WO2010131690A1 - Coating composition, method for formation of coating film, and article having the coating film - Google Patents

Coating composition, method for formation of coating film, and article having the coating film Download PDF

Info

Publication number
WO2010131690A1
WO2010131690A1 PCT/JP2010/058075 JP2010058075W WO2010131690A1 WO 2010131690 A1 WO2010131690 A1 WO 2010131690A1 JP 2010058075 W JP2010058075 W JP 2010058075W WO 2010131690 A1 WO2010131690 A1 WO 2010131690A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
coating
film
photocatalyst
component
Prior art date
Application number
PCT/JP2010/058075
Other languages
French (fr)
Japanese (ja)
Inventor
巌 林
貴祐 樋口
利光 村松
彰典 永井
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2011513363A priority Critical patent/JP5726071B2/en
Publication of WO2010131690A1 publication Critical patent/WO2010131690A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof

Definitions

  • the present invention relates to a coating composition useful for forming, for example, a photocatalytic film and an ultraviolet and / or infrared shielding film, a method of forming a film using the coating composition, and an article having the film.
  • a photocatalyst is a substance that exhibits a photocatalytic function when irradiated with light having a wavelength greater than the band gap.
  • the photocatalyst refers to metal compound semiconductor particles such as titanium dioxide, zinc oxide, tungsten oxide, iron oxide, strontium titanate, cadmium sulfide, and cadmium selenide.
  • a photocatalytic film is formed on the surface of various base materials such as ceramics, metals, and plastics.
  • the substrate on which the photocatalyst film is formed exhibits antifouling properties, deodorizing properties, antibacterial properties, air purification properties, and the like due to the photocatalytic function.
  • Japanese Patent Application Laid-Open No. 11-267517 relates to a photocatalyst film characterized in that highly crystalline photocatalyst fine particles having a crystallinity of 90% or more that have been pre-fired are dispersed in a metal oxide matrix.
  • the invention is disclosed.
  • a high-crystallinity photocatalyst fine particle having a crystallization degree of 90% or more and a dispersing agent previously mixed in a sol-gel solution for metal oxide is mixed, and the photocatalyst fine particle is uniformly dispersed in the solution.
  • This solution is applied to the substrate surface, dried and fired to fix the photocatalyst to the substrate surface.
  • a photocatalyst film having excellent photocatalytic activity and a highly durable photocatalytic function can be obtained.
  • a baking process at a high temperature is necessary.
  • JP-A-11-347418 includes photocatalyst fine particles and an inorganic binder mainly composed of a tetraalkoxysilane hydrolysis condensate having a number average molecular weight of 1,500 or less.
  • An invention relating to a photocatalytic coating solution is disclosed. According to this invention, it is sufficiently cured at a temperature below the softening point of the base resin film, has good adhesion to the base resin film, good bending followability, does not exhibit acidity, and corrodes the coating apparatus. It is possible to obtain a photocatalyst coating solution free from mist.
  • an alkoxy group may remain in the inorganic binder mainly composed of the tetraalkoxysilane hydrolyzed condensate constituting the film.
  • the film does not become a film consisting essentially of an inorganic component, and the residual organic group may be decomposed or deteriorated by the photocatalytic activity, which may make the film brittle.
  • Sunlight contains ultraviolet rays and infrared rays in addition to visible light.
  • Ultraviolet rays have effects on the human body such as skin aging, sunburn, and skin cancer. Further, ultraviolet rays cause discoloration of clothes, curtains, etc., yellowing and strength deterioration of organic resin films, panels, molded articles, organic resin composite materials, etc., and food alteration. Therefore, it is important to shield the ultraviolet rays when living daily life.
  • infrared rays have a small thermal energy but a large thermal effect compared to ultraviolet rays, and when absorbed by a substance, they are released as heat and accompanied by a rise in temperature. Therefore, if an infrared shielding function is provided on a building window, a home window, an automobile window, etc., an increase in indoor temperature due to sunlight can be reduced, and a significant reduction in cooling power in summer can be expected. Therefore, shielding infrared rays is significant from the viewpoint of energy saving.
  • Japanese Patent Application Laid-Open No. 2001-262061 discloses a coating composition for forming a solar radiation shielding film containing a binder component, a diluting solvent, a curing catalyst, and a near infrared light shielding component, wherein at least one binder component is a grease composition.
  • An average particle comprising at least one selected from the group consisting of a hexaboride and a specific substance obtained by reacting a sildoxypropyl group-containing alkoxysilane and an aminopropyl group-containing alkoxysilane.
  • An invention relating to a coating composition for forming a solar radiation shielding film, which is a fine particle having a diameter of 200 nm or less and is curable at room temperature is disclosed.
  • the present invention can provide a coating composition for forming a solar shading film that can be applied to a transparent substrate, can form a film at room temperature, and provides excellent film strength.
  • this coating composition uses a curing catalyst to enable film formation at room temperature, the storage stability is not sufficient, and it is necessary to store it at a low temperature.
  • this coating composition takes time to produce, and it may be difficult to form a uniform film.
  • JP-A-2006-334530 at least an ultraviolet shielding agent and / or an infrared shielding agent, a binder component, and a polyhydric alcohol solvent are blended, and the blending amount of the polyhydric alcohol is 50 to 95% by weight.
  • An invention relating to a coating method in which a coating liquid is applied to a substrate under specific coating conditions and dried to form a coating film containing an ultraviolet shielding agent and / or an infrared shielding agent on the surface of the substrate is disclosed. .
  • the coating composition using a silicone resin which is a binder component specifically used, has insufficient storage stability and needs to be stored at a low temperature.
  • the present invention has been made to solve the problems in forming the above-mentioned photocatalytic coating or ultraviolet and / or infrared shielding coating.
  • an object of the present invention is to provide a film having desired characteristics such as photocatalytic activity or ultraviolet and / or infrared shielding properties when forming various films such as a photocatalytic film or an ultraviolet and / or infrared shielding film. It is an object of the present invention to provide a coating composition that can be formed by heat treatment at a low temperature and by a simple method and has excellent storage stability; a film forming method using the coating composition, and an article having the film.
  • the present invention relates to at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide, and a water-soluble amine, water (C), photocatalyst particles, and an ultraviolet shielding agent. And a coating composition containing at least one component (D) selected from the group consisting of an infrared shielding agent.
  • the present invention is a film forming method in which the coating composition is atomized and coated on a substrate to form a film.
  • the present invention is an article having a coating formed by the above method.
  • the coating composition of the present invention contains photocatalyst particles as the component (D), it becomes a photocatalyst coating composition.
  • an inorganic film excellent in photocatalytic activity can be heat-treated at a low temperature and easily. It can be formed by a method.
  • the coating composition of the present invention contains an ultraviolet shielding agent and / or an infrared shielding agent as component (D)
  • a film excellent in ultraviolet and / or infrared shielding properties can be formed by heat treatment at a low temperature and a simple method.
  • the coating composition is also excellent in storage stability.
  • the coating composition of the present invention comprises at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide, and a water-soluble amine, water (C), and photocatalytic particles, It contains at least one component (D) selected from the group consisting of an ultraviolet shielding agent and an infrared shielding agent.
  • the stannic acid (A) becomes SnO 2 in the coating film to be formed, and plays the role of a binder component for immobilizing the component (D) on the substrate surface.
  • the content of stannic acid (A) is not particularly limited, but is preferably 0.1 to 15% by mass, more preferably 0.5 in terms of SnO 2 in 100% by mass of the coating composition. ⁇ 5% by mass.
  • the lower limit of these ranges is significant in terms of coating efficiency.
  • the upper limit is significant in terms of storability.
  • Compound (B) is at least one compound selected from the group consisting of ammonia, tetramethylammonium hydroxide, and a water-soluble amine. This compound (B) plays the role which raises pH of a coating composition and dissolves a stannic acid (A).
  • ammonia is preferable because it does not contain an organic component, the organic component derived from the compound (B) does not remain, and an inorganic coating can be easily formed.
  • a water-soluble amine refers to an amine having a solubility in water of 20 ° C. of 0.01% by mass or more, preferably 5.0% by mass or more. This solubility range is significant in that it reduces the amount of water used to dissolve stannic acid (A) and improves coating efficiency.
  • the water-soluble amine preferably has a boiling point of 150 ° C. or less under atmospheric pressure from the viewpoint of forming an inorganic coating in which no water-soluble amine remains as an organic component by a lower temperature heat treatment.
  • the water-soluble amine for example, alkylamine, alkanolamine, polyamine, hydroxylamine, and cyclic amine can be used.
  • water-soluble amine examples include ethylenediamine (boiling point 117.0 ° C., solubility: free mixing) and triethylamine (boiling point 89.4 ° C., solubility 10.1% by mass).
  • free mixing means that it can mix with water in a desired ratio.
  • the content of the compound (B) is not particularly limited as long as stannic acid (A) can be dissolved in the coating composition, but 0.001 to 1% by mass in 100% by mass of the coating composition. preferable.
  • the content of water (C) is not particularly limited, but is preferably 50 to 95% by mass in 100% by mass of the coating composition.
  • Component (D) is at least one component selected from the group consisting of photocatalyst particles, ultraviolet shielding agents, and infrared shielding agents.
  • This component (D) serves to impart desired properties to the coating composition.
  • a photocatalyst particle is contained as the component (D)
  • a photocatalyst coating composition is obtained, and a photocatalyst film can be favorably formed using this.
  • an ultraviolet shielding agent and / or an infrared shielding agent are contained as the component (D)
  • an ultraviolet and / or infrared shielding coating composition is formed, and an ultraviolet and / or infrared shielding film can be favorably formed using the composition.
  • the type, composition, and the like of the photocatalyst particles used as component (D) are not limited as long as they can exhibit practically sufficient photocatalytic activity.
  • titanium oxide compounds such as titanium dioxide are particularly preferable.
  • Specific examples of the titanium oxide compound include anatase type titanium dioxide, rutile type titanium dioxide, and brookite type titanium dioxide. Among these, anatase type titanium dioxide is preferable.
  • so-called visible light responsive titanium dioxide having a property of responding to visible light having a wavelength of 400 nm or more is preferable. These may be oxygen-deficient or nitrogen-doped.
  • Still other photocatalyst particles include, for example, strontium titanate, barium titanate, zinc oxide, tin oxide, and zirconium oxide.
  • the particle diameter of the photocatalyst particles used as the component (D) is not particularly limited. However, from the viewpoint of photocatalytic activity and transparency of the photocatalytic coating, the average primary particle diameter is preferably 1 to 100 nm, more preferably 3 to 50 nm. This average primary particle diameter is a value obtained by measuring the long diameters of 50 photocatalyst particles with a transmission electron microscope (TEM) photograph and averaging them.
  • TEM transmission electron microscope
  • the photocatalyst particles used as component (D) can be produced by a known method.
  • a method for producing titanium dioxide for example, an inorganic titanium compound such as titanium chloride, titanium oxychloride, titanium sulfate, or titanyl sulfate is dissolved in water, and a catalyst such as hydrochloric acid or nitric acid is added as necessary, and titanium is heated.
  • the method of hydrolyzing a compound and obtaining titanium dioxide is mentioned.
  • titanium dioxide is obtained by burning and oxidizing a vapor of a compound such as titanium chloride, or an organic titanium compound such as titanium alkoxide or titanium acetylacetonate is hydrolyzed to obtain titanium dioxide.
  • a method is mentioned.
  • Examples of the method for producing visible light-responsive titanium dioxide include a method in which hydrated titanium oxide or crystalline titanium dioxide is brought into contact with ammonia at a temperature of 300 to 600 ° C. to obtain visible light-responsive titanium dioxide.
  • the ultraviolet shielding agent used as the component (D) may be any material that reflects and / or absorbs ultraviolet rays. Both known organic ultraviolet shielding agents and inorganic ultraviolet shielding agents can be used. Specific examples of the organic ultraviolet shielding agent include benzophenone ultraviolet absorbers, salicylic acid ultraviolet absorbers, cyanoacrylate ultraviolet absorbers, benzotriazole ultraviolet absorbers, and oxalic acid anilide ultraviolet absorbers. Specific examples of the inorganic ultraviolet shielding agent include particles of titanium oxide (TiO 2 ), zinc oxide (ZnO), cerium oxide (CeO 2 ), and the like. As the inorganic ultraviolet shielding agent, those whose catalytic activity is suppressed by surface modification or the like can be used.
  • the infrared shielding agent used as the component (D) may be any material that reflects and / or absorbs infrared rays.
  • Specific examples of infrared shielding agents include pigments such as perylene black pigments, aniline pigments, polyaniline pigments, cyanine pigments, phthalocyanine pigments; tin oxide (SnO 2 ), tin oxide doped with Sb [ATO (SnO 2 : Sb)], indium oxide (In 2 O 3 ), Sn-doped indium oxide [ITO (In 2 O 3 : Sn)], zinc oxide (ZnO), Al-doped zinc oxide [AZO (ZnO: Al)], antimony oxide, zinc antimonate (ZnO.Sb 2 O 5 ), and conductive oxide fine particles such as a mixture thereof; LaB 6 , CeB 6 , PrB 6 , NdB 6 , SMB 6 , GdB 6 , TbB 6, DyB 6, SrB 6,
  • the content of component (D) is not particularly limited. However, the content of the component (D) is preferably 35 to 95% by volume, more preferably based on the total volume of SnO 2 formed from the stannic acid (A) and the component (D) in the coating composition. Is 55 to 85% by volume. The lower limit of these ranges is significant in terms of the desired properties (photocatalytic activity or shielding performance) of the coating. The upper limit is significant in terms of the hardness and durability of the coating. This “volume%” is a percentage obtained by dividing the volume of the component (D) by the total volume of the SnO 2 volume formed from the stannic acid (A) and the volume of the component (D). .
  • the volume of component (D) is determined by dividing the weight of component (D) by its density.
  • the volume of SnO 2 formed from stannic acid (A) is determined by dividing the weight of SnO 2 formed from stannic acid (A) by its density (6.95 g / cm 3 ).
  • the coating composition of the present invention may further contain a surfactant (E).
  • a surfactant (E) When a small amount of surfactant (E) is contained as an organic component that is not removed by volatilization, evaporation, boiling, decomposition, etc. when forming a film, it can be easily applied to various substrates and has excellent smoothness. A coating can be obtained.
  • the surfactant (E) include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene fatty acid ester; alkyl sulfates and alkylbenzene sulfones.
  • Anionic surfactants such as acid salts, alkyl sulfosuccinates, alkyl phosphates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates; cationic systems such as quaternary ammonium salts, alkylamine acetates Surfactants; amphoteric surfactants such as alkylbetaines and alkylimidazolines can be used.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkylphenyl ether and the like; anionic surfactants such as alkyl sulfate and alkyl benzene sulfonate from the viewpoint of storage stability
  • anionic surfactants such as alkyl sulfate and alkyl benzene sulfonate from the viewpoint of storage stability
  • An ammonium salt type anionic surfactant is more preferable.
  • the surfactant (E) include polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene propylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene propylene lauryl ether, Polyoxyethylene tridecyl ether, polyoxyethylene propylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Styrenated phenyl ether, sodium polyoxyethylene alkyl sulfate, polyoxyethylene alkyl sulfate Sodium le sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, sodium dodecylbenzene sulfonate, ammonium dodecylbenzen
  • the content of the surfactant (E) is not particularly limited. However, the content thereof is preferably 0.01 to 1.0 part by mass, more preferably 0.05 to 0.50 part by mass with respect to 100 parts by mass of the coating composition. The lower limit of these ranges is significant in that a uniform film is formed. The upper limit is significant in terms of the weather resistance of the coating.
  • the coating composition of the present invention may further contain a silane coupling agent (F) as an organic component. When a small amount of the silane coupling agent (F) is contained as the organic component, it is possible to obtain a film having improved physical properties such as adhesion to various substrates and film strength.
  • silane coupling agent (F) examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- Amino group-containing silane coupling agents such as (aminoethyl) -3-aminopropyltriethoxysilane; 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl) epoxy group-containing silane coupling agents such as ethyltriethoxysilane; 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, vinyltrimethoxysilane, Vinyl group-containing sila such as vinyltrie
  • the content of the silane coupling agent (F) is not particularly limited. However, the content thereof is preferably 0.01 to 1.0 part by mass, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the coating composition.
  • the pH of the coating composition is not particularly limited. However, the pH is preferably 9.5 to 12.0, and more preferably pH 10.0 to 11.0. These ranges facilitate the dissolution of stannic acid (A), provide a stable coating composition with almost no precipitation and the like, and suppress the aggregation of component (D) and provide a coating composition with excellent storability. Significant in terms.
  • the photocatalyst coating composition containing the photocatalyst particles as the component (D) is an organic component that is not removed by volatilization, evaporation, boiling, decomposition, etc. when forming a film [provided that the surfactant (E) and the silane described above are not removed. It is preferable that substantially no coupling agent (F) is included.
  • organic component examples include polyethylene resin, polypropylene resin, polyester resin, polystyrene resin, polyvinyl chloride resin, polyamide resin, polycarbonate resin, polybutadiene resin, polyacetal resin, acrylic resin, melamine resin, urea resin, polyurethane resin, epoxy
  • organic resins such as resin, polyvinyl alcohol, and cellulose acetate are exemplified.
  • the photocatalyst coating composition When the photocatalyst coating composition is substantially free of organic components that are not removed by volatilization, evaporation, boiling, decomposition, or the like when forming the photocatalyst film, the photocatalyst film becomes an inorganic film that is substantially free of organic components.
  • “substantially free” means that the abundance of the organic component is relative to the total amount of the mass of the stannic acid (A) converted to SnO 2 and the mass of the photocatalyst particles (D) contained. It means 5 mass% or less, preferably 1 mass% or less, particularly preferably 0.1 mass% or less. In the case of a photocatalyst film, it means that the amount of the component in the photocatalyst film is 5% by mass or less, preferably 1% by mass or less, particularly preferably 0.1% by mass or less.
  • the photocatalytic coating composition may contain an organic component as long as it is an organic component that is removed by volatilization, evaporation, boiling, decomposition, or the like when a photocatalytic film is formed.
  • an organic component for example, the organic solvent whose boiling point under atmospheric pressure is 120 degrees C or less is mentioned.
  • surfactant (E) and silane coupling agent (F) which are organic components.
  • the method for producing the coating composition of the present invention is not particularly limited.
  • an aqueous solution such as an aqueous ammonium stannate solution
  • stannic acid (A), compound (B) and water (C) is first prepared, and a coating composition is obtained by mixing component (D) with this aqueous solution.
  • D component (D) with this aqueous solution.
  • the method for producing this aqueous solution is not particularly limited.
  • a tin compound is hydrolyzed to obtain a tin hydroxide (stannic acid), and if necessary, filtered off, followed by the addition of a compound (B) such as ammonia.
  • a compound (B) such as ammonia.
  • the tin compound is not particularly limited as long as it can be hydrolyzed to obtain a hydroxide.
  • halides such as stannic chloride, halogenated organotins, stannates, and esters containing tin can be used.
  • a gel is produced by reacting a halide with an alkali hydrogen carbonate or ammonium hydrogen carbonate, and if necessary, washing is performed to remove impurities.
  • a method of obtaining a target product by dissolving a gel in water in the presence of a compound (B) such as ammonia.
  • the alkali hydrogen carbonate for example, potassium hydrogen carbonate or sodium hydrogen carbonate can be used.
  • a dispersing step for dispersing the component (D).
  • a dispersing machine such as a shake type paint conditioner, a ball mill, a horizontal sand mill, a vertical sand mill, an annular bead mill, or an attritor can be used.
  • the temperature and time for dispersion are not particularly limited, and may be appropriately determined in consideration of the type and content of the component (D).
  • a coating film can be formed by applying the coating composition described above onto a substrate.
  • the base material is not particularly limited.
  • the material constituting the substrate include glass, metal, plastic, ceramics, concrete, stone, and wood.
  • Specific examples of the glass include soda glass, quartz glass, and borosilicate glass.
  • a specific example of the metal is aluminum.
  • Specific examples of plastic include acrylic resin, polyester resin [polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.], epoxy resin, phenol resin, silicone resin, polycarbonate resin, polyvinyl chloride resin, ABS resin, FRP, Examples thereof include polyethylene resin, polypropylene resin, and rubber.
  • the shape of the substrate is not particularly limited, and various shapes such as a film shape, a plate shape, and a molded product are possible.
  • the substrate may be subjected to a surface treatment.
  • surface treatments for plastic substrates include chemical treatment, mechanical treatment, corona treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, plasma treatment, laser treatment, mixed acid treatment, and ozone oxidation. Processing.
  • Surface treatment of the substrate is significant in that the wettability of the coating composition to the substrate can be improved and a photocatalytic film having a more uniform film thickness can be obtained.
  • plasma treatment, ultraviolet irradiation treatment, corona treatment, and glow discharge treatment are preferred. These treatments are significant in that there is little damage such as deformation or shrinkage of the base material in the surface treatment in addition to obtaining a film having a more uniform film thickness.
  • the method for coating the coating composition on the substrate is not particularly limited.
  • various coating methods such as atomization coating, spin coating, blade coating, wire bar coating, dip coating, air knife coating, roller coating, and curtain coating can be employed.
  • atomization coating is preferable from the viewpoint of obtaining a film having a uniform film thickness.
  • the atomization coating is not particularly limited as long as it is a method capable of atomizing and coating the coating composition. For example, using a two-fluid nozzle and atomizing with compressed air and painting, using an ultrasonic nozzle and ultrasonically atomizing and painting, electrostatic and atomizing and painting, centrifugal There are a method of atomizing and painting by physical force such as force and pressure, and a method of generating a large number of atomized particles temporarily in the atomizing chamber and classifying and painting only the necessary particles.
  • the amount of atomized paint discharged is not particularly limited.
  • the discharge rate in the case of the photocatalyst coating composition is preferably 20 g / min or less, more preferably 0.1 to 3.0 g / min.
  • an ultraviolet ray and / or infrared ray shielding coating composition it is preferably 20 g / min or less, more preferably 0.1 to 15 g / min.
  • a known method may be performed.
  • a method for realizing a small discharge amount for example, about 0.1 to 3.0 g / min
  • a method of installing an electromagnetic valve in a supply path from a pressure-feed tank filled with a coating composition to a nozzle for example, a method of reducing the nozzle diameter of the fluid nozzle to about 50 to 500 ⁇ m, a method of installing a device capable of precisely controlling the discharge pressure, and generating a lot of atomized particles temporarily in the atomization chamber.
  • a method of discharging only a necessary amount of particles can be mentioned.
  • the 50% volume average particle diameter of the atomized particles of the atomized coating is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 1.0 to 13 ⁇ m. These ranges are significant in that a film having a more uniform film thickness is formed.
  • the 50% volume average particle diameter is a value obtained by measurement using a 2600 type particle sizer (trade name, manufactured by Malvern). This measurement was performed by measuring the atomized particles flying in the position where the base material is placed when actually coating from a direction perpendicular to the discharge direction.
  • a known method may be performed. For example, there is a method of appropriately adjusting conditions such as nozzle diameter, discharge amount, atomization pressure, air flow rate, and the like.
  • a method of reducing the discharge amount of the two-fluid nozzle for example, there are a method of reducing the discharge amount of the two-fluid nozzle and a method of increasing the atomization pressure.
  • the discharge amount is 0.1 to 1 g / min and the atomization pressure is 200 to 400 kPa.
  • the discharge amount is 0.1 to 15 g. / Min.
  • the 50% volume average particle diameter can be appropriately reduced.
  • an ultrasonic nozzle there are a method of reducing the discharge amount and a method of increasing the frequency of ultrasonic waves.
  • the discharge rate is 0.1 to 10 g / min and the ultrasonic frequency is 50 to 500 kHz.
  • the discharge rate is 0.1. If the ultrasonic wave frequency is 50 to 500 kHz with a frequency of ⁇ 15 g / min, the 50% volume average particle diameter can be reduced appropriately.
  • the distance between the base material and the nozzle in atomization coating is not particularly limited.
  • the distance between the substrate and the nozzle tip is preferably 10 to 300 mm in the case of the photocatalyst coating composition, more preferably 50 to 150 mm, and preferably 10 to 300 in the case of the ultraviolet and / or infrared shielding coating composition. It is 300 mm, more preferably 50 to 200 mm.
  • the photocatalytic coating composition When used in the film forming method of the present invention, it further contains a solvent (G) having a boiling point of 60 ° C. to 120 ° C. under atmospheric pressure and 40% by mass or more in 20 ° C. water. It is preferable. By containing this solvent (G) in the coating composition, a photocatalytic film having a uniform film thickness can be obtained. Such an effect is particularly remarkable when atomization coating is employed as a coating method.
  • a solvent (G) having a boiling point of 60 ° C. to 120 ° C. under atmospheric pressure and 40% by mass or more in 20 ° C. water. It is preferable.
  • solvent (G) examples include ethanol (boiling point 78.3 ° C., solubility: free mixing), isopropanol (IPA) (boiling point 82.3 ° C., solubility: free mixing), allyl alcohol (boiling points 96.90 to 96).
  • alcohol is preferable and ethanol and isopropanol are more preferable from the point which can form the photocatalyst film which has a more uniform film thickness.
  • the free mixing means that it can be mixed with water at a desired ratio as described above.
  • the content of the solvent (G) is not particularly limited. However, the amount is preferably 40 to 240 parts by mass, more preferably 60 to 160 parts by mass with respect to 100 parts by mass of water (C) contained in the coating composition.
  • the film forming method of the present invention it is particularly preferable to employ atomization coating and to contain a solvent (G) in the coating composition in terms of enabling formation of a photocatalytic film having a uniform film thickness.
  • G solvent
  • the solvent (G) having a boiling point under atmospheric pressure of 60 ° C. to 120 ° C. and dissolved in water of 20% by mass or more in 20 ° C. is well mixed with water and has a lower surface tension than water. Therefore, compared with the case where a solvent (G) is not mix
  • the atomized coating composition is applied to the substrate as fine atomized particles, and after application, the coated atomized particles are less fluid or less fluidized by drying quickly. Sex is lost.
  • dip coating and spin coating unlike atomization coating, do not atomize the coating composition, so the liquid film applied to the substrate is slow to dry and the liquid film is uneven on the substrate. Easy to flow. Therefore, the film forming method that employs atomized coating and contains the solvent (G) in the coating composition enables formation of a film having a uniform film thickness, in addition to dip coating, spin coating, and the like. It is superior to the painting method.
  • the coating step can be performed by applying the coating composition onto a substrate and then leaving it at room temperature (about 20 ° C.), so a heating step is not essential. However, you may implement a heating process.
  • the heating step can be performed, for example, by heating the substrate while coating the coating composition on the substrate, that is, by coating the coating composition on the heated substrate. . Further, for example, the coating composition can be applied on the substrate, and the substrate can be heated after the coating is completed.
  • the method for heating is not particularly limited. For example, there is a method in which a base material is placed on a hot plate and heated.
  • the heating temperature in the heating process is not particularly limited. According to the method for forming a film of the present invention, a film can be formed by a heat treatment at a low temperature. Therefore, the temperature during the heating step is preferably 30 ° C. to 150 ° C., more preferably 40 ° C. to 120 ° C. Within these ranges, for example, even when a plastic substrate is used, a film can be formed without causing deformation of the substrate.
  • the film thickness of the coating is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 1 to 3 ⁇ m. By making the film thickness within these ranges, it is possible to form a film having excellent transparency and adhesion without impairing desired characteristics (such as shielding performance).
  • the preferred content of component (D) in the coating is the same as the preferred content of component (D) in the coating composition described above.
  • An article having a coating formed by the above-described method is given a desired function by the coating. That is, a photocatalytic function such as deodorization, sterilization, antifouling, water purification, and air treatment by the photocatalytic coating is imparted to an article formed by forming a photocatalytic coating on a substrate. Moreover, the shielding function by the ultraviolet-ray and / or infrared shielding film is provided to the article formed by forming the ultraviolet-ray and / or infrared shielding film on the substrate. Therefore, the present invention is very useful for articles that require such a function.
  • articles such as exteriors and interiors such as buildings, structures, vehicles, and electrical appliances.
  • articles such as exteriors and interiors such as buildings, structures, vehicles, and electrical appliances.
  • Specific examples include roofing materials, tiles, colored irons, colored iron plates, ceramic building materials, siding materials, calcium plates, cement walls, aluminum siding, curtain walls, painted steel plates, stone materials, ALC, tiles, glass blocks, sashes, Covers for collectors such as building sashes, screen doors, shutters, gates, bay windows, skylights, window frames, top lights, carports, solariums, verandas, veranda railings, roof gutters, flat glass, colored glass, glass films, solar water heaters, etc.
  • -Air conditioner outdoor units store signs, signs, advertising towers, showcases, show windows, refrigerated / frozen showcases, shutters, outdoor benches, vending machines, sound insulation walls, noise barriers, road decorative boards, guard fences, girder Cover plate, tunnel interior plate, road reflector, sign board, insulator, protective plate, protective film, toll gate, toll box, town , Road, paved road, pavement, plant outer wall, plant inner wall, oil storage tank, chimney, machinery, agricultural glass, glass greenhouse, greenhouse, tent, automobile, railway vehicle, aircraft, ship, bicycle, auto buy, Glass for automobiles, kitchen equipment, bathroom equipment, sanitary ware, ceramics, toilet bowl, bathtub, wash basin, lighting equipment, kitchenware, tableware, dish dryer, dishwasher, cooking device, electromagnetic cooker, sink, cooking Range, kitchen hood, ventilation fan, fan, vacuum cleaner, clothes dryer, heater, humidifier, dehumidifier, hair dryer, deodorizer.
  • ⁇ Production Example 1> In a 500 ml three-necked flask, 7.0 parts of stannic chloride pentahydrate (SnCl 4 .5H 2 O) was added and dissolved in 35 parts of water. Next, aqueous ammonia was added to adjust the pH to 8 to obtain a precipitate. The precipitate was collected after filtration and washing. Subsequently, 9 times by volume of distilled water was added to the precipitate, and 25% ammonia water was further added thereto to adjust the pH to 10.5, and the mixture was allowed to stand at room temperature for 24 hours, whereby a transparent aqueous solution (X -1) was obtained. The content of stannic acid in this aqueous solution (X-1) was 2.0% by mass in terms of SnO 2 .
  • ⁇ Production Example 3> A transparent aqueous solution (X-3) was obtained in the same manner as in Production Example 1, except that tetramethylammonium hydroxide (TMAH) was added instead of 25% aqueous ammonia to adjust the pH to 10.5. The content of stannic acid in this aqueous solution (X-3) was 2.0% by mass in terms of SnO 2 .
  • TMAH tetramethylammonium hydroxide
  • Example a1> In a sealable glass container, 100 parts of the aqueous solution (X-1) obtained in Production Example 1 and 0.6 parts of photocatalyst particles as component (D) (P25, manufactured by Degussa, titanium dioxide photocatalyst particles, average primary particle diameter) (Approx. 30 nm) and 450 parts of zirconia media (particle size: 0.1 mm), sealed, dispersed with DASH2000-K Disperser (trade name, manufactured by LAU, shaken paint conditioner) for 1 hour, and coated with photocatalyst Composition No. a1 was obtained.
  • the content of the photocatalyst particles in the photocatalyst coating composition No.a1 was 30% by volume based on the total volume of SnO 2 and component (D) [photocatalyst particles] formed from stannate (A).
  • the pH was 10.5.
  • Photocatalyst coating compositions No. a2 to No. a7 were obtained in the same manner as in Example a1 except that the blending amount of the photocatalyst particles was changed as shown in Table 1.
  • Table 1 shows the content and pH of the photocatalyst particles in each of the photocatalyst coating compositions No. a2 to No. a7.
  • Photocatalyst coating composition No. a8 was used in the same manner as in Example a1, except that the aqueous solution (X-2) was used instead of the aqueous solution (X-1), and the amount of the photocatalyst particles was changed to 3.5 parts.
  • Table 1 shows the content and pH of the photocatalyst particles in the photocatalyst coating composition No. a8.
  • Photocatalyst coating composition No. a9 was used in the same manner as in Example a1, except that the aqueous solution (X-3) was used instead of the aqueous solution (X-1), and the blending amount of the photocatalyst particles was changed to 3.5 parts.
  • Table 1 shows the content and pH of the photocatalyst particles in the photocatalyst coating composition No. a9.
  • IPA isopropanol
  • a stylus type surface shape measuring device Dektak 8 (trade name, manufactured by ULVAC, Inc.) was used for measuring the film thickness.
  • the measurement area was 100 mm ⁇ 100 mm, and the number of measurement points was 20.
  • the average film thickness at each point was measured under the condition of a scan length of 3 mm for each point.
  • the average film thickness at 20 points was calculated from the average film thickness at each point and used as the film thickness in this measurement.
  • an ultrasonic atomizing coating machine US-1 (trade name, manufactured by Rehiler, 30 ° for air conveyance) equipped with an ultrasonic nozzle having a nozzle diameter of 1 mm is used, and the distance between the substrate and the nozzle tip is 100 mm.
  • the discharge rate was 1.0 g / min, and the air pressure for air conveyance was 10 kPa.
  • the 50% volume average particle diameter of the atomized particles was 10 ⁇ m.
  • Examples a11 to a20> A photocatalyst film was formed in the same manner as in Example a10 except that the photocatalyst coating composition and the solvent (G) were changed as shown in Table 2, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 2.
  • Example a21> In 100 parts of the photocatalyst coating composition No. a2 obtained in Example a2, New Coal 707F (trade name, manufactured by Nippon Emulsifier Co., Ltd., ammonium salt type anionic surfactant, non-volatile content 30% as a surfactant (E) ) 0.33 parts was added to obtain a coating solution. Subsequently, at room temperature, the coating solution was atomized and coated on a glass substrate (100 mm ⁇ 100 mm ⁇ 1.8 mm) to form a 1.6 ⁇ m-thick photocatalytic film on the substrate to obtain a test plate. The content of the photocatalyst particles of the photocatalyst in the coating was 40% by volume based on the total volume of SnO 2 and component formed from stannate (A) (D). Table 3 shows the evaluation results of the test plate.
  • the atomization coating uses W-100 (trade name, manufactured by Anest Iwata), a general-purpose spray gun, the distance between the substrate and the nozzle tip is 150 mm, the discharge rate is 10.0 g / min, and air for air conveyance
  • the pressure was 200 kPa.
  • the 50% volume average particle diameter of the atomized particles was 10 ⁇ m.
  • Examples a22 to a29 The type of photocatalyst coating composition and the presence or absence of the surfactant (E) were changed as shown in Table 3, and in Examples a24 to a29, N-2 (aminoethyl) was used as the silane coupling agent (F). ) Except that 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Silicone) was added as shown in Table 3, a coating solution was obtained in the same manner as in Example a21, a photocatalytic film was formed, and a test plate was prepared. Obtained and evaluated in the same manner. The results are shown in Table 3.
  • the photocatalytic activity was evaluated according to the acetaldehyde removal performance test method specified in JIS R-1701-2.
  • a test gas having acetaldehyde concentration of 5 volppm (temperature of 25 ° C., water vapor concentration of 1.56 vol%) is flowed at 1 L / min into a container provided with a test plate of 100 mm ⁇ 50 mm, and light of 300 to 400 nm is irradiated at an irradiation intensity of 10 W / m 2 .
  • the test plate was irradiated.
  • the acetaldehyde concentration in the gas that passed through the container was measured using a gas chromatograph, and the acetaldehyde removal rate was determined.
  • Example b1> In a sealable glass container, 100 parts of the aqueous solution (X-1) obtained in Production Example 1 and 1.9 parts of a 30% sol solution of ZnO.Sb 2 O 5 particles as the component (D) [infrared shielding agent] (particles Is 0.6 parts), and 450 parts of zirconia media (particle size: 0.1 mm) are put in, sealed, and dispersed for 1 hour with the same shaking paint conditioner as in Example a1 to protect against ultraviolet rays and / or infrared rays.
  • Coating composition No. b1 was obtained.
  • the content of the infrared shielding agent in coating composition No. b1 is 30 with respect to the total volume of SnO 2 formed from stannic acid (A) and component (D) [ultraviolet shielding agent and / or infrared shielding agent]. % By volume.
  • the pH was 10.5.
  • Photocatalyst coating compositions No. b2 to No. b7 were obtained in the same manner as in Example b1, except that the blending amount of the ZnO.Sb 2 O 5 particles was changed as shown in Table 4.
  • Table 4 shows the content and pH of the ZnO.Sb 2 O 5 particles in each of the coating compositions No. b2 to No. b7.
  • Example b8> Except for using the aqueous solution (X-2) instead of the aqueous solution (X-1) and changing the blending amount of the ZnO.Sb 2 O 5 particles to 3.2 parts, ultraviolet rays and / Or infrared shielding coating composition No.b8 was obtained.
  • Table 4 shows the content and pH of the component (D) in the coating composition No. b8.
  • Example b9 Except for using the aqueous solution (X-3) instead of the aqueous solution (X-1) and changing the blending amount of the ZnO.Sb 2 O 5 particles to 3.2 parts, ultraviolet rays and / Or infrared shielding coating composition No.b9 was obtained.
  • Table 4 shows the content and pH of component (D) in coating composition No. b9.
  • Table 4 shows the content and pH of component (D) in each of the coating compositions No. b10 to No. b18.
  • Example b19> In 100 parts of the coating composition No. b1 obtained in Example b1, New Coal 707F (trade name, manufactured by Nippon Emulsifier Co., Ltd., ammonium salt type anionic surfactant, non-volatile content 30%) as a surfactant (E) 0.33 part was added to obtain a coating solution. Subsequently, at room temperature, the coating solution was atomized and coated on a glass substrate (100 mm ⁇ 100 mm ⁇ 1.8 mm) to form a 1.6 ⁇ m-thickness shielding film on the substrate to obtain a test plate. The content of infrared shielding agent in the barrier coating was 30% by volume based on the total volume of SnO 2 and component formed from stannate (A) (D). Table 5 shows the evaluation results of the test plate.
  • the atomization coating uses W-100 (trade name, manufactured by Anest Iwata), a general-purpose spray gun, the distance between the substrate and the nozzle tip is 150 mm, the discharge rate is 10.0 g / min, and air for air conveyance
  • the pressure was 200 kPa.
  • the 50% volume average particle diameter of the atomized particles was 10 ⁇ m.
  • Examples b20 to b36> Except that the type of coating composition was changed as shown in Tables 5 and 6, a coating solution was obtained in the same manner as in Example b19, an ultraviolet ray and / or infrared shielding film was formed, a test plate was obtained, and similarly evaluated. The results are shown in Tables 5 and 6.
  • Examples b37 to b39> The coating composition No. b4 was used in place of the coating composition No. b1, and N-2 (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane coupling agent (F).
  • a coating solution was obtained in the same manner as in Example b19 except that a coating was formed, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 7.
  • ⁇ Storage stability> The coating composition was allowed to stand at 20 ° C. for 4 weeks, and compared with the initial one, the presence or absence of sedimentation, viscosity change and gelation was confirmed and evaluated according to the following criteria. ⁇ " ⁇ ”: No sedimentation or viscosity change. “ ⁇ ”: Slight sedimentation and / or viscosity change is observed. “X”: sedimentation and / or viscosity change or gelation is observed.
  • Xi transmittance at wavelength ⁇ i (%)
  • ⁇ i wavelength (in the range of 2500 to 800 nm, wavelength every 50 nm)
  • UV shielding rate It was expressed as a shielding factor at a wavelength of 360 nm.
  • Visible light transmittance (transparency) The typical wavelengths are represented by transmittances of 700 nm and 500 nm.

Abstract

Disclosed is a coating composition comprising stannic acid (A), at least one compound (B) selected from the group consisting of ammonia, tetramethylammonium hydroxide and a water-soluble amine, water (C), and at least one component (D) selected from the group consisting of photocatalyst particles, an ultraviolet ray blocker, and an infrared ray blocker. When various types of coating films such as a photocatalyst coating film or an ultraviolet ray and/or infrared ray blocking coating film are formed using the coating composition, the coating films can have desired properties such as a photocatalytic activity or an ultraviolet ray and/or infrared ray blocking property and can be formed by a heating treatment at lower temperatures and in a simple manner. The coating composition has excellent storage stability.

Description

コーティング組成物、被膜形成方法、及びその被膜を有する物品Coating composition, film forming method, and article having the film
 本発明は、例えば、光触媒被膜や紫外線及び/又は赤外線遮蔽被膜を形成する為に有用なコーティング組成物、そのコーティング組成物を用いて被膜を形成する方法、並びに、被膜を有する物品に関する。 The present invention relates to a coating composition useful for forming, for example, a photocatalytic film and an ultraviolet and / or infrared shielding film, a method of forming a film using the coating composition, and an article having the film.
 まず、光触媒被膜に関する背景技術と課題について説明する。 First, the background technology and problems related to the photocatalytic coating will be described.
 光触媒とは、バンドギャップ以上のエネルギーを持つ波長の光が照射されると光触媒機能を発現する物質である。通常、光触媒は、二酸化チタン、酸化亜鉛、酸化タングステン、酸化鉄、チタン酸ストロンチウム、硫化カドミウム、セレン化カドミウムなどの金属化合物半導体粒子のことをいう。 A photocatalyst is a substance that exhibits a photocatalytic function when irradiated with light having a wavelength greater than the band gap. Usually, the photocatalyst refers to metal compound semiconductor particles such as titanium dioxide, zinc oxide, tungsten oxide, iron oxide, strontium titanate, cadmium sulfide, and cadmium selenide.
 これらの物質にバンドギャップ以上のエネルギーを持つ波長の光が照射されると、光励起により伝導帯に電子が生じ、価電子帯に正孔が生じる。これら電子-正孔対のうち、電子の有する高い還元力、正孔の有する高い酸化力が、脱臭、殺菌、防汚、水の浄化、大気処理等の光触媒機能を発揮させる。 When these materials are irradiated with light having a wavelength having energy greater than or equal to the band gap, electrons are generated in the conduction band by photoexcitation, and holes are generated in the valence band. Of these electron-hole pairs, the high reducing power of electrons and the high oxidizing power of holes exert photocatalytic functions such as deodorization, sterilization, antifouling, water purification, and air treatment.
 これら光触媒機能を利用するために、陶磁器、金属、プラスチック等の各種基材表面に光触媒被膜を形成することが行われている。光触媒被膜が形成された基材は、光触媒機能により防汚性、脱臭性、抗菌性、大気浄化性等を発揮する。 In order to use these photocatalytic functions, a photocatalytic film is formed on the surface of various base materials such as ceramics, metals, and plastics. The substrate on which the photocatalyst film is formed exhibits antifouling properties, deodorizing properties, antibacterial properties, air purification properties, and the like due to the photocatalytic function.
 光触媒被膜を形成するには、光触媒を基材表面に固定化させる必要がある。ただし、有機樹脂を固定化の結着剤として用いた場合、光触媒の光触媒活性により有機樹脂が分解又は劣化する。そこで、光触媒を基材表面に有効に固定化させるために種々の検討が行われている。 In order to form a photocatalytic film, it is necessary to immobilize the photocatalyst on the substrate surface. However, when an organic resin is used as an immobilization binder, the organic resin is decomposed or deteriorated due to the photocatalytic activity of the photocatalyst. Therefore, various studies have been conducted in order to effectively immobilize the photocatalyst on the substrate surface.
 例えば、特開平11-267517号公報には、予め焼成処理を施した結晶化度90%以上の高結晶性の光触媒微粒子を金属酸化物からなるマトリックスに分散させたことを特徴とする光触媒被膜に関する発明が開示されている。この発明においては、金属酸化物用ゾルゲル溶液に、予め焼成処理を施した結晶化度90%以上の高結晶性の光触媒微粒子と分散剤を混合し、光触媒微粒子を溶液中に均一に分散し、この溶液を基材表面に塗布し、乾燥・焼成し光触媒を基材表面に固定化させている。この発明によれば、光触媒活性に優れかつ高耐久性の光触媒機能を有する光触媒被膜が得られる。しかし、光触媒を基材表面に固定化させる際に、高温での焼成工程が必要である。 For example, Japanese Patent Application Laid-Open No. 11-267517 relates to a photocatalyst film characterized in that highly crystalline photocatalyst fine particles having a crystallinity of 90% or more that have been pre-fired are dispersed in a metal oxide matrix. The invention is disclosed. In this invention, a high-crystallinity photocatalyst fine particle having a crystallization degree of 90% or more and a dispersing agent previously mixed in a sol-gel solution for metal oxide is mixed, and the photocatalyst fine particle is uniformly dispersed in the solution. This solution is applied to the substrate surface, dried and fired to fix the photocatalyst to the substrate surface. According to this invention, a photocatalyst film having excellent photocatalytic activity and a highly durable photocatalytic function can be obtained. However, when the photocatalyst is immobilized on the surface of the substrate, a baking process at a high temperature is necessary.
 また例えば、特開平11-347418号公報には、光触媒微粒子と、数平均分子量が1,500以下のテトラアルコキシシラン加水分解縮合物を主成分とする無機系結合材とを含むことを特徴とする光触媒コーティング液に関する発明が開示されている。この発明によれば、基体樹脂フィルムの軟化点以下の温度で充分に硬化し、基体樹脂フィルムに対する密着性、曲げ追随性が良好であり、液性が酸性を示さず、コーティング装置を腐食することがない光触媒コーティング液を得ることができる。しかし、この光触媒コーティング液を用いた場合、被膜を形成する条件によっては、被膜を構成するテトラアルコキシシラン加水分解縮合物を主成分とする無機系結合材中にアルコキシ基が残存する可能性がある。この場合の被膜は実質的に無機成分のみからなる被膜とはならず、残存有機基が光触媒活性により分解又は劣化し、被膜を脆弱にする恐れがある。 Further, for example, JP-A-11-347418 includes photocatalyst fine particles and an inorganic binder mainly composed of a tetraalkoxysilane hydrolysis condensate having a number average molecular weight of 1,500 or less. An invention relating to a photocatalytic coating solution is disclosed. According to this invention, it is sufficiently cured at a temperature below the softening point of the base resin film, has good adhesion to the base resin film, good bending followability, does not exhibit acidity, and corrodes the coating apparatus. It is possible to obtain a photocatalyst coating solution free from mist. However, when this photocatalyst coating liquid is used, depending on the conditions for forming the film, an alkoxy group may remain in the inorganic binder mainly composed of the tetraalkoxysilane hydrolyzed condensate constituting the film. . In this case, the film does not become a film consisting essentially of an inorganic component, and the residual organic group may be decomposed or deteriorated by the photocatalytic activity, which may make the film brittle.
 次に、紫外線及び/又は赤外線遮蔽被膜に関する背景技術と課題について説明する。 Next, background technologies and problems related to ultraviolet rays and / or infrared shielding films will be described.
 太陽光には、可視光以外に紫外線及び赤外線が含まれている。紫外線は、人体に皮膚の老化、日焼け、皮膚癌等の影響を及ぼす。また、紫外線によって、衣服、カーテン等の変色、有機樹脂のフィルム、パネル、成形品、有機樹脂複合材料等の黄変及び強度劣化、食品の変質等が起こる。したがって、紫外線を遮蔽することは日常生活を送る上で重要である。 Sunlight contains ultraviolet rays and infrared rays in addition to visible light. Ultraviolet rays have effects on the human body such as skin aging, sunburn, and skin cancer. Further, ultraviolet rays cause discoloration of clothes, curtains, etc., yellowing and strength deterioration of organic resin films, panels, molded articles, organic resin composite materials, etc., and food alteration. Therefore, it is important to shield the ultraviolet rays when living daily life.
 一方、赤外線は、紫外線と比較すると光エネルギーは小さいが熱的作用が大きく、物質に吸収されると熱として放出され温度上昇を伴う。したがって、ビルの窓、家庭用の窓、自動車の窓等に赤外線遮蔽機能を持たせると、太陽光による室内の温度上昇を低減でき、夏場の大幅な冷房用電力の低減効果が期待できる。したがって、赤外線を遮蔽することは省エネルギーの点から大きな意味がある。 On the other hand, infrared rays have a small thermal energy but a large thermal effect compared to ultraviolet rays, and when absorbed by a substance, they are released as heat and accompanied by a rise in temperature. Therefore, if an infrared shielding function is provided on a building window, a home window, an automobile window, etc., an increase in indoor temperature due to sunlight can be reduced, and a significant reduction in cooling power in summer can be expected. Therefore, shielding infrared rays is significant from the viewpoint of energy saving.
 従来より、紫外線及び/又は赤外線を遮蔽するフィルムをガラスに貼り付け、可視光を十分に透過しながら紫外線及び/又は赤外線の入射を防ぐ方法が知られている。例えば、透明なフィルム表面に紫外線及び/又は赤外線を遮蔽する機能を持つ物質の薄膜を真空蒸着又はスパッタリングで形成する方法がある。しかし、この方法は高価な装置が必要で工程も複雑であり、また、金属薄膜を形成する場合は基板フィルムの透明性を犠牲にしてしまう。 Conventionally, there has been known a method in which a film that shields ultraviolet rays and / or infrared rays is attached to glass to prevent the incidence of ultraviolet rays and / or infrared rays while sufficiently transmitting visible light. For example, there is a method of forming a thin film of a substance having a function of shielding ultraviolet rays and / or infrared rays on a transparent film surface by vacuum deposition or sputtering. However, this method requires an expensive apparatus and a complicated process, and when forming a metal thin film, the transparency of the substrate film is sacrificed.
 そこで、紫外線及び/又は赤外線を遮蔽する材料を基材に塗布する方法が行われている。例えば、特開2001-262061号公報には、バインダー成分、希釈溶媒、硬化触媒及び近赤外光遮蔽成分を含有する日射遮蔽膜形成用コーティング組成物であって、バインダー成分の少なくとも1種がグリシドキシプロピル基含有アルコキシシランとアミノプロピル基含有アルコキシシランとを反応させてなる特定の物質であり、かつ近赤外光遮蔽成分が六ホウ化物の中から選ばれた少なくとも1種からなる平均粒径200nm以下の微粒子であることを特徴とする常温で硬化可能な日射遮蔽膜形成用コーティング組成物に関する発明が開示されている。この発明は、透明基材に適応でき、常温での被膜形成が可能で、かつ優れた膜強度が得られる日射遮蔽膜形成用コーティング組成物を提供しうる。しかし、このコーティング組成物は、常温での被膜形成を可能にすべく硬化触媒を用いているので貯蔵安定性が十分ではなく、低温で保管する必要がある。また、このコーティング組成物は作製に時間がかかり、さらに均一な被膜を形成するのが困難な場合がある。 Therefore, a method of applying a material that shields ultraviolet rays and / or infrared rays to a substrate has been performed. For example, Japanese Patent Application Laid-Open No. 2001-262061 discloses a coating composition for forming a solar radiation shielding film containing a binder component, a diluting solvent, a curing catalyst, and a near infrared light shielding component, wherein at least one binder component is a grease composition. An average particle comprising at least one selected from the group consisting of a hexaboride and a specific substance obtained by reacting a sildoxypropyl group-containing alkoxysilane and an aminopropyl group-containing alkoxysilane. An invention relating to a coating composition for forming a solar radiation shielding film, which is a fine particle having a diameter of 200 nm or less and is curable at room temperature, is disclosed. The present invention can provide a coating composition for forming a solar shading film that can be applied to a transparent substrate, can form a film at room temperature, and provides excellent film strength. However, since this coating composition uses a curing catalyst to enable film formation at room temperature, the storage stability is not sufficient, and it is necessary to store it at a low temperature. In addition, this coating composition takes time to produce, and it may be difficult to form a uniform film.
 また例えば、特開2006-334530号公報には、紫外線遮蔽剤及び/又は赤外線遮蔽剤とバインダ成分と多価アルコール系溶媒とを少なくとも配合し、多価アルコールの配合量が50~95重量%である塗液を、特定の塗装条件で基材に塗布し乾燥して、基材の表面に紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有した塗膜を形成する塗装方法に関する発明が開示されている。この発明によれば、耐久性及び耐摩耗性に優れ、しかも塗布むらや色むらが生じ難く、また斑点、白化、欠損、クラックが生じ難い、紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有した塗膜を形成できる。しかし、具体的に使用されているバインダ成分であるシリコーン樹脂を用いたコーティング組成物は、貯蔵安定性が十分ではなく、低温で保管する必要がある。 Further, for example, in JP-A-2006-334530, at least an ultraviolet shielding agent and / or an infrared shielding agent, a binder component, and a polyhydric alcohol solvent are blended, and the blending amount of the polyhydric alcohol is 50 to 95% by weight. An invention relating to a coating method in which a coating liquid is applied to a substrate under specific coating conditions and dried to form a coating film containing an ultraviolet shielding agent and / or an infrared shielding agent on the surface of the substrate is disclosed. . According to this invention, it is excellent in durability and wear resistance, and it is difficult to cause uneven coating and color unevenness, and it is difficult to cause spots, whitening, defects, and cracks, and it contains an ultraviolet shielding agent and / or an infrared shielding agent. A film can be formed. However, a coating composition using a silicone resin, which is a binder component specifically used, has insufficient storage stability and needs to be stored at a low temperature.
 本発明は、上記の光触媒被膜、若しくは、紫外線及び/又は赤外線遮蔽被膜を形成する際の課題を解決すべくなされたものである。 The present invention has been made to solve the problems in forming the above-mentioned photocatalytic coating or ultraviolet and / or infrared shielding coating.
 すなわち本発明の目的は、例えば光触媒被膜、若しくは、紫外線及び/又は赤外線遮蔽被膜等の各種の被膜を形成する場合、光触媒活性、若しくは、紫外線及び/又は赤外線遮蔽性など所望の諸特性を有する被膜を低温での熱処理かつ簡便な方法により形成でき、かつ貯蔵安定性に優れたコーティング組成物;このコーティング組成物を用いた被膜形成方法、及びこの被膜を有する物品を提供することにある。 That is, an object of the present invention is to provide a film having desired characteristics such as photocatalytic activity or ultraviolet and / or infrared shielding properties when forming various films such as a photocatalytic film or an ultraviolet and / or infrared shielding film. It is an object of the present invention to provide a coating composition that can be formed by heat treatment at a low temperature and by a simple method and has excellent storage stability; a film forming method using the coating composition, and an article having the film.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の組成物が非常に有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a specific composition is very effective, and have completed the present invention.
 すなわち本発明は、スズ酸(A)、アンモニア、テトラメチルアンモニウムヒドロキシド及び水溶性アミンからなる群より選ばれる少なくとも1種の化合物(B)、水(C)、並びに、光触媒粒子、紫外線遮蔽剤及び赤外線遮蔽剤からなる群より選ばれる少なくとも1種の成分(D)を含有するコーティング組成物である。 That is, the present invention relates to at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide, and a water-soluble amine, water (C), photocatalyst particles, and an ultraviolet shielding agent. And a coating composition containing at least one component (D) selected from the group consisting of an infrared shielding agent.
 さらに本発明は、上記コーティング組成物を、基材上に霧化塗装して被膜を形成する被膜形成方法である。 Furthermore, the present invention is a film forming method in which the coating composition is atomized and coated on a substrate to form a film.
 さらに本発明は、上記方法により形成された被膜を有する物品である。 Furthermore, the present invention is an article having a coating formed by the above method.
 本発明のコーティング組成物が成分(D)として光触媒粒子を含有する場合は、光触媒コーティング組成物となり、このコーティング組成物を用いることによって、光触媒活性に優れた無機被膜を低温での熱処理かつ簡便な方法により形成できる。また、本発明のコーティング組成物が成分(D)として紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有する場合は、紫外線及び/又は赤外線遮蔽性コーティング組成物となり、このコーティング組成物を用いることによって、紫外線及び/又は赤外線遮蔽性に優れた被膜を低温での熱処理かつ簡便な方法により形成できる。またこのコーティング組成物は、貯蔵安定性にも優れている。 When the coating composition of the present invention contains photocatalyst particles as the component (D), it becomes a photocatalyst coating composition. By using this coating composition, an inorganic film excellent in photocatalytic activity can be heat-treated at a low temperature and easily. It can be formed by a method. Further, when the coating composition of the present invention contains an ultraviolet shielding agent and / or an infrared shielding agent as component (D), it becomes an ultraviolet and / or infrared shielding coating composition, and by using this coating composition, A film excellent in ultraviolet and / or infrared shielding properties can be formed by heat treatment at a low temperature and a simple method. The coating composition is also excellent in storage stability.
 <コーティング組成物>
 本発明のコーティング組成物は、スズ酸(A)、アンモニア、テトラメチルアンモニウムヒドロキシド及び水溶性アミンからなる群より選ばれる少なくとも1種の化合物(B)、水(C)、並びに、光触媒粒子、紫外線遮蔽剤及び赤外線遮蔽剤からなる群より選ばれる少なくとも1種の成分(D)を含有する。
<Coating composition>
The coating composition of the present invention comprises at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide, and a water-soluble amine, water (C), and photocatalytic particles, It contains at least one component (D) selected from the group consisting of an ultraviolet shielding agent and an infrared shielding agent.
 スズ酸(A)は、形成される被膜においてSnOとなり、成分(D)を基材表面に固定化させるバインダー成分の役割を果たす。スズ酸(A)の含有量は、特に限定されるものではないが、コーティング組成物100質量%中、SnOに換算して、好ましくは0.1~15質量%、より好ましくは0.5~5質量%である。これら範囲の下限値は、塗装効率の点で意義がある。また上限値は、貯蔵性の点で意義がある。 The stannic acid (A) becomes SnO 2 in the coating film to be formed, and plays the role of a binder component for immobilizing the component (D) on the substrate surface. The content of stannic acid (A) is not particularly limited, but is preferably 0.1 to 15% by mass, more preferably 0.5 in terms of SnO 2 in 100% by mass of the coating composition. ~ 5% by mass. The lower limit of these ranges is significant in terms of coating efficiency. The upper limit is significant in terms of storability.
 化合物(B)は、アンモニア、テトラメチルアンモニウムヒドロキシド及び水溶性アミンからなる群より選ばれる少なくとも1種の化合物である。この化合物(B)は、コーティング組成物のpHを高くしてスズ酸(A)を溶解させる役割を果たす。特に化合物(B)としては、有機成分を含有せず、化合物(B)に由来する有機成分が残存していない点、さらにはそれに因り無機被膜を容易に形成できる点から、アンモニアが好ましい。 Compound (B) is at least one compound selected from the group consisting of ammonia, tetramethylammonium hydroxide, and a water-soluble amine. This compound (B) plays the role which raises pH of a coating composition and dissolves a stannic acid (A). In particular, as the compound (B), ammonia is preferable because it does not contain an organic component, the organic component derived from the compound (B) does not remain, and an inorganic coating can be easily formed.
 化合物(B)のうち、水溶性アミンとは、20℃の水に対する溶解度が0.01質量%以上、好ましくは5.0質量%以上のアミンをいう。この溶解度の範囲は、スズ酸(A)を溶解させる為の水の量を低減し、塗装効率を向上する点で意義が有る。また水溶性アミンは、水溶性アミンが有機成分として残存していない無機被膜をより低温の熱処理で形成する点から、大気圧下における沸点が150℃以下であることが好ましい。水溶性アミンとしては、例えば、アルキルアミン、アルカノールアミン、ポリアミン、ヒドロキシルアミン、環式アミンを使用できる。水溶性アミンの好適な具体例としては、エチレンジアミン(沸点117.0℃、溶解度:自由混合)、トリエチルアミン(沸点89.4℃、溶解度10.1質量%)が挙げられる。なお、自由混合とは、水と所望の割合で混合しうることを意味する。 Among the compounds (B), a water-soluble amine refers to an amine having a solubility in water of 20 ° C. of 0.01% by mass or more, preferably 5.0% by mass or more. This solubility range is significant in that it reduces the amount of water used to dissolve stannic acid (A) and improves coating efficiency. In addition, the water-soluble amine preferably has a boiling point of 150 ° C. or less under atmospheric pressure from the viewpoint of forming an inorganic coating in which no water-soluble amine remains as an organic component by a lower temperature heat treatment. As the water-soluble amine, for example, alkylamine, alkanolamine, polyamine, hydroxylamine, and cyclic amine can be used. Preferable specific examples of the water-soluble amine include ethylenediamine (boiling point 117.0 ° C., solubility: free mixing) and triethylamine (boiling point 89.4 ° C., solubility 10.1% by mass). In addition, free mixing means that it can mix with water in a desired ratio.
 化合物(B)の含有量は、コーティング組成物中にスズ酸(A)を溶解させることができる量であれば特に限定されないが、コーティング組成物100質量%中、0.001~1質量%が好ましい。 The content of the compound (B) is not particularly limited as long as stannic acid (A) can be dissolved in the coating composition, but 0.001 to 1% by mass in 100% by mass of the coating composition. preferable.
 水(C)の含有量は、特に限定されないが、コーティング組成物100質量%中、50~95質量%が好ましい。 The content of water (C) is not particularly limited, but is preferably 50 to 95% by mass in 100% by mass of the coating composition.
 成分(D)は、光触媒粒子、紫外線遮蔽剤及び赤外線遮蔽剤からなる群より選ばれる少なくとも1種の成分である。この成分(D)は、コーティング組成物に所望の特性を付与する役割を果たす。例えば、成分(D)として光触媒粒子を含有する場合は光触媒コーティング組成物となり、これを用いて光触媒被膜を良好に形成できる。また、成分(D)として紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有する場合は紫外線及び/又は赤外線遮蔽性コーティング組成物となり、これを用いて紫外線及び/又は赤外線遮蔽被膜を良好に形成できる。 Component (D) is at least one component selected from the group consisting of photocatalyst particles, ultraviolet shielding agents, and infrared shielding agents. This component (D) serves to impart desired properties to the coating composition. For example, when a photocatalyst particle is contained as the component (D), a photocatalyst coating composition is obtained, and a photocatalyst film can be favorably formed using this. Moreover, when an ultraviolet shielding agent and / or an infrared shielding agent are contained as the component (D), an ultraviolet and / or infrared shielding coating composition is formed, and an ultraviolet and / or infrared shielding film can be favorably formed using the composition.
 成分(D)として用いる光触媒粒子は、それが実用上十分な光触媒活性を発揮し得る限り、その種類、組成等は限定されない。ただし、二酸化チタン等のチタン酸化物系化合物が特に好ましい。チタン酸化物系化合物の具体例としては、アナターゼ型二酸化チタン、ルチル型二酸化チタン、ブルッカイト型二酸化チタンが挙げられる。中でも、アナターゼ型二酸化チタンが好ましい。また、波長400nm以上の可視光に対しても応答する性質を有するいわゆる可視光応答性二酸化チタンが好ましい。これらは酸素欠陥型でも窒素ドープ型でもよい。更に他の光触媒粒子としては、例えば、チタン酸ストロンチウム、チタン酸バリウム、酸化亜鉛、酸化すず、酸化ジルコニウムが挙げられる。 The type, composition, and the like of the photocatalyst particles used as component (D) are not limited as long as they can exhibit practically sufficient photocatalytic activity. However, titanium oxide compounds such as titanium dioxide are particularly preferable. Specific examples of the titanium oxide compound include anatase type titanium dioxide, rutile type titanium dioxide, and brookite type titanium dioxide. Among these, anatase type titanium dioxide is preferable. Further, so-called visible light responsive titanium dioxide having a property of responding to visible light having a wavelength of 400 nm or more is preferable. These may be oxygen-deficient or nitrogen-doped. Still other photocatalyst particles include, for example, strontium titanate, barium titanate, zinc oxide, tin oxide, and zirconium oxide.
 成分(D)として用いる光触媒粒子の粒径は特に限定されない。ただし、光触媒被膜の光触媒活性及び透明性の点から、平均1次粒子径は1~100nmが好ましく、3~50nmがより好ましい。この平均1次粒子径は、透過型電子顕微鏡(TEM)写真によって50個の光触媒粒子の長径を計測し、それらを平均することで求めた値である。 The particle diameter of the photocatalyst particles used as the component (D) is not particularly limited. However, from the viewpoint of photocatalytic activity and transparency of the photocatalytic coating, the average primary particle diameter is preferably 1 to 100 nm, more preferably 3 to 50 nm. This average primary particle diameter is a value obtained by measuring the long diameters of 50 photocatalyst particles with a transmission electron microscope (TEM) photograph and averaging them.
 成分(D)として用いる光触媒粒子は、公知の方法により製造できる。二酸化チタンの製造方法としては、例えば、塩化チタン、オキシ塩化チタン、硫酸チタン、硫酸チタニル等の無機チタン化合物を水中に溶解し、必要に応じて塩酸や硝酸などの触媒を添加し、加熱によりチタン化合物を加水分解して二酸化チタンを得る方法が挙げられる。さらに他の方法としては、例えば、塩化チタン等の化合物の蒸気を燃焼酸化して二酸化チタンを得る方法、或いは、チタニウムアルコキシド、チタニウムアセチルアセトネート等の有機チタン化合物を加水分解して二酸化チタンを得る方法が挙げられる。可視光応答性二酸化チタンの製造方法としては、例えば、水和酸化チタン又は結晶性二酸化チタンを、300~600℃の温度でアンモニアと接触させて可視光応答性二酸化チタンを得る方法が挙げられる。 The photocatalyst particles used as component (D) can be produced by a known method. As a method for producing titanium dioxide, for example, an inorganic titanium compound such as titanium chloride, titanium oxychloride, titanium sulfate, or titanyl sulfate is dissolved in water, and a catalyst such as hydrochloric acid or nitric acid is added as necessary, and titanium is heated. The method of hydrolyzing a compound and obtaining titanium dioxide is mentioned. As another method, for example, titanium dioxide is obtained by burning and oxidizing a vapor of a compound such as titanium chloride, or an organic titanium compound such as titanium alkoxide or titanium acetylacetonate is hydrolyzed to obtain titanium dioxide. A method is mentioned. Examples of the method for producing visible light-responsive titanium dioxide include a method in which hydrated titanium oxide or crystalline titanium dioxide is brought into contact with ammonia at a temperature of 300 to 600 ° C. to obtain visible light-responsive titanium dioxide.
 成分(D)として用いる紫外線遮蔽剤は、紫外線を反射及び/又は吸収する材料であればよい。公知の有機系紫外線遮蔽剤及び無機系紫外線遮蔽剤のどちらも使用できる。有機系紫外線遮蔽剤の具体例としては、ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、蓚酸アニリド系紫外線吸収剤が挙げられる。無機系紫外線遮蔽剤の具体例としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化セリウム(CeO)等の粒子が挙げられる。無機系紫外線遮蔽剤としては、表面修飾などによって触媒活性能を抑制したものも使用用できる。 The ultraviolet shielding agent used as the component (D) may be any material that reflects and / or absorbs ultraviolet rays. Both known organic ultraviolet shielding agents and inorganic ultraviolet shielding agents can be used. Specific examples of the organic ultraviolet shielding agent include benzophenone ultraviolet absorbers, salicylic acid ultraviolet absorbers, cyanoacrylate ultraviolet absorbers, benzotriazole ultraviolet absorbers, and oxalic acid anilide ultraviolet absorbers. Specific examples of the inorganic ultraviolet shielding agent include particles of titanium oxide (TiO 2 ), zinc oxide (ZnO), cerium oxide (CeO 2 ), and the like. As the inorganic ultraviolet shielding agent, those whose catalytic activity is suppressed by surface modification or the like can be used.
 成分(D)として用いる赤外線遮蔽剤は、赤外線を反射及び/又は吸収する材料であればよい。赤外線遮蔽剤の具体例としては、ペリレン系ブラック顔料、アニリン系顔料、ポリアニリン系顔料、シアニン系顔料、フタロシアニン系顔料等の顔料;酸化錫(SnO)、Sbをドープした酸化錫[ATO(SnO:Sb)]、酸化インジウム(In)、Snをドープした酸化インジウム[ITO(In:Sn)]、酸化亜鉛(ZnO)、Alをドープした酸化亜鉛[AZO(ZnO:Al)]、酸化アンチモン、アンチモン酸亜鉛(ZnO・Sb)、及びこれらの混合物等の導電性を有する酸化物微粒子;LaB、CeB、PrB、NdB、SmB、GdB、TbB、DyB、SrB、CaB等のホウ化物粒子並びにこれらのホウ素原子を窒素原子(N)に置換した窒化物粒子、及びこれらの混合物;が挙げられる。 The infrared shielding agent used as the component (D) may be any material that reflects and / or absorbs infrared rays. Specific examples of infrared shielding agents include pigments such as perylene black pigments, aniline pigments, polyaniline pigments, cyanine pigments, phthalocyanine pigments; tin oxide (SnO 2 ), tin oxide doped with Sb [ATO (SnO 2 : Sb)], indium oxide (In 2 O 3 ), Sn-doped indium oxide [ITO (In 2 O 3 : Sn)], zinc oxide (ZnO), Al-doped zinc oxide [AZO (ZnO: Al)], antimony oxide, zinc antimonate (ZnO.Sb 2 O 5 ), and conductive oxide fine particles such as a mixture thereof; LaB 6 , CeB 6 , PrB 6 , NdB 6 , SMB 6 , GdB 6 , TbB 6, DyB 6, SrB 6, boride particles CaB 6 and the like, as well nitride these boron atoms substituted on the nitrogen atom (N) Particles, and mixtures thereof; and the like.
 成分(D)の含有量は特に限定されない。ただし、この成分(D)の含有量は、コーティング組成物中のスズ酸(A)から形成されるSnO及び成分(D)の合計体積に対して、好ましくは35~95体積%、より好ましくは55~85体積%である。これら範囲の下限値は、被膜の所望の特性(光触媒活性又は遮蔽性能)の点で意義がある。また上限値は、被膜の硬度及び耐久性の点で意義がある。この「体積%」は、成分(D)の体積を、スズ酸(A)から形成されるSnOの体積と成分(D)の体積の合計量で除した値を百分率で表したものである。成分(D)の体積は、成分(D)の重量をその密度で除して求められる。スズ酸(A)から形成されるSnOの体積は、スズ酸(A)から形成されるSnOの重量をその密度(6.95g/cm)で除して求められる。 The content of component (D) is not particularly limited. However, the content of the component (D) is preferably 35 to 95% by volume, more preferably based on the total volume of SnO 2 formed from the stannic acid (A) and the component (D) in the coating composition. Is 55 to 85% by volume. The lower limit of these ranges is significant in terms of the desired properties (photocatalytic activity or shielding performance) of the coating. The upper limit is significant in terms of the hardness and durability of the coating. This “volume%” is a percentage obtained by dividing the volume of the component (D) by the total volume of the SnO 2 volume formed from the stannic acid (A) and the volume of the component (D). . The volume of component (D) is determined by dividing the weight of component (D) by its density. The volume of SnO 2 formed from stannic acid (A) is determined by dividing the weight of SnO 2 formed from stannic acid (A) by its density (6.95 g / cm 3 ).
 本発明のコーティング組成物は、界面活性剤(E)をさらに含有してもよい。被膜を形成する際の揮発、蒸発、沸騰、分解等によっては除去されない有機成分として、界面活性剤(E)を少量含有する場合、様々な基材への塗布が容易となり、平滑性に優れた被膜を得ることができる。界面活性剤(E)としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル等のノニオン系界面活性剤;アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル燐酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等のアニオン系界面活性剤;第4級アンモニウム塩、アルキルアミン酢酸塩等のカチオン系界面活性剤;アルキルベタイン、アルキルイミダゾリン等の両性界面活性剤;を使用できる。なかでも貯蔵安定性の点から、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等のノニオン系界面活性剤;アルキル硫酸塩、アルキルベンゼンスルホン酸塩等のアニオン系界面活性剤が好ましく、アンモニウム塩型のアニオン系界面活性剤がより好ましい。 The coating composition of the present invention may further contain a surfactant (E). When a small amount of surfactant (E) is contained as an organic component that is not removed by volatilization, evaporation, boiling, decomposition, etc. when forming a film, it can be easily applied to various substrates and has excellent smoothness. A coating can be obtained. Examples of the surfactant (E) include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene fatty acid ester; alkyl sulfates and alkylbenzene sulfones. Anionic surfactants such as acid salts, alkyl sulfosuccinates, alkyl phosphates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates; cationic systems such as quaternary ammonium salts, alkylamine acetates Surfactants; amphoteric surfactants such as alkylbetaines and alkylimidazolines can be used. Among these, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkylphenyl ether and the like; anionic surfactants such as alkyl sulfate and alkyl benzene sulfonate from the viewpoint of storage stability An ammonium salt type anionic surfactant is more preferable.
 界面活性剤(E)の具体例としては、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンプロピレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンプロピレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンプロピレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンアルキル硫酸ナトリウム、ポリオキシエチレンアルキルフェニル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン塩、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸アンモニウム、ドデシルベンゼンスルホン酸トリエタノールアミン塩等が挙げられる。これらは単独あるいは2種以上を併用して使用できる。 Specific examples of the surfactant (E) include polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene propylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene propylene lauryl ether, Polyoxyethylene tridecyl ether, polyoxyethylene propylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Styrenated phenyl ether, sodium polyoxyethylene alkyl sulfate, polyoxyethylene alkyl sulfate Sodium le sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, sodium dodecylbenzene sulfonate, ammonium dodecylbenzene sulfonate, dodecylbenzene sulfonic acid triethanolamine salt and the like. These can be used alone or in combination of two or more.
 界面活性剤(E)の含有量は特に限定されない。ただし、その含有量は、コーティング組成物100質量部に対して、好ましくは0.01~1.0質量部、より好ましくは0.05~0.50質量部である。これら範囲の下限値は、均一な被膜を形成する点で意義がある。また上限値は、被膜の耐候性の点で意義がある。また、
 本発明のコーティング組成物は、有機成分としてシランカップリング剤(F)をさらに含有してもよい。有機成分としてシランカップリング剤(F)を少量含有する場合、様々な基材との付着性や被膜強度等の物性が向上した被膜を得ることができる。シランカップリング剤(F)の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン等のアミノ基含有シランカップリング剤;3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シランカップリング剤;3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基含有シランカップリング剤;が挙げられる。
The content of the surfactant (E) is not particularly limited. However, the content thereof is preferably 0.01 to 1.0 part by mass, more preferably 0.05 to 0.50 part by mass with respect to 100 parts by mass of the coating composition. The lower limit of these ranges is significant in that a uniform film is formed. The upper limit is significant in terms of the weather resistance of the coating. Also,
The coating composition of the present invention may further contain a silane coupling agent (F) as an organic component. When a small amount of the silane coupling agent (F) is contained as the organic component, it is possible to obtain a film having improved physical properties such as adhesion to various substrates and film strength. Specific examples of the silane coupling agent (F) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- Amino group-containing silane coupling agents such as (aminoethyl) -3-aminopropyltriethoxysilane; 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl) epoxy group-containing silane coupling agents such as ethyltriethoxysilane; 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, vinyltrimethoxysilane, Vinyl group-containing sila such as vinyltriethoxysilane Coupling agents; and the like.
 シランカップリング剤(F)の含有量は特に限定されない。ただし、その含有量は、コーティング組成物100質量部に対して、好ましくは0.01~1.0質量部、より好ましくは0.1~1.0質量部である。 The content of the silane coupling agent (F) is not particularly limited. However, the content thereof is preferably 0.01 to 1.0 part by mass, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the coating composition.
 コーティング組成物のpHは、特に限定されない。ただし、好ましくはpH9.5~12.0であり、より好ましくはpH10.0~11.0である。これら範囲は、スズ酸(A)の溶解を容易にし、析出等が殆どない安定なコーティング組成物が得られる点及び成分(D)の凝集を抑制して貯蔵性に優れるコーティング組成物が得られる点で意義がある。 The pH of the coating composition is not particularly limited. However, the pH is preferably 9.5 to 12.0, and more preferably pH 10.0 to 11.0. These ranges facilitate the dissolution of stannic acid (A), provide a stable coating composition with almost no precipitation and the like, and suppress the aggregation of component (D) and provide a coating composition with excellent storability. Significant in terms.
 成分(D)として光触媒粒子を含有する光触媒コーティング組成物は、被膜を形成する際に揮発、蒸発、沸騰、分解等により除去されない有機成分[但し、先に説明した界面活性剤(E)及びシランカップリング剤(F)は除く]を実質的に含まないことが好ましい。有機成分の具体例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリブタジエン樹脂、ポリアセタール樹脂、アクリル樹脂、メラミン樹脂、ウレア樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、酢酸セルロース等の有機樹脂が挙げられる。 The photocatalyst coating composition containing the photocatalyst particles as the component (D) is an organic component that is not removed by volatilization, evaporation, boiling, decomposition, etc. when forming a film [provided that the surfactant (E) and the silane described above are not removed. It is preferable that substantially no coupling agent (F) is included. Specific examples of the organic component include polyethylene resin, polypropylene resin, polyester resin, polystyrene resin, polyvinyl chloride resin, polyamide resin, polycarbonate resin, polybutadiene resin, polyacetal resin, acrylic resin, melamine resin, urea resin, polyurethane resin, epoxy Organic resins such as resin, polyvinyl alcohol, and cellulose acetate are exemplified.
 光触媒コーティング組成物が、光触媒被膜を形成する際に揮発、蒸発、沸騰、分解等により除去されない有機成分を実質的に含まないことで、光触媒被膜は実質的に有機成分を含まない無機膜となる。ここで、「実質的に含まない」とは、スズ酸(A)をSnOに換算した質量及び含有される光触媒粒子(D)の質量の合計量に対して、有機成分の存在量が、5質量%以下、好ましくは1質量%以下、特に好ましくは0.1質量%以下であることを意味する。また、光触媒被膜の場合は、その光触媒被膜中のその成分の存在量が、5質量%以下、好ましくは1質量%以下、特に好ましくは0.1質量%以下であることを意味する。 When the photocatalyst coating composition is substantially free of organic components that are not removed by volatilization, evaporation, boiling, decomposition, or the like when forming the photocatalyst film, the photocatalyst film becomes an inorganic film that is substantially free of organic components. . Here, “substantially free” means that the abundance of the organic component is relative to the total amount of the mass of the stannic acid (A) converted to SnO 2 and the mass of the photocatalyst particles (D) contained. It means 5 mass% or less, preferably 1 mass% or less, particularly preferably 0.1 mass% or less. In the case of a photocatalyst film, it means that the amount of the component in the photocatalyst film is 5% by mass or less, preferably 1% by mass or less, particularly preferably 0.1% by mass or less.
 光触媒コーティング組成物は、光触媒被膜を形成する際に揮発、蒸発、沸騰、分解等により除去される有機成分であれば、それら有機成分を含有してもよい。例えば、大気圧下における沸点が120℃以下の有機溶剤が挙げられる。また、先に述べたとおり、有機成分である界面活性剤(E)やシランカップリング剤(F)を少量含有することは、特定の性能の点で好ましい。 The photocatalytic coating composition may contain an organic component as long as it is an organic component that is removed by volatilization, evaporation, boiling, decomposition, or the like when a photocatalytic film is formed. For example, the organic solvent whose boiling point under atmospheric pressure is 120 degrees C or less is mentioned. Moreover, as mentioned above, it is preferable from the point of specific performance to contain a small amount of surfactant (E) and silane coupling agent (F) which are organic components.
 本発明のコーティング組成物の製造方法は特に限定されない。例えば、スズ酸(A)、化合物(B)及び水(C)を含有する水溶液(スズ酸アンモニウム水溶液等)をまず作製し、この水溶液に成分(D)を混合してコーティング組成物を得ることができる。 The method for producing the coating composition of the present invention is not particularly limited. For example, an aqueous solution (such as an aqueous ammonium stannate solution) containing stannic acid (A), compound (B) and water (C) is first prepared, and a coating composition is obtained by mixing component (D) with this aqueous solution. Can do.
 この水溶液の作製方法は特に限定されない。例えば、特開2001-210156号公報に記載のように、スズ化合物を加水分解してスズの水酸化物(スズ酸)を得、必要によりろ別し、続いてアンモニア等の化合物(B)の存在下で水に溶解させて目的物を得る方法がある。このスズ化合物は、加水分解して水酸化物を得るものであればよく、例えば、塩化第二スズ等のハロゲン化物、ハロゲン化有機スズ、スズ酸塩並びにスズを含むエステルを使用できる。また例えば、特開平1-257129号公報に記載のように、ハロゲン化物と炭酸水素アルカリ又は炭酸水素アンモニウムとを反応させゲルを作製し、必要に応じて洗浄して不純物を除去し、続いてこのゲルをアンモニア等の化合物(B)の存在下で水に溶解させて目的物を得る方法がある。この炭酸水素アルカリとしては、例えば、炭酸水素カリウム、炭酸水素ナトリウムを使用できる。 The method for producing this aqueous solution is not particularly limited. For example, as described in Japanese Patent Application Laid-Open No. 2001-210156, a tin compound is hydrolyzed to obtain a tin hydroxide (stannic acid), and if necessary, filtered off, followed by the addition of a compound (B) such as ammonia. There is a method of obtaining a target product by dissolving in water in the presence. The tin compound is not particularly limited as long as it can be hydrolyzed to obtain a hydroxide. For example, halides such as stannic chloride, halogenated organotins, stannates, and esters containing tin can be used. Further, for example, as described in JP-A-1-257129, a gel is produced by reacting a halide with an alkali hydrogen carbonate or ammonium hydrogen carbonate, and if necessary, washing is performed to remove impurities. There is a method of obtaining a target product by dissolving a gel in water in the presence of a compound (B) such as ammonia. As the alkali hydrogen carbonate, for example, potassium hydrogen carbonate or sodium hydrogen carbonate can be used.
 この水溶液に成分(D)を混合した後には、成分(D)を分散させる為の分散工程を行うことが好ましい。分散工程には、例えば、振とう型ペイントコンディショナー、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、アトライター等の分散機を使用できる。分散の際の温度及び時間は特に限定されず、成分(D)の種類や含有量等を考慮して適宜決定すればよい。 After mixing the component (D) with this aqueous solution, it is preferable to perform a dispersion step for dispersing the component (D). For the dispersing step, for example, a dispersing machine such as a shake type paint conditioner, a ball mill, a horizontal sand mill, a vertical sand mill, an annular bead mill, or an attritor can be used. The temperature and time for dispersion are not particularly limited, and may be appropriately determined in consideration of the type and content of the component (D).
 [被膜形成方法]
 以上説明したコーティング組成物を基材上に塗装することにより、被膜を形成することができる。
[Film formation method]
A coating film can be formed by applying the coating composition described above onto a substrate.
 基材(基板等)は特に限定されない。基材を構成する材料としては、例えば、ガラス、金属、プラスチック、セラミックス、コンクリート、石、木が挙げられる。ガラスの具体例としては、ソーダガラス、石英ガラス、硼珪酸ガラスが挙げられる。金属の具体例としては、アルミニウムが挙げられる。プラスチックの具体例としては、アクリル樹脂、ポリエステル樹脂[ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等]、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ABS樹脂、FRP、ポリエチレン樹脂、ポリプロピレン樹脂、ゴム等が挙げられる。基材の形状は特に限定されず、フィルム状、板状、成型品等の様々な形状が可能である。 The base material (substrate etc.) is not particularly limited. Examples of the material constituting the substrate include glass, metal, plastic, ceramics, concrete, stone, and wood. Specific examples of the glass include soda glass, quartz glass, and borosilicate glass. A specific example of the metal is aluminum. Specific examples of plastic include acrylic resin, polyester resin [polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.], epoxy resin, phenol resin, silicone resin, polycarbonate resin, polyvinyl chloride resin, ABS resin, FRP, Examples thereof include polyethylene resin, polypropylene resin, and rubber. The shape of the substrate is not particularly limited, and various shapes such as a film shape, a plate shape, and a molded product are possible.
 基材は、表面処理が施されていてもよい。プラスチック基材(プラスチック基板等)の表面処理としては、例えば、薬品処理、機械的処理、コロナ処理、火焔処理、紫外線処理、高周波処理、グロー放電処理、プラズマ処理、レーザー処理、混酸処理、オゾン酸化処理が挙げられる。基材を表面処理することは、コーティング組成物の基材に対するぬれ性を向上させ、より均一な膜厚を有する光触媒被膜を得ることができる点で意義がある。なかでも、プラズマ処理、紫外線照射処理、コロナ処理、グロー放電処理が好ましい。これら処理は、より均一な膜厚を有する被膜を得る点に加え、表面処理における基材の変形、収縮等の損傷が少ない点で意義がある。 The substrate may be subjected to a surface treatment. Examples of surface treatments for plastic substrates (plastic substrates, etc.) include chemical treatment, mechanical treatment, corona treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, plasma treatment, laser treatment, mixed acid treatment, and ozone oxidation. Processing. Surface treatment of the substrate is significant in that the wettability of the coating composition to the substrate can be improved and a photocatalytic film having a more uniform film thickness can be obtained. Of these, plasma treatment, ultraviolet irradiation treatment, corona treatment, and glow discharge treatment are preferred. These treatments are significant in that there is little damage such as deformation or shrinkage of the base material in the surface treatment in addition to obtaining a film having a more uniform film thickness.
 コーティング組成物を基材上に塗装する方法は特に限定されない。例えば、霧化塗装、スピンコート塗装、ブレードコート塗装、ワイヤーバーコート塗装、ディップ塗装、エアーナイフコート塗装、ローラコート塗装、カーテンコート塗装の各種の塗装方法を採用できる。なかでも、均一な膜厚の被膜が得られる点から、霧化塗装が好ましい。 The method for coating the coating composition on the substrate is not particularly limited. For example, various coating methods such as atomization coating, spin coating, blade coating, wire bar coating, dip coating, air knife coating, roller coating, and curtain coating can be employed. Among these, atomization coating is preferable from the viewpoint of obtaining a film having a uniform film thickness.
 霧化塗装は、コーティング組成物を霧化して塗装できる方法であればよく、特に限定されない。例えば、2流体ノズルを使用し、圧縮空気により霧化させて塗装する方法、超音波ノズルを使用し、超音波により霧化させて塗装する方法、静電気力により霧化させて塗装する方法、遠心力や圧力など物理的な力により霧化させて塗装する方法、霧化室にて一時的に霧化粒子を多く発生させその中から必要とする粒子のみを分級して塗装する方法がある。 The atomization coating is not particularly limited as long as it is a method capable of atomizing and coating the coating composition. For example, using a two-fluid nozzle and atomizing with compressed air and painting, using an ultrasonic nozzle and ultrasonically atomizing and painting, electrostatic and atomizing and painting, centrifugal There are a method of atomizing and painting by physical force such as force and pressure, and a method of generating a large number of atomized particles temporarily in the atomizing chamber and classifying and painting only the necessary particles.
 霧化塗装の吐出量は特に限定されない。ただし、光触媒コーティング組成物の場合の吐出量は、好ましくは20g/分以下、より好ましくは0.1~3.0g/分である。また、紫外線及び/又は赤外線遮蔽性コーティング組成物の場合は、好ましくは20g/分以下、より好ましくは0.1~15g/分である。これら範囲は、基材に対する密着性に優れる光触媒被膜が形成できる点、及びより均一な膜厚を有する光触媒被膜が形成できる点で意義がある。 吐出 The amount of atomized paint discharged is not particularly limited. However, the discharge rate in the case of the photocatalyst coating composition is preferably 20 g / min or less, more preferably 0.1 to 3.0 g / min. In the case of an ultraviolet ray and / or infrared ray shielding coating composition, it is preferably 20 g / min or less, more preferably 0.1 to 15 g / min. These ranges are significant in that a photocatalytic film having excellent adhesion to the substrate can be formed and a photocatalytic film having a more uniform film thickness can be formed.
 霧化塗装の吐出量を上記範囲内にする為には、公知の方法を行なえばよい。少ない吐出量(例えば0.1~3.0g/分程度)を実現する方法としては、例えば、コーティング組成物が充填されている圧送タンクからノズルまでの供給経路に電磁弁を設置する方法、2流体ノズルのノズル口径を50~500μm程度に小さくする方法、吐出圧力を精密に制御できる装置を設置する方法、霧化室にて一時的に霧化粒子を多く発生させておいて、その中から必要とする量の粒子のみを吐出する方法が挙げられる。 In order to make the discharge amount of the atomized coating within the above range, a known method may be performed. As a method for realizing a small discharge amount (for example, about 0.1 to 3.0 g / min), for example, a method of installing an electromagnetic valve in a supply path from a pressure-feed tank filled with a coating composition to a nozzle, A method of reducing the nozzle diameter of the fluid nozzle to about 50 to 500 μm, a method of installing a device capable of precisely controlling the discharge pressure, and generating a lot of atomized particles temporarily in the atomization chamber. A method of discharging only a necessary amount of particles can be mentioned.
 霧化塗装の霧化粒子の50%体積平均粒子径は、特に限定されないが、好ましくは20μm以下、より好ましくは1.0~13μmである。これら範囲は、より均一な膜厚を有する被膜が形成する点で意義がある。この50%体積平均粒子径は、2600型パーティクルサイザー(商品名、マルバーン社製)を用いて測定して得た値である。この測定は、実際に塗装する際に基材を置く位置を飛行する霧化粒子を吐出方向に対して直角方向から計測することにより行った。 The 50% volume average particle diameter of the atomized particles of the atomized coating is not particularly limited, but is preferably 20 μm or less, more preferably 1.0 to 13 μm. These ranges are significant in that a film having a more uniform film thickness is formed. The 50% volume average particle diameter is a value obtained by measurement using a 2600 type particle sizer (trade name, manufactured by Malvern). This measurement was performed by measuring the atomized particles flying in the position where the base material is placed when actually coating from a direction perpendicular to the discharge direction.
 霧化粒子の50%体積平均粒子径を上記範囲内にする為には、公知の方法を行なえばよい。例えば、ノズル口径、吐出量、霧化圧力、エアー流量等の条件を適宜調節する方法がある。50%体積平均粒子径を小さくする為には、例えば、2流体ノズルの吐出量を少なくする方法と霧化圧力を高くする方法がある。光触媒コーティング組成物の場合は、吐出量を0.1~1g/分、霧化圧力を200~400kPaとし、紫外線及び/又は赤外線遮蔽性コーティング組成物の場合は、吐出量を0.1~15g/分、霧化圧力を150~400kPaとすると、50%体積平均粒子径を適度に小さくすることができる。また、超音波ノズルを用いる場合は、吐出量を少なくする方法と超音波の周波数を高くする方法がある。特に光触媒コーティング組成物の場合は、吐出量を0.1~10g/分、超音波の周波数を50~500kHzとし、紫外線及び/又は赤外線遮蔽性コーティング組成物の場合は、吐出量を0.1~15g/分、超音波の周波数を50~500kHzとすると、50%体積平均粒子径を適度に小さくすることができる。 In order to bring the 50% volume average particle diameter of the atomized particles within the above range, a known method may be performed. For example, there is a method of appropriately adjusting conditions such as nozzle diameter, discharge amount, atomization pressure, air flow rate, and the like. In order to reduce the 50% volume average particle size, for example, there are a method of reducing the discharge amount of the two-fluid nozzle and a method of increasing the atomization pressure. In the case of the photocatalyst coating composition, the discharge amount is 0.1 to 1 g / min and the atomization pressure is 200 to 400 kPa. In the case of the ultraviolet and / or infrared shielding coating composition, the discharge amount is 0.1 to 15 g. / Min. When the atomization pressure is 150 to 400 kPa, the 50% volume average particle diameter can be appropriately reduced. In addition, when an ultrasonic nozzle is used, there are a method of reducing the discharge amount and a method of increasing the frequency of ultrasonic waves. In particular, in the case of a photocatalytic coating composition, the discharge rate is 0.1 to 10 g / min and the ultrasonic frequency is 50 to 500 kHz. In the case of an ultraviolet and / or infrared shielding coating composition, the discharge rate is 0.1. If the ultrasonic wave frequency is 50 to 500 kHz with a frequency of ˜15 g / min, the 50% volume average particle diameter can be reduced appropriately.
 霧化塗装における基材とノズルの距離は特に限定されない。ただし、基材とノズル先端の距離は、光触媒コーティング組成物の場合は好ましくは10~300mm、より好ましくは50~150mmであり、紫外線及び/又は赤外線遮蔽性コーティング組成物の場合は好ましくは10~300mm、より好ましくは50~200mmである。その距離を上記範囲内とすることにより、霧化粒子を適度な乾燥状態で基材に塗着でき、より均一な膜厚を有する被膜を形成できる。 The distance between the base material and the nozzle in atomization coating is not particularly limited. However, the distance between the substrate and the nozzle tip is preferably 10 to 300 mm in the case of the photocatalyst coating composition, more preferably 50 to 150 mm, and preferably 10 to 300 in the case of the ultraviolet and / or infrared shielding coating composition. It is 300 mm, more preferably 50 to 200 mm. By setting the distance within the above range, the atomized particles can be applied to the substrate in an appropriate dry state, and a film having a more uniform film thickness can be formed.
 本発明の被膜形成方法において、光触媒コーティング組成物を用いる場合は、大気圧下における沸点が60℃~120℃でありかつ20℃の水に40質量%以上溶解する溶剤(G)をさらに含有することが好ましい。この溶剤(G)をコーティング組成物が含有することにより、均一な膜厚を有する光触媒被膜が得られる。かかる効果は、塗装方法として霧化塗装を採用した場合に特に顕著である。 When the photocatalytic coating composition is used in the film forming method of the present invention, it further contains a solvent (G) having a boiling point of 60 ° C. to 120 ° C. under atmospheric pressure and 40% by mass or more in 20 ° C. water. It is preferable. By containing this solvent (G) in the coating composition, a photocatalytic film having a uniform film thickness can be obtained. Such an effect is particularly remarkable when atomization coating is employed as a coating method.
 溶剤(G)の具体例としては、エタノール(沸点78.3℃、溶解度:自由混合)、イソプロパノール(IPA)(沸点82.3℃、溶解度:自由混合)、アリルアルコール(沸点96.90~96.98℃、溶解度:自由混合)、t-ブタノール(沸点82.5℃、溶解度:自由混合)、プロパルギルアルコール(沸点115.0℃、溶解度:自由混合)、1-プロパノール(沸点97.2℃、溶解度:自由混合)、メタノール(沸点64.7℃、溶解度:自由混合)、3-メチル-1-ブチン-3-オール(沸点104.0℃、溶解度:自由混合)等のアルコール;テトラヒドロフラン(沸点65.0℃、溶解度:自由混合);が挙げられる。なかでも、より均一な膜厚を有する光触媒被膜が形成できる点から、アルコールが好ましく、エタノール、イソプロパノールがより好ましい。なお、自由混合とは、先に述べたとおり水と所望の割合で混合しうることを意味する。 Specific examples of the solvent (G) include ethanol (boiling point 78.3 ° C., solubility: free mixing), isopropanol (IPA) (boiling point 82.3 ° C., solubility: free mixing), allyl alcohol (boiling points 96.90 to 96). .98 ° C, solubility: free mixing), t-butanol (boiling point 82.5 ° C, solubility: free mixing), propargyl alcohol (boiling point 115.0 ° C, solubility: free mixing), 1-propanol (boiling point 97.2 ° C) Alcohols such as methanol (boiling point 64.7 ° C., solubility: free mixing), 3-methyl-1-butyn-3-ol (boiling point 104.0 ° C., solubility: free mixing); tetrahydrofuran ( Boiling point 65.0 ° C., solubility: free mixing). Especially, alcohol is preferable and ethanol and isopropanol are more preferable from the point which can form the photocatalyst film which has a more uniform film thickness. The free mixing means that it can be mixed with water at a desired ratio as described above.
 溶剤(G)の含有量は特に限定されない。ただし、コーティング組成物に含有される水(C)100質量部に対して、好ましくは40~240質量部、より好ましくは60~160質量部である。 The content of the solvent (G) is not particularly limited. However, the amount is preferably 40 to 240 parts by mass, more preferably 60 to 160 parts by mass with respect to 100 parts by mass of water (C) contained in the coating composition.
 本発明の被膜形成方法において、霧化塗装を採用し、かつコーティング組成物に溶剤(G)を含有させることが、均一な膜厚を有する光触媒被膜の形成を可能にする点で特に好ましい。これが他の塗装条件よりも優れる理由を、本発明者らは以下のように推測している。 In the film forming method of the present invention, it is particularly preferable to employ atomization coating and to contain a solvent (G) in the coating composition in terms of enabling formation of a photocatalytic film having a uniform film thickness. The inventors presume that this is superior to other coating conditions as follows.
 大気圧下における沸点が60℃~120℃でありかつ20℃の水に40質量%以上溶解する溶剤(G)は、水と良く混ざりかつその表面張力が水より低い。したがって、溶剤(G)を配合しない場合と比較して、コーティング組成物の表面張力を低下させ霧化塗装における霧化粒子が微細になると考えられる。そして、微細な霧化粒子は液膜よりも表面積が大きいので液膜よりも乾燥が早いと考えられる。また、溶剤(G)は、乾燥に適当な沸点を有するので、溶剤(G)を配合しない場合と比較して、コーティング組成物が基材に塗着した際の乾燥が早いと考えられる。これら作用により、霧化塗装されたコーティング組成物は、微細な霧化粒子として基材に塗着し、塗着後は早く乾燥することにより塗着した霧化粒子の流動性が少なくなる又は流動性がなくなる。一方、ディップ塗装やスピンコート塗装は、霧化塗装と異なり、コーティング組成物を霧化することがないので、基材に塗着した液膜の乾燥が遅く基材上において液膜が不均一に流動し易い。したがって、霧化塗装を採用しかつコーティング組成物に溶剤(G)を含有させる被膜形成方法は、均一な膜厚を有する被膜の形成を可能にする点において、ディップ塗装やスピンコート塗装等の他の塗装方法よりも優れている。 The solvent (G) having a boiling point under atmospheric pressure of 60 ° C. to 120 ° C. and dissolved in water of 20% by mass or more in 20 ° C. is well mixed with water and has a lower surface tension than water. Therefore, compared with the case where a solvent (G) is not mix | blended, it is thought that the surface tension of a coating composition is reduced and the atomization particle | grains in atomization coating become fine. And since the fine atomization particle | grain has a larger surface area than a liquid film, it is thought that drying is quicker than a liquid film. In addition, since the solvent (G) has a boiling point appropriate for drying, it is considered that drying is faster when the coating composition is applied to the substrate than when the solvent (G) is not blended. By these actions, the atomized coating composition is applied to the substrate as fine atomized particles, and after application, the coated atomized particles are less fluid or less fluidized by drying quickly. Sex is lost. On the other hand, dip coating and spin coating, unlike atomization coating, do not atomize the coating composition, so the liquid film applied to the substrate is slow to dry and the liquid film is uneven on the substrate. Easy to flow. Therefore, the film forming method that employs atomized coating and contains the solvent (G) in the coating composition enables formation of a film having a uniform film thickness, in addition to dip coating, spin coating, and the like. It is superior to the painting method.
 本発明の被膜形成方法においては、コーティング組成物を塗装により基材上に塗装した後、常温下(20℃程度)に放置して被膜を形成できるので、加熱工程は必須ではない。ただし、加熱工程を実施してもよい。加熱工程は、例えば、コーティング組成物を基材上に塗装している間中基材を加熱させておくこと、つまり加熱されている基材上にコーティング組成物を塗装することにより行うことができる。また例えば、コーティング組成物を基材上に塗装し、塗装が終了した後に基材を加熱することにより行うこともできる。加熱する方法は特に限定されない。例えば、基材をホットプレート上に載置して加熱する方法がある。 In the method for forming a film according to the present invention, the coating step can be performed by applying the coating composition onto a substrate and then leaving it at room temperature (about 20 ° C.), so a heating step is not essential. However, you may implement a heating process. The heating step can be performed, for example, by heating the substrate while coating the coating composition on the substrate, that is, by coating the coating composition on the heated substrate. . Further, for example, the coating composition can be applied on the substrate, and the substrate can be heated after the coating is completed. The method for heating is not particularly limited. For example, there is a method in which a base material is placed on a hot plate and heated.
 加熱工程における加熱温度は特に限定されない。本発明の被膜形成方法によれば低温での熱処理で被膜を形成できるので、加熱工程を行う際の温度は、好ましくは30℃~150℃、より好ましくは40℃~120℃である。これら範囲であれば、例えばプラスチック基材を使用した場合でも、基材に変形が生じることなく被膜を形成できる。 The heating temperature in the heating process is not particularly limited. According to the method for forming a film of the present invention, a film can be formed by a heat treatment at a low temperature. Therefore, the temperature during the heating step is preferably 30 ° C. to 150 ° C., more preferably 40 ° C. to 120 ° C. Within these ranges, for example, even when a plastic substrate is used, a film can be formed without causing deformation of the substrate.
 被膜の膜厚は特に限定されないが、好ましくは0.1~10μm、より好ましくは1~3μmである。被膜の膜厚をこれら範囲とすることにより、所望の特性(遮蔽性能等)を損なうことなく、透明性及び密着性に優れた被膜を形成できる。 The film thickness of the coating is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 1 to 3 μm. By making the film thickness within these ranges, it is possible to form a film having excellent transparency and adhesion without impairing desired characteristics (such as shielding performance).
 被膜中の成分(D)の好適な含有量は、先に説明したコーティング組成物中の成分(D)の好適な含有量と同じである。 The preferred content of component (D) in the coating is the same as the preferred content of component (D) in the coating composition described above.
 <被膜を有する物品>
 上述した方法により形成された被膜を有する物品は、その被膜によって所望の機能が付与される。すなわち、基材上に光触媒被膜を形成してなる物品には、その光触媒被膜による脱臭、殺菌、防汚、水の浄化、大気処理等の光触媒機能が付与される。また、基材上に紫外線及び/又は赤外線遮蔽被膜を形成してなる物品には、その紫外線及び/又は赤外線遮蔽被膜による遮蔽機能が付与される。したがって、そのような機能が必要とされる物品には、本発明は非常に有用である。
<Article with coating>
An article having a coating formed by the above-described method is given a desired function by the coating. That is, a photocatalytic function such as deodorization, sterilization, antifouling, water purification, and air treatment by the photocatalytic coating is imparted to an article formed by forming a photocatalytic coating on a substrate. Moreover, the shielding function by the ultraviolet-ray and / or infrared shielding film is provided to the article formed by forming the ultraviolet-ray and / or infrared shielding film on the substrate. Therefore, the present invention is very useful for articles that require such a function.
 例えば、建築物、構造物、車輌、電化製品等の外装や内装等の物品に有用である。その具体例としては、屋根材、瓦、カラートタン、カラー鉄板、窯業系建材、サイディング材、ケイカル板、セメント壁、アルミサイディング、カーテンウォール、塗装鋼板、石材、ALC、タイル、ガラスブロック、サッシ、ビルサッシ、網戸、雨戸、門扉、出窓、天窓、窓枠、トップライト、カーポート、サンルーム、ベランダ、ベランダ手すり、屋根樋、板ガラス、着色ガラス、ガラス用フィルム、太陽熱温水器等の集熱器用カバ-、エアコン室外機、店舗看板、サイン、広告塔、ショーケース、ショーウィンドウ、冷蔵・冷凍ショーケース、シャッタ-、屋外ベンチ、自動販売機、遮音壁、防音壁、道路化粧板、ガードフェンス、桁美装板、トンネル内装板、道路反射鏡、標識板、碍子、保護板、保護膜、料金所、料金ボックス、街灯、道路、舗装路、舗道、プラント外壁、プラント内壁、石油貯蔵タンク、煙突、機械装置、農業用ガラス、ガラス温室、ビニールハウス、テント、自動車、鉄道車両、航空機、船舶、自転車、オ-トバイ、自動車用ガラス、キッチン設備部材、浴室設備部材、衛生陶器、陶磁器、便器、浴槽、洗面台、照明器具、台所用品、食器、食器乾燥器、食器洗い器、加熱調理器具、電磁調理器具、流し、調理レンジ、キッチンフ-ド、換気扇、扇風機、掃除機、衣類乾燥機、暖房機、加湿機、除湿機、ヘアードライヤー、脱臭機が挙げられる。 For example, it is useful for articles such as exteriors and interiors such as buildings, structures, vehicles, and electrical appliances. Specific examples include roofing materials, tiles, colored irons, colored iron plates, ceramic building materials, siding materials, calcium plates, cement walls, aluminum siding, curtain walls, painted steel plates, stone materials, ALC, tiles, glass blocks, sashes, Covers for collectors such as building sashes, screen doors, shutters, gates, bay windows, skylights, window frames, top lights, carports, solariums, verandas, veranda railings, roof gutters, flat glass, colored glass, glass films, solar water heaters, etc. -Air conditioner outdoor units, store signs, signs, advertising towers, showcases, show windows, refrigerated / frozen showcases, shutters, outdoor benches, vending machines, sound insulation walls, noise barriers, road decorative boards, guard fences, girder Cover plate, tunnel interior plate, road reflector, sign board, insulator, protective plate, protective film, toll gate, toll box, town , Road, paved road, pavement, plant outer wall, plant inner wall, oil storage tank, chimney, machinery, agricultural glass, glass greenhouse, greenhouse, tent, automobile, railway vehicle, aircraft, ship, bicycle, auto buy, Glass for automobiles, kitchen equipment, bathroom equipment, sanitary ware, ceramics, toilet bowl, bathtub, wash basin, lighting equipment, kitchenware, tableware, dish dryer, dishwasher, cooking device, electromagnetic cooker, sink, cooking Range, kitchen hood, ventilation fan, fan, vacuum cleaner, clothes dryer, heater, humidifier, dehumidifier, hair dryer, deodorizer.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらのみに限定されるものではない。なお、実施例中の「部」及び「%」は、特にことわらない限り、「質量部」及び「質量%」である。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” are “parts by mass” and “% by mass” unless otherwise specified.
 <製造例1>
 500mlの三口フラスコに、7.0部の塩化第二スズ5水和物(SnCl・5HO)を入れ、これを35部の水に溶解した。次に、アンモニア水を加えてpHを8とし、沈殿物を得た。この沈殿物をろ過、洗浄後、採取した。続いて、この沈殿物に質量比で9倍量の蒸留水を加え、さらにそこへ25%アンモニア水を加えてpHを10.5とし、常温で24時間放置することにより、透明な水溶液(X-1)を得た。この水溶液(X-1)中のスズ酸の含有量はSnO換算で2.0質量%であった。
<Production Example 1>
In a 500 ml three-necked flask, 7.0 parts of stannic chloride pentahydrate (SnCl 4 .5H 2 O) was added and dissolved in 35 parts of water. Next, aqueous ammonia was added to adjust the pH to 8 to obtain a precipitate. The precipitate was collected after filtration and washing. Subsequently, 9 times by volume of distilled water was added to the precipitate, and 25% ammonia water was further added thereto to adjust the pH to 10.5, and the mixture was allowed to stand at room temperature for 24 hours, whereby a transparent aqueous solution (X -1) was obtained. The content of stannic acid in this aqueous solution (X-1) was 2.0% by mass in terms of SnO 2 .
 <製造例2>
 25%アンモニア水の代わりに、エチレンジアミンを加えてpHを10.5としたこと以外は、製造例1と同様にして透明な水溶液(X-2)を得た。この水溶液(X-2)中のスズ酸の含有量はSnO換算で2.0質量%であった。
<Production Example 2>
A transparent aqueous solution (X-2) was obtained in the same manner as in Production Example 1, except that ethylenediamine was added to adjust the pH to 10.5 instead of 25% aqueous ammonia. The content of stannic acid in this aqueous solution (X-2) was 2.0% by mass in terms of SnO 2 .
 <製造例3>
 25%アンモニア水の代わりに、テトラメチルアンモニウムヒドロキシド(TMAH)を加えてpHを10.5としたこと以外は、製造例1と同様にして透明な水溶液(X-3)を得た。この水溶液(X-3)中のスズ酸の含有量はSnO換算で2.0質量%であった。
<Production Example 3>
A transparent aqueous solution (X-3) was obtained in the same manner as in Production Example 1, except that tetramethylammonium hydroxide (TMAH) was added instead of 25% aqueous ammonia to adjust the pH to 10.5. The content of stannic acid in this aqueous solution (X-3) was 2.0% by mass in terms of SnO 2 .
 以下、光触媒被膜を形成する為の実施例a1~a29を記載する。 Hereinafter, Examples a1 to a29 for forming a photocatalytic film will be described.
 <実施例a1>
 密閉可能なガラス容器に、製造例1で得た水溶液(X-1)100部、成分(D)として光触媒粒子0.6部(P25、デグサ社製、二酸化チタン光触媒粒子、平均1次粒子径約30nm)、及びジルコニア製メディア(粒径0.1mm)450部を入れ、密封し、DASH2000-K Disperser(商品名、LAU社製、振とう型ペイントコンディショナー)で1時間分散して、光触媒コーティング組成物No.a1を得た。光触媒コーティング組成物No.a1中の光触媒粒子の含有量は、スズ酸(A)から形成されるSnO及び成分(D)[光触媒粒子]の合計体積に対して30体積%であった。pHは10.5であった。
<Example a1>
In a sealable glass container, 100 parts of the aqueous solution (X-1) obtained in Production Example 1 and 0.6 parts of photocatalyst particles as component (D) (P25, manufactured by Degussa, titanium dioxide photocatalyst particles, average primary particle diameter) (Approx. 30 nm) and 450 parts of zirconia media (particle size: 0.1 mm), sealed, dispersed with DASH2000-K Disperser (trade name, manufactured by LAU, shaken paint conditioner) for 1 hour, and coated with photocatalyst Composition No. a1 was obtained. The content of the photocatalyst particles in the photocatalyst coating composition No.a1 was 30% by volume based on the total volume of SnO 2 and component (D) [photocatalyst particles] formed from stannate (A). The pH was 10.5.
 <実施例a2~a7>
 光触媒粒子の配合量を表1記載のように変更したこと以外は、実施例a1と同様にして光触媒コーティング組成物No.a2~No.a7を得た。各光触媒コーティング組成物No.a2~No.a7中の光触媒粒子の含有量及びpHを表1に示す。
<Examples a2 to a7>
Photocatalyst coating compositions No. a2 to No. a7 were obtained in the same manner as in Example a1 except that the blending amount of the photocatalyst particles was changed as shown in Table 1. Table 1 shows the content and pH of the photocatalyst particles in each of the photocatalyst coating compositions No. a2 to No. a7.
 <実施例a8>
 水溶液(X-1)の代わりに水溶液(X-2)を使用し、光触媒粒子の配合量を3.5部に変更したこと以外は、実施例a1と同様にして光触媒コーティング組成物No.a8を得た。光触媒コーティング組成物No.a8中の光触媒粒子の含有量及びpHを表1に示す。
<Example a8>
Photocatalyst coating composition No. a8 was used in the same manner as in Example a1, except that the aqueous solution (X-2) was used instead of the aqueous solution (X-1), and the amount of the photocatalyst particles was changed to 3.5 parts. Got. Table 1 shows the content and pH of the photocatalyst particles in the photocatalyst coating composition No. a8.
 <実施例a9>
 水溶液(X-1)の代わりに水溶液(X-3)を使用し、光触媒粒子の配合量を3.5部に変更したこと以外は、実施例a1と同様にして光触媒コーティング組成物No.a9を得た。光触媒コーティング組成物No.a9中の光触媒粒子の含有量及びpHを表1に示す。
<Example a9>
Photocatalyst coating composition No. a9 was used in the same manner as in Example a1, except that the aqueous solution (X-3) was used instead of the aqueous solution (X-1), and the blending amount of the photocatalyst particles was changed to 3.5 parts. Got. Table 1 shows the content and pH of the photocatalyst particles in the photocatalyst coating composition No. a9.
Figure JPOXMLDOC01-appb-T000001
 <実施例a10>
 実施例a1で得た光触媒コーティング組成物No.a1 100部に、溶剤(G)としてイソプロパノール(IPA)を加え、イソプロパノールの含有量が水に対して100質量%の塗布溶液を得た。続いて、ガラス基板(100mm×100mm×1.8mm)を50℃に加熱し、基板上に上記塗布溶液を霧化塗装し、基板上に膜厚1.5μm(注1)の光触媒被膜を形成し、試験板を得た。光触媒被膜中の光触媒粒子の含有量は、SnO及び成分(D)[光触媒粒子]の合計体積に対して30体積%であった。試験板の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
<Example a10>
Isopropanol (IPA) was added as a solvent (G) to 100 parts of the photocatalyst coating composition No. a1 obtained in Example a1 to obtain a coating solution having an isopropanol content of 100% by mass with respect to water. Subsequently, a glass substrate (100 mm × 100 mm × 1.8 mm) is heated to 50 ° C., the coating solution is atomized and coated on the substrate, and a photocatalytic film having a film thickness of 1.5 μm (Note 1) is formed on the substrate. A test plate was obtained. The content of the photocatalyst particles of the photocatalyst in the coating was 30% by volume based on the total volume of SnO 2 and component (D) [photocatalyst particles. Table 2 shows the evaluation results of the test plate.
 (注1)膜厚の測定には、触針式表面形状測定器Dektak8(商品名、アルバック社製)を用いた。測定は、測定面積を100mm×100mm、測定点数を20点とした。各点についてスキャン長3mmの条件で各点における平均膜厚を測定した。各点の平均膜厚から20点の平均膜厚を算出し本測定における膜厚とした。 (Note 1) A stylus type surface shape measuring device Dektak 8 (trade name, manufactured by ULVAC, Inc.) was used for measuring the film thickness. In the measurement, the measurement area was 100 mm × 100 mm, and the number of measurement points was 20. The average film thickness at each point was measured under the condition of a scan length of 3 mm for each point. The average film thickness at 20 points was calculated from the average film thickness at each point and used as the film thickness in this measurement.
 霧化塗装は、ノズル口径が1mmの超音波ノズルを具備した超音波霧化塗装機US-1(商品名、レヒラ-社製、空気搬送用30°)を用い、基板とノズル先端の距離100mm、吐出量1.0g/分、空気搬送用のエア圧力10kPaとなる条件で行った。霧化粒子の50%体積平均粒子径は10μmであった。 For the atomization coating, an ultrasonic atomizing coating machine US-1 (trade name, manufactured by Rehiler, 30 ° for air conveyance) equipped with an ultrasonic nozzle having a nozzle diameter of 1 mm is used, and the distance between the substrate and the nozzle tip is 100 mm. The discharge rate was 1.0 g / min, and the air pressure for air conveyance was 10 kPa. The 50% volume average particle diameter of the atomized particles was 10 μm.
 <実施例a11~a20>
 光触媒コーティング組成物及び溶剤(G)を表2に記載のように変更したこと以外は、実施例a10と同様にして光触媒被膜を形成し、試験板を得、同様に評価した。結果を表2に示す。
<Examples a11 to a20>
A photocatalyst film was formed in the same manner as in Example a10 except that the photocatalyst coating composition and the solvent (G) were changed as shown in Table 2, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 2.
 <比較例a1>
 製造例1で得た水溶液(X-1)100部にイソプロパノール(IPA)を加え、イソプロパノールの含有量が水に対して100質量%の塗布溶液を得た。この塗布溶液を用いたこと以外は実施例a10と同様にして膜厚0.5μmの被膜を形成し、試験板を得、同様に評価した。結果を表2に示す。
<Comparative Example a1>
Isopropanol (IPA) was added to 100 parts of the aqueous solution (X-1) obtained in Production Example 1 to obtain a coating solution having an isopropanol content of 100% by mass with respect to water. A coating having a thickness of 0.5 μm was formed in the same manner as in Example a10 except that this coating solution was used, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 <実施例a21>
 実施例a2で得た光触媒コーティング組成物No.a2 100部に、界面活性剤(E)としてニューコール707F(商品名、日本乳化剤社製、アンモニウム塩型のアニオン性界面活性剤、不揮発分30%)0.33部を加え塗布溶液を得た。続いて、室温において、ガラス基板(100mm×100mm×1.8mm)上に上記塗布溶液を霧化塗装し、基板上に膜厚1.6μmの光触媒被膜を形成し、試験板を得た。光触媒被膜中の光触媒粒子の含有量は、スズ酸(A)から形成されるSnO及び成分(D)の合計体積に対して40体積%であった。試験板の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
<Example a21>
In 100 parts of the photocatalyst coating composition No. a2 obtained in Example a2, New Coal 707F (trade name, manufactured by Nippon Emulsifier Co., Ltd., ammonium salt type anionic surfactant, non-volatile content 30% as a surfactant (E) ) 0.33 parts was added to obtain a coating solution. Subsequently, at room temperature, the coating solution was atomized and coated on a glass substrate (100 mm × 100 mm × 1.8 mm) to form a 1.6 μm-thick photocatalytic film on the substrate to obtain a test plate. The content of the photocatalyst particles of the photocatalyst in the coating was 40% by volume based on the total volume of SnO 2 and component formed from stannate (A) (D). Table 3 shows the evaluation results of the test plate.
 霧化塗装は、汎用的なスプレーガンであるW-100(商品名、アネスト岩田社製)を用い、基板とノズル先端の距離が150mm、吐出量が10.0g/分、空気搬送用のエア圧力が200kPaとなる条件で行った。霧化粒子の50%体積平均粒子径は10μmであった。 The atomization coating uses W-100 (trade name, manufactured by Anest Iwata), a general-purpose spray gun, the distance between the substrate and the nozzle tip is 150 mm, the discharge rate is 10.0 g / min, and air for air conveyance The pressure was 200 kPa. The 50% volume average particle diameter of the atomized particles was 10 μm.
 <実施例a22~a29>
 光触媒コーティング組成物の種類及び界面活性剤(E)の配合の有無を表3に記載のように変更し、さらに実施例a24~a29ではシランカップリング剤(F)として、N-2(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越シリコーン社製)を表3に記載のように加えたこと以外は、実施例a21と同様にして塗布溶液を得、光触媒被膜を形成し、試験板を得、同様に評価した。結果を表3に示す。
<Examples a22 to a29>
The type of photocatalyst coating composition and the presence or absence of the surfactant (E) were changed as shown in Table 3, and in Examples a24 to a29, N-2 (aminoethyl) was used as the silane coupling agent (F). ) Except that 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Silicone) was added as shown in Table 3, a coating solution was obtained in the same manner as in Example a21, a photocatalytic film was formed, and a test plate was prepared. Obtained and evaluated in the same manner. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表2及び3に示す評価結果は、以下の方法に従って得たものである。
Figure JPOXMLDOC01-appb-T000003
The evaluation results shown in Tables 2 and 3 were obtained according to the following method.
 <鉛筆硬度>
 JIS K-5600-5-4に規定する引っかき硬度(鉛筆法)による評価を行なった。
<Pencil hardness>
Evaluation was made according to scratch hardness (pencil method) specified in JIS K-5600-5-4.
 <光触媒活性>
 JIS R-1701-2に規定するアセトアルデヒドの除去性能試験方法に従い光触媒活性の評価を行った。100mm×50mmの試験板を設置した容器にアセトアルデヒド濃度5volppmの試験用ガス(温度25℃、水蒸気濃度1.56vol%)を1L/minで流し、300~400nmの光を照射強度10W/mで試験板に照射した。容器を通過したガス中のアセトアルデヒド濃度をガスクロマトグラフを用いて測定し、アセトアルデヒド除去率を求めた。
<Photocatalytic activity>
The photocatalytic activity was evaluated according to the acetaldehyde removal performance test method specified in JIS R-1701-2. A test gas having acetaldehyde concentration of 5 volppm (temperature of 25 ° C., water vapor concentration of 1.56 vol%) is flowed at 1 L / min into a container provided with a test plate of 100 mm × 50 mm, and light of 300 to 400 nm is irradiated at an irradiation intensity of 10 W / m 2 . The test plate was irradiated. The acetaldehyde concentration in the gas that passed through the container was measured using a gas chromatograph, and the acetaldehyde removal rate was determined.
 <耐久性>
 JIS K-5400 9.8.1に規定するサンシャインカーボンアーク灯式による促進耐候試験を、照射時間1000時間及び2000時間でそれぞれ行った。試験後の試験板を観察して、下記基準により評価した。
・「○」:異常無し。
・「△」:わずかに剥がれが見られる。
・「×」:剥がれが見られる。
<Durability>
An accelerated weathering test using a sunshine carbon arc lamp type as defined in JIS K-5400 9.8.1 was conducted at an irradiation time of 1000 hours and 2000 hours, respectively. The test plate after the test was observed and evaluated according to the following criteria.
・ "○": No abnormality.
・ "△": Slight peeling is observed.
・ "X": peeling is seen.
 次に、紫外線及び/又は赤外線遮蔽被膜を形成する為の実施例b1~b39を記載する。 Next, Examples b1 to b39 for forming an ultraviolet and / or infrared shielding film will be described.
 <実施例b1>
 密閉可能なガラス容器に、製造例1で得た水溶液(X-1)100部、成分(D)[赤外線遮蔽剤]としてZnO・Sb粒子の30%ゾル溶液1.9部(粒子は0.6部)、及びジルコニア製メディア(粒径0.1mm)450部を入れ、密封し、実施例a1と同じ振とう型ペイントコンディショナーで1時間分散して、紫外線及び/又は赤外線遮蔽性コーティング組成物No.b1を得た。コーティング組成物No.b1中の赤外線遮蔽剤の含有量は、スズ酸(A)から形成されるSnO及び成分(D)[紫外線遮蔽剤及び/又は赤外線遮蔽剤]の合計体積に対して30体積%であった。pHは10.5であった。
<Example b1>
In a sealable glass container, 100 parts of the aqueous solution (X-1) obtained in Production Example 1 and 1.9 parts of a 30% sol solution of ZnO.Sb 2 O 5 particles as the component (D) [infrared shielding agent] (particles Is 0.6 parts), and 450 parts of zirconia media (particle size: 0.1 mm) are put in, sealed, and dispersed for 1 hour with the same shaking paint conditioner as in Example a1 to protect against ultraviolet rays and / or infrared rays. Coating composition No. b1 was obtained. The content of the infrared shielding agent in coating composition No. b1 is 30 with respect to the total volume of SnO 2 formed from stannic acid (A) and component (D) [ultraviolet shielding agent and / or infrared shielding agent]. % By volume. The pH was 10.5.
 <実施例b2~b7>
 ZnO・Sb粒子の配合量を表4記載のように変更したこと以外は、実施例b1と同様にして光触媒コーティング組成物No.b2~No.b7を得た。各コーティング組成物No.b2~No.b7中のZnO・Sb粒子の含有量及びpHを表4に示す。
<Examples b2 to b7>
Photocatalyst coating compositions No. b2 to No. b7 were obtained in the same manner as in Example b1, except that the blending amount of the ZnO.Sb 2 O 5 particles was changed as shown in Table 4. Table 4 shows the content and pH of the ZnO.Sb 2 O 5 particles in each of the coating compositions No. b2 to No. b7.
 <実施例b8>
 水溶液(X-1)の代わりに水溶液(X-2)を使用し、ZnO・Sb粒子の配合量を3.2部に変更したこと以外は、実施例b1と同様にして紫外線及び/又は赤外線遮蔽性コーティング組成物No.b8を得た。コーティング組成物No.b8中の成分(D)の含有量及びpHを表4に示す。
<Example b8>
Except for using the aqueous solution (X-2) instead of the aqueous solution (X-1) and changing the blending amount of the ZnO.Sb 2 O 5 particles to 3.2 parts, ultraviolet rays and / Or infrared shielding coating composition No.b8 was obtained. Table 4 shows the content and pH of the component (D) in the coating composition No. b8.
 <実施例b9>
 水溶液(X-1)の代わりに水溶液(X-3)を使用し、ZnO・Sb粒子の配合量を3.2部に変更したこと以外は、実施例b1と同様にして紫外線及び/又は赤外線遮蔽性コーティング組成物No.b9を得た。コーティング組成物No.b9中の成分(D)の含有量及びpHを表4に示す。
<Example b9>
Except for using the aqueous solution (X-3) instead of the aqueous solution (X-1) and changing the blending amount of the ZnO.Sb 2 O 5 particles to 3.2 parts, ultraviolet rays and / Or infrared shielding coating composition No.b9 was obtained. Table 4 shows the content and pH of component (D) in coating composition No. b9.
 <実施例b10~b18>
 成分(D)を表4記載のように変更したこと以外は、実施例b1と同様にして紫外線及び/又は赤外線遮蔽性コーティング組成物No.b10~No.b18を得た。各コーティング組成物No.b10~No.b18中の成分(D)の含有量及びpHを表4に示す。
<Examples b10 to b18>
UV and / or infrared shielding coating compositions No. b10 to No. b18 were obtained in the same manner as in Example b1 except that the component (D) was changed as shown in Table 4. Table 4 shows the content and pH of component (D) in each of the coating compositions No. b10 to No. b18.
Figure JPOXMLDOC01-appb-T000004
 <実施例b19>
 実施例b1で得たコーティング組成物No.b1 100部に、界面活性剤(E)としてニューコール707F(商品名、日本乳化剤社製、アンモニウム塩型のアニオン性界面活性剤、不揮発分30%)0.33部を加え塗布溶液を得た。続いて、室温において、ガラス基板(100mm×100mm×1.8mm)上に上記塗布溶液を霧化塗装し、基板上に膜厚1.6μmの遮蔽被膜を形成し、試験板を得た。遮蔽被膜中の赤外線遮蔽剤の含有量は、スズ酸(A)から形成されるSnO及び成分(D)の合計体積に対して30体積%であった。試験板の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
<Example b19>
In 100 parts of the coating composition No. b1 obtained in Example b1, New Coal 707F (trade name, manufactured by Nippon Emulsifier Co., Ltd., ammonium salt type anionic surfactant, non-volatile content 30%) as a surfactant (E) 0.33 part was added to obtain a coating solution. Subsequently, at room temperature, the coating solution was atomized and coated on a glass substrate (100 mm × 100 mm × 1.8 mm) to form a 1.6 μm-thickness shielding film on the substrate to obtain a test plate. The content of infrared shielding agent in the barrier coating was 30% by volume based on the total volume of SnO 2 and component formed from stannate (A) (D). Table 5 shows the evaluation results of the test plate.
 霧化塗装は、汎用的なスプレーガンであるW-100(商品名、アネスト岩田社製)を用い、基板とノズル先端の距離が150mm、吐出量が10.0g/分、空気搬送用のエア圧力が200kPaとなる条件で行った。霧化粒子の50%体積平均粒子径は10μmであった。 The atomization coating uses W-100 (trade name, manufactured by Anest Iwata), a general-purpose spray gun, the distance between the substrate and the nozzle tip is 150 mm, the discharge rate is 10.0 g / min, and air for air conveyance The pressure was 200 kPa. The 50% volume average particle diameter of the atomized particles was 10 μm.
 <実施例b20~b36>
 コーティング組成物の種類を表5及び6記載のように変更したこと以外は、実施b19と同様にして塗布溶液を得、紫外線及び/又は赤外線遮蔽被膜被膜を形成し、試験板を得、同様に評価した。結果を表5及び6に示す。
<Examples b20 to b36>
Except that the type of coating composition was changed as shown in Tables 5 and 6, a coating solution was obtained in the same manner as in Example b19, an ultraviolet ray and / or infrared shielding film was formed, a test plate was obtained, and similarly evaluated. The results are shown in Tables 5 and 6.
 <比較例b1>
 製造例1で得た水溶液(X-1)100部に界面活性剤(E)としてニューコール707Fを加え、塗布溶液を得た。この塗布溶液を用いたこと以外は実施例b19と同様にして膜厚1.5μmの遮蔽被膜を形成し、試験板を得、同様に評価した。結果を表6に示す。
<Comparative Example b1>
Neucor 707F as a surfactant (E) was added to 100 parts of the aqueous solution (X-1) obtained in Production Example 1 to obtain a coating solution. A shielding film having a film thickness of 1.5 μm was formed in the same manner as in Example b19 except that this coating solution was used, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <実施例b37~b39>
 コーティング組成物No.b1の代わりにコーティング組成物No.b4を使用し、さらにシランカップリング剤(F)として、N-2(アミノエチル)-3-アミノプロピルトリメトキシシランを表7に記載のように加えたこと以外は、実施例b19と同様にして塗布溶液を得、遮蔽被膜を形成し、試験板を得、同様に評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
<Examples b37 to b39>
The coating composition No. b4 was used in place of the coating composition No. b1, and N-2 (aminoethyl) -3-aminopropyltrimethoxysilane was used as the silane coupling agent (F). A coating solution was obtained in the same manner as in Example b19 except that a coating was formed, and a test plate was obtained and evaluated in the same manner. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 表5~7に示す評価結果は、以下の方法に従って得たものである。
Figure JPOXMLDOC01-appb-T000007
The evaluation results shown in Tables 5 to 7 were obtained according to the following method.
 <貯蔵安定性>
 コーティング組成物を20℃で4週間放置し、初期のものと比較して、沈降、粘度変化及びゲル化の有無を確認して、下記基準により評価した。
・「○」:沈降及び粘度変化無し。
・「△」:わずかに沈降及び/又は粘度変化が見られる。
・「×」:沈降及び/又は粘度変化、又はゲル化が見られる。
<Storage stability>
The coating composition was allowed to stand at 20 ° C. for 4 weeks, and compared with the initial one, the presence or absence of sedimentation, viscosity change and gelation was confirmed and evaluated according to the following criteria.
・ "○": No sedimentation or viscosity change.
“Δ”: Slight sedimentation and / or viscosity change is observed.
“X”: sedimentation and / or viscosity change or gelation is observed.
 <鉛筆硬度>
 実施例a1~a29の鉛筆硬度の評価法と同じ。
<Pencil hardness>
The same as the pencil hardness evaluation method of Examples a1 to a29.
 <遮蔽性能>
 試験板の波長2500nmから300nmまでの領域の透過率を、分光光度計により測定し、赤外線遮蔽率、紫外線遮蔽率、可視光透過率を以下のようにして求めた。
(1)赤外線遮蔽率:
{Σ(100-Xi)/λi}/{Σ100/λi}を赤外線遮蔽率とした。
<Shielding performance>
The transmittance of the test plate in the wavelength region from 2500 nm to 300 nm was measured with a spectrophotometer, and the infrared shielding rate, ultraviolet shielding rate, and visible light transmittance were determined as follows.
(1) Infrared shielding rate:
{Σ (100−Xi) / λi} / {Σ100 / λi} was defined as the infrared shielding rate.
  Xi:波長λiでの透過率(%)
  λi:波長(2500~800nmの範囲で、50nm毎の波長)
(2)紫外線遮蔽率:
 波長360nmの遮蔽率で表わした。
(3)可視光透過率(透明性)
 代表的な波長として700nm、500nmの透過率で表わした。
Xi: transmittance at wavelength λi (%)
λi: wavelength (in the range of 2500 to 800 nm, wavelength every 50 nm)
(2) UV shielding rate:
It was expressed as a shielding factor at a wavelength of 360 nm.
(3) Visible light transmittance (transparency)
The typical wavelengths are represented by transmittances of 700 nm and 500 nm.
 <耐久性>
 実施例a1~a29の耐久性の評価法と同じ。
<Durability>
The same as the durability evaluation method of Examples a1 to a29.

Claims (15)

  1.  スズ酸(A)、アンモニア、テトラメチルアンモニウムヒドロキシド及び水溶性アミンからなる群より選ばれる少なくとも1種の化合物(B)、水(C)、並びに、光触媒粒子、紫外線遮蔽剤及び赤外線遮蔽剤からなる群より選ばれる少なくとも1種の成分(D)を含有するコーティング組成物。 From at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide and a water-soluble amine, water (C), and photocatalyst particles, an ultraviolet shielding agent and an infrared shielding agent A coating composition containing at least one component (D) selected from the group consisting of:
  2.  成分(D)として光触媒粒子を含有する光触媒コーティング組成物である請求項1記載のコーティング組成物。 The coating composition according to claim 1, which is a photocatalytic coating composition containing photocatalytic particles as component (D).
  3.  成分(D)として紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有する紫外線及び/又は赤外線遮蔽性コーティング組成物である請求項1記載のコーティング組成物。 The coating composition according to claim 1, which is an ultraviolet and / or infrared shielding coating composition containing an ultraviolet shielding agent and / or an infrared shielding agent as component (D).
  4.  コーティング組成物のpHが、9.5~12.0である請求項1記載のコーティング組成物。 The coating composition according to claim 1, wherein the pH of the coating composition is 9.5 to 12.0.
  5.  界面活性剤(E)をさらに含有する請求項1記載のコーティング組成物。 The coating composition according to claim 1, further comprising a surfactant (E).
  6.  シランカップリング剤(F)をさらに含有する請求項1記載のコーティング組成物。 The coating composition according to claim 1, further comprising a silane coupling agent (F).
  7.  スズ酸(A)、アンモニア、テトラメチルアンモニウムヒドロキシド及び水溶性アミンからなる群より選ばれる少なくとも1種の化合物(B)、水(C)、並びに、光触媒粒子、紫外線遮蔽剤及び赤外線遮蔽剤からなる群より選ばれる少なくとも1種の成分(D)を含有するコーティング組成物を、基材上に霧化塗装して被膜を形成する被膜形成方法。 From at least one compound (B) selected from the group consisting of stannic acid (A), ammonia, tetramethylammonium hydroxide and a water-soluble amine, water (C), and photocatalyst particles, an ultraviolet shielding agent and an infrared shielding agent The film formation method which forms the film by atomizing the coating composition containing the at least 1 sort (s) of components (D) chosen from the group which consists of on a base material.
  8.  成分(D)として光触媒粒子を含有する光触媒コーティング組成物を、基材上に霧化塗装して光触媒被膜を形成する請求項7記載の被膜形成方法。 The film forming method according to claim 7, wherein a photocatalyst film is formed by atomizing a photocatalyst coating composition containing photocatalyst particles as a component (D) on a substrate.
  9.  コーティング組成物が、大気圧下における沸点が60℃~120℃であり、且つ20℃の水100質量部に40質量部以上溶解する溶剤(G)をさらに含有する請求項8記載の被膜形成方法。 9. The film forming method according to claim 8, wherein the coating composition further comprises a solvent (G) having a boiling point of 60 ° C. to 120 ° C. under atmospheric pressure and 40 parts by mass or more dissolved in 100 parts by mass of water at 20 ° C. .
  10.  溶剤(G)が、エタノール及び/又はイソプロパノールである請求項9記載の被膜形成方法。 The film forming method according to claim 9, wherein the solvent (G) is ethanol and / or isopropanol.
  11.  霧化塗装の吐出量が20g/分以下である請求項8記載の被膜形成方法。 The film forming method according to claim 8, wherein the atomized coating discharge rate is 20 g / min or less.
  12.  成分(D)として紫外線遮蔽剤及び/又は赤外線遮蔽剤を含有する紫外線及び/又は赤外線遮蔽性コーティング組成物を、基材上に霧化塗装して紫外線及び/又は赤外線遮蔽被膜を形成する請求項7記載の被膜形成方法。 An ultraviolet ray and / or infrared ray shielding coating composition containing an ultraviolet ray shielding agent and / or an infrared ray shielding agent as component (D) is atomized and coated on a substrate to form an ultraviolet ray and / or infrared ray shielding film. 8. The method for forming a film according to 7.
  13.  霧化塗装の吐出量が20g/分以下である請求項12記載の被膜形成方法。 The film forming method according to claim 12, wherein the atomized coating discharge rate is 20 g / min or less.
  14.  霧化塗装の霧化粒子の50%体積平均粒子径が20μm以下である請求項7記載の被膜形成方法。 The film forming method according to claim 7, wherein the atomized particles of the atomized coating have a 50% volume average particle diameter of 20 μm or less.
  15.  請求項7記載の方法により形成された被膜を有する物品。 An article having a coating formed by the method according to claim 7.
PCT/JP2010/058075 2009-05-13 2010-05-13 Coating composition, method for formation of coating film, and article having the coating film WO2010131690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513363A JP5726071B2 (en) 2009-05-13 2010-05-13 Coating composition, film forming method, and article having the film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-116028 2009-05-13
JP2009116028 2009-05-13
JP2009-267058 2009-11-25
JP2009267058 2009-11-25
JP2009268630 2009-11-26
JP2009-268630 2009-11-26

Publications (1)

Publication Number Publication Date
WO2010131690A1 true WO2010131690A1 (en) 2010-11-18

Family

ID=43085063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058075 WO2010131690A1 (en) 2009-05-13 2010-05-13 Coating composition, method for formation of coating film, and article having the coating film

Country Status (2)

Country Link
JP (1) JP5726071B2 (en)
WO (1) WO2010131690A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213671A (en) * 2011-05-26 2011-10-12 江苏省环境监测中心 Wide-infrared band cuvette and preparation method thereof
WO2014196217A1 (en) * 2013-06-03 2014-12-11 関西ペイント株式会社 Coating composition
JP6198921B1 (en) * 2016-10-06 2017-09-20 株式会社バイオミミック Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same
TWI640653B (en) * 2018-01-18 2018-11-11 國立高雄大學 Anti-corrosion solution having nano titanium dioxide particles chelated with aniline and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224481A (en) * 1994-11-04 1996-09-03 Toto Ltd Member having photocatalytic action
JPH09225382A (en) * 1996-02-27 1997-09-02 Central Glass Co Ltd Film making method
JPH10273319A (en) * 1997-03-27 1998-10-13 Taki Chem Co Ltd Binder for metal oxide sol
JP2001131481A (en) * 1999-11-01 2001-05-15 Kansai Paint Co Ltd Inorganic coating composition and method for forming coating film thereof
JP2001240769A (en) * 2000-02-25 2001-09-04 Nippon Shokubai Co Ltd Surface modified inorganic minute particle and its usage and method of modifying surface of inorganic minute particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323188A (en) * 2000-05-19 2001-11-20 Nisshin Steel Co Ltd Coating material for forming transparent photocatalytic dispersion film and metallic plate coated with transparent photocatlytic dispersion film
JP2002316380A (en) * 2001-04-19 2002-10-29 Mitsubishi Plastics Ind Ltd Photocatalyst transfer body, substrate with photocatalyst and its manufacturing method
JP2003073585A (en) * 2001-06-19 2003-03-12 Hitachi Chem Co Ltd Liquid for forming titania film, method for forming titania film, titania film and photocatalytic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224481A (en) * 1994-11-04 1996-09-03 Toto Ltd Member having photocatalytic action
JPH09225382A (en) * 1996-02-27 1997-09-02 Central Glass Co Ltd Film making method
JPH10273319A (en) * 1997-03-27 1998-10-13 Taki Chem Co Ltd Binder for metal oxide sol
JP2001131481A (en) * 1999-11-01 2001-05-15 Kansai Paint Co Ltd Inorganic coating composition and method for forming coating film thereof
JP2001240769A (en) * 2000-02-25 2001-09-04 Nippon Shokubai Co Ltd Surface modified inorganic minute particle and its usage and method of modifying surface of inorganic minute particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213671A (en) * 2011-05-26 2011-10-12 江苏省环境监测中心 Wide-infrared band cuvette and preparation method thereof
WO2014196217A1 (en) * 2013-06-03 2014-12-11 関西ペイント株式会社 Coating composition
JP5675005B1 (en) * 2013-06-03 2015-02-25 関西ペイント株式会社 Paint composition
CN104471004A (en) * 2013-06-03 2015-03-25 关西涂料株式会社 Coating composition
JP6198921B1 (en) * 2016-10-06 2017-09-20 株式会社バイオミミック Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same
TWI640653B (en) * 2018-01-18 2018-11-11 國立高雄大學 Anti-corrosion solution having nano titanium dioxide particles chelated with aniline and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2010131690A1 (en) 2012-11-01
JP5726071B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5784481B2 (en) Coating composition and use thereof
WO1997045502A1 (en) Antifouling member and antifouling coating composition
WO2005105304A2 (en) Use of photocatalytic tio2 layers for functionalizing substrates
JP2001081948A (en) Building material for exterior wall
CN101189075B (en) Coating process for forming films containing ultraviolet- or infrared-screening agents
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
JP5726071B2 (en) Coating composition, film forming method, and article having the film
TW201238655A (en) Photocatalyst coated body and photocatalyst coating liquid
JP3773087B2 (en) Photocatalytic functional member
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2008100122A (en) Coating method for forming coating film containing photocatalyst
JP2001064583A (en) Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JPH10237431A (en) Member with ultrawater-repellent surface
JPH10316820A (en) Member having extremely water-repelling surface and extremely water-repelling coating composition
JPH11323195A (en) Photocatalytic coating composition
JP2006131917A (en) Photocatalytic hydrophilic coating composition
JPH1192689A (en) Inorganic coating
JPH11228865A (en) Coating agent for forming photocatalytic hydrophilic coating film and photocatalytic hydrophilic member
JP3346278B2 (en) Method of forming photocatalytic film on organic base material and its use
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
JP2009263651A (en) Photocatalyst coating composition
JP2001040291A (en) Photocatalytic colored coated article and colored primer coating material composition for the coating
JP2000144057A (en) Coating composition
JPH11323188A (en) Photocatalytic film, method for forming it and photocatalytic coating
JP2001031913A (en) Coating composition and article coated therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513363

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774947

Country of ref document: EP

Kind code of ref document: A1