回転するので、その回転駆動力が出力シャフト177に伝達され、外部に対して所定のトルクを与えることができるようになっている。 As described above, the non-circular planetary gear 172 that performs planetary movement is engaged with the non-circular sun gear 175, and the output shaft 177 is connected to the non-circular sun gear 175. Then, since the non-circular sun gear 175 rotates in accordance with the planetary motion of the non-circular planet gear 172, the rotational driving force is transmitted to the output shaft 177, and a predetermined torque can be applied to the outside. ing.
 なお、上述した実施形態で説明したように、本実施例に係るインパクト工具100においても、2つの非円形歯車である非円形遊星歯車172及び非円形太陽歯車175の作用によって、出力シャフト177は、正転を行うとともに所定のサイクル期間で逆転動作を行うこととなる。かかる動作によって、カムアウトの防止等といった好適な効果が得られる。 As described in the above-described embodiment, in the impact tool 100 according to the present example, the output shaft 177 is caused by the action of the non-circular planetary gear 172 and the non-circular sun gear 175 which are two non-circular gears. In addition to normal rotation, reverse operation is performed in a predetermined cycle period. By such an operation, a suitable effect such as prevention of come-out can be obtained.
 さらに、本実施例に係るインパクト工具100は、ハンマ10等を備えた従来のインパクト工具とは異なり、複数の非円形歯車によってインパクト工具としての機構を実現した構成を備えていることから、負荷使用時において低騒音であるという好適な利点を備えている。かかる利点は、図14及び表1によって示される、従来のインパクト工具と本実施例のインパクト工具100を用いた騒音の比較測定の分析結果によって明らかとなっている。ここで、図14は、騒音測定方法を説明するための図である。 Further, unlike the conventional impact tool including the hammer 10 and the like, the impact tool 100 according to the present embodiment has a configuration in which a mechanism as an impact tool is realized by a plurality of non-circular gears. It has the favorable advantage of low noise at times. This advantage is made clear by the analysis result of the comparative measurement of noise using the conventional impact tool and the impact tool 100 of the present embodiment shown in FIG. 14 and Table 1. Here, FIG. 14 is a diagram for explaining a noise measurement method.
 今回実施した騒音測定方法は、乾燥米松(Dry Pine)からなる試験片190に対してφ4.5×90mmの木ねじを締め付けたときに発生する騒音を測定したものである。騒音の測定位置は、インパクト工具の後方向、左方向、上方向及び下方向に対してインパクト工具から1m離れた位置とした。なお、騒音測定に際しては、A特性周波数重み付け音圧レベル(A weighted sound pressure level)を付加して測定を行っている。また、騒音測定に使用したインパクト工具は、図10等を用いて説明した本実施例のインパクト工具100と、上記特許文献1に代表される従来のハンマ10等を備えたインパクト工具である。以上の条件に基づき測定された騒音の測定結果を表1に示す。なお、表1は、負荷時における騒音の測定結果を比較した表である。 The noise measurement method implemented this time is to measure the noise generated when a wood screw of φ4.5 × 90 mm is fastened to a test piece 190 made of dry rice pine (Dry Pine). The measurement position of the noise was set to a position 1 m away from the impact tool with respect to the rear direction, left direction, upper direction, and lower direction of the impact tool. In the noise measurement, an A characteristic frequency weighted sound pressure level (A weighted sound pressure level) is added. Moreover, the impact tool used for the noise measurement is an impact tool including the impact tool 100 according to the present embodiment described with reference to FIG. 10 and the like, the conventional hammer 10 represented by the above-mentioned Patent Document 1, and the like. Table 1 shows the measurement results of noise measured based on the above conditions. Table 1 is a table comparing noise measurement results under load.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より明らかな通り、本実施例に係るインパクト工具100の方が、従来技術に係るインパクト工具(インパクト・ドライバ)に比べて全測定位置で低い騒音レベルであることを確認した。また、測定された騒音結果の平均値を比較しても、5.0dB(A)の差で本実施例に係るインパクト工具100の方が低騒音を実現しており、本発明の優位性が確認された。 As is clear from Table 1, it was confirmed that the impact tool 100 according to the present example had a lower noise level at all measurement positions than the impact tool (impact driver) according to the prior art. Further, even when the average values of the measured noise results are compared, the impact tool 100 according to the present embodiment achieves lower noise with a difference of 5.0 dB (A), and the superiority of the present invention is achieved. confirmed.
 1 静止太陽歯車、2 被駆動遊星歯車、3 駆動遊星歯車、4 出力太陽歯車、5 入力シャフト、6 駆動アーム、7 遊星シャフト、8 ねじ頭、9 ねじ駆動ビット、10 ハンマ、11 アンビル、12 ねじりばね、13 ねじりダンパ、14 モータ、15 ケース、16 モータシャフト、17 出力シャフト、18 非円形ギヤボックス、21 グラウンド、22 工具部材、23 入力歯車、24 出力歯車、25 (従来の)ギヤボックス、26 入力シャフト、27 出力シャフト、71 入力シャフト、72 非円形遊星歯車、73 円形遊星歯車、74 遊星シャフト、75 非円形太陽歯車、76 円形太陽歯車、77 出力シャフト、78 回転体、81 太陽歯車、82 遊星歯車、83 シャフト、84 円形内歯車、85 入力シャフト、86 回転体、87 出力シャフト、91 非円形遊星歯車、92 非円形太陽歯車、100 インパクト工具、110 ハウジング、110a ハウジング上部体、110b ハウジング中央体、110c ハウジング下部体、111 モータ、111a モータ軸、112 操作スイッチ、115 駆動機構部、130 バッテリパック、172 非円形遊星歯車、173 円形遊星歯車、174 遊星シャフト、174a,174b 軸受、175 非円形太陽歯車、176 円形太陽歯車、177 出力シャフト、179 ビットホルダ、181 太陽歯車、182 遊星歯車、183 シャフト、184 円形内歯車、186 回転体、186a バランスウェイト部、190 試験片。 1 stationary sun gear, 2 driven planetary gear, 3 driving planetary gear, 4 output sun gear, 5 input shaft, 6 driving arm, 7 planetary shaft, 8 screw head, 9 screw drive bit, 10 hammer, 11 anvil, 12 twist Spring, 13 Torsional damper, 14 Motor, 15 Case, 16 Motor shaft, 17 Output shaft, 18 Non-circular gearbox, 21 Ground, 22 Tool member, 23 Input gear, 24 Output gear, 25 (Conventional) gearbox, 26 Input shaft, 27 output shaft, 71 input shaft, 72 non-circular planetary gear, 73 circular planetary gear, 74 planetary shaft, 75 non-circular sun gear, 76 circular sun gear, 77 output shaft, 78 rotating body, 81 sun gear, 82 Planetary gear, 83 shaft, 4 circular internal gear, 85 input shaft, 86 rotating body, 87 output shaft, 91 non-circular planetary gear, 92 non-circular sun gear, 100 impact tool, 110 housing, 110a housing upper body, 110b housing central body, 110c housing lower body , 111 motor, 111a motor shaft, 112 operation switch, 115 drive mechanism, 130 battery pack, 172 non-circular planetary gear, 173 circular planetary gear, 174 planetary shaft, 174a, 174b bearing, 175 non-circular sun gear, 176 circular sun Gear, 177 output shaft, 179 bit holder, 181 sun gear, 182 planetary gear, 183 shaft, 184 circular internal gear, 186 rotor, 186a balance weight part, 190 test piece.

Claims (11)

  1.  グラウンドに所与の条件で接続されるように設計された周期的に変化する角速度及び/又はトルクを有する回転運動を提供するインパクト工具であって、
     前記角速度及び/又はトルクが1回転の期間中実質的に一定である回転運動を提供する入力シャフトと、
     前記角速度が前記入力シャフトの角度の関数として変化する出力シャフトと、
     前記入力シャフトの回転運動を前記出力シャフトに伝達する駆動列であって、前記入力シャフトに関連づけられた第1の歯車対(1、2)と、前記出力シャフトに関連づけられた第2の歯車対(3、4)とを含む2対以上の歯車(1、2、3、4)を備えるギヤボックスと、
     を含み、
     前記歯車(1、2、3、4)が、それぞれピッチ円の半径r(Θ)、r(Θ)、r(Θ)及びr(Θ)を有し、
     前記Θが、歯車(2)と歯車(3)とを接続する遊星シャフト(7)の角度位置を表し、
     前記歯車(1、2、3、4)の半径が、少なくとも0≦Θ≦2πの角度範囲であるとき、下記不等式、
     r(Θ)・r(Θ)/r(Θ)・r(Θ)>1
    を満足するように前記駆動列が構成されることで、駆動サイクルの少なくともある部分の間において前記出力シャフトの回転方向が逆転することを特徴とするインパクト工具。
    An impact tool that provides a rotational motion with a periodically varying angular velocity and / or torque designed to be connected to a ground at a given condition,
    An input shaft providing a rotational motion in which the angular velocity and / or torque is substantially constant during one revolution;
    An output shaft in which the angular velocity varies as a function of the angle of the input shaft;
    A drive train for transmitting rotational movement of the input shaft to the output shaft, the first gear pair (1, 2) associated with the input shaft and the second gear pair associated with the output shaft A gear box comprising two or more pairs of gears (1, 2, 3, 4) including (3, 4);
    Including
    The gears (1, 2, 3, 4) have pitch circle radii r 1 (Θ), r 2 (Θ), r 3 (Θ) and r 4 (Θ), respectively;
    Θ represents the angular position of the planetary shaft (7) connecting the gear (2) and the gear (3);
    When the radius of the gear (1, 2, 3, 4) is at least an angle range of 0 ≦ Θ ≦ 2π, the following inequality:
    r 1 (Θ) · r 3 (Θ) / r 2 (Θ) · r 4 (Θ)> 1
    An impact tool characterized in that the rotation direction of the output shaft is reversed during at least a part of a drive cycle by configuring the drive train to satisfy the above.
  2.  請求項1に記載のインパクト工具において、
     ζを減衰比、wnをインパクト工具とグラウンドへの接続とを含む系の回転固有振動数としたときに、
     出力サイクル振動数が、
     sqrt(2×(1-2ζ))wn
    によって定義される計算サイクル振動数よりも大きくなるように設定されることを特徴とするインパクト工具。
    The impact tool according to claim 1,
    When ζ is the damping ratio and wn is the natural rotational frequency of the system including the impact tool and connection to the ground,
    The output cycle frequency is
    sqrt (2 × (1-2ζ)) wn
    An impact tool characterized by being set to be larger than a calculation cycle frequency defined by
  3.  グラウンドに所与の条件で接続されるように設計された周期的に変化する角速度及び/又はトルクを有する回転運動を提供するインパクト工具であって、
     前記角速度及び/又はトルクが1回転の期間中実質的に一定である回転運動を提供する入力シャフトと、
     前記角速度が前記入力シャフトの角度の関数として変化する出力シャフトと、
     前記入力シャフトの回転運動を前記出力シャフトに伝達する駆動列であって、前記入力シャフトに関連づけられた第1の歯車対(1、2)と、前記出力シャフトに関連づけられた第2の歯車対(3、4)とを含む2対以上の歯車(1、2、3、4)を備えるギヤボックスと、
     を含み、
     ζを減衰比、wnをインパクト工具とグラウンドへの接続とを含む系の回転固有振動数としたときに、
     出力サイクル振動数が、
     sqrt(2×(1-2ζ))wn
    によって定義される計算サイクル振動数よりも大きくなるように設定されることを特徴とするインパクト工具。
    An impact tool that provides a rotational motion with a periodically varying angular velocity and / or torque designed to be connected to a ground at a given condition,
    An input shaft providing a rotational motion in which the angular velocity and / or torque is substantially constant during one revolution;
    An output shaft in which the angular velocity varies as a function of the angle of the input shaft;
    A drive train for transmitting rotational movement of the input shaft to the output shaft, the first gear pair (1, 2) associated with the input shaft and the second gear pair associated with the output shaft A gear box comprising two or more pairs of gears (1, 2, 3, 4) including (3, 4);
    Including
    When ζ is the damping ratio and wn is the natural rotational frequency of the system including the impact tool and connection to the ground,
    The output cycle frequency is
    sqrt (2 × (1-2ζ)) wn
    An impact tool characterized by being set to be larger than a calculation cycle frequency defined by
  4.  請求項2又は3に記載のインパクト工具において、
     前記グラウンドへの接続がユーザによって提供され、
     前記出力サイクル振動数が、14Hzよりも大きい振動数であることを特徴とするインパクト工具。
    In the impact tool according to claim 2 or 3,
    A connection to the ground is provided by the user;
    The impact tool, wherein the output cycle frequency is a frequency greater than 14 Hz.
  5.  請求項1~4のいずれか1項に記載のインパクト工具において、
     当該インパクト工具は、ねじを締め付けるために使用されるものであり、
     前記出力シャフトの正転運動が工具部材と前記ねじとの分離を引き起こし、その後の逆転運動が、前記工具部材と前記ねじとの再係合を引き起こすことを特徴とするインパクト工具。
    The impact tool according to any one of claims 1 to 4,
    The impact tool is used to tighten screws,
    An impact tool characterized in that forward rotation of the output shaft causes separation of the tool member and the screw, and subsequent reverse movement causes re-engagement of the tool member and the screw.
  6.  請求項1~5のいずれか1項に記載のインパクト工具において、
     使用時において、サイクル振動数が系全体の固有振動数よりも実質的に大きくなるように構成されていることを特徴とするインパクト工具。
    The impact tool according to any one of claims 1 to 5,
    An impact tool characterized in that, when in use, the cycle frequency is substantially larger than the natural frequency of the entire system.
  7.  請求項1~6のいずれか1項に記載のインパクト工具において、
     グラウンドに作用するトルクを低減するために、前記出力シャフトが回転している時間と前記出力シャフトが停止している時間の比を設定自在であることを特徴とするインパクト工具。
    The impact tool according to any one of claims 1 to 6,
    An impact tool, wherein a ratio of a time during which the output shaft is rotating and a time during which the output shaft is stopped can be set in order to reduce torque acting on the ground.
  8.  請求項1~7のいずれか1項に記載のインパクト工具において、
     入力側のトルクを感知し、そこから既知の歯車比と系の角度位置についての情報とを使用して出力側のトルクを計算するための、出力トルクを間接的に感知する手段をさらに備えることを特徴とするインパクト工具。
    The impact tool according to any one of claims 1 to 7,
    Means for indirectly sensing the output torque for sensing the input side torque and calculating the output side torque therefrom using a known gear ratio and information about the angular position of the system therefrom; Impact tool characterized by
  9.  請求項5に記載のインパクト工具において、
     当該インパクト工具は、ねじを締め付けるために使用されるものであり、
     非駆動期間同士の合間の駆動期間中に前記工具部材を前記ねじから分離することを回避するために、前記出力シャフトの回転角が、十分に小さくなるように構成されることを特徴とするインパクト工具。
    In the impact tool according to claim 5,
    The impact tool is used to tighten screws,
    The impact is characterized in that the rotation angle of the output shaft is configured to be sufficiently small in order to avoid separating the tool member from the screw during a driving period between non-driving periods. tool.
  10.  請求項5に記載のインパクト工具において、
     当該インパクト工具は、ねじを締め付けるために使用されるものであり、
     前記出力シャフトの逆転角度が、駆動期間中における前記工具部材と前記ねじとのわずかな分離の後に、前記工具部材と前記ねじとを再係合させるように構成されることを特徴とするインパクト工具。
    In the impact tool according to claim 5,
    The impact tool is used to tighten screws,
    Impact tool characterized in that the reverse angle of the output shaft is configured to re-engage the tool member and the screw after a slight separation of the tool member and the screw during the drive period .
  11.  請求項1又は2に記載のインパクト工具において、
     前記ギヤボックスに含まれる回転体(186)が、歯車(2(173))と歯車(3(172))とを接続する遊星シャフト(7(174))とのバランスを取るためのバランスウェイト部(186a)を備えることを特徴とするインパクト工具。
    In the impact tool according to claim 1 or 2,
    The balance weight part for the rotating body (186) included in the gearbox to balance the planetary shaft (7 (174)) connecting the gear (2 (173)) and the gear (3 (172)). An impact tool comprising (186a).
PCT/JP2010/003224 2009-05-20 2010-05-12 Impact tool WO2010134296A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080016096.0A CN102387896B (en) 2009-05-20 2010-05-12 Impact tool
JP2011514319A JP5496190B2 (en) 2009-05-20 2010-05-12 Impact tools

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB0908645.5A GB0908645D0 (en) 2009-05-20 2009-05-20 Impulse tool
GB0908645.5 2009-05-20
GB0915483.2 2009-09-07
GBGB0915483.2A GB0915483D0 (en) 2009-09-07 2009-09-07 Top up to impulse tool

Publications (1)

Publication Number Publication Date
WO2010134296A1 true WO2010134296A1 (en) 2010-11-25

Family

ID=43125989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003224 WO2010134296A1 (en) 2009-05-20 2010-05-12 Impact tool

Country Status (3)

Country Link
JP (1) JP5496190B2 (en)
CN (2) CN103753469B (en)
WO (1) WO2010134296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461261B (en) * 2013-10-31 2014-11-21

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104546438B (en) * 2015-02-12 2016-05-18 王丽媛 Foot massager
JP6868851B2 (en) * 2017-01-31 2021-05-12 パナソニックIpマネジメント株式会社 Impact rotary tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176851A (en) * 1998-12-17 2000-06-27 Mitsubishi Heavy Ind Ltd Rotary working device
JP2008057747A (en) * 2006-09-04 2008-03-13 Estic Corp Planetary gear device and impact type screw tightening device
JP2008055580A (en) * 2006-09-01 2008-03-13 Estic Corp Impact type screw fastening device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424021A (en) * 1967-05-23 1969-01-28 Ferdinand Freudenstein Intermittent motion mechanism employing non-circular gears
US4055091A (en) * 1972-08-31 1977-10-25 Ker-Train Systems N.V. Variable output transmission
JPS6334344A (en) * 1986-07-28 1988-02-15 Yoshida Kogyo Kk <Ykk> Intermittent drive device
US4954123A (en) * 1988-12-12 1990-09-04 Eugens Kurywczak Radial helix drive horse power amplifier
US5170757A (en) * 1991-12-24 1992-12-15 Damien Gamache Variable horsepower output gearing for piston engine
JP3559174B2 (en) * 1998-05-25 2004-08-25 リョービ株式会社 Impact tool impact structure
JP4008865B2 (en) * 2003-08-01 2007-11-14 株式会社東洋空機製作所 Fastener
JP5041575B2 (en) * 2006-03-07 2012-10-03 日立工機株式会社 Impact tool
TWM311558U (en) * 2006-12-01 2007-05-11 Jungli Shing Jr Multi-functional impact type electric tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176851A (en) * 1998-12-17 2000-06-27 Mitsubishi Heavy Ind Ltd Rotary working device
JP2008055580A (en) * 2006-09-01 2008-03-13 Estic Corp Impact type screw fastening device
JP2008057747A (en) * 2006-09-04 2008-03-13 Estic Corp Planetary gear device and impact type screw tightening device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461261B (en) * 2013-10-31 2014-11-21

Also Published As

Publication number Publication date
CN103753469B (en) 2015-12-30
CN102387896B (en) 2014-05-21
JPWO2010134296A1 (en) 2012-11-08
CN103753469A (en) 2014-04-30
CN102387896A (en) 2012-03-21
JP5496190B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP6440668B2 (en) Electric impulse screwdriver
US5354246A (en) Mechanism in a powered hand-held rotary driver for counteracting reaction torque
JP2006212764A5 (en)
JP6832509B2 (en) Rotary striking tool
CN1485525A (en) Hammer drill
EP2564991A2 (en) Power tool
JP5496190B2 (en) Impact tools
CA2677552C (en) Continuously variable transmission
US5540629A (en) Mechanism for conteracting reaction torque in a powered, reversible, hand-held rotary driver
US7666114B2 (en) Electric variable inertia apparatus
US20220193878A1 (en) Impact power tool
CN1094793A (en) Kinetic-energy regeneration device
CN108687708B (en) Impact tool
CN100475450C (en) Electric screwdriver
EP1182010B1 (en) Vibrating nutrunner
CN209717602U (en) Percussion tool
CN103009343B (en) Electric tool
CN203092500U (en) Electric tool
CN220373189U (en) Impact tool
RU2081741C1 (en) Vibration nut-setter
CN212462990U (en) Kinetic energy driving device of generator
SU818850A1 (en) Inertial power nut driver
JP2018122393A (en) Rotary impact tool
CN201183253Y (en) Electric power tool
SU795927A1 (en) Electric vibration nut wrench

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016096.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514319

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777535

Country of ref document: EP

Kind code of ref document: A1