WO2010131747A1 - ウイルス産生細胞 - Google Patents

ウイルス産生細胞 Download PDF

Info

Publication number
WO2010131747A1
WO2010131747A1 PCT/JP2010/058220 JP2010058220W WO2010131747A1 WO 2010131747 A1 WO2010131747 A1 WO 2010131747A1 JP 2010058220 W JP2010058220 W JP 2010058220W WO 2010131747 A1 WO2010131747 A1 WO 2010131747A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
cells
gene
protein
cell
Prior art date
Application number
PCT/JP2010/058220
Other languages
English (en)
French (fr)
Inventor
啓光 中内
真 大津
直也 高山
浩之 江藤
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2011513392A priority Critical patent/JPWO2010131747A1/ja
Publication of WO2010131747A1 publication Critical patent/WO2010131747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
    • C12N2810/6081Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV

Definitions

  • the present invention relates to a virus-producing cell capable of producing an RNA virus containing a gene encoding an reprogramming factor.
  • the present invention further relates to a method for producing the virus-producing cell, an RNA virus containing a gene encoding an reprogramming factor, a method for producing the RNA virus, and a method for producing induced pluripotent stem cells using the RNA virus.
  • Induced pluripotent stem cells are pluripotent cells obtained by reprogramming somatic cells. Induced pluripotent stem cells were created by a group of Prof. Shinya Yamanaka at Kyoto University, a group of Rudolf Jaenisch et al. At Massachusetts Institute of Technology, a group of James Thomson et al. At University of Wisconsin, Harvard University Several groups have been successful, including the group of Konrad Hochedlinger et al. Induced pluripotent stem cells have great expectations as ideal pluripotent cells without rejection and ethical problems.
  • Patent Document 1 discloses somatic cell nuclear reprogramming factors including Oct family gene, Klf family gene, and Myc family gene gene products, as well as Oct family gene, Klf family gene, Sox family gene and Myc family gene.
  • a method for producing induced pluripotent stem cells by nuclear reprogramming of somatic cells comprising a step of contacting a nuclear reprogramming factor of a somatic cell containing a gene product with the nuclear reprogramming factor.
  • iPS induced pluripotent stem cells
  • Non-Patent Document 1 describes a stable human-derived packaging cell capable of producing high-titer vesicular stomatitis virus G (VSV-G) pseudotyped retrovirus.
  • the packaging cell described in Non-Patent Document 1 has a gag gene, a pol gene, and a VSV-G gene in a chromosome, and expresses a VSV-G gene depending on the presence or absence of a drug, thereby producing a VSV-G pseudotyped retrovirus.
  • An object of the present invention is to provide a virus-producing cell that is an RNA virus containing a gene encoding an reprogramming factor and can produce a large amount of a uniform and the same lot of virus.
  • the present inventor has found an early stage on the chromosome of a packaging cell having a gene encoding a viral constitutive protein including vesicular stomatitis virus G (VSV-G) protein on the chromosome Production of an RNA virus containing a gene encoding a reprogramming factor by introducing a gene encoding a reprogramming factor, wherein the RNA virus contains a vesicular stomatitis virus G (VSV-G) protein as an envelope protein Succeeded in establishing cells.
  • VSV-G vesicular stomatitis virus G
  • reprogramming somatic cells which were difficult to establish iPS cells by other existing methods, using RNA viruses containing genes encoding reprogramming factors produced by established virus-producing cells Also succeeded.
  • the present invention has been completed based on these findings.
  • an RNA virus containing a gene encoding an reprogramming factor which can be produced so that an RNA virus containing vesicular stomatitis virus G (VSV-G) protein as an envelope protein can be produced.
  • a virus-producing cell having a gene encoding a factor and a gene encoding a viral constitutive protein including vesicular stomatitis virus G (VSV-G) protein on the chromosome.
  • the gene encoding the reprogramming factor is at least one of the Oct gene, Sox gene, Klf gene, and Myc gene.
  • the virus-producing cell of the present invention cannot express vesicular stomatitis virus G (VSV-G) protein in the presence of a predetermined drug, and vesicular stomatitis virus G (VSV-G) in the absence of the drug.
  • VSV-G vesicular stomatitis virus G
  • the gene encoding the reprogramming factor is introduced as a virus.
  • the predetermined drug is tetracycline.
  • a packaging cell that cannot express vesicular stomatitis virus G (VSV-G) protein in the presence of a predetermined drug and can express vesicular stomatitis virus G (VSV-G) protein in the absence of the drug Or packaging cells that are unable to express vesicular stomatitis virus G (VSV-G) protein in the absence of a given drug and are capable of expressing vesicular stomatitis virus G (VSV-G) protein in the presence of the drug,
  • the gene cannot be expressed in the presence of a given drug and in the absence of the drug. Or has been introduced to allow Oite expression, or the gene can not be expressed in the absence of a given agent is a cell that has been introduced to allow expression in the presence of the agent.
  • a cell line established by transforming human fetal kidney cells with the E1 gene of adenovirus is HEK293 cells.
  • a packaging cell that cannot express vesicular stomatitis virus G (VSV-G) protein in the presence of a predetermined drug and can express vesicular stomatitis virus G (VSV-G) protein in the absence of the drug are HEK293GPG cells.
  • the virus-producing cell of the present invention is a cloned cell derived from a single cell.
  • vesicular stomatitis virus G (VSV-G) protein cannot be expressed in the presence of a predetermined drug, and vesicular stomatitis virus G (VSV-G) protein is expressed in the absence of the drug.
  • a method for producing the virus-producing cell of the present invention described above which comprises introducing a gene encoding an reprogramming factor into a packaging cell.
  • a gene encoding a reprogramming factor is introduced as a virus.
  • an RNA virus comprising a gene encoding a reprogramming factor, wherein the RNA virus comprises vesicular stomatitis virus G (VSV-G) protein as an envelope protein.
  • VSV-G vesicular stomatitis virus G
  • the gene encoding the reprogramming factor is any one or more of the Oct gene, Sox gene, Klf gene, and Myc gene.
  • the RNA virus of the present invention is produced by the virus-producing cell of the present invention described above.
  • the RNA virus of the present invention is used for the production of induced pluripotent stem cells.
  • the RNA virus of the present invention is stored frozen after production.
  • an RNA virus comprising a gene encoding a reprogramming factor, comprising culturing the above-described virus-producing cell of the present invention, wherein vesicular stomatitis virus G (VSV-G) is used as an envelope protein.
  • VSV-G vesicular stomatitis virus G
  • the present invention further provides a method for producing induced pluripotent stem cells, which comprises introducing the above-described RNA virus of the present invention into somatic cells.
  • the somatic cell is a hematopoietic cell.
  • the hematopoietic cells are derived from bone marrow.
  • the hematopoietic cells are derived from cord blood.
  • the somatic cell is a peripheral blood cell.
  • the somatic cell is a peripheral blood CD34 positive cell.
  • the virus-producing cells of the present invention can be used stably and semipermanently for a long time, and can always produce a virus for expressing a uniform and high titer reprogramming factor by a simple culture method.
  • the virus-producing cells of the present invention can be cryopreserved, making it possible to prepare a large amount of the same uniform lot semipermanently.
  • the virus-producing cells of the present invention produce vesicular stomatitis virus G (VSV-G) protein-coated virus, not ecotropic virus, and this VSV-G protein-coated virus can be stored frozen. Further, since the VSV-G protein-coated virus is excellent in physical strength, a high-titer virus lot can be obtained by centrifugation.
  • VSV-G vesicular stomatitis virus G
  • the virus production method using the virus-producing cells of the present invention is easy to operate, technical differences among engineers are difficult to occur, the difference between virus lots produced is small, and the efficiency is the same in any facility. This makes it possible to establish iPS sputum cells.
  • the virus-producing cells of the present invention can be stored as a master cell bank of cell lines or clones that have undergone quality test, and the virus supernatant produced and prepared using them can also be safe. It has the advantage of being easily guaranteed. This ensures the safety of established iPS cells, thereby enabling the production of clinically applicable virus lots.
  • FIG. 1 shows the state of cell growth under conditions in which virus production of HEK293GPG clone introduced with mouse Klf4 gene was induced.
  • FIG. 2 shows the state of cell growth of the HEK293GPG clone into which the mouse Klf4 gene was introduced under conditions that did not induce virus production.
  • FIG. 3 shows the results of PCR analysis of 20 clones derived from 293GPG cells into which the mouse Klf4 gene was introduced, using a primer pair that can specifically detect a vector provirus containing the Klf4 gene.
  • FIG. 1 shows the state of cell growth under conditions in which virus production of HEK293GPG clone introduced with mouse Klf4 gene was induced.
  • FIG. 2 shows the state of cell growth of the HEK293GPG clone into which the mouse Klf4 gene was introduced under conditions that did not induce virus production.
  • FIG. 3 shows the results of PCR analysis of 20 clones derived from 293GPG cells into
  • FIG. 4 shows the results of evaluating the infectivity of a retrovirus having a Klf4 gene produced by a 293GPG clone in which the presence of a vector provirus containing the Klf4 gene was confirmed.
  • FIG. 5 shows the induction of iPS cells from hematopoietic cells in a single hematopoietic stem cell transplantation model.
  • A A schematic diagram of the experimental procedure is shown. Single hematopoietic stem cells obtained from B6 Ly5.1 mice (CD150 + CD34 neg / low KSL cells) together with bone marrow cells from B6 Ly5.1 / 5.2 F1 mice were irradiated with a lethal dose of B6 Ly5.2 Mice were transplanted.
  • Bone marrow hematopoietic stem / progenitor cells are obtained from recipient mice that have demonstrated long-term (10 months) stable Ly5.1 chimeras ( ⁇ 80%), enriched with Ly5.1 + cells, and used to generate iPS cells It was.
  • B A schematic diagram of iPS cell preparation from bone marrow hematopoietic stem / progenitor cells is shown.
  • I Plot of lineage marker (Lin) vs. c-Kit is shown for cells before purification (whole bone marrow) and after purification (Lin ⁇ c-Kit + ). 98% of the purified hematopoietic stem / progenitor cells were positive for the panblood cell marker CD45.
  • C Typical ES cell-like appearance of sHSC-iPS cell colonies (left) with high ALP activity (right). The bar is 100 ⁇ m.
  • D Determination of cell origin of sHSC-iPS cell clone. The upper figure shows an overview of the PCR method performed using the single nucleotide polymorphism in CD45 exon (Ex) 25. The black triangle indicates the position of the primer.
  • Ly5.1 and Ly5.2 strains have a single base substitution in the 301 bp amplicon as shown in the 12 bp sequence presented in the figure.
  • the gel image shows analysis images of four sHSC-iPS cell clones. One is derived from Ly5.1 / 5.2 F1 cells and three (# 9-5, -6 and -8) are derived from a single Ly5.1 + hematopoietic stem cell-derived Ly5.1 + cell. Is. (E) A chimeric mouse obtained by transplanting sHSC-iPS cell clone # 9-5 into an ICR host blastocyst. FIG.
  • FIG. 6 shows characteristics of iPS cells derived from primary bone marrow hematopoietic cells prepared using four kinds of reprogramming factors.
  • A RT-PCR analysis showing ES marker gene expression in primary bone marrow hematopoietic stem / progenitor cell-derived iPS cell clones (pHPC-iPS cells). H 2 O: control without template; ES: ES cells as positive control; RT ( ⁇ ): control without reverse transcriptase.
  • B PCR analysis of Ig reconstitution of DJ fragment (DJ1-DJ3) in pHPC-iPS cell clone. GL shows amplification of a fragment showing the unrearranged germline arrangement of the Ig heavy chain gene.
  • EL4 is a T lymphocyte cell as a non-reconstituted control.
  • C Teratoma tissue section derived from pHPC-iPS cell clone.
  • D Image of pHPC-iPS cell colonies derived from EGFP transgenic mice. The bar is 100 ⁇ m (CD).
  • E A chimeric fetus produced using one representative EGFP + iPS cell clone.
  • FIG. 7 shows the production of iPS cells from bone marrow hematopoietic cells.
  • A Appearance of iPS cell induction from bone marrow hematopoietic stem / progenitor cells. The bar is 100 ⁇ m.
  • FIG. 8 shows evaluation of reprogramming factor genes in sHSC-iPS cells.
  • A PCR analysis showing the presence of reprogramming factor in each sHSC-iPS clone. H 2 O: control without template, Control: positive control using each vector DNA as template.
  • RT-PCR analysis using a specific primer set for examining the expression of four reprogramming factors.
  • a transcript derived from an endogenous gene can be detected (Endo), but a transcript derived from a retrovirus is not detected (Tg).
  • RT (-) is a control without reverse transcriptase.
  • FIG. 9 shows an evaluation of the expression of pluripotency markers in sHSC-iPS cells.
  • A RT-PCR analysis showing expression of ES marker gene in sHSC-iPS clone. H 2 O: control without template, ES: ES cell as positive control, RT (-): control without reverse transcriptase.
  • FIG. 10 shows the developmental potential of sHSC-iPS cells. The teratoma tissue section derived from the sHSC-iPS clone is shown. The bar is 100 ⁇ m.
  • FIG. 11 shows evaluation of reprogramming factor genes in pHPC-iPS cells.
  • A PCR analysis showing the presence of reprogramming factor in each pHPC-iPS clone.
  • H 2 O control without template
  • Control positive control using each vector DNA as template.
  • FIG. 12 shows the establishment of human iPS cell-derived 4 factor retrovirus producing 293GPG cell line (KLF4).
  • FIG. 13 shows a process for establishing iPS cells derived from human skin cells.
  • FIG. 14 shows the process of establishing umbilical cord blood-derived sputum iPS sputum cells.
  • FIG. 15 shows human skin cell-derived iPS cells (immunostaining, G-banding).
  • FIG. 16 shows the expression of ES related genes in human skin cell-derived iPS cells. Expression of ES gene-related genes (semi-quantitative RT-PCR) The expression of ES-related genes was observed to the same extent as that of human control ES cells (KhES-3). On the other hand, the expression of foreign genes used for the production of iPS cells was strongly suppressed.
  • FIG. 17 shows the process of establishing iPS cells derived from peripheral blood CD34-positive cells (non-mobilized).
  • FIG. 18 shows normal donor peripheral blood CD34-positive cell-derived iPS cells (TkPB
  • the virus-producing cell of the present invention is an RNA virus containing a gene encoding an reprogramming factor, and is capable of producing an RNA virus containing vesicular stomatitis virus G (VSV-G) protein as an envelope protein.
  • VSV-G vesicular stomatitis virus G
  • the gene encoding the reprogramming factor used in the present invention is a gene encoding a reprogramming factor having the action of reprogramming somatic cells to become induced pluripotent stem cells.
  • a gene encoding at least one reprogramming factor can be used.
  • the gene encoding the reprogramming factor used in the present invention can be selected from, for example, Oct gene, Klf gene, Sox gene, Myc gene, Nanog gene, Lin28 gene, htert gene, SV40hlarge T gene and the like.
  • the Oct gene, Klf gene, Sox gene and Myc gene can be used.
  • the Oct gene, Klf gene, Sox gene and Myc gene each contain multiple family genes.
  • each family gene those described in pages 11 to 13 of the specification of International Publication No. WO2007 / 069666 can be used. Specifically, it is as follows.
  • Oct3 / 4 is preferable.
  • Oct3 / 4 is a transcription factor belonging to the POU family, is known as an undifferentiated marker, and has been reported to be involved in maintaining pluripotency.
  • genes belonging to the Klf gene include Klf1 (NM — 006563), Klf2 (NM — 016270), Klf4 (NM — 004235), Klf5 (NM — 001730), etc. (in parentheses indicate NCBI accession numbers of human genes) ). Klf4 is preferred. Klf4 (Kruppel like factor-4) has been reported as a tumor suppressor.
  • genes belonging to the Sox gene include, for example, Sox1 (NM_005986), Sox2 (NM_003106), Sox3 (NM_005634), Sox7 (NM_031439), Sox15 (NM_006942), Sox17 (NM_0022454), and Sox18 (NM_018419).
  • Sox1 NM_005986
  • Sox2 NM_003106
  • Sox3 NM_005634
  • Sox7 NM_031439
  • Sox15 NM_006942
  • Sox17 NM_0022454
  • Sox18 NM_018419.
  • Sox2 is a gene that is expressed during early development and encodes a transcription factor.
  • genes belonging to the Myc gene include c-Myc (NM_002467), N-Myc (NM_005378), and L-Myc (NM_005376) (in parentheses the NCBI accession number of the human gene). Show).
  • c-MycMy a transcriptional regulator involved in cell differentiation and proliferation, and has been reported to be involved in maintaining pluripotency.
  • genes described above are genes that exist in common in mammals including humans, and genes derived from any mammal (eg, derived from mammals such as humans, mice, rats, monkeys) can be used in the present invention. .
  • genes derived from any mammal eg, derived from mammals such as humans, mice, rats, monkeys
  • the virus-producing cell of the present invention cannot express vesicular stomatitis virus G (VSV-G) protein in the presence of a predetermined drug, and does not express vesicular stomatitis virus G (VSV-G) protein in the absence of the drug.
  • Packaging cells that can be expressed, or cannot express vesicular stomatitis virus G (VSV-G) protein in the absence of a given drug, but express vesicular stomatitis virus G (VSV-G) protein in the presence of the drug It can be produced by introducing a gene encoding a reprogramming factor into a packaging cell that can be produced.
  • HEK293 cells derived from human fetal kidney (HEK293 cells are cell lines established by transforming human fetal kidney cells with adenovirus E1 gene), a package based on mouse fibroblast NIH3T3 Cells, preferably packaging cells based on HEK293 cells can be used.
  • the gene encoding the reprogramming factor is preferably introduced as a virus from the viewpoint of integration into the chromosome of the packaging cell.
  • the method for introducing a virus into a packaging cell is not particularly limited, and can be performed using a known gene introduction method such as a calcium phosphate method, a lipofection method, or an electroporation method.
  • Packaging cells that are unable to express vesicular stomatitis virus G (VSV-G) protein in the presence of a given drug and that are capable of expressing vesicular stomatitis virus G (VSV-G) protein in the absence of the drug or Examples of packaging cells that cannot express vesicular stomatitis virus G (VSV-G) protein in the absence of the drug and can express vesicular stomatitis virus G (VSV-G) protein in the presence of the drug include, for example, A cell obtained by introducing a gene encoding vesicular stomatitis virus G (VSV-G) protein into a cell line established by transforming human fetal kidney cells with the E1 gene of adenovirus.
  • the gene cannot be expressed in the presence of the given drug and the absence of the drug Or it has been introduced to allow expression in, or the gene can not be expressed in the absence of a given agent can be used a cell that has been introduced to allow expression in the presence of the agent.
  • an antibiotic such as tetracycline (or doxycycline).
  • Tet-Off Gene Expression System (Clontech ) Can be used.
  • the Tet-Off® System is based on two regulatory factors, the Tet repressor protein (TetR) and the Tet operator DNA sequence (tetO) obtained from the Escherichia coli tetracycline resistance operon. A bi-stable cell line incorporating the factor into the host genome is obtained.
  • Established cell lines can express target genes in a dose-dependent response to tetracycline (or doxycycline) (Proc Natl Acad Sci USA. 1992 Jun 15; 89 (12): 5547-51. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Gossen M, Bujard H).
  • Tet-On ⁇ ⁇ ⁇ ⁇ Gene Expression System (Clontech) can be used.
  • Tet-on system is a system that induces gene expression by binding tetracycline-dependent transcriptional regulatory factor (rtTA) to TRE (tetracycline responsive element) in the promoter region when doxycycline, a tetracycline derivative, is present. is there.
  • rtTA tetracycline-dependent transcriptional regulatory factor
  • TRE tetracycline responsive element
  • VSV-G vesicular stomatitis virus G
  • HEK293GPG cells Ory DS, Neugeboren BA, Mulligan RC.
  • HEK293GPG cells Ory DS, Neugeboren BA, Mulligan RC.
  • a retroviral vector for example, pMXs vector
  • a gene encoding a reprogramming factor for example, an Oct gene, Sox gene, Klf gene, or Myc gene
  • a vector having a VSV-G cDNA are 293GP cells with viral gag and pol genes on the chromosome (Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vector: concentration gene and nonmammalian cells. Proc Natl Acad Sci U S A.
  • RNA virus containing the gene encoding the reprogramming factor capable of stably producing an RNA virus containing G (VSV-G) protein can be produced.
  • an RNA virus comprising a gene encoding a reprogramming factor by culturing the above-described virus-producing cells of the present invention, wherein vesicular stomatitis virus G (VSV-G) protein is used as an envelope protein.
  • RNA viruses containing can be produced.
  • An RNA virus containing the gene encoding the reprogramming factor produced as described above and containing the vesicular stomatitis virus G (VSV-G) protein as an envelope protein is also included in the present invention.
  • the RNA virus of the present invention is a virus containing a gene encoding a reprogramming factor, and can be used to produce induced pluripotent stem cells from somatic cells.
  • RNA virus of the present invention contains vesicular stomatitis virus G (VSV-G) protein as an envelope protein and is excellent in physical strength. Therefore, it can be stored frozen after production.
  • VSV-G vesicular stomatitis virus G
  • the RNA virus of the present invention may be provided in the form of a virus solution containing the virus, or may be used by preparing a virus solution by dissolving a cryopreserved virus at the time of use.
  • the present invention further provides a method for producing induced pluripotent stem cells, which comprises introducing the above-described RNA virus of the present invention into somatic cells.
  • somatic cell used for initialization in the present invention is not particularly limited, and any somatic cell can be used. That is, the somatic cells referred to in the present invention include all cells other than germ cells among the cells constituting the living body, and may be differentiated somatic cells or undifferentiated stem cells.
  • the origin of the somatic cell may be any of mammals, birds, fishes, reptiles, amphibians, and is not particularly limited, but is preferably a mammal (for example, a rodent such as a mouse or a primate such as a human). Preferably it is a human.
  • any fetal, neonatal or adult somatic cells may be used.
  • hematopoietic cells particularly hematopoietic stem cells may be used.
  • peripheral blood cells preferably peripheral blood CD34 positive cells
  • induced pluripotent stem cells can be established from a small amount of blood collected from human peripheral blood, banking of induced pluripotent stem cells for each human leukocyte antigen (HLA) becomes very easy.
  • HLA human leukocyte antigen
  • G-CSF administration may induce leukemia at a low frequency, and requires hospitalization for about one week, which places a heavy burden on the donor.
  • induced pluripotent stem cells can be produced by introducing RNA viruses produced by the virus-producing cells of the present invention into peripheral blood cells (preferably, peripheral blood CD34-positive cells). . ⁇
  • the induced pluripotent stem cell produced by the method of the present invention is used for treatment of diseases such as regenerative medicine, it is preferable to use somatic cells isolated from the patient suffering from the disease.
  • the induced pluripotent stem cell referred to in the present invention has a self-replicating ability over a long period of time under a predetermined culture condition (for example, under the condition of culturing ES cells), and also has an ectoderm, A stem cell having multipotency into germ layers and endoderm.
  • the induced pluripotent stem cell in the present invention may be a stem cell capable of forming a teratoma when transplanted to a test animal such as a mouse.
  • the method for introducing a gene encoding an reprogramming factor into a somatic cell is not particularly limited as long as the introduced reprogramming gene is expressed to achieve somatic cell reprogramming.
  • the virus of the present invention containing at least one reprogramming gene can be introduced into a somatic cell according to a conventional method known to those skilled in the art.
  • a gene encoding two or more types of reprogramming factors is introduced into a somatic cell
  • a gene encoding two or more types of reprogramming factors may be incorporated into one virus and the virus introduced into the somatic cell.
  • two or more types of viruses incorporating one type of reprogramming gene may be prepared and introduced into somatic cells.
  • a medium capable of maintaining the undifferentiation and pluripotency of ES cells is known in the art, and induced pluripotent stem cells can be separated and cultured by using a suitable medium in combination.
  • the medium for culturing induced pluripotent stem cells includes various growth factors, cytokines, hormones (eg, FGF-2, TGFb-1, activin A, Noggin, BDNF, NGF, NT-1, Ingredients involved in the growth and maintenance of human ES cells such as NT-2 and NT-3 may be added.
  • the differentiation ability and proliferation ability of the isolated induced pluripotent stem cells can be confirmed by using confirmation means known for ES cells.
  • the use of the induced pluripotent stem cells produced by the method of the present invention is not particularly limited, and can be used for various tests / researches and disease treatments.
  • a growth factor such as retinoic acid, EGF, or glucocorticoid
  • a desired differentiated cell for example, neuronal cell, cardiomyocyte, hepatocyte, Pancreatic cells, blood cells, etc.
  • stem cell therapy by autologous cell transplantation can be achieved by returning the differentiated cells thus obtained to the patient.
  • Example 1 Establishment of VSV-G pseudotyped retrovirus-producing cells and production of VSV-G pseudotyped retroviral particles pMXs vectors encoding Onc3 / 4, Sox2, Klf4, and c-Myc (Onishi M, Kinoshita S, Construction of Morikawa Y, et al. Applications of retrovirus-mediated expression cloning. Exp Hematol. 1996; 24: 324-329) has been reported (Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-676).
  • Retroviral vectors used in this example pMXs-human OCT3 / 4, pMXs-human SOX2, pMXs-human KLF4, pMXs-human cMYC, pMXs-murine Oct3 / 4, pMXs-murine Sox2, pMXs-murine Klf4, pMXs- murine cMyc was provided by Dr. Yamanaka, Kyoto University.
  • VSV-G pseudotyped retrovirus (RV) supernatant was prepared as previously described (Hamanaka S, Nabekura T, Otsu M, et al. Stable transgene expression in mice generated from retrovirally transduced embryonic stem cells. Mol Ther. 2007; 15: 560-565 ; Nabekura T, Otsu M, Nagasawa T, Nakauchi H, Onodera M. Potent vaccine therapy with dendritic cells genetically modified by the gene-silencing-resistant retroviral vector GCDNsap. Mol 13: 301-309; and Sanuki S, Hamanaka S, Kaneko S, et al.
  • VSV-G pseudotyped retroviral particles were provided by 293GP cells (Richard Dr. Mulligan (Harvard University); Burns JC, Friedmann T, Driver W, Burrascano M, Yee JK. high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993; 90: 8033-8037), pMXs vector containing genes encoding each reprogramming factor and VSV-G cDNA It was prepared by transfection with a vector.
  • the resulting retroviral particles were centrifuged at 6,000 ⁇ g for 16 hours, resuspended in 1/100 volume ⁇ - MEM and concentrated.
  • 293GPG cells provided by Dr. Richard Mulligan (University of Harvard)
  • Ory DS Neugeboren BA, Mulligan RC
  • the above-described concentrated virus supernatant was introduced to establish a stable 293GPG cell line capable of producing VSV-G pseudotyped retroviral particles upon induction. Specifically, the following procedure was used.
  • FIG. 1 shows the state of cell proliferation of a clone in which the mouse Klf4 gene was introduced to induce virus production, and the mouse Klf4 gene was introduced under conditions that did not induce virus production.
  • the state of cell growth of the clone is shown in FIG.
  • FIG. 3 shows the results of selecting 293GPG clone (9 clones) introduced with the mouse Klf4 gene by PCR analysis using a primer pair capable of specifically detecting a vector provirus containing the mouse Klf4 gene. .
  • MXs-Klf4 gene sequence was positive in 9 clones (45%) of 20 clones. From the above results, it can be seen that by the method of the present invention, a virus-producing cell carrying a gene encoding an reprogramming factor can be produced with a certain probability.
  • ⁇ -globin genomic gene was amplified, and clones in which the control and proviral sequences were clearly amplified were tested for virus production ability.
  • FIG. 4 shows the results of evaluating the infectivity of a retrovirus having a Klf4 gene produced by a 293GPG clone into which a mouse Klf4 gene has been introduced. No. Viruses produced by 2, 10, 14, and 19 clones were shown to have high infectivity for Jurkat cells.
  • FIG. 12A shows a result of selecting 293GPG clone (13 clones) introduced with the human Klf4 gene by PCR analysis using a primer pair capable of specifically detecting a vector provirus containing the human Klf4 gene. .
  • MXs-Klf4 gene sequence was positive in 8 clones (62%) out of 13 clones.
  • the GAPDH genomic gene was amplified, and clones in which the control and proviral sequences were clearly amplified were tested for virus production ability.
  • FIG. 12B shows the results of evaluating the infectivity of a retrovirus having a Klf4 gene produced by a 293GPG clone into which a human Klf4 gene has been introduced.
  • the 293GPG clone into which the human OCT3 / 4 gene, human SOX2 gene, and human cMYC gene were introduced was also established in the same manner as described above.
  • Example 2 Preparation of iPS cells from mouse bone marrow HSPC (A) Material and method (1)
  • Mouse C57BL / 6 (B6) -Ly5.2 and B6 EGFP transgenic mice were manufactured by Nippon SLC Co., Ltd. (Shizuoka, Japan)
  • B6-Ly5.1 mice were purchased from Sankyo Lab Service Co., Ltd. (Tsukuba, Japan).
  • NOD / CB17-Prkdc scid / J (NOD / Scid) mice were purchased from Nippon Charles River Co., Ltd. (Kanagawa, Japan).
  • hematopoietic stem / progenitor cells Bone marrow cells were isolated from the femur, tibia and pelvic bones of adult mice (20-30 weeks of age), and CD4, CD8, Incubated with a mixture of biotinylated monoclonal antibodies specific for B220, IL-7R, Gr-1, Mac-1, and Ter-119 (e-Bioscience, San Diego, CA). Lineage marker negative (Lin ⁇ ) cells were enriched by negative selection using Dynabeads TM MyOne TM Streptavidin C 1 (Dynal Biotech, Lake Success, NY).
  • Cells expressing c-Kit were obtained using a MACS TM LS column after incubation with anti-c-Kit MicroBeads (Miltenyi Biotech, Bergisch Gladbach, Germany). When concentration of Ly5.1 + cells was required, biotin anti-CD45.2 monoclonal antibody was added to the above mixture to obtain hematopoietic stem / progenitor cells.
  • Established iPS cells and ES cells are 15% fetal bovine serum (FBS; JRH Biosciences, Lenexa, KS), 1,000 U / ml leukemia inhibitory factor (LIF; Chemicon, Temecula, CA), 20 mM HEPES buffer (pH 7.3), 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acids (GIBCO, Grand Island, NY), 2 mM L-glutamine, and 100 U / ml penicillin / streptomycin (Sigma -Maintained on the cell layer of mouse embryo fibroblasts (MEF) treated with mitomycin C in complete ES medium consisting of Dulbecco's modified Eagle medium (DMEM) supplemented with -Aldrich, St. Louis, MO).
  • FBS fetal bovine serum
  • LIF leukemia inhibitory factor
  • LIF leukemia inhibitory factor
  • 20 mM HEPES buffer pH 7.3
  • Hematopoietic stem / progenitor cells were seeded at 5 ⁇ 10 5 cells / well in a 24-well plate coated with fibronectin fragment CH296 (Takara Bio), and 20 ng / ml mouse stem cell factor (SCF), 100 ng / ml human thrombopoietin ( Pre-stimulated in ⁇ -MEM supplemented with TPO), 1% FBS, 2 mM L-glutamine, and 100 U / ml penicillin / streptomycin.
  • RNA samples from iPS cells were prepared using the QIAmp DNA Mini Kit (QIAGEN, Valencia, CA). Total RNA samples were purified with Trizol reagent and reverse transcribed using a ThermoScript TM RT-PCR System (Invitrogen, Carlsbad, Calif.). Quantitative PCR analysis was performed with the cDNA product by Rodent GAPDH Control Reagents (Applied Biosystems, Foster City, Calif.). The amount of template used was made equal using the calculated copy number of GAPDH cDNA in each sample.
  • PCR reaction was performed using ExTaq HS and LA Taq HS (Takara Bio) under the optimum conditions for each primer set.
  • the primer sequences used are shown below.
  • the primer sequences described in Table 1 are also described in SEQ ID NOs: 1 to 36 in the Sequence Listing.
  • EX 25 of Cd45 Single nucleotide polymorphisms in exon (EX) 25 of Cd45 were analyzed as previously reported (Ramos CA, Zheng Y, Colombowala I, Goodell MA. Tracing the origin of non-hematopoietic cells using CD45 PCR restriction fragment length polymorphisms. Biotechniques 2003; 34: 160-162).
  • a PCR amplified genomic DNA sample was obtained from an iPS cell clone (polymorphic sequence sandwiched between a pair of primers). The amplicon was purified and a portion was digested with 10 U Kpn I (Takara Bio) at 37 ° C. for 1 hour. The digested sample and the undigested sample were electrophoresed on a 1% agarose gel.
  • Flow cytometry analysis For flow cytometry analysis and cell sorting, cells were treated with FITC-conjugated anti-CD45 monoclonal antibody and FITC-streptavidin (BD PharMingen, San Diego, CA), PE-conjugated anti-SSEA-1 monoclonal antibody. , And PE-cyanin7 (Cy7) anti-CD117 monoclonal antibody (e-Bioscience). Dead cells were removed by propidium iodide staining. Stained cells were analyzed using FlowJo software (TreeStar, Ashland, OR, USA).
  • Embryoid body (EB) formation iPS cells are treated with trypsin to complete embryoid body differentiation (EBD) medium (Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997; 386: 488-493).
  • EBD embryoid body differentiation
  • the cells were transferred to a 100 mm petri dish at 2 x 10 5 cells per 10 ml EBD.
  • the medium was replaced with fresh EBD on the 4th day, and then changed every 2 days until stable embryoid body formation was observed.
  • iPS cells were prepared at 1 ⁇ 10 7 cells / ml in PBS. Suspended cells (1-3 ⁇ 10 6 ) were injected subcutaneously into the flank of anesthetized NOD / Scid mice. Six weeks after injection, mice were killed and tumors were dissected. Tumor samples were fixed with 10% paraformaldehyde and embedded in paraffin. Sections were stained with hematoxylin and eosin.
  • FIG. 1A shows the outline of the experiment. Preparation of iPS cells was attempted from bone marrow hematopoietic stem / progenitor cells collected after reconstitution of the hematopoietic system from a single hematopoietic stem cell of C57BL6 (B6) Ly1,1- origin.
  • concentrated VSV-G pseudotyped retrovirus made in Example 1 was used.
  • Lin - Kit + cells which are hematopoietic stem / progenitor cells containing CD45-expressing cells ( ⁇ 98%), were purified from the bone marrow of the reconstituted mouse (B6Ly5,2) (FIG. 1B).
  • Each sHSC-iPS cell clone had a proviral sequence of four reprogramming factors (FIG. 8A), but due to gene silencing, expression of the transgene could not be detected (FIG. 8B). All sHSC-iPS cells expressed each reprogramming factor gene endogenously (FIG. 8B). All sHSC-iPS cells expressed the ES cell marker genes Nanog, Eras, Rex1, and Gdf3 (FIG. 9A). Nanog expression was also confirmed by immunostaining (FIG. 9B). Despite low expression levels of other ES cell marker genes, Ecat1 and Zfp296, these sHSC-iPS cells showed teratoma formation (FIG. 10) and contribution to chimeric mice (FIG. 1E).
  • the expression level of the endogenous reprogramming factor gene was also stronger in the pHPC-iPS cells than in the sHSC-iPS cells (FIG. 9B) (FIG. 11). This result confirms the possibility that the enormous stress imparted to a single hematopoietic stem cell by reconstitution of the hematopoietic system limits the effective reprogramming of target cells that are thought to be aging. is there.
  • confirmation of the germline non-recombinant structure in the immunoglobulin gene revealed the non-B cell origin of pHPC-iPS cells (FIG. 2B).
  • the pHPC-iPS cells had the ability to differentiate into multiple lineages including various tissues representing all three germ layers, as demonstrated by teratoma formation (FIG. 2C).
  • pHPC-iPS cell which constitutively expresses green fluorescent protein (GFP) from an EGFP transgenic mouse (FIG. 2D).
  • GFP green fluorescent protein
  • Example 3 Production of iPS cells from human skin cells and hematopoietic progenitor cells
  • Human skin cells Human adult and neonatal skin cells were purchased from Cell Applications, Inc. (San Diego, CA) and used.
  • Human umbilical cord blood Human umbilical cord blood was purchased from the Tokyo Umbilical Cord Blood Bank with a sample obtained from the consent form for research use.
  • Human bone marrow CD34-positive cells Human bone marrow CD34-positive cells were purchased from Lonza and used.
  • hematopoietic stem / progenitor cells Human umbilical cord blood was separated into mononuclear cells using Lymphosepar solution (Immunobiology Laboratories), and then anti-CD34 antibody microbeads. CD34 expressing hematopoietic stem / progenitor cells were purified by (Miltenyi Biotech, Bergisch Gladbach, Germany).
  • iPS cell clones Established iPS cells and ES cells are 20% knockout serum replacement (KSR; Invitrogen, Carlsbad, CA), 5 ng / ml basic fibroblast growth factor (bFCF; Upstate Biotech., Waltham, MA), 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid (GIBCO, Grand Island, NY), 2 mM L-glutamine, and 100 U / ml penicillin / streptomycin (Sigma-Aldrich, St.
  • the medium After removal of the medium on the second day, the medium was replaced with a new medium, the same gene introduction treatment as described above was performed, and the medium was replaced on the third day. The medium was changed again on the 5th day, and the cells transfected with the gene on the 7th day were collected by trypsin treatment. On the 10 cm dish of the irradiated SNLMEF feeder cell layer prepared on the previous day (6th day), 5 -10 x 10 4 seeds / dish. On the 8th day, the medium was replaced with human undifferentiated maintenance medium, and thereafter, medium replacement with human undifferentiated maintenance medium was continued every two days.
  • IMDM ISCOVE'S MODIFIED DULBECCO'S MEDIUM
  • PCR and RT-PCR analysis In order to recover iPS cells, MEF cells were removed by diminishing adherent cells on gelatin-coated plates. Genomic DNA samples from iPS cells were prepared using the QIAmp DNA Mini Kit (QIAGEN, Valencia, CA). Total RNA samples were purified with Trizol reagent and reverse transcribed using a ThermoScript TM RT-PCR System (Invitrogen, Carlsbad, Calif.). Semi-quantitative PCR analysis was performed using the cDNA product by GAPDH Control Reagents (Applied Biosystems, Foster City, Calif.) Using the GAPDH gene as an endogenous control. The amount of template used was made equal using the calculated copy number of GAPDH cDNA in each sample.
  • PCR reaction was performed using ExTaq HS and LA Taq HSrTaq (Takara Bio) under the optimum conditions for each primer set.
  • the primer sequences used are shown below.
  • the primer sequences described in Table 2 are also described in SEQ ID NOs: 37 to 58 in the Sequence Listing.
  • iPS cells were prepared at 1 ⁇ 10 7 cells / ml in PBS. Suspended cells (1-3 ⁇ 10 6 ) were injected into the testes of anesthetized NOD / Scid mice. Six to eight weeks after injection, mice were sacrificed and tumors were dissected. Tumor samples were fixed with 10% paraformaldehyde 4% paraformaldehyde and embedded in paraffin. Sections were stained with hematoxylin and eosin.
  • FIG. 13 and FIG. 14 show the outline of the experiment.
  • human ES cells were obtained from dermal fibroblasts from around day 20 (FIG. 13) and from cord blood CD34-positive cells and bone marrow blood CD34-positive cells (FIG. 14) from around day 12, respectively.
  • the appearance of a colony was confirmed.
  • an undifferentiated marker SSEA-4 as an example, FIG. 15A
  • FIG. 15B an undifferentiated marker
  • VPA 0.5mM By using the 293GPG virus of the present invention, it was possible to establish iPS cells from cord blood CD45 + / CD34 + cells at the same or higher efficiency as skin cells. The results of co-culture with MEF, Matrigel + MEF Conditioned medium, and SNL feeder cells are shown.
  • Example 4 Preparation of iPS cells from peripheral blood CD34 positive cells (method) 100 ml of human peripheral blood was collected, and mononuclear cells were separated using Ficoll (approximately 2-5 ⁇ 10e8 cells could be recovered). CD34MACS-beads were used to purify into CD34 positive cells (5-10 ⁇ 10e5 cells could be recovered. In addition, 5 ⁇ 10e5 cells can be established sufficiently).
  • Blood cell medium 50 ng / ml mouse human stem cell factor [SCF], 50 ng / ml human thrombopoietin [TPO], 50 ng / ml human Flt3-L, 115% FBS, 2 mM L-glutamine, and 100 U / ml
  • ISCOVE'S MODIFIED DULBECCO'S MEDIUM [IMDM] medium supplemented with penicillin / streptomycin
  • SCF stem cell factor
  • TPO thrombopoietin
  • FL FLT-3 ligand
  • iPS cell culture medium (20% knockout serum replacement [KSR], 5 ng / ml basic fibroblast growth factor [bFCF], 50 ng / ml mouse stem cell factor [SCF], 0.1 mM F-12 supplemented with 2-mercaptoethanol, 0.1 mM non-essential amino acid [GIBCO, Grand Island, NY], 2 mM L-glutamine, and 100 U / ml penicillin / streptomycin [Sigma-Aldrich, St.
  • FIG. 17 shows the process of establishing iPS cells derived from the peripheral blood CD34-positive cells (Non-mobilized).
  • FIG. 18 shows normal donor peripheral blood CD34-positive cell-derived iPS cells (TkPBV1-1) established as described above.
  • TkPBV1-1 normal donor peripheral blood CD34-positive cell-derived iPS cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の課題は、初期化因子をコードする遺伝子を含むRNAウイルスであって均一かつ同一ロットのウイルスを大量に産生できるウイルス産生細胞を提供することである。本発明によれば、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを産生できるように、該初期化因子をコードする遺伝子、及び水疱性口内炎ウイルスG(VSV-G)タンパク質を含むウイルス構成タンパク質をコードする遺伝子を染色体上に有するウイルス産生細胞が提供される。

Description

ウイルス産生細胞
 本発明は、初期化因子をコードする遺伝子を含むRNAウイルスを産生できるウイルス産生細胞に関する。本発明はさらに、上記ウイルス産生細胞の製造方法、初期化因子をコードする遺伝子を含むRNAウイルス、上記RNAウイルスの製造方法、並びに上記RNAウイルスを用いた誘導多能性幹細胞の製造方法に関する。
 誘導多能性幹細胞(induced pluripotent stem cell; iPS細胞)は、体細胞を初期化することによって得られる多能性を有する細胞である。誘導多能性幹細胞の作製は、京都大学の山中伸弥教授らのグループ、マサチューセッツ工科大学のルドルフ・ヤニッシュ(Rudolf Jaenisch)らのグループ、ウイスコンシン大学のジェームズ・トムソン(James Thomson)らのグループ、ハーバード大学のコンラッド・ホッケドリンガー(Konrad Hochedlinger)らのグループを含む複数のグループが成功している。誘導多能性幹細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞として大きな期待を集めている。例えば、特許文献1には、Octファミリー遺伝子、Klfファミリー遺伝子、及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子、並びにOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子及びMycファミリー遺伝子の遺伝子産物を含む体細胞の核初期化因子が記載されており、さらに体細胞に上記核初期化因子を接触させる工程を含む、体細胞の核初期化により誘導多能性幹細胞を製造する方法が記載されている。
 誘導多能性幹 (iPS) 細胞の樹立が報告されて以来、世界中でその樹立方法や応用方法に関する研究が進められている。iPS細胞の樹立方法の基本的な方法としては、レトロウイルスベクターを用いて初期化因子をコードする遺伝子を体細胞に遺伝子導入する方法が使用されている。現在我国においては、レトロウイルスパッケージング細胞plat-E に2種類のプラスミドをトランスフェクションしてエコトロピックウイルスを産生する方法が主に用いられている。iPS細胞の研究の推進には、健常人または疾患患者の体細胞からより多くのヒト iPS 細胞を確実に樹立する必要があるが、エコトロピックレトロウイルスを用いたヒト iPS 細胞の樹立法には、以下の(1)から(3)に記載するような技術的な問題点がある。(1)レトロウイルスによる感染に先立ってレンチウイルスベクターを用いてエコトロピックウイルスに対するレセプターを目的細胞に導入する必要があり、毎回、両方の感染効率が十分に高くなければ樹立に成功しない可能性がある。(2)使用するウイルスは新鮮であることが樹立成功の絶対条件であり、ウイルスを凍結保存することができない。そのため、目的細胞の培養にあわせて用時調製が必要となることから、手技が煩雑になり、また試行によって樹立効率がばらつく原因にもなりうる。(3)トランスフェクションによる一過性のウイルス産生を利用した方法では、同一のロットを大量に得ることが難しく、野生型ウイルスの発生等の試験をその都度行う必要があり、臨床応用を考慮したときの安全性の担保に不利である。以上の通り、多くの施設で簡便かつ確実に多種多様のヒト iPS 細胞を樹立するためには、新たな iPS 細胞樹立法を開発していく必要がある。
 一方、非特許文献1には、高力価の水疱性口内炎ウイルスG(VSV-G)偽型レトロウイルスを産生できる安定なヒト由来パッケージング細胞が記載されている。非特許文献1に記載のパッケージング細胞は、gag遺伝子、pol遺伝子及びVSV-G遺伝子を染色体に有し、薬剤の有無に依存してVSV-G遺伝子を発現してVSV-G偽型レトロウイルスを産生できる細胞である。
国際公開WO2007/069666号公報
Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A. 1996;93:11400-11406.
 本発明は、初期化因子をコードする遺伝子を含むRNAウイルスであって均一かつ同一ロットのウイルスを大量に産生できるウイルス産生細胞を提供することを解決すべき課題とする。
 本発明者は上記課題を解決するために鋭意検討した結果、水疱性口内炎ウイルスG(VSV-G)タンパク質を含むウイルス構成タンパク質をコードする遺伝子を染色体上に有するパッケージング細胞の染色体上に、初期化因子をコードする遺伝子を導入することによって、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを産生できるウイルス産生細胞を樹立することに成功した。更に、樹立したウイルス産生細胞が産生する初期化因子をコードする遺伝子を含むRNAウイルスを用いて現存する他の方法ではiPS細胞の樹立が困難であった体細胞(造血細胞)を初期化することにも成功した。本発明はこれらの知見に基づいて完成したものである。
 即ち、本発明によれば、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを産生できるように、該初期化因子をコードする遺伝子、及び水疱性口内炎ウイルスG(VSV-G)タンパク質を含むウイルス構成タンパク質をコードする遺伝子を染色体上に有するウイルス産生細胞が提供される。
 好ましくは、初期化因子をコードする遺伝子は、Oct遺伝子、Sox遺伝子、Klf遺伝子、及びMyc遺伝子の何れか1種以上である。
 好ましくは、本発明のウイルス産生細胞は、所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞に、初期化因子をコードする遺伝子を導入することにより得られる。
 好ましくは、初期化因子をコードする遺伝子はウイルスとして導入される。
 好ましくは、所定の薬剤はテトラサイクリンである。
 好ましくは、所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞は、ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株に対して、水疱性口内炎ウイルスG(VSV-G)タンパク質をコードする遺伝子を導入することにより得られた細胞であって、該遺伝子が、所定の薬剤の存在下において発現できず、該薬剤の非存在下において発現できるように導入されているか、又は該遺伝子が、所定の薬剤の非存在下において発現できず、該薬剤の存在下において発現できるように導入されている細胞である。
 好ましくは、ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株がHEK293細胞である。
 好ましくは、所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞は、HEK293GPG細胞である。
 好ましくは、本発明のウイルス産生細胞は、単一の細胞に由来するクローン化された細胞である。
 本発明によればさらに、所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞に、初期化因子をコードする遺伝子を導入することを含む、上記した本発明のウイルス産生細胞の製造方法が提供される。
 好ましくは、初期化因子をコードする遺伝子がウイルスとして導入される。
 本発明によればさらに、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスが提供される。
 好ましくは、初期化因子をコードする遺伝子は、Oct遺伝子、Sox遺伝子、Klf遺伝子、及びMyc遺伝子の何れか1種以上である。
 好ましくは、本発明のRNAウイルスは、上記した本発明のウイルス産生細胞により産生される、
 好ましくは、本発明のRNAウイルスは、誘導多能性幹細胞の製造のために使用する。
 好ましくは、本発明のRNAウイルスは、製造後に凍結保存される。
 本発明によればさらに、上記した本発明のウイルス産生細胞を培養することを含む、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを製造する方法が提供される。
 本発明によればさらに、体細胞に上記した本発明のRNAウイルスを導入することを含む、誘導多能性幹細胞の製造方法が提供される。
 好ましくは、体細胞は造血細胞である。
 好ましくは、造血細胞は骨髄由来である。
 好ましくは、造血細胞は臍帯血由来である。
 好ましくは、体細胞は末梢血の細胞である。
 好ましくは、体細胞は末梢血のCD34陽性細胞である。
 本発明のウイルス産生細胞は、長期に安定で半永久的に使用可能であり、簡便な培養法により常に均一で高力価の初期化因子を発現するためのウイルスを産生することができる。また、本発明のウイルス産生細胞は、凍結保存が可能であり、均一な同一ロットを半永久的に大量に調製することを可能にする。
 さらに本発明のウイルス産生細胞は、エコトロピックウイルスではなく水疱性口内炎ウイルスG(VSV-G)タンパク質被覆ウイルスを産生するが、このVSV-Gタンパク質被覆ウイルスは凍結保存が可能である。また、VSV-Gタンパク質被覆ウイルスは、物理的強度に優れているため、遠心操作により高力価のウイルスロットを得ることができる。
 さらに本発明のウイルス産生細胞を用いたウイルス産生方法は操作が容易であるため、技術者個人による技術差がでにくく、産生されるウイルスロット間の差が小さく、どこの施設でも同様に高効率でiPS 細胞を樹立することが可能となる。
 さらに、本発明のウイルス産生細胞は、品質試験検査を受けた細胞株またはクローンをマスターセルバンクとして保存することもが可能であり、それを用いて産生・調製するウイルス上清液についても安全性の保証がなされやすいという利点を有している。このことは、樹立する iPS 細胞に対する安全性が確実に担保されることになり、これにより臨床応用可能なウイルスロットの産生が可能となる。
図1はマウスKlf4遺伝子を導入したHEK293GPGクローンのウイルス産生を誘導した条件下の細胞増殖の様子を示す。 図2は、ウイルス産生を誘導しない条件下でのマウスKlf4遺伝子を導入したHEK293GPGクローンの細胞増殖の様子を示す。 図3は、マウスKlf4遺伝子を導入した293GPG細胞に由来する20クローンについて、Klf4遺伝子を含むベクタープロウイルスを特異的に検出可能なプライマーペアを用いてPCR解析を行った結果を示す。 図4は、Klf4遺伝子を含むベクタープロウイルスの存在が確認された293GPGクローンが産生するKlf4遺伝子を有するレトロウイルスの感染能を評価した結果を示す。 図5は、単一造血幹細胞移植モデルにおける造血細胞からのiPS細胞の誘導を示す。(A)実験手順の模式図を示す。B6 Ly5.1マウスから得た単一の造血幹細胞 (CD150+CD34neg/low KSL細胞)を、B6 Ly5.1/5.2 F1マウスからの骨髄細胞と一緒に、致死量を照射したB6 Ly5.2マウスに移植した。骨髄造血幹/前駆細胞を、長期間(10ヶ月)安定なLy5.1キメラ(~80%)を示したレシピエントマウスから取得し、Ly5.1+細胞を濃縮し、iPS細胞の作成に用いた。(B)骨髄造血幹/前駆細胞からのiPS細胞作成の模式図を示す。(i)系統マーカー(Lin)対c-Kitのプロットを、精製前(全骨髄)及び精製後(Lin-c-Kit+)の細胞について示す。精製した造血幹/前駆細胞は98%が汎血球マーカーCD45陽性であった。(ii)骨髄造血幹/前駆細胞からのiPS細胞作成工程の模式図。(C)高いALP活性を有する(右側)sHSC-iPS細胞コロニー(左側)の典型的なES細胞様外観。バーは100μm。(D)sHSC-iPS細胞クローンの細胞起源の決定。上図は、CD45エクソン(Ex)25における一塩基多型を用いて実施したPCR法の概要を示す。黒三角は、プライマーの位置を示す。Ly5.1及びLy5.2株は、301bpのアンプリコン内に、図に提示した12bp配列に示すような一塩基置換を有する。制限酵素KpnIでの処理により、Ly5.1+細胞由来アンプリコンは未消化のままであるが、Ly5.2+細胞からは2つの小さな断片(113bp+188bp)が生成する。ゲル画像(下図)は、4つのsHSC-iPS細胞クローンの解析画像を示す。1つはLy5.1/5.2 F1細胞由来のものであり、3つ(#9-5、-6及び-8)は、単一のLy5.1+造血幹細胞由来のLy5.1+細胞由来のものである。(E)sHSC-iPS細胞クローン#9-5をICRホスト胚盤胞に移植することにより得たキメラマウス。 図6は、4種の初期化因子を用いて作製した初代骨髄造血細胞由来のiPS細胞の特徴を示す。(A)初代骨髄造血幹/前駆細胞由来のiPS細胞クローン(pHPC-iPS細胞)におけるESマーカー遺伝子発現を示すRT-PCR分析。H2O:鋳型なしの対照;ES:陽性対照としてのES細胞;RT(-):逆転写酵素なしの対照。(B)pHPC-iPS細胞クローンにおけるD-J断片(DJ1-DJ3)のIg再構成についてのPCR分析。GLは、Ig重鎖遺伝子の再構成していない生殖細胞系の配置を示す断片の増幅を示す。EL4は、再構成していない対照としてのTリンパ球細胞。(C)pHPC-iPS細胞クローン由来のテラトーマの組織切片。(D)EGFPトランスジェニックマウス由来のpHPC-iPS細胞コロニーの画像。バーは100μm(C-D)。(E)一つの代表的なEGFP+ iPS細胞クローンを用いて作製したキメラ胎児。 図7は、骨髄造血細胞からのiPS細胞の作製を示す。(A)骨髄造血幹/前駆細胞からのiPS細胞誘導中の様子。バーは100μm。(B)骨髄造血細胞由来iPS細胞(BM derived iPSCs)におけるSSEA-1の発現。代表的なフローサイトメトリープロットを、樹立したBM derived iPSCs(右)、全骨髄(左)、及びES細胞(真中)について示す。BM derived iPS細胞におけるSSEA-1の発現は、ES細胞における発現と同等のレベルであり、全骨髄細胞では発現は見られない。 図8は、sHSC-iPS細胞における初期化因子遺伝子の評価を示す。(A)各sHSC-iPSクローンにおける初期化因子の存在を示すPCR分析。H2O:鋳型なしのコントロール、Control:鋳型として各ベクターDNAを用いた陽性コントロール。(B)4種の初期化因子の発現を調べるための特異的プライマーセットを用いたRT-PCR分析。各sHSC-iPSクローンにおいて、内在性遺伝子由来の転写物が検出可能であるが(Endo)、レトロウイルス由来の転写物は検出されない(Tg)。RT(-)は、逆転写酵素なしのコントロール。 図9は、sHSC-iPS細胞における多能性マーカーの発現の評価を示す。(A)sHSC-iPSクローンにおけるESマーカー遺伝子の発現を示すRT-PCR分析。H2O:鋳型なしのコントロール、ES:陽性コントロールとしてのES細胞、RT(-):逆転写酵素なしのコントロール。(B)免疫染色によるsHSC-iPSクローンにおけるNanog発現。NC:アイソタイプコントロール抗体を用いた陰性コントロール。核はDAPIで染色した。バーは100μm。 図10は、sHSC-iPS細胞の発生能を示す。sHSC-iPSクローン由来のテラトーマの組織切片を示す。バーは100μm。 図11は、pHPC-iPS細胞における初期化因子遺伝子の評価を示す。(A)各pHPC-iPSクローンにおける初期化因子の存在を示すPCR分析。H2O:鋳型なしのコントロール、Control:鋳型として各ベクターDNAを用いた陽性コントロール。(B)4種の初期化因子の発現を調べるための特異的プライマーセットを用いたRT-PCR分析。各pHPC -iPSCクローンにおいて、内在性遺伝子由来の転写物が検出可能であるが(Endo)、レトロウイルス由来の転写物は検出されない(Tg)。RT(-)は、逆転写酵素なしのコントロール。 図12は、ヒト iPS 細胞誘導 4 因子レトロウイルス産生 293GPG 細胞株の樹立 (KLF4)を示す。 図13は、ヒト皮膚細胞由来の iPS 細胞樹立過程を示す。 図14は、臍帯血由来の iPS 細胞樹立過程を示す。 図15は、ヒト皮膚細胞由来 iPS 細胞(免疫染色、G-banding)を示す。A:ヒト iPS 細胞免疫染色:コントロールのヒト ES 細胞株(KhES-3)と同様に未分化マーカーである SSEA-4 の発現を認めた。B:染色体は正常核型 46XY を維持していた。 図16は、ヒト皮膚細胞由来 iPS 細胞のES 関連遺伝子の発現を示す。ES 関連遺伝子の発現 (半定量 RT-PCR)コントロールのヒト ES 細胞(KhES-3)と同程度に ES 関連遺伝子の発現を認めた。一方で iPS 細胞の作製に用いた外来遺伝子の発現は強力に抑制されていた。Tg:導入遺伝子 図17は、末梢血CD34陽性細胞(Non-mobilized)由来のiPS細胞の樹立過程を示す。 図18は、正常ドナー末梢血CD34陽性細胞由来iPS細胞(TkPBV1-1)を示す。
 以下、本発明について更に詳細に説明する。
 本発明のウイルス産生細胞は、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを産生できるように、該初期化因子をコードする遺伝子、及び水疱性口内炎ウイルスG(VSV-G)タンパク質を含むウイルス構成タンパク質をコードする遺伝子を染色体上に有することを特徴とする細胞である。
 本発明で用いる初期化因子をコードする遺伝子とは、体細胞を初期化して人工多能性幹細胞とする作用を有する初期化因子をコードする遺伝子である。本発明では、少なくとも1種類以上の初期化因子をコードする遺伝子を使用することができる。本発明で使用する初期化因子をコードする遺伝子としては、例えば、Oct遺伝子、Klf遺伝子、Sox遺伝子、Myc遺伝子、Nanog遺伝子、Lin28遺伝子、htert遺伝子、SV40 large T遺伝子などから選択することができる。上記の中でも、好ましくは、Oct遺伝子、Klf遺伝子、Sox遺伝子及びMyc遺伝子を使用することができる。
 Oct遺伝子、Klf遺伝子、Sox遺伝子及びMyc遺伝子にはそれぞれ、複数のファミリー遺伝子が含まれている。それぞれのファミリー遺伝子の具体例としては、国際公開WO2007/069666号公報の明細書の第11頁から第13頁に記載されているものを用いることができる。具体的には、以下の通りである。
 Oct遺伝子に属する遺伝子の具体例としては、Oct3/4(NM_002701)、Oct1A(NM_002697)、及びOct6(NM_002699)などを挙げることができる(括弧内は、ヒト遺伝子のNCBI accession 番号を示す)。好ましくはOct3/4である。Oct3/4はPOUファミリーに属する転写因子であり、未分化マーカーとして知られており、また多能性維持に関与しているとの報告もある。
 Klf遺伝子に属する遺伝子の具体例としては、Klf1(NM_006563)、Klf2(NM_016270)、Klf4(NM_004235)、及びKlf5(NM_001730)などを挙げることができる(括弧内は、ヒト遺伝子のNCBI accession 番号を示す)。好ましくはKlf4である。Klf4(Kruppel like factor-4)は腫瘍抑制因子として報告されている。
 Sox遺伝子に属する遺伝子の具体例としては、例えば、Sox1(NM_005986)、Sox2(NM_003106)、Sox3(NM_005634)、Sox7(NM_031439)、Sox15(NM_006942)、Sox17(NM_0022454)、及びSox18(NM_018419)を挙げることができる(括弧内は、ヒト遺伝子のNCBI accession 番号を示す)。好ましくはSox2である。Sox2は初期発生過程で発現し、転写因子をコードする遺伝子である。
 Myc遺伝子に属する遺伝子の具体例としては、c-Myc(NM_002467)、N-Myc(NM_005378)、及びL-Myc(NM_005376)などを挙げることができる(括弧内は、ヒト遺伝子のNCBI accession 番号を示す)。好ましくは、c-Myc である。c-Mycは細胞の分化及び増殖に関与する転写制御因子であり、多能性維持に関与しているとの報告がある。
 上記した遺伝子は、ヒトを含む哺乳類動物において共通して存在する遺伝子であり、本発明において任意の哺乳類動物由来(例えばヒト、マウス、ラット、サルなどの哺乳類動物由来)の遺伝子を用いることができる。また、野生型の遺伝子に対して、数個(例えば1~30個、好ましくは1~20、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1から3個)の塩基が置換、挿入及び/又は欠失した変異遺伝子であって、野生型の遺伝子と同様の機能を有する遺伝子を使用することもできる。
 本発明のウイルス産生細胞は、所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞に、初期化因子をコードする遺伝子を導入することにより製造することができる。パッケージング細胞としては、例えばヒト胎児腎臓由来のHEK293細胞(HEK293細胞は、ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株である)、マウス繊維芽細胞NIH3T3に基づくパッケージング細胞を用いることができ、好ましくはHEK293細胞に基づくパッケージング細胞を用いることができる。
 本発明においては、初期化因子をコードする遺伝子は、パッケージング細胞の染色体上に組み込むという観点から、ウイルスとして導入することが好ましい。パッケージング細胞へのウイルスの導入法は、特に限定されず、リン酸カルシウム法、リポフェクション法又はエレクトロポレーション法などの公知の遺伝子導入法を用いて行うことができる。
 所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞としては、例えば、ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株に対して、水疱性口内炎ウイルスG(VSV-G)タンパク質をコードする遺伝子を導入することにより得られた細胞であって、該遺伝子が、所定の薬剤の存在下において発現できず、該薬剤の非存在下において発現できるように導入されているか、又は該遺伝子が、所定の薬剤の非存在下において発現できず、該薬剤の存在下において発現できるように導入されている細胞を使用することができる。ここで言う所定の薬剤としては、テトラサイクリン(又はドキシサイクリン)などの抗生物質を使用することが好ましい。
 宿主細胞において、テトラサイクリン(又はドキシサイクリン)の存在下において標的タンパク質を発現できず、テトラサイクリン(又はドキシサイクリン)の非存在下において標的タンパク質を発現できるようにするためには、Tet-Off Gene Expression System(Clontech)を使用することができる。Tet-Off Systemは、大腸菌テトラサイクリン耐性オペロンから得られた2種類の調節性因子、Tetレプレッサータンパク(TetR)とTetオペレータDNA配列(tetO)に基づくシステムであり、調節プラスミドと応答プラスミドからは両因子を宿主ゲノム中に組み込んだ二重安定細胞株が得られる。樹立された細胞株は、テトラサイクリン(又はドキシサイクリン)に用量依存的に応答して標的遺伝子を発現させることができる(Proc Natl Acad Sci USA. 1992 Jun 15;89(12):5547-51. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Gossen M, Bujard H)。また、宿主細胞において、テトラサイクリン(又はドキシサイクリン)の非存在下において標的タンパク質を発現できず、テトラサイクリン(又はドキシサイクリン)の存在下において標的タンパク質を発現できるようにするためには、Tet-On Gene Expression System(Clontech)を使用することができる。Tet-on systemは、テトラサイクリン誘導体であるドキシサイクリンが存在すると、プロモーター領域に存在するTRE(tetracycline responsive element)にテトラサイクリン依存性転写調節因子(rtTA)が結合することにより遺伝子の発現が誘導されるシステムである。
 テトラサイクリンの薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、テトラサイクリンの非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞の一例としては、HEK293GPG細胞(Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A. 1996;93:11400-11406)を挙げることができる。
 本発明においては、初期化因子をコードする遺伝子(例えば、Oct遺伝子、Sox遺伝子、Klf遺伝子、又はMyc遺伝子)を有するレトロウイルスベクター(例えば、pMXsベクター)及びVSV-G cDNAを有するベクターを、レトロウイルスのgag遺伝子及びpol遺伝子を染色体上に有する293GP細胞(Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993;90:8033-8037)にトランスフェクションすることによって、初期化因子をコードする遺伝子(例えば、Oct遺伝子、Sox遺伝子、Klf遺伝子、又はMyc遺伝子)を有するレトロウイルスを調製することができる。次いで、得られた初期化因子をコードする遺伝子を有するレトロウイルスを、上記のHEK293GPG細胞に導入することによって、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを安定に産生できる本発明のウイルス産生細胞を製造することができる。
 本発明によれば、上記した本発明のウイルス産生細胞を培養することによって、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを製造することができる。このようにして製造される初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスも本発明に含まれる。本発明のRNAウイルスは、初期化因子をコードする遺伝子を含むウイルスであり、体細胞から誘導多能性幹細胞を製造するために使用することができる。また、本発明のRNAウイルスは、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含み、物理的強度に優れることから、製造後に凍結保存が可能である。本発明のRNAウイルスは、当該ウイルスを含むウイルス液の形態で提供してもよいし、あるいは凍結保存されたウイルスを使用時に溶解してウイルス液を調製して用いてもよい。
 本発明によれば更に、体細胞に上記した本発明のRNAウイルスを導入することを含む、誘導多能性幹細胞の製造方法が提供される。
 本発明で初期化のために用いる体細胞の種類は特に限定されず、任意の体細胞を用いることができる。即ち、本発明で言う体細胞とは、生体を構成する細胞のうち生殖細胞以外の全ての細胞を包含し、分化した体細胞でもよいし、未分化の幹細胞でもよい。体細胞の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類の何れでもよく特に限定されないが、好ましくは哺乳動物(例えば、マウスなどのげっ歯類、またはヒトなどの霊長類)であり、特に好ましくはヒトである。また、ヒトの体細胞を用いる場合、胎児、新生児又は成人の何れの体細胞を用いてもよく、一例としては、造血細胞、特に造血幹細胞を用いることができる。
 また初期化のために用いるヒトの体細胞の別の例としては、末梢血の細胞、好ましくは末梢血のCD34陽性細胞を用いることができる。特に、ヒト末梢血から少量の採血量にて誘導多能性幹細胞を樹立することができれば、ヒト白血球型抗原(HLA)毎の誘導多能性幹細胞のバンク化が非常に容易になる。G-CSF投与などのストレスを与えない条件下においての末梢血からの誘導多能性幹細胞の作成については未だ報告がない。G-CSF投与は、低頻度ながら白血病を誘発してしまう可能性があり、また1週間程度の入院が必要であるため、ドナーへの負担が大きい。本発明においては、本発明のウイルス産生細胞により産生されるRNAウイルスを末梢血の細胞(好ましくは、末梢血のCD34陽性細胞)に導入することによって、誘導多能性幹細胞を製造することができる。・
 なお、本発明の方法で製造される人工多能性幹細胞を再生医療など疾患の治療に用いる場合には、該疾患を患う患者自身から分離した体細胞を用いることが好ましい。
 本発明で言う誘導多能性幹細胞とは、所定の培養条件下(例えば、ES細胞を培養する条件下)において長期にわたって自己複製能を有し、また所定の分化誘導条件下において外胚葉、中胚葉及び内胚葉への多分化能を有する幹細胞のことを言う。また、本発明における誘導多能性幹細胞はマウスなどの試験動物に移植した場合にテラトーマを形成する能力を有する幹細胞でもよい。
 初期化因子をコードする遺伝子を体細胞に導入する方法は、導入された初期化遺伝子が発現して体細胞の初期化を達成できる限り特に限定されない。例えば、少なくとも1種類以上の初期化遺伝子を含む本発明のウイルスを、当業者に公知の常法に従って体細胞に導入することができる。2種類以上の初期化因子をコードする遺伝子を体細胞に導入する場合には、一つのウイルスに2種類以上の初期化因子をコードする遺伝子を組み込んで、該ウイルスを体細胞に導入してもよいし、1種類の初期化遺伝子を組み込んだウイルスを2種類以上用意して、それらを体細胞に導入してもよい。
 ES細胞の未分化性及び多能性を維持可能な培地は当業界で公知であり、適当な培地を組み合わせて用いることにより、誘導多能性幹細胞を分離及び培養することができる。誘導多能性幹細胞を培養するための培地には、各種の成長因子、サイトカイン、ホルモンなど(例えば、FGF-2、TGFb-1、アクチビンA、ノギン(Noggin)、BDNF、NGF、NT-1、NT-2、NT-3等のヒトES細胞の増殖・維持に関与する成分)を添加してもよい。また、分離された誘導多能性幹細胞の分化能及び増殖能は、ES細胞について知られている確認手段を利用することにより確認することができる。
 本発明の方法で製造される誘導多能性幹細胞の用途は特に限定されず、各種の試験・研究や疾病の治療などに使用することができる。例えば、本発明の方法により得られた誘導多能性幹細胞をレチノイン酸、EGFなどの増殖因子、又はグルココルチコイドなどで処理することにより、所望の分化細胞(例えば神経細胞、心筋細胞、肝細胞、膵臓細胞、血球細胞など)を誘導することができ、そのようにして得られた分化細胞を患者に戻すことにより自家細胞移植による幹細胞療法を達成することができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
実施例1:VSV-G偽型レトロウイルス産生細胞の樹立及びVSV-G偽型レトロウイルス粒子の製造
 Oct3/4, Sox2, Klf4, 及びc-MycをコードするpMXsベクター(Onishi M, Kinoshita S, Morikawa Y, et al. Applications of retrovirus-mediated expression cloning. Exp Hematol. 1996;24:324-329)の構築は既報である(Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676)。本実施例で用いたレトロウイルスベクター pMXs-human OCT3/4, pMXs-human SOX2, pMXs-human KLF4, pMXs-human cMYC, pMXs-murine Oct3/4, pMXs-murine Sox2, pMXs-murine Klf4, pMXs-murine cMycは、京都大学山中博士より供与された。
 高度に濃縮したVSV-G偽型レトロウイルス(RV) 上清は、既報の方法で調製した(Hamanaka S, Nabekura T, Otsu M, et al. Stable transgene expression in mice generated from retrovirally transduced embryonic stem cells. Mol Ther. 2007;15:560-565;Nabekura T, Otsu M, Nagasawa T, Nakauchi H, Onodera M. Potent vaccine therapy with dendritic cells genetically modified by the gene-silencing-resistant retroviral vector GCDNsap. Mol Ther. 2006;13:301-309;及びSanuki S, Hamanaka S, Kaneko S, et al. A new red fluorescent protein that allows efficient marking of murine hematopoietic stem cells. J Gene Med. 2008;10:965-971)。VSV-G偽型レトロウイルス粒子は、293GP細胞(Richard Mulligan博士 (Harvard大学) から供与;Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993;90:8033-8037)に、各々の初期化因子をコードする遺伝子を含むpMXsベクター、及びVSV-G cDNAを有するベクターをトランスフェクションすることによって調製した。得られたレトロウイルス粒子を6,000xgで16時間遠心し、1/100容量のα- MEMに再懸濁して濃縮した。次いで、293GPG細胞(Richard Mulligan博士 (Harvard大学) から供与;Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A. 1996;93:11400-11406)に、上記の濃縮したウイルス上清を導入して、誘導時にVSV-G偽型レトロウイルス粒子を製造することができる安定な293GPG細胞株を樹立した。具体的には、以下の手順で行った。
(1)ウイルス産生293GPG細胞の樹立
 293GP細胞にレトロウイルスベクター30μg、水疱性口内炎ウイルスG蛋白 (VSV-G) 発現ベクター10μgをトランスフェクションし、48時間後にウイルス上清を回収し、0.45 μmフィルター濾過し、1次ウイルス調製液を得た。トランスフェクションはプロメガ社製のキットにてリン酸カルシウム法を用いて行った。次に293GPG細胞に1次ウイルス液を感染させ、ウイルス産生細胞bulk株を樹立した。
(2)ウイルス産生293GPG細胞のクローニング
 上記bulk株によるウイルス産生能を確認後、単一細胞に由来する細胞株のクローニングを行った。96ウェル平底プレートにEGFP発現293細胞をDMEM 10% (D-10) 胎児ウシ血清+ テトラサイクリン1μg/ml、200 μl per wellで播種し、フィーダー層を確立後、15 Gy X線照射を行った。このフィーダー上にbulk株を1 細胞/ウエルでMofloTMを用いてソーティングした。7~10日後、培地を テロラサイクリン(-) D-10に変更し、さらに培養を続け、増殖を示したモノクローナルクローンを順次拡大培養した。
 上記で選別された293GPGクローンの一例として、マウスKlf4遺伝子を導入してウイルス産生を誘導したクローンの細胞増殖の様子を図1に示し、ウイルス産生を誘導しない条件下でのマウスKlf4遺伝子を導入したクローンの細胞増殖の様子を図2に示す。
(3)293GPGクローンの選別
(3-1)ベクターシークエンスの保持
 得られたクローンよりゲノムDNAを調製し、ベクタープロウイルス特異的に検出可能なプライマーペアを用いてPCR解析を行った。一例として、マウスKlf4遺伝子が導入された293GPGクローン(9クローン)を、マウスKlf4遺伝子を含むベクタープロウイルスを特異的に検出可能なプライマーペアを用いてPCR解析にて選別した結果を図3に示す。20クローンのうち9クローン(45%)においてMXs-Klf4遺伝子配列が陽性であった。上記結果から、本発明の方法により、一定の確率で、初期化因子をコードする遺伝子を保持したウイルス産生細胞を作製できることが分かる。陽性コントロールとしてβ-globinゲノム遺伝子の増幅を行い、コントロールおよびプロウイルス配列の明らかな増幅がみられたクローンについてウイルス産生能のテストを行った。
(3-2)ウイルス産生能
 各候補クローンを6ウエルプレート中に同数で播種し、2日後にテトラサイクリンなしの培地に変更することでウイルス産生を誘導した。新鮮培地に変更後、1日後の上清を回収し、Jurkat細胞に感染させた。感染より2日後にJurkat細胞からゲノムDNAを調製し、上記PCR法と同じプライマーペアを用いて、半定量的にゲノム中のプロウイルスコピー数を比較した。一例として、マウスKlf4遺伝子を導入した293GPGクローンが産生するKlf4遺伝子を有するレトロウイルスの感染能を評価した結果を図4に示す。No.2、10、14及び19のクローンが産生するウイルスが、Jurkat細胞への高い感染能を有することが示された。
 マウス遺伝子導入293GPG細胞と同様の方法を用いてヒト遺伝子導入293GPG細胞を作製した。一例として、ヒトKlf4遺伝子が導入された293GPGクローン(13クローン)を、ヒトKlf4遺伝子を含むベクタープロウイルスを特異的に検出可能なプライマーペアを用いてPCR解析にて選別した結果を図12Aに示す。13クローンのうち8クローン(62%)においてMXs-Klf4遺伝子配列が陽性であった。内在性コントロールとしてGAPDHゲノム遺伝子の増幅を行い、コントロールおよびプロウイルス配列の明らかな増幅がみられたクローンについてウイルス産生能のテストを行った。ヒトKlf4遺伝子を導入した293GPGクローンが産生するKlf4遺伝子を有するレトロウイルスの感染能を評価した結果を図12Bに示す。調べたNo.7,8,9のクローンのうちNo.9クローンが産生するウイルスが、Jurkat細胞への高い感染能を有することが示された。ヒトOCT3/4遺伝子、ヒトSOX2遺伝子、ヒトcMYC遺伝子を導入した293GPGクローンについても、上記と同様にして樹立した。
実施例2:マウス骨髄HSPCからのiPS細胞の作製
(A)材料及び方法
(1)マウス
 C57BL/6 (B6)-Ly5.2及びB6 EGFPトランスジェニックマウスは、日本エスエルシー株式会社(静岡、日本)から購入し、B6-Ly5.1マウスは、三協ラボサービス株式会社 (筑波、日本)から購入した。NOD/CB17-Prkdcscid/J (NOD/Scid) マウスは、日本チャールス・リバー株式会社(神奈川、日本)から購入した。
(2)造血幹/前駆細胞(hematopoietic stem/progenitor cells (HSPCs))の精製
 骨髄細胞を、成体マウス(20~30週齢)の大腿骨、脛骨、及び骨盤骨から単離し、CD4, CD8, B220, IL-7R, Gr-1, Mac-1, 及びTer-119に特異的なビオチン化モノクローナル抗体(e-Bioscience, San Diego, CA)の混合物と一緒にインキュベートした。系統マーカー陰性(Lin-)細胞を、DynabeadsTM MyOneTM Streptavidin C(Dynal Biotech, Lake Success, NY)を用いて、ネガティブ選択によって濃縮した。c-Kitを発現する細胞は、抗c-Kit MicroBeads(Miltenyi Biotech, Bergisch Gladbach, Germany)と一緒にインキュベーションした後、MACS TM LSカラムを用いて取得した。Ly5.1細胞の濃縮が必要な場合、ビオチン抗CD45.2 モノクローナル抗体を上記の混合物に添加して、造血幹/前駆細胞を得た。
(3)iPS細胞クローンの作成と維持
 樹立したiPS細胞及びES細胞は、15%胎児ウシ血清(FBS; JRH Biosciences, Lenexa, KS), 1,000 U/mlの白血病阻害因子(LIF; Chemicon, Temecula, CA), 20 mM HEPES緩衝液(pH 7.3), 0.1 mM 2-メルカプトエタノール, 0.1 mM非必須アミノ酸(GIBCO, Grand Island, NY), 2 mM L-グルタミン,及び100 U/mlペニシリン/ストレプトマイシン(Sigma-Aldrich, St. Louis, MO)を補充したダルベッコ改変イーグル培地(DMEM)からなる完全ES培地中で、マイトマイシンC処理したマウス胎児繊維芽細胞(MEF)の細胞層上で維持した。
 造血幹/前駆細胞は、フィブロネクチン断片CH296 (Takara Bio)でコートした24穴プレートで5 x 105細胞/ウエルで播種し、20 ng/mlマウス幹細胞因子(SCF), 100 ng/mlヒトトロンボポエチン(TPO), 1% FBS, 2 mM L-グルタミン,及び100 U/mlペニシリン/ストレプトマイシンを補充したα-MEM中で予め刺激した。1日目に、Oct3/4遺伝子、Sox2遺伝子、cMyc遺伝子及びKlf4遺伝子のレトロウイルス(実施例1で作製したもの)の混合物を造血幹/前駆細胞の培養物に添加した。ウイルス接触の4時間後に、細胞を洗浄し、新しい培地に交換した。2日目に、細胞に、上記と同様の遺伝子導入処理を行い、4時間後に細胞を回収した。遺伝子導入した細胞を、完全ES培地を含む6穴プレート中のMEF層の上に再度撒いた。10ng/mlのSCFを培養液に含めて、5~7日目まで細胞が生存するようにした。培地は、14から16日目まで毎日交換した。細胞を回収し、フィコエリトリン(PE)結合抗SSEA-1モノクローナル抗体(R&D Systems, Minneapolis, MN)で染色し、MoFloセルソーター(Dako, Glostrup, Denmark)でSSEA-1陽性画分について分別した。分別した細胞を完全ES培地中でMEFフィーダー層上で再度増殖させ、iPS細胞様コロニーを個々に拾い上げ、安定なiPS細胞クローンを樹立した。
(4)PCR及びRT-PCR分析
 iPS細胞を回収するために、MEF細胞をゼラチンコートプレート上に優先的に付着させる方法(adhesion selection)により除去した。iPS細胞からのゲノムDNA試料を、QIAmp DNA Mini Kit (QIAGEN, Valencia, CA)を用いて調製した。全RNA試料をTrizol 試薬で精製し、ThermoScriptTM RT-PCR System (Invitrogen, Carlsbad, CA)を用いて逆転写した。定量的PCR分析は、Rodent GAPDH Control Reagents (Applied Biosystems, Foster City, CA)によりcDNA産物を用いて行った。各試料におけるGAPDH cDNAの計算上のコピー数を用いて鋳型の使用量を均等とした。PCR反応は、ExTaq HS and LA Taq HS (Takara Bio)を用いて各プライマーセットに最適な条件で行った。使用したプライマー配列は以下に示す。表1に記載のプライマー配列は、配列表の配列番号1から36にも記載する。
Figure JPOXMLDOC01-appb-T000001
(5)免疫グロブリン遺伝子DJ再構成及びCd45の一塩基多型のPCR分析
 免疫グロブリン重鎖遺伝子の再構成は、既報の方法に準じて分析した(Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity. 2000;12:441-450;及びSchlissel MS, Corcoran LM, Baltimore D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J Exp Med. 1991;173:711-720)。Cd45の エクソン(EX)25内の一塩基多型は、既報の通り分析した(Ramos CA, Zheng Y, Colombowala I, Goodell MA. Tracing the origin of non-hematopoietic cells using CD45 PCR restriction fragment length polymorphisms. Biotechniques. 2003;34:160-162)。PCR増幅したゲノムDNA試料をiPS細胞クローンから得た(一対のプライマーで挟まれた多型の配列)。アンプリコンを精製し、その一部を10 UのKpn I (Takara Bio)で37℃で1時間消化した。消化した試料と未消化の試料を1%アガロースゲルで電気泳動した。
(6)フローサイトメトリー分析
 フローサイトメトリー分析及びセルソーティングのために、細胞をFITC結合抗CD45モノクローナル抗体及びFITC-ストレプトアビジン(BD PharMingen, San Diego, CA)、PE-結合抗SSEA-1モノクローナル抗体、及びPE-cyanin7 (Cy7)抗CD117モノクローナル抗体(e-Bioscience)で染色した。死細胞はヨウ化プロピジウム染色により除去した。染色した細胞は、FlowJoソフトウエア(TreeStar, Ashland, OR, USA)を用いて分析した。
(7)胚様体(EB)形成
 iPS細胞をトリプシンで処理し、完全胚様体分化(EBD)培地(Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488-493)に回収した。細胞を100 mmのシャーレに10 ml EBD当たり2 x 105細胞になるように移した。培地を4日目に新しいEBDに交換し、その後、安定な胚様体形成が見られるまで2日毎に培地交換した。
(8)テラトーマ形成及び組織学的解析
 iPS細胞は、PBS中に1 x 107 細胞/mlで調製した。懸濁した細胞(1-3 x 106) を、麻酔したNOD/Scidマウスの横腹に皮下注入した。注入の6週間後、マウスを殺し、腫瘍を解剖した。腫瘍試料を10%パラホルムアルデヒドで固定し、パラフィンで包埋した。切片をヘマトキシリン及びエオシンで染色した。
(9)キメラマウスの作製
 約10 から15のiPS細胞を、B6及びB6 x DBA2 F1マウスの交配から得た胚盤)胞に注入した。胚盤胞を、偽妊娠ICR雌マウスに移植した。胎児を10.5日目に帝王切開により取り出し、分析した。
(B)結果
 図1Aに実験の概要を示す。C57BL6(B6)Ly5,1-起源の単一の造血幹細胞から造血系を約10ヶ月再構成した後に回収した骨髄造血幹/前駆細胞から、iPS細胞の作成を試みた。この実施例では、濃縮したVSV-G偽型レトロウイルス(実施例1で作製したもの)を使用した。再構成したマウス (B6Ly5,2) の骨髄から、CD45を発現する細胞(~98%)を含む造血幹/前駆細胞であるLin-Kit+細胞を精製した(図1B)。これらの細胞に、Oct4,Sox2, Klf4及びc-Mycの各々を有するレトロウイルスベクターの混合物により遺伝子導入し、マウス胎児繊維芽(MEF)細胞上に移し、セルソーティングするまで白血病阻害因子(LIF)の存在下で維持した(図1B)。9~11日目に、目視可能なiPS様コロニーが、初期化されない大部分の造血細胞の中に現れた。これらのコロニーは安定に増殖した(図7A)。iPS細胞を濃縮するために、14~16日目に、SSEA-1を発現する細胞を分別し、更に7~12日間増殖させた(図1B)。典型的な胚性幹(ES)細胞様の外観を示すiPS細胞様コロニーを21~28日目に拾い上げた。これらの細胞は、非常に安定な表現型を示し、高いアルカリホスファターゼ(ALP)活性を有し(図1C)、SSEA-1をES細胞の場合と同様のレベルで発現していた(図7B)。LIFが存在しない場合、胚様体が容易に形成された。CD45の一塩基多型を利用して、樹立したiPSクローンのうち、3クローンはLy5.1+細胞由来で、1クローンはLy5.1/5.2細胞由来であることが分かった(図1D)。これらの結果から、骨髄造血細胞の直接の初期化が可能であることが実証された。単一の造血幹細胞から再構成した骨髄造血幹原細胞からiPS細胞樹立した場合、これらのiPS細胞のことをsHSC-iPS細胞と命名する。
 各sHSC-iPS細胞クローンは、4種の初期化因子のプロウイルス配列を有していたが(図8A)、遺伝子サイレンシグのために、導入遺伝子の発現は検出できなかった(図8B)。sHSC-iPS細胞は全て、各々の初期化因子遺伝子を内因的には発現していた(図8B)。sHSC-iPS細胞は全て、ES細胞マーカー遺伝子であるNanog、Eras、Rex1、及びGdf3を発現していた(図9A)。Nanog発現は免疫染色でも確認した(図9B)。他のES細胞マーカー遺伝子であるEcat1及びZfp296の発現量は低いにもかかわらず、これらのsHSC-iPS細胞は、テラトーマ形成(図10)及びキメラマウスへの寄与を示した(図1E)。
 次に、初代骨髄造血幹/前駆細胞の直接の初期化の再現性を確認した。成体B6マウスから得たLin-Kit+骨髄細胞を用いて、レトロウイルスによる初期化を行った(図1B)。5×105の造血幹/前駆細胞から、ALP活性を示し、典型的なES細胞様の外観を有する10~30個のコロニーが常に得られた。初代骨髄造血幹/前駆細胞から樹立したiPS細胞クローン(pHPC-iPS)は、ES細胞マーカー遺伝子を、sHSC-iPS細胞よりも強く発現していた(図2A及び図9A)。内因性の初期化因子遺伝子の発現量も、sHSC-iPS細胞(図9B)よりもpHPC-iPS細胞の方が強かった(図11)。この結果は、造血系の再構成により単一の造血幹細胞に与えられる膨大なストレスが、老化状態にあると考えられる標的細胞の効果的な初期化を制限しているという可能性を裏付けるものである。また、免疫グロブリン遺伝子における生殖細胞系の非組み換え構造を確認することにより、pHPC-iPS細胞の非B細胞起源が明らかになった(図2B)。pHPC-iPS細胞は、テラトーマの形成で実証される通り、3胚葉全てを代表する各種組織を含む多系列への分化能を有していた(図2C)。また、EGFPトランスジェニックマウスから緑色蛍光タンパク質(GFP)を構成的に発現するpHPC-iPS細胞を作成することにも成功した(図2D)。これらのiPS細胞は、胚盤胞にマイクロインジェクションした場合、胎児発生に高い寄与を示した(図2E)。
実施例3:ヒト皮膚細胞および造血前駆細胞からのiPS細胞の作製
(A)材料及び方法
(1)ヒト皮膚細胞
 ヒト成人および新生児由来皮膚細胞はCell Applications, Inc. (San Diego, CA) から購入して使用した。
(2)ヒト臍帯血
 ヒト臍帯血は、東京臍帯血バンクより研究用の使用に関して同意書の得られている検体の供与を受けて購入して使用した。
(3)ヒト骨髄CD34陽性細胞
 ヒト骨髄 CD34陽性細胞はLonza社から購入して使用した。
(4)造血幹/前駆細胞(hematopoietic stem/progenitor cells (HSPCs))の精製
 ヒト臍帯血をリンフォセパール液(免疫生物研究所)を用いて単核球分画に分離したのち、抗CD34抗体マイクロビーズ(Miltenyi Biotech, Bergisch Gladbach, Germany)により CD34発現造血幹/前駆細胞を純化した。
(5)iPS細胞クローンの作成と維持
 樹立したiPS細胞及びES細胞は、20% knockout serum replacement (KSR; Invitrogen, Carlsbad, CA), 5 ng/mlの塩基性繊維芽細胞成長因子 (bFCF; Upstate Biotech., Waltham, MA), 0.1 mM 2-メルカプトエタノール, 0.1 mM非必須アミノ酸 (GIBCO, Grand Island, NY), 2 mM L-グルタミン, 及び100 U/mlペニシリン/ストレプトマイシン(Sigma-Aldrich, St. Louis, MO)を補充したF-12混合ダルベッコ改変イーグル培地 (DMEM/F12) からなるヒト未分化維持培地中で、50 Gy 照射済みマウスフィーダーマウス胎児繊維芽細胞 (SNL MEF細胞株) の細胞層上で維持した。
(6)ヒト皮膚細胞からの iPS細胞の樹立
 ヒト皮膚細胞の凍結バイアルを 37oC で融解し、10% FBS 含有 DMEM 培地にて培養を開始した。対数増殖期の細胞をトリプシン処理にて回収し、ゼラチンコートした 10 cm ディッシュに 8 x 105 個/ディッシュで播種した。1日目に、OCT3/4遺伝子、SOX2遺伝子、hKLF4遺伝子の3種類、またはcMYC遺伝子を加えた4種類のレトロウイルス(実施例1で作製したもの)の混合物を皮膚細胞の培養に添加した。2日目にメディウムの除去後、新しい培地に交換し、上記と同様の遺伝子導入処理を行い、3日目に培地の交換を行った。5日目に再度培地の交換を行い、7日目に遺伝子導入した細胞をトリプシン処理にて回収し、前日 (6日目) に準備した照射済みSNLMEFフィーダー細胞層の 10 cm ディッシュ上に、5-10 x 104 個/ディッシュで播種した。8日目に培地をヒト未分化維持培地に置換し、その後2日おきにヒト未分化維持培地による培地置換を継続した。20-30日目頃、未分化なES細胞様の形態を安定して維持するコロニーを随時拾い上げ、50 Gy照射済みマウス胎児繊維芽細胞 (MEF) を含む 6 cm ディッシュ上に播種した。増殖が安定するまではヒト未分化維持培地に 10 (M の Rock 阻害剤 (Y27632、Chemicom) を添加して用いた。以後、安定して ES細胞様の形態を維持する株を選別して継代し、ヒトiPS細胞クローンを樹立した。
(7)ヒト造血幹/前駆細胞からのiPS細胞の樹立
 ヒト臍帯血または骨髄血CD34陽性細胞を、フィブロネクチン断片CH296 (Takara Bio)でコートした24ウェルプレートに5 x 105細胞/ウェルで播種し、50 ng/mlマウスヒト幹細胞因子(SCF), 50 ng/mlヒトトロンボポエチン(TPO), 50 ng/ml ヒト Flt3-L, 115% FBS, 2 mM L-グルタミン,及び100 U/mlペニシリン/ストレプトマイシンを補充した ISCOVE'S MODIFIED DULBECCO'S MEDIUM (IMDM)培地中で予め刺激した。1日目に、抗ヒトCD34APC抗体(BD)、抗ヒトCD45Alexa405抗体で染色し、Mofloを用いてCD45陽性細胞分画中のCD34陽性(CD45+/CD34+)およびCD34陰性(CD45+/CD34-)細胞を採取し、再度レトロネクチンコートした6ウェルプレートの1ウェルに播き直した。上述の培地にOCT3/4遺伝子、SOX2遺伝子、hKLF4遺伝子の3種類、またcMYC遺伝子を加えた4種類のレトロウイルス(実施例1で作製したもの)の混合物をCD34陽性細胞の培養液に添加した。2日目までに、上記と同様の遺伝子導入処理をさらに 1-3回繰り返し、以後、培地に5 ng/ml塩基性繊維芽細胞成長因子 (bFCF) を加え、さらにバルプロ酸をコロニーの拾い上げ操作まで加え続けて培養を継続した。7日目頃よりメディウムを20% knockout serum replacement (KSR), 5 ng/mlの塩基性繊維芽細胞成長因子 (bFCF), 50 ng/mlマウス幹細胞因子(SCF), 0.1 mM 2-メルカプトエタノール, 0.1 mM非必須アミノ酸 (GIBCO, Grand Island, NY), 2 mM L-グルタミン, 及び100 U/mlペニシリン/ストレプトマイシン(Sigma-Aldrich, St. Louis, MO)を補充したF-12混合ダルベッコ改変イーグル培地 (DMEM/F12) からなるヒト未分化維持培地中で、50 Gy 照射済みマウスフィーダー細胞 (SNL MEF細胞株) の細胞層上で維持した。15日目以降、未分化なES細胞様の形態を安定して維持するコロニーを拾い上げ、50 Gy照射済みマウス胎児繊維芽細胞 (MEF) を含む 6 cm ディッシュ上に播種した。増殖が安定するまではヒト未分化維持培地に 10 (M の Rock 阻害剤 (Y27632) を添加して用いた。以後、安定して ES細胞様の形態を維持する株を選別して継代し、ヒトiPS細胞クローンを樹立した。
(8)PCR及びRT-PCR分析
 iPS細胞を回収するために、MEF細胞をゼラチンコートプレート上での付着細胞逓減により除去した。iPS細胞からのゲノムDNA試料を、QIAmp DNA Mini Kit (QIAGEN, Valencia, CA)を用いて調製した。全RNA試料をTrizol 試薬で精製し、ThermoScriptTM RT-PCR System (Invitrogen, Carlsbad, CA)を用いて逆転写した。半定量PCR分析は、GAPDH遺伝子を内在性コントロールとして、GAPDH Control Reagents (Applied Biosystems, Foster City, CA)によりcDNA産物を用いて行った。各試料におけるGAPDH cDNAの計算上のコピー数を用いて鋳型の使用量を均等とした。各サンプルのcDNA量を調整した。PCR反応は、ExTaq HS and LA Taq HSrTaq (Takara Bio)を用いて各プライマーセットに最適な条件で行った。使用したプライマー配列は以下に示す。表2に記載のプライマー配列は、配列表の配列番号37から58にも記載する。
Figure JPOXMLDOC01-appb-T000002
(9)テラトーマ形成及び組織学的解析
 iPS細胞は、PBS中に1 x 107 細胞/mlで調製した。懸濁した細胞(1-3 x 106) を、麻酔したNOD/Scidマウスの精巣に注入した。注入の6-8週間後、マウスを屠殺し、腫瘍を解剖した。腫瘍試料を10%パラホルムアルデヒド4%パラホルムアルデヒドで固定し、パラフィンで包埋した。切片をヘマトキシリン及びエオシンで染色した。
(B)結果
 図13及び図14に実験の概要を示す。方法に従い操作をすることで、20日目頃より皮膚繊維芽細胞から(図13)、また12日目頃より臍帯血CD34陽性細胞、骨髄血CD34陽性細胞(図14)から、それぞれヒトES細胞様のコロニーの出現が確認された。ES細胞と同様に未分化マーカー(一例としてSSEA-4を示す、図15A)を発現しており、G-band法では染色体異常は観察されなかった(図15B)。これまでの実験で樹立したES細胞様コロニーの形成数を表に示した(表3)。
Figure JPOXMLDOC01-appb-T000003
 VPA 0.5mM
 本発明の293GPG ウイルスを用いることで、臍帯血 CD45+/CD34+ 細胞から皮膚細胞と同程度か、それ以上の効率で iPS 細胞樹立が可能であった。MEF、Matrigel+MEF Conditioned medium、SNLフィーダー細胞で共培養した結果を示す。
 樹立したヒトiPS細胞クローンは、3種または4種の初期化因子のプロウイルス配列を有していたが、遺伝子サイレンシグのために、導入遺伝子の発現はRT-PCR法試行の条件下では検出できなかった。これらのヒトiPS細胞は、各々の初期化因子遺伝子を内因的には発現していた。また、ES細胞マーカー遺伝子であるNANOG、REX1を発現していた(図16)。また、これらの細胞は、テラトーマ形成能を示した。
実施例4:末梢血CD34陽性細胞からのiPS細胞の作製
(方法)
 ヒト末梢血を100ml採取し、ファイコールを用いて単核球分離を行った(約2-5×10e8個の細胞を回収できた)。CD34MACS-beadsを用いて、CD34陽性細胞に純化した(5-10×10e5個の細胞を回収できた。なお、5×10e5個の細胞があれば十分に樹立可能である)。血液細胞用培地(50 ng/mlマウスヒト幹細胞因子〔SCF〕, 50 ng/mlヒトトロンボポエチン〔TPO〕, 50 ng/ml ヒト Flt3-L, 115% FBS, 2 mM L-グルタミン,及び100 U/mlペニシリン/ストレプトマイシンを補充した ISCOVE'S MODIFIED DULBECCO'S MEDIUM 〔IMDM〕培地)での培養開始後、1日目と2日目に、幹細胞因子(SCF)、トロンボポエチン(TPO)、及びFLT-3 リガンド(FL)(50ng/ml)の存在下において、Oct3/4遺伝子、Sox2遺伝子、cMyc遺伝子及びKlf4遺伝子のレトロウイルス(実施例1で作製したもの)の混合物を添加した(12時間ごとに3回感染させた)。2日おきに培地を交換し、培養開始後7日目にMEF上に細胞を播種した。培養開始後8日目にiPS細胞用培地(20% knockout serum replacement 〔KSR〕, 5 ng/mlの塩基性繊維芽細胞成長因子 〔bFCF〕, 50 ng/mlマウス幹細胞因子〔SCF〕, 0.1 mM 2-メルカプトエタノール, 0.1 mM非必須アミノ酸 〔GIBCO, Grand Island, NY〕, 2 mM L-グルタミン, 及び100 U/mlペニシリン/ストレプトマイシン〔Sigma-Aldrich, St. Louis, MO〕を補充したF-12混合ダルベッコ改変イーグル培地 〔DMEM/F12〕 からなるヒト未分化維持培地)に変更した。コロニーが確認できたらP200を用いて回収し、増殖させた。上記した末梢血CD34陽性細胞(Non-mobilized)由来のiPS細胞の樹立過程を図17に示す。
(結果)
 上記のようにして樹立した正常ドナー末梢血CD34陽性細胞由来iPS細胞(TkPBV1-1)を図18に示す。本発明のウイルス産生細胞由来のレトロウイルス(OCT3/4, SOX2, KLF4, c-MYC)を導入することにより、正常ドナーのCD34陽性細胞(G-CSFでの動員なし)からヒトiPS細胞(TkPBV-1-1)を誘導することができた。

Claims (23)

  1. 初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを産生できるように、
    該初期化因子をコードする遺伝子、及び
    水疱性口内炎ウイルスG(VSV-G)タンパク質を含むウイルス構成タンパク質をコードする遺伝子を染色体上に有する、ウイルス産生細胞。
  2. 初期化因子をコードする遺伝子が、Oct遺伝子、Sox遺伝子、Klf遺伝子、及びMyc遺伝子の何れか1種以上である、請求項1に記載のウイルス産生細胞。
  3. 所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞に、初期化因子をコードする遺伝子を導入することにより得られる、請求項1又は2に記載のウイルス産生細胞。
  4. 初期化因子をコードする遺伝子がウイルスとして導入される、請求項3に記載のウイルス産生細胞。
  5. 所定の薬剤がテトラサイクリンである、請求項3または4に記載のウイルス産生細胞。
  6. 所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞が、ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株に対して、水疱性口内炎ウイルスG(VSV-G)タンパク質をコードする遺伝子を導入することにより得られた細胞であって、該遺伝子が、所定の薬剤の存在下において発現できず、該薬剤の非存在下において発現できるように導入されているか、又は該遺伝子が、所定の薬剤の非存在下において発現できず、該薬剤の存在下において発現できるように導入されている細胞である、請求項3から5の何れかに記載のウイルス産生細胞。
  7. ヒト胎児腎細胞をアデノウィルスのE1遺伝子によりトランスフォーメーションして樹立された細胞株がHEK293細胞である、請求項6に記載のウイルス産生細胞。
  8. 所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞が、HEK293GPG細胞である、請求項3から7の何れかに記載のウイルス産生細胞。
  9. 単一の細胞に由来するクローン化された細胞である、請求項1から8の何れかに記載のウイルス産生細胞。
  10. 所定の薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞、又は所定の薬剤の非存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できず、該薬剤の存在下において水疱性口内炎ウイルスG(VSV-G)タンパク質を発現できるパッケージング細胞に、初期化因子をコードする遺伝子を導入することを含む、請求項1から9の何れかに記載のウイルス産生細胞の製造方法。
  11. 初期化因子をコードする遺伝子がウイルスとして導入される、請求項10に記載の方法。
  12. 初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルス。
  13. 初期化因子をコードする遺伝子が、Oct遺伝子、Sox遺伝子、Klf遺伝子、及びMyc遺伝子の何れか1種以上である、請求項12に記載のRNAウイルス。
  14. 請求項1から9の何れかに記載のウイルス産生細胞により産生される、請求項12又は13に記載のRNAウイルス。
  15. 誘導多能性幹細胞の製造のために使用する、請求項12から14の何れかに記載のRNAウイルス。
  16. 製造後に凍結保存される、請求項12から15の何れかに記載のRNAウイルス。
  17. 請求項1から9の何れかに記載のウイルス産生細胞を培養することを含む、初期化因子をコードする遺伝子を含むRNAウイルスであって、エンベロープタンパク質として水疱性口内炎ウイルスG(VSV-G)タンパク質を含むRNAウイルスを製造する方法。
  18. 体細胞に請求項12から16の何れかに記載のRNAウイルスを導入することを含む、誘導多能性幹細胞の製造方法。
  19. 体細胞が造血細胞である、請求項18に記載の誘導多能性幹細胞の製造方法。
  20. 造血細胞が骨髄由来である、請求項19に記載の誘導多能性幹細胞の製造方法。
  21. 造血細胞が臍帯血由来である、請求項19に記載の誘導多能性幹細胞の製造方法。
  22. 体細胞が末梢血の細胞である、請求項18に記載の誘導多能性幹細胞の製造方法。
  23. 体細胞が末梢血のCD34陽性細胞である、請求項18に記載の誘導多能性幹細胞の製造方法。
PCT/JP2010/058220 2009-05-15 2010-05-14 ウイルス産生細胞 WO2010131747A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513392A JPWO2010131747A1 (ja) 2009-05-15 2010-05-14 ウイルス産生細胞

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-118661 2009-05-15
JP2009118661 2009-05-15
JP2009-274595 2009-12-02
JP2009274595 2009-12-02

Publications (1)

Publication Number Publication Date
WO2010131747A1 true WO2010131747A1 (ja) 2010-11-18

Family

ID=43085120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058220 WO2010131747A1 (ja) 2009-05-15 2010-05-14 ウイルス産生細胞

Country Status (2)

Country Link
JP (1) JPWO2010131747A1 (ja)
WO (1) WO2010131747A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129446A1 (ja) * 2010-04-16 2011-10-20 学校法人慶應義塾 人工多能性幹細胞の製造方法
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489353B8 (en) * 2015-11-24 2023-08-30 GlaxoSmithKline Intellectual Property Development Limited Stable cell lines for retroviral production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148057A1 (ja) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 血球細胞の初期化法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307007A (ja) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148057A1 (ja) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 血球細胞の初期化法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BELMONTE J.C. ET AL: "Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions", STEM CELLS, vol. 1, 28 January 2010 (2010-01-28), pages 36 - 44 *
FUSAKI N. ET AL: "Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome", PROC.JPN.ACAD., SER.B, vol. 85, 2009, pages 348 - 362 *
KOICHI MIYAKE ET AL: "Pseudotype HIV Vector", BLOOD IMMUNITY CANCER, vol. 7, no. 2, 2002, pages 37 - 42 *
LIU M.L. ET AL: "Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer", J. VIROL., vol. 70, no. 4, April 1996 (1996-04-01), pages 2497 - 2502 *
LOH Y.H. ET AL: "Generation of induced pluripotent stem cells from human blood", BLOOD, vol. 113, no. 22, 28 May 2009 (2009-05-28), pages 5476 - 5479 *
ORY D.S. ET AL: "A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes", PROC NATL ACAD SCI USA, vol. 93, no. 21, 1996, pages 11400 - 11406 *
STADTFELD M. ET AL: "Induced pluripotent stem cells generated without viral integration", SCIENCE, vol. 322, no. 5903, 7 November 2008 (2008-11-07), pages 945 - 949 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221396B2 (en) 2009-06-05 2019-03-05 FUJIFILM Cellular Dynamics, Inc. Reprogramming T cells and hematopoietic cells
WO2011129446A1 (ja) * 2010-04-16 2011-10-20 学校法人慶應義塾 人工多能性幹細胞の製造方法
US9447432B2 (en) 2010-04-16 2016-09-20 Keio University Method for producing induced pluripotent stem cells
WO2013014929A1 (en) 2011-07-25 2013-01-31 Kyoto University Method for screening induced pluripotent stem cells
EP3305899A1 (en) 2011-07-25 2018-04-11 Kyoto University Method for screening induced pluripotent stem cells
EP3608423A1 (en) 2011-07-25 2020-02-12 Kyoto University Method for screening induced pluripotent stem cells

Also Published As

Publication number Publication date
JPWO2010131747A1 (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
US20240271087A1 (en) Somatic Cell Reprogramming
US9850499B2 (en) Vectors and methods for the efficient generation of integration/transgene-free induced pluripotent stem cells from peripheral blood cells
Meng et al. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone
Eminli et al. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression
Zhang Cellular reprogramming of human peripheral blood cells
EP2476750A1 (en) Somatic cell reprogramming
US20130065814A1 (en) Inductive production of pluripotent stem cells using synthetic transcription factors
JP5856949B2 (ja) 人工多能性幹細胞の製造方法
WO2010131747A1 (ja) ウイルス産生細胞
JP2012210154A (ja) 分化細胞由来多能性幹細胞の樹立方法
Zaehres et al. Induced pluripotent stem cells
Angel et al. Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells——Nanog transdifferentiates mesenchymal stem cells
US20210010030A1 (en) Method for reprogramming somatic cells
JP2010161960A (ja) 人工多能性幹細胞の製造方法
AU2016200360B2 (en) Somatic cell reprogramming
AU2013267048B2 (en) Somatic cell reprogramming
WO2011121636A1 (ja) 人工多能性幹細胞の製造方法
CA2621155A1 (en) Stem cell expression cassettes
AU2002351884B2 (en) Method of transducing ES cells
KUUSELA THE ESTABLISHMENT AND CHARACTERIZATION OF GENETICALLY ENGINEERED IPS CELL LINES DERIVED FROM HUMAN SKIN FIBROBLASTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10775004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513392

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10775004

Country of ref document: EP

Kind code of ref document: A1