WO2010131461A1 - Optical head apparatus, light receiving element, integrated circuit, photonic integrated element, optical disc apparatus, and signal detection method - Google Patents

Optical head apparatus, light receiving element, integrated circuit, photonic integrated element, optical disc apparatus, and signal detection method Download PDF

Info

Publication number
WO2010131461A1
WO2010131461A1 PCT/JP2010/003212 JP2010003212W WO2010131461A1 WO 2010131461 A1 WO2010131461 A1 WO 2010131461A1 JP 2010003212 W JP2010003212 W JP 2010003212W WO 2010131461 A1 WO2010131461 A1 WO 2010131461A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
light receiving
signal
incident
light
Prior art date
Application number
PCT/JP2010/003212
Other languages
French (fr)
Japanese (ja)
Inventor
山本博昭
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010131461A1 publication Critical patent/WO2010131461A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration

Definitions

  • the present invention relates to an optical head device for recording / reproducing / erasing information on a recording medium by light, a light receiving element, an integrated circuit, an optical integrated element, an optical disc device, and a signal detection method.
  • tracking control for controlling a light spot at a desired recording and reproducing position is an indispensable technique.
  • a push-pull method as a method of detecting a tracking error signal used for this tracking control.
  • the push-pull method can be realized by an optical system having a simple configuration, and is widely employed in an optical head device (hereinafter, also simply referred to as an “optical head”).
  • Patent Document 1 discloses a technique for compensating for this defect.
  • FIG. 14 is a block diagram of an optical head device in Patent Document 1
  • FIG. 15 is a schematic top view of a composite diffraction element.
  • FIG. 14 shows an optical disc 10 as an information recording medium, an objective lens 12, a hologram element 20, a semiconductor laser element 30, and a light receiving element 40.
  • Each arrow in the figure indicates the direction in which light travels.
  • FIG. 15 is a top view of the hologram element 20 shown in FIG.
  • L8a to L8c indicate area dividing lines
  • 25a to 25f indicate divided areas
  • R0 indicates a light beam passing through the hologram element
  • R1 and R2 indicate light beams diffracted by the track of the optical disk 10
  • FIG. 16 is a top view of the light receiving element 40.
  • each light receiving element is a thing which shows typically the shape of the light ray which injects there.
  • the signals detected by the respective light receiving areas generate a tracking error signal and a focus error signal in the arithmetic circuit of the circuit configuration shown in FIG.
  • a circuit denoted by IV is a head amplifier (current-voltage conversion amplifier)
  • a circuit denoted by K is an amplifier of gain K
  • the other circuits are addition or subtraction circuits.
  • the operation of the optical head device of this configuration will be described below.
  • the light emitted from the semiconductor laser element 30 passes through the hologram element 20 and is condensed on the information recording surface of the optical disc 10 by the objective lens 12.
  • An information track is formed on the information recording surface of the optical disk 10, and the direction of the information track is assumed to be a direction perpendicular to the paper surface in FIG.
  • the reflected light from the optical disk 10 again converges toward the vicinity of the semiconductor laser device 30 and advances while entering the hologram device 20.
  • the luminous fluxes passing through the respective regions divided by the region dividing line L8c from the region dividing line L8a of the hologram element 20 are transmitted as + 1st order, 0th order and -1st order diffracted light.
  • + 1st order and -1st order diffracted lights are diffracted toward the corresponding light receiving areas.
  • diffracted light in the region 25d enters, for example, the light receiving region group 47 and the light receiving region group 49, for example.
  • a light flux entering the light receiving area group 47 and the light receiving area group 49 focuses on a place farther than the light receiving element, and a light flux entering the light receiving area group 46 and the light receiving area group 48 receives the light receiving element Focusing is closer to the hologram element 20.
  • the light receiving area group 46, the light receiving area group 47, the light receiving area group 48 and the light receiving area group 49 in the direction orthogonal to the dividing line of the light receiving elements of the light beams.
  • the detection signal name is represented by the light receiving area name.
  • the detection signal name is referred to as the light receiving area name in which the signal is detected.
  • a signal TE2 which is generated when the objective lens 12 moves in a direction orthogonal to the information track and which corrects the tracking offset is a light beam which has passed through the area outside the area dividing line L8b of the hologram element 20 and the area dividing line L8c.
  • the signal (RF signal) for reading the recording information is detected by the sum of the signals from all the light receiving areas.
  • ROM disc read-only disc
  • DPD signal phase difference tracking error signal
  • the present invention solves such problems, and an optical head device, a light receiving element, an integrated circuit, an optical integrated device, an optical disk device, and a signal detecting method capable of generating a good reproduction signal at low cost. Intended to provide.
  • an optical disk apparatus comprises: a light source for emitting a light beam; and a focusing optical system for receiving the light beam and converging it to a minute spot on an information medium having a track.
  • An optical head device comprising: a hologram element for diffracting the light beam reflected by the information medium; and a light receiving element for receiving light diffracted by the hologram element, the light receiving element comprising at least A first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area, and the first light receiving area and the second light receiving area
  • the third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween, and the hologram element is disposed to Diffraction region and second diffraction region And a second diffraction area group having a third diffraction area and a fourth diffraction area, and the first diffraction area group and the second diffraction area group have A first area division line passing through a center of an optical axis of the focusing optical system, the first diffraction area and the third diffraction area being reflected and diffracted by the track of the information medium And a second incident area on
  • the light incident on the first incident area is incident on the second light receiving area, and the second light receiving area includes the third incident area on which only undiffracted light is incident.
  • a light having a first wavefront in which light incident on an incident area is incident on the first light receiving area A grating pattern for generating light is formed, and in the second diffraction area, diffracted light having a second wave front in which light incident on the third incident area is incident on the third light receiving area is generated
  • the third diffraction area light incident on the first incident area is incident on the fourth light receiving area, and light incident on the second incident area is incident on the third diffraction area.
  • a grating pattern for generating diffracted light having a third wavefront incident on the third light receiving area is formed, and the light incident on the third incident area is the second on the fourth diffraction area.
  • a grating pattern is formed to generate diffracted light having a fourth wavefront incident on the light receiving region.
  • the tracking error signal TE can be easily detected by the following operation.
  • TE1 (A + C)-(B + D)
  • TE2 (A + B)-(C + D)
  • TE TE1-K ⁇ TE2
  • the focus error signal FE can be easily generated by the following operation using the signal A, the signal B, the signal C, and the signal D.
  • phase difference tracking error signal can also be generated by the phase difference between the (A + D) and (B + C) signals.
  • the signal recorded on the information medium may be detected by the sum of the signal A, the signal B, the signal C and the signal D.
  • the present invention is not only realized as the above optical head device, but is a light receiving element used for the above optical head device, and at least the first light receiving region, the second light receiving region, and the third light receiving region It has a fourth light receiving area, and the first light receiving area and the second light receiving area are disposed to face each other across the first light receiving division line, and the third light receiving area and the second light receiving area The fourth light receiving area is disposed to face the second light receiving division line, and the second light receiving area is the sum of the signal from the first light receiving area and the signal from the third light receiving area, and the second light receiving area.
  • a circuit for generating a first signal obtained by the difference between the signal from the light receiving area and the sum of the signals from the fourth light receiving area; the signal from the first light receiving area and the second light receiving A sum of signals from the area, a signal from the third light receiving area, and the fourth light receiving area May also be implemented as a light-receiving element; and a circuit for generating a second signal obtained by the differential between the sum of al the signal.
  • an integrated circuit for processing a signal from the optical head device, wherein the signal A from the first light receiving area, the signal B from the second light receiving area, and the third one.
  • K is a constant
  • TE1 (A + C)-(B + D)
  • TE2 (A + B)-(C + D)
  • TE TE1-K ⁇ TE2
  • a light source for emitting a light beam
  • a focusing optical system for receiving the light beam and converging the light beam on an information medium having a track, and diffracting the light beam reflected by the information medium.
  • An optical head device comprising a hologram element for causing light to be received and a light receiving element for receiving light diffracted by the hologram element, the light receiving element comprising at least a first light receiving area and a second light receiving area.
  • a light receiving area, a third light receiving area, and a fourth light receiving area are provided, and the first light receiving area and the second light receiving area are disposed opposite to each other with the first light receiving division line interposed therebetween.
  • the third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween, and the hologram element has a first diffraction area and a second diffraction area.
  • a first group of diffraction areas having an area;
  • a second diffraction region group having a fourth diffraction region and the first diffraction region group, and the first diffraction region group and the second diffraction region group pass through the optical axis center of the condensing optical system;
  • the first diffraction area and the third diffraction area are arranged on both sides of the area division line of 1, and the first incident light to which the ⁇ 1st order light reflected and diffracted by the track of the information medium is incident
  • the light incident on the first incident area is incident on the fourth light receiving area
  • the third incident light on the second incident area is incident on the third light receiving area.
  • an optical integrated device including a light source for emitting a light beam, a hologram element for diffracting the light beam reflected by an information medium, and a light receiving element for receiving light diffracted by the hologram element.
  • the light receiving element has at least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area, and the first light receiving area and the second light receiving The regions are disposed opposite to each other across the first light receiving division line, and the third light receiving region and the fourth light receiving region are disposed opposite to each other with the second light reception division line interposed therebetween.
  • the hologram element has a first diffraction area group having a first diffraction area and a second diffraction area, and a second diffraction area group having a third diffraction area and a fourth diffraction area.
  • the first diffraction area group and the second diffraction area group are The first area dividing line which passes through the center of the optical axis of the system is disposed, and the first diffraction area and the third diffraction area are -1st-order reflected and diffracted by the track of the information medium.
  • the light incident on the first incident area is incident on the second light receiving area and incident on the second incident area.
  • the grating pattern is formed to generate diffracted light having a first wavefront in which the incident light enters the first light receiving area, and the light incident to the third incident area is formed in the second diffraction area.
  • the diffracted light having the second wave front incident on the third light receiving area is A grating pattern to be produced is formed, and in the third diffraction region, the light incident on the first incident region is incident on the fourth light receiving region, and the light incident on the second incident region A grating pattern is formed to generate diffracted light having a third wave front that is incident on the third light receiving area, and the light incident on the third incident area is
  • the present invention can also be realized as an optical integrated device characterized in that a grating pattern for generating diffracted light having a fourth wavefront incident on the second light receiving area is formed.
  • an optical disk apparatus having the optical head device, wherein the signal A from the first light receiving area, the signal B from the second light receiving area, and the signal from the third light receiving area.
  • K is a constant
  • TE1 (A + C)-(B + D)
  • the present invention can also be realized as an optical disk apparatus characterized by having a circuit that generates the tracking error signal TE obtained in the above.
  • an optical head device a light receiving element, an integrated circuit, an optical integrated element, an optical disc capable of detecting a push-pull signal with little influence of lens movement, obtaining a good reproduction signal at low cost and detecting DPD signal
  • An apparatus and signal detection method are implemented.
  • FIG. 1 is a diagram showing the configuration of an optical head device according to Embodiment 1 of the present invention.
  • FIG. 2 is a view showing a diffraction area of the hologram element in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a light receiving area of the light receiving element in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an arithmetic circuit according to the first embodiment of the present invention.
  • 5 (a) to 5 (e) are spot diagrams on the light receiving element in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a focus error signal in the first embodiment of the present invention.
  • FIGS. 1 is a diagram showing the configuration of an optical head device according to Embodiment 1 of the present invention.
  • FIG. 2 is a view showing a diffraction area of the hologram element in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a light receiving area of the light receiving element in the first embodiment
  • FIGS. 7A and 7B are diagrams showing the correspondence between the position of the hologram element and the spot position in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a spot on the light receiving element 40 in the second embodiment of the present invention.
  • FIG. 9 is a diagram showing the relationship between light receiving elements and spots in the third embodiment of the present invention.
  • FIGS. 10 (a) to 10 (e) are diagrams showing spots on the light receiving element in the third embodiment of the present invention.
  • FIG. 11 is a diagram showing a focus error signal in the third embodiment of the present invention.
  • FIGS. 12 (a) and 12 (b) are diagrams showing the correspondence between the position of the hologram element and the spot position in the third embodiment of the present invention.
  • FIG. 13 is a diagram showing the configuration of the optical disc device in the fourth embodiment of the present invention.
  • FIG. 14 is a block diagram of a conventional optical head device.
  • FIG. 15 is a schematic top view of a complex diffraction element of a conventional optical head device.
  • FIG. 16 is a top view of the light receiving element 40 of the conventional optical head device.
  • FIG. 17 is a diagram showing an arithmetic circuit of a conventional optical head device.
  • FIG. 1 is a view schematically showing a configuration of an optical head device according to Embodiment 1 of the present invention.
  • the optical head device includes a semiconductor laser element 30 which is a light source for emitting a light beam toward an information medium (optical disc 10), a hologram element 20 which diffracts the light beam reflected by the information medium, and And a light receiving element 40 for receiving the reflected light.
  • the semiconductor laser element 30 and the light receiving element 40 are closely fixed to the holder 741.
  • the holding portion 741 is fixed in a desired positional relationship with the hologram element 20 via another holding portion (not shown).
  • the other holding unit may be an optical bench of the optical head device, but a unit in which the hologram element 20, the semiconductor laser element 30, and the light receiving element 40 are integrated using a holding member different from the optical bench ) May be configured. The configuration of such a unit can stably configure the optical system.
  • the optical head device further has a collimator lens 11 and an objective lens 12.
  • the collimator lens 11 and the objective lens 12 constitute a focusing optical system for focusing the laser light on the optical disk 10 which is an information medium.
  • the optical head device further includes a lens drive mechanism (not shown) for driving and displacing the objective lens 12 in the optical axis direction (z direction) of the objective lens 12 and the radial direction (x direction) of the optical disc 10.
  • the direction of the optical axis of the condensing optical system is the Z-axis direction
  • the radial direction of the optical disc 10 is the X direction
  • the track direction of the optical disc 10 The (tangential direction) is referred to as the Y direction.
  • the direction is defined based on the optical axis and the mapping of the optical disc 10.
  • the light beam emitted from the semiconductor laser element 30 of the optical head device of Embodiment 1 will be described.
  • the light beam R0 emitted from the semiconductor laser element 30 is transmitted through the hologram element 20 and condensed on the information recording surface of the optical disc 10 by the collimator lens 11 and the objective lens 12.
  • Reflected light from the optical disk 10 is converted by the objective lens 12 and the collimator lens 11 into light which converges to the light emitting point of the semiconductor laser device 30.
  • This light is incident on the hologram element 20 and diffracted.
  • the diffracted light is incident on the light receiving element 40, and the light receiving element 40 detects a signal.
  • FIG. 2 is a view showing a diffraction area of the hologram element 20 in the present embodiment.
  • the grating pattern of the hologram element 20 is divided into a first diffraction area group 261 and a second diffraction area group 262 by a first area division line L11 which passes through substantially the center of the light beam and is parallel to the X-axis.
  • the first diffraction area group 261 includes a second diffraction area 261b divided by a second area division line L12 substantially passing the center of the light beam and a third area division line L13 parallel to the X-axis and the other. It consists of a first diffraction area 261a.
  • the second diffraction region group 262 is divided into a fourth diffraction region 262b divided by a second region division line L12 and a fourth region division line L14 parallel to X and a third diffraction region 262a other than that. It is divided.
  • R0 in the figure is the reflected light from the optical disc 10 incident on the hologram element 20.
  • R1 and R2 are light diffracted by the optical disk 10, and generate light and dark according to the tracking position in the area interfering with R0, that is, the overlapping area.
  • the third area dividing line L13 and the fourth area dividing line L14 are set outside this interference area.
  • FIG. 3 is a view showing a light receiving area of the light receiving element 40 in the present embodiment.
  • the light receiving element 40 has a first light receiving area group 451 and a second light receiving area group 452.
  • the first light receiving area group 451 is composed of a first light receiving area 451a and a second light receiving area 451b which are disposed opposite to each other with the first light receiving parting line L71 substantially parallel to the X-axis interposed therebetween.
  • the second light receiving area group 452 includes a third light receiving area 452a and a fourth light receiving area 452b which are disposed to face each other with the second light receiving parting line L72 substantially parallel to the X-axis interposed therebetween.
  • the return light from the optical disc 10 is straddled across the second light reception division line L72 of the first light reception area group 451 into the first light reception area 451a and the second light reception area 451b in the X direction.
  • a grating pattern is formed which is converted into incident light having coma.
  • the return light from the optical disc 10 is straddled across the second light reception division line L72 of the second light reception area group 452 into the third light reception area 452a and the fourth light reception area 452b.
  • a grating pattern is formed to convert into incident light having a coma aberration opposite to that of the first diffraction area 261a.
  • the second diffraction area 261b has a third diffraction area 262a and the fourth diffraction area 262b has a grating pattern having the same function as the first diffraction area 261a.
  • the first spot 601a in FIG. 3 is the diffracted light from the first diffraction area 261a
  • the second spot 601b is the diffracted light from the second diffraction area 261b
  • the third spot 602a is the third diffraction area 262a.
  • the fourth spot 602b is the diffracted light from the fourth diffraction region 262b.
  • the optical disk apparatus has the following features. That is, the light receiving element 40 has at least a first light receiving area 451a, a second light receiving area 451b, a third light receiving area 452a, and a fourth light receiving area 452b.
  • the first light receiving area 451a and the second light receiving area 451b are disposed to face each other with the first light receiving division line L71 interposed therebetween.
  • the third light receiving area 452a and the fourth light receiving area 452b are disposed to face each other with the second light receiving division line L72 interposed therebetween.
  • the hologram element 20 has a first diffraction area group 261 having a first diffraction area 261a and a second diffraction area 261b, and a second diffraction having a third diffraction area 262a and a fourth diffraction area 262b. And a region group 262.
  • the first diffraction area group 261 and the second diffraction area group 262 are disposed to sandwich a first area division line L11 passing through the center of the optical axis of the focusing optical system.
  • the first diffraction area 261a and the third diffraction area 262a include a first incident area on which the ⁇ 1st order light reflected and diffracted by the tracks of the information medium is incident and a second incident area on which the + 1st order light is incident. .
  • the second diffraction area 261 b and the third diffraction area 262 a include a third incidence area on which only light not diffracted in the tracks of the information medium is incident.
  • the first diffraction area 261a the light incident on the first incident area is incident on the second light receiving area 451b, and the light incident on the second incident area is incident on the first light receiving area 451a
  • a grating pattern for generating diffracted light having a first wavefront is formed.
  • a grating pattern is formed which generates diffracted light having a second wavefront in which light incident on the third incident area is incident on the third light receiving area 452a.
  • the third diffraction area 262a light incident on the first incident area is incident on the fourth light receiving area 452b, and light incident on the second incident area is incident on the third light receiving area 452a
  • a grating pattern for generating diffracted light having a third wavefront is formed.
  • the fourth diffraction area 262b is formed with a grating pattern for generating diffracted light having a fourth wavefront in which light incident on the third incident area is incident on the second light receiving area 451b.
  • Signals from the respective light receiving areas 451a and 451b are detected as a focus error signal (FE signal) and a tracking error signal (TE signal) by the arithmetic circuit shown in FIG.
  • FIG. 5 (a) to 5 (e) are spot diagrams on the light receiving element 40, and FIG. 6 is a diagram showing the obtained focus error signal (FE signal).
  • FIGS. 5 (a) to 5 (e) are spot diagrams for the position of the optical disc 10, which correspond to the positions of FIGS. 6 (a) to 6 (e), respectively.
  • FIG. 6 the disk position in the in-focus state (FIGS. 5C and 6C) in which the minimum spot is formed on the information recording surface of the optical disk 10 is taken as the origin.
  • the FE signal is detected by the circuit shown in FIG. 4 as described above.
  • the operation by this circuit is expressed by Equation 1.
  • the target of the calculation in the equation is the level (intensity) of the signal (the same applies to the following equation).
  • the signal 451b (the signal from the second light receiving area 451b), the signal 451a (the signal from the first light receiving area 451a), the signal 452a (The signal from the third light receiving area 452a) and the signal 452b (the signal from the fourth light receiving area 452b) are balanced, and the focus error signal FE represented by the equation 1 becomes zero.
  • the first light receiving area 451a to the second light receiving area 451b is the first spot 601a. Move according to the distance. Similarly, the third spot 602a moves from the fourth light receiving area 452b to the third light receiving area 452a. As a result, the focus error signal FE represented by Equation 1 has a negative value.
  • the focus error signal FE has a minimum value.
  • the focus error signal FE represented by Equation 1 has a positive value.
  • the focus error signal FE has a maximum value.
  • the focus error signal FE which changes in accordance with the position of the optical disc 10.
  • the distance between the position where the focus error signal FE takes the maximum value and the position where the focus error signal takes the minimum value, that is, the detection range of the focus error signal can be designed as desired depending on the amount of coma of the hologram element 20.
  • the tracking error signal generates a tracking signal TE DPD by the DPD method and a tracking error signal TE PP by the push-pull method by the following equation.
  • TE PP TE1-k ⁇ TE2 (Equation 2)
  • TE DPD Phase (451a + 452b, 451b + 452a) (Equation 3)
  • Phase is a function that performs phase comparison of two signals.
  • TE1 is a push-pull signal
  • TE2 is a signal for correcting a tracking offset that occurs when the objective lens 12 moves in a direction orthogonal to the information track, and is given by the following equation.
  • TE1 (451a + 452a)-(451b + 452b) (equation 4)
  • TE2 (451a + 451b)-(452a + 452b) (Equation 5)
  • k is a constant and is optimized so as to minimize the variation of TE PP due to the shift of the objective lens 12.
  • FIG. 7A is a diagram showing the hologram element 20, and for the sake of explanation, the first area division line L11, the second area division line L12, the third area division line L13, and the fourth area division line L14. Regions which can be divided by are defined as regions A1 to D2. Further, R 0 is a reflected light from the optical disc 10 incident on the hologram element 20. R1 and R2 are light diffracted by the optical disc 10, and interference with R0 generates light and dark according to the tracking position.
  • FIG. 7A Three figures I, II, and III in FIG. 7A show the case where the objective lens 12 moves in the radial direction, where II is the case where the objective lens 12 is at the center of the optical axis.
  • FIG. 7B is a view showing spots on the light receiving element 40, and the light diffracted in each area of FIG. 7A is identified and displayed.
  • the notation of each spot is the same as the notation of each area in FIG. 7 (a).
  • the TEPP signal expressed by Equation 2 becomes a push-pull signal whose operating point does not change even if the objective lens 12 is shifted in the radial direction by appropriately selecting the value of K.
  • Equation 6 Phase (B1 + B2 + D1 + D2, A1 + A2 + C2 + C1)
  • TE DPD Phase (B1 + B2 + D1 + D2, A1 + A2 + C2 + C1)
  • the embodiment of the present invention it is possible to detect a push-pull signal, a phase difference signal, and a focus error signal which are not affected by the radial shift of the objective lens.
  • the number of head amplifiers required for this detection is four as shown in FIG.
  • the optical head apparatus can perform good signal detection because the number of head amplifiers is smaller than that of the conventional head amplifiers.
  • the optical head device it is general to integrate a head amplifier and further an RF signal generation circuit in the light receiving element in order to prevent extraneous noise, but according to the present embodiment, the number of head amplifiers is conventional. Since the number is smaller than the number of head amplifiers, a low cost light receiving element can be realized.
  • the optical head device of the present invention requires the circuit as described above for generating tracking signals, but circuits other than the head amplifier can be calculated outside the optical head device, and analog integrated circuits in the optical disk device, It is also possible to perform digital operation after analog-to-digital conversion of the head amplifier signal, and cost is not a problem if an integrated circuit having an arithmetic function shown in FIG. 4 is used.
  • an optical head device capable of detecting a push-pull signal with little influence of lens movement, obtaining a good reproduction signal at low cost, and detecting a DPD signal is realized. it can.
  • the third area dividing line L13 and the fourth area dividing line L14 are set outside the interference area of the light ray R0, the light ray R1, and the light ray R2. It is not limited to that, and it is only necessary that the tracking error signal component of TE2 is disposed at 1 / K or less of the tracking error signal of TE1 which is disposed at a symmetrical position sandwiching the first area dividing line L11, and is realized in a system with a large interference area. It is possible.
  • the optical head device of the second embodiment will be described below.
  • the configuration of the optical head device of the present embodiment is substantially the same as the configuration of the optical head device of the first embodiment, and the detailed description is omitted, and only the differences from the first embodiment will be described.
  • FIG. 8 is a diagram showing a spot on the light receiving element 40 in the optical head device of the present embodiment.
  • the grating pattern of the second diffraction area 261b is formed to condense light on the third light receiving area 452a.
  • the grating pattern of the fourth diffraction area 262b is formed to condense on the second light receiving area 451b. Since the light amounts of the second spot 601b and the fourth spot 602b are smaller than those of the first spot 601a and the fourth spot 602b, the effect on the FE signal is small, and a good FE signal can be detected.
  • the signal detected in each light receiving area is equivalent to the signal of the first embodiment, and thus can be similarly detected.
  • the light incident on the second diffraction area 261b at the focus position of the optical disc 10 is incident on the third light receiving area 452a and the light incident on the fourth diffraction area 262b is incident on the second The light receiving area 451 b of the light receiving area 451 b of FIG.
  • the optical head device according to the third embodiment will be described below.
  • the configuration of the optical head device of the present embodiment is substantially the same as the configuration of the optical head device of the first embodiment, and the detailed description is omitted, and only the differences from the first embodiment will be described.
  • the difference from the first embodiment of the optical head device according to the present embodiment is that the grating pattern formed in each area of the hologram element 20 is different.
  • FIG. 9 is a view showing a light receiving area of the light receiving element 40 and a spot of diffracted light in the present embodiment.
  • the return light from the optical disc 10 is straddled across the second light reception division line L72 of the first light reception area group 451 into the first light reception area 451a and the second light reception area 451b in the X direction and A grating pattern is formed to convert into incident light having astigmatism at an angle of 45 degrees.
  • the return light from the optical disc 10 is straddled across the second light reception division line L72 of the second light reception area group 452 into the third light reception area 452a and the fourth light reception area 452b.
  • a grating pattern is formed to convert into incident light having astigmatism similar to the aberration of the first diffraction area 261a.
  • the second diffraction area 261b is formed with a third diffraction area 262a
  • the fourth diffraction area 262b is formed with a grating pattern having the same function as the first diffraction area 261a.
  • the first spot 601a in FIG. 9 is the diffracted light from the first diffraction area 261a
  • the second spot 601b is the diffracted light from the second diffraction area 261b
  • the third spot 602a is from the third diffraction area 262a.
  • the fourth spot 602b is the diffracted light from the fourth diffraction region 262b.
  • the signals from the light receiving areas 451a and 451b are detected from the focus error signal (FE signal) and the tracking error signal (TE signal) by the arithmetic circuit shown in FIG.
  • FIG. 10 (a) to 10 (e) are diagrams showing the spots on the light receiving element 40, and FIG. 11 is a diagram showing the obtained focus error signal.
  • FIGS. 10 (a) to 10 (e) are spot diagrams for the position of the optical disc 10, which correspond to the positions of FIGS. 11 (a) to 11 (e), respectively.
  • the disc position in the in-focus state (FIGS. 10 (c) and 11 (c)) in which the minimum spot is formed on the information recording surface of the optical disc 10 is taken as the origin.
  • the FE signal is detected by the circuit shown in FIG. 4 as described above.
  • the operation by this circuit is expressed by the following equation 13.
  • the signal 451b (the signal from the second light receiving area 451b), the signal 451a (the signal from the first light receiving area 451a), and the signal 452a (The signal from the third light receiving area 452a) and the signal 452b (the signal from the fourth light receiving area 452b) are well balanced, and the focus error signal FE represented by Expression 13 becomes zero.
  • the first light receiving area 451a to the second light receiving area 451b is the first spot 601a. Move according to the distance. Similarly, the third spot 602a moves from the fourth light receiving area 452b to the third light receiving area 452a. As a result, the focus error signal FE represented by Expression 13 has a negative value.
  • the focus error signal FE has a minimum value.
  • the focus error signal FE represented by Equation 13 has a positive value.
  • the focus error signal FE has a maximum value.
  • the focus error signal FE which changes in accordance with the position of the optical disc 10.
  • the distance between the position where the focus error signal FE takes the maximum value and the position where the focus error signal takes the minimum value, that is, the detection range of the focus error signal can be designed as desired by the amount of astigmatism of the hologram element 20.
  • the tracking error signal generates a tracking signal TE DPD by the DPD method and a tracking error signal TE PP by the push-pull method by the following equation.
  • TE PP TE1-k ⁇ TE2 (Equation 14)
  • TE DPD Phase (451b + 452a, 451a + 452b) (Equation 15)
  • Phase is a function that performs phase comparison of two signals.
  • TE1 is a push-pull signal
  • TE2 is a signal for correcting a tracking offset that occurs when the objective lens 12 moves in a direction orthogonal to the information track, and is given by the following equation.
  • TE1 (451b + 452b)-(451a + 452a) (Equation 16)
  • TE2 (451b + 451a)-(452b + 452a) (Equation 17)
  • k is a constant and is optimized so as to minimize the variation of TE PP due to the shift of the objective lens 12.
  • FIG. 12A shows the hologram element 20.
  • the areas divided by the first area dividing line L11, the second area dividing line L12, the third area dividing line L13, and the fourth area dividing line L14 are defined as the areas A1 to D2.
  • R0 is a reflected light from the optical disc 10 incident on the hologram element 20.
  • R1 and R2 are light diffracted by the optical disk 10, and interference with R0 generates light and dark according to the tracking position.
  • FIG. 12A Three figures I, II, and III in FIG. 12A show the case where the objective lens 12 moves in the radial direction, where II is the case where the objective lens 12 is at the center of the optical axis.
  • FIG. 12B is a view showing spots on the light receiving element 40, and the light diffracted in each area of FIG. 12A is identified and displayed.
  • the notation of each spot is the same as the notation of each area in FIG. 12 (a).
  • Equation 16 (B1 + C1)-(A1 + D1) (Equation 24) It is possible to confirm that the push-pull signal is detected by the correspondence with the area of FIG.
  • the TEPP signal represented by Expression 14 can obtain a push-pull signal in which the operating point does not change even if the objective lens 12 is shifted in the radial direction.
  • Equation 18 Phase (B1 + B2 + D1 + D2, A1 + A2 + C2 + C1)
  • the embodiment of the present invention it is possible to detect a push-pull signal, a phase difference signal, and a focus error signal which are not affected by the radial shift of the objective lens.
  • the number of head amplifiers required for this detection is four as shown in FIG.
  • the optical head apparatus can perform good signal detection because the number of head amplifiers is smaller than that of the conventional head amplifiers.
  • the optical head device it is common to use an optoelectronic integrated circuit (OEIC) that integrates a light receiving element and a head amplifier, and further RF signal generation, on the same substrate as a light receiving element to prevent external noise.
  • OEIC optoelectronic integrated circuit
  • the optical head device of the present invention requires the circuit as described above for generating tracking signals, but circuits other than the head amplifier can be calculated outside the optical head device, and analog integrated circuits in the optical disk device, It is also possible to perform digital operation after analog-digital conversion of the head amplifier signal, and the cost is not a problem.
  • an optical head device capable of detecting a push-pull signal having a small influence of lens movement, obtaining a good reproduction signal at low cost, and detecting a DPD signal.
  • the third area dividing line L13 and the fourth area dividing line L14 are set outside the interference area of the light ray R0, the light ray R1, and the light ray R2. It is not limited to that, and it is only necessary that the tracking error signal component of TE2 is disposed at 1 / K or less of the tracking error signal of TE1 which is disposed at a symmetrical position sandwiching the first area dividing line L11, and is realized in a system with a large interference area. It is possible.
  • FIG. 13 is a diagram showing the configuration of the optical disc apparatus (optical information processing apparatus) of the fourth embodiment.
  • This optical disk apparatus comprises an optical disk 10, an electric circuit 59, an optical head device 76, a drive device 79 and a rotation mechanism 78.
  • the rotation mechanism 78 is a mechanism that holds and rotates the optical disc 10.
  • the optical head device 76 is any one of the optical head devices described in the first embodiment, the second embodiment, and the third embodiment, and includes the fine movement means of the objective lens 12.
  • the optical head unit 76 is coarsely moved by the drive unit 79 to the track where the desired information of the optical disc 10 is present. Then, the optical head device 76 sends a signal to the drive device 79.
  • the electric circuit 59 has all or part of the arithmetic functions shown in FIG. 4 and generates TE signals and FE signals, based on which the optical head device 76 and the objective lens 12 are finely moved. It sends a signal and performs focus servo and tracking servo.
  • the reproduction signal is generated by the sum of the signals detected by the light receiving element 40 in the optical head device 76 or in the electric circuit 59, and is output as a data raw signal after signal processing such as an equalizer.
  • a push-pull signal with little influence of lens movement can be detected, stability can be realized by tracking servo, and good recording and reproduction can be realized.
  • the number of head-ups is small and a good signal can be obtained.
  • optical head apparatus the light receiving element, the integrated circuit, the optical integrated element, the optical disc apparatus, and the signal detection method according to the present invention have been described based on the first to fourth embodiments. It is not limited to The embodiments obtained by applying various modifications to the embodiments without departing from the spirit of the present invention, and embodiments realized by arbitrarily combining the components in the embodiments are also included in the present invention.
  • An optical head device, a light receiving element, an integrated circuit, an optical integrated element, an optical disc device, and a signal detection method according to the present invention have a function of recording and reproducing information on an information recording medium. Useful as. It can also be applied to storage of computer data and programs, storage of car navigation map data, and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

Disclosed is a low cost optical head apparatus capable of generating good reproduced signals. The optical head apparatus is provided with a semiconductor laser element (30), a light receiving element (40), and a hologram element (20). At a first diffraction region (261a) of the hologram element (20), a grating pattern is formed which converts light returning from an optical disc (10) to light spread over a second light reception dividing line (L72) at a first light receiving region group (451) and emitted to a first light-receiving region (451a) and second light receiving region (451b) with a coma aberration in the X-direction. At a third diffraction region (262a), a grating pattern is formed which converts light returning from the optical disc (10) to light spread over the second light reception dividing line (L72) at a second light receiving region group (452) and emitted to a third light receiving region (452a) and fourth light receiving region (452b) with a coma aberration opposite to the polarity of the first diffraction region (261a).

Description

光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法Optical head device, light receiving element, integrated circuit, optical integrated element, optical disk device, and signal detection method
 本発明は、光により記録媒体上に情報を記録・再生あるいは消去を行う光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法に関するものである。 The present invention relates to an optical head device for recording / reproducing / erasing information on a recording medium by light, a light receiving element, an integrated circuit, an optical integrated element, an optical disc device, and a signal detection method.
 光ディスクをはじめとする光情報記録において、所望の記録再生位置に光スポットを制御するトラッキング制御は必要不可欠の技術である。このトラッキング制御に用いられるトラッキングエラー信号を検出する方法としてプッシュプル法がある。プッシュプル法は、簡単な構成の光学系で実現できるため光ヘッド装置(以下、単に「光ヘッド」ともいう。)に広く採用されている。 In optical information recording including an optical disk, tracking control for controlling a light spot at a desired recording and reproducing position is an indispensable technique. There is a push-pull method as a method of detecting a tracking error signal used for this tracking control. The push-pull method can be realized by an optical system having a simple configuration, and is widely employed in an optical head device (hereinafter, also simply referred to as an “optical head”).
 しかしながら、プッシュプル法は、トラッキング方向の対物レンズ移動に伴い、トラッキングエラー信号にオフセットが生じるという欠点がある。この欠点を補う技術が、特許文献1に開示されている。 However, the push-pull method has a disadvantage that the tracking error signal is offset as the objective lens moves in the tracking direction. Patent Document 1 discloses a technique for compensating for this defect.
 図14は、特許文献1における光ヘッド装置の構成図、図15は、複合回折素子の上面概念図である。 FIG. 14 is a block diagram of an optical head device in Patent Document 1, and FIG. 15 is a schematic top view of a composite diffraction element.
 図14には、情報記録媒体である光ディスク10、対物レンズ12、ホログラム素子20、半導体レーザ素子30、受光素子40が示されている。同図内の各矢印は、光の進む方向を示す。図15は、図14に示されるホログラム素子20の上面図である。同図のL8a~L8cは領域分割線、25a~25fは分割された領域であり、R0はホログラム素子20を通過する光線を示し、R1とR2は光ディスク10のトラックにより回折された光線を示している。図16は、受光素子40の上面図である。同図において、45a~45dは受光領域、46~49は受光領域群で、それぞれ、受光領域46a~46c、受光領域47a~47c、受光領域48a~48c、受光領域49a~49cからなる。各受光素子内部に記した図形は、そこに入射する光線の形状を模式的に示す物である。各受光領域により検出された信号は図17で示す回路構成の演算回路でトラッキングエラー信号およびフォーカスエラー信号を生成する。図中、IVと表記された回路はヘッドアンプ(電流電圧変換アンプ)であり、Kと表記された回路はゲインKのアンプ、他の回路は加算もしくは減算回路である。 FIG. 14 shows an optical disc 10 as an information recording medium, an objective lens 12, a hologram element 20, a semiconductor laser element 30, and a light receiving element 40. Each arrow in the figure indicates the direction in which light travels. FIG. 15 is a top view of the hologram element 20 shown in FIG. In the figure, L8a to L8c indicate area dividing lines, 25a to 25f indicate divided areas, R0 indicates a light beam passing through the hologram element 20, R1 and R2 indicate light beams diffracted by the track of the optical disk 10 There is. FIG. 16 is a top view of the light receiving element 40. FIG. In the figure, 45a to 45d are light receiving areas, and 46 to 49 are light receiving area groups, each of which comprises light receiving areas 46a to 46c, light receiving areas 47a to 47c, light receiving areas 48a to 48c, and light receiving areas 49a to 49c. The figure written inside each light receiving element is a thing which shows typically the shape of the light ray which injects there. The signals detected by the respective light receiving areas generate a tracking error signal and a focus error signal in the arithmetic circuit of the circuit configuration shown in FIG. In the drawing, a circuit denoted by IV is a head amplifier (current-voltage conversion amplifier), a circuit denoted by K is an amplifier of gain K, and the other circuits are addition or subtraction circuits.
 以下に、この構成の光ヘッド装置の動作を説明する。半導体レーザ素子30から発せられた光は、ホログラム素子20を透過し、対物レンズ12により光ディスク10の情報記録面に集光される。光ディスク10の情報記録面には、情報トラックが形成されており、この情報トラックの方向は、図14では紙面に垂直な方向であるとする。光ディスク10からの反射光は、対物レンズ12を通過後、再び半導体レーザ素子30の近傍に向かって収束しながら進み、ホログラム素子20に入射する。ホログラム素子20の領域分割線L8aから領域分割線L8cによって分割された各領域を通過した光束は、+1次、0次、および-1次回折光として透過する。その透過する光の内、+1次、および-1次回折光が、対応する各受光領域に向けて回折される。 The operation of the optical head device of this configuration will be described below. The light emitted from the semiconductor laser element 30 passes through the hologram element 20 and is condensed on the information recording surface of the optical disc 10 by the objective lens 12. An information track is formed on the information recording surface of the optical disk 10, and the direction of the information track is assumed to be a direction perpendicular to the paper surface in FIG. After passing through the objective lens 12, the reflected light from the optical disk 10 again converges toward the vicinity of the semiconductor laser device 30 and advances while entering the hologram device 20. The luminous fluxes passing through the respective regions divided by the region dividing line L8c from the region dividing line L8a of the hologram element 20 are transmitted as + 1st order, 0th order and -1st order diffracted light. Among the transmitted light, + 1st order and -1st order diffracted lights are diffracted toward the corresponding light receiving areas.
 ホログラム素子20の領域25aおよび25eでの回折光は、例えば受光領域45aと受光領域45dに、領域25bおよび25fでの回折光は、例えば受光領域45bと受光領域45cに、領域25cでの回折光は、例えば受光領域群47と受光領域群48に、領域25dでの回折光は、例えば受光領域群46と受光領域群49に、各々入射する。このとき、例えば、受光領域群47および受光領域群49に入射する光束は、その受光素子よりも遠いところに焦点を結び、受光領域群46および受光領域群48に入射する光束は、その受光素子よりホログラム素子20に近いところで焦点を結ぶ。更に、光ディスク10が対物レンズ12の合焦点にあるときに、受光領域群46、受光領域群47、受光領域群48および受光領域群49上での光束の受光素子の分割線に直交する方向の長さが実質上等しくなるようにホログラム素子20の領域25cおよび25dの回折格子パターンに、レンズの屈折力を持たせると、対物レンズ12の合焦点ずれに応じて、各受光素子群上で光束の大きさがそれぞれ異なる大きさに変化するので、
 FE=46a+46c+47b+48a+48c+49b-(46b+47a+47c+48b+49a+49c)
 という演算により、フォーカスエラー信号FEが得られる。
Diffracted light in the regions 25a and 25e of the hologram element 20, for example, in the light receiving region 45a and the light receiving region 45d, and diffracted light in the regions 25b and 25f, for example, in the light receiving region 45b and the light receiving region 45c, diffracted light in the region 25c For example, diffracted light in the region 25d enters, for example, the light receiving region group 47 and the light receiving region group 49, for example. At this time, for example, a light flux entering the light receiving area group 47 and the light receiving area group 49 focuses on a place farther than the light receiving element, and a light flux entering the light receiving area group 46 and the light receiving area group 48 receives the light receiving element Focusing is closer to the hologram element 20. Furthermore, when the optical disk 10 is in focus of the objective lens 12, the light receiving area group 46, the light receiving area group 47, the light receiving area group 48 and the light receiving area group 49 in the direction orthogonal to the dividing line of the light receiving elements of the light beams. When the refractive power of the lens is given to the diffraction grating patterns of the regions 25c and 25d of the hologram element 20 so that the lengths become substantially equal, the light flux on each light receiving element group according to the focal point shift of the objective lens 12 Because the size of each changes to a different size,
FE = 46a + 46c + 47b + 48a + 48c + 49b-(46b + 47a + 47c + 48b + 49a + 49c)
The focus error signal FE is obtained by the following calculation.
 ここで、検出信号名を受光領域名で表している。以後、断りがない限り検出信号名をその信号が検出された受光領域名で表すこととする。 Here, the detection signal name is represented by the light receiving area name. Hereinafter, unless otherwise noted, the detection signal name is referred to as the light receiving area name in which the signal is detected.
 プッシュプル信号TE1は、ホログラム素子20の領域分割線L8bと領域分割線L8cの間の領域を通過した光束を検出して、
 TE1=(47a+47b+47c+48a+48b+48c)-(46a+46b+46c+49a+49b+49c)
 で得られる。
The push-pull signal TE1 detects a light flux that has passed through the area between the area dividing line L8b of the hologram element 20 and the area dividing line L8c,
TE1 = (47a + 47b + 47c + 48a + 48b + 48c)-(46a + 46b + 46c + 49a + 49b + 49c)
It is obtained by
 また、対物レンズ12が情報トラックに直交する方向に移動したときに生じる、トラッキングオフセットを補正する信号TE2は、ホログラム素子20の領域分割線L8bと領域分割線L8cの外側の領域を通過した光束を検出し、
 TE2=45a+45d-(45b+45c)
 で得られる。したがって、対物レンズの移動に伴い生じるオフセットが補正されたトラッキングエラー信号TEは、補正係数をkとして
 TE=TE1-k*TE2
 で得ることができる。
Further, a signal TE2 which is generated when the objective lens 12 moves in a direction orthogonal to the information track and which corrects the tracking offset is a light beam which has passed through the area outside the area dividing line L8b of the hologram element 20 and the area dividing line L8c. Detect
TE2 = 45a + 45d-(45b + 45c)
It is obtained by Therefore, the tracking error signal TE in which the offset generated with the movement of the objective lens has been corrected is TE = TE1-k * TE2 with the correction coefficient k.
Can be obtained by
 これら演算は図17の演算回路で得ることができる。なお、記録情報読み出しのための信号(RF信号)は図17には図示していないが、全ての受光領域からの信号の総和で検出する。 These operations can be obtained by the operation circuit of FIG. Although not shown in FIG. 17, the signal (RF signal) for reading the recording information is detected by the sum of the signals from all the light receiving areas.
特開平11-73658号公報Japanese Patent Application Laid-Open No. 11-73658
 しかしながら、従来の構成では、FE信号およびトラッキング誤差信号を検出するために6個のヘッドアンプが必要である。このため、回路規模が大きくなりコストが高くなるという課題もある。また、ヘッドアンプで発生するノイズもヘッドアンプの数に比例して増大し再生信号が劣化するという課題がある。 However, in the conventional configuration, six head amplifiers are required to detect the FE signal and the tracking error signal. For this reason, there is also a problem that the circuit scale becomes large and the cost becomes high. Further, there is a problem that noise generated in the head amplifier also increases in proportion to the number of head amplifiers and the reproduction signal is deteriorated.
 さらに、DVDやBDのようなシステムでは、再生専用ディスク(ROMディスク)のトラッキングエラー信号検出には位相差トラッキングエラー信号(DPD信号)の検出が必要であるが、この構成では検出できず、さらなる受光領域の分割が必要でそのヘッドアンプの数は倍の12個必要となり、さらなるコスト高、ノイズ増大の問題が発生し実現が難しい。 Furthermore, in systems such as DVD and BD, detection of a tracking error signal of a read-only disc (ROM disc) requires detection of a phase difference tracking error signal (DPD signal), but this configuration can not detect this signal. It is necessary to divide the light receiving area, and the number of head amplifiers is required to be 12 times as many, resulting in an increase in cost and a problem of noise increase, which is difficult to realize.
 以上のように従来の光ヘッド装置においては、ヘッドアンプの増大によるコスト高および再生信号の劣化という課題がある。 As described above, in the conventional optical head device, there is a problem of cost increase due to the increase of the head amplifier and deterioration of the reproduction signal.
 そこで、本発明はこの様な課題を改善し、低コストで、かつ、良好な再生信号を生成することが可能な光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法を提供することを目的とする。 Therefore, the present invention solves such problems, and an optical head device, a light receiving element, an integrated circuit, an optical integrated device, an optical disk device, and a signal detecting method capable of generating a good reproduction signal at low cost. Intended to provide.
 上記目的を達成するために、本発明の一実施形態に係る光ディスク装置は、光ビームを出射する光源と、前記光ビームを受け、トラックを有する情報媒体上の微小スポットに収束させる集光光学系と、前記情報媒体で反射された前記光ビームを回折させるホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光ヘッド装置であって、前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、前記第1の受光領域と前記第2の受光領域とは、第1の受光分割線を挟んで対向して配置されており、前記第3の受光領域と前記第4の受光領域とは、第2の受光分割線を挟んで対向して配置されており、前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群とを有し、前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、前記第1の回折領域には、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させる格子パターンが形成され、前記第2の回折領域には、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させる格子パターンが形成され、前記第3の回折領域には、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させる格子パターンが形成され、前記第4の回折領域には、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させる格子パターンが形成されていることを特徴とする。 In order to achieve the above object, an optical disk apparatus according to an embodiment of the present invention comprises: a light source for emitting a light beam; and a focusing optical system for receiving the light beam and converging it to a minute spot on an information medium having a track. An optical head device comprising: a hologram element for diffracting the light beam reflected by the information medium; and a light receiving element for receiving light diffracted by the hologram element, the light receiving element comprising at least A first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area, and the first light receiving area and the second light receiving area The third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween, and the hologram element is disposed to Diffraction region and second diffraction region And a second diffraction area group having a third diffraction area and a fourth diffraction area, and the first diffraction area group and the second diffraction area group have A first area division line passing through a center of an optical axis of the focusing optical system, the first diffraction area and the third diffraction area being reflected and diffracted by the track of the information medium And a second incident area on which the first order light is incident, wherein the second diffraction area and the third diffraction area are tracks of the information medium. The light incident on the first incident area is incident on the second light receiving area, and the second light receiving area includes the third incident area on which only undiffracted light is incident. A light having a first wavefront in which light incident on an incident area is incident on the first light receiving area A grating pattern for generating light is formed, and in the second diffraction area, diffracted light having a second wave front in which light incident on the third incident area is incident on the third light receiving area is generated In the third diffraction area, light incident on the first incident area is incident on the fourth light receiving area, and light incident on the second incident area is incident on the third diffraction area. A grating pattern for generating diffracted light having a third wavefront incident on the third light receiving area is formed, and the light incident on the third incident area is the second on the fourth diffraction area. A grating pattern is formed to generate diffracted light having a fourth wavefront incident on the light receiving region.
 これにより、第1の受光領域451aからの信号Aと、第2の受光領域451bからの信号Bと、第3の受光領域452aからの信号Cと、第4の受光領域452bからの信号Dとを用い、Kを定数としたときに、下記の演算により、簡易に、トラッキングエラー信号TEを検出することができる。 Thereby, the signal A from the first light receiving area 451a, the signal B from the second light receiving area 451b, the signal C from the third light receiving area 452a, and the signal D from the fourth light receiving area 452b When K is a constant, the tracking error signal TE can be easily detected by the following operation.
 TE1=(A+C)-(B+D)
 TE2=(A+B)-(C+D)
 TE=TE1-K・TE2
TE1 = (A + C)-(B + D)
TE2 = (A + B)-(C + D)
TE = TE1-K · TE2
 さらに、信号Aと信号Bと信号Cと信号Dを用い、下記の演算により、簡易に、フォーカスエラー信号FEを生成することができる。 Further, the focus error signal FE can be easily generated by the following operation using the signal A, the signal B, the signal C, and the signal D.
 FE=(A+D)-(B+C) FE = (A + D)-(B + C)
 さらに、上記信号Aと信号Bと信号Cと信号Dを用い、(A+D)と(B+C)の信号の位相差により位相差トラッキングエラー信号を生成することもできる。 Furthermore, using the signals A, B, C, and D, a phase difference tracking error signal can also be generated by the phase difference between the (A + D) and (B + C) signals.
 さらに、上記信号Aと信号Bと信号Cと信号Dの総和により、情報媒体に記録された信号を検出してもよい。 Further, the signal recorded on the information medium may be detected by the sum of the signal A, the signal B, the signal C and the signal D.
 なお、本発明は、上記光ヘッド装置として実現できるだけでなく、上記の光ヘッド装置に用いられる受光素子であって、少なくとも第1の受光領域と第2の受光領域と第3の光受光領域と第4の光受光領域を有し、前記第1の受光領域と前記第2の受光領域は、第1の受光分割線を挟んで対向して配置されており、前記第3の受光領域と前記第4の受光領域は、第2の受光分割線を挟んで対向して配置されており、前記第1の受光領域からの信号と前記第3の受光領域からの信号の和と、前記第2の受光領域からの信号と前記第4の受光領域からの信号の和との差動により得られる第1の信号を生成する回路と、前記第1の受光領域からの信号と前記第2の受光領域からの信号の和と、前記第3の受光領域からの信号と前記第4の受光領域からの信号の和との差動により得られる第2の信号を生成する回路とを有することを特徴とする受光素子として実現することもできる。 The present invention is not only realized as the above optical head device, but is a light receiving element used for the above optical head device, and at least the first light receiving region, the second light receiving region, and the third light receiving region It has a fourth light receiving area, and the first light receiving area and the second light receiving area are disposed to face each other across the first light receiving division line, and the third light receiving area and the second light receiving area The fourth light receiving area is disposed to face the second light receiving division line, and the second light receiving area is the sum of the signal from the first light receiving area and the signal from the third light receiving area, and the second light receiving area. A circuit for generating a first signal obtained by the difference between the signal from the light receiving area and the sum of the signals from the fourth light receiving area; the signal from the first light receiving area and the second light receiving A sum of signals from the area, a signal from the third light receiving area, and the fourth light receiving area May also be implemented as a light-receiving element; and a circuit for generating a second signal obtained by the differential between the sum of al the signal.
 また、本発明は、上記光ヘッド装置からの信号を処理する集積回路であって、前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
 TE1=(A+C)-(B+D)
 TE2=(A+B)-(C+D)
 TE=TE1-K・TE2
 で得られるトラッキングエラー信号TEを生成する回路を有する集積回路として実現することもできる。
Further, according to the present invention, there is provided an integrated circuit for processing a signal from the optical head device, wherein the signal A from the first light receiving area, the signal B from the second light receiving area, and the third one. Assuming that K is a constant, using the signal C from the light receiving area and the signal D from the fourth light receiving area,
TE1 = (A + C)-(B + D)
TE2 = (A + B)-(C + D)
TE = TE1-K · TE2
It can also be realized as an integrated circuit having a circuit that generates the tracking error signal TE obtained in
 また、本発明は、光ビームを出射する光源と、前記光ビームを受け、トラックを有する情報媒体上の微小スポットに収束させる集光光学系と、前記情報媒体で反射された前記光ビームを回折させるホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光ヘッド装置で信号を検出する方法であって、前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、前記第1の受光領域と前記第2の受光領域とは、第1の受光分割線を挟んで対向して配置されており、前記第3の受光領域と前記第4の受光領域とは、第2の受光分割線を挟んで対向して配置されており、前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群を有し、前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、前記第1の回折領域の格子パターンで、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させ、前記第2の回折領域の格子パターンで、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させ、前記第3の回折領域の格子パターンで、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させ、前記第4の回折領域の格子パターンで、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させることを特徴とする信号検出方法として実現することもできる。 Further, according to the present invention, there are provided a light source for emitting a light beam, a focusing optical system for receiving the light beam and converging the light beam on an information medium having a track, and diffracting the light beam reflected by the information medium. An optical head device comprising a hologram element for causing light to be received and a light receiving element for receiving light diffracted by the hologram element, the light receiving element comprising at least a first light receiving area and a second light receiving area. A light receiving area, a third light receiving area, and a fourth light receiving area are provided, and the first light receiving area and the second light receiving area are disposed opposite to each other with the first light receiving division line interposed therebetween. The third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween, and the hologram element has a first diffraction area and a second diffraction area. A first group of diffraction areas having an area; A second diffraction region group having a fourth diffraction region and the first diffraction region group, and the first diffraction region group and the second diffraction region group pass through the optical axis center of the condensing optical system; The first diffraction area and the third diffraction area are arranged on both sides of the area division line of 1, and the first incident light to which the −1st order light reflected and diffracted by the track of the information medium is incident An area and a second incident area on which +1 order light is incident, wherein the second diffraction area and the third diffraction area are the third incident area on which only light not diffracted by the track of the information medium is incident In the first diffraction area grating pattern, the light incident on the first incident area is incident on the second light receiving area, and the light incident on the second incident area is the first Generating diffracted light having a first wavefront incident on the light receiving area of The light incident on the third incident area generates diffracted light having a second wave front that is incident on the third light receiving area, and the grating pattern of the third diffraction area is generated. Then, the light incident on the first incident area is incident on the fourth light receiving area, and the third incident light on the second incident area is incident on the third light receiving area. To generate the diffracted light having the fourth wavefront in which the light incident on the third incident area is incident on the second light receiving area in the grating pattern of the fourth diffracted area It can also be realized as a signal detection method characterized by the above.
 また、本発明は、光ビームを出射する光源と、情報媒体で反射された前記光ビームを回折するホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光集積素子であって、前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、前記第1の受光領域と前記第2の受光領域は、第1の受光分割線を挟んで対向して配置されており、前記第3の受光領域と前記第4の受光領域は、第2の受光分割線を挟んで対向して配置されており、前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群とを有し、前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、前記第1の回折領域には、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させる格子パターンが形成され、前記第2の回折領域には、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させる格子パターンが形成され、前記第3の回折領域には、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させる格子パターンが形成され、前記第4の回折領域には、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させる格子パターンが形成されていることを特徴とする光集積素子として実現することもできる。 Further, according to the present invention, there is provided an optical integrated device including a light source for emitting a light beam, a hologram element for diffracting the light beam reflected by an information medium, and a light receiving element for receiving light diffracted by the hologram element. The light receiving element has at least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area, and the first light receiving area and the second light receiving The regions are disposed opposite to each other across the first light receiving division line, and the third light receiving region and the fourth light receiving region are disposed opposite to each other with the second light reception division line interposed therebetween. And the hologram element has a first diffraction area group having a first diffraction area and a second diffraction area, and a second diffraction area group having a third diffraction area and a fourth diffraction area. And the first diffraction area group and the second diffraction area group are The first area dividing line which passes through the center of the optical axis of the system is disposed, and the first diffraction area and the third diffraction area are -1st-order reflected and diffracted by the track of the information medium. A first incident area where light is incident and a second incident area where + first order light is incident, wherein the second diffraction area and the third diffraction area are only light that is not diffracted by the track of the information medium The light incident on the first incident area is incident on the second light receiving area and incident on the second incident area. The grating pattern is formed to generate diffracted light having a first wavefront in which the incident light enters the first light receiving area, and the light incident to the third incident area is formed in the second diffraction area. The diffracted light having the second wave front incident on the third light receiving area is A grating pattern to be produced is formed, and in the third diffraction region, the light incident on the first incident region is incident on the fourth light receiving region, and the light incident on the second incident region A grating pattern is formed to generate diffracted light having a third wave front that is incident on the third light receiving area, and the light incident on the third incident area is The present invention can also be realized as an optical integrated device characterized in that a grating pattern for generating diffracted light having a fourth wavefront incident on the second light receiving area is formed.
 また、本発明は、上記光ヘッド装置を有する光ディスク装置であって、前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
 TE1=(A+C)-(B+D)
 TE2=(A+B)-(C+D)
 TE=TE1-K・TE2
 で得られるトラッキングエラー信号TEを生成する回路を有することを特徴とする光ディスク装置として実現することもできる。
Further, according to the present invention, there is provided an optical disk apparatus having the optical head device, wherein the signal A from the first light receiving area, the signal B from the second light receiving area, and the signal from the third light receiving area. Assuming that K is a constant, using the signal C and the signal D from the fourth light receiving area,
TE1 = (A + C)-(B + D)
TE2 = (A + B)-(C + D)
TE = TE1-K · TE2
The present invention can also be realized as an optical disk apparatus characterized by having a circuit that generates the tracking error signal TE obtained in the above.
 本発明によれば、レンズ移動の影響の小さなプッシュプル信号が検出でき、低コストで良好な再生信号が得られ且つDPD信号検出可能な光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法が実現される。 According to the present invention, an optical head device, a light receiving element, an integrated circuit, an optical integrated element, an optical disc capable of detecting a push-pull signal with little influence of lens movement, obtaining a good reproduction signal at low cost and detecting DPD signal An apparatus and signal detection method are implemented.
図1は、本発明の実施の形態1における光ヘッド装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of an optical head device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1におけるホログラム素子の回折領域を示す図である。FIG. 2 is a view showing a diffraction area of the hologram element in the first embodiment of the present invention. 図3は、本発明の実施の形態1における受光素子の受光領域を示す図である。FIG. 3 is a diagram showing a light receiving area of the light receiving element in the first embodiment of the present invention. 図4は、本発明の実施の形態1における演算回路を示す図である。FIG. 4 is a diagram showing an arithmetic circuit according to the first embodiment of the present invention. 図5(a)~(e)は、本発明の実施の形態1における受光素子上のスポットダイアグラムである。5 (a) to 5 (e) are spot diagrams on the light receiving element in the first embodiment of the present invention. 図6は、本発明の実施の形態1におけるフォーカスエラー信号を示す図である。FIG. 6 is a diagram showing a focus error signal in the first embodiment of the present invention. 図7(a)および(b)は、本発明の実施の形態1におけるホログラム素子の位置とスポット位置の対応を示す図である。FIGS. 7A and 7B are diagrams showing the correspondence between the position of the hologram element and the spot position in the first embodiment of the present invention. 図8は、本発明の実施の形態2における受光素子40上のスポットを表す図である。FIG. 8 is a diagram showing a spot on the light receiving element 40 in the second embodiment of the present invention. 図9は、本発明の実施の形態3における受光素子とスポットの関係を示す図である。FIG. 9 is a diagram showing the relationship between light receiving elements and spots in the third embodiment of the present invention. 図10(a)~(e)は、本発明の実施の形態3における受光素子上のスポットを表す図である。FIGS. 10 (a) to 10 (e) are diagrams showing spots on the light receiving element in the third embodiment of the present invention. 図11は、本発明の実施の形態3におけるフォーカスエラー信号を示す図である。FIG. 11 is a diagram showing a focus error signal in the third embodiment of the present invention. 図12(a)および(b)は、本発明の実施の形態3におけるホログラム素子の位置とスポット位置の対応を示す図である。FIGS. 12 (a) and 12 (b) are diagrams showing the correspondence between the position of the hologram element and the spot position in the third embodiment of the present invention. 図13は、本発明の実施の形態4における光ディスク装置の構成を示す図である。FIG. 13 is a diagram showing the configuration of the optical disc device in the fourth embodiment of the present invention. 図14は、従来の光ヘッド装置の構成図である。FIG. 14 is a block diagram of a conventional optical head device. 図15は、従来の光ヘッド装置の複合回折素子の上面概念図である。FIG. 15 is a schematic top view of a complex diffraction element of a conventional optical head device. 図16は、従来の光ヘッド装置の受光素子40の上面図である。FIG. 16 is a top view of the light receiving element 40 of the conventional optical head device. 図17は、従来の光ヘッド装置の演算回路を示す図である。FIG. 17 is a diagram showing an arithmetic circuit of a conventional optical head device.
 以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1における光ヘッド装置の構成を模式的に示した図である。
Embodiment 1
FIG. 1 is a view schematically showing a configuration of an optical head device according to Embodiment 1 of the present invention.
 この光ヘッド装置は、光ビームを情報媒体(光ディスク10)へ向けて出射する光源である半導体レーザ素子30、情報媒体で反射された光ビームを回折するホログラム素子20と、ホログラム素子20により回折された光を受光する受光素子40とを備える。半導体レーザ素子30および受光素子40は近接して保持部741に固定されている。保持部741はさらに別の保持部(図示せず)を介してホログラム素子20と所望の位置関係で固定されている。別の保持部は光ヘッド装置の光学台であってもよいが、光学台とは異なる保持部材を用いホログラム素子20、半導体レーザ素子30、受光素子40を一体化したユニット(例えば、光集積素子)を構成してもよい。このようなユニットの構成は光学系が安定に構成できる。 The optical head device includes a semiconductor laser element 30 which is a light source for emitting a light beam toward an information medium (optical disc 10), a hologram element 20 which diffracts the light beam reflected by the information medium, and And a light receiving element 40 for receiving the reflected light. The semiconductor laser element 30 and the light receiving element 40 are closely fixed to the holder 741. The holding portion 741 is fixed in a desired positional relationship with the hologram element 20 via another holding portion (not shown). The other holding unit may be an optical bench of the optical head device, but a unit in which the hologram element 20, the semiconductor laser element 30, and the light receiving element 40 are integrated using a holding member different from the optical bench ) May be configured. The configuration of such a unit can stably configure the optical system.
 この光ヘッド装置はさらに、コリメートレンズ11および対物レンズ12を持つ。これらコリメートレンズ11および対物レンズ12は、情報媒体である光ディスク10にレーザ光を集光させる集光光学系を構成している。さらにこの光ヘッド装置は、対物レンズ12の光軸方向(z方向)及び光ディスク10のラジアル方向(x方向)に対物レンズ12を駆動変位させるレンズ駆動機構(図示せず)を備えている。 The optical head device further has a collimator lens 11 and an objective lens 12. The collimator lens 11 and the objective lens 12 constitute a focusing optical system for focusing the laser light on the optical disk 10 which is an information medium. The optical head device further includes a lens drive mechanism (not shown) for driving and displacing the objective lens 12 in the optical axis direction (z direction) of the objective lens 12 and the radial direction (x direction) of the optical disc 10.
 以降、特に断りのない限り、図中の表記のように、集光光学系の光軸に方向をZ軸方向とし、光ディスク10の径方向(ラジアル方向)をX方向とし、光ディスク10のトラック方向(タンジェンシャル方向)をY方向と称する。なお、光ヘッドの光学系において、ミラーやプリズムなどで光軸を折り曲げた場合も、光軸および光ディスク10の写像を基準に方向を定義する。 Hereinafter, unless otherwise noted, as shown in the figure, the direction of the optical axis of the condensing optical system is the Z-axis direction, the radial direction of the optical disc 10 is the X direction, and the track direction of the optical disc 10 The (tangential direction) is referred to as the Y direction. In the optical system of the optical head, even when the optical axis is bent by a mirror, a prism, or the like, the direction is defined based on the optical axis and the mapping of the optical disc 10.
 まず、実施の形態1の光ヘッド装置の半導体レーザ素子30からの出射光線について説明する。半導体レーザ素子30からの出射する光線R0はホログラム素子20を透過しコリメートレンズ11と対物レンズ12により光ディスク10の情報記録面上に集光される。光ディスク10からの反射光は対物レンズ12およびコリメートレンズ11により半導体レーザ素子30の発光点に収束する光へ変換される。この光はホログラム素子20に入射し回折される。回折光は受光素子40に入射し、受光素子40により信号が検出される。 First, the light beam emitted from the semiconductor laser element 30 of the optical head device of Embodiment 1 will be described. The light beam R0 emitted from the semiconductor laser element 30 is transmitted through the hologram element 20 and condensed on the information recording surface of the optical disc 10 by the collimator lens 11 and the objective lens 12. Reflected light from the optical disk 10 is converted by the objective lens 12 and the collimator lens 11 into light which converges to the light emitting point of the semiconductor laser device 30. This light is incident on the hologram element 20 and diffracted. The diffracted light is incident on the light receiving element 40, and the light receiving element 40 detects a signal.
 次に、ホログラム素子20に形成された回折領域と、受光素子40に形成された受光領域について詳細を説明する。 Next, the diffraction area formed in the hologram element 20 and the light receiving area formed in the light receiving element 40 will be described in detail.
 図2は、本実施の形態におけるホログラム素子20の回折領域を示す図である。 FIG. 2 is a view showing a diffraction area of the hologram element 20 in the present embodiment.
 ホログラム素子20の格子パターンは、光線のほぼ中心を通りX軸に平行な第1の領域分割線L11により第1の回折領域群261と第2の回折領域群262に分割されている。第1の回折領域群261は、光線のほぼ中心を通る第2の領域分割線L12とX軸と平行な第3の領域分割線L13とで分割される第2の回折領域261bとそれ以外の第1の回折領域261aからなる。第2の回折領域群262は、第2の領域分割線L12とXと平行な第4の領域分割線L14とで分割される第4の回折領域262bとそれ以外の第3の回折領域262aに分割される。なお、図中のR0はホログラム素子20に入射する光ディスク10からの反射光である。R1、R2は光ディスク10で回折された光であり、R0と干渉する領域、つまり重なった領域でトラッキング位置に応じた明暗を発生する。第3の領域分割線L13と第4の領域分割線L14はこの干渉領域外に設定する。 The grating pattern of the hologram element 20 is divided into a first diffraction area group 261 and a second diffraction area group 262 by a first area division line L11 which passes through substantially the center of the light beam and is parallel to the X-axis. The first diffraction area group 261 includes a second diffraction area 261b divided by a second area division line L12 substantially passing the center of the light beam and a third area division line L13 parallel to the X-axis and the other. It consists of a first diffraction area 261a. The second diffraction region group 262 is divided into a fourth diffraction region 262b divided by a second region division line L12 and a fourth region division line L14 parallel to X and a third diffraction region 262a other than that. It is divided. Note that R0 in the figure is the reflected light from the optical disc 10 incident on the hologram element 20. R1 and R2 are light diffracted by the optical disk 10, and generate light and dark according to the tracking position in the area interfering with R0, that is, the overlapping area. The third area dividing line L13 and the fourth area dividing line L14 are set outside this interference area.
 図3は、本実施の形態における受光素子40の受光領域を示す図である。受光素子40は第1の受光領域群451と第2の受光領域群452を有している。第1の受光領域群451は、X軸にほぼ平行な第1の受光分割線L71を挟んで対向して配置された第1の受光領域451aと第2の受光領域451bからなる。第2の受光領域群452はX軸にほぼ平行な第2の受光分割線L72を挟んで対向して配置された第3の受光領域452aと第4の受光領域452bからなる。 FIG. 3 is a view showing a light receiving area of the light receiving element 40 in the present embodiment. The light receiving element 40 has a first light receiving area group 451 and a second light receiving area group 452. The first light receiving area group 451 is composed of a first light receiving area 451a and a second light receiving area 451b which are disposed opposite to each other with the first light receiving parting line L71 substantially parallel to the X-axis interposed therebetween. The second light receiving area group 452 includes a third light receiving area 452a and a fourth light receiving area 452b which are disposed to face each other with the second light receiving parting line L72 substantially parallel to the X-axis interposed therebetween.
 第1の回折領域261aには、光ディスク10からの戻り光を第1の受光領域群451の第2の受光分割線L72を跨ぎ第1の受光領域451aと第2の受光領域451bにX方向のコマ収差を持ち入射する光に変換する格子パターンが形成されている。 In the first diffraction area 261a, the return light from the optical disc 10 is straddled across the second light reception division line L72 of the first light reception area group 451 into the first light reception area 451a and the second light reception area 451b in the X direction. A grating pattern is formed which is converted into incident light having coma.
 また、第3の回折領域262aには、光ディスク10からの戻り光を第2の受光領域群452の第2の受光分割線L72を跨ぎ第3の受光領域452aと第4の受光領域452bに第1の回折領域261aの極性とは逆のコマ収差を持ち入射する光に変換する格子パターンが形成されている。逆の極性の収差を持たせることにより、第1の受光領域451aと第3の受光領域452a、第2の受光領域451bと第4の受光領域452bの後述のフォーカスエラー信号に対する演算の符号を逆にでき、受光素子のy方向のずれに対して補正できる構成となる。 In the third diffraction area 262a, the return light from the optical disc 10 is straddled across the second light reception division line L72 of the second light reception area group 452 into the third light reception area 452a and the fourth light reception area 452b. A grating pattern is formed to convert into incident light having a coma aberration opposite to that of the first diffraction area 261a. By providing the aberration of the opposite polarity, the sign of the operation for the focus error signal described later of the first light receiving area 451 a and the third light receiving area 452 a and the second light receiving area 451 b and the fourth light receiving area 452 b is reversed. It is possible to correct the displacement of the light receiving element in the y direction.
 また、第2の回折領域261bは、第3の回折領域262aと、第4の回折領域262bは、第1の回折領域261aと同じ関数からなる格子パターンが形成されている。図3の第1のスポット601aは第1の回折領域261aからの回折光、第2のスポット601bは第2の回折領域261bからの回折光、第3のスポット602aは第3の回折領域262aからの回折光、第4のスポット602bは第4の回折領域262bからの回折光である。 The second diffraction area 261b has a third diffraction area 262a and the fourth diffraction area 262b has a grating pattern having the same function as the first diffraction area 261a. The first spot 601a in FIG. 3 is the diffracted light from the first diffraction area 261a, the second spot 601b is the diffracted light from the second diffraction area 261b, and the third spot 602a is the third diffraction area 262a. The fourth spot 602b is the diffracted light from the fourth diffraction region 262b.
 以上をまとめると、本実施の形態における光ディスク装置は、次の特徴を有する。つまり、受光素子40は、少なくとも第1の受光領域451aと第2の受光領域451bと第3の受光領域452aと第4の受光領域452bとを有する。第1の受光領域451aと第2の受光領域451bは、第1の受光分割線L71を挟んで対向して配置されている。第3の受光領域452aと第4の受光領域452bは、第2の受光分割線L72を挟んで対向して配置されている。そして、ホログラム素子20は、第1の回折領域261aと第2の回折領域261bを有する第1の回折領域群261と、第3の回折領域262aと第4の回折領域262bを有する第2の回折領域群262とを有する。第1の回折領域群261と第2の回折領域群262は、集光光学系の光軸中心を通る第1の領域分割線L11を挟んで配置されている。第1の回折領域261aおよび第3の回折領域262aは、情報媒体のトラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含む。第2の回折領域261bおよび第3の回折領域262aは、情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含む。第1の回折領域261aには、第1の入射領域に入射された光が第2の受光領域451bに入射し、第2の入射領域に入射された光が第1の受光領域451aに入射する第1の波面を持つ回折光を発生させる格子パターンが形成されている。第2の回折領域261bには、第3の入射領域に入射された光が第3の受光領域452aに入射する第2の波面を持つ回折光を発生させる格子パターンが形成されている。第3の回折領域262aには、第1の入射領域に入射された光が第4の受光領域452bに入射し、第2の入射領域に入射された光が第3の受光領域452aに入射する第3の波面を持つ回折光を発生させる格子パターンが形成されている。第4の回折領域262bには、第3の入射領域に入射された光が第2の受光領域451bに入射する第4の波面を持つ回折光を発生させる格子パターンが形成されている。 Summarizing the above, the optical disk apparatus according to the present embodiment has the following features. That is, the light receiving element 40 has at least a first light receiving area 451a, a second light receiving area 451b, a third light receiving area 452a, and a fourth light receiving area 452b. The first light receiving area 451a and the second light receiving area 451b are disposed to face each other with the first light receiving division line L71 interposed therebetween. The third light receiving area 452a and the fourth light receiving area 452b are disposed to face each other with the second light receiving division line L72 interposed therebetween. The hologram element 20 has a first diffraction area group 261 having a first diffraction area 261a and a second diffraction area 261b, and a second diffraction having a third diffraction area 262a and a fourth diffraction area 262b. And a region group 262. The first diffraction area group 261 and the second diffraction area group 262 are disposed to sandwich a first area division line L11 passing through the center of the optical axis of the focusing optical system. The first diffraction area 261a and the third diffraction area 262a include a first incident area on which the −1st order light reflected and diffracted by the tracks of the information medium is incident and a second incident area on which the + 1st order light is incident. . The second diffraction area 261 b and the third diffraction area 262 a include a third incidence area on which only light not diffracted in the tracks of the information medium is incident. In the first diffraction area 261a, the light incident on the first incident area is incident on the second light receiving area 451b, and the light incident on the second incident area is incident on the first light receiving area 451a A grating pattern for generating diffracted light having a first wavefront is formed. In the second diffraction area 261b, a grating pattern is formed which generates diffracted light having a second wavefront in which light incident on the third incident area is incident on the third light receiving area 452a. In the third diffraction area 262a, light incident on the first incident area is incident on the fourth light receiving area 452b, and light incident on the second incident area is incident on the third light receiving area 452a A grating pattern for generating diffracted light having a third wavefront is formed. The fourth diffraction area 262b is formed with a grating pattern for generating diffracted light having a fourth wavefront in which light incident on the third incident area is incident on the second light receiving area 451b.
 各受光領域451aおよび451bからの信号は、図4で示す演算回路により、フォーカスエラー信号(FE信号)とトラッキングエラー信号(TE信号)として検出される。 Signals from the respective light receiving areas 451a and 451b are detected as a focus error signal (FE signal) and a tracking error signal (TE signal) by the arithmetic circuit shown in FIG.
 まず、本実施の形態の光ヘッド装置における、フォーカスエラー信号検出方法について説明する。 First, a focus error signal detection method in the optical head device of the present embodiment will be described.
 図5(a)~(e)は、受光素子40上のスポットダイアグラム、図6は、得られるフォーカスエラー信号(FE信号)を表す図である。 5 (a) to 5 (e) are spot diagrams on the light receiving element 40, and FIG. 6 is a diagram showing the obtained focus error signal (FE signal).
 図5(a)から図5(e)は、光ディスク10の位置に対するスポットダイアグラムであり、それぞれ、図6(a)から図6(e)の位置に対応する。なお、図6では、光ディスク10の情報記録面に最小スポットが形成される合焦点状態(図5(c)、図6(c))でのディスク位置を原点としている。 5 (a) to 5 (e) are spot diagrams for the position of the optical disc 10, which correspond to the positions of FIGS. 6 (a) to 6 (e), respectively. In FIG. 6, the disk position in the in-focus state (FIGS. 5C and 6C) in which the minimum spot is formed on the information recording surface of the optical disk 10 is taken as the origin.
 FE信号は、前述のように、図4で示す回路により検出される。この回路による演算は式1で表される。なお、式における演算の対象は、信号のレベル(強度)である(以下の式についても同様)。 The FE signal is detected by the circuit shown in FIG. 4 as described above. The operation by this circuit is expressed by Equation 1. The target of the calculation in the equation is the level (intensity) of the signal (the same applies to the following equation).
 FE=(451a+452b)-(451b+452a)   (式1) FE = (451a + 452b)-(451b + 452a) (Equation 1)
 まず、合焦点状態(図5(c)、図6(c))では、信号451b(第2の受光領域451bからの信号)と信号451a(第1の受光領域451aからの信号)、信号452a(第3の受光領域452aからの信号)と信号452b(第4の受光領域452bからの信号)はバランスがとれており、式1で表されるフォーカスエラー信号FEは零となる。 First, in the in-focus state (FIGS. 5C and 6C), the signal 451b (the signal from the second light receiving area 451b), the signal 451a (the signal from the first light receiving area 451a), the signal 452a (The signal from the third light receiving area 452a) and the signal 452b (the signal from the fourth light receiving area 452b) are balanced, and the focus error signal FE represented by the equation 1 becomes zero.
 合焦点状態よりも光ディスク10が対物レンズ12に近づいた状態(図5(b)、図6(b))の場合、第1の受光領域451aから第2の受光領域451bへ第1のスポット601aがその距離に応じて移動する。また、同様に第4の受光領域452bから第3の受光領域452aへ第3のスポット602aが移動する。結果として式1で表されるフォーカスエラー信号FEはマイナスの値となる。 When the optical disc 10 is closer to the objective lens 12 than in the in-focus state (FIGS. 5B and 6B), the first light receiving area 451a to the second light receiving area 451b is the first spot 601a. Move according to the distance. Similarly, the third spot 602a moves from the fourth light receiving area 452b to the third light receiving area 452a. As a result, the focus error signal FE represented by Equation 1 has a negative value.
 さらに光ディスク10と対物レンズ12が近づくと合焦点状態(図5(c)、図6(c))のように、第1のスポット601aのすべてが第2の受光領域451bに移動し、第3のスポット602aのすべてが第3の受光領域452aへ移動した状態となる。この状態のときフォーカスエラー信号FEは最小値となる。 Further, when the optical disk 10 and the objective lens 12 approach each other, all the first spots 601a move to the second light receiving area 451b as shown in FIG. 5C and FIG. All of the spots 602a of the light source region 545 have moved to the third light receiving region 452a. In this state, the focus error signal FE has a minimum value.
 逆に、合焦点状態よりも光ディスク10が対物レンズ12より遠ざかった状態(図5(d)、図6(d))の場合、第2の受光領域451bから第1の受光領域451aへ第1のスポット601aがその距離に応じて移動する。また、同様に第3の受光領域452aから第4の受光領域452bへ第3のスポット602aが移動する。結果として式1で表されるフォーカスエラー信号FEはプラスの値となる。さらに光ディスク10と対物レンズ12が遠ざかると、状態(図5(e)、図6(e))のように、第1のスポット601aのすべてが第1の受光領域451aに移動し、第3のスポット602aのすべてが第4の受光領域452bへ移動した状態となる。この状態のときフォーカスエラー信号FEは最大値となる。 Conversely, in the case where the optical disc 10 is farther from the objective lens 12 than in the in-focus state (FIGS. 5D and 6D), the second light receiving area 451 b to the first light receiving area 451 a The spot 601a moves in accordance with the distance. Similarly, the third spot 602a moves from the third light receiving area 452a to the fourth light receiving area 452b. As a result, the focus error signal FE represented by Equation 1 has a positive value. When the optical disc 10 and the objective lens 12 further move away, all the first spots 601a move to the first light receiving area 451a as shown in the states (FIG. 5 (e) and FIG. 6 (e)). All of the spots 602a are moved to the fourth light receiving area 452b. In this state, the focus error signal FE has a maximum value.
 以上のようにして、光ディスク10の位置に応じて変化するフォーカスエラー信号FEを得ることができる。なお、フォーカスエラー信号FEが最大値をとる位置と最小値をとる位置の間隔、つまりフォーカスエラー信号の検出範囲は、ホログラム素子20のコマ収差の量により所望の設計が可能である。 As described above, it is possible to obtain the focus error signal FE which changes in accordance with the position of the optical disc 10. The distance between the position where the focus error signal FE takes the maximum value and the position where the focus error signal takes the minimum value, that is, the detection range of the focus error signal can be designed as desired depending on the amount of coma of the hologram element 20.
 次に、本実施の形態の光ヘッド装置でのトラッキングエラー信号(TE信号)検出方法について説明する。トラッキングエラー信号はDPD法によるトラッキング信号TEDPDとプッシュプル法によるトラッキングエラー信号TEPPを次式の演算により生成する。 Next, a tracking error signal (TE signal) detection method in the optical head device of the present embodiment will be described. The tracking error signal generates a tracking signal TE DPD by the DPD method and a tracking error signal TE PP by the push-pull method by the following equation.
 TEPP=TE1-k・TE2   (式2)
 TEDPD=Phase(451a+452b、451b+452a)(式3)
TE PP = TE1-k · TE2 (Equation 2)
TE DPD = Phase (451a + 452b, 451b + 452a) (Equation 3)
 ここで、Phaseは二つの信号の位相比較を行う関数である。 Here, Phase is a function that performs phase comparison of two signals.
 さらに、TE1はプッシュプル信号、TE2は対物レンズ12が情報トラックに直交する方向に移動したときに生じる、トラッキングオフセットを補正する信号であり、次式で与えられる。 Further, TE1 is a push-pull signal, TE2 is a signal for correcting a tracking offset that occurs when the objective lens 12 moves in a direction orthogonal to the information track, and is given by the following equation.
 TE1=(451a+452a)-(451b+452b)(式4)
 TE2=(451a+451b)-(452a+452b)(式5)
TE1 = (451a + 452a)-(451b + 452b) (equation 4)
TE2 = (451a + 451b)-(452a + 452b) (Equation 5)
 また、kは定数で、対物レンズ12のシフトによるTEPPの変動が最小になるように最適化される。 Also, k is a constant and is optimized so as to minimize the variation of TE PP due to the shift of the objective lens 12.
 図7(a)および(b)を使ってトラッキング信号の検出原理について説明する。 The detection principle of the tracking signal will be described with reference to FIGS. 7 (a) and 7 (b).
 図7(a)はホログラム素子20を示す図であり、説明のため、第1の領域分割線L11、第2の領域分割線L12、第3の領域分割線L13、第4の領域分割線L14により分けられる領域を領域A1~D2と定義している。また、R0はホログラム素子20に入射する光ディスク10からの反射光である。R1、R2は光ディスク10で回折された光であり、R0との干渉でトラッキング位置に応じた明暗を発生する。 FIG. 7A is a diagram showing the hologram element 20, and for the sake of explanation, the first area division line L11, the second area division line L12, the third area division line L13, and the fourth area division line L14. Regions which can be divided by are defined as regions A1 to D2. Further, R 0 is a reflected light from the optical disc 10 incident on the hologram element 20. R1 and R2 are light diffracted by the optical disc 10, and interference with R0 generates light and dark according to the tracking position.
 なお、図7(a)における3つの図I、II、IIIは、対物レンズ12がラジアル方向に移動した場合を表しており、IIが対物レンズ12が光軸中心にある場合である。 Three figures I, II, and III in FIG. 7A show the case where the objective lens 12 moves in the radial direction, where II is the case where the objective lens 12 is at the center of the optical axis.
 図7(b)は受光素子40上のスポットを表す図で、図7(a)の各領域で回折された光を識別して表示している。各スポットの表記記号は図7(a)における各領域の表記記号と共通のものを使用している。 FIG. 7B is a view showing spots on the light receiving element 40, and the light diffracted in each area of FIG. 7A is identified and displayed. The notation of each spot is the same as the notation of each area in FIG. 7 (a).
 各スポットにより検出される信号成分をその表記記号で表すと、
 451a=B1+B2   (式6)
 451b=A1+C2   (式7)
 452a=C1+A2   (式8)
 452b=D1+D2   (式9)
 式4および式5に式6~式9を代入すると、
 TE1=(B1+B2+C1+A2)-(A1+C2+D1+D2)   (式10)
 TE2=(B1+B2+A1+C2)-(C1+A2+D1+D2)   (式11)
When the signal component detected by each spot is represented by the notation symbol,
451a = B1 + B2 (Equation 6)
451b = A1 + C2 (Equation 7)
452a = C1 + A2 (Equation 8)
452b = D1 + D2 (equation 9)
Substituting equations 6 to 9 into equations 4 and 5,
TE1 = (B1 + B2 + C1 + A2)-(A1 + C2 + D1 + D2) (Equation 10)
TE2 = (B1 + B2 + A1 + C2)-(C1 + A2 + D1 + D2) (Equation 11)
 ここで、A2とD2、B2とC2は対物レンズ12がシフトした場合も常に等しいので、式4は、
 TE1=(B1+C1)-(A1+D1)   (式12)
 であり、図7(a)の領域との対応によりプッシュプル信号を検出することが確認できる。
Here, since A2 and D2 and B2 and C2 are always equal even when the objective lens 12 is shifted, Equation 4 is
TE1 = (B1 + C1)-(A1 + D1) (Equation 12)
Thus, it can be confirmed that the push-pull signal is detected by the correspondence with the area of FIG.
 また、A1とD1、B1とC1は対物レンズ12がシフトした場合も常に等しいので、式5は、
 TE2=(B2+C2)-(A2+D2)
 となり、図7(a)の領域との対応により対物レンズ12のラジアル方向のシフトにより変化信号が検出できることが確認できる。
Further, since A1 and D1 and B1 and C1 are always equal even when the objective lens 12 is shifted, Equation 5 gives
TE2 = (B2 + C2)-(A2 + D2)
Thus, it can be confirmed that the change signal can be detected by the shift of the objective lens 12 in the radial direction by the correspondence with the area of FIG. 7A.
 したがって、式2で表されるTEPP信号は、Kの値を適当に選ぶことにより、対物レンズ12がラジアル方向にシフトしても動作点が変動しないプッシュプル信号になる。 Therefore, the TEPP signal expressed by Equation 2 becomes a push-pull signal whose operating point does not change even if the objective lens 12 is shifted in the radial direction by appropriately selecting the value of K.
 次に、DPD信号の検出について説明する。式6~式9を式3に代入すると、
 TEDPD=Phase(B1+B2+D1+D2、A1+A2+C2+C1)
 となり、従来のDPD信号検出が可能である。
Next, detection of the DPD signal will be described. Substituting Equation 6 to Equation 9 into Equation 3,
TE DPD = Phase (B1 + B2 + D1 + D2, A1 + A2 + C2 + C1)
Thus, conventional DPD signal detection is possible.
 以上のように、本発明の実施の形態によれば、対物レンズのラジアル方向シフトの影響の無いプッシュプル信号と位相差信号、さらにフォーカスエラー信号を検出できる。この検出に必要なヘッドアンプは図4で示すように4個である。 As described above, according to the embodiment of the present invention, it is possible to detect a push-pull signal, a phase difference signal, and a focus error signal which are not affected by the radial shift of the objective lens. The number of head amplifiers required for this detection is four as shown in FIG.
 光ディスク10に記録された信号(RF信号)は得られる信号の総和で検出するため、ヘッドアンプで発生するノイズの影響を受ける。本発明の光ヘッド装置はヘッドアンプの数が従来のヘッドアンプ数よりも少ないために良好な信号検出が可能となる。 Since the signal (RF signal) recorded on the optical disk 10 is detected by the sum of the obtained signals, it is affected by the noise generated by the head amplifier. The optical head apparatus according to the present invention can perform good signal detection because the number of head amplifiers is smaller than that of the conventional head amplifiers.
 また、光ヘッド装置では、外来ノイズを防ぐために受光素子内にヘッドアンプ、さらにはRF信号生成回路を一体化することが一般的であるが、本実施の形態によればヘッドアンプ数が従来のヘッドアンプ数より少ないため低コストな受光素子が実現できる。 Further, in the optical head device, it is general to integrate a head amplifier and further an RF signal generation circuit in the light receiving element in order to prevent extraneous noise, but according to the present embodiment, the number of head amplifiers is conventional. Since the number is smaller than the number of head amplifiers, a low cost light receiving element can be realized.
 なお、本発明の光ヘッド装置では、トラッキング信号生成のため前述のような回路が必要であるが、ヘッドアンプ以外の回路は光ヘッド装置外でも演算でき、光ディスク装置内のアナログ集積回路や、各ヘッドアンプの信号をアナログ-デジタル変換した後にデジタル演算することも可能であり、図4で示す演算機能を有する集積回路を用いればコストは問題とならない。 The optical head device of the present invention requires the circuit as described above for generating tracking signals, but circuits other than the head amplifier can be calculated outside the optical head device, and analog integrated circuits in the optical disk device, It is also possible to perform digital operation after analog-to-digital conversion of the head amplifier signal, and cost is not a problem if an integrated circuit having an arithmetic function shown in FIG. 4 is used.
 以上のように、本実施の形態1によれば、レンズ移動の影響の小さなプッシュプル信号が検出でき、低コストで良好な再生信号が得られ、且つ、DPD信号検出可能な光ヘッド装置が実現できる。 As described above, according to the first embodiment, an optical head device capable of detecting a push-pull signal with little influence of lens movement, obtaining a good reproduction signal at low cost, and detecting a DPD signal is realized. it can.
 なお、本実施の形態では、第3の領域分割線L13と第4の領域分割線L14は、光線R0と光線R1、光線R2の干渉領域外に設定した場合について説明したが、本発明は、そのかぎりではなく、第1の領域分割線L11を挟み対称の位置に配置され、TE2のトラッキングエラー信号成分がTE1のトラッキングエラー信号の1/K以下であればよく、干渉領域の大きなシステムでも実現可能である。 In the present embodiment, the third area dividing line L13 and the fourth area dividing line L14 are set outside the interference area of the light ray R0, the light ray R1, and the light ray R2. It is not limited to that, and it is only necessary that the tracking error signal component of TE2 is disposed at 1 / K or less of the tracking error signal of TE1 which is disposed at a symmetrical position sandwiching the first area dividing line L11, and is realized in a system with a large interference area. It is possible.
 (実施の形態2)
 以下、実施の形態2の光ヘッド装置について説明する。本実施の形態の光ヘッド装置の構成は、実施の形態1の光ヘッド装置の構成とほぼ同等であり、詳細な説明は省略し、実施の形態1との違いについて説明する。
Second Embodiment
The optical head device of the second embodiment will be described below. The configuration of the optical head device of the present embodiment is substantially the same as the configuration of the optical head device of the first embodiment, and the detailed description is omitted, and only the differences from the first embodiment will be described.
 本実施の形態2の光ヘッド装置の実施の形態1との違いはホログラム素子20の第2の回折領域261bと第4の回折領域262bの格子パターンが異なるのみである。図8は本実施の形態の光ヘッド装置での受光素子40上のスポットを表す図である。第2の回折領域261bの格子パターンは図8で示すように、第3の受光領域452aに集光するように形成されている。また第4の回折領域262bの格子パターンは第2の受光領域451bに集光するように形成されている。第2のスポット601bと第4のスポット602bの光量は第1のスポット601aと第4のスポット602bに比べて小さいため、FE信号に与える影響は小さく良好なFE信号を検出できる。 The difference from the first embodiment of the optical head device of the second embodiment is that the grating patterns of the second diffraction region 261 b and the fourth diffraction region 262 b of the hologram element 20 are different. FIG. 8 is a diagram showing a spot on the light receiving element 40 in the optical head device of the present embodiment. As shown in FIG. 8, the grating pattern of the second diffraction area 261b is formed to condense light on the third light receiving area 452a. The grating pattern of the fourth diffraction area 262b is formed to condense on the second light receiving area 451b. Since the light amounts of the second spot 601b and the fourth spot 602b are smaller than those of the first spot 601a and the fourth spot 602b, the effect on the FE signal is small, and a good FE signal can be detected.
 TE信号に関しては、各受光領域で検出する信号は実施の形態1の信号と等価であるため、同様に検出可能である。 As for the TE signal, the signal detected in each light receiving area is equivalent to the signal of the first embodiment, and thus can be similarly detected.
 以上のように、本発明の光ヘッド装置は光ディスク10のフォーカス位置で第2の回折領域261bへ入射する光が第3の受光領域452aへ、第4の回折領域262bへ入射する光が第2の受光領域451bへ入射すればよく、実施の形態1と同様の効果が得られる。 As described above, in the optical head device according to the present invention, the light incident on the second diffraction area 261b at the focus position of the optical disc 10 is incident on the third light receiving area 452a and the light incident on the fourth diffraction area 262b is incident on the second The light receiving area 451 b of the light receiving area 451 b of FIG.
 (実施の形態3)
 以下、実施の形態3の光ヘッド装置について説明する。本実施の形態の光ヘッド装置の構成は、実施の形態1の光ヘッド装置の構成とほぼ同等であり、詳細な説明は省略し、実施の形態1との違いについて説明する。
Third Embodiment
The optical head device according to the third embodiment will be described below. The configuration of the optical head device of the present embodiment is substantially the same as the configuration of the optical head device of the first embodiment, and the detailed description is omitted, and only the differences from the first embodiment will be described.
 本実施の形態の光ヘッド装置の実施の形態1との違いはホログラム素子20の各領域に形成された格子パターンが異なることである。 The difference from the first embodiment of the optical head device according to the present embodiment is that the grating pattern formed in each area of the hologram element 20 is different.
 領域の分割は実施の形態1と同じで図2で示される。受光素子40も実施の形態1と同じ受光素子を用いる。図9は本実施の形態における受光素子40の受光領域と回折光のスポットを表す図である。 The division of the area is the same as in the first embodiment and is shown in FIG. The light receiving element 40 also uses the same light receiving element as that of the first embodiment. FIG. 9 is a view showing a light receiving area of the light receiving element 40 and a spot of diffracted light in the present embodiment.
 第1の回折領域261aには、光ディスク10からの戻り光を第1の受光領域群451の第2の受光分割線L72を跨ぎ第1の受光領域451aと第2の受光領域451bにX方向と45度の角度をなす非点収差を持ち入射する光に変換する格子パターンが形成されている。 In the first diffraction area 261a, the return light from the optical disc 10 is straddled across the second light reception division line L72 of the first light reception area group 451 into the first light reception area 451a and the second light reception area 451b in the X direction and A grating pattern is formed to convert into incident light having astigmatism at an angle of 45 degrees.
 また、第3の回折領域262aには、光ディスク10からの戻り光を第2の受光領域群452の第2の受光分割線L72を跨ぎ第3の受光領域452aと第4の受光領域452bに第1の回折領域261aの収差と同様の非点収差を持ち入射する光に変換する格子パターンが形成されている。 In the third diffraction area 262a, the return light from the optical disc 10 is straddled across the second light reception division line L72 of the second light reception area group 452 into the third light reception area 452a and the fourth light reception area 452b. A grating pattern is formed to convert into incident light having astigmatism similar to the aberration of the first diffraction area 261a.
 また、第2の回折領域261bは第3の回折領域262aと、第4の回折領域262bは第1の回折領域261aと同じ関数からなる格子パターンが形成されている。図9の第1のスポット601aは第1の回折領域261aからの回折光、第2のスポット601bは第2の回折領域261bからの回折光、第3のスポット602aは第3の回折領域262aからの回折光、第4のスポット602bは第4の回折領域262bからの回折光である。 The second diffraction area 261b is formed with a third diffraction area 262a, and the fourth diffraction area 262b is formed with a grating pattern having the same function as the first diffraction area 261a. The first spot 601a in FIG. 9 is the diffracted light from the first diffraction area 261a, the second spot 601b is the diffracted light from the second diffraction area 261b, and the third spot 602a is from the third diffraction area 262a. The fourth spot 602b is the diffracted light from the fourth diffraction region 262b.
 各受光領域451aおよび451bからの信号は図4で示す演算回路によりフォーカスエラー信号(FE信号)とトラッキングエラー信号(TE信号)を検出する。 The signals from the light receiving areas 451a and 451b are detected from the focus error signal (FE signal) and the tracking error signal (TE signal) by the arithmetic circuit shown in FIG.
 まず、本実施の形態の光ヘッド装置における、フォーカスエラー信号検出方法について説明する。 First, a focus error signal detection method in the optical head device of the present embodiment will be described.
 図10(a)~(e)は受光素子40上のスポットを表す図、図11は得られるフォーカスエラー信号を表す図である。 10 (a) to 10 (e) are diagrams showing the spots on the light receiving element 40, and FIG. 11 is a diagram showing the obtained focus error signal.
 図10(a)から図10(e)は、光ディスク10の位置に対するスポットダイアグラムであり、それぞれ、図11(a)から図11(e)の位置に対応する。なお、図11では、光ディスク10の情報記録面に最小スポットが形成される合焦点状態(図10(c)、図11(c))でのディスク位置を原点としている。 10 (a) to 10 (e) are spot diagrams for the position of the optical disc 10, which correspond to the positions of FIGS. 11 (a) to 11 (e), respectively. In FIG. 11, the disc position in the in-focus state (FIGS. 10 (c) and 11 (c)) in which the minimum spot is formed on the information recording surface of the optical disc 10 is taken as the origin.
 FE信号は、前述のように、図4で示す回路により検出される。この回路による演算は、以下の式13で表される。 The FE signal is detected by the circuit shown in FIG. 4 as described above. The operation by this circuit is expressed by the following equation 13.
 FE=(451a+452b)-(451b+452a)(式13) FE = (451a + 452b)-(451b + 452a) (equation 13)
 まず、合焦点状態(図10(c)、図11(c))では、信号451b(第2の受光領域451bからの信号)と信号451a(第1の受光領域451aからの信号)、信号452a(第3の受光領域452aからの信号)と信号452b(第4の受光領域452bからの信号)はバランスがとれており、式13で表されるフォーカスエラー信号FEは零となる。 First, in the in-focus state (FIGS. 10C and 11C), the signal 451b (the signal from the second light receiving area 451b), the signal 451a (the signal from the first light receiving area 451a), and the signal 452a (The signal from the third light receiving area 452a) and the signal 452b (the signal from the fourth light receiving area 452b) are well balanced, and the focus error signal FE represented by Expression 13 becomes zero.
 合焦点状態よりも光ディスク10が対物レンズ12に近づいた状態(図10(b)、図11(b))の場合、第1の受光領域451aから第2の受光領域451bへ第1のスポット601aがその距離に応じて移動する。また、同様に第4の受光領域452bから第3の受光領域452aへ第3のスポット602aが移動する。結果として式13で表されるフォーカスエラー信号FEはマイナスの値となる。 In the case where the optical disc 10 is closer to the objective lens 12 than in the in-focus state (FIGS. 10B and 11B), the first light receiving area 451a to the second light receiving area 451b is the first spot 601a. Move according to the distance. Similarly, the third spot 602a moves from the fourth light receiving area 452b to the third light receiving area 452a. As a result, the focus error signal FE represented by Expression 13 has a negative value.
 さらに光ディスク10と対物レンズ12が近づくと合焦点状態(図10(c)、図11(c))のように、第1のスポット601aのすべてが第2の受光領域451bに移動し、第3のスポット602aのすべてが第3の受光領域452aへ移動した状態となる。この状態のときフォーカスエラー信号FEは最小値となる。 Further, when the optical disc 10 and the objective lens 12 approach each other, all of the first spots 601a move to the second light receiving area 451b as shown in FIG. 10C and FIG. All of the spots 602a of the light source region 545 have moved to the third light receiving region 452a. In this state, the focus error signal FE has a minimum value.
 逆に、合焦点状態よりも光ディスク10が対物レンズ12より遠ざかった状態(図10(d)、図11(d))の場合、第2の受光領域451bから第1の受光領域451aへ第1のスポット601aがその距離に応じて移動する。また、同様に第3の受光領域452aから第4の受光領域452bへ第3のスポット602aが移動する。結果として式13で表されるフォーカスエラー信号FEはプラスの値となる。さらに光ディスク10と対物レンズ12が遠ざかると状態(図10(e)、図11(e))のように、第1のスポット601aのすべてが第1の受光領域451aに移動し、第3のスポット602aのすべてが第4の受光領域452bへ移動した状態となる。この状態のときフォーカスエラー信号FEは最大値となる。 Conversely, in the case where the optical disc 10 is farther from the objective lens 12 than in the in-focus state (FIGS. 10 (d) and 11 (d)), the second light receiving area 451b to the first light receiving area 451a The spot 601a moves in accordance with the distance. Similarly, the third spot 602a moves from the third light receiving area 452a to the fourth light receiving area 452b. As a result, the focus error signal FE represented by Equation 13 has a positive value. When the optical disc 10 and the objective lens 12 move further away, all the first spots 601a move to the first light receiving area 451a as shown in FIG. 10 (e) and FIG. 11 (e), and the third spot All of the light source 602 a has moved to the fourth light receiving area 452 b. In this state, the focus error signal FE has a maximum value.
 以上のようにして、光ディスク10の位置に応じて変化するフォーカスエラー信号FEを得ることができる。なお、フォーカスエラー信号FEが最大値をとる位置と最小値をとる位置の間隔、つまりフォーカスエラー信号の検出範囲は、ホログラム素子20の非点収差の量により所望の設計が可能である。 As described above, it is possible to obtain the focus error signal FE which changes in accordance with the position of the optical disc 10. The distance between the position where the focus error signal FE takes the maximum value and the position where the focus error signal takes the minimum value, that is, the detection range of the focus error signal can be designed as desired by the amount of astigmatism of the hologram element 20.
 次に、本実施の形態の光ヘッド装置でのトラッキングエラー信号(TE信号)検出方法について説明する。トラッキングエラー信号はDPD法によるトラッキング信号TEDPDとプッシュプル法によるトラッキングエラー信号TEPPを次式の演算により生成する。 Next, a tracking error signal (TE signal) detection method in the optical head device of the present embodiment will be described. The tracking error signal generates a tracking signal TE DPD by the DPD method and a tracking error signal TE PP by the push-pull method by the following equation.
 TEPP=TE1-k・TE2   (式14)
 TEDPD=Phase(451b+452a、451a+452b)(式15)
 ここで、Phaseは二つの信号の位相比較を行う関数である。
TE PP = TE1-k · TE2 (Equation 14)
TE DPD = Phase (451b + 452a, 451a + 452b) (Equation 15)
Here, Phase is a function that performs phase comparison of two signals.
 さらに、TE1はプッシュプル信号、TE2は対物レンズ12が情報トラックに直交する方向に移動したときに生じる、トラッキングオフセットを補正する信号であり、次式で与えられる。 Further, TE1 is a push-pull signal, TE2 is a signal for correcting a tracking offset that occurs when the objective lens 12 moves in a direction orthogonal to the information track, and is given by the following equation.
 TE1=(451b+452b)-(451a+452a)(式16)
 TE2=(451b+451a)-(452b+452a)(式17)
TE1 = (451b + 452b)-(451a + 452a) (Equation 16)
TE2 = (451b + 451a)-(452b + 452a) (Equation 17)
 また、kは定数で対物レンズ12のシフトによるTEPPの変動が最小になるように最適化される。 Also, k is a constant and is optimized so as to minimize the variation of TE PP due to the shift of the objective lens 12.
 図12(a)および(b)を使ってトラッキング信号の検出原理について説明する。 The detection principle of the tracking signal will be described using FIGS. 12 (a) and 12 (b).
 図12(a)はホログラム素子20を示す図である。ここでは、説明のため、第1の領域分割線L11、第2の領域分割線L12、第3の領域分割線L13、第4の領域分割線L14により分けられる領域を領域A1~D2と定義している。またR0はホログラム素子20に入射する光ディスク10からの反射光である。R1、R2は光ディスク10で回折された光でありR0との干渉でトラッキング位置に応じた明暗を発生する。 FIG. 12A shows the hologram element 20. FIG. Here, for the sake of explanation, the areas divided by the first area dividing line L11, the second area dividing line L12, the third area dividing line L13, and the fourth area dividing line L14 are defined as the areas A1 to D2. ing. Further, R0 is a reflected light from the optical disc 10 incident on the hologram element 20. R1 and R2 are light diffracted by the optical disk 10, and interference with R0 generates light and dark according to the tracking position.
 なお、図12(a)における3つの図I、II、IIIは対物レンズ12がラジアル方向に移動した場合を表しており、IIが対物レンズ12が光軸中心にある場合である。 Three figures I, II, and III in FIG. 12A show the case where the objective lens 12 moves in the radial direction, where II is the case where the objective lens 12 is at the center of the optical axis.
 図12(b)は受光素子40上のスポットを表す図で、図12(a)の各領域で回折された光を識別して表示している。各スポットの表記記号は図12(a)における各領域の表記記号と共通のものを使用している。 FIG. 12B is a view showing spots on the light receiving element 40, and the light diffracted in each area of FIG. 12A is identified and displayed. The notation of each spot is the same as the notation of each area in FIG. 12 (a).
 各スポットにより検出される信号成分をその表記記号で表すと、
 451b=B1+B2   (式18)
 451a=A1+C2   (式19)
 452b=C1+A2   (式20)
 452a=D1+D2   (式21)
 式16および式17に式18~式21を代入すると、
 TE1=(B1+B2+C1+A2)-(A1+C2+D1+D2)   (式22)
 TE2=(B1+B2+A1+C2)-(C1+A2+D1+D2)   (式23)
When the signal component detected by each spot is represented by the notation symbol,
451b = B1 + B2 (equation 18)
451a = A1 + C2 (equation 19)
452b = C1 + A2 (equation 20)
452a = D1 + D2 (equation 21)
Substituting equations 18 to 21 into equations 16 and 17,
TE1 = (B1 + B2 + C1 + A2)-(A1 + C2 + D1 + D2) (Equation 22)
TE2 = (B1 + B2 + A1 + C2)-(C1 + A2 + D1 + D2) (Equation 23)
 ここで、A2とD2、B2とC2は対物レンズ12がシフトした場合も常に等しいので、式16は、
 TE1=(B1+C1)-(A1+D1)   (式24)
 であり、図12(a)の領域との対応によりプッシュプル信号を検出することが確認できる。
Here, since A2 and D2 and B2 and C2 are always equal even when the objective lens 12 is shifted, Equation 16 is
TE1 = (B1 + C1)-(A1 + D1) (Equation 24)
It is possible to confirm that the push-pull signal is detected by the correspondence with the area of FIG.
 また、A1とD1、B1とC1は対物レンズ12がシフトした場合も常に等しいので、式17は、
 TE2=(B2+C2)-(A2+D2)   (式25)
 となり、図12(a)の領域との対応により対物レンズ12のラジアル方向のシフトにより変化信号が検出できることが確認できる。
Further, since A1 and D1, and B1 and C1 are always equal even when the objective lens 12 is shifted, Expression 17 gives
TE2 = (B2 + C2)-(A2 + D2) (equation 25)
Thus, it can be confirmed that the change signal can be detected by the shift of the objective lens 12 in the radial direction by the correspondence with the area of FIG. 12 (a).
 したがって、式14で表されるTEPP信号は、Kの値を適当に選ぶことにより、対物レンズ12がラジアル方向にシフトしても動作点が変動しないプッシュプル信号を得ることができる。 Therefore, by selecting the value of K appropriately, the TEPP signal represented by Expression 14 can obtain a push-pull signal in which the operating point does not change even if the objective lens 12 is shifted in the radial direction.
 次に、DPD信号の検出について説明する。式18~式21を式15に代入すると、
 TEDPD=Phase(B1+B2+D1+D2、A1+A2+C2+C1)
 となり、従来のDPD信号検出が可能である。
Next, detection of the DPD signal will be described. Substituting Equations 18 to 21 into Equation 15,
TE DPD = Phase (B1 + B2 + D1 + D2, A1 + A2 + C2 + C1)
Thus, conventional DPD signal detection is possible.
 以上のように、本発明の実施の形態によれば、対物レンズのラジアル方向シフトの影響の無いプッシュプル信号と位相差信号、さらにフォーカスエラー信号を検出できる。この検出に必要なヘッドアンプは図4で示すように4個である。 As described above, according to the embodiment of the present invention, it is possible to detect a push-pull signal, a phase difference signal, and a focus error signal which are not affected by the radial shift of the objective lens. The number of head amplifiers required for this detection is four as shown in FIG.
 光ディスク10に記録された信号(RF信号)は得られる信号の総和で検出するため、ヘッドアンプで発生するノイズの影響を受ける。本発明の光ヘッド装置はヘッドアンプの数が従来のヘッドアンプ数よりも少ないために良好な信号検出が可能となる。 Since the signal (RF signal) recorded on the optical disk 10 is detected by the sum of the obtained signals, it is affected by the noise generated by the head amplifier. The optical head apparatus according to the present invention can perform good signal detection because the number of head amplifiers is smaller than that of the conventional head amplifiers.
 また、光ヘッド装置では、外来ノイズを防ぐために受光素子として同一基板に受光素子とヘッドアンプ、さらにはRF信号生成を一体化する光電子集積回路(OEIC)を使用するのが一般的であるが、本実施の形態によればヘッドアンプ数が従来のヘッドアンプ数より少ないため受光素子を簡略化できそのコスト的メリットは大きい。 Also, in the optical head device, it is common to use an optoelectronic integrated circuit (OEIC) that integrates a light receiving element and a head amplifier, and further RF signal generation, on the same substrate as a light receiving element to prevent external noise. According to the present embodiment, since the number of head amplifiers is smaller than the number of conventional head amplifiers, the light receiving element can be simplified and the cost merit is great.
 なお、本発明の光ヘッド装置では、トラッキング信号生成のため前述のような回路が必要であるが、ヘッドアンプ以外の回路は光ヘッド装置外でも演算でき、光ディスク装置内のアナログ集積回路や、各ヘッドアンプの信号をアナログ-デジタル変換した後にデジタル演算することも可能でありコストは問題とならない。 The optical head device of the present invention requires the circuit as described above for generating tracking signals, but circuits other than the head amplifier can be calculated outside the optical head device, and analog integrated circuits in the optical disk device, It is also possible to perform digital operation after analog-digital conversion of the head amplifier signal, and the cost is not a problem.
 以上のように、本実施の形態によれば、レンズ移動の影響の小さなプッシュプル信号が検出でき、低コストで良好な再生信号が得られ且つDPD信号検出可能な光ヘッド装置が実現できる。 As described above, according to the present embodiment, it is possible to realize an optical head device capable of detecting a push-pull signal having a small influence of lens movement, obtaining a good reproduction signal at low cost, and detecting a DPD signal.
 なお、本実施の形態では、第3の領域分割線L13と第4の領域分割線L14は、光線R0と光線R1、光線R2の干渉領域外に設定した場合について説明したが、本発明は、そのかぎりではなく、第1の領域分割線L11を挟み対称の位置に配置され、TE2のトラッキングエラー信号成分がTE1のトラッキングエラー信号の1/K以下であればよく、干渉領域の大きなシステムでも実現可能である。 In the present embodiment, the third area dividing line L13 and the fourth area dividing line L14 are set outside the interference area of the light ray R0, the light ray R1, and the light ray R2. It is not limited to that, and it is only necessary that the tracking error signal component of TE2 is disposed at 1 / K or less of the tracking error signal of TE1 which is disposed at a symmetrical position sandwiching the first area dividing line L11, and is realized in a system with a large interference area. It is possible.
 (実施の形態4)
 図13は、実施の形態4の光ディスク装置(光情報処理装置)の構成を示す図である。この光ディスク装置は、光ディスク10、電気回路59、光ヘッド装置76、駆動装置79および回転機構78を備える。
Embodiment 4
FIG. 13 is a diagram showing the configuration of the optical disc apparatus (optical information processing apparatus) of the fourth embodiment. This optical disk apparatus comprises an optical disk 10, an electric circuit 59, an optical head device 76, a drive device 79 and a rotation mechanism 78.
 回転機構78は、光ディスク10を保持回転する機構である。光ヘッド装置76は、実施の形態1、実施の形態2、実施の形態3で説明したいずれかの光ヘッド装置で、対物レンズ12の微動手段を有しているものである。この光ヘッド装置76は、光ディスク10の所望の情報が存在するトラックのところまで、駆動装置79によって粗動される。そして、光ヘッド装置76は、駆動装置79へ信号を送る。電気回路59は、図4で示す演算機能の全て、もしくは、一部を有し、TE信号およびFE信号を生成し、この信号を基に、光ヘッド装置76および対物レンズ12を微動させるための信号を送り、フォーカスサーボと、トラッキングサーボを行う。 The rotation mechanism 78 is a mechanism that holds and rotates the optical disc 10. The optical head device 76 is any one of the optical head devices described in the first embodiment, the second embodiment, and the third embodiment, and includes the fine movement means of the objective lens 12. The optical head unit 76 is coarsely moved by the drive unit 79 to the track where the desired information of the optical disc 10 is present. Then, the optical head device 76 sends a signal to the drive device 79. The electric circuit 59 has all or part of the arithmetic functions shown in FIG. 4 and generates TE signals and FE signals, based on which the optical head device 76 and the objective lens 12 are finely moved. It sends a signal and performs focus servo and tracking servo.
 また再生信号は、光ヘッド装置76内もしくは電気回路59内で受光素子40において検出された信号の総和で生成され、イコライザなどの信号処理の後、データ生信号として出力される。 The reproduction signal is generated by the sum of the signals detected by the light receiving element 40 in the optical head device 76 or in the electric circuit 59, and is output as a data raw signal after signal processing such as an equalizer.
 本実施の形態の光ディスク装置によれば、レンズ移動の影響の小さなプッシュプル信号が検出でき、安定はトラッキングサーボで実現でき、良好な記録再生が実現できる。また信号の再生もヘッドアップ数が少なく良好な信号が得られる。 According to the optical disk apparatus of the present embodiment, a push-pull signal with little influence of lens movement can be detected, stability can be realized by tracking servo, and good recording and reproduction can be realized. In addition, the number of head-ups is small and a good signal can be obtained.
 以上、本発明に係る光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法について、実施の形態1~4に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の主旨を逸脱しない範囲でこれらの実施の形態に各種変形を施して得られる形態や、各実施の形態における構成要素を任意に組み合わせることで実現される形態も、本発明に含まれる。 The optical head apparatus, the light receiving element, the integrated circuit, the optical integrated element, the optical disc apparatus, and the signal detection method according to the present invention have been described based on the first to fourth embodiments. It is not limited to The embodiments obtained by applying various modifications to the embodiments without departing from the spirit of the present invention, and embodiments realized by arbitrarily combining the components in the embodiments are also included in the present invention.
 本発明にかかる光ヘッド装置、受光素子、集積回路、光集積素子、光ディスク装置および信号検出方法は、情報記録媒体に情報を記録・再生する機能を有し、映像や音楽の記録・再生装置等として有用である。またコンピュータのデータやプログラムの保存、カーナビゲーションの地図データの保存等の用途にも応用できる。 An optical head device, a light receiving element, an integrated circuit, an optical integrated element, an optical disc device, and a signal detection method according to the present invention have a function of recording and reproducing information on an information recording medium. Useful as. It can also be applied to storage of computer data and programs, storage of car navigation map data, and so on.
 10 光ディスク
 11 コリメートレンズ
 12 対物レンズ
 20 ホログラム素子
 30 半導体レーザ素子
 40 受光素子
 59  電気回路
 76  光ヘッド装置
 78  回転機構
 79  駆動装置
DESCRIPTION OF SYMBOLS 10 optical disk 11 collimate lens 12 objective lens 20 hologram element 30 semiconductor laser element 40 light receiving element 59 electric circuit 76 optical head apparatus 78 rotation mechanism 79 drive apparatus

Claims (55)

  1.  光ビームを出射する光源と、前記光ビームを受け、トラックを有する情報媒体上の微小スポットに収束させる集光光学系と、前記情報媒体で反射された前記光ビームを回折させるホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光ヘッド装置であって、
     前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、
     前記第1の受光領域と前記第2の受光領域とは、第1の受光分割線を挟んで対向して配置されており、
     前記第3の受光領域と前記第4の受光領域とは、第2の受光分割線を挟んで対向して配置されており、
     前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群とを有し、
     前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、
     前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、
     前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、
     前記第1の回折領域には、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第2の回折領域には、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第3の回折領域には、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第4の回折領域には、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させる格子パターンが形成されている
     光ヘッド装置。
    A light source for emitting a light beam, a focusing optical system for receiving the light beam and causing the light beam to converge on a minute spot on an information medium having a track, a hologram element for diffracting the light beam reflected by the information medium, An optical head device comprising: a light receiving element for receiving light diffracted by a hologram element;
    The light receiving element has at least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area.
    The first light receiving area and the second light receiving area are disposed to face each other with the first light receiving division line interposed therebetween,
    The third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween,
    The hologram element has a first diffraction area group having a first diffraction area and a second diffraction area, and a second diffraction area group having a third diffraction area and a fourth diffraction area.
    The first diffraction area group and the second diffraction area group are disposed across a first area division line passing through the center of the optical axis of the condensing optical system,
    The first diffraction area and the third diffraction area are a first incident area on which −1st order light reflected and diffracted by the track of the information medium is incident and a second incident area on which + 1st order light is incident Including
    The second diffraction area and the third diffraction area include a third incidence area on which only light not diffracted in the tracks of the information medium is incident,
    In the first diffraction area, light incident on the first incident area is incident on the second light receiving area, and light incident on the second incident area is on the first light receiving area. A grating pattern is formed which generates diffracted light having an incident first wavefront,
    The second diffraction area is formed with a grating pattern for generating diffracted light having a second wave front in which light incident on the third incident area is incident on the third light receiving area,
    In the third diffraction area, light incident on the first incident area is incident on the fourth light receiving area, and light incident on the second incident area is on the third light receiving area. A grating pattern is formed which generates diffracted light having a third incident wavefront,
    A grating pattern is formed in the fourth diffraction area to generate diffracted light having a fourth wavefront in which light incident on the third incident area is incident on the second light receiving area. apparatus.
  2.  さらに、
     前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
     TE1=(A+C)-(B+D)
     TE2=(A+B)-(C+D)
     TE=TE1-K・TE2
     で得られるトラッキングエラー信号TEを検出する回路を備える請求項1記載の光ヘッド装置。
    further,
    Using the signal A from the first light receiving area, the signal B from the second light receiving area, the signal C from the third light receiving area, and the signal D from the fourth light receiving area, When K is a constant,
    TE1 = (A + C)-(B + D)
    TE2 = (A + B)-(C + D)
    TE = TE1-K · TE2
    The optical head device according to claim 1, further comprising a circuit for detecting a tracking error signal TE obtained by
  3.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
      FE=(A+D)-(B+C)
     で得られるフォーカスエラー信号FEを生成する回路を備える請求項2記載の光ヘッド装置。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    FE = (A + D)-(B + C)
    3. The optical head device according to claim 2, further comprising a circuit for generating a focus error signal FE obtained by
  4.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     (A+D)と(B+C)の信号の位相差により位相差トラッキングエラー信号を生成する回路を備える請求項2記載の光ヘッド装置。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    3. The optical head device according to claim 2, further comprising a circuit for generating a phase difference tracking error signal based on the phase difference between the signals (A + D) and (B + C).
  5.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dの総和により前記情報媒体に記録された信号を検出する回路を備える請求項2記載の光ヘッド装置。
    further,
    3. The optical head device according to claim 2, further comprising a circuit for detecting the signal recorded on the information medium by the sum of the signal A, the signal B, the signal C and the signal D.
  6.  前記第1の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第2の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きく、
     前記第3の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第4の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きい請求項1記載の光ヘッド装置。
    The ratio occupied by the first incident region or the second incident region in the first diffraction region is the ratio occupied by the first incident region or the second incident region in the second diffraction region. Greater than
    The ratio occupied by the first incident region or the second incident region in the third diffraction region is the ratio occupied by the first incident region or the second incident region in the fourth diffraction region. The optical head device according to claim 1, wherein the optical head device is larger.
  7.  前記第2の回折領域と前記第4の回折領域は、前記光軸中心に対して点対称である請求項1記載の光ヘッド装置。 The optical head device according to claim 1, wherein the second diffraction region and the fourth diffraction region are point symmetric with respect to the center of the optical axis.
  8.  前記第2の回折領域および前記第4の回折領域は、前記第1の入射領域を含まない請求項1記載の光ヘッド装置。 The optical head device according to claim 1, wherein the second diffraction area and the fourth diffraction area do not include the first incident area.
  9.  前記第2の領域は、前記第1の領域分割線と垂直な第2の領域分割線と、前記第1の領域分割線と平行な第3の分割線により分割された領域で、前記第1の領域分割線を含まないいずれかの領域であり、
     前記第4の領域は、前記第2の領域と前記光軸中心に対して、点対称である請求項1記載の光ヘッド装置。
    The second area is an area divided by a second area dividing line perpendicular to the first area dividing line and a third dividing line parallel to the first area dividing line. Any area that does not include the area dividing line of
    The optical head device according to claim 1, wherein the fourth area is point-symmetrical with respect to the second area and the center of the optical axis.
  10.  前記第1の波面および前記第3の波面は、前記第1の領域分割線方向のコマ収差を持つ波面である請求項1記載の光ヘッド装置。 The optical head device according to claim 1, wherein the first wavefront and the third wavefront are wavefronts having coma aberration in the direction of the first region division line.
  11.  前記第3の波面は、前記第1の波面の逆の極性を持つコマ収差を持つ波面である請求項10記載の光ヘッド装置。 11. The optical head device according to claim 10, wherein the third wavefront is a wavefront having a coma aberration having a polarity opposite to that of the first wavefront.
  12.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項10記載の光ヘッド装置。 11. The optical head device according to claim 10, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  13.  前記第1の領域の格子パターンと前記第4の格子パターンは等しく、前記第2の領域の格子パターンと前記第3の格子パターンは等しい請求項10記載の光ヘッド装置。 11. The optical head device according to claim 10, wherein the grating pattern of the first region and the fourth grating pattern are equal, and the grating pattern of the second region and the third grating pattern are equal.
  14.  前記第1の波面および第3の波面は、前記第1の領域分割線の方向と45度異なる方向の非点収差を持つ波面である請求項1記載の光ヘッド装置。 The optical head device according to claim 1, wherein the first wavefront and the third wavefront are wavefronts having astigmatism in a direction different from the direction of the first area dividing line by 45 degrees.
  15.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項14記載の光ヘッド装置。 The optical head device according to claim 14, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  16.  前記第2の波面は、前記第1の収差の逆の極性を持つ非点収差を持つ波面であり、
     前記第4の波面は、前記第3の収差の逆の極性を持つ非点収差を持つ波面である請求項14記載の光ヘッド装置。
    The second wavefront is a wavefront having astigmatism with the opposite polarity of the first aberration,
    The optical head device according to claim 14, wherein the fourth wavefront is a wavefront having astigmatism with a polarity opposite to that of the third aberration.
  17.  請求項1記載の光ヘッド装置に用いられる受光素子であって、
     前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の光受光領域と第4の光受光領域を有し、
     前記第1の受光領域と前記第2の受光領域は、第1の受光分割線を挟んで対向して配置されており、
     前記第3の受光領域と前記第4の受光領域は、第2の受光分割線を挟んで対向して配置されており、
     前記第1の受光領域からの信号と前記第3の受光領域からの信号の和と、前記第2の受光領域からの信号と前記第4の受光領域からの信号の和との差動により得られる第1の信号を生成する回路と、
     前記第1の受光領域からの信号と前記第2の受光領域からの信号の和と、前記第3の受光領域からの信号と前記第4の受光領域からの信号の和との差動により得られる第2の信号を生成する回路とを有する受光素子。
    A light receiving element for use in the optical head device according to claim 1, wherein
    The light receiving element has at least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area.
    The first light receiving area and the second light receiving area are disposed opposite to each other with the first light receiving division line interposed therebetween,
    The third light receiving area and the fourth light receiving area are disposed opposite to each other with a second light receiving division line interposed therebetween,
    Obtained by the difference between the sum of the signal from the first light receiving area and the signal from the third light receiving area, and the sum of the signal from the second light receiving area and the signal from the fourth light receiving area A circuit for generating a first signal to be
    Obtained by the difference between the sum of the signal from the first light receiving area and the signal from the second light receiving area, and the sum of the signal from the third light receiving area and the signal from the fourth light receiving area And a circuit for generating a second signal.
  18.  さらに、
     前記第2の信号に所望の定数を乗算し、前記第1の信号と減算する回路を有する請求項17記載の受光素子。
    further,
    The light receiving element according to claim 17, further comprising a circuit for multiplying the second signal by a desired constant and subtracting the result from the first signal.
  19.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dの総和を生成する回路を有する請求項17記載の受光素子。
    further,
    The light receiving element according to claim 17, further comprising a circuit that generates a sum of the signal A, the signal B, the signal C, and the signal D.
  20.  請求項1記載の光ヘッド装置からの信号を処理する集積回路であって、
     前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
     TE1=(A+C)-(B+D)
     TE2=(A+B)-(C+D)
     TE=TE1-K・TE2
     で得られるトラッキングエラー信号TEを生成する回路を有する集積回路。
    An integrated circuit for processing a signal from the optical head device according to claim 1;
    Using the signal A from the first light receiving area, the signal B from the second light receiving area, the signal C from the third light receiving area, and the signal D from the fourth light receiving area, When K is a constant,
    TE1 = (A + C)-(B + D)
    TE2 = (A + B)-(C + D)
    TE = TE1-K · TE2
    An integrated circuit having a circuit for generating a tracking error signal TE obtained by
  21.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     FE=(A+D)-(B+C)
     で得られるフォーカスエラー信号FEを生成する回路を有する請求項20記載の集積回路。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    FE = (A + D)-(B + C)
    The integrated circuit according to claim 20, further comprising a circuit that generates a focus error signal FE obtained by
  22.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     (A+D)と(B+C)の信号の位相差により位相差トラッキングエラー信号を生成する回路を有する請求項20記載の集積回路。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    The integrated circuit according to claim 20, further comprising a circuit that generates a phase difference tracking error signal based on a phase difference between the (A + D) and (B + C) signals.
  23.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dの総和を生成する回路を有する請求項20記載の集積回路。
    further,
    The integrated circuit according to claim 20, further comprising a circuit that generates a sum of the signal A, the signal B, the signal C, and the signal D.
  24.  光ビームを出射する光源と、前記光ビームを受け、トラックを有する情報媒体上の微小スポットに収束させる集光光学系と、前記情報媒体で反射された前記光ビームを回折させるホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光ヘッド装置で信号を検出する方法であって、
     前記受光素子は、
     少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、
     前記第1の受光領域と前記第2の受光領域とは、第1の受光分割線を挟んで対向して配置されており、
     前記第3の受光領域と前記第4の受光領域とは、第2の受光分割線を挟んで対向して配置されており、
     前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群を有し、
     前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、
     前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、
     前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、
     前記第1の回折領域の格子パターンで、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させ、
     前記第2の回折領域の格子パターンで、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させ、
     前記第3の回折領域の格子パターンで、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させ、
     前記第4の回折領域の格子パターンで、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させる
     信号検出方法。
    A light source for emitting a light beam, a focusing optical system for receiving the light beam and causing the light beam to converge on a minute spot on an information medium having a track, a hologram element for diffracting the light beam reflected by the information medium, A method of detecting a signal with an optical head device comprising: a light receiving element for receiving light diffracted by a hologram element;
    The light receiving element is
    At least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area;
    The first light receiving area and the second light receiving area are disposed to face each other with the first light receiving division line interposed therebetween,
    The third light receiving area and the fourth light receiving area are disposed to face each other with the second light receiving division line interposed therebetween,
    The hologram element has a first diffraction area group having a first diffraction area and a second diffraction area, and a second diffraction area group having a third diffraction area and a fourth diffraction area.
    The first diffraction area group and the second diffraction area group are disposed across a first area division line passing through the center of the optical axis of the condensing optical system,
    The first diffraction area and the third diffraction area are a first incident area on which −1st order light reflected and diffracted by the track of the information medium is incident and a second incident area on which + 1st order light is incident Including
    The second diffraction area and the third diffraction area include a third incidence area on which only light not diffracted in the tracks of the information medium is incident,
    In the grating pattern of the first diffraction area, light incident on the first incident area is incident on the second light receiving area, and light incident on the second incident area is the first light receiving Generating diffracted light having a first wavefront incident on the region,
    The grating pattern of the second diffraction region generates diffracted light having a second wavefront in which light incident on the third incident region is incident on the third light receiving region,
    In the grating pattern of the third diffraction area, light incident on the first incident area is incident on the fourth light receiving area, and light incident on the second incident area is the third light receiving Generating diffracted light having a third wavefront incident on the region,
    A signal detection method for generating diffracted light having a fourth wavefront in which light incident on the third incident area is incident on the second light receiving area in a grating pattern of the fourth diffractive area.
  25.  さらに、
     前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
     TE1=(A+C)-(B+D)
     TE2=(A+B)-(C+D)
     TE=TE1-K・TE2
     で得られるトラッキングエラー信号TEを検出する請求項24記載の信号検出方法。
    further,
    Using the signal A from the first light receiving area, the signal B from the second light receiving area, the signal C from the third light receiving area, and the signal D from the fourth light receiving area, When K is a constant,
    TE1 = (A + C)-(B + D)
    TE2 = (A + B)-(C + D)
    TE = TE1-K · TE2
    The signal detection method according to claim 24, wherein the tracking error signal TE obtained in
  26.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     FE=(A+D)-(B+C)
     で得られるフォーカスエラー信号FEを生成する請求項25記載の信号検出方法。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    FE = (A + D)-(B + C)
    The signal detection method according to claim 25, wherein the focus error signal FE obtained by
  27.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     (A+D)と(B+C)の信号の位相差により位相差トラッキングエラー信号を生成する請求項25記載の信号検出方法。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    26. The signal detection method according to claim 25, wherein a phase difference tracking error signal is generated by the phase difference between the (A + D) and (B + C) signals.
  28.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dの総和により前記情報媒体に記録された信号を検出する請求項25記載の信号検出方法。
    further,
    26. The signal detection method according to claim 25, wherein the signal recorded on the information medium is detected by the sum of the signal A, the signal B, the signal C, and the signal D.
  29.  前記第1の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第2の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きく、
     前記第3の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第4の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きい請求項24記載の信号検出方法。
    The ratio occupied by the first incident region or the second incident region in the first diffraction region is the ratio occupied by the first incident region or the second incident region in the second diffraction region. Greater than
    The ratio occupied by the first incident region or the second incident region in the third diffraction region is the ratio occupied by the first incident region or the second incident region in the fourth diffraction region. 25. The signal detection method according to claim 24, which is larger than the above.
  30.  前記第2の回折領域と前記第4の回折領域は、前記光軸中心に対して点対称である請求項24記載の信号検出方法。 25. The signal detection method according to claim 24, wherein the second diffraction area and the fourth diffraction area are point symmetric with respect to the optical axis center.
  31.  前記第2の回折領域および前記第4の回折領域は、前記第1の入射領域を含まない請求項24記載の信号検出方法。 The signal detection method according to claim 24, wherein the second diffraction area and the fourth diffraction area do not include the first incident area.
  32.  前記第2の領域は、前記第1の領域分割線と垂直な第2の領域分割線と、前記第1の領域分割線と平行な第3の分割線により分割された領域で、前記第1の領域分割線を含まないいずれかの領域であり、
     前記第4の領域は、前記第2の領域と前記光軸中心に対して、点対称である請求項24記載の信号検出方法。
    The second area is an area divided by a second area dividing line perpendicular to the first area dividing line and a third dividing line parallel to the first area dividing line. Any area that does not include the area dividing line of
    The signal detection method according to claim 24, wherein the fourth area is point-symmetrical with respect to the second area and the center of the optical axis.
  33.  前記第1の波面および前記第3の波面は、前記第1の領域分割線方向のコマ収差を持つ波面である請求項24記載の信号検出方法。 The signal detection method according to claim 24, wherein the first wave front and the third wave front have a coma aberration in the direction of the first area division line.
  34.  前記第3の波面は、前記第1の波面の逆の極性を持つコマ収差を持つ波面である請求項33記載の信号検出方法。 The signal detection method according to claim 33, wherein the third wavefront is a wavefront having a coma aberration having an opposite polarity to the first wavefront.
  35.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項33記載の信号検出方法。 The signal detection method according to claim 33, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  36.  前記第1の領域の格子パターンと前記第4の格子パターンは等しく、前記第2の領域の格子パターンと前記第3の格子パターンは等しい請求項33記載の信号検出方法。 The signal detection method according to claim 33, wherein the grating pattern of the first region and the fourth grating pattern are equal, and the grating pattern of the second region and the third grating pattern are equal.
  37.  前記第1の波面および第3の波面は、前記第1の領域分割線の方向と45度異なる方向の非点収差を持つ波面である請求項24記載の信号検出方法。 The signal detection method according to claim 24, wherein the first wavefront and the third wavefront are astigmatism having a direction different from that of the direction of the first area dividing line by 45 degrees.
  38.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項37記載の信号検出方法。 The signal detection method according to claim 37, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  39.  前記第2の波面は、前記第1の収差の逆の極性を持つ非点収差を持つ波面であり、
     前記第4の波面は、前記第3の収差の逆の極性を持つ非点収差を持つ波面である請求項37記載の信号検出方法。
    The second wavefront is a wavefront having astigmatism with the opposite polarity of the first aberration,
    The signal detection method according to claim 37, wherein the fourth wavefront is a wavefront having astigmatism with a polarity opposite to that of the third aberration.
  40.  光ビームを出射する光源と、情報媒体で反射された前記光ビームを回折するホログラム素子と、前記ホログラム素子により回折された光を受光する受光素子とを備えた光集積素子であって、
     前記受光素子は、少なくとも第1の受光領域と第2の受光領域と第3の受光領域と第4の受光領域とを有し、
     前記第1の受光領域と前記第2の受光領域は、第1の受光分割線を挟んで対向して配置されており、
     前記第3の受光領域と前記第4の受光領域は、第2の受光分割線を挟んで対向して配置されており、
     前記ホログラム素子は、第1の回折領域と第2の回折領域を有する第1の回折領域群と、第3の回折領域と第4の回折領域を有する第2の回折領域群とを有し、
     前記第1の回折領域群と前記第2の回折領域群は、前記集光光学系の光軸中心を通る第1の領域分割線を挟んで配置されており、
     前記第1の回折領域および前記第3の回折領域は、前記情報媒体の前記トラックにより反射回折された-1次光が入射する第1の入射領域および+1次光が入射する第2の入射領域を含み、
     前記第2の回折領域および前記第3の回折領域は、前記情報媒体のトラックで回折されない光のみが入射する第3の入射領域を含み、
     前記第1の回折領域には、前記第1の入射領域に入射された光が前記第2の受光領域に入射し、前記第2の入射領域に入射された光が前記第1の受光領域に入射する第1の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第2の回折領域には、前記第3の入射領域に入射された光が前記第3の受光領域に入射する第2の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第3の回折領域には、前記第1の入射領域に入射された光が前記第4の受光領域に入射し、前記第2の入射領域に入射された光が前記第3の受光領域に入射する第3の波面を持つ回折光を発生させる格子パターンが形成され、
     前記第4の回折領域には、前記第3の入射領域に入射された光が前記第2の受光領域に入射する第4の波面を持つ回折光を発生させる格子パターンが形成されている
     光集積素子。
    An optical integrated device comprising: a light source for emitting a light beam; a hologram element for diffracting the light beam reflected by the information medium; and a light receiving element for receiving the light diffracted by the hologram element,
    The light receiving element has at least a first light receiving area, a second light receiving area, a third light receiving area, and a fourth light receiving area.
    The first light receiving area and the second light receiving area are disposed opposite to each other with the first light receiving division line interposed therebetween,
    The third light receiving area and the fourth light receiving area are disposed opposite to each other with a second light receiving division line interposed therebetween,
    The hologram element has a first diffraction area group having a first diffraction area and a second diffraction area, and a second diffraction area group having a third diffraction area and a fourth diffraction area.
    The first diffraction area group and the second diffraction area group are disposed across a first area division line passing through the center of the optical axis of the condensing optical system,
    The first diffraction area and the third diffraction area are a first incident area on which −1st order light reflected and diffracted by the track of the information medium is incident and a second incident area on which + 1st order light is incident Including
    The second diffraction area and the third diffraction area include a third incidence area on which only light not diffracted in the tracks of the information medium is incident,
    In the first diffraction area, light incident on the first incident area is incident on the second light receiving area, and light incident on the second incident area is on the first light receiving area. A grating pattern is formed which generates diffracted light having an incident first wavefront,
    The second diffraction area is formed with a grating pattern for generating diffracted light having a second wave front in which light incident on the third incident area is incident on the third light receiving area,
    In the third diffraction area, light incident on the first incident area is incident on the fourth light receiving area, and light incident on the second incident area is on the third light receiving area. A grating pattern is formed which generates diffracted light having a third incident wavefront,
    The fourth diffraction area is formed with a grating pattern for generating diffracted light having a fourth wavefront in which light incident on the third incident area is incident on the second light receiving area. element.
  41.  前記第1の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第2の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きく、
     前記第3の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合は、前記第4の回折領域における前記第1の入射領域もしくは前記第2の入射領域の占有する割合よりも大きい請求項40記載の光集積素子。
    The ratio occupied by the first incident region or the second incident region in the first diffraction region is the ratio occupied by the first incident region or the second incident region in the second diffraction region. Greater than
    The ratio occupied by the first incident region or the second incident region in the third diffraction region is the ratio occupied by the first incident region or the second incident region in the fourth diffraction region. 41. An integrated optical device according to claim 40, wherein the integrated device is larger than.
  42.  前記第2の回折領域と前記第4の回折領域は、前記光軸中心に対して点対称である請求項40記載の光集積素子。 41. The optical integrated device according to claim 40, wherein the second diffraction area and the fourth diffraction area are point symmetric with respect to the optical axis center.
  43.  前記第2の回折領域および前記第4の回折領域は、前記第1の入射領域を含まない請求項40記載の光集積素子。 41. The optical integrated device according to claim 40, wherein the second diffraction region and the fourth diffraction region do not include the first incident region.
  44.  前記第2の領域は、前記第1の領域分割線と垂直な第2の領域分割線と、前記第1の領域分割線と平行な第3の分割線により分割された領域で、前記第1の領域分割線を含まないいずれかの領域であり、
     前記第4の領域は、前記第2の領域と前記光軸中心に対して、点対称である請求項40記載の光集積素子。
    The second area is an area divided by a second area dividing line perpendicular to the first area dividing line and a third dividing line parallel to the first area dividing line. Any area that does not include the area dividing line of
    41. The optical integrated device according to claim 40, wherein the fourth region is point-symmetrical with respect to the second region and the center of the optical axis.
  45.  前記第1の波面および前記第3の波面は、前記第1の領域分割線方向のコマ収差を持つ波面である請求項40記載の光集積素子。 41. The optical integrated element according to claim 40, wherein the first wavefront and the third wavefront are wavefronts having coma in the first region division line direction.
  46.  前記第3の波面は、前記第1の波面の逆の極性を持つコマ収差を持つ波面である請求項45記載の光集積素子。 The light integrating element according to claim 45, wherein the third wavefront is a wavefront having a coma aberration having a polarity opposite to that of the first wavefront.
  47.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項45記載の光集積素子。 The light integrating element according to claim 45, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  48.  前記第1の領域の格子パターンと前記第4の格子パターンは等しく、前記第2の領域の格子パターンと前記第3の格子パターンは等しい請求項45記載の光集積素子。 46. The optical integrated device according to claim 45, wherein the grating pattern of the first area and the fourth grating pattern are equal, and the grating pattern of the second area and the third grating pattern are equal.
  49.  前記第1の波面および第3の波面は、前記第1の領域分割線の方向と45度異なる方向の非点収差を持つ波面である請求項40記載の光集積素子。 41. The optical integrated element according to claim 40, wherein the first wavefront and the third wavefront are wavefronts having astigmatism in a direction different from the direction of the first area dividing line by 45 degrees.
  50.  前記第2の波面および前記第4の波面は、前記受光素子表面に集光する波面である請求項49記載の光集積素子。 50. The optical integrated element according to claim 49, wherein the second wavefront and the fourth wavefront are wavefronts collected on the surface of the light receiving element.
  51.  前記第2の波面は、前記第1の収差の逆の極性を持つ非点収差を持つ波面であり、
     前記第4の波面は、前記第3の収差の逆の極性を持つ非点収差を持つ波面である請求項49記載の光集積素子。
    The second wavefront is a wavefront having astigmatism with the opposite polarity of the first aberration,
    50. The optical integrated device according to claim 49, wherein the fourth wavefront is a wavefront having astigmatism with the opposite polarity of the third aberration.
  52.  請求項1記載の光ヘッド装置を有する光ディスク装置であって、
     前記第1の受光領域からの信号Aと、前記第2の受光領域からの信号Bと、前記第3の受光領域からの信号Cと、前記第4の受光領域からの信号Dとを用い、Kを定数としたときに、
     TE1=(A+C)-(B+D)
     TE2=(A+B)-(C+D)
     TE=TE1-K・TE2
     で得られるトラッキングエラー信号TEを生成する回路を有する光ディスク装置。
    An optical disk apparatus comprising the optical head apparatus according to claim 1, wherein
    Using the signal A from the first light receiving area, the signal B from the second light receiving area, the signal C from the third light receiving area, and the signal D from the fourth light receiving area, When K is a constant,
    TE1 = (A + C)-(B + D)
    TE2 = (A + B)-(C + D)
    TE = TE1-K · TE2
    An optical disk apparatus having a circuit for generating a tracking error signal TE obtained in
  53.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     FE=(A+D)-(B+C)
     で得られるフォーカスエラー信号FEを生成する回路を有する請求項52記載の光ディスク装置。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    FE = (A + D)-(B + C)
    53. The optical disc apparatus according to claim 52, further comprising a circuit that generates a focus error signal FE obtained by
  54.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dを用い、
     (A+D)と(B+C)の信号の位相差により位相差トラッキングエラー信号を生成する回路を有する請求項52記載の光ディスク装置。
    further,
    Using the signal A, the signal B, the signal C and the signal D,
    The optical disk apparatus according to claim 52, further comprising a circuit that generates a phase difference tracking error signal based on a phase difference between the (A + D) and (B + C) signals.
  55.  さらに、
     前記信号Aと前記信号Bと前記信号Cと前記信号Dの総和を生成する回路を有する請求項52記載の光ディスク装置。
    further,
    The optical disc apparatus according to claim 52, further comprising a circuit that generates a sum of the signal A, the signal B, the signal C, and the signal D.
PCT/JP2010/003212 2009-05-15 2010-05-12 Optical head apparatus, light receiving element, integrated circuit, photonic integrated element, optical disc apparatus, and signal detection method WO2010131461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009119311A JP2010267348A (en) 2009-05-15 2009-05-15 Optical head device, photodetector, integrated circuit, optical integrated element, optical disk device, and signal detection method
JP2009-119311 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010131461A1 true WO2010131461A1 (en) 2010-11-18

Family

ID=43084846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003212 WO2010131461A1 (en) 2009-05-15 2010-05-12 Optical head apparatus, light receiving element, integrated circuit, photonic integrated element, optical disc apparatus, and signal detection method

Country Status (2)

Country Link
JP (1) JP2010267348A (en)
WO (1) WO2010131461A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185876A (en) * 2011-03-04 2012-09-27 Jvc Kenwood Corp Optical pickup device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132206A1 (en) * 2005-06-10 2006-12-14 Sharp Kabushiki Kaisha Optical pickup
JP2007149190A (en) * 2005-11-25 2007-06-14 Victor Co Of Japan Ltd Optical pickup device
WO2009157109A1 (en) * 2008-06-27 2009-12-30 パナソニック株式会社 Optical head device, optical information processing device, and signal detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132206A1 (en) * 2005-06-10 2006-12-14 Sharp Kabushiki Kaisha Optical pickup
JP2007149190A (en) * 2005-11-25 2007-06-14 Victor Co Of Japan Ltd Optical pickup device
WO2009157109A1 (en) * 2008-06-27 2009-12-30 パナソニック株式会社 Optical head device, optical information processing device, and signal detection method

Also Published As

Publication number Publication date
JP2010267348A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US7558162B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
US8295145B2 (en) Optical pickup device and optical disc apparatus
WO2006118082A1 (en) Optical head device and optical information processing device
KR100717020B1 (en) Optical pickup apparatus capable of detecting and compensating spherical aberration due to thickness variation of recording layer
JP4396596B2 (en) Optical pickup
WO2010131461A1 (en) Optical head apparatus, light receiving element, integrated circuit, photonic integrated element, optical disc apparatus, and signal detection method
JP2005135539A (en) Optical head and optical information recording and reproducing device using the same
JP5227926B2 (en) Optical pickup device and optical disk device
JP4142043B2 (en) Optical pickup
JP4738200B2 (en) Optical pickup device
WO2010131406A1 (en) Optical head device, hologram element, optical integrated element, optical information processing device and signal detection method
JP4222988B2 (en) Optical pickup device and optical disk device
US8189435B2 (en) Spherical aberration detecting device and an optical pickup device including same
JP2010211859A (en) Optical pickup device
JP2011034623A (en) Optical pickup device and optical disk device
JP2008027565A (en) Optical pickup
US20060018215A1 (en) Optical pickup device
KR20060103117A (en) Optical semiconductor device
JP2005093008A (en) Optical pickup device and optical disk drive
US20120117580A1 (en) Optical pickup and optical disc drive including the optical pickup
CN101341536A (en) Optical disc device
JP2007242081A (en) Optical pickup device
JP2004071126A (en) Optical pickup device
WO1993009535A1 (en) Focus detecting mechanism and optical head and optical storage using the same
JP2012133852A (en) Optical pickup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774720

Country of ref document: EP

Kind code of ref document: A1