WO2010133029A1 - 通信天线自动定向装置、方法 - Google Patents

通信天线自动定向装置、方法 Download PDF

Info

Publication number
WO2010133029A1
WO2010133029A1 PCT/CN2009/071892 CN2009071892W WO2010133029A1 WO 2010133029 A1 WO2010133029 A1 WO 2010133029A1 CN 2009071892 W CN2009071892 W CN 2009071892W WO 2010133029 A1 WO2010133029 A1 WO 2010133029A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
directional antenna
antenna
current
target base
Prior art date
Application number
PCT/CN2009/071892
Other languages
English (en)
French (fr)
Inventor
谢卫浩
周家辉
马跃
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2009/071892 priority Critical patent/WO2010133029A1/zh
Priority to CN200980159398.0A priority patent/CN102428607B/zh
Priority to US13/259,319 priority patent/US8810451B2/en
Publication of WO2010133029A1 publication Critical patent/WO2010133029A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication antenna automatic orientation apparatus and method.
  • a specialized cellular wireless communication network has been able to provide services for aircraft, so that people can also obtain popular and economical mobile communication services on the aircraft, including voice services and packet data services.
  • 1 is a schematic diagram of a ground-based base station covering an aircraft in the related art. As shown in FIG. 1, the basic mode of implementation is to establish a certain number of properly arranged base station networks on the ground, the antenna is tilted to cover the civil aviation domain, and the mobile communication terminal is installed on the aircraft. Its antenna communicates with the ground base station.
  • the antenna of a mobile communication terminal installed in an aircraft generally employs a wide-caliber omnidirectional antenna.
  • the gain of such an antenna is small, and the signal of the primary serving base station cannot be effectively amplified, and the interference signal of the adjacent base station cannot be suppressed.
  • the omnidirectional antenna can meet the basic communication quality requirements according to the standard wireless planning design, the capacity and coverage of the system are still relatively lacking, especially in the application of high-speed packet data services.
  • CDMA Code Division Multiple Access
  • 3G 3rd Generation
  • the download rate of the physical layer of 2.4 Mbps requires a signal-to-noise ratio of at least greater than l ldB, and the rate of 921 kbps also requires a signal-to-noise ratio of at least greater than 2 dB.
  • the signal power of the base station is close to the total power of the neighboring base station signals, and even smaller than the total power of the adjacent base station signals.
  • the forward signal-to-noise ratio is often in the range between 0 dB and -3 dB, and can only achieve a rate of several hundred kbps or less.
  • the antenna type has a significant limitation on the ratio of the air area that can achieve a high rate, and the medium and low data rates can only be realized in the soft switching area with a large area ratio.
  • Aviation users belong to commercial high-end users, and only the use of ordinary omnidirectional antennas as terminal antennas is a waste of resources for costly terrestrial networks and aviation equipment. In order to make up for the shortcomings of current aircraft cellular communication technology, a solution to the problem is urgently needed.
  • the present invention has been made in view of the problems in the related art in which a mobile communication terminal antenna installed in an aircraft is limited in terms of signal quality, system capacity, coverage, and application of high-speed packet data services, and the main object of the present invention is It is to provide a communication antenna automatic orientation apparatus and method to solve at least one of the above problems in the related art.
  • a communication antenna automatic orientation device is provided.
  • the communication antenna automatic orientation device includes: a target base station geographic storage memory, configured to store a correspondence relationship between the spatial position information of the aircraft on the aeronautical line and the identifier of the target base station, wherein the spatial position information includes: latitude and longitude, altitude a sensor for determining the current spatial position information of the aircraft; an aircraft space orientation sensor for determining the current spatial orientation of the aircraft; a primary controller for determining the current spatial position information, the correspondence, and the current spatial orientation Orienting the target direction of the antenna, and transmitting an instruction carrying the target direction; the automatic antenna orientation system is configured to receive the command, and drive the directional antenna according to the target direction, so that the directional antenna receives the signal of the ground base station in the target direction; An antenna, a signal for omnidirectional reception of a ground base station; a mobile communication terminal for processing a signal received by the wide aperture antenna and a signal received by the directional antenna.
  • the spatial position information includes: latitude and longitude, altitude a sensor for determining the current spatial position information of
  • the sensor further comprises: a GPS sensor for determining the current latitude and longitude of the aircraft; and an altitude sensor for determining the current altitude of the aircraft.
  • the target base station geographic storage is further configured to: store location information of the target base station.
  • the main controller specifically includes: an acquiring unit, configured to acquire, according to the corresponding relationship, an identifier of the target base station corresponding to the current spatial location information, and obtain location information of the target base station according to the identifier; and a calculating unit, configured to use the target base station according to the target base station
  • the location information, the current spatial location information, and the current spatial orientation are calculated to obtain a target direction; and the sending unit is configured to send the target direction to the automatic antenna orientation system by signaling.
  • the automatic antenna orientation system specifically includes: a driver for driving the directional antenna according to a target direction in the command; and a directional antenna for receiving a signal of the ground base station in the target direction.
  • the directional antenna is one of the following: a smart day electronically controlling the antenna pattern through the array antenna Wire, electromechanical automatic directional antenna.
  • the driver is specifically configured to: when the directional antenna is an electromechanical automatic directional antenna, drive the directional antenna, and when the directional antenna is a smart antenna, generate an antenna pattern to drive the directional antenna.
  • the apparatus further comprises: a radome for mitigating the influence of the wind resistance on the directional antenna and the wide aperture antenna.
  • a communication antenna automatic orientation device includes: a target base station geographic storage memory, configured to store a correspondence relationship between the spatial position information of the aircraft on the aeronautical line and the identifier of the target base station, wherein the spatial position information includes: latitude and longitude, altitude a sensor for determining the current spatial position information of the aircraft; an aircraft space orientation sensor for determining the current spatial orientation of the aircraft; a primary controller for determining the current spatial position information, the correspondence, and the current spatial orientation Orienting the target direction of the antenna, and transmitting an instruction carrying the target direction; the first automatic antenna orientation system is configured to receive the instruction, and drive the first directional antenna according to the target direction in the instruction, so that the first directional antenna is a signal for receiving a ground base station in a target direction; a second automatic antenna orientation system, configured to receive an instruction, and drive the second directional antenna according to a target direction in the command, so that
  • the sensor further comprises: a GPS sensor for determining the current latitude and longitude of the aircraft; and an altitude sensor for determining the current altitude of the aircraft.
  • the target base station geographic storage is further configured to: store location information of the target base station.
  • the main controller specifically includes: an acquiring unit, configured to acquire, according to the corresponding relationship, an identifier of the current target base station corresponding to the current spatial location information, obtain location information of the current target base station according to the identifier, and obtain the original target base station stored last time. The location information is used by the determining unit to determine whether the current target base station is the same as the original target base station.
  • the main controller further includes: a first calculating unit, configured to: according to the location information of the current target base station, the location information of the original target base station, the current spatial location information, and the current spatial orientation, if the determining unit determines to be no Calculating a first target direction pointing to the current target base station and a second target direction pointing to the original target base station; the first sending unit, configured to determine, in the determining unit, In the case of transmitting, the first instruction carrying the first target direction is sent, and the second instruction carrying the second target direction is sent, and the updating module is configured to update the stored information of the original target base station to the current target base station.
  • a first calculating unit configured to: according to the location information of the current target base station, the location information of the original target base station, the current spatial location information, and the current spatial orientation, if the determining unit determines to be no Calculating a first target direction pointing to the current target base station and a second target direction pointing to the original target base station
  • the first sending unit configured to determine
  • the first automatic antenna orientation system specifically includes: a first driver, configured to drive the first directional antenna according to the first target direction in the first instruction; the first directional antenna, used in the first The signal of the current target base station is received in the target direction.
  • the second automatic antenna orientation system specifically includes: a second driver for driving the second directional antenna according to the second target direction in the second instruction; and a second directional antenna for using the second target direction The signal of the original target base station is received.
  • the main controller further includes: a second calculating unit, configured to calculate, according to the current target base station location information, the current spatial location information, and the current spatial orientation, the current target base station, if the determining unit determines to be YES a second transmitting unit, configured to send, by the determining unit, a target direction by signaling to the first automatic antenna orientation system and the second automatic antenna orientation system, so that the first directional antenna and The second directional antennas are all directed to the current target base station.
  • the first directional antenna or the second directional antenna is one of the following: a smart antenna, an electromechanical automatic directional antenna that electrically controls the antenna pattern through the array antenna.
  • the first driver is specifically configured to: when the first directional antenna is an electromechanical automatic directional antenna, drive the first directional antenna, and when the first directional antenna is a smart antenna, generate an antenna pattern to drive the first
  • the second driver is specifically configured to: when the second directional antenna is an electromechanical automatic directional antenna, drive the second directional antenna, and when the second directional antenna is a smart antenna, generate an antenna pattern to drive the second directional antenna .
  • the apparatus further comprises: a radome for mitigating the influence of the wind resistance on the first directional antenna and the second directional antenna.
  • the communication antenna automatic orientation device comprises: a target base station geographic storage memory for storing a correspondence relationship between the identification of the target location of the spatial location information of the aircraft on the aeronautical line, wherein the spatial location information includes: latitude and longitude, altitude Sensor used to determine the aircraft Front space position information; aircraft space orientation sensor for determining the current spatial orientation of the aircraft; the main controller, for determining the target direction of the directional antenna according to the current spatial position information, the correspondence relationship, and the current spatial orientation, and transmitting and carrying An instruction with a target direction; an electronically controlled beam smart antenna orientation system for receiving commands, driving the directional antenna according to the target direction, so that the directional antenna receives the signal of the ground base station in the target direction; the mobile communication terminal is used for The signal received by the directional antenna is processed.
  • the spatial location information includes: latitude and longitude, altitude Sensor used to determine the aircraft Front space position information
  • aircraft space orientation sensor for determining the current spatial orientation of the aircraft
  • the main controller for determining the target direction of the directional antenna according to
  • the sensor further comprises: a GPS sensor for determining the current latitude and longitude of the aircraft; and an altitude sensor for determining the current altitude of the aircraft.
  • the target base station geographic storage is further configured to: store location information of the target base station.
  • the main controller specifically includes: an acquiring unit, configured to acquire, according to the corresponding relationship, an identifier of the current target base station corresponding to the current spatial location information, obtain location information of the current target base station according to the identifier, and obtain the original target base station stored last time. The location information is used by the determining unit to determine whether the current target base station is the same as the original target base station.
  • the main controller further includes: a first calculating unit, configured to: according to the location information of the current target base station, the location information of the original target base station, the current spatial location information, and the current spatial orientation, if the determining unit determines to be no Calculating a first target direction pointing to the current target base station and a second target direction pointing to the original target base station; the first sending unit, configured to send the first instruction carrying the first target direction if the determining unit determines to be no And sending a second instruction carrying the second target direction; and an updating module, configured to update the storage information of the original target base station to the current target base station.
  • a first calculating unit configured to: according to the location information of the current target base station, the location information of the original target base station, the current spatial location information, and the current spatial orientation, if the determining unit determines to be no Calculating a first target direction pointing to the current target base station and a second target direction pointing to the original target base station
  • the first sending unit configured to send the first instruction carrying the first
  • the electronically controlled beam smart antenna orientation system specifically includes: a driver, configured to drive the first directional antenna according to the first target direction in the first instruction, and according to the second target direction in the second instruction The second directional antenna is driven; the first directional antenna is configured to receive a signal of the current target base station in the first target direction; and the second directional antenna is configured to receive the signal of the original base station in the second target direction.
  • the main controller further includes: a second calculating unit, configured to calculate, according to the current target base station location information, the current spatial location information, and the current spatial orientation, the current target base station, if the determining unit determines to be YES a second sending unit, configured to send signaling carrying the target direction, so that the first directional antenna and the second directional antenna are both directed to the current target base station, if the determining unit determines to be YES.
  • the apparatus further comprises: a radome for mitigating the influence of the wind resistance on the first directional antenna and the second directional antenna.
  • the communication antenna automatic orientation method includes: the main controller acquires current spatial position information of the aircraft from the sensor, and current aircraft space orientation information; and the main controller acquires position information of the current target base station according to the current spatial position information.
  • the main controller determines the target direction of the directional antenna according to the current target base station location information, the current spatial location information, the current aircraft spatial orientation information, and transmits the signaling carrying the target direction to the intelligent directional antenna driver; the intelligent directional antenna driver is The command drives the directional antenna to direct the directional antenna to the current target base station.
  • the current spatial location information includes: latitude and longitude, altitude.
  • the sensor comprises: a GPS sensor, an altitude sensor.
  • the acquiring, by the main controller, the location information of the current target base station according to the current spatial location information includes: the primary controller queries the target base station geographic storage memory according to the current spatial location information, and acquires location information of the current target base station, where the target base station geographic storage memory Corresponding relationship between the spatial location information of the aircraft on the aeronautical line and the identity of the target base station.
  • the intelligent directional antenna driver drives the directional antenna according to the instruction: when the directional antenna is an electromechanical automatic directional antenna, the intelligent directional antenna driver directly drives the directional antenna, and when the directional antenna is a smart antenna, the intelligent directional antenna driver generates an antenna pattern To drive the directional antenna.
  • the method further includes: determining, by the primary controller, whether the current target base station is the same as the stored original target base station.
  • the main controller determines the target direction of the directional antenna, and sends the signaling carrying the target direction to the intelligent directional antenna driver, including: The controller determines, according to location information of the current target base station, location information of the original target base station, current spatial location information, current aircraft spatial orientation information, a first target direction directed to the current target base station and a second target direction directed to the original target base station; The first target direction is carried in the first signaling and sent to the first intelligent directional antenna driver, the second target direction is carried in the second signaling, and sent to the second smart directional antenna driver.
  • the intelligent directional antenna driver drives the directional antenna according to the instruction, so that the directional antenna is directed to the current target base station: the first smart directional antenna driver drives the first directional antenna such that the first directional antenna points to the current target base station; The directional antenna driver drives the second directional antenna such that the second directional antenna is directed to the original target base station.
  • the method further includes: updating, by the main controller, the storage information of the original target base station to the storage information of the current target base station.
  • FIG. 1 is a schematic diagram of a ground station coverage aircraft in the related art
  • FIG. 2 is a schematic diagram of a communication antenna automatic orientation device according to a first embodiment of the apparatus according to the present invention
  • FIG. 3 is an altitude according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a communication antenna automatic orientation device according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a communication antenna automatic orientation device according to Embodiment 3 of the present invention
  • 6 is a flow chart of a method for automatically orienting a communication antenna according to an embodiment of the method of the present invention;
  • FIG. 1 is a schematic diagram of a ground station coverage aircraft in the related art
  • FIG. 2 is a schematic diagram of a communication antenna automatic orientation device according to a first embodiment of the apparatus according to the present invention
  • FIG. 3 is an altitude according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a communication antenna automatic orientation device according to Embodi
  • FIG. 7 is a flow diagram of a method for automatically switching a communication antenna according to an embodiment of the method of the present invention.
  • Cheng Tu. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT the application of a high-performance directional antenna to an aircraft can improve the quality of cellular mobile communication and system throughput/capacity, meet the needs of market development, and is also a trend of technology development.
  • the application of high performance directional antennas to aircraft must address the following issues:
  • the smart antenna is required to automatically and quickly search for the direction of the strongest service base station on the ground, it is of course the most ideal solution, but the search angle range is large, the water level is 360 degrees, the vertical plane is close to 180 degrees, close to the hemisphere, now The technology of civil communication in the stage is still far from reaching this level. In the future, it will be difficult to achieve due to the development cost and device volume limitation.
  • the present invention provides a communication antenna automatic orientation device.
  • the components of the device can be selected in three ways, and the device mainly includes: a main controller, an optimal service base station geographic storage memory, a GPS sensor, Aircraft space orientation sensor, an automatic directional antenna system (including driver and directional antenna), a wide-caliber antenna, or another set of automatic directional antenna systems (including drivers and directional antennas), or an electronically controlled beam smart antenna orientation system ( With driver and directional antenna), streamlined radome.
  • a main controller an optimal service base station geographic storage memory
  • a GPS sensor Aircraft space orientation sensor
  • an automatic directional antenna system including driver and directional antenna
  • a wide-caliber antenna or another set of automatic directional antenna systems
  • an electronically controlled beam smart antenna orientation system With driver and directional antenna
  • the data of the optimal service base station geographic storage memory can be calculated by the cellular communication network simulation software, and can also be corrected according to the aviation test data.
  • the optimal service base station geographic storage memory stores the specific latitude and longitude and altitude corresponding to the aeronautical line.
  • the GPS sensor, altitude sensor, and carrier space orientation sensor are devices shared with the aircraft to provide input values for calculating the antenna target direction (eg, latitude and longitude, altitude, aircraft space orientation).
  • the automatic directional antenna can be a conventional electromechanical automatic directional antenna, or an emerging smart antenna that electronically controls the antenna pattern through the array antenna.
  • Embodiment 1 of the present invention provides a communication antenna automatic orientation device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a communication antenna automatic orientation device according to Embodiment 1 of the present invention, as shown in FIG.
  • the communication antenna automatic orientation device of the embodiment of the invention includes: a target base station geographic storage memory 20 (ie, the above-mentioned optimal service base station geographic storage memory), a sensor (including a GPS sensor 21, an altitude sensor 22), an aircraft space orientation sensor 23, and a main Controller 24, automatic antenna orientation system (not shown) (including smart directional antenna driver 250, directional antenna 251), wide aperture antenna 26, mobile communication terminal 27, radome 28.
  • a target base station geographic storage memory 20 ie, the above-mentioned optimal service base station geographic storage memory
  • a sensor including a GPS sensor 21, an altitude sensor 22
  • an aircraft space orientation sensor 23 an aircraft space orientation sensor 23
  • main Controller 24 automatic antenna orientation system (not shown) (including smart directional antenna driver 250, directional antenna 251), wide aperture antenna 26, mobile communication terminal 27, radome 28.
  • the target base station locating memory 20 is configured to store the correspondence between the spatial location information of the aircraft on the aeronautical line and the identifier of the target base station (ie, the above-mentioned optimal terrestrial base station), and may also store the location information of the target base station, where the spatial location Information includes: latitude and longitude, altitude.
  • the network simulation software already exists in the related art, and the ray tracing model suitable for line-of-sight propagation can also improve the accuracy of the simulation result and output the geographical distribution of the optimal service base station.
  • the data of the target base station geo-memory 20 can be computed via cellular communication network emulation software.
  • a sensor for determining current spatial position information of the aircraft includes a GPS sensor 21 and an altitude sensor 22, wherein the GPS sensor 21 is used to determine the current latitude and longitude of the aircraft; and the altitude sensor 22 is used to determine the current altitude of the aircraft.
  • the aircraft space orientation sensor 23 is configured to determine the current spatial orientation of the aircraft; the main controller 24 is connected to the GPS sensor 21, the altitude sensor 22, and the target base station geographic storage memory 20 via the communication line for using the current spatial location information.
  • the main controller 24 specifically includes the following units: an acquisition unit for Obtaining, by the relationship, the identifier of the target base station corresponding to the current spatial location information, and acquiring the location information of the target base station according to the identifier; the calculating unit, configured to calculate the target according to the location information of the target base station, the current spatial location information, and the current spatial orientation Direction; a sending unit, configured to send the target direction to the automatic antenna orientation system by signaling.
  • the automatic antenna orientation system is connected to the main controller 24, and includes a driver 250 and a directional antenna 251.
  • the driver 250 is configured to receive an instruction sent by the main controller 24, and drive the directional antenna according to the target direction, and directional antenna 251.
  • the signal of the ground base station is received in the target direction; in practical applications, the smart antenna product adaptively adjusting the antenna direction has already been generated, mainly including two categories: 1.
  • An earlier electromechanical method for automatically adjusting the antenna direction ie, , electromechanical automatic directional antenna
  • such smart antenna can use gyroscope, microprocessor, servo machine and other hardware to assist in processing control; 2.
  • Antenna ie, a smart antenna that electronically controls the antenna pattern through an array antenna.
  • the above two types of smart antennas have their own advantages and disadvantages, but they can control the antenna pattern according to the instructions, so that they can aim at the target direction.
  • the directional antenna 251 is an electromechanical automatic directional antenna
  • the 3-zone actuator 250 can directly move the directional antenna in three regions.
  • the driver 250 needs to generate an antenna pattern to drive the directional antenna 251.
  • Wide aperture antenna 26 for omnidirectional reception of ground station signals; mobile communication terminal 27 for signals received by wide aperture antenna 26 and directional antenna 251 The received signal is processed.
  • the mobile communication terminal 27 already has a product with dual antenna reception, which creates conditions for ensuring the reliability of handover between service areas of the base station.
  • the radome 28 is used to circumvent the influence of the wind resistance on the directional antenna and the wide aperture antenna.
  • the radome 28 can be a streamlined radome, and the choice of materials requires minimal loss of RF signals.
  • the communication antenna automatic orientation device ie, a set of directional antennas and a set of wide-caliber antennas
  • the communication antenna automatic orientation device ie, a set of directional antennas and a set of wide-caliber antennas
  • the communication antenna automatic orientation device ie, a set of directional antennas and a set of wide-caliber antennas
  • the above technical solution is further elaborated below in conjunction with an example of a CDMA2000 lxEV-DO system. It should be noted that the application of the present invention is not limited to the following examples.
  • the lxEV-DO system is one of the three mainstream technical systems for international 3G cellular mobile communication. There are mature network simulation software suitable for the system, as long as there are basic wireless parameter information of the ground base station (including latitude and longitude, antenna type, antenna).
  • Orientation, antenna hanging height, feeder loss, base station transmit power, etc.), using a suitable line-of-sight propagation model, such as a highly accurate ray tracing model, can output a geographical distribution map of the optimal serving base station, and can be covered by the airspace
  • the altitude is layered out of the map.
  • the letters A, B, C, etc. respectively represent the optimal coverage base stations of the jurisdiction, namely ground stations A, B, C, and the like.
  • the base station covers the boundary. If some ping-pong switching areas appear in the simulation diagram, it can be smoothed by software technology to eliminate the ping-pong phenomenon. If there are measured data of common routes, the simulation results can also be corrected.
  • an optimal serving base station geographic storage can be formed.
  • the result of each layer of altitude (each base station control area) format is converted into a line vector, only a few common aviation altitudes are required, and storage space is not required.
  • the ground base station network can be stable for a long time under normal circumstances.
  • the maintenance is simple and convenient, and the following methods can be used: After each maintenance cycle (for example, one day is one cycle), after the aircraft and ground communication are started, the computer software first automatically checks whether the storage version is connected to the ground server. The version is consistent.
  • the download is updated; if the download is unsuccessful, the original version is maintained.
  • GPS information, aircraft space orientation, and altitude information are basic information for aircraft navigation.
  • the relevant sensor is an off-the-shelf device of the aircraft, and no need to add it, as long as the relevant output information is shared to the device through the communication line.
  • the main controller can use a well-established microprocessor.
  • the directional drive directional drive parameters are also based on the above results and aircraft space.
  • the orientation information (horizontal direction angle ⁇ ' / vertical direction angle (3 ') is corrected, and the specific method is addition or subtraction. Therefore, the main controller can judge the output to the automatic directional antenna according to the result obtained above.
  • Key instructions Regarding smart directional antennas, both electromechanical and smart beam types have relatively mature products. The key is to comply with The characteristics of the empty application, that is, the small size, the light weight, the wide range of the pattern change, and the cost are also a factor. In combination, the electromechanically driven automatic directional antenna may have an advantage.
  • the wide-caliber antenna is an optional component of the present invention, and the wide-caliber antenna can be an omnidirectional antenna. It is recommended to use an antenna with an electric down-tilt function to improve signal reception. lxEV-DO
  • the mobile communication terminal has two antenna ports, and the signal received by any one antenna satisfies the quality, and the irrelevance between the two antenna signals also generates diversity reception gain. This feature is to ensure the stability of communication quality and solve the orientation.
  • the scheme of switching antennas between serving base stations provides favorable conditions.
  • the wind-resistant lining of wind resistance requires low wind resistance, low RF signal loss, small volume, and meets the technical requirements for aircraft installation.
  • the forward-drying of the communication terminal by the base station is equivalent to only one primary base station signal for realizing the network coverage, which is equivalent to eliminating most of the soft handover area.
  • the data throughput or user capacity of the cellular mobile communication is greatly improved.
  • the above technical solution of the embodiment of the present invention is a solution for significantly improving service performance at a low cost, and has a positive effect on the development of the mobile communication service in the aviation market.
  • Device Embodiment 2 provides a communication antenna automatic orientation device according to an embodiment of the present invention, and FIG.
  • the communication antenna automatic orientation device of the embodiment of the invention includes: a target base station geographic storage memory 40 (ie, the above-described optimal service base station geographic storage memory), a sensor (including a GPS sensor 41, an altitude sensor 42), an aircraft space orientation sensor 43, and a main Controller 44, first automatic antenna orientation system (not shown) (including first driver 450, first directional antenna 451), second automatic antenna orientation system 46 (including second driver 460, second directional antenna 461 movement) Communication terminal 47, radome 48.
  • a target base station geographic storage memory 40 is used to store spatial position information of an aircraft on an aeronautical line with a target base station (ie, Corresponding relationship between the identifiers of the above-mentioned optimal ground service base stations, and storing the target The location information of the station, wherein the spatial location information includes: latitude and longitude, altitude.
  • the sensor for determining the current spatial location information of the aircraft includes a GPS sensor 41 and an altitude sensor 42, wherein the GPS sensor 41 is used to determine the current state of the aircraft The latitude and longitude sensor 42 is used to determine the current altitude of the aircraft.
  • the aircraft space orientation sensor 43 is used to determine the current spatial orientation of the aircraft; the main controller 44 is connected to the GPS sensor 41, the altitude sensor 42, and the target through the communication line.
  • the base station geo-memory 40 is connected for the current spatial location information (the current latitude and longitude output by the GPS sensor 41, the current altitude output by the altitude sensor 42), the correspondence (stored in the target base station geo-memory 40), and
  • the current spatial orientation (output of the aircraft space toward the sensor 43) determines the target direction of the directional antenna 451 in the automatic antenna orientation system and transmits an instruction carrying the target direction to the driver 450 in the automatic antenna orientation system.
  • the main controller 44 may further include: an acquiring unit, configured to acquire, according to the corresponding relationship, an identifier of the current target base station corresponding to the current spatial location information, obtain location information of the current target base station according to the identifier, and acquire the last stored original target base station Position information; a determining unit, configured to determine whether the current target base station is the same as the original target base station. According to the judgment result of the determining unit, the two can be divided into two situations, that is, the first situation, the current target The base station is different from the original target base station; Case 2, the current target base station is the same as the original target base station. Next, the processing of the main controller 44 in the above two cases will be described in detail.
  • the first calculating unit is configured to: according to the location information of the current target base station, The location information of the target base station, the current spatial location information, and the current spatial orientation are calculated to obtain a first target direction that points to the current target base station and a second target direction that points to the original target base station.
  • the first sending unit is configured to determine whether the determining unit is In the case of transmitting, the first instruction carrying the first target direction is sent, and the second instruction carrying the second target direction is sent, and the updating module is configured to update the stored information of the original target base station to the current target base station.
  • the second calculating unit is configured to: according to the location information of the current target base station, the current space, if the determining unit determines that it is YES The location information and the current spatial orientation are calculated to obtain a target direction that is directed to the current target base; the second sending unit is configured to send the target direction to the first automatic antenna orientation system by signaling in the case that the determining unit determines to be The second automatic antenna orientation system is such that both the first directional antenna and the second directional antenna point to the current target base station.
  • the communication antenna automatic orientation device further includes: a first automatic antenna orientation system connected to the main controller 44, including a first driver 450, a first directional antenna 451, wherein the first driver 450 is configured to receive an instruction sent by the main controller 44, and drive the first directional antenna 451 according to a target direction in the instruction, where the first directional antenna 451 is configured to receive a signal of the current target base station in a target direction; a second automatic antenna orientation system 46 connected to the main controller 44, including a second driver 460, a second directional antenna 461, wherein the second driver 460 is configured to receive an instruction sent by the main controller 44, and to drive the second directional antenna 461 according to a target direction in the instruction, and the second directional antenna 461 is configured to The signal of the original target base station is received in the target direction; Case 2, in case 2, the driver in the first automatic antenna orientation system and the second automatic antenna orientation system 46 drives the first directional antenna 451 according to the instruction sent by the main controller 44, respectively.
  • a first automatic antenna orientation system
  • the second directional antenna 461 is configured to point the first directional antenna 451 and the second directional antenna 461 to the current target base station.
  • the first directional antenna 451 in the first automatic antenna orientation system or the second directional antenna 461 in the second automatic antenna orientation system 46 is one of the following: a smart antenna electrically controlled by an array antenna, and an electromechanical automatic Directional antenna.
  • the first 3-zone actuator 450 directly drives the first directional antenna 451 when the first directional antenna 451 is an electromechanical automatic directional antenna, and generates an antenna pattern when the first directional antenna 451 is a smart antenna.
  • the second directional antenna 451 is driven by the second directional antenna 461 when the second directional antenna 461 is an electromechanical automatic directional antenna.
  • the antenna When the second directional antenna 461 is a smart antenna, the antenna is generated. The pattern is driven to drive the second directional antenna 461.
  • the mobile communication terminal 47 is configured to process signals received by the first directional antenna 451 and the second directional antenna 461.
  • the radome 48 is configured to circumvent the influence of the wind resistance on the first directional antenna 451 and the second directional antenna 461.
  • the radome 48 can be a streamlined radome, and the choice of materials requires minimal loss of RF signals. It should be noted that the details of the communication antenna automatic orientation device according to the embodiment of the present invention may be referred to the corresponding parts in the foregoing device embodiment 1, and details are not described herein again.
  • Embodiment 3 of the present invention provides a communication antenna automatic orientation device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a communication antenna automatic orientation device according to Embodiment 3 of the present invention, as shown in FIG.
  • the communication antenna automatic orientation device of the embodiment of the invention includes: a target base station geographic storage memory 50 (ie, the above-described optimal service base station geographic storage memory), a sensor (including a GPS sensor 51, an altitude sensor 52), an aircraft space orientation sensor 53, and a main Controller 54, electronically controlled beam smart antenna orientation system (including driver 550, first directional antenna 551, second directional antenna 552), mobile communication The terminal 56 and the radome 57.
  • the target base station geographic storage 50 is configured to store the correspondence between the identifiers of the spatial location information of the aircraft on the aeronautical line (ie, the above-mentioned optimal terrestrial base station), and may also store the location information of the target base station, where the spatial location information Including: latitude and longitude, altitude.
  • a sensor for determining current spatial position information of the aircraft includes a GPS sensor 51 and an altitude sensor 52, wherein the GPS sensor 51 is used to determine the current latitude and longitude of the aircraft; the altitude sensor 52 is used to determine the current altitude of the aircraft.
  • the aircraft space orientation sensor 53 is used to determine the current spatial orientation of the aircraft; the main controller 54 is connected to the GPS sensor 51 and the altitude sensor via the communication line.
  • the target base station geographic storage 50 is connected for the current spatial location information (the current latitude and longitude output by the GPS sensor 51, the current altitude output by the altitude sensor 52), and the corresponding relationship (the target base station is stored in the geographic storage 50).
  • the current spatial orientation (output of the aircraft space toward the sensor 53) determines the target direction of the first directional antenna 551 and the second directional antenna 552 in the electronically controlled beam smart antenna orientation system, and directs the system to the electronically controlled beam smart antenna
  • the driver 550 in the middle transmits an instruction carrying the target direction.
  • the main controller 54 may further include: an acquiring unit, configured to acquire, according to the corresponding relationship, an identifier of the current target base station corresponding to the current spatial location information, obtain location information of the current target base station according to the identifier, and obtain an original storage original The location information of the target base station; the determining unit is configured to determine whether the current target base station is the same as the original target base station. According to the judgment result of the judging unit, it can be divided into two cases, that is, case 1, the current target base station and the original target base station are different; and in the second case, the current target base station and the original target base station are the same. Next, the processing of the main controller 54 in the above two cases will be described in detail.
  • the first calculating unit is configured to, according to the current target base station, if the determining unit determines to be no.
  • the location information, the location information of the original target base station, the current spatial location information, and the current spatial orientation are calculated to obtain a first target direction directed to the current target base station and a second target direction directed to the original target base station;
  • a first transmitting unit configured to When the determining unit determines to be no, the first command carrying the first target direction is sent, and the second command carrying the second target direction is sent; and the updating module is configured to update the stored information of the original target base station to the current target. Base station.
  • the second calculating unit is configured to: according to the location information of the current target base station, the current space, in the case that the determining unit determines YES The location information and the current spatial orientation are calculated to obtain a target direction that is directed to the current target base.
  • the second sending unit is configured to send signaling carrying the target direction to make the first orientation if the determining unit determines to be yes.
  • the antenna, and the second directional antenna are both directed to the current target base station.
  • the communication antenna automatic orientation device according to the embodiment of the present invention further includes: an electronically controlled beam smart antenna orientation system, connected to the main controller 54, including the driver 550, the first directional antenna 551, and the second directional antenna 552.
  • the driver 550 is configured to receive the first instruction and the second instruction sent by the main controller 54 and drive the first directional antenna 551 according to the first target direction in the first instruction, according to the second instruction.
  • the second target antenna drives the second directional antenna 552
  • the first directional antenna 551 is configured to receive a signal of the current target base station in the first target direction
  • the second directional antenna 552 is configured to receive in the second target direction.
  • the driver 550 receives the command sent by the main controller 54, and drives the first directional antenna 551 and the second directional antenna 552 according to the command, so that the first directional antenna 551 and the second directional antenna 552 are both Point to the current target base station.
  • the mobile communication terminal 56 is configured to process signals received by the first directional antenna 551 and the second directional antenna 552.
  • the radome 57 is configured to evade the wind resistance against the first directional antenna 551 and the second directional antenna 552. ring.
  • the radome 57 can be a streamlined radome, and the choice of materials requires minimal loss of RF signals. It should be noted that the details of the communication antenna automatic orientation device according to the embodiment of the present invention may be referred to the corresponding parts in the foregoing device embodiment 1, and details are not described herein again.
  • a communication antenna automatic orientation method including the following processing (step S602 - step S608): Step S602, the main controller acquires current spatial position information of the aircraft from the sensor, and The current aircraft space orientation information; wherein, the current spatial location information includes: latitude and longitude, altitude; the sensor comprises: a GPS sensor, an altitude sensor. Step S604, the main controller acquires the location information of the current target base station according to the current spatial location information. Specifically, in step S604, the primary controller may query the target base station geographic storage according to the current spatial location information to obtain the current target base station.
  • the target base station geographic storage is used to store a correspondence between the spatial location information of the aircraft on the aeronautical line and the identity of the target base station.
  • the main controller determines the target direction of the directional antenna according to the location information of the current target base station, the current spatial location information, and the current aircraft spatial orientation information, and sends the signaling carrying the target direction to the smart directional antenna driver;
  • the intelligent directional antenna driver drives the directional antenna according to the command to direct the directional antenna to the current target base station.
  • FIG. 6 is a flow chart of a method for automatically orienting a communication antenna according to an embodiment of the method of the present invention. As shown in FIG. 6, the method includes the following processing:
  • the main controller acquires current GPS position and altitude information from the sensor
  • the main controller checks the optimal service base station according to the current ontology (aircraft) spatial position information. Memory, obtaining the location of the target base station;
  • the main controller calculates the directional antenna target direction according to the current position, the aircraft space orientation and the target base station position, and sends it to the intelligent directional antenna driver;
  • the directional antenna driver drives the directional antenna according to the instruction, if it is electromechanical, and forms the antenna pattern if it is beam-controlled, so that the directional antenna faces the target base station.
  • the basic steps of automatically adjusting the direction of the directional antenna can be processed according to the above steps. Because the position of the aircraft continues to change, the above steps need to be periodically cycled.
  • the optimal service station target base station
  • the device in the first embodiment of the apparatus shown in FIG. 2 is used (ie, includes a set of directional antennas and a set) Wide-caliber antennas, no special treatment is required; if the device in the second embodiment (Fig.
  • the device in 5) needs to perform a handover process, where the handover process includes the following operations: after the primary controller acquires the location information of the current target base station according to the current spatial location information, it is also required to determine the current target base station and the stored original target base station. Is it the same?
  • the main controller determines, according to the current target base station location information, the original target base station location information, the current spatial location information, and the current aircraft space orientation information, a first target direction of the target base station and a second target direction directed to the original target base station; subsequently, the primary controller carries the first target direction in the first signaling and transmits to the first intelligent directional antenna driver, and the second target The direction is carried in the second signaling and sent to the second intelligent directional antenna driver.
  • FIG. 7 is a flowchart of a communication antenna automatic orientation method switching process according to an embodiment of the method of the present invention, as shown in FIG. Including the following processing:
  • the main controller acquires current GPS position and altitude information from the sensor
  • the main controller checks the optimal serving base station memory according to the current body (aircraft) spatial position information to obtain the target base station location; 3. The main controller determines whether the target base station and the stored last (last time) target base station are the same.
  • the main controller is based on the current position, the orientation of the aircraft space and the original, The location of the new base station is calculated to point to the target direction of the original and new base stations;
  • step 9 10 Update the last target base station storage information to the new base station; for the above step 3, if the target base station and the stored last target base station are the same, indicating that no switching of the serving base station occurs , can be operated as usual, that is, step 9 10;
  • the main controller calculates the directional antenna target direction according to the current position, the aircraft space orientation and the target base station position.
  • the main controller sends the command to the intelligent directional antenna drivers 0 and 1, so that both directional antennas are oriented.
  • Service base station In summary, the control modes shown in Figure 6 and Figure 7 are all one cycle of the periodic cycle.
  • the initial cycle can be set to 1 second to 3 seconds.
  • the cycle time can be optimized according to the test results to meet the accuracy of the positioning. degree.
  • the lxEV-DO mobile communication terminal has two antenna ports. The signal received by any one antenna can satisfy the quality, and the irrelevance between the two antenna signals also produces diversity reception gain. This feature is a solution for ensuring the stability of communication quality and solving the problem of switching between directional antennas in serving base stations.
  • the switching control mode shown in Figure 7 ensures that the two directional antennas point to the new and old base stations in the first execution period after the aircraft crosses the coverage boundary of the base station. During this execution period, there is enough time for the mobile terminal to complete the soft. Switching and forward virtual soft handoff.
  • the switching cycle time can be optimized according to the test conditions, completely within the control of the main controller software.
  • the direction of the directional antenna pointing to the old base station will be switched to point to the new base station, after which both directional antennas point to the new base station.
  • the technical solution greatly improves the data throughput or user capacity of the cellular mobile communication by improving the signal to noise ratio of the forward wireless link.
  • a simple example is as follows.
  • the forward link signal-to-noise ratio is usually -5 ⁇ -3dB.
  • CDMA systems it is in a soft-switching state.
  • the forward DRC rate of the corresponding cdmalx EV-DO system is about 153.6 kbps.
  • the directional antenna with 7dBi gain usually the front-to-back ratio is >15
  • the signal of the primary base station is increased by 7 dB while the two adjacent base stations are The signal suppression can reach -7dB, and the forward link signal-to-noise ratio can be increased to more than 5dB, and the non-switching state is achieved, and the corresponding forward DRC rate is not lower than 92 lkbps.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention.
  • the present invention can be variously modified and modified. Any modifications, equivalent substitutions, improvements, etc. made therein are intended to be included within the scope of the present invention.

Description

通信天线自动定向装置、 方法
技术领域 本发明涉及通信领域, 并且特别地, 涉及一种通信天线自动定向装置、 方法。 背景技术 在相关技术中, 专门的蜂窝无线通信网络已经可以为航空器提供服务, 让人们在飞机上也可以获得大众化的、 经济实惠的移动通信服务, 其中包括 话音业务和分组数据业务。图 1是相关技术中地面基站覆盖航空器的示意图, 如图 1所示, 实现的基本方式是在地面建立一定数量、布局合适的基站网络, 天线上倾覆盖民航空域, 航空器上安装移动通信终端及其天线, 与地面基站 通信。 目前,安装于航空器的移动通信终端天线,普遍釆用宽口径的全向天线, 这种天线的增益较小, 不能有效放大主要服务基站的信号, 同时不能抑制相 邻基站的干扰信号。 虽然按照规范的无线规划设计, 选用全向天线能够满足 基本的通信质量要求, 但系统的容量、 覆盖方面的还比较欠缺, 尤其在高速 分组数据业务的应用方面受到的限制比较明显。 例如, 第三代 ( 3rd Generation , 简称为 3G ) 通信的三种主流技术之一的码分多址接入 ( Code Division Multiple Access , 简称为 CDMA ) 2000 lxEV-DO通信系统, 较高的 数据速率对前向链路的信噪比要求较高, 例如, 物理层 2.4Mbps的下载速率 要求信噪比至少大于 l ldB , 921kbps的速率也要求信噪比至少大于 2dB , 但 是, 在广大的软切换区域, 本基站信号功率与相邻基站信号总功率接近, 甚 至小于相邻基站信号总功率, 前向信噪比往往在 OdB至 -3dB之间的区间,仅 能实现几百 kbps以下的速率。因此该天线类型对于可实现高速率的空域面积 比例有比较明显的限制, 在面积比例很大的软切换区只能实现中、 低数据速 率。 航空用户属于商业高端用户, 仅使用性能普通的全向天线作为终端天 线, 对造价高昂的地面网络和航空设备来说是一种资源的浪费。 为了弥补目 前航空器蜂窝通信技术的不足, 急需一种解决的技术方案。 发明内容 考虑到相关技术中安装于航空器的移动通信终端天线在信号质量、系统 的容量、 覆盖、 高速分组数据业务的应用方面受到的限制的问题而提出本发 明, 为此, 本发明的主要目的在于提供一种通信天线自动定向装置、 方法, 以解决相关技术中存在的上述问题至少之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种通信天线自动 定向装置。 才艮据本发明的通信天线自动定向装置包括: 目标基站地理化存储器, 用 于存储航空器在航空线路上的空间位置信息与目标基站的标识的对应关系, 其中, 空间位置信息包括: 经纬度、 海拔高度; 传感器, 用于确定航空器的 当前空间位置信息; 航空器空间朝向传感器, 用于确定航空器的当前空间朝 向; 主控制器, 用于才艮据当前空间位置信息、 对应关系、 以及当前空间朝向 确定定向天线的目标方向, 并发送携带有目标方向的指令; 自动天线定向系 统, 用于接收指令, 根据目标方向对定向天线进行驱动, 以使定向天线在目 标方向上接收地面基站的信号; 宽口径天线, 用于全向接收地面基站的信号; 移动通讯终端, 用于对宽口径天线接收的信号以及定向天线接收的信号进行 处理。 优选地, 传感器进一步包括: GPS传感器, 用于确定航空器的当前经纬 度; 海拔高度传感器, 用于确定航空器的当前海拔高度。 优选地,目标基站地理化存储器进一步用于:存储目标基站的位置信息。 优选地, 主控制器具体包括: 获取单元, 用于根据对应关系获取与当前 空间位置信息对应的目标基站的标识,并根据标识获取目标基站的位置信息; 计算单元, 用于才艮据目标基站的位置信息、 当前空间位置信息、 以及当前空 间朝向计算得到目标方向; 发送单元, 用于将目标方向通过信令发送到自动 天线定向系统。 优选地, 自动天线定向系统具体包括: 驱动器, 用于根据指令中的目标 方向对定向天线进行驱动; 定向天线, 用于在目标方向上接收地面基站的信 号。 优选地, 定向天线为以下之一: 通过阵列天线电控天线方向图的智能天 线、 机电式自动定向天线。 优选地, 驱动器具体用于: 在定向天线为机电式自动定向天线时, 驱动 定向天线, 在定向天线为智能天线时, 生成天线方向图以驱动定向天线。 优选地, 装置进一步包括: 天线罩, 用于规避风阻对定向天线和宽口径 天线的影响。 为了实现上述目的, 根据本发明的另一方面, 提供了一种通信天线自动 定向装置。 才艮据本发明的通信天线自动定向装置包括: 目标基站地理化存储器, 用 于存储航空器在航空线路上的空间位置信息与目标基站的标识的对应关系, 其中, 空间位置信息包括: 经纬度、 海拔高度; 传感器, 用于确定航空器的 当前空间位置信息; 航空器空间朝向传感器, 用于确定航空器的当前空间朝 向; 主控制器, 用于才艮据当前空间位置信息、 对应关系、 以及当前空间朝向 确定定向天线的目标方向, 并发送携带有目标方向的指令; 第一自动天线定 向系统, 用于接收指令, 根据指令中的目标方向对第一定向天线进行驱动, 以使第一定向天线在目标方向上接收地面基站的信号; 第二自动天线定向系 统, 用于接收指令, 根据指令中的目标方向对第二定向天线进行驱动, 以使 第二定向天线在目标方向上接收地面基站的信号; 移动通讯终端, 用于对第 一定向天线和第二定向天线接收的信号进行处理。 优选地, 传感器进一步包括: GPS传感器, 用于确定航空器的当前经纬 度; 海拔高度传感器, 用于确定航空器的当前海拔高度。 优选地,目标基站地理化存储器进一步用于:存储目标基站的位置信息。 优选地, 主控制器具体包括: 获取单元, 用于根据对应关系获取与当前 空间位置信息对应的当前目标基站的标识, 根据标识获取当前目标基站的位 置信息, 并获取最后一次存储的原目标基站的位置信息; 判断单元, 用于判 断当前目标基站与原目标基站是否相同。 优选地, 主控制器还包括: 第一计算单元, 用于在判断单元判断为否的 情况下, 根据当前目标基站的位置信息、 原目标基站的位置信息、 当前空间 位置信息、 以及当前空间朝向计算得到指向当前目标基站的第一目标方向和 指向原目标基站的第二目标方向; 第一发送单元, 用于在判断单元判断为否 的情况下, 发送携带有第一目标方向的第一指令, 以及发送携带有第二目标 方向的第二指令; 更新模块, 用于将原目标基站的存储信息更新为当前目标 基站。 优选地, 第一自动天线定向系统具体包括: 第一驱动器, 用于才艮据第一 指令中的第一目标方向对第一定向天线进行驱动; 第一定向天线, 用于在第 一目标方向上接收当前目标基站的信号。 优选地, 第二自动天线定向系统具体包括: 第二驱动器, 用于才艮据第二 指令中的第二目标方向对第二定向天线进行驱动; 第二定向天线, 用于在第 二目标方向上接收原目标基站的信号。 优选地, 主控制器还包括: 第二计算单元, 用于在判断单元判断为是的 情况下, 根据当前目标基站的位置信息、 当前空间位置信息、 以及当前空间 朝向计算得到指向当前目标基站的目标方向; 第二发送单元, 用于在判断单 元判断为是的情况下, 将目标方向通过信令发送到第一自动天线定向系统和 第二自动天线定向系统, 以使第一定向天线和第二定向天线均指向当前目标 基站。 优选地, 第一定向天线或第二定向天线为以下之一: 通过阵列天线电控 天线方向图的智能天线、 机电式自动定向天线。 优选地, 第一驱动器具体用于: 在第一定向天线为机电式自动定向天线 时, 驱动第一定向天线, 在第一定向天线为智能天线时, 生成天线方向图以 驱动第一定向天线; 第二驱动器具体用于: 在第二定向天线为机电式自动定 向天线时, 驱动第二定向天线, 在第二定向天线为智能天线时, 生成天线方 向图以驱动第二定向天线。 优选地, 装置进一步包括: 天线罩, 用于规避风阻对第一定向天线和第 二定向天线的影响。 为了实现上述目的, 才艮据本发明的再一方面, 提供了一种通信天线自动 定向装置。 才艮据本发明的通信天线自动定向装置包括: 目标基站地理化存储器, 用 于存储航空器在航空线路上的空间位置信息目标基站的标识的对应关系, 其 中, 空间位置信息包括: 经纬度、 海拔高度; 传感器, 用于确定航空器的当 前空间位置信息;航空器空间朝向传感器, 用于确定航空器的当前空间朝向; 主控制器, 用于才艮据当前空间位置信息、 对应关系、 以及当前空间朝向确定 定向天线的目标方向, 并发送携带有目标方向的指令; 电控波束智能天线定 向系统, 用于接收指令, 根据目标方向对其定向天线进行驱动, 以使定向天 线在目标方向上接收地面基站的信号; 移动通讯终端, 用于对定向天线接收 的信号进行处理。 优选地, 传感器进一步包括: GPS传感器, 用于确定航空器的当前经纬 度; 海拔高度传感器, 用于确定航空器的当前海拔高度。 优选地,目标基站地理化存储器进一步用于:存储目标基站的位置信息。 优选地, 主控制器具体包括: 获取单元, 用于根据对应关系获取与当前 空间位置信息对应的当前目标基站的标识, 根据标识获取当前目标基站的位 置信息, 并获取最后一次存储的原目标基站的位置信息; 判断单元, 用于判 断当前目标基站与原目标基站是否相同。 优选地, 主控制器还包括: 第一计算单元, 用于在判断单元判断为否的 情况下, 根据当前目标基站的位置信息、 原目标基站的位置信息、 当前空间 位置信息、 以及当前空间朝向计算得到指向当前目标基站的第一目标方向和 指向原目标基站的第二目标方向; 第一发送单元, 用于在判断单元判断为否 的情况下, 发送携带有第一目标方向的第一指令, 以及发送携带有第二目标 方向的第二指令; 更新模块, 用于将原目标基站的存储信息更新为当前目标 基站。 优选地, 电控波束智能天线定向系统具体包括: 驱动器, 用于才艮据第一 指令中的第一目标方向对第一定向天线进行驱动, 并根据第二指令中的第二 目标方向对第二定向天线进行驱动; 第一定向天线, 用于在第一目标方向上 接收当前目标基站的信号; 第二定向天线, 用于在第二目标方向上接收原基 站的信号。 优选地, 主控制器还包括: 第二计算单元, 用于在判断单元判断为是的 情况下, 根据当前目标基站的位置信息、 当前空间位置信息、 以及当前空间 朝向计算得到指向当前目标基站的目标方向; 第二发送单元, 用于在判断单 元判断为是的情况下, 发送携带有目标方向的信令, 以使第一定向天线、 以 及第二定向天线均指向当前目标基站。 优选地, 装置进一步包括: 天线罩, 用于规避风阻对第一定向天线和第 二定向天线的影响。 为了实现上述目的, 根据本发明的一个方面, 提供了一种通信天线自动 定向方法。 才艮据本发明的通信天线自动定向方法包括:主控制器从传感器获取航空 器的当前空间位置信息、 以及当前航空器空间朝向信息; 主控制器才艮据当前 空间位置信息获取当前目标基站的位置信息; 主控制器根据当前目标基站的 位置信息、 当前空间位置信息、 当前航空器空间朝向信息确定定向天线的目 标方向, 并将携带有目标方向的信令发送到智能定向天线驱动器; 智能定向 天线驱动器根据指令驱动定向天线, 以使定向天线指向当前目标基站。 优选地, 当前空间位置信息包括: 经纬度、 海拔高度。 优选地, 传感器包括: GPS传感器、 海拔高度传感器。 优选地,主控制器根据当前空间位置信息获取当前目标基站的位置信息 包括: 主控制器根据当前空间位置信息查询目标基站地理化存储器, 获取当 前目标基站的位置信息, 其中, 目标基站地理化存储器用于存储航空器在航 空线路上的空间位置信息与目标基站的标识的对应关系。 优选地, 智能定向天线驱动器根据指令驱动定向天线包括: 在定向天线 为机电式自动定向天线时, 智能定向天线驱动器直接驱动定向天线, 在定向 天线为智能天线时, 智能定向天线驱动器生成天线方向图以驱动定向天线。 优选地, 在目标基站发生变化的情况下, 主控制器根据当前空间位置信 息获取当前目标基站的位置信息之后, 进一步包括: 主控制器判断当前目标 基站与存储的原目标基站是否相同。 优选地,在主控制器判断当前目标基站与存储的原目标基站不同的情况 下, 主控制器确定定向天线的目标方向, 并将携带有目标方向的信令发送到 智能定向天线驱动器包括: 主控制器根据当前目标基站的位置信息、 原目标 基站的位置信息、 当前空间位置信息、 当前航空器空间朝向信息确定指向当 前目标基站的第一目标方向和指向原目标基站的第二目标方向; 主控制器将 第一目标方向携带在第一信令中, 并发送到第一智能定向天线驱动器, 将第 二目标方向携带在第二信令中, 并发送到第二智能定向天线驱动器。 优选地, 智能定向天线驱动器根据指令驱动定向天线, 以使定向天线指 向当前目标基站包括: 第一智能定向天线驱动器驱动第一定向天线, 使得第 一定向天线指向当前目标基站;第二智能定向天线驱动器驱动第二定向天线, 使得第二定向天线指向原目标基站。 优选地, 智能定向天线驱动器根据指令驱动定向天线之后, 还包括: 主 控制器根据将原目标基站的存储信息更新为当前目标基站的存储信息。 借助于本发明的技术方案,通过提出一种适用于航空器的通信天线自动 定向方法和装置, 配合地面站组成的蜂窝移动通信系统工作, 解决了相关技 术中安装于航空器的移动通信终端天线在信号质量、 系统的容量、 覆盖、 高 速分组数据业务的应用方面受到的限制的问题, 能够提高用户通信质量、 提 高业务数据速率、 以及系统容量, 还可以扩大地面基站的覆盖半径, 同时保 障服务区之间切换的可靠性。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是相关技术中地面基站覆盖航空器的示意图; 图 2是才艮据本发明装置实施例一的通信天线自动定向装置的示意图 图 3 是根据本发明实施例的某海拔高度平面目标服务基站范围分布示 意图; 图 4是才艮据本发明装置实施例二的通信天线自动定向装置的示意图; 图 5是才艮据本发明装置实施例三的通信天线自动定向装置的示意图; 图 6是才艮据本发明方法实施例的通信天线自动定向方法的流程图; 图 7 是才艮据本发明方法实施例的通信天线自动定向方法切换处理的流 程图。 具体实施方式 功能相无述 在相关技术中, 将高性能的定向天线应用于航空器, 可以提高蜂窝移动 通信质量和系统吞吐量 /容量, 符合市场发展的需求, 也是技术发展的趋势。 但是将高性能的定向天线应用于航空器必须解决以下问题:
1、 航空器在航行时, 其地理位置不断变化, 并可能跨越多个基站的覆 盖范围, 必须让定向天线持续自动、 准确地指向最佳服务基站;
2、 如果要求智能天线能够自动快速地搜索地面最强服务基站方向, 当 然是最理想的方案, 但要求搜索的角度范围很大, 水平面 360度, 垂直面接 近 180度,接近于半球形,现阶段民用通信的技术还远远未能达到这种水平, 可遇见的将来, 也因研制成本、 器件体积限制, 实现难度艮大;
3、 在跨越不同基站的覆盖边界时, 定向天线的方向将发生切换, 在切 换过程中, 必须保证通信链路的质量, 不能出现通信中断; 4、 天线安装在航空器底部体外, 不受阻挡, 同时必须符合航空技术要 求, 考虑航空风阻、 应用成本等问题, 体积要尽量小巧, 外形有降风阻设计。 为此, 本发明提供了一种通信天线自动定向装置, 装置的组成部分有三 种方式, 可以选择其中一种, 该装置中主要包括: 主控制器、 最优服务基站 地理化存储器、 GPS传感器、 航空器空间朝向传感器、 一套自动定向天线系 统(含驱动器和定向天线)、一套宽口径天线、或另一套自动定向天线系统(含 驱动器和定向天线)、或电控波束智能天线定向系统(含驱动器和定向天线)、 流线型天线罩。 以上各种传感器、 最优艮务基站地理化存储器和自动定向天 线驱动器等, 与主控制器之间均通过通信线路联系, 定向天线或宽口径天线 与通信终端之间通过射频线缆联系。 最优服务基站地理化存储器的数据可以通过蜂窝通信网络仿真软件运 算得到, 并且还可以根据航空测试数据进行修正, 此外, 最优服务基站地理 化存储器存储有航空线路上具体经纬度、 海拔高度对应的最优地面服务基站 (需要切换到的目标基站)的标识、 以及地面基站(目标基站)的地理信息。 GPS传感器、海拔高度传感器、载体空间朝向传感器是与航空器共享的器件, 为计算天线目标方向提供输入值 (例如: 经纬度、 海拔高度、 航空器空间朝 向)。 自动定向天线可以是传统的机电式自动定向天线,也可以是新兴的通过 阵列天线电控天线方向图的智能天线。 流线型天线罩用于规避风阻对天线的 影响, 材料的选择要求对射频信号的损耗极小。 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 在以下的描述中, 为了解释的目的, 描述了多个特定的细节, 以提供对 本发明的透彻理解。 然而, 艮显然, 在没有这些特定细节的情况下, 也可以 实现本发明, 此外, 在不背离所附权利要求阐明的精神和范围的情况下, 下 述实施例以及实施例中得各个细节可以进行各种组合。 装置实施例一 根据本发明的实施例, 提供了一种通信天线自动定向装置, 图 2是根据 本发明装置实施例一的通信天线自动定向装置的示意图, 如图 2所示, 才艮据 本发明实施例的通信天线自动定向装置包括: 目标基站地理化存储器 20(即, 上述最优服务基站地理化存储器)、 传感器 (包括 GPS传感器 21、 海拔高度 传感器 22 )、航空器空间朝向传感器 23、主控制器 24、 自动天线定向系统(未 示出) (包括智能定向天线驱动器 250、 定向天线 251 )、 宽口径天线 26、 移 动通讯终端 27、 天线罩 28。 下面, 对才艮据本发明实施例的通信天线自动定 向装置进行说明。 目标基站地理化存储器 20用于存储航空器在航空线路上的空间位置信 息与目标基站 (即, 上述最优地面服务基站) 的标识的对应关系, 还可以存 储目标基站的位置信息, 其中, 空间位置信息包括: 经纬度、 海拔高度。 为了判别空间地理位置的最优服务基站,在相关技术中已存在网络仿真 软件, 釆用适合视距传播的射线跟踪模型还可以提高仿真结果的准确度, 并 且输出最优服务基站的地理化分布图。 因此, 目标基站地理化存储器 20 的 数据可以通过蜂窝通信网络仿真软件运算得到。 用于确定航空器的当前空间位置信息的传感器, 包括 GPS传感器 21和 海拔高度传感器 22, 其中, GPS传感器 21用于确定航空器的当前经纬度; 海拔高度传感器 22用于确定航空器的当前海拔高度。 航空器空间朝向传感器 23 , 用于确定航空器的当前空间朝向; 主控制器 24, 通过通信线路与上述 GPS 传感器 21、 海拔高度传感器 22、 目标基站地理化存储器 20 相连接, 用于根据当前空间位置信息 (GPS 传感器 21输出的当前经纬度、 海拔高度传感器 22输出的当前海拔高度)、 对应关系 (目标基站地理化存储器 20中存储的)、 以及当前空间朝向 (航空 器空间朝向传感器 23输出的) 确定自动天线定向系统中的定向天线 251 的 目标方向, 并向自动天线定向系统中的驱动器 250发送携带有目标方向的指 令; 优选地, 主控制器 24具体包括以下几个单元: 获取单元,用于根据对应关系获取与当前空间位置信息对应的目标基站 的标识, 并根据标识获取目标基站的位置信息; 计算单元, 用于根据目标基 站的位置信息、 当前空间位置信息、 以及当前空间朝向计算得到目标方向; 发送单元, 用于将目标方向通过信令发送到自动天线定向系统。 自动天线定向系统, 连接至主控制器 24, 包括驱动器 250、 定向天线 251 , 其中, 驱动器 250用于接收主控制器 24发送的指令, 并根据目标方向 对定向天线进行驱动, 定向天线 251 , 用于在目标方向上接收地面基站的信 号; 在实际应用中, 自适应调整天线方向的智能天线产品早已产生, 主要包 括两大类: 1、 较早期出现的机电方式自动调整天线方向的装置 (即, 机电 式自动定向天线), 此种智能天线可以利用陀螺仪、 微处理机、 伺服机械等硬 件协助处理控制; 2、 后期出现的利用天线阵列控制天线之间相位差从而形 成不同方向波束的智能天线(即,通过阵列天线电控天线方向图的智能天线)。 以上两类智能天线各有优缺点, 但是均能根据指令, 控制天线方向图, 使其 才旨向目标方向。 3区动器 250在定向天线 251为机电式自动定向天线时,可以直接 3区动定 向天线, 在定向天线为智能天线时, 驱动器 250需要生成天线方向图以驱动 定向天线 251。 宽口径天线 26, 用于全向接收地面基站的信号; 移动通讯终端 27 , 用于对宽口径天线 26接收的信号以及定向天线 251 接收的信号进行处理。 在相关技术中, 移动通讯终端 27 已经有双天线接收 的产品, 为保障基站服务区之间切换的可靠性创造了条件。 天线罩 28 , 用于规避风阻对定向天线和宽口径天线的影响。 天线罩 28 可以为流线型天线罩, 材料的选择要求对射频信号的损耗极小。 需要说明的是, 在目标基站需要切换时, 根据本发明实施例的通信天线 自动定向装置 (即, 一套定向天线加一套宽口径天线的方式) 无需对切换进 行特殊控制, 因为宽口径天线是全向天线, 可同时接收多个基站的信号, 在 基站覆盖区的边界, 接收到原基站和新基站的信号差异不大, 可保障定向天 线改变方向期间的通信链路平稳过渡。 以下结合 CDMA2000 lxEV-DO系统的实例, 对上述技术方案作进一步 阐述。 需要说明的是, 本发明的应用不局限于以下示例。 lxEV-DO系统是国际 3G蜂窝移动通信的三种主流技术体制之一,现已 有适合于该系统的成熟的网络仿真软件, 只要有地面基站的基本无线参数信 息 (包括经纬度、 天线类型、 天线朝向、 天线挂高、 馈线损耗、 基站发射功 率等), 使用合适的视距传播模型, 例如精度较高的射线跟踪模型, 就可以输 出最优服务基站的地理化分布图,并且可以按覆盖空域的海拔高度分层出图。 例如图 3所示, 在某海拔高度平面, 字母 A、 B、 C等分别表示所辖范 围的最优覆盖基站, 分别是地面站 A、 B、 C 等。 基站覆盖边界处, 如果仿 真图出现一些乒乓切换区, 可通过软件技术作平滑处理, 消除乒乓现象。 如 果有常用航线的实测数据, 还可以对仿真结果进行修正。 将这些仿真结果的 图信息转换为数据存储方式, 即可形成最优服务基站地理化存储器。 例如, 将每层海拔高度的结果 (各基站控制区域) 格式转化为线条矢量图, 只需几 种常用航空海拔高度的即可, 对存储空间要求不大。 地面基站网络在一般情况下可以长期保持稳定,在特殊情况下发生变化 时, 需要及时检查更新航空器的最优服务基站地理化存储器的数据。 为了使 数据更新自动化, 维护简单方便, 可以釆用下述方式: 在每个维护周期 (例 如, 以一天为一个周期), 航空器与地面通信启动后, 计算机软件首先自动检 查存储版本是否与地面服务器的版本一致, 在不一致的情况下, 则进行下载 更新; 如果下载不成功则维持原版本。 GPS信息、 航空器空间朝向、 海拔高度信息是航空器航行的基本信息, 相关传感器是航空器现成的器件, 无需新增, 只要将相关输出信息通过通信 线路共享到本装置即可。 主控制器可使用技术成熟的微处理器。 输入 GPS传递的航空器当前经 度 /纬度 (Lon x/Lat x )、 海拔高度 ( High x ), 才艮据已知的地面基站天线经度 / 纬度 ( Lon y/Lat y ) 和天线高度 ( High y ), 利用已经成熟的地球空间几何计 算公式, 计算出航空器天线指向地面基站的空间方向角 (水平方向角 α /垂直 方向角 (3 ), 如果航空器与定向天线之间安装了空间陀螺仪, 则天线方向驱动 参数不受航空器空间朝向变化的影响, 直接使用空间方向角计算结果即可; 如果航空器与定向天线之间没有安装空间陀螺仪, 则定向天线的方向驱动参 数还要根据以上结果和航空器空间朝向信息 (水平方向角 α ' /垂直方向角 (3 ' )进行爹正, 具体方式为相加或相减。 从而主控制器就可以才艮据上述得到 的结果, 判断输出对自动定向天线的关键指令。 关于智能定向天线, 机电式和智能波束式均有比较成熟的产品, 关键是 要符合航空应用的特点, 即体积小、 重量轻、 方向图变化范围大, 同时成本 也是一个因素, 综合起来, 可能机电驱动式自动定向天线更有优势。 自动定 向天线和驱动器的细节内容不展开叙述, 不是本发明讨论的主要内容。 宽口径天线是本发明的可选组成部分, 宽口径天线可以是全向天线, 建 议釆用有电下倾功能的天线, 有利于改善信号接收效果。 lxEV-DO 移动通信终端有两个天线口, 任何一个天线接收的信号满足 质量即可, 两天线信号之间的不相关性还会产生分集接收增益。 此特点为本 发明保障通信质量的稳定性, 解决定向天线在服务基站之间切换的方案, 提 供了有利条件。 抗风阻的流线型天线罩, 要求实现低风阻、 射频信号损耗小、 体积尽量 小、 符合航空器安装的技术条件。 通过上述处理, 在增强主艮务基站信号的同时, 可大幅抑制相邻基站对 通信终端的前向干 ·ί尤, 相当于实现网络覆盖范围的只有一个主基站信号, 等 效于消除了绝大部分软切换区。 通过改善前向无线链路的信噪比, 使蜂窝移 动通信的数据吞吐量或用户容量得到大幅提高。 本发明实施例的上述技术方 案是低成本获得服务性能明显改善的方案, 对移动通信业务在航空市场的发 展有积极促进作用。 装置实施例二 根据本发明的实施例, 提供了一种通信天线自动定向装置, 图 4是根据 本发明装置实施例二的通信天线自动定向装置的示意图, 如图 4所示, 才艮据 本发明实施例的通信天线自动定向装置包括: 目标基站地理化存储器 40(即, 上述最优服务基站地理化存储器)、 传感器 (包括 GPS传感器 41、 海拔高度 传感器 42 )、 航空器空间朝向传感器 43、 主控制器 44、 第一自动天线定向系 统 (未示出) (包括第一驱动器 450、 第一定向天线 451 )、 第二自动天线定 向系统 46 (包括第二驱动器 460、 第二定向天线 461 移动通讯终端 47、 天线罩 48。 下面, 对才艮据本发明实施例的通信天线自动定向装置进行说明。 目标基站地理化存储器 40用于存储航空器在航空线路上的空间位置信 息与目标基站 (即, 上述最优地面服务基站) 的标识的对应关系, 还可以存 储目标基站的位置信息, 其中, 空间位置信息包括: 经纬度、 海拔高度。 用于确定航空器的当前空间位置信息的传感器, 包括 GPS传感器 41和 海拔高度传感器 42, 其中, GPS传感器 41用于确定航空器的当前经纬度; 海拔高度传感器 42用于确定航空器的当前海拔高度。 航空器空间朝向传感器 43 , 用于确定航空器的当前空间朝向; 主控制器 44, 通过通信线路与上述 GPS 传感器 41、 海拔高度传感器 42、 目标基站地理化存储器 40 相连接, 用于根据当前空间位置信息 (GPS 传感器 41输出的当前经纬度、 海拔高度传感器 42输出的当前海拔高度)、 对应关系 (目标基站地理化存储器 40中存储的)、 以及当前空间朝向 (航空 器空间朝向传感器 43输出的) 确定自动天线定向系统中的定向天线 451 的 目标方向, 并向自动天线定向系统中的驱动器 450发送携带有目标方向的指 令。 优选地, 主控制器 44可以具体包括: 获取单元,用于根据对应关系获取与当前空间位置信息对应的当前目标 基站的标识, 根据标识获取当前目标基站的位置信息, 并获取最后一次存储 的原目标基站的位置信息; 判断单元, 用于判断当前目标基站与原目标基站是否相同。 才艮据判断单元的判断结果, 可以分为两种情况, 即, 情况一, 当前目标 基站和原目标基站不相同; 情况二, 当前目标基站和原目标基站相同。 下面, 对上述两种情况下主控制器 44的处理进行详细说明。 情况一 在情况一下, 主控制器 44中的下述几个单元可以进行如下处理: 第一计算单元, 用于在判断单元判断为否的情况下, 才艮据当前目标基站 的位置信息、 原目标基站的位置信息、 当前空间位置信息、 以及当前空间朝 向计算得到指向当前目标基站的第一目标方向和指向原目标基站的第二目标 方向; 第一发送单元, 用于在判断单元判断为否的情况下, 发送携带有第一目 标方向的第一指令, 以及发送携带有第二目标方向的第二指令; 更新模块, 用于将原目标基站的存储信息更新为当前目标基站。 情况二 在情况二下, 主控制器 44中的下述几个单元可以进行如下处理: 第二计算单元, 用于在判断单元判断为是的情况下, 根据当前目标基站 的位置信息、 当前空间位置信息、 以及当前空间朝向计算得到指向当前目标 基占的目标方向; 第二发送单元, 用于在判断单元判断为是的情况下, 将目标方向通过信 令发送到第一自动天线定向系统和第二自动天线定向系统, 以使第一定向天 线和第二定向天线均指向当前目标基站。 才艮据本发明实施例的通信天线自动定向装置还包括: 情况一 第一自动天线定向系统, 连接至主控制器 44, 包括第一驱动器 450、 第 一定向天线 451 , 其中, 第一驱动器 450用于接收主控制器 44发送的指令, 并根据指令中的目标方向对第一定向天线 451进行驱动, 第一定向天线 451 , 用于在目标方向上接收当前目标基站的信号; 第二自动天线定向系统 46 , 连接至主控制器 44 , 包括第二驱动器 460、 第二定向天线 461 ,其中,第二驱动器 460用于接收主控制器 44发送的指令, 并才艮据指令中的目标方向对第二定向天线 461进行驱动, 第二定向天线 461 , 用于在目标方向上接收原目标基站的信号; 情况二 在情况二下, 第一自动天线定向系统、 第二自动天线定向系统 46中的 驱动器分别根据主控制器 44发送的指令驱动第一定向天线 451、第二定向天 线 461 , 使第一定向天线 451、 第二定向天线 461均指向当前目标基站。 上述第一自动天线定向系统中的第一定向天线 451 或第二自动天线定 向系统 46 中的第二定向天线 461 为以下之一: 通过阵列天线电控天线方向 图的智能天线、 机电式自动定向天线。 优选地,第一 3区动器 450在第一定向天线 451为机电式自动定向天线时, 直接驱动第一定向天线 451 , 在第一定向天线 451 为智能天线时, 生成天线 方向图以驱动第一定向天线 451 ; 第二驱动器 460在第二定向天线 461为机 电式自动定向天线时, 直接 3区动第二定向天线 461 , 在第二定向天线 461为 智能天线时, 生成天线方向图以驱动第二定向天线 461。 移动通讯终端 47 , 用于对第一定向天线 451和第二定向天线 461接收 的信号进行处理。 天线罩 48 , 用于规避风阻对第一定向天线 451和第二定向天线 461 的 影响。 天线罩 48 可以为流线型天线罩, 材料的选择要求对射频信号的损耗 极小。 需要说明的是,根据本发明实施例的通信天线自动定向装置中的各个细 节可以参照上述装置实施例一中的相应部分, 在此不再赘述。 装置实施例三 根据本发明的实施例, 提供了一种通信天线自动定向装置, 图 5是根据 本发明装置实施例三的通信天线自动定向装置的示意图, 如图 5所示, 才艮据 本发明实施例的通信天线自动定向装置包括: 目标基站地理化存储器 50(即, 上述最优服务基站地理化存储器)、 传感器 (包括 GPS传感器 51、 海拔高度 传感器 52 )、 航空器空间朝向传感器 53、 主控制器 54、 电控波束智能天线定 向系统 (包括驱动器 550、 第一定向天线 551、 第二定向天线 552 )、 移动通 讯终端 56、 天线罩 57。 下面, 对才艮据本发明实施例的通信天线自动定向装 置进行说明。 目标基站地理化存储器 50用于存储航空器在航空线路上的空间位置信 息目标基站 (即, 上述最优地面服务基站) 的标识的对应关系, 还可以存储 目标基站的位置信息, 其中, 空间位置信息包括: 经纬度、 海拔高度。 用于确定航空器的当前空间位置信息的传感器, 包括 GPS传感器 51和 海拔高度传感器 52, 其中, GPS传感器 51用于确定航空器的当前经纬度; 海拔高度传感器 52用于确定航空器的当前海拔高度。 航空器空间朝向传感器 53 , 用于确定航空器的当前空间朝向; 主控制器 54, 通过通信线路与上述 GPS 传感器 51、 海拔高度传感器
52、 目标基站地理化存储器 50 相连接, 用于根据当前空间位置信息 (GPS 传感器 51输出的当前经纬度、 海拔高度传感器 52输出的当前海拔高度)、 对应关系 (目标基站地理化存储器 50中存储的)、 以及当前空间朝向 (航空 器空间朝向传感器 53 输出的) 确定电控波束智能天线定向系统中的第一定 向天线 551、 第二定向天线 552的目标方向, 并向电控波束智能天线定向系 统中的驱动器 550发送携带有目标方向的指令。 优选地, 主控制器 54可以具体包括: 获取单元,用于根据对应关系获取与当前空间位置信息对应的当前目标 基站的标识, 根据标识获取当前目标基站的位置信息, 并获取最后一次存储 的原目标基站的位置信息; 判断单元, 用于判断当前目标基站与原目标基站是否相同。 才艮据判断单元的判断结果, 可以分为两种情况, 即, 情况一, 当前目标 基站和原目标基站不相同; 情况二, 当前目标基站和原目标基站相同。 下面, 对上述两种情况下主控制器 54的处理进行详细说明。 情况一 在情况一下, 主控制器 54中的下述几个单元可以进行如下处理: 第一计算单元, 用于在判断单元判断为否的情况下, 根据当前目标基站 的位置信息、 原目标基站的位置信息、 当前空间位置信息、 以及当前空间朝 向计算得到指向当前目标基站的第一目标方向和指向原目标基站的第二目标 方向; 第一发送单元, 用于在判断单元判断为否的情况下, 发送携带有第一目 标方向的第一指令, 以及发送携带有第二目标方向的第二指令; 更新模块, 用于将原目标基站的存储信息更新为当前目标基站。 情况二 在情况二下, 主控制器 54中的下述几个单元可以进行如下处理: 第二计算单元, 用于在判断单元判断为是的情况下, 根据当前目标基站 的位置信息、 当前空间位置信息、 以及当前空间朝向计算得到指向当前目标 基占的目标方向; 第二发送单元, 用于在判断单元判断为是的情况下, 发送携带有目标方 向的信令, 以使第一定向天线、 以及第二定向天线均指向当前目标基站。 才艮据本发明实施例的通信天线自动定向装置还包括: 电控波束智能天线定向系统, 连接至主控制器 54, 包括驱动器 550、 第 一定向天线 551、 第二定向天线 552 , 在情况一下, 驱动器 550用于接收主 控制器 54 发送的第一指令和第二指令, 并根据第一指令中的第一目标方向 对第一定向天线 551进行驱动, 才艮据第二指令中的第二目标方向对第二定向 天线 552进行驱动, 第一定向天线 551 , 用于在第一目标方向上接收当前目 标基站的信号; 第二定向天线 552 , 用于在第二目标方向上接收原基站的信 号。 在情况二下, 驱动器 550接收主控制器 54发送的指令, 并 4艮据该指令 驱动第一定向天线 551、 第二定向天线 552, 使第一定向天线 551、 第二定向 天线 552均指向当前目标基站。 移动通讯终端 56, 用于对第一定向天线 551、 第二定向天线 552接收的 信号进行处理。 天线罩 57 , 用于规避风阻对第一定向天线 551、 第二定向天线 552的影 响。 天线罩 57 可以为流线型天线罩, 材料的选择要求对射频信号的损耗极 小。 需要说明的是,根据本发明实施例的通信天线自动定向装置中的各个细 节可以参照上述装置实施例一中的相应部分, 在此不再赘述。 方法实施例 才艮据本发明的实施例, 提供了一种通信天线自动定向方法, 包括如下处 理 (步骤 S602 -步骤 S608 ): 步骤 S602, 主控制器从传感器获取航空器的当前空间位置信息、 以及 当前航空器空间朝向信息; 其中, 当前空间位置信息包括: 经纬度、 海拔高 度; 传感器包括: GPS传感器、 海拔高度传感器。 步骤 S604, 主控制器根据当前空间位置信息获取当前目标基站的位置 信息; 具体地, 在步骤 S604中, 主控制器可以才艮据当前空间位置信息查询目 标基站地理化存储器, 获取当前目标基站的位置信息, 其中, 目标基站地理 化存储器用于存储航空器在航空线路上的空间位置信息与目标基站的标识的 对应关系。 步骤 S606, 主控制器根据当前目标基站的位置信息、 当前空间位置信 息、 当前航空器空间朝向信息确定定向天线的目标方向, 并将携带有目标方 向的信令发送到智能定向天线驱动器; 步骤 S608 , 智能定向天线驱动器才艮据指令驱动定向天线, 以使定向天 线指向当前目标基站。 具体地, 在定向天线为机电式自动定向天线时, 智能 定向天线驱动器直接驱动定向天线, 在定向天线为智能天线时, 智能定向天 线驱动器生成天线方向图以驱动定向天线。 图 6是才艮据本发明方法实施例的通信天线自动定向方法的流程图 ,如图 6所示, 该方法包括如下处理:
1、 主控制器从传感器获取当前 GPS位置、 海拔高度信息;
2、 主控制器根据当前本体 (航空器) 空间位置信息, 查最优服务基站 存储器, 获得目标基站位置;
3、 主控制器才艮据当前位置、 航空器空间朝向和目标基站位置, 计算得 到定向天线目标方向, 发给智能定向天线驱动器;
4、 定向天线驱动器根据指令, 如果是机电式则驱动定向天线, 如果是 波束控制式则形成天线方向图, 使定向天线朝向目标基站。 需要说明的是, 在航空器正常航行时, 实现定向天线方向自动调整的基 本步骤可以按照上述步骤进行处理, 因航空器位置持续变化, 上述步骤需要 周期性循环进行。 当航空器跨越不同基站覆盖的边界时, 即, 最优服务站(目标基站)发 生变化时, 如果使用如图 2所示的装置实施例一中的装置 (即, 包括一套定 向天线和一套宽口径天线), 则无需进行特别处理; 如果使用由两套定向天线 组成的装置实施例二 (图 4 ) 中的装置, 或使用由一套电控波束智能天线组 成的装置实施例三 (图 5 ) 中的装置, 则需要进行切换处理, 其中, 切换处 理包括以下操作: 在主控制器根据当前空间位置信息获取当前目标基站的位置信息之后, 还需要判断当前目标基站与存储的原目标基站是否相同。 在主控制器判断当前目标基站与存储的原目标基站不同的情况下,主控 制器根据当前目标基站的位置信息、 原目标基站的位置信息、 当前空间位置 信息、 当前航空器空间朝向信息确定指向当前目标基站的第一目标方向和指 向原目标基站的第二目标方向; 随后, 主控制器将第一目标方向携带在第一 信令中, 并发送到第一智能定向天线驱动器, 将第二目标方向携带在第二信 令中, 并发送到第二智能定向天线驱动器。 第一智能定向天线驱动器驱动第一定向天线,使得第一定向天线指向当 前目标基站; 第二智能定向天线驱动器驱动第二定向天线, 使得第二定向天 线指向原目标基站。 在智能定向天线驱动器根据指令驱动定向天线之后,主控制器需要根据 将原目标基站的存储信息更新为当前目标基站的存储信息。 下面, 结合附图, 对本发明的上述技术方案进行说明。 图 7是才艮据本发 明方法实施例的通信天线自动定向方法切换处理的流程图, 如图 7所示, 包 括如下处理:
1、 主控制器从传感器获取当前 GPS位置、 海拔高度信息;
2、 主控制器根据当前本体 (航空器) 空间位置信息, 查最优服务基站 存储器, 获得目标基站位置; 3、 主控制器判断目标基站和存储的上次 (最后一次) 目标基站是否相 同。
4、 如果不相同, 表示已经跨越基站服务区的边界, 并自行步骤 5—7;
5、 为保持切换过程中通信质量的稳定性, 需要控制两套定向天线 (或 一套智能天线两个定向波束) 分别指向新旧基站; 主控制器才艮据当前位置、 航空器空间朝向和原、 新基站位置, 分别计算得到指向原、 新基站的目标方 向;
6、 指向原基站指令发给定向天线驱动器 0, 使定向天线 0 (或定向波束 0 ) 朝向原服务基站; 指向新基站指令发给定向天线驱动器 1 , 使定向天线 1
(或定向波束 1 ) 朝向新服务基站; 7、 将上次目标基站存储信息更新为新的基站; 针对以上步骤 3 , 如果目标基站和存储的上次目标基站相同, 表示未发 生服务基站的切换, 按常规操作即可, 即, 执行步骤 9 10;
8、 主控制器才艮据当前位置、 航空器空间朝向和目标基站位置, 计算得 到定向天线目标方向; 9、 主控制器将指令发给智能定向天线驱动器 0和 1 , 使两个定向天线 均朝向 艮务基站。 综上所述, 如图 6、 图 7所示的控制方式, 均为周期性循环的一个周期, 初始周期可设为 1秒〜 3秒, 周期时间可根据测试结果进行优化, 满足定位 的精确度。 lxEV-DO 移动通信终端有两个天线口, 任何一个天线接收的信号满足 质量即可, 两天线信号之间的不相关性还会产生分集接收增益。 此特点为本 发明保障通信质量的稳定性, 解决定向天线在服务基站之间切换的方案, 提 供了有利条件。 图 7所示的切换控制方式, 可确保在航空器在跨越基站覆盖 边界之后的第一个执行周期, 两根定向天线分别指向新旧基站, 在这个执行 周期内, 已经有足够时间使移动终端完成软切换和前向虚拟软切换。 当然这 个切换周期的时间是可以根据测试情况进行优化的, 完全在主控制器软件的 掌控范围。 在跨越边界的第二个执行周期, 指向旧基站的定向天线方向将发 生切换, 指向新基站, 此后两才艮定向天线均指向新基站。 本技术方案通过改善前向无线链路的信噪比,使蜂窝移动通信的数据吞 吐量或用户容量得到大幅提高。 简单举例说明如下, 在距离周围三个基站等 距的位置, 当釆用全向天线时, 前向链路信噪比通常在 -5~ -3dB , 对 CDMA 系统来说, 必然处于软切换状态, 对应的 cdmalx EV-DO 系统的前向 DRC 速率在 153.6kbps左右, 当釆用 7dBi增益的定向天线(通常前后比〉15 )后, 对主基站信号提升 7dB的同时, 对两个相邻基站的信号抑制度可达 -7dB , 则 预计前向链路信噪比可提升到 5dB以上, 变为非切换状态,对应的前向 DRC 速率不低于 92 lkbps。 可见, 信号质量和吞吐量的改善幅度很大。 综上所述, 借助于本发明的技术方案, 通过提出一种适用于航空器的通 信天线自动定向方法和装置, 配合地面站组成的蜂窝移动通信系统工作, 解 决了相关技术中安装于航空器的移动通信终端天线在信质量、 系统的容量、 覆盖、 高速分组数据业务的应用方面受到的限制的问题, 能够提高用户通信 质量、 提高业务数据速率、 以及系统容量, 还可以扩大地面基站的覆盖半径, 同时保障服务区之间切换的可靠性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变^^ 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种通信天线自动定向装置, 其特征在于, 包括:
目标基站地理化存储器,用于存储航空器在航空线路上的空间位置 信息与目标基站的标识的对应关系, 其中, 所述空间位置信息包括: 经 纬度、 海拔高度;
传感器, 用于确定所述航空器的当前空间位置信息;
航空器空间朝向传感器, 用于确定航空器的当前空间朝向; 主控制器, 用于根据所述当前空间位置信息、 所述对应关系、 以及 所述当前空间朝向确定定向天线的目标方向, 并发送携带有所述目标方 向的指令;
自动天线定向系统, 用于接收所述指令, 根据所述目标方向对定向 天线进行驱动, 以使所述定向天线在所述目标方向上接收地面基站的信 号;
宽口径天线, 用于全向接收地面基站的信号;
移动通讯终端,用于对所述宽口径天线接收的信号以及所述定向天 线接收的信号进行处理。 根据权利要求 1所述的装置, 其特征在于, 所述传感器进一步包括: GPS传感器, 用于确定所述航空器的当前经纬度;
海拔高度传感器, 用于确定所述航空器的当前海拔高度。 根据权利要求 1所述的装置, 其特征在于, 所述目标基站地理化存储器 进一步用于: 存储所述目标基站的位置信息。 才艮据权利要求 3所述的装置, 其特征在于, 所述主控制器具体包括: 获取单元,用于才艮据所述对应关系获取与所述当前空间位置信息对 应的目标基站的标识, 并根据所述标识获取所述目标基站的位置信息; 计算单元, 用于才艮据所述目标基站的位置信息、 所述当前空间位置 信息、 以及所述当前空间朝向计算得到所述目标方向; 发送单元,用于将所述目标方向通过信令发送到所述自动天线定向 系统。
5. 根据权利要求 1所述的装置, 其特征在于, 所述自动天线定向系统具体 包括:
驱动器, 用于根据所述指令中的所述目标方向对定向天线进行驱 动;
所述定向天线, 用于在所述目标方向上接收地面基站的信号。
6. 才艮据权利要求 5所述的装置, 其特征在于, 所述定向天线为以下之一: 通过阵列天线电控天线方向图的智能天线、 机电式自动定向天线。
7. 根据权利要求 6所述的装置, 其特征在于, 所述驱动器具体用于: 在所 述定向天线为所述机电式自动定向天线时, 3区动所述定向天线, 在所述 定向天线为所述智能天线时, 生成天线方向图以驱动所述定向天线。
8. 根据权利要求 1所述的装置, 其特征在于, 所述装置进一步包括:
天线罩, 用于规避风阻对所述定向天线和所述宽口径天线的影响。
9. 一种通信天线自动定向装置, 其特征在于, 包括:
目标基站地理化存储器,用于存储航空器在航空线路上的空间位置 信息与目标基站的标识的对应关系, 其中, 所述空间位置信息包括: 经 纬度、 海拔高度;
传感器, 用于确定所述航空器的当前空间位置信息; 航空器空间朝向传感器, 用于确定航空器的当前空间朝向; 主控制器, 用于根据所述当前空间位置信息、 所述对应关系、 以及 所述当前空间朝向确定定向天线的目标方向, 并发送携带有所述目标方 向的指令;
第一自动天线定向系统, 用于接收所述指令, 根据所述指令中的所 述目标方向对第一定向天线进行驱动, 以使所述第一定向天线在所述目 标方向上接收地面基站的信号;
第二自动天线定向系统, 用于接收所述指令, 根据所述指令中的所 述目标方向对第二定向天线进行驱动, 以使所述第二定向天线在所述目 标方向上接收地面基站的信号; 移动通讯终端,用于对所述第一定向天线和所述第二定向天线接收 的信号进行处理。
10. 根据权利要求 9所述的装置, 其特征在于, 所述传感器进一步包括:
GPS传感器, 用于确定所述航空器的当前经纬度;
海拔高度传感器, 用于确定所述航空器的当前海拔高度。
11. 根据权利要求 9所述的装置, 其特征在于, 所述目标基站地理化存储器 进一步用于: 存储所述目标基站的位置信息。
12. 根据权利要求 11所述的装置, 其特征在于, 所述主控制器具体包括: 获取单元,用于才艮据所述对应关系获取与所述当前空间位置信息对 应的当前目标基站的标识, 才艮据所述标识获取所述当前目标基站的位置 信息, 并获取最后一次存储的原目标基站的位置信息;
判断单元, 用于判断当前目标基站与所述原目标基站是否相同。
13. 根据权利要求 12所述的装置, 其特征在于, 所述主控制器还包括: 第一计算单元, 用于在所述判断单元判断为否的情况下, 才艮据所述 当前目标基站的位置信息、 所述原目标基站的位置信息、 所述当前空间 位置信息、 以及所述当前空间朝向计算得到指向所述当前目标基站的第 一目标方向和指向所述原目标基站的第二目标方向; 第一发送单元, 用于在所述判断单元判断为否的情况下, 发送携带 有所述第一目标方向的第一指令, 以及发送携带有所述第二目标方向的 第二指令;
更新模块,用于将所述原目标基站的存储信息更新为所述当前目标 基站。
14. 根据权利要求 13所述的装置, 其特征在于, 所述第一自动天线定向系统 具体包括:
第一驱动器,用于才艮据所述第一指令中的所述第一目标方向对所述 第一定向天线进行驱动;
所述第一定向天线 ,用于在所述第一目标方向上接收所述当前目标 基站的信号。
15. 根据权利要求 13所述的装置, 其特征在于, 所述第二自动天线定向系统 具体包括:
第二驱动器,用于才艮据所述第二指令中的所述第二目标方向对所述 第二定向天线进行驱动;
所述第二定向天线,用于在所述第二目标方向上接收所述原目标基 站的信号。
16. 4艮据权利要求 12所述的装置, 其特征在于, 所述主控制器还包括: 第二计算单元, 用于在所述判断单元判断为是的情况下, 根据所述 当前目标基站的位置信息、 所述当前空间位置信息、 以及所述当前空间 朝向计算得到指向所述当前目标基站的目标方向;
第二发送单元, 用于在所述判断单元判断为是的情况下, 将所述目 标方向通过信令发送到所述第一自动天线定向系统和第二自动天线定向 系统, 以使所述第一定向天线和所述第二定向天线均指向所述当前目标 基站。
17. 才艮据权利要求 14或 15所述的装置, 其特征在于, 所述第一定向天线或 所述第二定向天线为以下之一: 通过阵列天线电控天线方向图的智能天 线、 机电式自动定向天线。
18. 根据权利要求 17所述的装置, 其特征在于,
所述第一驱动器具体用于:在所述第一定向天线为所述机电式自动 定向天线时, 驱动所述第一定向天线, 在所述第一定向天线为所述智能 天线时, 生成天线方向图以驱动所述第一定向天线;
所述第二驱动器具体用于:在所述第二定向天线为所述机电式自动 定向天线时, 驱动所述第二定向天线, 在所述第二定向天线为所述智能 天线时, 生成天线方向图以驱动所述第二定向天线。
19. 根据权利要求 9所述的装置, 其特征在于, 所述装置进一步包括:
天线罩,用于规避风阻对所述第一定向天线和所述第二定向天线的 影响。
20. 一种通信天线自动定向装置, 其特征在于, 包括:
目标基站地理化存储器,用于存储航空器在航空线路上的空间位置 信息目标基站的标识的对应关系, 其中, 所述空间位置信息包括: 经纬 度、 海拔高度;
传感器, 用于确定所述航空器的当前空间位置信息; 航空器空间朝向传感器, 用于确定航空器的当前空间朝向; 主控制器, 用于根据所述当前空间位置信息、 所述对应关系、 以及 所述当前空间朝向确定定向天线的目标方向, 并发送携带有所述目标方 向的指令;
电控波束智能天线定向系统, 用于接收所述指令, 才艮据所述目标方 向对其定向天线进行驱动, 以使所述定向天线在所述目标方向上接收地 面基站的信号;
移动通讯终端, 用于对所述定向天线接收的信号进行处理。
21. 根据权利要求 20所述的装置, 其特征在于, 所述传感器进一步包括:
GPS传感器, 用于确定所述航空器的当前经纬度;
海拔高度传感器, 用于确定所述航空器的当前海拔高度。
22. 根据权利要求 20所述的装置, 其特征在于, 所述目标基站地理化存储器 进一步用于: 存储所述目标基站的位置信息。
23. 根据权利要求 22所述的装置, 其特征在于, 所述主控制器具体包括: 获取单元,用于才艮据所述对应关系获取与所述当前空间位置信息对 应的当前目标基站的标识, 才艮据所述标识获取所述当前目标基站的位置 信息, 并获取最后一次存储的原目标基站的位置信息;
判断单元, 用于判断当前目标基站与所述原目标基站是否相同。
24. 根据权利要求 23所述的装置, 其特征在于, 所述主控制器还包括: 第一计算单元, 用于在所述判断单元判断为否的情况下, 才艮据所述 当前目标基站的位置信息、 所述原目标基站的位置信息、 所述当前空间 位置信息、 以及所述当前空间朝向计算得到指向所述当前目标基站的第 一目标方向和指向所述原目标基站的第二目标方向; 第一发送单元, 用于在所述判断单元判断为否的情况下, 发送携带 有所述第一目标方向的第一指令, 以及发送携带有所述第二目标方向的 第二指令;
更新模块,用于将所述原目标基站的存储信息更新为所述当前目标 基站。
25. 根据权利要求 24所述的装置, 其特征在于, 所述电控波束智能天线定向 系统具体包括:
驱动器,用于才艮据所述第一指令中的所述第一目标方向对第一定向 天线进行驱动, 并根据所述第二指令中的所述第二目标方向对第二定向 天线进行驱动;
所述第一定向天线 ,用于在所述第一目标方向上接收所述当前目标 基站的信号;
所述第二定向天线,用于在所述第二目标方向上接收所述原基站的 信号。
26. 根据权利要求 23所述的装置, 其特征在于, 所述主控制器还包括: 第二计算单元, 用于在所述判断单元判断为是的情况下, 根据所述 当前目标基站的位置信息、 所述当前空间位置信息、 以及所述当前空间 朝向计算得到指向所述当前目标基站的目标方向;
第二发送单元, 用于在所述判断单元判断为是的情况下, 发送携带 有所述目标方向的信令, 以使所述第一定向天线、 以及所述第二定向天 线均指向所述当前目标基站。
27. 根据权利要求 20所述的装置, 其特征在于, 所述装置进一步包括: 天线罩,用于规避风阻对所述第一定向天线和所述第二定向天线的 影响。
28. 一种通信天线自动定向方法, 其特征在于, 包括:
主控制器从传感器获取航空器的当前空间位置信息、以及当前航空 器空间朝向信息;
所述主控制器根据所述当前空间位置信息获取当前目标基站的位 置信息; 所述主控制器才艮据所述当前目标基站的位置信息、所述当前空间位 置信息、 所述当前航空器空间朝向信息确定定向天线的目标方向, 并将 携带有所述目标方向的信令发送到智能定向天线驱动器; 所述智能定向天线驱动器才艮据所述指令驱动定向天线,以使所述定 向天线指向所述当前目标基站。
29. 根据权利要求 28所述的方法,其特征在于,所述当前空间位置信息包括: 经纬度、 海拔高度。
30. 根据权利要求 28所述的方法, 其特征在于, 所述传感器包括: GPS传感 器、 海拔高度传感器。
31. 才艮据权利要求 28所述的方法, 其特征在于, 所述主控制器才艮据所述当前 空间位置信息获取当前目标基站的位置信息包括:
所述主控制器才艮据所述当前空间位置信息查询目标基站地理化存 储器, 获取所述当前目标基站的位置信息, 其中, 所述目标基站地理化 存储器用于存储航空器在航空线路上的空间位置信息与目标基站的标识 的对应关系。
32. 根据权利要求 31所述的方法, 其特征在于, 所述智能定向天线驱动器根 据所述指令驱动定向天线包括:
在所述定向天线为所述机电式自动定向天线时,所述智能定向天线 驱动器直接驱动所述定向天线, 在所述定向天线为所述智能天线时, 所 述智能定向天线驱动器生成天线方向图以驱动所述定向天线。
33. 根据权利要求 28所述的方法, 其特征在于, 在所述目标基站发生变化的 情况下, 所述主控制器根据所述当前空间位置信息获取当前目标基站的 位置信息之后, 所述方法进一步包括:
所述主控制器判断所述当前目标基站与存储的原目标基站是否相 同。
34. 根据权利要求 33所述的方法, 其特征在于, 在所述主控制器判断所述当 前目标基站与存储的原目标基站不同的情况下, 所述主控制器确定定向 天线的目标方向, 并将携带有所述目标方向的信令发送到智能定向天线 驱动器包括: 所述主控制器才艮据所述当前目标基站的位置信息、所述原目标基站 的位置信息、 所述当前空间位置信息、 所述当前航空器空间朝向信息确 定指向所述当前目标基站的第一目标方向和指向所述原目标基站的第二 目标方向;
所述主控制器将所述第一目标方向携带在第一信令中,并发送到第 一智能定向天线驱动器, 将所述第二目标方向携带在第二信令中, 并发 送到第二智能定向天线驱动器。
35. 根据权利要求 34所述的方法, 其特征在于, 所述智能定向天线驱动器根 据所述指令驱动定向天线, 以使所述定向天线指向所述当前目标基站包 括:
所述第一智能定向天线驱动器驱动第一定向天线,使得所述第一定 向天线指向所述当前目标基站;
所述第二智能定向天线驱动器驱动第二定向天线,使得所述第二定 向天线指向所述原目标基站。
36. 根据权利要求 35所述的方法, 其特征在于, 所述智能定向天线驱动器根 据所述指令驱动定向天线之后, 所述方法还包括:
所述主控制器根据将所述原目标基站的存储信息更新为所述当前 目标基站的存储信息。
PCT/CN2009/071892 2009-05-21 2009-05-21 通信天线自动定向装置、方法 WO2010133029A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2009/071892 WO2010133029A1 (zh) 2009-05-21 2009-05-21 通信天线自动定向装置、方法
CN200980159398.0A CN102428607B (zh) 2009-05-21 2009-05-21 通信天线自动定向装置、方法
US13/259,319 US8810451B2 (en) 2009-05-21 2009-05-21 Communication antenna automatic orientation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071892 WO2010133029A1 (zh) 2009-05-21 2009-05-21 通信天线自动定向装置、方法

Publications (1)

Publication Number Publication Date
WO2010133029A1 true WO2010133029A1 (zh) 2010-11-25

Family

ID=43125720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071892 WO2010133029A1 (zh) 2009-05-21 2009-05-21 通信天线自动定向装置、方法

Country Status (3)

Country Link
US (1) US8810451B2 (zh)
CN (1) CN102428607B (zh)
WO (1) WO2010133029A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886668A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息传输方法及装置
EP2869481B1 (en) * 2011-08-16 2019-02-20 Qualcomm Incorporated Overlaying an air to ground communication system on spectrum assigned to satellite systems

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175121A1 (en) * 2011-06-22 2012-12-27 Nokia Siemens Networks Oy Method of achieving information, access node and communication device
US9069070B2 (en) * 2012-06-01 2015-06-30 Honeywell International Inc. Systems and methods for the selection of antennas in aircraft navigation systems
WO2014036328A1 (en) * 2012-08-29 2014-03-06 John William Hunter Solar relay aircraft powered by ground based solar concentrator mirrors in dual use with power towers
US20170137138A9 (en) * 2012-08-29 2017-05-18 John William Hunter Solar relay aircraft powered by ground based solar concentrator mirrors in dual use with power towers
CN104010361B (zh) * 2013-02-22 2018-04-10 中兴通讯股份有限公司 定位系统和方法
US9793596B2 (en) 2013-03-15 2017-10-17 Elwha Llc Facilitating wireless communication in conjunction with orientation position
US9681311B2 (en) 2013-03-15 2017-06-13 Elwha Llc Portable wireless node local cooperation
US9608862B2 (en) 2013-03-15 2017-03-28 Elwha Llc Frequency accommodation
US9491637B2 (en) 2013-03-15 2016-11-08 Elwha Llc Portable wireless node auxiliary relay
US10103428B2 (en) * 2013-05-02 2018-10-16 Qualcomm Incorporated Low cost high performance aircraft antenna for advanced ground to air internet system
FR3005824B1 (fr) * 2013-05-16 2015-06-19 Airbus Operations Sas Gestion distribuee des communications bord-sol dans un aeronef
US9515708B2 (en) 2013-07-09 2016-12-06 Symbol Technologies, Llc Context aware multiple-input and multiple-output antenna systems and methods
US9065497B2 (en) 2013-07-09 2015-06-23 Symbol Technologies, Llc Context aware multiple-input and multiple-output antenna systems and methods
US20150296386A1 (en) * 2014-04-15 2015-10-15 Eden Rock Communications, Llc System and method for spectrum sharing
US10117043B2 (en) 2014-09-22 2018-10-30 Symbol Technologies, Llc Serially-connected bluetooth low energy nodes
JP6510677B2 (ja) 2015-12-28 2019-05-08 Kddi株式会社 飛行体制御装置、飛行体、飛行許可空域設定装置、飛行体制御方法及びプログラム
KR102437149B1 (ko) * 2016-11-30 2022-08-26 한국전자통신연구원 밀리미터파 기반의 무선망 기술을 무인 비행체에 적용하는 방법 및 장치, 이를 이용한 무인 비행체의 작동 방법, 그리고 이를 이용한 통신 방법
WO2019000345A1 (zh) * 2017-06-29 2019-01-03 深圳市大疆创新科技有限公司 控制方法、无人机和计算机可读存储介质
WO2019044635A1 (ja) * 2017-08-31 2019-03-07 三菱電機株式会社 通信装置
US10455540B2 (en) * 2018-06-26 2019-10-22 Intel IP Corporation Technologies for predictive alignment of antenna array of a vehicle
CN112152656B (zh) * 2020-08-21 2021-12-14 浙江卓盛科技有限公司 一种智能天线系统
CN113596406B (zh) * 2021-07-30 2024-02-27 杭州海康威视数字技术股份有限公司 具有定向天线可转动的监控设备
CN116706511A (zh) * 2022-02-28 2023-09-05 荣耀终端有限公司 一种无线路由器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041450A1 (en) * 1996-04-30 1997-11-06 The Commonwealth Of Australia High speed data link
CN1321372A (zh) * 1999-07-13 2001-11-07 阿尔卡塔尔公司 Leo卫星数据传输设备
CN1761103A (zh) * 2004-10-11 2006-04-19 佛山市顺德区顺达电脑厂有限公司 可移动载体上卫星碟形天线指向的动态调整控制装置
CN101176367A (zh) * 2005-05-18 2008-05-07 艾利森电话股份有限公司 通过蜂窝基站塔与飞机通信的布置、系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041450A1 (en) * 1996-04-30 1997-11-06 The Commonwealth Of Australia High speed data link
CN1321372A (zh) * 1999-07-13 2001-11-07 阿尔卡塔尔公司 Leo卫星数据传输设备
CN1761103A (zh) * 2004-10-11 2006-04-19 佛山市顺德区顺达电脑厂有限公司 可移动载体上卫星碟形天线指向的动态调整控制装置
CN101176367A (zh) * 2005-05-18 2008-05-07 艾利森电话股份有限公司 通过蜂窝基站塔与飞机通信的布置、系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869481B1 (en) * 2011-08-16 2019-02-20 Qualcomm Incorporated Overlaying an air to ground communication system on spectrum assigned to satellite systems
CN108886668A (zh) * 2018-06-14 2018-11-23 北京小米移动软件有限公司 信息传输方法及装置

Also Published As

Publication number Publication date
CN102428607A (zh) 2012-04-25
US8810451B2 (en) 2014-08-19
CN102428607B (zh) 2014-09-10
US20120056784A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2010133029A1 (zh) 通信天线自动定向装置、方法
US9537561B1 (en) Optimization of communications with UAVS using terrestrial cellular networks
US9918235B2 (en) Adaptive antenna operation for UAVs using terrestrial cellular networks
JP7254893B2 (ja) 高度が変化する物体を有するシステムのための電力制御方法
US8396483B2 (en) Mobile station, system and method for use in wireless communications
JP6900311B2 (ja) ワイヤレスシステムにおける適応型ビーム配置のための方法
US20110201357A1 (en) Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
CN111525950A (zh) 一种用于低轨移动卫星通信系统的终端接入与切换方法
WO2021114828A1 (zh) 航线通信方法、系统、计算机可读存储介质及电子设备
US8543110B2 (en) Method and apparatus for providing a pilot beacon on behalf of one or more base stations
JP6986971B2 (ja) 測位方法および装置
US11550019B1 (en) Dual function edge device and method for accelerating UE-specific beamforming
US20230035010A1 (en) Edge device and method for sensor-assisted beamforming
CN110312199A (zh) 一种地空互联的方法及装置
CN110113763B (zh) 基于感知的移动高空通信平台自适应覆盖优化方法
WO2021012118A1 (zh) 通信方法、装置、设备、系统及存储介质
KR101055819B1 (ko) 무선 통신 시스템 및 무선 통신 방법
US11770165B2 (en) Wireless communication device and selection method
US11528074B2 (en) Repeater system for LPWAN and method for controlling same
KR102128400B1 (ko) 무선전송 장치의 전파 빔 방향 조정 방법
KR20180045388A (ko) 스마트 안테나 기반의 최적의 빔 선택방법 및 그를 위한 장치
KR102631820B1 (ko) Tvws 지향성 안테나를 이용한 원거리 통신 시스템 제어 방법
CN114531187B (zh) 自动天线波束对准
US11909499B2 (en) Transmitting and receiving antenna system of LPWAN repeater and control method thereof
EP4275297A1 (en) Ephemeris data signaling with extensions indicating cell coverage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159398.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259319

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09844781

Country of ref document: EP

Kind code of ref document: A1