WO1993009535A1 - Focus detecting mechanism and optical head and optical storage using the same - Google Patents

Focus detecting mechanism and optical head and optical storage using the same Download PDF

Info

Publication number
WO1993009535A1
WO1993009535A1 PCT/JP1992/001441 JP9201441W WO9309535A1 WO 1993009535 A1 WO1993009535 A1 WO 1993009535A1 JP 9201441 W JP9201441 W JP 9201441W WO 9309535 A1 WO9309535 A1 WO 9309535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
optical
optical system
hologram element
Prior art date
Application number
PCT/JP1992/001441
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Koyama
Masatoshi Yonekubo
Takashi Takeda
Toshio Arimura
Hidefumi Sakata
Osamu Yokoyama
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP05508321A priority Critical patent/JP3132001B2/en
Priority to KR1019930702028A priority patent/KR100191884B1/en
Publication of WO1993009535A1 publication Critical patent/WO1993009535A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0909Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only by astigmatic methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0912Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only by push-pull method
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0916Foucault or knife-edge methods

Definitions

  • the present invention relates to a focus detection mechanism that detects the focus of a light beam on a target surface and is suitable for use in an optical storage device and the like, and an optical head and an optical storage device using the same.
  • optical storage devices that form / detect minute bits, it is essential to converge the luminous flux from the light-emitting source to an extremely small light spot on the target surface. To achieve this, focus detection using reflected light from the target surface is generally required.However, in order to reduce the size of the optical storage device, it can be efficiently mounted on an optical head and has high performance. There is a long-awaited need to achieve this, and various systems using hologram elements and the like have been proposed.
  • Fig. 31 uses a linear diffraction grating 5 engraved at unequal intervals, enabling focus detection and the reproduction signal essential for optical storage devices. And various error signals can be obtained relatively easily, so it is regarded as an effective method.
  • the target surface reflected light that has been converted into a substantially parallel light beam by the objective lens 6 is split by the unequally spaced diffraction grating 5 into a first-order light and a first-order earth diffracted light.
  • the ruled line interval of the diffraction grating 5 is appropriately determined.-The primary light 7 is converged only in the grating arrangement direction (y), and the simultaneously generated + primary light 8 is diverged only in the y direction. ing. These luminous fluxes are converged by the collimating lens 9 arranged in this order. At this time, the diffracted lights 7 and 8 are located before the focal plane 9 f of the collimating lens 9 in the y direction.
  • the light In the notch direction (X), which converges backward and is not affected by the diffraction grating 5, the light converges to the original focal point 9 f of the collimator lens 9, resulting in the focal point of the collimator lens 9. It becomes a non-point convergent light beam that forms a circle of least confusion before and behind the point plane 9f.
  • the target surface reflected light that has exited the objective lens 6 deviates from the parallel light beam at the time of focusing and converges or diverges, and the light beam focus position moves back and forth.
  • the light is projected onto the two photoelectric conversion elements 10 and 11 that are placed in steps at the position of the circle of least confusion of ⁇ 1st order light.
  • the shape of the light spot changes complementarily from the vertical camellia circle to the horizontal camellia circle, and a focusing error signal is obtained as differential output by the elements 10 and 11 having a light-receiving surface with an intricate shape. ing.
  • the method of using the deformation of the astigmatism spot for focus detection has twice the sensitivity than the so-called spot size method that simply detects spot blur without using the astigmatism, and also uses a detector. It is superior to the so-called knife-edge method in that it must exactly match the conjugate position of the target surface during focusing, because manufacturing tolerances can be greatly reduced.Excellent focusing using astigmatic spots There is a need for a detection method.
  • An object of the present invention to solve the above-mentioned problems, to enable a flat detector to be placed in the same plane, to enable good focus detection while being easy to manufacture, and to perform focus detection without any trouble even when the wavelength of a light source fluctuates.
  • An object of the present invention is to provide a mechanism and an optical head and an optical storage device using the same. Disclosure of the invention
  • a detection optical system that converges reflected light from a focus target surface
  • a pair of light detection means arranged on the same plane that is substantially conjugate with the target surface with respect to the detection optical system
  • a longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element
  • the hologram element has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
  • a pair of astigmatic II folded light beams whose HI-folded beam cross-sectional shape changes complementarily by the hologram element are detected by the pair of light detecting means,
  • —Focusing on the target surface is detected by calculating a difference between outputs of the pair of light detecting means.
  • a detection optical system that converges reflected light from a focus target surface
  • a pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system
  • a longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element
  • the hologram element is divided into two or more regions, and each of the divided regions has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
  • the astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
  • a pair of astigmatic diffracted light beams which are diffracted by different regions of the hologram element and whose beam cross-sectional shapes change complementarily, are detected by the pair of light detecting means;
  • a focus on the target surface is detected by calculating a difference between outputs of the pair of light detection means.
  • a detection optical system that converges the reflected light of the reproduction or recording light beam from the optical storage medium surface
  • a pair of light detection means groups arranged on the same plane that is substantially conjugate with the target surface with respect to the detection optical system
  • Each of the pair of light detection means groups comprises two light detection means, and the longitudinal direction of the light detection means is arranged substantially along the direction of diffraction by the hologram element;
  • the hologram element is divided into two by a dividing line corresponding to the tangent and tangential directions of the surface of the optical recording medium, and the divided areas are substantially in-phase with each other in a hyperbolic group or a corrected hyperbolic group. And having a periodic light modulation rate pattern,
  • the astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
  • the beam cross-sectional shape changes with the same tendency,
  • a light beam group composed of the two astigmatism light beams is defined as an astigmatism light beam group
  • a pair of astigmatism light beams whose beam cross-sectional shape changes complementarily is detected by the pair of light detection means groups.
  • the two astigmatic diffracted light beams diffracted from the same area of the hologram element are detected by the light detecting means to obtain a total output, and a difference between the two total outputs is calculated to detect a tracking error of the light beam. It is characterized by doing.
  • a detection optical system for collecting reflected light of a reproduction or recording light beam from the optical storage medium surface
  • a pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system
  • the longitudinal direction of the light detection means is placed substantially along the direction of diffraction by the hologram element
  • the hologram element is divided into two by a dividing line corresponding to the track tangential direction of the optical storage medium surface, and the in-phase and period are substantially along the hyperbolic group or the hyperbolic group captured in each of the divided areas. It has a typical light modulation rate pattern and is blazed ::
  • the astigmatic diffracted light beams folded by different regions of the hologram element are separated from each other,
  • a pair of the astigmatic diffracted light beams diffracted by different regions of the hologram element and having a beam cross-sectional shape that changes complementarily are detected by a pair of the light detection means, and the light detection means is a long light detection element. And another light detection element surrounding at least one of the light detection elements,
  • An output difference between the output of the long light detection element and the output of the another light detection element surrounding at least a part of the long light detection element is calculated, and a difference between the pair of the output differences is calculated.
  • a light head characterized in that a tracking error is detected by calculating a difference between outputs of the pair of long light detecting means. Further, in the optical storage device according to the present invention, the light for irradiating the reproduction or recording beam onto the optical storage medium is focused based on a source and a focus detection result of the light head. Focusing means for performing tracking adjustment, and tracking means for performing tracking adjustment based on the detection result of the tracking error of the optical head.
  • FIG. 1 to 30 show an embodiment of a focus detection mechanism and an optical head and an optical storage device according to the present invention.
  • FIG. 1 is a schematic diagram of a hologram pattern suitable for use in the present invention.
  • FIG. 2 is an explanatory diagram showing a state of diffraction by a hologram, and
  • FIG. 3 is another explanatory diagram showing details of diffraction by a hologram.
  • FIG. 4 is a main cross-sectional view of the focus detection mechanism according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a photoelectric conversion element in the focus detection mechanism of the first embodiment.
  • FIG. 6 is an explanatory diagram of the operation of the focus detection mechanism of the first embodiment.
  • FIG. 1 is a schematic diagram of a hologram pattern suitable for use in the present invention.
  • FIG. 2 is an explanatory diagram showing a state of diffraction by a hologram
  • FIG. 3 is another explanatory diagram showing details of
  • FIG. 7 is a graph of a forcing single error signal by the focus detection mechanism of the first embodiment.
  • FIG. 8 is a front view of a photoelectric conversion element having another configuration in the focus detection mechanism of the first embodiment.
  • FIG. 9 is an explanatory diagram of a hologram element of an optical head according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the optical head of the second embodiment. 1 is a front view of the photoelectric conversion element of the optical head of the second embodiment,
  • FIG. 12 is a perspective view of a main part of the optical head of the second embodiment, and
  • FIG. FIG. 14 is a perspective view of a main part showing another configuration example of the optical head of the second embodiment.
  • FIG. 14 is a perspective view of a main part showing still another configuration example of the optical head of the second embodiment. is there.
  • FIG. 15 is a front view of the photoelectric conversion element of the optical head according to the second embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of the hologram element of the optical head according to the fourth embodiment of the present invention.
  • FIG. 17 is a front view of the photoelectric conversion element in the optical head of the fourth embodiment. It is a figure.
  • FIG. 18 is a main cross-sectional view of a focus detection mechanism showing a fifth embodiment of the present invention.
  • FIG. 19 is an essential sectional view of an optical head showing a sixth embodiment of the present invention.
  • FIG. 20 is a schematic sectional view of a hologram element used for the optical head of the sixth embodiment.
  • FIG. 21 is a front view of the photoelectric conversion element in the optical head of the sixth embodiment.
  • FIG. 22 is a main cross-sectional view of a focus detection mechanism according to a seventh embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of a focus detection mechanism according to another configuration of the seventh embodiment.
  • FIG. Figure 24 shows the book
  • FIG. 25 is a main cross-sectional view of an optical head according to an eighth embodiment of the present invention.
  • FIG. 25 is a front view of a photoelectric conversion element in the optical head according to the eighth embodiment, and FIG. It is a principal sectional view of the optical head which shows the other structure of an Example.
  • FIG. 27 is a main cross-sectional view of the optical head according to the ninth embodiment of the present invention.
  • FIG. 28 is a main cross-sectional view of a focus detection mechanism according to a tenth embodiment of the present invention
  • FIG. 29 is a main cross-sectional view of a focus detection mechanism showing another configuration of the tenth embodiment. is there.
  • FIG. 30 is a front view of an optical head photoelectric conversion element according to an i-th embodiment of the present invention.
  • FIG. 31 is a main cross-sectional view of a conventional focus detection mechanism using a diffraction grating
  • FIG. 32 is a perspective view of a main part of a conventional optical head using a diffraction grating.
  • FIGS. 1 to 8 show a first embodiment according to the present invention.
  • FIG. 1 is an explanatory view of a hologram 15 suitable for use in the focus detection mechanism of the present invention.
  • the pattern 15 p formed on the glass substrate 15 b is represented by an equation expressed by rectangular coordinates (X, y) on the substrate plane, where c is a constant.
  • hyperbolic patterns 15 p are calculated using the constants f and L
  • a general synthetic hologram is used in which a photosensitive agent applied on a glass substrate 15b is exposed through a mask having a desired pattern, and the glass substrate 15b is etched after development. Can be applied in the same way.
  • FIG. 2 (a) and 2 (b) are explanatory views showing the state of diffraction by the hologram 15.
  • FIG. 2 (a) when the parallel light 16 is vertically incident on the hologram 15 described above, the light beam incident on the point (x, y) becomes the pattern 15p of this part. It will be diffracted in the arrangement direction.
  • Fig. 2 (b) the slope of the tangent of the hyperbola at (X, y) is
  • the pattern 15 P When the pattern 15 P completely complies with the hyperbolic equation, it is inevitable that aberrations due to deviation from paraxial appear. This aberration is not a problem for practical use, but in order to correct it, a correction term that is close to the equation may be added, the amplitude and phase modulation rate may be adjusted, or the substrate 15b may be curved. Also in this case, the necessary correction is slight, and the pattern for realizing the above does not substantially change from the hyperbola.
  • the parallel light 16 incident on the hologram surface has a finite diameter, the range of the emitted light can be limited. For example, as shown in Fig.
  • 2 0 B is two line segments of 2 a ⁇ X ⁇ 2 a on the X axis and 2 b-2 a ⁇ y ⁇ 2 b + 2 a on the y axis,
  • the hologram element does not necessarily need to include the origin (0, 0) of the hyperbola within the substrate area, and uses only a part of the extraneous pattern corresponding to the incident range of the finite phantom beam to separate the beam. .
  • the amplitude and the phase light modulation rate during one period are appropriately determined to increase or decrease the amount of diffracted light of a specific order, It is also possible to obtain an appropriate hologram element according to the application, for example, by changing the light distribution.
  • the blaze angle is selected, for example, the relative intensity of the + 1st-order light and the 0th-order light can be appropriately determined.
  • the absolute value of the focus distance that appears before and after in the x and y directions can also be changed. For example
  • the diffracted light that converges in the main diffraction direction and diverges in a direction perpendicular to the main diffraction direction is referred to as primary first-order light, and conversely, diverges in the generated diffraction direction.
  • the diffracted light converging in the direction perpendicular to this is called + 1st-order light, and the two are distinguished.
  • FIG. 4 is a layout diagram showing a configuration example of a focus detection mechanism using a hologram element as described above.
  • the divergent light from the semiconductor laser 21 is converted into a parallel light by the collimator lens 22 and reaches the hologram element 23 disposed immediately thereafter.
  • the hologram element 23 has a hyperbolic pattern having the asymptote of the above-mentioned inclination ⁇ 1, and the position where the incident optical axis is displaced in the y direction from the origin of the group of hyperbolas as shown in FIG. Off-axis pattern that passes through.
  • both the first-order diffracted light and the first-order diffracted light are dispersed from the optical axis, and only the straight-order 0th-order light passes through the objective lens 24 arranged at an appropriate distance and passes through the recording Z reproduction beam converging on the optical recording medium surface 25. Has formed.
  • the reflected light from the medium surface 25 of the incident beam is diverged, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and is diffracted again to the hologram element 23.
  • the collimating lens 22 is disposed immediately after the hologram element 23, and in this case, the soil first-order diffracted lights 26 and 27 are also converged by the collimating lens 22.
  • the long side extends along the radiation direction from the optical axis 28 as shown in Fig. 5 on the focal plane 22f of the collimator lens 22.
  • rectangular photoelectric conversion elements 29 and 30 are provided.
  • the luminous flux of the focal length soil f incident on the collimator lens 22 will be the focal length of the collimator lens 22 Than F Therefore, the first-order diffracted light 26 incident on the collimate lens while diverging in the e direction and converging at + f in the y direction while diverging in the e direction is:
  • a focal line is connected behind by ⁇ , and a focal line is connected just before or in the y direction.
  • the + 1st-order diffracted light 27 forms a focal line slightly forward in the X direction and a focal line slightly backward in the y direction, and the diffracted lights 26, 27 Both are astigmatic convergence beams that connect the circle of least confusion on the same plane near the focal plane 22 f of the collimator lens 22.
  • the diffracted lights 26, 27 are astigmatic convergence beams that connect the circle of least confusion on the same plane near the focal plane 22 f of the collimator lens 22.
  • the diffraction angle of the ⁇ first-order zero-fold light 26, 27 changes with the wavelength fluctuation, and the incident position on the photoelectric conversion elements 29, 30 moves in the radiation direction accordingly. Since the transducers 29 and 30 are long in the radial direction, this movement does not affect the output.
  • the reflected light passing through the objective lens 24 deviates from the parallel light beam at the time of focusing and converges or diverges. That is, when the medium surface 25 is closer to the focal point of the objective lens 24, the light beam diverges, and when it is farther away, the light beam converges conversely. Therefore, when the medium 25 is near, the light beam is collected rearward when the collimator lens 22 is in the image plane, and moves toward the near side when the medium 25 is far. As a result, as shown in FIG. 6, the shapes of the light spots 31 and 32 projected on the rectangular photoelectric conversion elements 29 and 30 are as shown in FIG. 6A when the medium 25 is close.
  • the primary spot 31 is a vertical ellipse and the primary spot 32 is a horizontal ellipse.
  • the circle of least confusion as shown in (b).
  • the medium 25 is far away, as in (C).
  • Primary boss 3 1 is a horizontally long ellipse and + primary boss 32 is a vertically long ellipse.
  • the long-elliptical slot whose major axis coincides with the long side of the photoelectric conversion elements 29 and 30 has a larger photoelectric conversion output, so the photoelectric conversion element 29 on the-primary side and the photoelectric conversion of the + 1st order If the output of the element 30 is differentiated, a focusing error signal S as shown in FIG. 7 is obtained.
  • a difference signal between the obtained error signal and the control target value is obtained, and if necessary, an appropriate order of complementarity is added to the difference signal to obtain a drive signal for the actuator.
  • the two photoelectric conversion elements 29 and 30 for obtaining the differential output can be placed in the same plane, and the step size is strictly controlled. There is no need for this, and the manufacture of devices is greatly facilitated, especially for composite devices incorporated in the same package as the semiconductor laser.
  • the change in the diffraction angle is compensated for by the long photoelectric conversion elements 29 and 30 with respect to the wavelength fluctuation, and the focal line positions are moved back and forth by the same amount, so that the center of the differential is not shifted. Even when a light source such as a semiconductor laser whose emission wavelength is liable to change is used, the advantages of the hologram can be fully utilized.
  • the output difference between the case where the medium is near and the case where the medium is far can be increased and decreased, and the width of the short side is small.
  • the output becomes smaller when the light spots 31 and 32 become horizontally elliptical.
  • the shape of the photoelectric conversion elements 29 and 30 is not limited to a rectangle, but may be an ellipse as long as it is long.
  • the shape of the photoelectric conversion elements 29 and 30 may be rectangular or the like, or, for example, a mask may be provided on the front surface of the photoelectric conversion element to limit the light receiving region to an appropriate shape.
  • a splitting element 33 having peripheral regions 33 s on both sides of a long central region 33 c along the diffraction direction is used, and the central region 33 c and the peripheral region 33 are used.
  • the output difference from s may be used instead of one of the photoelectric conversion elements 29 and 30. In this way, even when the light spots 31 and 32 become horizontally elliptical, the surrounding light amount can be effectively used for detection, which is preferable.
  • the peripheral region 33s may be provided separately on both sides of the central region 33c as shown in the figure to add the output, or may be provided so as to surround the central region 33c. .
  • the focus detection mechanism of the present invention is not only suitably applied to the optical storage device described above, but also an optical probe type shape measuring device or the like which requires a similar high-performance focusing sensor. It can also be applied to devices such as an atomic force microscope that optically captures the movement of the cantilever, and can provide compact and highly reliable focus detection.
  • the child 35 is composed of two symmetrical regions 35 A and 35 B corresponding to each other via a dividing line 35 p as shown in FIG. 9A.
  • the above-described hyperbolic patterns particularly off-axis patterns deviated in the y-direction from the hyperbolic origin as shown in FIG. 3 (c) are formed.
  • the half area 35A the left half of the off-axis pattern rotated clockwise by 80 degrees is drawn, and in the right half area 35B, the same off-axis pattern is counter-inverted. The right half of a clockwise rotation of 80 degrees is shown.
  • FIG. 10 is an explanatory view of the optical head of the magneto-optical recording / reproducing apparatus configured using the above-mentioned hologram element 35.
  • the divergent light from the semiconductor laser 38 is collimated by the collimator lens 39.
  • the light is converted into parallel light, reaches the hologram element 35 disposed immediately thereafter, and travels straight.
  • the 0th-order light passes through the objective lens 40 disposed at an appropriate distance and is collected on the recording medium surface 41.
  • a recording Z reproduction beam is formed.
  • the reflected light of the incident beam from the medium surface 41 becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 40, and reaches the hologram element 35 again.
  • the two areas 35 A of the hologram element 35 , 35B form first-order diffracted lights 36A and 36B and + first-order diffracted lights 37A and 37B, respectively.
  • the hologram element 35 is arranged such that the division line 35 p is parallel to the track groove direction of the optical storage medium 41.
  • the diffracted lights 36 A, 36 B, 37 A, and 37 B are converged by the collimator lens 39, and as shown in FIG. 11, are shifted to the left and right along the dividing line 35 p of the hologram element 35.
  • a rectangular photoelectric conversion element 44 A, 44 B which is long along the radiation direction. 45 A and 45 B are provided, all of which are placed on the same plane.
  • two polarizing plate analyzers 46 and 47 are provided, respectively.
  • the transmission axes 46a and 47a are disposed so that they are turned to the right and left from the polarization axis of the semiconductor laser by an appropriate angle.
  • the diffracted light incident on the photoelectric conversion elements 44 A, 44 B, 45 A, and 45 B is minimum on the focal plane 39 f of the collimating lens 39 as in the case described above.
  • the circle of confusion It is a non-point convergent light flux.
  • the primary spots 42A, 42B projected on the photoelectric conversion elements 44A, 44B, and +1 projected on the photoelectric conversion elements 45A, 45B At the next spots 43A and 43B, the shape changes complementarily between the vertical ellipse and the horizontal ellipse. Therefore, using the outputs VIA, V1B, V2A, and V.2B of the photoelectric conversion elements 44A, 44B, 45A, and 45B,
  • the recording / reproducing beam is always output on the medium surface. Can converge.
  • a tracking error signal can be obtained. That is, if the value of the above equation is 0, the tracking is normal, and if the value is positive or negative, the tracking is off. Therefore, if tracking control of the objective lens is performed so that this signal has a constant value, the recording / reproducing beam can always be converged on the track.
  • a difference signal between the error signal and the control target value is obtained in the same manner as in the case of the focusing described above, and if necessary, an appropriate complementary value ⁇ is added thereto. And the like are known.
  • the analyzers 46 and 47 are provided for detecting the magneto-optical signal.
  • the medium reflected light of the reproduction beam incident on the semiconductor laser 38 with a unique polarization plane is transmitted between the eraser and the recording bit: the rotation directions of the polarization planes due to the force effect are mutually different. The opposite is true. Therefore, if, for example, one rotation occurs in the transmission direction 46a of the analyzer 46 arranged in the left photoelectric conversion elements 44A and 45B in the erasing section, the left photoelectric conversion element 44 The amount of light reaching A, 45B increases, and the amount of light from the right-handed photoelectric conversion elements 44B, 45A decreases.
  • the magneto-optical recording signal can be reproduced.
  • the differential output between the primary light and the primary light is obtained, so that the diffraction efficiency between the primary light and the primary light is higher. Even at different times or when defocusing occurs, it is possible to efficiently remove the in-phase light amount fluctuation noise and the like by taking advantage of the differential detection, and obtain a high-quality reproduced signal.
  • the light amount itself of the medium reflected light is modulated, so that the light amounts incident on the photoelectric conversion elements 44 A, 44 B, 45 A, 45 B all increase or decrease in the same manner. Therefore, in order to reproduce the pre-bit signal,
  • the optical head according to the present embodiment has a configuration with an extremely small number of components, and can obtain all the signals necessary for the magneto-optical recording device while being small in size and low in cost.
  • all the outputs of the four photoelectric conversion elements can be used for calculation of any signal, and can be generated by a calculation different from any of the signals, so that there is no waste of light quantity and crosstalk between signals. It is possible to obtain high quality magneto-optical signals, pre-pit signals and various error signals.
  • the photoelectric conversion element is long along the diffraction direction even with respect to the wavelength fluctuation of the light source, there is no effect due to the movement of the diffraction bot, and the astigmatic luminous flux of each astigmatic light flux is not affected.
  • an optical storage device equipped with the optical head of the present embodiment and controlling the focusing and tracking as described above has a high quality. It is supported by output signals, has high reliability and high performance, and has a small head, which makes the entire device smaller.
  • the step size is strict. There is no need to manage the device, and the manufacture of devices is greatly facilitated, especially for composite devices that incorporate a photoelectric conversion device in the same package as the semiconductor laser.
  • a similar light head is to be constructed using a conventional linear grating hologram element, as shown in Fig. 32, four photoelectric conversion elements are replaced by at least two base substrates 48a, 4b. It was necessary to make two pieces each on 8b and arrange them separately on both sides of the semiconductor laser.
  • the semiconductor laser 38 may be provided with a heat sink 50 provided on the base substrate 74 as shown in FIG. 12 or cut out at the center of the base substrate 51 as shown in FIG.
  • the structure may be such that the portion 5 la is provided and the heat sink 52 is disposed at the center of the cutout portion 51 a.
  • the heat sink 53 may be a cantilever structure, and the base substrate 49 may be inserted and arranged below the beam.
  • the photoelectric conversion elements used for detection can be formed on the same base substrate, not only the dimensional control during assembly is easy, but also the head, pump, signal processing, and signal processing are performed on the same base substrate. It is easy to mount arithmetic circuits etc. in a monolithic manner, and it is also easy to achieve further downsizing and higher performance.
  • the azimuth angles of the transmission axes 46 a and 47 a of the analyzers 46 and 47 were set to be appropriate. By changing this angle, the angle of the magneto-optical recording signal with respect to the amount of incident light was changed. The degree of modulation can be changed.
  • the angle so that the degree of modulation can be increased while suppressing noise proportional to the amount of incident light.
  • the polarizing plates instead of using the polarizing plates as the analyzers 46 and 47, another element having an analyzing function, for example, a polarizing beam splitter using a multilayer film may be used.
  • the rotation angles of the hyperbolic pattern in the regions 35A and 35B of the hologram element, and the directions of generation of the primary light and the primary light of the regions 35A and 35B are as described above. There is no need to limit. Furthermore, the combinations for obtaining various signals Other than this, any signal can be used as long as a similar signal can be obtained.
  • the focus detection and tracking are performed in the same manner for other types of optical recording devices and optical heads.
  • Detection and pre-bit detection are possible, and an optical storage device that performs focusing control, tracking control, and signal reproduction can be configured based on the detection and pre-bit detection.
  • read-only optical disk devices such as so-called compact disks and video disks
  • write-once disk devices such as dye recording type and hole-burning type
  • rewritable disk devices of phase change recording type can be used for These discs do not have magneto-optical bits, and the bits are all reflectance-modulated bits. Therefore, the analyzer having the above-described configuration is unnecessary. It is desirable to increase efficiency.
  • FIG. 15 shows a third embodiment in which the second embodiment is modified, and the same reference numerals as those described above denote the same functional members.
  • the four-valued photoelectric conversion elements are elongated along the direction of diffraction separation as shown in FIG. 11 and are arranged radially, whereas in this example, two photoelectric conversion elements are provided as shown in FIG. each of the photoelectric conversion element 4 4 a ', 4 4 B 5, 4 5 a', 4 5 B ' is a elongated in a direction parallel to each other.
  • the spot position deviation is not compensated for by the element shape. The placement error can be improved.
  • the diffracted lights 42A, 42B, 43A, and 43B are arranged at close angles such as ⁇ 80 ° with respect to the dividing line, the photoelectric conversion element 44A ', Since the longitudinal directions of 44B ', 45A', and 45B are roughly along the diffraction direction, the effect of complementing the movement of the robot when the wavelength varies is not impaired on a practical level. This is effective because a manufacturing error in the scale direction can be compensated.
  • FIGS. 16 to 17 show a fourth embodiment in which the second embodiment described above is modified
  • the same reference numerals as those described above represent similar functional members.
  • the hologram patterns in the left and right regions of the dividing line are the same off-axis pattern, and the spots can be separated by changing the pattern rotation angles in the left and right regions 35A and 35B.
  • the hologram element 55 of the present embodiment the hologram pitches of the areas 55A and 55B are changed.
  • the left and right patterns are basically different in the degree of off-axis from the origin of the force hyperbola generating the luminous flux with the same focus distance ⁇ f, so that the diffraction separation angles are different.
  • the diffracted light beams 56 A, 56 B, 57 A and 57 B by the respective regions 55 A and 55 B can be arranged on a straight line.
  • a pattern with a large pitch that is, a pattern with a small degree of off-axis is drawn by rotating by 90 degrees
  • a part with a small pitch that is, a degree of off-axis is large. If the pattern is drawn by rotating the pattern by ⁇ 90 degrees, the ⁇ 1st-order diffraction robots 58 B and 59 B in the area 55 B will be two spots 58 A and 59 A in the area 55 A Appears in a straight line outside of.
  • the corresponding four photoelectric conversion elements 60 A, 60 B, 61 A, and 61 B are also arranged linearly, and the spot movement at the time of wavelength fluctuation is reduced. This is effective because it can completely compensate and, as in the previous embodiment, can reduce the manufacturing tolerance in the diffraction separation direction.
  • FIG. 18 shows a fifth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members.
  • the divergent light from the semiconductor laser 21 is collimated by the collimating lens 22, then passes through the beam splitter 62, passes through the objective lens 24, and passes on the optical storage medium surface 25.
  • the reflected light of the incident beam from the medium surface 25 becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and is transmitted to the hologram element 63 arranged on the optical path bent by the beam splitter 62.
  • the hologram element 63 has a hyperbolic pattern similar to that of the above-described first embodiment.
  • the ⁇ 1st-order diffracted light emitted in this manner is refracted by the condenser lens 64 disposed immediately thereafter.
  • the condenser lens 64 On the focal plane 64 f of the focusing lens 64, two photoelectric conversion elements 29, 30 is provided.
  • the hologram element 63 can be of a split type as in the second embodiment, and four photoelectric conversion elements can be provided to form the same optical head and optical storage device.
  • the efficiency of the zero-order light can be reduced as described above, and the efficiency of the ⁇ first-order light can be increased instead.
  • the amount of light reaching the photoelectric conversion elements 29, 30 can be reduced. Many are preferred.
  • the focal length of the condenser lens 64 is made longer than the focal length of the collimator lens 22, the longitudinal magnification of the optical system for detection with respect to the medium side can be independently adjusted to be higher. Therefore, it is possible to widen the astigmatic difference of the detection light beam while securing the light use efficiency of the semiconductor laser, and it is possible to increase the focus error detection sensitivity.
  • FIGS. 19 to 21 show a sixth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members.
  • the hologram element 65 placed in the parallel optical path is a divided hologram element 65 having a pattern similar to that of the second embodiment described above, and the respective areas 65 A and 65 A are formed by the blazing method described above.
  • One of the ⁇ 1st-order lights of 5B, for example, is configured so that only the intensity of the light beam diffracted to the right of the dividing line 65P is increased. It is known that such blazing can be realized, for example, in a transmission type hologram element 65 by forming a sawtooth cross section 65c that rises to the left as shown in FIG. If the blazing angle is set appropriately, the light intensity can be reduced to almost zero for light diffracted to the left.
  • the diffracted light on the return path involved in detection is the primary light 66 B of the region 65 B diffracting rightward of the dividing line 65 p and the + primary light 67 of the region 65 A A only.
  • the photoelectric conversion elements 68 B and 69 A corresponding to the two light beams 66 B and 67 A are provided on the detection surface in the same plane.
  • the two photoelectric conversion elements 68 B and 69 A are provided with two peripheral areas 68 Bs and 69 As on both sides of the central area 68 Bc and 69 Ac, respectively. It is a dividing element, and the dividing lines are provided along the respective diffraction directions. Assuming that the photoelectric conversion output of each area 6 8 B c, 6 8 B s, 6 9 A c, 6 9 A s is V 1 c, V is, V 2 c, V 2 s, focusing •
  • the error signal is
  • the magneto-optical reproduction signal can be obtained at Further, if analyzers having different azimuths of transmission axes are provided on the front surfaces of the photoelectric conversion elements 68B and 69A, the magneto-optical reproduction signal can be obtained.
  • the optical head according to the present embodiment also has a configuration with an extremely small number of components and requires only one side of the light source to be provided with the light detecting means. All the signals required for a magneto-optical recording device can be obtained at low cost. In addition, since all the outputs of the photoelectric conversion means can be used for calculating any of the signals, it is possible to obtain high-quality magneto-optical signals, pre-bit signals, and various error signals without wasting light. is there.
  • the photoelectric conversion element is long along the diffraction direction even with respect to the wavelength variation of the light source, there is no effect due to the movement of the diffraction spot, and the two non-point convergent light beams Since the focal line position moves back and forth by approximately the same amount, the center of the differential does not deviate, and even when using a light source such as a semiconductor laser whose emission wavelength is liable to fluctuate, the advantages of the hologram element can be fully utilized. We can make use of it. Therefore, the optical storage device equipped with the optical head of the present embodiment and controlling the focusing and tracking as described above can provide a high-quality output signal, high reliability, high performance, and a small size. As a result, the entire device can be downsized.
  • the long directions of the photoelectric conversion elements 68 B and 69 A can be made parallel based on the above-described modification.
  • the diffraction spots can be separated by changing the pattern pitch. Wear.
  • the present invention can be similarly applied to the case where the light beam is separated on the return path as in the fifth embodiment.
  • FIGS. 22 to 23 show a seventh embodiment of the present invention.
  • the divergent light from the semiconductor laser 21 passes through the hologram element 75 and passes through the condenser lens 76.
  • the beam is converged and forms a recording Z reproduction beam to be received on the recording medium 25.
  • the reflected light travels backward in the optical path and is refracted by the condenser lens 76, and reaches the hologram element 75 again to generate ⁇ first-order diffracted lights 78 and 79.
  • the diffracted lights 78 and 79 form a two-point astigmatic light flux in a manner similar to the above-mentioned case that passes through the lens after diffraction, and when both light fluxes are focused, the emission end of the semiconductor laser 21 is focused. Connect the circle of least confusion on f.
  • the convergence position of the light beam moves rearward when the medium 25 is close, and moves forward when the medium 25 is far. Therefore, the same two photoelectric conversion elements 29 and 30 as in the first embodiment are provided in the plane of the emission end of the semiconductor laser 21 to perform focus detection. At this time, only the focusing lens 76 or the entire finite system 80 from the focusing lens 76 to the photoelectric conversion elements 29 and 30 is moved back and forth by an actuator (not shown) so that the focusing 'error signal obtained at this time becomes a constant value. By driving, the recording / reproducing beam can be always converged on the medium surface.
  • the hologram element 75 is arranged in the convergent light path.
  • the hologram separates the convergent light beam, if the ⁇ 1st-order diffracted light 78 and 79 are used together, a slight curve correction is required for the pattern. Even if the correction is performed, the astigmatism common to the two light beams is generated. As a result, the astigmatism of the primary light beam 78 is large, and the astigmatic difference of the + first light beam 79 is small. I cannot escape from the phenomenon.
  • the necessary correction amount is small and the pattern shape is not much different from the hyperbola.
  • astigmatism generated at the time of separation is also small, and if a force that hardly causes a problem for detection is needed, the photoelectric conversion elements 29, 30 are required according to the diameter of the circle of least confusion.
  • the detection sensitivity may be made uniform by changing the width of the detection.
  • the diffracted light on the outward path by the hologram element is transmitted to the objective lens. It was easy to disperse the light outside the optical path as unnecessary light by adjusting the distance in the optical path. In a finite system, the distance to the condenser lens 76 is limited, so it is not so easy to take a sufficient distance, but if this distance is not enough, for example, 0 in the return path of the outgoing + 1st order light Since the next light overlaps with the minus first light of the return light of the 0th light on the outward path and interferes with the focus detection, the position of the hologram element 75 should be determined in consideration of this point.
  • the hologram element 75 is provided with an aperture stop by using unnecessary return light passing through an optical path distant from the optical axis as compared with the desired diffracted lights 78 and 79 on the return path, the above-described restriction is imposed. Can be reduced.
  • a beam splitter 81 may be provided in the convergent light path, the light path may be divided into the forward path and the return path, and a finite system may be configured such that only the return path passes through the hologram element 75.
  • unnecessary diffracted light on the outward path is not generated, so that the hologram element sets the diffraction efficiency of the 0th-order light to almost zero and increases the efficiency of the ⁇ 1st-order light as in the previous embodiment. It is desirable. It is also preferable to improve the detection sensitivity by inserting a negative lens on the detection side as necessary and increasing only the vertical magnification on the detection side. Furthermore, if the detection lens is intentionally given an appropriate astigmatism, the above-mentioned unnecessary astigmatism generated in the hologram of the convergent light path can be canceled out, which is extremely effective.
  • the hologram element 75 is of a split type similar to that of the second embodiment, and four photoelectric conversion elements are provided. In this case, tracking is also performed by driving the entire finite system from the condenser lens 76 to the photoelectric conversion element.
  • Finite optical head can be configured extremely simply by the present invention.
  • Finite-type heads have few adjustment items during manufacturing, can be made even smaller, and have high reliability after manufacturing. Therefore, they are preferable for miniaturizing optical storage devices and ensuring reliability.
  • FIGS. 24 to 26 show an eighth embodiment of the present invention, which shows another embodiment in which a finite system head is constructed, and which is used to eliminate the above-mentioned influence of unnecessary astigmatism.
  • the hologram element 85 is divided into two left and right regions 85A and 85B by a dividing line 85p as in the second embodiment.
  • the diffraction direction is, for example, 80 in the clockwise and counterclockwise directions. Separated by rotation.
  • Each of the regions 85A and 85B has a corrected hyperbolic pattern.
  • the astigmatic difference of the diffracted light beam is large in the -first light beams 86A and 86B, and the + first light beam 87 and
  • the astigmatism of the primary light flux 86B of one area 85B and the astigmatic difference of the + primary light flux 87A of the other area 85A are reduced in the hologram element & 5 of this embodiment.
  • the focus distance f unique to each of the patterns of the areas 85A and 85B is changed so as to be equal. ⁇ ⁇
  • the diffracted light beams 86 B and 87 A given equal astigmatic difference form the smallest circle of confusion with the same diameter on the same plane 76 f, and the convergence position of the light beam moves before and after focusing. I do. Since each light beam has the opposite astigmatic difference, at the minimum confusion circle position at the time of focusing, astigmatism spots and zots that change vertically to horizontally long ellipse are obtained.
  • the photoelectric conversion elements 88B and 89A are divided elements having the peripheral areas 88Bs and 89As on the rain side of the central areas 88Bc and 89Ac as described above. The output difference between the central area and the peripheral area is used.
  • the other diffracted light fluxes S 7 B and 86 A in each area will have astigmatic differences that differ greatly in magnitude. In this embodiment, the total light amount is not used for calculating the forcing-error signal.
  • V1Bc + V1Bs + V2Ac + V2As It can be obtained in one (V1A + V2B).
  • (V1Bc + V2As) and (V2Ac + V1Bs) can be handled collectively, which is convenient because a connection can be made on the photoelectric conversion element. Furthermore, if the addition capacity of the photoelectric conversion element relating to the calculation of the magneto-optical signal (V1Bc + V2As + V2Ac + V1Bs) is made equal to the addition capacity relating to (V1A + V2B) It is preferable because common mode noise can be efficiently removed by differential detection.
  • the influence of unnecessary astigmatism when the astigmatism generating hologram is placed in the convergent light path can be eliminated in the detection stage.
  • both the ⁇ 1st-order diffracted lights that change complementarily to each other are used, good focus detection is possible, and changes in the diffraction angle are long even with wavelength fluctuations.
  • the advantage of the hologram can be fully utilized even when using a light source such as a semiconductor laser in which the emission wavelength is easily changed without the center of the differential being shifted.
  • the force described for the type that separates the spot by changing the diffraction direction on the left and right of the dividing line 85p is also used for the type that separates the spot by changing the diffraction separation angle on the left and right as described above.
  • the hologram element 85 of the present embodiment can be blazed in the same manner as in the sixth embodiment. That is, in FIG. 26, when the hologram element 85, is blazed so as to increase the light intensity of the light fluxes 86B, 87A having the same astigmatic difference, the light intensity of the other two face-folded lights (not shown) is obtained. Can be made almost zero, and only the two sets of photoelectric conversion elements 88 B and 89 A which are divided elements need to be provided. Assuming that the outputs of the photoelectric conversion elements 88 Bc, & 8 Bs, 88 Ac, and 88 As are Vic, Vis, V2 c, and V2 s, respectively, the focusing error signal is
  • the tracking error signal is
  • the magneto-optical reproduction signal can be obtained at Further, if the analyzers 70 and 71 having different detection angles are provided in front of the respective photoelectric conversion elements 88 B and 89 A, the magneto-optical reproduction signal can be obtained.
  • the optical head configured as described above has a small number of adjustment items at the time of manufacture because it is a finite system. — It can be made much smaller, and has high reliability after manufacturing. It is only necessary to dispose the photoelectric conversion elements 88B and 89A only on the side, which is preferable because the manufacture is easier.
  • the hologram element 85 ′ can be sufficiently moved from the light source. It can be placed at a remote location. In this case, the distance between the light source and the photoelectric conversion element can be increased while the diffraction angle of the hologram is kept small, so that the manufacturing is further facilitated and preferable.
  • FIG. 27 shows a ninth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members.
  • the divergent light from the semiconductor laser 38 is bent at the beam splitter 91 and is made parallel by the collimator lens 39.
  • An objective lens 40 is arranged in the parallel light beam, and the light passing therethrough forms a recording Z reproduction beam that converges on the storage medium surface 41.
  • the objective lens 40 is movable in a direction perpendicular to the track groove of the storage medium 41, and the beam can be moved to a desired track by moving the objective lens 40.
  • a lens shift sensor 92 for providing the amount of movement of the objective lens 40 at this time is provided.
  • the light reflected by the medium surface is converted into a substantially parallel light beam again by the objective lens 40, travels backward in the optical path, is converged by the collimating lens 39, and is incident on the beam splitter 91.
  • the light beam that travels straight here then enters the hologram element 95 through the negative detection lens 93 arranged.
  • the hologram element 95 is divided into two left and right regions 95A and 95B by a dividing line 95p as in the fourth embodiment, and the spots of each region are divided into the left and right regions. Is changed by changing the diffraction separation angle at.
  • Each region has a corrected hyperbolic pattern, and generates four astigmatic light beams 96 A, 96 B, 97 A, and 97 B.
  • each photoelectric conversion output is V 1 A, V 1 B, V 2 A, V 2 B
  • the focusing error signal is
  • the objective lens 40 is driven in the focus direction so that the value becomes a constant value, and the recording Z reproduction beam can always be converged on the medium surface 41. Also, the tracking error signal is
  • the error signal generates an offset.
  • the lens shift sensor 92 is provided to correct the offset, and the offset can be removed by multiplying the output of the lens shift sensor by an appropriate coefficient and adding it to the tracking error signal. Therefore, if the tracking servo control of the objective lens 40 is performed so that the corrected tracking error signal has a constant value, the recording / reproducing beam can always be converged on the track.
  • the lightweight objective lens 40 since only the lightweight objective lens 40 can perform the tracking operation, it is suitable for use where high-speed tracking is required.
  • a magneto-optical signal can be detected by providing an analyzer in the same manner as described above.
  • the negative detection lens 93 provided for detection has a high vertical magnification to improve the focus detection sensitivity. Further, as described above, it is effective to intentionally impart astigmatism to the detection lens 93 to cancel unnecessary astigmatism generated in the hologram element 95 in the converging light path.
  • all necessary signals can be obtained while being small in size and low in cost.
  • all the outputs of the four photoelectric conversion elements can be used for the operation of any signal, and can be generated by an operation different from any of the signals, so that there is no waste of light amount and there is no crosstalk between signals. It is possible to obtain few and high quality signals.
  • the wavelength of the light source fluctuates, there is no influence due to the movement of the diffraction lens, and the light source such as a semiconductor laser whose emission wavelength is liable to fluctuate without a shift of the differential center of focus detection. Even when used, the advantages of the hologram element can be fully utilized. Therefore, the optical storage device equipped with the optical head according to the present embodiment is supported by high-quality output signals, has high reliability and high performance, and can be downsized by the small head.
  • FIGS. 28 to 29 show a tenth embodiment of the present invention.
  • the divergent light from the semiconductor laser 21 is collimated by the collimating lens 22 and is oblique.
  • To the reflection-type hologram element 100 which is arranged in the hologram.
  • the objective lens 24 On the outward path, only the specularly reflected zero-order light passes through the objective lens 24 disposed at an appropriate distance to form a recording Z reproduction beam converging on the optical storage medium 25.
  • the reflected light becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and reaches the hologram element 100 again to be diffracted.
  • the diffracted light is refracted by the collimating lens 22 and received by the photoelectric conversion elements 101 and 102 arranged in the same plane near the focal plane 22 f of the collimator lens 22. .
  • the hologram element 100 is a pattern that generates a non-point-collected luminous flux similar to some of the preceding hologram elements by applying one-dimensional correction to the above-described hyperbolic pattern with respect to the inclination direction of the reflection surface.
  • the hologram element 100 is of a split type as in the second embodiment, and four photoelectric conversion elements are provided to form the same optical head and optical storage device as in the embodiment.
  • the hologram element 100 When the hologram element 100 is arranged obliquely as described above and the diffraction direction in which the light beam is generated is set to the inclined direction, one of the diffracted light beams becomes the same as when the hologram element is arranged in the convergent light path.
  • the astigmatism of the other beam becomes smaller and the astigmatism of the other beam becomes smaller, or the angle of the diffracted light from the specularly reflected light differs for ⁇ 1st order light, and the distance of the robot from the center is two Changes such as differences appear.
  • the direction of diffraction of the light beam by the reflection hologram element 100 be in a direction perpendicular to the tilt direction than in the case shown in the figure.
  • the reflection hologram element 100 is constituted by the segmented hologram element 100, as described above, if the reflection hologram element 100 is blazed to use one light flux in each area, the above-described astigmatism is obtained. The problem of the difference in the distance can be avoided, and good focus detection is possible even when the diffraction direction is made coincident with the tilt direction, which is preferable.
  • the hologram element 105 is a reflection type in a finite optical system as shown in FIG. 29, a similar detection system can be configured by performing one-dimensional correction as in this embodiment.
  • the diffraction direction in which the luminous flux is generated is orthogonal to the inclination direction. They can also be placed. The effect obtained by brazing is the same as described above.
  • FIG. 30 shows an eleventh embodiment of the present invention, in which the photoelectric conversion element 29 or the photoelectric conversion element 30 has the same configuration as that of the first embodiment, as shown in FIG. 4 strips
  • the light receiving areas 110a, 110b, 110c, 110d are arranged in parallel to form a quadrant element 110.
  • the projected light spot 31 will be as shown in FIG. Because the position of can swing from side to side
  • quadrant 110 may be replaced with either one of the photoelectric conversion elements 29 and 30, or one of them may be used.
  • the calculation for obtaining various signals may be performed in a manner that the addition and the subtraction are reversed depending on the modification of the equation, but this is a change within the scope of the present invention.
  • the focus detection mechanism in the focus detection mechanism according to the present invention, two photoelectric conversion elements for obtaining a differential output can be arranged in the same plane, so that manufacturing with improved dimensional accuracy is easy. Furthermore, the advantage of the hologram element can be fully utilized even when a light source such as a semiconductor laser whose emission wavelength is liable to be changed without the center of the differential being shifted with respect to the wavelength change. Further, the optical head of the present invention has a configuration with an extremely small number of parts, is small in size and low in cost, and can efficiently obtain a signal required for the optical storage device. Signal and various error signals. Further, the optical storage device of the present invention equipped with the above-mentioned optical head can be realized at a low cost with a simple configuration and high performance. As described above, the present invention has a great effect in this field, and the possibility of using the present invention is extremely high.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

A focus detecting mechanism wherein the light reflected on an object surface (25) is diffracted by a hologram element (23). The diffracted light includes two astigmatic convergent beams which form least circles of confusion on long photodetector means (29) and (30) in the same plane close to a focal plane (22f) of a lens (22), and a focus signal is obtained on the basis of a differential output from these photodetecting means. Since two diffracted beams having least circles of confusion on the same plane, the photodetecting means can be placed horizontally, and a focus detecting mechanism can be made easily with an improved dimensional accuracy. In spite of the use of a hologram element, the fluctuation of wavelength can be absorbed, and the reliability of the device is very high.

Description

明 細 書  Specification
合焦検出機構ならびにこれを用いた光ヘッ ド及び光記憶装置 技術分野  Focus detection mechanism and optical head and optical storage device using the same
本発明は、 光束の目標面への合焦を検出し、 光記憶装置などに用いて好適な合 焦検出機構ならびにこれを用いた光ヘッ ド及び光記億装置に関するものである。 背景技術  The present invention relates to a focus detection mechanism that detects the focus of a light beam on a target surface and is suitable for use in an optical storage device and the like, and an optical head and an optical storage device using the same. Background art
微小なビッ トを形成/検出する光記億装置などにおいては、 発光源からの光束 を、 目標面の上で極めて微小な光スポッ トに収斂させることが不可欠となる。 こ のためには一般に、 目標面による反射光などを利用した合焦検出が必要となるが、 光記億装置の小型化を図る上では、 光ヘッ ドに効率よ く搭載でき、 かつ高性能な ものの実現が切望されており、 ホログラム素子などを用いた様々な方式が提案さ れている。  In optical storage devices that form / detect minute bits, it is essential to converge the luminous flux from the light-emitting source to an extremely small light spot on the target surface. To achieve this, focus detection using reflected light from the target surface is generally required.However, in order to reduce the size of the optical storage device, it can be efficiently mounted on an optical head and has high performance. There is a long-awaited need to achieve this, and various systems using hologram elements and the like have been proposed.
これらの一つと して図 3 1 に示すものは、 不等間隔で刻線された直線回折格子 5を使用するものであり、 合焦検出ができるほか、 光記億装置に不可欠な再生信 号や各種エラー信号をも比較的容易に得ることができるため、 有力な方法と して 拄目されている。  One of these, shown in Fig. 31, uses a linear diffraction grating 5 engraved at unequal intervals, enabling focus detection and the reproduction signal essential for optical storage devices. And various error signals can be obtained relatively easily, so it is regarded as an effective method.
図 3 1 において、 対物レンズ 6で略平行光束とされた目標面反射光は、 不等間 隔回折格子 5によ り ◦次光および土 1次回折光に分割される。 ここで回折格子 5 の刻線間隔が適切に定められており、 - 1次光 7は格子配列方向(y )にのみ収束 され、 同時に生じる + 1次光 8は逆に y方向にのみ発散されている。 これらの光 束は続いて配置されたコ リメ一夕レンズ 9 によって収束される力 この際に回折 光 7, 8は、 y方向ではそれぞれコ リメ一夕 レンズ 9の焦点面 9 f よ り手前およ び後方に収斂し、 回折格子 5の作用が及ばない刻線方向(X )に対してはコ リメ一 タレンズ 9の本来の焦点 9 f に収斂する結果、 それぞれコ リメ一夕 レンズ 9の焦 点面 9 f より手前および後方に最小錯乱円を形成する非点収斂光束となる。  In FIG. 31, the target surface reflected light that has been converted into a substantially parallel light beam by the objective lens 6 is split by the unequally spaced diffraction grating 5 into a first-order light and a first-order earth diffracted light. Here, the ruled line interval of the diffraction grating 5 is appropriately determined.-The primary light 7 is converged only in the grating arrangement direction (y), and the simultaneously generated + primary light 8 is diverged only in the y direction. ing. These luminous fluxes are converged by the collimating lens 9 arranged in this order. At this time, the diffracted lights 7 and 8 are located before the focal plane 9 f of the collimating lens 9 in the y direction. In the notch direction (X), which converges backward and is not affected by the diffraction grating 5, the light converges to the original focal point 9 f of the collimator lens 9, resulting in the focal point of the collimator lens 9. It becomes a non-point convergent light beam that forms a circle of least confusion before and behind the point plane 9f.
合焦の前後では、 対物レンズ 6を出た目標面反射光が合焦時の平行光束から外 れて収束もしくは発散し、 光束の収敛位置は前後に移動する。 この結果、 ± 1次 光の最小錯乱円位置に段差配置された 2つの光電変換素子 1 0, 1 1 に投影され る光スポッ トの形状は、 それぞれ縦椿円〜横椿円を相補的に変化し、 逋切な形状 の受光面をもつ素子 1 0, 1 1による差動出力として、 フォーカシング 'エラー 信号が得られている。 Before and after focusing, the target surface reflected light that has exited the objective lens 6 deviates from the parallel light beam at the time of focusing and converges or diverges, and the light beam focus position moves back and forth. As a result, the light is projected onto the two photoelectric conversion elements 10 and 11 that are placed in steps at the position of the circle of least confusion of ± 1st order light. The shape of the light spot changes complementarily from the vertical camellia circle to the horizontal camellia circle, and a focusing error signal is obtained as differential output by the elements 10 and 11 having a light-receiving surface with an intricate shape. ing.
このように非点スボツ 卜の変形を合焦検出に用いる方法は、 非点を用いずに単 にスポヅ トのぼけを検出するいわゆるスボッ トサイズ法よりも感度が倍増し、 ま た検出器を合焦時の目標面の共役位置に厳密に合わせ込まなければならないいわ ゆるナイフエッジ法よりも、 製造公差を大幅に緩和できるという点で優れており、 非点スボッ トを利用した秀でた合焦検出法がの望まれている。  In this way, the method of using the deformation of the astigmatism spot for focus detection has twice the sensitivity than the so-called spot size method that simply detects spot blur without using the astigmatism, and also uses a detector. It is superior to the so-called knife-edge method in that it must exactly match the conjugate position of the target surface during focusing, because manufacturing tolerances can be greatly reduced.Excellent focusing using astigmatic spots There is a need for a detection method.
しかしながら、 上述の不等間隔の直線回折格子 5では、 2つの検出器 1 0, 1 1を段差配置する必要があり、 しかも厳密な段差寸法の管理を必要とするため、 製造に際して相当に高度な実装技術が要求される。 また、 光源の波長変動に際し て、 最小錯乱円位置が移動し、 検出信号に狂いを生じることが問題となる。  However, in the above-mentioned unequally spaced linear diffraction grating 5, it is necessary to arrange the two detectors 10 and 11 in steps, and it is necessary to strictly control the step size. Mounting technology is required. In addition, when the wavelength of the light source fluctuates, the position of the circle of least confusion moves, which causes a problem in that the detection signal is disordered.
本発明の目的は、 上述の問題点を解消し、 検出器を同一平面内に平置でき、 製 造容易ながら良好な合焦検出が可能で、 光源の波長変動によっても支障のない合 焦検出機構ならびにこれを甩いた光へッ ド及び光記億装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, to enable a flat detector to be placed in the same plane, to enable good focus detection while being easy to manufacture, and to perform focus detection without any trouble even when the wavelength of a light source fluctuates. An object of the present invention is to provide a mechanism and an optical head and an optical storage device using the same. Disclosure of the invention
上述の目的を達成するために、 本発明に係る合焦検出機構においては、 合焦目 標面からの反射光を収斂させる検出光学系と、  In order to achieve the above object, in a focus detection mechanism according to the present invention, a detection optical system that converges reflected light from a focus target surface;
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段とを備え、  A pair of light detection means arranged on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、  A longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element,
前記ホログラム素子は、 双曲線群または補正された双曲線群に概ね沿って同相 かつ周期的な光変調率パターンを有し、  The hologram element has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
前記ホログラム素子により HI折されたビーム断面形状が相補的に変化する一対 の非点 II折光束を一対の前記光検出手段により検出し、  A pair of astigmatic II folded light beams whose HI-folded beam cross-sectional shape changes complementarily by the hologram element are detected by the pair of light detecting means,
—対の前記光検出手段の出力の差を演算することにより前記目標面への合焦を 検出することを特徴とする。 また、 本発明に係る他の合焦検出機構においては、 合焦目標面からの反射光を 収斂させる検出光学系と、 —Focusing on the target surface is detected by calculating a difference between outputs of the pair of light detecting means. In another focus detection mechanism according to the present invention, a detection optical system that converges reflected light from a focus target surface;
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段を備え、  A pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、  A longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element,
前記ホログラム素子は、 二つ以上の領域に分割され、 分割された各々の領域に 双曲線群または補正された双曲線群に概ね沿って同相かつ周期的な光変調率パ夕 ーンを有し、  The hologram element is divided into two or more regions, and each of the divided regions has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
前記ホログラム素子の異なった領域によ り回折された非点回折光束は互いに分 離され、  The astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
前記ホログラム素子の異なった領域によ り回折され、 ビーム断面形状が相補的 に変化する一対の非点回折光束を一対の前記光検出手段により検出し、  A pair of astigmatic diffracted light beams, which are diffracted by different regions of the hologram element and whose beam cross-sectional shapes change complementarily, are detected by the pair of light detecting means;
—対の前記光検出手段の出力の差を演算することにより、 前記目標面への合焦 を検出することを特徴とする。  —A focus on the target surface is detected by calculating a difference between outputs of the pair of light detection means.
また、 本発明に係る光ヘッ ドにおいては、 再生または記録光ビームの光記億媒 体面からの反射光を収斂させる検出光学系と、  Also, in the optical head according to the present invention, a detection optical system that converges the reflected light of the reproduction or recording light beam from the optical storage medium surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段群を備え、  A pair of light detection means groups arranged on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
—対の前記光検出手段群の各々は、 それぞれ二つの光検出手段からなり、 前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、  Each of the pair of light detection means groups comprises two light detection means, and the longitudinal direction of the light detection means is arranged substantially along the direction of diffraction by the hologram element;
前記ホログラム素子は、 前記光記億媒体面の トラ、ソク接線方向に対応する分割 線により二つに分割され、 分割された各々の領域に双曲線群または補正された双 曲線群に概ね沿って同相かつ周期的な光変調率パターンを有し、  The hologram element is divided into two by a dividing line corresponding to the tangent and tangential directions of the surface of the optical recording medium, and the divided areas are substantially in-phase with each other in a hyperbolic group or a corrected hyperbolic group. And having a periodic light modulation rate pattern,
前記ホログラム素子の異なった領域によ り回折された非点回折光束は互いに分 離され、  The astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
ビーム断面形状が同一傾向で変化し、 前記ホログラム素子の異なる領域からの 二つの前記非点回折光束からなる光束群を非点回折光束群と定義したとき、 ビー ム断面形状が栢補的に変化する一対の非点回折光束群を一対の前記光検出手段群 により検出し、 The beam cross-sectional shape changes with the same tendency, When a light beam group composed of the two astigmatism light beams is defined as an astigmatism light beam group, a pair of astigmatism light beams whose beam cross-sectional shape changes complementarily is detected by the pair of light detection means groups. And
—対の前記光検出手段群の各々の前記光検出手段の出力和をとり、 一対の前記 出力和の差を演算して前記目標面への合焦を検出し、  Taking the output sum of the light detection means of each of the pair of light detection means groups, calculating the difference between the pair of output sums, and detecting the focus on the target surface;
前記ホログラム素子の同一領域から回折された二つの前記非点回折光束を前記 光検出手段により検出して合計出力をとり、 二つの前記合計出力の差を演算して 前記光ビームのトラッキング誤差を検出することを特徴とする。  The two astigmatic diffracted light beams diffracted from the same area of the hologram element are detected by the light detecting means to obtain a total output, and a difference between the two total outputs is calculated to detect a tracking error of the light beam. It is characterized by doing.
また、 本発明に係わる他の光ヘッ ドにおいては、 再生または記録光ビームの光 記億媒体面からの反射光を収敛させる検出光学系と、  Further, in another optical head according to the present invention, a detection optical system for collecting reflected light of a reproduction or recording light beam from the optical storage medium surface, and
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段を備え、  A pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て E置し、  The longitudinal direction of the light detection means is placed substantially along the direction of diffraction by the hologram element,
前記ホログラム素子は、 前記光記憶媒体面のトラック接線方向に対応する分割 線により二つに分割され、 分割された各々の領域に双曲線群または捕正された双 曲線群に概ね沿って同相かつ周期的な光変調率パターンを有し、 かつブレーズ化 されており::  The hologram element is divided into two by a dividing line corresponding to the track tangential direction of the optical storage medium surface, and the in-phase and period are substantially along the hyperbolic group or the hyperbolic group captured in each of the divided areas. It has a typical light modulation rate pattern and is blazed ::
前記ホログラム素子の異なった領域により面折された非点回折光束は互いに分 齄され、  The astigmatic diffracted light beams folded by different regions of the hologram element are separated from each other,
前記ホログラム素子の異なった領域により回折され、 ビーム断面形状が相補的 に変化する一対の前記非点回折光束を一対の前記光検出手段により検出し、 前記光検出手段は長尺な光検出素子と前記光検出素子の少なくとも一都を包囲 する別の光検出素子とからなり、  A pair of the astigmatic diffracted light beams diffracted by different regions of the hologram element and having a beam cross-sectional shape that changes complementarily are detected by a pair of the light detection means, and the light detection means is a long light detection element. And another light detection element surrounding at least one of the light detection elements,
前記長尺な光検出素子の出力と前記長尺な光検出素子の少なくとも一部を包囲 する前記の別の光検出素子の出力との出力差をとり、 一対の前記出力差の差を演 算して前記目標面への合焦を検出し、  An output difference between the output of the long light detection element and the output of the another light detection element surrounding at least a part of the long light detection element is calculated, and a difference between the pair of the output differences is calculated. To detect the focus on the target surface,
一対の前記長尺な光検出手段の出力の差を演算することにより、 トラヅキング 誤差を検出することを特徴とする光へヅ ド。 また、 本発明に係る光記憶装置においては、 光記憶媒体上に再生または記録ビ ームを照射する上記の光へ、ソ ドと、 該光へッ ドの合焦検出結果に基づき焦点合わ せを行うフオーカシング手段と、 前記光へヅ ドのトラッキング誤差の検出結果に 基づき トラヅキング調整を行う トラッキング手段とを備えたことを特徴とするも のである。 図面の簡単な説明 A light head characterized in that a tracking error is detected by calculating a difference between outputs of the pair of long light detecting means. Further, in the optical storage device according to the present invention, the light for irradiating the reproduction or recording beam onto the optical storage medium is focused based on a source and a focus detection result of the light head. Focusing means for performing tracking adjustment, and tracking means for performing tracking adjustment based on the detection result of the tracking error of the optical head. BRIEF DESCRIPTION OF THE FIGURES
図 1ないし図 3 0は、 本発明に係る合焦検出機構ならびに光へッ ド及び光記億 装置の実施例を示し、 図 1は、 本発明に使用して好適なホログラムのパターン概 略図であり、 図 2は、 ホログラムによる回折の様子を示す説明図であり、 図 3は、 ホログラムによる回折の詳細を示す別の説明図である。 図 4は、 本発明の第一の 実施例に係る合焦検出機構の主要断面図であり、 図 5は、 第一の実施例の合焦検 出機構における光電変換素子の説明図であり、 図 6は、 第一の実施例の合焦検出 機構の動作説明図であり、 図 7は、 第一の実施例の合焦検出機構によるフ ォ ー力 シング ·エラー信号のグラフ図である。 図 8は、 第一の実施例の合焦検出機構に おける別の構成の光電変換素子の正面図である。 図 9は、 本発明の第二の実施例 に係る光ヘッ ドのホログラム素子の説明図であり、 図 1 0は、 第二の実施例の光 ヘッ ドのま要断面図であり、 図 1 1は、 第二の実施例の光ヘッ ドの光電変換素子 の正面配置図であり、 図 1 2は、 第二の実施例の光ヘッ ドの要部斜視図であり、 図 1 3は、 第二の実施例の光ヘッ ドの他の構成例を示す要部斜視図であり、 図 1 4は、 第二の実施例の光ヘッ ドのさらに他の構成例を示す要部斜視図である。 図 1 5は、 本発明の第 Ξの実施例に係る光へッ ドの光電変換素子の正面図である。 図 1 6は、 本発明の第四の実施例に係る光へッ ドのホログラム素子の説明図であ り、 図 1 7は、 第四の実施例の光ヘッ ドにおける光電変換素子の正面配置図であ る。 図 1 8は、 本発明の第五の実施例を示す合焦検出機構の主要断面図である。 図 1 9は、 本発明の第六のの実施例を示す光ヘッ ドの生要断面図であり、 図 2 0 は、 第六の実施例の光ヘッ ドに用いるホログラム素子の断面概略図であり、 図 2 1は、 第六の実施例の光ヘッ ドにおける光電変換素子の正面配置図である。 図 2 2は、 本発明の第七の実施例を示す合焦検出機構の主要断面図であり、 図 2 3は、 第七の実施例の他の構成を示す合焦検出機構の生要断面図である。 図 2 4は、 本 発明の第八の実施例に係る光ヘッ ドの主要断面図であり、 図 25は、 第八の実施 例の光ヘ ドにおける光電変換素子の正面配置図であり、 図 26は、 第八の実施 例の他の構成を示す光ヘッドの主要断面図である。 図 27は、 本発明の第九の実 施例に係る光ヘッ ドの主要断面図である。 図 28は、 本発明の第十の実施例に係 る合焦検出機構の主要断面図であり、 図 29は、 第十の実施例の他の構成を示す 合焦検出機構の主要断面図である。 図 3 0は、 本発明の第 i "―の実施例に係る光 へヅドの光電変換素子の正面図である。 1 to 30 show an embodiment of a focus detection mechanism and an optical head and an optical storage device according to the present invention. FIG. 1 is a schematic diagram of a hologram pattern suitable for use in the present invention. FIG. 2 is an explanatory diagram showing a state of diffraction by a hologram, and FIG. 3 is another explanatory diagram showing details of diffraction by a hologram. FIG. 4 is a main cross-sectional view of the focus detection mechanism according to the first embodiment of the present invention. FIG. 5 is an explanatory diagram of a photoelectric conversion element in the focus detection mechanism of the first embodiment. FIG. 6 is an explanatory diagram of the operation of the focus detection mechanism of the first embodiment. FIG. 7 is a graph of a forcing single error signal by the focus detection mechanism of the first embodiment. FIG. 8 is a front view of a photoelectric conversion element having another configuration in the focus detection mechanism of the first embodiment. FIG. 9 is an explanatory diagram of a hologram element of an optical head according to a second embodiment of the present invention. FIG. 10 is a cross-sectional view of the optical head of the second embodiment. 1 is a front view of the photoelectric conversion element of the optical head of the second embodiment, FIG. 12 is a perspective view of a main part of the optical head of the second embodiment, and FIG. FIG. 14 is a perspective view of a main part showing another configuration example of the optical head of the second embodiment. FIG. 14 is a perspective view of a main part showing still another configuration example of the optical head of the second embodiment. is there. FIG. 15 is a front view of the photoelectric conversion element of the optical head according to the second embodiment of the present invention. FIG. 16 is an explanatory diagram of the hologram element of the optical head according to the fourth embodiment of the present invention. FIG. 17 is a front view of the photoelectric conversion element in the optical head of the fourth embodiment. It is a figure. FIG. 18 is a main cross-sectional view of a focus detection mechanism showing a fifth embodiment of the present invention. FIG. 19 is an essential sectional view of an optical head showing a sixth embodiment of the present invention. FIG. 20 is a schematic sectional view of a hologram element used for the optical head of the sixth embodiment. FIG. 21 is a front view of the photoelectric conversion element in the optical head of the sixth embodiment. FIG. 22 is a main cross-sectional view of a focus detection mechanism according to a seventh embodiment of the present invention. FIG. 23 is a cross-sectional view of a focus detection mechanism according to another configuration of the seventh embodiment. FIG. Figure 24 shows the book FIG. 25 is a main cross-sectional view of an optical head according to an eighth embodiment of the present invention. FIG. 25 is a front view of a photoelectric conversion element in the optical head according to the eighth embodiment, and FIG. It is a principal sectional view of the optical head which shows the other structure of an Example. FIG. 27 is a main cross-sectional view of the optical head according to the ninth embodiment of the present invention. FIG. 28 is a main cross-sectional view of a focus detection mechanism according to a tenth embodiment of the present invention, and FIG. 29 is a main cross-sectional view of a focus detection mechanism showing another configuration of the tenth embodiment. is there. FIG. 30 is a front view of an optical head photoelectric conversion element according to an i-th embodiment of the present invention.
図 3 1は、 回折格子を用いた従来の合焦検出機構の主要断面図であり、 図 32 は、 回折格子を用いた従来の光へッ ドの要部斜視図である。 発明を実施するための最良の形態  FIG. 31 is a main cross-sectional view of a conventional focus detection mechanism using a diffraction grating, and FIG. 32 is a perspective view of a main part of a conventional optical head using a diffraction grating. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を図 1〜図 30に図示の実施例に基づいて詳細に説明する。 なお、 同一 の符号は同様の機能部材を表すものとする。  The present invention will be described in detail based on the embodiment shown in FIGS. The same reference numerals denote the same functional members.
(実施例 1 )  (Example 1)
図 1ないし図 8は本発明に係る第 1の実施例を示し、 図 1は、 本発明の合焦検 出機構で使用するのに好適なホログラム 1 5の説明図であり、 略平板状のガラス 基板 15 b上に形成されたパターン 15 pは、 cを定数として、 基板平面上の直 角座標 (X, y ) による方程式  FIGS. 1 to 8 show a first embodiment according to the present invention. FIG. 1 is an explanatory view of a hologram 15 suitable for use in the focus detection mechanism of the present invention. The pattern 15 p formed on the glass substrate 15 b is represented by an equation expressed by rectangular coordinates (X, y) on the substrate plane, where c is a constant.
X2— y =土 c 2 X 2 — y = earth c 2
で表される双曲線群に沿って、 同一の振幅ならびに位相の光変調率、 すなわち同 —の透過率ならびに厚さまたは屈折率を有するように形成されている。 さらに、 これらの双曲線パターン 15 pは、 定数 f および; Lを用いて Are formed so as to have the same amplitude and phase light modulation rate, that is, the same transmittance and thickness or refractive index, along a group of hyperbolas represented by. Furthermore, these hyperbolic patterns 15 p are calculated using the constants f and L
c2= ( f +η ·λ ) 2 - f 2 c 2 = (f + η · λ) 2 -f 2
で表される nの値が 1だけ変化する毎に、 同一の光変調率のパターンを繰り返す 周期構造を有している。 例えば双曲線 Has a periodic structure that repeats the same light modulation rate pattern every time the value of n represented by For example, hyperbolic
土 (X2— y2) = ( f + λ ) 2- f 2 Sat (X 2 — y 2 ) = (f + λ) 2 -f 2
に従うホログラム面上の部分と、 双曲線 And the part on the hologram surface according to the hyperbola
± Cx2-y2) = { ± + 2 λ ) 2-f 2 ± Cx 2 -y 2 ) = (± + 2 λ) 2 -f 2
に従う部分とは、 同一の振幅ならびに位相の光変調率を有し、 周期構造において 互いに同相な部分をなしている。 このようなパターン 15 Pを形成するためには、 例えばガラス基板 1 5 b上に 塗布した感光剤を所望パターンのマスクを介して露光し、 現像後にガラス基板 1 5 bをエッチングする一般の合成ホログラムの作成法を同様に適用することがで きる。 Are portions having the same amplitude and phase light modulation rate, and have the same phase in the periodic structure. In order to form such a pattern 15P, for example, a general synthetic hologram is used in which a photosensitive agent applied on a glass substrate 15b is exposed through a mask having a desired pattern, and the glass substrate 15b is etched after development. Can be applied in the same way.
図 2 (a)および図 2 (b)は、 このホログラム 1 5による回折の様子を示す説明図 である。 図 2 (a)に示すように、 上述のホログラム 15に平行光 1 6を垂直入射さ せた場合、 点 (x, y) に入射した光の素片は、 この部分のパターン 1 5 pの配 列方向に回折されることになる。 図 2 (b)において、 ( X, y ) における双曲線の 接線の傾きは  2 (a) and 2 (b) are explanatory views showing the state of diffraction by the hologram 15. FIG. As shown in FIG. 2 (a), when the parallel light 16 is vertically incident on the hologram 15 described above, the light beam incident on the point (x, y) becomes the pattern 15p of this part. It will be diffracted in the arrangement direction. In Fig. 2 (b), the slope of the tangent of the hyperbola at (X, y) is
dy/dx=x/y  dy / dx = x / y
であり、 パターン 1 5 pの配列方向はこれに垂直である。 したがって、 回折され る光線を X— y面に投影すると And the arrangement direction of the pattern 15 p is perpendicular to this. Therefore, when the diffracted ray is projected on the X-y plane,
dy dx = -y x  dy dx = -y x
の被きをもつ直線 Lとなる。 図 2 (b)から解るように、 点 (x, y ) からこの直線 Lに沿って測った x, y両軸までの距離は互いに相等しく、 座標原点 ( 0, 0 ) までの距離 rとも一致する。 一方、 (x, y) におけるパターン一周期の間隔 D を計算すると、 A straight line L with a cover of As can be seen from Fig. 2 (b), the distance from the point (x, y) to both the x and y axes measured along this straight line L is equal to each other, and the distance r to the coordinate origin (0, 0) is also equal. Matches. On the other hand, when the interval D of one cycle of the pattern at (x, y) is calculated,
D = λ · ( f + η · λ ) / r  D = λ · (f + η · λ) / r
である。 したがって、 波長えの平行光 1 6を照射した場合には点 (x, y ) に入 射した光に対する土 1次光の回折角 ± 0は It is. Therefore, when the parallel light 16 of the same wavelength is irradiated, the diffraction angle ± 0 of the soil first-order light with respect to the light entering the point (x, y) is
sine = r / ( f + n · λ )  sine = r / (f + nλ)
を満たし、 f は η · λに比べて充分大きいので、 ホログラム面から ζ方向に距離 f だけ離れた面では、 回折光 1 7, 1 8は 軸上の ( 2 , 0 ) および y軸上の ( 0, 2 y ) の至極近傍に至ることになる。 以上はホログラム面上の全ての点 (x, y) についてあてはまり、 ここに生ずる回折光は、 図 2 (a)に示すよ うに、 y方向 にはフォーカス距離: eで収束しつつ、 対する X方向にはフォーカス距離一: f で発 散する一 1次光 17と、 X方向にはフォーカス距離: f で収束しつつ、 対する y方 向にはフォーカス距離一 f で発散する + 1次光 1 8の 2光束となる。 すなわち、 距離: f の焦点面 1 5 f 上では、 X, y両軸に重なる直線状の回折パターン 1 9, 20が得られることになる。 なお、 このようなホログラム 1 5は、 光源の波長変 動に対し、 前後ともフォーカス距離 ± f が同じだけ伸縮する特性を有することに なる。 And f is sufficiently large compared to η · λ, so that on the surface that is separated from the hologram surface by the distance f in the ζ direction, the diffracted light 17, 18 will be (2, 0) on the axis and on the y axis (0, 2y). The above applies to all points (x, y) on the hologram surface, and the diffracted light generated here converges at the focus distance: e in the y direction and converges in the X direction, as shown in Fig. 2 (a). Is the primary light 17 diverging at f and the primary light 17 diverging at f, and converging at the focus distance f in the X direction, while diverging at the focal distance 1 f in the y direction + primary light 1 8 2 light fluxes. That is, on the focal plane 15 f of the distance: f, linear diffraction patterns 19, 20 overlapping both the X and y axes are obtained. It should be noted that such a hologram 15 has a wavelength variation of the light source. It has the characteristic that the focus distance ± f expands and contracts by the same amount before and after movement.
なお、 パターン 1 5 Pが双曲線の方程式に完全に従った場合には、 近軸からの ずれによる収差が現れることが避けられない。 この収差は実用にとって問題ない が、 これを補正するために、 方程式に追切な補正項を加えたり、 振幅および位相 変調率を調整したり、 あるいは基板 1 5 bを曲面化してもよい。 この場合にも、 必要な補正は僅かであって、 上記を実現するパターンは双曲線から大略変化ない。 ところで、 ホログラム面に入射する平行光 1 6を有限径とすると、 出射光の範 囲が制限できる。 例えば、 図 3 )に示すように、 入射光を双曲線原点 ( 0, 0 ) を中心とする直径 2 aの有限光束 1 6 Aとすると、 ± 1次光の回折パターン 1 9 A, 2 0 Aは図 3 )に示すように: ?軸上の一 2 a≤x 2 a、 および y軸上の一 2 a≤y≤2 aの 2本の線分からなる十字線となる。 また、 図 3 (c)に示すように、 双曲線の中心軸から外れた ( 0 , b ) を中心に入射する直径 2 aの光束 1 6 Bで は、 ± 1次の回折パターン 1 9 B , 2 0 Bは図 3 U)のように X軸上の一 2 a≤ X ≤2 a、 及び y軸上の 2 b - 2 a≤ y≤ 2 b + 2 aの 2本の線分となり、 | b | > aに bを選べば両者は分離する。 さらに、 図 3 (e)に示すように ( b , b ) を中 心とする光束 1 6 Cを入射させると、 図 3 (f )のように: κ軸上のパターン 1 9 Cも 2 bだけ移動することになる。 従って、 ホログラム素子は必ずしも双曲線の原点 ( 0 , 0 ) を基板範西内に含む必要はなく、 光束を分離するには有限怪光束の入 射範囲に対応する一部分の就外しパターンだけを使用する。  When the pattern 15 P completely complies with the hyperbolic equation, it is inevitable that aberrations due to deviation from paraxial appear. This aberration is not a problem for practical use, but in order to correct it, a correction term that is close to the equation may be added, the amplitude and phase modulation rate may be adjusted, or the substrate 15b may be curved. Also in this case, the necessary correction is slight, and the pattern for realizing the above does not substantially change from the hyperbola. By the way, if the parallel light 16 incident on the hologram surface has a finite diameter, the range of the emitted light can be limited. For example, as shown in Fig. 3), assuming that the incident light is a finite light beam 16 A having a diameter of 2 a and centered on the hyperbolic origin (0, 0), a diffraction pattern of ± 1 order light 19 A, 20 A Is as shown in Fig. 3): A crosshair consisting of two line segments, one 2a≤x2a on the? Axis and one 2a≤y≤2a on the y-axis. Further, as shown in FIG. 3 (c), in the light beam 16B having a diameter 2a incident on the center (0, b) off the central axis of the hyperbola, the ± 1st-order diffraction pattern 19B, As shown in Fig. 3 U), 2 0 B is two line segments of 2 a ≤ X ≤ 2 a on the X axis and 2 b-2 a ≤ y ≤ 2 b + 2 a on the y axis, | b |> If b is selected for a, the two are separated. Further, as shown in FIG. 3 (e), when a light beam 16 C centered on (b, b) is incident, as shown in FIG. 3 (f): the pattern 19 C on the κ axis is also 2 b Will only move. Therefore, the hologram element does not necessarily need to include the origin (0, 0) of the hyperbola within the substrate area, and uses only a part of the extraneous pattern corresponding to the incident range of the finite phantom beam to separate the beam. .
なお、 通常の合成ホログラムでも知られているように、 一周期間の振幅ならび に位相の光変調率を適宜に定めて、 特定の次数の回折光の光量を増減したり、 各 次数の回折光の光量配分を変化させるなど、 用途に応じた適切なホログラム素子 を得ることもできる。  As is well known in ordinary synthetic holograms, the amplitude and the phase light modulation rate during one period are appropriately determined to increase or decrease the amount of diffracted light of a specific order, It is also possible to obtain an appropriate hologram element according to the application, for example, by changing the light distribution.
例えば、 良く知られているように、 ホログラム素子の一周期の光変調率を鋸齒 関数状にするブレーズ化の手法を取れば、 例えば一 1次光の光強度だけを大きく し、. 他の次数の光強度をほとんど無く したホログラム素子を得ることができる。 また、 ブレーズ角を選べば、 例えば + 1次光や 0次光の相対強度を適宜に定める こともできる。  For example, as is well known, if a blazing method is used in which the light modulation rate of one cycle of the hologram element is made to have a sawtooth function, for example, only the light intensity of the primary light is increased. A hologram element with almost no light intensity can be obtained. If the blaze angle is selected, for example, the relative intensity of the + 1st-order light and the 0th-order light can be appropriately determined.
さらに、 双曲線群に共通する漸近線の傾きを上記の d y / d x = ± 1 Furthermore, the slope of the asymptote common to the group of hyperbolas is dy / dx = ± 1
から変えると、 x方向と y方向とで、 前後に現れるフォーカス距離の絶対値を変 えることもできる。 例えば The absolute value of the focus distance that appears before and after in the x and y directions can also be changed. For example
d y / d x = ± 2  d y / d x = ± 2
の傾きの漸近線を持つ双曲線群であれば、 X方向および y方向に + f ' および一 4 f ' のフォーカス距離を有する光束と、 一 f ' および + 4 f ' のフォーカス距 離を有する光束の、 2つを生じさせることができる。 For a group of hyperbolas with an asymptote of a slope of, a luminous flux with a focus distance of + f ′ and 14 f ′ in the X and y directions and a luminous flux with a focus distance of 1 f ′ and + 4 f ′ Of, two things can happen.
なお、 以降の説明では、 上記の記述のよ うに、 主たる回折方向に関して収束し つつ、 これと直角な方向に関して発散する回折光を一 1次光と啐称し、 逆に、 生 たる回折方向に関して発散しつつ、 これと直角な方向に関して収束する回折光を + 1次光と呼称して、 両者を区別することとする。  In the following description, as described above, the diffracted light that converges in the main diffraction direction and diverges in a direction perpendicular to the main diffraction direction is referred to as primary first-order light, and conversely, diverges in the generated diffraction direction. Then, the diffracted light converging in the direction perpendicular to this is called + 1st-order light, and the two are distinguished.
図 4は、 以上に説明したようなホログラム素子を用いた合焦検出機構の一構成 例を示す配置図である。 半導体レーザー 2 1からの発散光は、 コ リメ一夕 レンズ 2 2によって平行光とされ、 直後に配置されたホログラム素子 2 3に至る。 ここ にホログラム素子 2 3は上述の傾き ± 1の漸近線を持つ双曲線パターンを有し、 図 3 ( c )の場合のように、 入射光軸が双曲線群の原点から y方向に偏位した位置を 通るような軸外しパターンとされている。 従って土 1次回折光は共に光軸から分 散され、 直進する 0次光だけが適宜距離に配置された対物レンズ 2 4を通って、 光記億媒体面 2 5で収斂する記録 Z再生ビームを形成している。 入射ビームの媒 体面 2 5 による反射光は発散光となって逆進し、 対物レンズ 2 4によ り略平行光 束とされて再びホログラム素子 2 3 に至って回折されている。 帰路ではコ リメー 夕 レンズ 2 2はホログラム素子 2 3の直後に配置されているので、 この際には土 1次回折光 2 6 , 2 7もコリメ一夕 レンズ 2 2 によ り収束される。 これらの ± 1 次回折光 2 6, 2 7を受光するために、 コ リメ一夕 レンズ 2 2の焦点面 2 2 f 上 に、 図 5のように光軸 2 8から放射方向に長辺が沿うように設けた、 長方形の光 電変換素子 2 9, 3 0が設けられている。  FIG. 4 is a layout diagram showing a configuration example of a focus detection mechanism using a hologram element as described above. The divergent light from the semiconductor laser 21 is converted into a parallel light by the collimator lens 22 and reaches the hologram element 23 disposed immediately thereafter. Here, the hologram element 23 has a hyperbolic pattern having the asymptote of the above-mentioned inclination ± 1, and the position where the incident optical axis is displaced in the y direction from the origin of the group of hyperbolas as shown in FIG. Off-axis pattern that passes through. Therefore, both the first-order diffracted light and the first-order diffracted light are dispersed from the optical axis, and only the straight-order 0th-order light passes through the objective lens 24 arranged at an appropriate distance and passes through the recording Z reproduction beam converging on the optical recording medium surface 25. Has formed. The reflected light from the medium surface 25 of the incident beam is diverged, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and is diffracted again to the hologram element 23. On the return path, the collimating lens 22 is disposed immediately after the hologram element 23, and in this case, the soil first-order diffracted lights 26 and 27 are also converged by the collimating lens 22. In order to receive these ± 1st-order diffracted lights 26 and 27, the long side extends along the radiation direction from the optical axis 28 as shown in Fig. 5 on the focal plane 22f of the collimator lens 22. Thus, rectangular photoelectric conversion elements 29 and 30 are provided.
ここで、 コ リメータレンズ 2 2 とホログラム素子 2 3の距離厶が充分小さい場 合には、 コリメータ レンズ 2 2 に入射する焦点距離土 f の光束は、 コ リメ一夕 レ ンズ 2 2の焦点距離 Fよ り を満たすなだけ手前に収敛する 従って、 X方向には一: eで発散しつつ y方向に は + f で収束しながらコリメ一夕レンズに入射する一 1次回折光 2 6は、 X方向 では αだけ後方で焦線を結び、 かつ y方向では orだけ手前で焦線を結ぶことにな る。 対する + 1次回折光 2 7は、 これとは逆に X方向ではなだけ手前で焦線を結 び、 かつ y方向ではなだけ後方で焦線を結ぶこととなり、 回折光 2 6, 2 7は共 にコリメータレンズ 2 2の焦点面 2 2 f に近い同一平面上に最小錯乱円を結ぶ非 点収斂光束となっている。 なお、 前述したように、 光源の波長変動に際しては、 コリメータレンズ 2 2に入射する回折光 2 6 , 2 7の前後のフォーカス距離が同 じだけ伸縮するので、 最小錯乱円位置の移動はほとんどない。 また、 波長変動に ともなって ± 1次 0折光 2 6, 2 7の回折角が変化し、 これに伴って光電変換素 子 2 9 , 3 0への入射位置が放射方向に移動するが、 光電変換素子 2 9, 3 0が 放射方向に長いため、 この移動は出力には影響しない。 Here, if the distance between the collimator lens 22 and the hologram element 23 is sufficiently small, the luminous flux of the focal length soil f incident on the collimator lens 22 will be the focal length of the collimator lens 22 Than F Therefore, the first-order diffracted light 26 incident on the collimate lens while diverging in the e direction and converging at + f in the y direction while diverging in the e direction is: A focal line is connected behind by α, and a focal line is connected just before or in the y direction. On the other hand, the + 1st-order diffracted light 27, on the other hand, forms a focal line slightly forward in the X direction and a focal line slightly backward in the y direction, and the diffracted lights 26, 27 Both are astigmatic convergence beams that connect the circle of least confusion on the same plane near the focal plane 22 f of the collimator lens 22. As described above, when the wavelength of the light source fluctuates, the focus distance before and after the diffracted light 26, 27 incident on the collimator lens 22 expands and contracts by the same amount, so that the position of the circle of least confusion hardly moves. . In addition, the diffraction angle of the ± first-order zero-fold light 26, 27 changes with the wavelength fluctuation, and the incident position on the photoelectric conversion elements 29, 30 moves in the radiation direction accordingly. Since the transducers 29 and 30 are long in the radial direction, this movement does not affect the output.
合焦の前後では、 対物レンズ 2 4を通過した反射光が合焦時の平行光束から外 れて収束もしくは発散する。 即ち、 対物レンズ 2 4の焦点より媒体面 2 5が寄つ て近い場合には光束は発散し、 離れて遠い場合には逆に収束する。 したがって、 コリメータレンズ 2 2の像面倒での光束の収敛位置は、 媒体 2 5が近い場合には 後方に、 遠い場合には手前に移動する。 この結果、 図 6に示すように、 長方形の 光電変換素子 2 9, 3 0に投影される光スポッ ト 3 1, 3 2の形状は、 媒体 2 5 が近い場合には(a)のように一 1次スボヅ ト 3 1が縦長楕円で + 1次スポッ ト 3 2 が横長楕円、 合焦時には(b)のように共に最小錯乱円、 媒体 2 5が遠い場合には( C )のように— 1次スボッ ト 3 1が横長楕円で + 1次スボッ ト 3 2が縦長楕円、 と 相補的に変化する。 長軸が光電変換素子 2 9 , 3 0の長辺と一致する縦長楕円の スボッ トの方が光電変換出力が大きいので、 - 1次側の光電変換素子 2 9と + 1 次倒の光電変換素子 3 0との出力の差動をとると、 図 7に示すようなフォーカシ ング ·エラー信号 Sが得られることになる。 この信号を一定値とするように対物 レンズ 2 4の位置を前後に調整するァクチユエ一夕を駆動させれば、 常に媒体面 2 5上に記録/再生ビームを収敛させることができる。  Before and after focusing, the reflected light passing through the objective lens 24 deviates from the parallel light beam at the time of focusing and converges or diverges. That is, when the medium surface 25 is closer to the focal point of the objective lens 24, the light beam diverges, and when it is farther away, the light beam converges conversely. Therefore, when the medium 25 is near, the light beam is collected rearward when the collimator lens 22 is in the image plane, and moves toward the near side when the medium 25 is far. As a result, as shown in FIG. 6, the shapes of the light spots 31 and 32 projected on the rectangular photoelectric conversion elements 29 and 30 are as shown in FIG. 6A when the medium 25 is close. The primary spot 31 is a vertical ellipse and the primary spot 32 is a horizontal ellipse. When focused, the circle of least confusion as shown in (b). When the medium 25 is far away, as in (C). — Primary boss 3 1 is a horizontally long ellipse and + primary boss 32 is a vertically long ellipse. The long-elliptical slot whose major axis coincides with the long side of the photoelectric conversion elements 29 and 30 has a larger photoelectric conversion output, so the photoelectric conversion element 29 on the-primary side and the photoelectric conversion of the + 1st order If the output of the element 30 is differentiated, a focusing error signal S as shown in FIG. 7 is obtained. By driving the actuator for adjusting the position of the objective lens 24 back and forth so that this signal has a constant value, the recording / reproducing beam can always be collected on the medium surface 25.
なお、 このためには得られたエラー信号と制御目標値との差信号を求め、 これ に必要に応じては適当な位相補俊を加えて、 ァクチユエ一夕の駆動信号とする方 法などが知られている。 以上のように、 本実施例の構成によれば、 差動出力を得るための 2つの光電変 換素子 2 9, 3 0を同一の面内に平置できるので、 段差寸法を厳密に管理する必 要がなく、 特に半導体レーザーと同一のパッケージ内に組み入れた複合素子など において、 素子の製造が大幅に容易化される。 また、 波長変動に対しても、 回折 角の変化は長尺な光電変換素子 2 9, 3 0によって補償され、 焦線位置もほぼ同 量ずつ前後するので、 差動の中心がずれることはなく、 発光波長が変動し易い半 導体レーザーなどの光源を用いた場合にも、 ホログラムの利点を充分に活かすこ とができる。 To achieve this, a difference signal between the obtained error signal and the control target value is obtained, and if necessary, an appropriate order of complementarity is added to the difference signal to obtain a drive signal for the actuator. Are known. As described above, according to the configuration of the present embodiment, the two photoelectric conversion elements 29 and 30 for obtaining the differential output can be placed in the same plane, and the step size is strictly controlled. There is no need for this, and the manufacture of devices is greatly facilitated, especially for composite devices incorporated in the same package as the semiconductor laser. In addition, the change in the diffraction angle is compensated for by the long photoelectric conversion elements 29 and 30 with respect to the wavelength fluctuation, and the focal line positions are moved back and forth by the same amount, so that the center of the differential is not shifted. Even when a light source such as a semiconductor laser whose emission wavelength is liable to change is used, the advantages of the hologram can be fully utilized.
なお、 本実施例においては、 長方形の光電変換素子 2 9, 3 0の短辺の幅を変 えることにより媒体が近い場合と遠い場合との出力差を増減でき、 短辺の幅が小 さいほど、 光スポッ ト 3 1, 3 2が横長楕円となったときの出力は小さくなる。 しかしながら、 合焦時の受光量も同時に小さくなり、 雑音に弱くなるなどの問題 点が生じてく るため、 実際の用途に合わせて適切な値を選択することが望ましい。 また、 光電変換素子 2 9, 3 0の形状は長方形に限るものではなく、 長尺であ れば楕円のような形状でも良い。 また、 光電変換素子 2 9, 3 0の形状そのもの が長方形などであっても良いし、 例えば光電変換素子の前面にマスクをおいて、 受光領域を適切な形状に制限するのでも良い。 さらに、 図 8のように回折方向に 沿って長尺な中心領域 3 3 cの両脇に周辺領域 3 3 sを設けた分割素子 3 3を用 い、 中心領域 3 3 c と周辺領域 3 3 s との出力差を光電変換素子 2 9, 3 0の一 方の出力の代わり に用いてもよい。 このようにすれば光スポッ ト 3 1, 3 2が横 長楕円となった時にも、 周辺の光量を有効に検出に用いることができて好ま しい。 なお、 周辺領域 3 3 sは、 図示のように中心領域 3 3 cの両脇に分けて設けて出 力を加算してもよいし、 中心領域 3 3 cを包囲するように設けてもよい。  In this embodiment, by changing the width of the short sides of the rectangular photoelectric conversion elements 29 and 30, the output difference between the case where the medium is near and the case where the medium is far can be increased and decreased, and the width of the short side is small. The output becomes smaller when the light spots 31 and 32 become horizontally elliptical. However, since the amount of received light during focusing also decreases at the same time, which causes problems such as weakness to noise, it is desirable to select an appropriate value according to the actual application. The shape of the photoelectric conversion elements 29 and 30 is not limited to a rectangle, but may be an ellipse as long as it is long. Further, the shape of the photoelectric conversion elements 29 and 30 may be rectangular or the like, or, for example, a mask may be provided on the front surface of the photoelectric conversion element to limit the light receiving region to an appropriate shape. Further, as shown in FIG. 8, a splitting element 33 having peripheral regions 33 s on both sides of a long central region 33 c along the diffraction direction is used, and the central region 33 c and the peripheral region 33 are used. The output difference from s may be used instead of one of the photoelectric conversion elements 29 and 30. In this way, even when the light spots 31 and 32 become horizontally elliptical, the surrounding light amount can be effectively used for detection, which is preferable. The peripheral region 33s may be provided separately on both sides of the central region 33c as shown in the figure to add the output, or may be provided so as to surround the central region 33c. .
なお、 本発明の合焦検出機構は、 以上に説明した光記億装置に好適に適用され るばかりではなく、 同様の高性能なフォーカシング · サ一ボが必要な光プローブ 型の形状測定装置や、 カンチレバーの動きを光学的にとらえる原子間力顕微鏡の ような装置にも適用でき、 小型で信頼性の高い合焦検出を提供できることはもち ろんである。  In addition, the focus detection mechanism of the present invention is not only suitably applied to the optical storage device described above, but also an optical probe type shape measuring device or the like which requires a similar high-performance focusing sensor. It can also be applied to devices such as an atomic force microscope that optically captures the movement of the cantilever, and can provide compact and highly reliable focus detection.
(実施例 2 )  (Example 2)
図 9ないし図 1 4は本発明の第二の実施例を示し、 図 9 においてホログラム素 子 3 5は、 図 9 (a)に示すように分割線 3 5 pを介して栢対する対称な 2個の領域 3 5 A, 3 5 Bからなつている。 これらの栢同な領域 3 5 A, 3 5 Bは、 上述の 双曲線パターン、 特に図 3 (c)のように双曲線原点から y方向に偏位した軸外しパ ターンが形成されており、 例えば左半分の領域 3 5 Aには、 軸外しパターンを時 計方向に 8 0度回転させたものの左半分が描画されており、 対する右半分の領域 3 5 Bには、 同様の軸外しパターンを反時計方向に 8 0度回転させたものの右半 分が描かれている。 したがって、 左右の領域 3 5 A, 3 5 Bに跨る平行光束を入 射させると、 図 9 (b )に示すように分割線 3 5 pに対して ± 8 0度傾いた直線上に 合計 4個の光束 3 6 A, 3 6 B, 3 7 A, 3 7 Bが発生する。 9 to 14 show a second embodiment of the present invention. The child 35 is composed of two symmetrical regions 35 A and 35 B corresponding to each other via a dividing line 35 p as shown in FIG. 9A. In these regions 35 A and 35 B, the above-described hyperbolic patterns, particularly off-axis patterns deviated in the y-direction from the hyperbolic origin as shown in FIG. 3 (c), are formed. In the half area 35A, the left half of the off-axis pattern rotated clockwise by 80 degrees is drawn, and in the right half area 35B, the same off-axis pattern is counter-inverted. The right half of a clockwise rotation of 80 degrees is shown. Therefore, when a parallel luminous flux straddling the left and right areas 35A and 35B is incident, a total of 4 points on a straight line inclined ± 80 degrees with respect to the dividing line 35p as shown in Fig. 9 (b). Light beams 36 A, 36 B, 37 A, and 37 B are generated.
図 1 0は、 上記のホログラム素子 3 5を用いて構成した光磁気記録再生装置の 光へヅ ドの説明図であり、 半導体レーザー 3 8からの発散光は、 コリメ一夕レン ズ 3 9によって平行光とされ、 直後に配置されたホログラム素子 3 5に至り、 直 進する 0次光が逭宜钜離に配置された対物レンズ 4 0を通って、 記録媒体面 4 1 上に収敛する記録 Z再生ビームを形成している。 入射ビームの媒体面 4 1による 反射光は発散光となって逆進し、 対物レンズ 4 0により略平行光束とされて再び ホログラム素子 3 5に至り、 ホログラム素子 3 5の二つの領域 3 5 A, 3 5 Bか らそれぞれ一 1次回折光 3 6 A, 3 6 Bおよび + 1次回折光 3 7 A, 3 7 Bが形 成される。 なお、 ここでホログラム素子 3 5は分割線 3 5 pが光記億媒体 4 1の トラック溝方向と平行になるように配置されている。 回折光 3 6 A, 3 6 B, 3 7 A, 3 7 Bはコリメータレンズ 3 9により収束され、 図 1 1のように、 ホログ ラム素子 3 5の分割線 3 5 pに对して左右に 8 0度傾いた直線上に達する非点収 敛光束となる。 これらの光束が結ぶ光スボヅ ト 4 2 A, 4 2 B , 4 3 A, 4 3 B を検出するために、 放射方向に沿って長尺な長方形の光電変換素子 4 4 A, 4 4 B, 4 5 A, 4 5 Bが設けられ、 これらは全て同一平面上に平置されている。 ま た左倒の光電変換素子 4 4 A, 4 5 Bおよび右側の光電変換素子 4 4 B, 4 5 A の前面には、 それぞれ偏光板検光子 4 6, 4 7が 2個ずつの素子に跨って配設さ れており、 それぞれの透過軸 4 6 a, 4 7 aは、 半導体レーザ一の偏光軸からそ れぞれ左右に適宜の同角度だけ面転され配置されている。  FIG. 10 is an explanatory view of the optical head of the magneto-optical recording / reproducing apparatus configured using the above-mentioned hologram element 35. The divergent light from the semiconductor laser 38 is collimated by the collimator lens 39. The light is converted into parallel light, reaches the hologram element 35 disposed immediately thereafter, and travels straight. The 0th-order light passes through the objective lens 40 disposed at an appropriate distance and is collected on the recording medium surface 41. A recording Z reproduction beam is formed. The reflected light of the incident beam from the medium surface 41 becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 40, and reaches the hologram element 35 again. The two areas 35 A of the hologram element 35 , 35B form first-order diffracted lights 36A and 36B and + first-order diffracted lights 37A and 37B, respectively. Here, the hologram element 35 is arranged such that the division line 35 p is parallel to the track groove direction of the optical storage medium 41. The diffracted lights 36 A, 36 B, 37 A, and 37 B are converged by the collimator lens 39, and as shown in FIG. 11, are shifted to the left and right along the dividing line 35 p of the hologram element 35. A non-point-collected luminous flux reaching a straight line inclined at 80 degrees. In order to detect the optical robots 42 A, 42 B, 43 A, 43 B connected by these light beams, a rectangular photoelectric conversion element 44 A, 44 B, which is long along the radiation direction. 45 A and 45 B are provided, all of which are placed on the same plane. In front of the left and right photoelectric conversion elements 44A and 45B and the right and left photoelectric conversion elements 44B and 45A, two polarizing plate analyzers 46 and 47 are provided, respectively. The transmission axes 46a and 47a are disposed so that they are turned to the right and left from the polarization axis of the semiconductor laser by an appropriate angle.
ここで、 光電変換素子 4 4 A, 4 4 B, 4 5 A, 4 5 Bに入射する回折光は、 上述の場合と同様に共にコリメ一夕レンズ 3 9の焦点面 3 9 f上に最小錯乱円を 結ぶ非点収斂光束となっている。 合焦の前後では、 光電変換素子 4 4 A, 4 4 B に投影される一 1次スポッ ト 4 2 A, 4 2 Bと、 光電変換素子 4 5 A, 4 5 Bに 投影される + 1次スポッ ト 4 3 A, 4 3 Bとで、 形状が縦長楕円状〜横長楕円状 の間を相補的に変化する。 したがって、 光電変換素子 4 4 A, 4 4 B , 4 5 A, 4 5 Bの出力 V I A, V 1 B, V 2 A, V .2 Bを用いて Here, the diffracted light incident on the photoelectric conversion elements 44 A, 44 B, 45 A, and 45 B is minimum on the focal plane 39 f of the collimating lens 39 as in the case described above. The circle of confusion It is a non-point convergent light flux. Before and after focusing, the primary spots 42A, 42B projected on the photoelectric conversion elements 44A, 44B, and +1 projected on the photoelectric conversion elements 45A, 45B At the next spots 43A and 43B, the shape changes complementarily between the vertical ellipse and the horizontal ellipse. Therefore, using the outputs VIA, V1B, V2A, and V.2B of the photoelectric conversion elements 44A, 44B, 45A, and 45B,
( V 1 A + V 1 B ) - ( V 2 A + V 2 B )  (V 1 A + V 1 B)-(V 2 A + V 2 B)
の演算によりフォーカシング ' エラー信号を得ることができ、 これを一定値とす るように対物レンズ 4 0のフォーカシング · ァクチユエ一夕を制御することによ り、 常に媒体面上に記録ノ再生ビームを収斂させることができる。 By controlling the focusing error of the objective lens 40 so that the error signal can be obtained as a constant value, the recording / reproducing beam is always output on the medium surface. Can converge.
なお、 このためには、 前述のようにエラー信号と制御目標値との差信号を求め、 これに必要に応じては適当な位相補僙を加えて、 ァクチユエ一夕の駆動信号とす る方法などが知られている。  For this purpose, as described above, a difference signal between the error signal and the control target value is obtained, and if necessary, an appropriate position complement 僙 is added thereto to obtain a drive signal for the actuator. Etc. are known.
また、 対物レンズ 4 0によって記録媒体 4 1上に形成される光ビームが記録媒 体 4 1のトラック溝からずれると、 トラッ ク溝と平行な分割線 3 5 pの左右の領 域 3 5 A, 3 5 Bに入射する反射光量に差が生じる。 この結果、 左側の領域 3 5 Aの回折光 3 6 A, 3 7 Aを受光する光電変換素子 4 4 A, 4 5 Aの出力の和と、 右側の領域 3 5 Bの回折光 3 6 B, 3 7 Bを受光する光電変換素子 4 4 B , 4 5 Bの出力の和がアンバランスすることになる。 したがって  Also, when the light beam formed on the recording medium 41 by the objective lens 40 deviates from the track groove of the recording medium 41, the left and right areas 35A of the dividing line 35p parallel to the track groove are formed. , 35 B, there is a difference in the amount of reflected light. As a result, the sum of the outputs of the photoelectric conversion elements 44 A and 45 A that receive the diffracted lights 36 A and 37 A in the left area 35 A and the diffracted light 36 B in the right area 35 B , 37 B, the sum of the outputs of the photoelectric conversion elements 44 B, 45 B is unbalanced. Therefore
( V 1 A + V 2 A ) - ( V 1 B + V 2 B )  (V 1 A + V 2 A)-(V 1 B + V 2 B)
の潢算により トラヅキング · エラー信号を得ることができる。 すなわち、 上式の 値が 0であればトラヅキングは正常であり、 正または負であれば トラッキングが ずれていることになる。 したがって、 この信号を一定値とするよ うに対物レンズ の トラッキング制御を行えば、 常に トラッ ク上に記録 再生ビームを収斂させる ことができる。 By the calculation, a tracking error signal can be obtained. That is, if the value of the above equation is 0, the tracking is normal, and if the value is positive or negative, the tracking is off. Therefore, if tracking control of the objective lens is performed so that this signal has a constant value, the recording / reproducing beam can always be converged on the track.
なお、 このためには、 前述のフォーカシングの場合と同様に、 エラー信号と制 御目標値との差信号を求め、 これに必要に応じては適当な位相補僙を加えて、 ァ クチユエ一夕の駆動信号とする方法などが知られている。  For this purpose, a difference signal between the error signal and the control target value is obtained in the same manner as in the case of the focusing described above, and if necessary, an appropriate complementary value 僙 is added thereto. And the like are known.
なお、 検光子 4 6, 4 7は光磁気信号を検出するために設けられている。 すな わち、 半導体レーザー 3 8に固有の偏光面をもって入射された再生ビームの媒体 反射光は、 消ま部と記録ビッ ト部とで:力一効果による偏光面の回転方向が互いに 逆となる。 したがって、 消去部で例えば左側の光電変換素子 4 4 A, 4 5 Bに配 置された検光子 4 6の透過方向 4 6 aに力一回転が起きたとすれば、 左側の光電 変換素子 4 4 A, 4 5 Bに到達する光量が増加し、 右倒の光電変換素子 4 4 B, 4 5 Aの光量は減少する。 逆に、 記録ビッ ト部では右側の光電変換素子 4 4 B , 4 5 Aに配置された検光子 4 7の透過方向 4 7 aにカー回転が起きるので、 左側 の光電変換素子 4 4 A, 4 5 Bに到達する光量は減少し、 右側の光電変換素子 4 4 B , 4 5 Aの光量は増加する。 したがって、 The analyzers 46 and 47 are provided for detecting the magneto-optical signal. In other words, the medium reflected light of the reproduction beam incident on the semiconductor laser 38 with a unique polarization plane is transmitted between the eraser and the recording bit: the rotation directions of the polarization planes due to the force effect are mutually different. The opposite is true. Therefore, if, for example, one rotation occurs in the transmission direction 46a of the analyzer 46 arranged in the left photoelectric conversion elements 44A and 45B in the erasing section, the left photoelectric conversion element 44 The amount of light reaching A, 45B increases, and the amount of light from the right-handed photoelectric conversion elements 44B, 45A decreases. Conversely, in the recording bit portion, since the Kerr rotation occurs in the transmission direction 47a of the analyzer 47 arranged in the right photoelectric conversion elements 44B and 45A, the left photoelectric conversion elements 44A, The amount of light that reaches 45 B decreases, and the amount of light from the right photoelectric conversion elements 44 B and 45 A increases. Therefore,
( V 1 A + V 2 B ) 一 ( V 1 B + V 2 A )  (V 1 A + V 2 B) one (V 1 B + V 2 A)
の演算により光磁気記録信号を再生することができる。 特に、 この演算に従う場 合には一 1次光どうし、 および + 1次光どうしの差動出力が得られていることに なるので、 一 1次光と + 1次光とで囬折効率が異なる時や、 デフォーカスした時 にも、 同相の光量変動ノィズなどを差動検出の利点を生かして効率よく除去でき、 良質な再生信号を得ることができる。  By the calculation, the magneto-optical recording signal can be reproduced. In particular, if this calculation is followed, the differential output between the primary light and the primary light is obtained, so that the diffraction efficiency between the primary light and the primary light is higher. Even at different times or when defocusing occurs, it is possible to efficiently remove the in-phase light amount fluctuation noise and the like by taking advantage of the differential detection, and obtain a high-quality reproduced signal.
一方、 いわゆるプリビッ ト部では、 媒体反射光の光量そのものが変調されるの で、 光電変換素子 4 4 A, 4 4 B , 4 5 A, 4 5 Bに入射する光量は全て同様に 増減する。 したがって、 プリビヅ ト信号を再生するためには  On the other hand, in the so-called pre-bit section, the light amount itself of the medium reflected light is modulated, so that the light amounts incident on the photoelectric conversion elements 44 A, 44 B, 45 A, 45 B all increase or decrease in the same manner. Therefore, in order to reproduce the pre-bit signal,
V 1 A + V 1 B + V 2 A + V 2 B  V 1 A + V 1 B + V 2 A + V 2 B
の演算を行えば良いことになる。 It is sufficient to perform the calculation of
以上の うに、 本実施例による光ヘッ ドは、 極めて部品点数の少ない構成で、 小型で低コストでありながら、 光磁気記録装置に必要な信号を全て得ることがで きる。 そして、 いずれの信号の演算にも、 4個の光電変換素子の出力を全て用い ることができる上に、 いずれの信号とも異なる演算により発生できるので、 光量 の無駄がなく、 信号間のクロス トークも少なく、 良質な光磁気信号、 プリピッ ト 信号および各種エラー信号を得ることが可能である。 さらに、 光源の波長変動に 対しても、 光電変換素子が回折方向に概ね沿って長尺とされているので、 回折ス ボッ トの移動による影響はなく、 また、 それぞれの非点収敛光束の 2つの焦線位 置は、 前後にほぽ同量ずつ移動するので、 差動の中心がずれることもなく、 発光 波長が変動し易い半導体レーザーなどの光源を用いた場合にも、 ホログラム素子 の利点を充分に活かすことができる。 従って、 本実施例の光ヘッ ドを搭載し、 前 述のようにフォーカシング及びトラッキングの制御を行う光記憶装置は、 良質な 出力信号に支えられ、 信頼性が高く高性能で、 かつ小型ヘッ ドにより装置全体も 小型化される。 As described above, the optical head according to the present embodiment has a configuration with an extremely small number of components, and can obtain all the signals necessary for the magneto-optical recording device while being small in size and low in cost. In addition, all the outputs of the four photoelectric conversion elements can be used for calculation of any signal, and can be generated by a calculation different from any of the signals, so that there is no waste of light quantity and crosstalk between signals. It is possible to obtain high quality magneto-optical signals, pre-pit signals and various error signals. Furthermore, since the photoelectric conversion element is long along the diffraction direction even with respect to the wavelength fluctuation of the light source, there is no effect due to the movement of the diffraction bot, and the astigmatic luminous flux of each astigmatic light flux is not affected. Since the two focal line positions move back and forth by approximately the same amount, the center of the differential does not shift, and even when a light source such as a semiconductor laser whose emission wavelength is liable to change is used, the hologram element can be used. The advantages can be fully utilized. Therefore, an optical storage device equipped with the optical head of the present embodiment and controlling the focusing and tracking as described above has a high quality. It is supported by output signals, has high reliability and high performance, and has a small head, which makes the entire device smaller.
なお、 先の実施例 1 と同様に、 出力を得るための光電変換素子 4 4 A, 4 4 B , 4 5 A, 4 5 Bを全て同一の面内に平置できるので、 段差寸法を厳密に管理する 必要がなく、 特に半導体レーザーと同一のパッケージ内に光電変換素子を組み入 れた複合素子などで、 素子の製造が大幅に容易化される。  Since the photoelectric conversion elements 44 A, 44 B, 45 A, and 45 B for obtaining the output can all be placed in the same plane as in the first embodiment, the step size is strict. There is no need to manage the device, and the manufacture of devices is greatly facilitated, especially for composite devices that incorporate a photoelectric conversion device in the same package as the semiconductor laser.
すなわち、 従来の直線格子のホログラム素子で同様の光へッ ドを構成しようと すると、 図 3 2のように、 4個の光電変換素子を少なく とも 2枚のベー.ス基板 4 8 a, 4 8 b上に 2個ずつ作成し、 半導体レーザーの両側に別々に段差配置しな ければならなかつた。  In other words, if a similar light head is to be constructed using a conventional linear grating hologram element, as shown in Fig. 32, four photoelectric conversion elements are replaced by at least two base substrates 48a, 4b. It was necessary to make two pieces each on 8b and arrange them separately on both sides of the semiconductor laser.
これに対し、 本実施例では図 1 2 に示すように、 4個の光電変換素子 4 4 A, 4 4 B , 4 5 A, 4 5 Bを 1枚のベース基板 4 9上に製造することができ、 組立 時の寸法管理は大幅に簡素化される。 なお、 半導体レーザー 3 8は、 図 1 2のよ うにベース基板 7 4上にヒー トシンク 5 0を設けて配置してもよ く、 また図 1 3 のようにベース基板 5 1の中央に切り欠き部 5 l aを設け、 切り欠き部 5 1 aの 中央にヒートシンク 5 2が配置されるような構造と してもよい。 さらには、 図 1 4のようにヒー トシンク 5 3を片持ち梁の構造と し、 ベース基板 4 9を梁下に挿 設して配置することもできる。 このように、 検出に用いる光電変換素子を全て同 —のベース基板上に作成できるため、 組立の際の寸法管理が容易であるばかりか、 同じベース基板上にへヅ ド · ァンプゃ信号処理 ·演算回路などをモノ リシッ ク化 して搭載することも容易となり、 さらに一層の小型 · 高性能化も実現容易である。 なお、 上記実施例において、 検光子 4 6, 4 7の透過軸 4 6 a , 4 7 aの方位 角は適宜としたが、 この角度を変えることによ り、 入射光量に対する光磁気記録 信号の変調度を変えることができる。 従って、 例えば入射光量に比例するノイズ を抑えながら変調度を上げられるような最適の角度に調整することが望ましい。 なお、 検光子 4 6, 4 7 と して偏光板を用いずに、 検光機能を有する他の素子、 例えば多層膜による偏光ビームスプリッ夕などを使用してもよい。  On the other hand, in this embodiment, as shown in FIG. 12, four photoelectric conversion elements 44 A, 44 B, 45 A, and 45 B are manufactured on one base substrate 49. And dimensional control during assembly is greatly simplified. The semiconductor laser 38 may be provided with a heat sink 50 provided on the base substrate 74 as shown in FIG. 12 or cut out at the center of the base substrate 51 as shown in FIG. The structure may be such that the portion 5 la is provided and the heat sink 52 is disposed at the center of the cutout portion 51 a. Further, as shown in FIG. 14, the heat sink 53 may be a cantilever structure, and the base substrate 49 may be inserted and arranged below the beam. In this way, since all the photoelectric conversion elements used for detection can be formed on the same base substrate, not only the dimensional control during assembly is easy, but also the head, pump, signal processing, and signal processing are performed on the same base substrate. It is easy to mount arithmetic circuits etc. in a monolithic manner, and it is also easy to achieve further downsizing and higher performance. In the above embodiment, the azimuth angles of the transmission axes 46 a and 47 a of the analyzers 46 and 47 were set to be appropriate. By changing this angle, the angle of the magneto-optical recording signal with respect to the amount of incident light was changed. The degree of modulation can be changed. Therefore, for example, it is desirable to adjust the angle so that the degree of modulation can be increased while suppressing noise proportional to the amount of incident light. Instead of using the polarizing plates as the analyzers 46 and 47, another element having an analyzing function, for example, a polarizing beam splitter using a multilayer film may be used.
また、 ホログラム素子の領域 3 5 A, 3 5 Bにおける双曲線パターンの回転角 度や、 各領域 3 5 A, 3 5 Bの一 1次光、 + 1次光の発生方向は、 上述したもの に限定する必要はない。 さらに、 各種信号を得るための組み合わせも、 上述のも の以外でも同様の信号を得られるものであればよい。 The rotation angles of the hyperbolic pattern in the regions 35A and 35B of the hologram element, and the directions of generation of the primary light and the primary light of the regions 35A and 35B are as described above. There is no need to limit. Furthermore, the combinations for obtaining various signals Other than this, any signal can be used as long as a similar signal can be obtained.
なお、 上記では光磁気記録装置および光磁気記録用の光へヅ ドに沿って説明し たが、 他の方式の光記億装置および光へッ ドについても同様の方法で合焦検出 ' トラヅキング検出 ·プリビヅ ト検出が可能であり、 これに基づいてフォーカシン グ制御 . トラッキング制御 ·信号再生を行う光記億装置を構成することができる。 例えば、 いわゆるコンパクトディスクや、 ビデオディスクなどの再生専用の光 ディスク装置や、 色素記録型ゃホ一ルバ一ニング型などの追記型ディスク装置、 あるいは相変化記録型の書換型ディスク装置などには同様に逭用可能である。 こ れらのディスクには光磁気ビヅ トは存在せず、 ビッ トはすべて反射率変調型のビ ッ トであるので、 上述の構成の検光子は不要であり、 これを取り去って光利用効 率を上げることが望ましい。  In the above description, the description has been given along the magneto-optical recording device and the optical head for magneto-optical recording. However, the focus detection and tracking are performed in the same manner for other types of optical recording devices and optical heads. Detection and pre-bit detection are possible, and an optical storage device that performs focusing control, tracking control, and signal reproduction can be configured based on the detection and pre-bit detection. For example, the same applies to read-only optical disk devices such as so-called compact disks and video disks, write-once disk devices such as dye recording type and hole-burning type, and rewritable disk devices of phase change recording type. Can be used for These discs do not have magneto-optical bits, and the bits are all reflectance-modulated bits. Therefore, the analyzer having the above-described configuration is unnecessary. It is desirable to increase efficiency.
(実施例 3 )  (Example 3)
図 1 5は、 上記実施例 2に変更を加えた第三の実施例を示し、 前記と同一の符 号は同様の機能部材を表している。 実施例 2では 4値の光電変換素子が図 1 1の ように回折分離方向に沿って長尺とされ、 放射状に配置されているのに対し、 本 実施例では図 1 5のように 2個ずつの光電変換素子 4 4 A ', 4 4 B 5 , 4 5 A ' , 4 5 B ' が互いに平行な方向に長尺とされている。 放射状に 置した場合に は、 素子の配列中心と光源位置のずれが発生したときに、 スポッ ト位置のずれが 素子形状では補俊されないのに対して、 このような配置ならば長尺方向の配置誤 差も辅俊することができる。 上述のように分割線に対して ± 8 0 ° のような近接 した角度に回折光 4 2 A, 4 2 B , 4 3 A, 4 3 Bを配置すれば、 光電変換素子 4 4 A ' , 4 4 B ' , 4 5 A ' , 4 5 B, の長尺方向は回折方向に概ね沿ってい るので、 波長変動時のスボッ ト移動を補俊する効果を実用レベルで損なうことな く、 長尺方向の製造誤差をも補僙することができて有効である。 また、 左側に配 置される光電変換素子 4 4 A ', 4 5 B ' と右側に配置される光電変換素子 4 4 B ', 4 5 Α ' とを分けて製造するような場合に、 放射状の配置では相互の位置 合わせが難しいのに対し、 平行な配置では相互のずれをホログラム 3 5を回転し てスポヅ トを移動させることで補僙でき、 製造マ一ジンを広くできる。 FIG. 15 shows a third embodiment in which the second embodiment is modified, and the same reference numerals as those described above denote the same functional members. In Example 2, the four-valued photoelectric conversion elements are elongated along the direction of diffraction separation as shown in FIG. 11 and are arranged radially, whereas in this example, two photoelectric conversion elements are provided as shown in FIG. each of the photoelectric conversion element 4 4 a ', 4 4 B 5, 4 5 a', 4 5 B ' is a elongated in a direction parallel to each other. In the case of a radial arrangement, when the element arrangement center and the light source position deviate, the spot position deviation is not compensated for by the element shape. The placement error can be improved. As described above, if the diffracted lights 42A, 42B, 43A, and 43B are arranged at close angles such as ± 80 ° with respect to the dividing line, the photoelectric conversion element 44A ', Since the longitudinal directions of 44B ', 45A', and 45B are roughly along the diffraction direction, the effect of complementing the movement of the robot when the wavelength varies is not impaired on a practical level. This is effective because a manufacturing error in the scale direction can be compensated. Also, when the photoelectric conversion elements 44 A ′ and 45 B ′ arranged on the left side and the photoelectric conversion elements 44 B ′ and 45 Α ′ arranged on the right side are manufactured separately, In a parallel arrangement, mutual alignment is difficult, while in a parallel arrangement, mutual deviation can be compensated for by rotating the hologram 35 and moving the spots, and the manufacturing magazine can be widened.
(実施例 4 )  (Example 4)
図 1 6ないし図 1 7は、 上述の実施例 2に変更を加えた第四の実施例を示し、 前記と同一の符号は同様の機能部材を表している。 実施例 2では分割線の左右の 領域のホログラムパターンは相等しい軸外しパターンであって、 左右の領域 3 5 A, 3 5 Bでのパターン回転角を変えるこ とでスポッ トを分離するのに対し、 本 実施例のホログラム素子 5 5では領域 5 5 A, 5 5 Bのホログラムピッチを変え ている。 すなわち、 左右のパターンは基本的には同じフォーカス距離 ± f の光束 を発生する力 双曲線原点からの軸外しの程度が相違しており回折分離角が異な るようにされている。 この場合には各領域 5 5 A , 5 5 Bによる回折光束 5 6 A, 5 6 B , 5 7 A, 5 7 Bを一直線上に配置できることになる。 FIGS. 16 to 17 show a fourth embodiment in which the second embodiment described above is modified, The same reference numerals as those described above represent similar functional members. In the second embodiment, the hologram patterns in the left and right regions of the dividing line are the same off-axis pattern, and the spots can be separated by changing the pattern rotation angles in the left and right regions 35A and 35B. On the other hand, in the hologram element 55 of the present embodiment, the hologram pitches of the areas 55A and 55B are changed. In other words, the left and right patterns are basically different in the degree of off-axis from the origin of the force hyperbola generating the luminous flux with the same focus distance ± f, so that the diffraction separation angles are different. In this case, the diffracted light beams 56 A, 56 B, 57 A and 57 B by the respective regions 55 A and 55 B can be arranged on a straight line.
例えば、 領域 5 5 Aにはピッチの大きい部分、 すなわち軸外しの程度が小さい パターンを 9 0度回転させて描画し、 対する領域 5 5 Bにはピッチの小さい部分、 即ち軸外しの程度が大きいパターンを - 9 0度回転させて描画すれば、 領域 5 5 Bの ± 1次の回折スボヅ ト 5 8 B , 5 9 Bは、 領域 5 5 Aの 2つのスポヅ 卜 5 8 A, 5 9 Aの外側に一直線上に現れる。  For example, in the area 55A, a pattern with a large pitch, that is, a pattern with a small degree of off-axis is drawn by rotating by 90 degrees, and in the area 55B, a part with a small pitch, that is, a degree of off-axis is large. If the pattern is drawn by rotating the pattern by −90 degrees, the ± 1st-order diffraction robots 58 B and 59 B in the area 55 B will be two spots 58 A and 59 A in the area 55 A Appears in a straight line outside of.
このように回折スボッ トを配置した場合には、 対応する 4つの光電変換素子 6 0 A, 6 0 B , 6 1 A, 6 1 Bも直線的に配置され、 波長変動時のスポッ ト移動 を完全に補償できると共に、 先の実施例と同様に、 回折分離方向の製造公差も緩 和することができて有効である。  When the diffraction spots are arranged in this manner, the corresponding four photoelectric conversion elements 60 A, 60 B, 61 A, and 61 B are also arranged linearly, and the spot movement at the time of wavelength fluctuation is reduced. This is effective because it can completely compensate and, as in the previous embodiment, can reduce the manufacturing tolerance in the diffraction separation direction.
(実施例 5 )  (Example 5)
図 1 8は、 本発明の第五の実施例を示し、 前記と同一の符号は同様の機能部材 を表している。 半導体レーザー 2 1からの発散光は、 コリ メ一夕 レンズ 2 2 によ つて平行光とされた後、 ビームスプリヅ夕 6 2を透過して対物レンズ 2 4を通り、 光記億媒体面 2 5上で収斂する記録 再生ビームを形成している。 入射ビームの 媒体面 2 5による反射光は発散光となって逆進し、 対物レンズ 2 4により略平行 光束とされ、 ビームスプリッタ 6 2で曲折された光路上に配置されたホログラム 素子 6 3 に至る。 ここでホログラム素子 6 3は上述の実施例 1 と同様の双曲線パ ターンを有するものである力 通常の合成ホログラムでも知られているよ うに、 —周期間の光変調率を適宜に定めて、 0次透過光の強度をできるだけ抑え、 ± 1 次光の回折効率を上げるようにすることが望ま しい。 このようにして出射された ± 1次回折光は、 直後に配置された集光レンズ 6 4により屈折される。 集光レン ズ 6 4の焦点面 6 4 f 上には、 前述の実施例 1 と同様に 2個の光電変換素子 2 9 , 3 0が設けられている。 FIG. 18 shows a fifth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members. The divergent light from the semiconductor laser 21 is collimated by the collimating lens 22, then passes through the beam splitter 62, passes through the objective lens 24, and passes on the optical storage medium surface 25. To form a recording / reproducing beam that converges. The reflected light of the incident beam from the medium surface 25 becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and is transmitted to the hologram element 63 arranged on the optical path bent by the beam splitter 62. Reach. Here, the hologram element 63 has a hyperbolic pattern similar to that of the above-described first embodiment. As is well known in the case of ordinary synthetic holograms, It is desirable to reduce the intensity of the secondary transmitted light as much as possible and to increase the diffraction efficiency of the ± 1st order light. The ± 1st-order diffracted light emitted in this manner is refracted by the condenser lens 64 disposed immediately thereafter. On the focal plane 64 f of the focusing lens 64, two photoelectric conversion elements 29, 30 is provided.
以上の構成によって、 前述した実施例 2の場合と同様に合焦検出を行うことが できる。 また、 ホログラム素子 6 3を実施例 2と同様の分割型とし、 光電変換素 子を 4偭設けて同様の光へッ ドおよび光記億装置を構成できることも勿論である。 このように光路を分割すれば、 上述のように 0次光の効率を低く抑え、 代わりに ± 1次光の効率を上げることができるので、 光電変換素子 2 9, 3 0に達する光 量を多くできて好ましい。  With the above configuration, it is possible to perform focus detection in the same manner as in the above-described second embodiment. Further, the hologram element 63 can be of a split type as in the second embodiment, and four photoelectric conversion elements can be provided to form the same optical head and optical storage device. By splitting the optical path in this way, the efficiency of the zero-order light can be reduced as described above, and the efficiency of the ± first-order light can be increased instead. Thus, the amount of light reaching the photoelectric conversion elements 29, 30 can be reduced. Many are preferred.
また、 集光レンズ 6 4の焦点距離をコリメータレンズ 2 2の焦点距離より長く すれば、 媒体側に対する検出倒の光学系縦倍率を独立に高く調整できる。 従って、 半導体レーザーの光利用効率を確保しながら検出光束の非点隔差を広げることが でき、 フォーカスエラー検出感度を高くすることができる。  Further, if the focal length of the condenser lens 64 is made longer than the focal length of the collimator lens 22, the longitudinal magnification of the optical system for detection with respect to the medium side can be independently adjusted to be higher. Therefore, it is possible to widen the astigmatic difference of the detection light beam while securing the light use efficiency of the semiconductor laser, and it is possible to increase the focus error detection sensitivity.
(実施例 6 )  (Example 6)
図 1 9ないし図 2 1は、 本発明の第六の実施例を示し、 前出したものと同一の 符号は同様の機能部材を示すものとする。 平行光路中に置かれたホログラム素子 6 5は、 上述した実施例 2と同様のパターンを有する分割ホログラム素子 6 5で あり、 先に説明したブレーズ化の手法により、 それぞれの領域 6 5 A, 6 5 Bの ± 1次光のうちの一方の、 例えばいずれも分割線 6 5 Pの右側に回折する光束の 強度だけが大きくなるようにされている。 このようなブレーズ化は、 例えば透過 型のホログラム素子 6 5では、 図 2 0のように左上がりの鋸歯状断面 6 5 cを形 成することなどによって実現できることが知られている。 ブレーズ化の角度を適 当に定めれば、 左側に回折する光に対しては、 ほとんど光強度をゼロとすること ができる。  FIGS. 19 to 21 show a sixth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members. The hologram element 65 placed in the parallel optical path is a divided hologram element 65 having a pattern similar to that of the second embodiment described above, and the respective areas 65 A and 65 A are formed by the blazing method described above. One of the ± 1st-order lights of 5B, for example, is configured so that only the intensity of the light beam diffracted to the right of the dividing line 65P is increased. It is known that such blazing can be realized, for example, in a transmission type hologram element 65 by forming a sawtooth cross section 65c that rises to the left as shown in FIG. If the blazing angle is set appropriately, the light intensity can be reduced to almost zero for light diffracted to the left.
この場合には、 検出にかかる復路の回折光は、 分割線 6 5 pの右倒に回折する 領域 6 5 Bの一 1次光 6 6 Bと、 領域 6 5 Aの + 1次光 6 7 Aだけとなる。 検出 面上には図 2 1のようにこの 2つの光束 6 6 B , 6 7 Aに対応する光電変換素子 6 8 B, 6 9 Aだけが同一平面状に設けられている。 2つの光電変換素子 6 8 B, 6 9 Aは、 先に説明したように中心領域 6 8 B c, 6 9 A cの両側に 2つの周辺 領域 6 8 B s, 6 9 A sを設けた分割素子とされており、 分割線はそれぞれの回 折方向に沿って設けられている。 各領域 6 8 B c , 6 8 B s , 6 9 A c , 6 9 A sの光電変換出力を V 1 c , V i s , V 2 c , V 2 sとすると、 フォーカシング • エラー信号は In this case, the diffracted light on the return path involved in detection is the primary light 66 B of the region 65 B diffracting rightward of the dividing line 65 p and the + primary light 67 of the region 65 A A only. As shown in FIG. 21, only the photoelectric conversion elements 68 B and 69 A corresponding to the two light beams 66 B and 67 A are provided on the detection surface in the same plane. As described above, the two photoelectric conversion elements 68 B and 69 A are provided with two peripheral areas 68 Bs and 69 As on both sides of the central area 68 Bc and 69 Ac, respectively. It is a dividing element, and the dividing lines are provided along the respective diffraction directions. Assuming that the photoelectric conversion output of each area 6 8 B c, 6 8 B s, 6 9 A c, 6 9 A s is V 1 c, V is, V 2 c, V 2 s, focusing • The error signal is
( V i c - V i s ) - ( V 2 c - V 2 s )  (Vic-Vis)-(V2c-V2s)
= ( V 1 c + V 2 s ) - ( V 2 c + V 1 s ) = (V 1 c + V 2 s)-(V 2 c + V 1 s)
また、 トラッキング ·エラー信号は Also, the tracking error signal
( V 1 c + V 1 s ) 一 ( V 2 c + V 2 s )  (V 1 c + V 1 s) one (V 2 c + V 2 s)
または、 Or
V 1 c - V 2 c  V 1 c-V 2 c
で得ることができる。 さらに各光電変換素子 6 8 B , 6 9 Aの前面に、 互いに透 過軸の方位角が異なる検光子を設ければ、 光磁気再生信号は Can be obtained at Further, if analyzers having different azimuths of transmission axes are provided on the front surfaces of the photoelectric conversion elements 68B and 69A, the magneto-optical reproduction signal can be obtained.
( V 1 c + V 1 s ) - ( V 2 c + V 2 s )  (V 1 c + V 1 s)-(V 2 c + V 2 s)
で得られる。 この演算は上記の トラッキング · エラー信号と同じであるが、 光磁 気信号の帯域が高いため、 電気的に信号の帯域を分離すれば両者を独立に得るこ とができる。 Is obtained. This calculation is the same as the above-mentioned tracking error signal, but since the band of the magneto-optical signal is high, if the band of the signal is electrically separated, both can be obtained independently.
以上のように、 本実施例による光ヘッ ドも、 極めて部品点数の少ない構成の上 に、 光源の片側だけに光検出手段を配置すれば良く、 製造が一段と容易であり、 —段と小型で低コス 卜でありながら、 光磁気記録装置に必要な信号を全て得るこ とができる。 そして、 いずれの信号の演算にも、 光電変換手段の出力を全て用い ることができるので、 光量の無駄がなく、 良質な光磁気信号、 プリビッ ト信号お よび各種エラー信号を得ることが可能である。 さらに、 光源の波長変動に対して も、 光電変換素子が回折方向に概ね沿って長尺とされているので、 回折スボヅ ト の移動による影響はなく、 また、 それぞれの非点収斂光束の 2つの焦線位置は、 前後にほぼ同量ずつ移動するので、 差動の中心がずれることもなく、 発光波長が 変動し易い半導体レーザーなどの光源を用いた場合にも、 ホログラム素子の利点 を充分に活かすことができる。 従って、 本実施例の光ヘッ ドを搭載し、 前述のよ うにフォーカシング及びトラッキングの制御を行う光記憶装置は、 良質な出力信 号にまえられ、 信頼性が高く高性能で、 かつ小型ヘッ ドにより装置全体も小型化 される。  As described above, the optical head according to the present embodiment also has a configuration with an extremely small number of components and requires only one side of the light source to be provided with the light detecting means. All the signals required for a magneto-optical recording device can be obtained at low cost. In addition, since all the outputs of the photoelectric conversion means can be used for calculating any of the signals, it is possible to obtain high-quality magneto-optical signals, pre-bit signals, and various error signals without wasting light. is there. Furthermore, since the photoelectric conversion element is long along the diffraction direction even with respect to the wavelength variation of the light source, there is no effect due to the movement of the diffraction spot, and the two non-point convergent light beams Since the focal line position moves back and forth by approximately the same amount, the center of the differential does not deviate, and even when using a light source such as a semiconductor laser whose emission wavelength is liable to fluctuate, the advantages of the hologram element can be fully utilized. We can make use of it. Therefore, the optical storage device equipped with the optical head of the present embodiment and controlling the focusing and tracking as described above can provide a high-quality output signal, high reliability, high performance, and a small size. As a result, the entire device can be downsized.
なお、 本実施例のようにブレーズ化したホログラム素子 6 5を使用する場合で も、 上述の変形例に基づいて、 光電変換素子 6 8 B, 6 9 Aの長尺方向を平行に したり、 あるいは回折スポヅ 卜の分離をパターンのピッチを変えて行うこともで きる。 さらには上記の実施例 5のように、 復路で光束を分離する場合にも同様に 適用できる。 Note that, even when the blazed hologram element 65 is used as in this embodiment, the long directions of the photoelectric conversion elements 68 B and 69 A can be made parallel based on the above-described modification. Alternatively, the diffraction spots can be separated by changing the pattern pitch. Wear. Furthermore, the present invention can be similarly applied to the case where the light beam is separated on the return path as in the fifth embodiment.
(実施例 7 )  (Example 7)
図 2 2ないし図 2 3は、 本発明の第七の実施例を示し、 図 2 2において、 半導 体レーザー 2 1からの発散光はホログラム素子 7 5を透過して集光レンズ 7 6で 収束され、 記録媒体 2 5上で収敛する記録 Z再生ビームを形成している。 反射光 は光路を逆進して集光レンズ 7 6で屈折され、 再びホログラム素子 7 5に至って ± 1次回折光 7 8, 7 9を発生している。 回折光 7 8 , 7 9は、 回折後にレンズ を通る前述の場合とほぼ同様に、 2偭の非点収敛光束を形成し、 いずれの光束と も合焦時には半導体レーザ一 2 1の出射端に近い平面 7 6: f上に最小錯乱円を結 ぶ。  FIGS. 22 to 23 show a seventh embodiment of the present invention. In FIG. 22, the divergent light from the semiconductor laser 21 passes through the hologram element 75 and passes through the condenser lens 76. The beam is converged and forms a recording Z reproduction beam to be received on the recording medium 25. The reflected light travels backward in the optical path and is refracted by the condenser lens 76, and reaches the hologram element 75 again to generate ± first-order diffracted lights 78 and 79. The diffracted lights 78 and 79 form a two-point astigmatic light flux in a manner similar to the above-mentioned case that passes through the lens after diffraction, and when both light fluxes are focused, the emission end of the semiconductor laser 21 is focused. Connect the circle of least confusion on f.
合焦の前後では、 光束の収斂位置は媒体 2 5が近くなると後方に、 遠くなると 手前に移動する。 したがって、 半導体レーザ一 2 1の出射端の面内に、 実施例 1 と同様の 2個の光電変換素子 2 9 , 3 0を設け、 合焦検出を行うことができる。 このとき得られるフォーカシング'エラー信号が一定値となるように集光レンズ 7 6のみ、 もしくは集光レンズ 7 6から光電変換素子 2 9, 3 0までの有限系 8 0全体を図示しないァクチユエータにより前後駆動して、 常に媒体面上に記録ノ 再生ビームを収斂させることができる。  Before and after focusing, the convergence position of the light beam moves rearward when the medium 25 is close, and moves forward when the medium 25 is far. Therefore, the same two photoelectric conversion elements 29 and 30 as in the first embodiment are provided in the plane of the emission end of the semiconductor laser 21 to perform focus detection. At this time, only the focusing lens 76 or the entire finite system 80 from the focusing lens 76 to the photoelectric conversion elements 29 and 30 is moved back and forth by an actuator (not shown) so that the focusing 'error signal obtained at this time becomes a constant value. By driving, the recording / reproducing beam can be always converged on the medium surface.
本実施例では上述のいくつかの場合とは異なり、 ホログラム素子 7 5が収束光 路内に配置されている。 ホログラムによって収束光束を分離する場合、 その ± 1 次回折光 7 8, 7 9を共に利用しょうとすると、 パターンに若干の曲線補正が必 要となる。 また補正が行われても 2つの光束に共通した非点収差が発生し、 この 結果として一 1次光束 7 8の非点隔差が大きく、 + 1次光束 7 9の非点隔差が小 さくなる現象から免れない。 しかしながら、 例えば光束の回折角が 1 5 β 程度よ り小さく、 検出側の開口数が 0 . 2程度より小さい範囲などでは、 必要な補正量 は僅かであってパターン形状は双曲線から大差ない。 また、 このような場合には 分離に際して発生する非点収差も僅かであり、 検出にとっては殆ど問題とならな い力 必要があれば最小錯乱円の径に応じて光電変換素子 2 9, 3 0の幅などを 変えて、 検出感度を揃えてもよい。 In this embodiment, unlike some of the above cases, the hologram element 75 is arranged in the convergent light path. When the hologram separates the convergent light beam, if the ± 1st-order diffracted light 78 and 79 are used together, a slight curve correction is required for the pattern. Even if the correction is performed, the astigmatism common to the two light beams is generated. As a result, the astigmatism of the primary light beam 78 is large, and the astigmatic difference of the + first light beam 79 is small. I cannot escape from the phenomenon. However, for example, when the diffraction angle of the light beam is smaller than about 15 β and the numerical aperture on the detection side is smaller than about 0.2, the necessary correction amount is small and the pattern shape is not much different from the hyperbola. In such a case, astigmatism generated at the time of separation is also small, and if a force that hardly causes a problem for detection is needed, the photoelectric conversion elements 29, 30 are required according to the diameter of the circle of least confusion. The detection sensitivity may be made uniform by changing the width of the detection.
なお、 ホログラム素子による往路の回折光は、 コリメート系では対物レンズま での距離を調整することによって、 不要光と して光路外に散逸させて しまうこと が容易であった。 有限系では集光レンズ 7 6 までの距離が限られているため、 十 分な距離をとることはそれほど容易ではないが、 この距離が足りないと、 例えば 往路の + 1次光の復路の 0次光は、 往路の 0次光の復路の - 1次光と重なって、 合焦検出にま障をきたすので、 ホログラム素子 7 5の配置位置をこの点に留意し て定めるのがよい。 また、 復路の所望の回折光 7 8 , 7 9 に比べて、 不要な戻り 光が光軸から離れた光路を通ることを利用して、 ホログラム素子 7 5 に開口絞り を設けると、 上記の制限を緩和することができて好ましい。 In the collimating system, the diffracted light on the outward path by the hologram element is transmitted to the objective lens. It was easy to disperse the light outside the optical path as unnecessary light by adjusting the distance in the optical path. In a finite system, the distance to the condenser lens 76 is limited, so it is not so easy to take a sufficient distance, but if this distance is not enough, for example, 0 in the return path of the outgoing + 1st order light Since the next light overlaps with the minus first light of the return light of the 0th light on the outward path and interferes with the focus detection, the position of the hologram element 75 should be determined in consideration of this point. In addition, if the hologram element 75 is provided with an aperture stop by using unnecessary return light passing through an optical path distant from the optical axis as compared with the desired diffracted lights 78 and 79 on the return path, the above-described restriction is imposed. Can be reduced.
なお、 図 2 3のように収束光路中にビームスプリヅ夕 8 1を設け、 往路と復路 とで光路を分割し、 復路のみホログラム素子 7 5を通るようにして有限系を構成 してもよい。 この場合には、 往路の不要な回折光は発生しないので、 ホログラム 素子は前出の実施例と同様に 0次光の回折効率をほとんどゼロにして、 ± 1次光 の効率を上げるようにするのが望ましい。 また、 必要に応じて検出側に負のレン ズを揷入し、 検出側の縦倍率のみを上げて検出感度を向上させても好ましい。 さらに、 この検出レンズに故意に適切な非点収差を持たせれば、 収束光路のホ ログラムで発生する、 上述した不要な非点収差を打ち消すことができ、 きわめて 有効である。  As shown in FIG. 23, a beam splitter 81 may be provided in the convergent light path, the light path may be divided into the forward path and the return path, and a finite system may be configured such that only the return path passes through the hologram element 75. In this case, unnecessary diffracted light on the outward path is not generated, so that the hologram element sets the diffraction efficiency of the 0th-order light to almost zero and increases the efficiency of the ± 1st-order light as in the previous embodiment. It is desirable. It is also preferable to improve the detection sensitivity by inserting a negative lens on the detection side as necessary and increasing only the vertical magnification on the detection side. Furthermore, if the detection lens is intentionally given an appropriate astigmatism, the above-mentioned unnecessary astigmatism generated in the hologram of the convergent light path can be canceled out, which is extremely effective.
また本実施例の変形と して、 ホログラム素子 7 5を実施例 2 と同様の分割型と し、 光電 ¾ "換素子を 4個設けて、 同様の光へ、ソ ドおよび光記億装置を構成するこ ともできる。 この際には、 トラッキングも集光レンズ 7 6から光電変換素子まで の有限系全体を駆動させて行うことになる。  Further, as a modification of the present embodiment, the hologram element 75 is of a split type similar to that of the second embodiment, and four photoelectric conversion elements are provided. In this case, tracking is also performed by driving the entire finite system from the condenser lens 76 to the photoelectric conversion element.
以上のように、 本発明によって有限系の光へッ ドを極めて簡単に構成すること ができる。 有限系ヘッ ドは製造時の調整項目も少なく、 一段と小型化が可能であ り、 さらには製造後の信頼性も高いので、 光記億装置の小型化や信頼性確保の上 で好ま しい。  As described above, a finite optical head can be configured extremely simply by the present invention. Finite-type heads have few adjustment items during manufacturing, can be made even smaller, and have high reliability after manufacturing. Therefore, they are preferable for miniaturizing optical storage devices and ensuring reliability.
(実施例 8 )  (Example 8)
図 2 4ないし図 2 6は、 本発明の第八の実施例であり、 有限系ヘッ ドを構成す る場合の他の実施例を示し、 上述した不要な非点収差の影響を取り除く ための別 の構成例である。 図 2 4および図 2 5において、 ホログラム素子 8 5は、 実施例 2 と同様に分割線 8 5 pによ り左右の 2領域 8 5 A, 8 5 Bに分けられており、 それぞれの領域のスボッ トは、 回折方向を時計方向および半時計方向に例えば 8 0。 回転することによって分離されている。 いずれの領域 85A, 85 Bも補正 された双曲線バタ一ンを有しており、 上述したように回折光束の非点隔差は- 1 次光束 86 A, 86 Bで大きく、 + 1次光束87 , 87 Bで小さくなるが、 本 実施例のホログラム素子 & 5では、 一方の領域 85 Bの一 1次光束 86 Bの非点 隔差と他方の領域 85Aの + 1次光束 87Aの非点隔差とが等しくなるように、 それぞれの領域 85 A, 85 Bのパターンに固有のフォーカス距離 f を変えてあ る。 柜等しい非点隔差を与えられた回折光束 86 B, 87 Aは、 互いに同径の最 小錯乱円を同一の平面 76 f 上に形成し、 合焦の前後では光束の収斂位置は前後 に移動する。 それぞれの光束は互いに逆の非点隔差を持っているので、 '合焦時の 最小錯乱円位置では、 相補的に縦長〜横長楕円を変化する非点スボ、ゾ トが得られ る。 FIGS. 24 to 26 show an eighth embodiment of the present invention, which shows another embodiment in which a finite system head is constructed, and which is used to eliminate the above-mentioned influence of unnecessary astigmatism. This is another configuration example. In FIGS. 24 and 25, the hologram element 85 is divided into two left and right regions 85A and 85B by a dividing line 85p as in the second embodiment. In each region, the diffraction direction is, for example, 80 in the clockwise and counterclockwise directions. Separated by rotation. Each of the regions 85A and 85B has a corrected hyperbolic pattern. As described above, the astigmatic difference of the diffracted light beam is large in the -first light beams 86A and 86B, and the + first light beam 87 and In the hologram element & 5 of the present embodiment, the astigmatism of the primary light flux 86B of one area 85B and the astigmatic difference of the + primary light flux 87A of the other area 85A are reduced in the hologram element & 5 of this embodiment. The focus distance f unique to each of the patterns of the areas 85A and 85B is changed so as to be equal.回 折 The diffracted light beams 86 B and 87 A given equal astigmatic difference form the smallest circle of confusion with the same diameter on the same plane 76 f, and the convergence position of the light beam moves before and after focusing. I do. Since each light beam has the opposite astigmatic difference, at the minimum confusion circle position at the time of focusing, astigmatism spots and zots that change vertically to horizontally long ellipse are obtained.
したがって、 この 2つの非点スポッ ト 86 B, 87 Aの変形を検出して差動を 取れば、 合焦時にゼロクロスするフォーカシング 'エラー信号が得られる。 本実 施例では、 光電変換素子 88 B, 89 Aを、 前述のように中心領域 88 B c, 8 9 A cの雨側に周辺領域 88 B s, 89 A sを設けた分割素子とし、 中心領域と 周辺領域との出力差を用いる。 いっぽう、 それぞれの領域の他方の回折光束 S 7 B, 86 Aは大小に異なる非点隔差を有することになり、 本実施例ではフォー力 シング ·エラ一信号の演算には用いずに、 全光量を受光する十分大きい光電変換 素子 89 B, 88 Aに入射させている。 各種信号の演算は、 光電変換素子 88 A, 88 B c, 88 B s , 89 A c, 89 A s, 89 Bの出力 VIA, V 1 B c, V I Bs, V2 A c, V2 A s, V2Bを用いて、 次のように書くことができる。 まず、 フォーカシング ·エラー信号は  Therefore, if the deformation of these two astigmatic spots 86B and 87A is detected and the differential is taken, a focusing error signal that crosses zero at the time of focusing can be obtained. In this embodiment, the photoelectric conversion elements 88B and 89A are divided elements having the peripheral areas 88Bs and 89As on the rain side of the central areas 88Bc and 89Ac as described above. The output difference between the central area and the peripheral area is used. On the other hand, the other diffracted light fluxes S 7 B and 86 A in each area will have astigmatic differences that differ greatly in magnitude. In this embodiment, the total light amount is not used for calculating the forcing-error signal. Is incident on the photoelectric conversion elements 89B and 88A, which are large enough to receive light. The operation of various signals is performed by the outputs VIA, V1Bc, VIBs, V2Ac, V2As, of the photoelectric conversion elements 88A, 88Bc, 88Bs, 89Ac, 89As, 89B. Using V2B, we can write First, the focusing error signal
(Vl B c -V l B s ) - (V2 Ac -V2As )  (Vl B c -V l B s)-(V2 Ac -V2As)
= (V l B c +V2As ) - (V2Ac +Vl B s ) = (VlBc + V2As)-(V2Ac + VlBs)
となるが、 このままでトラヅキング ·エラー信号の漏れ込みがある場合には、 こ れを回避するために、 However, if there is a leakage of the tracking error signal as it is, to avoid this,
(V 1 B C -V 1 B S -V2 B) 一 (V2Ac-V2As -V lA)  (V 1 B C -V 1 B S -V 2 B) One (V2Ac-V2As -V lA)
= (V l B c +V2As +V l A) 一 (V2Ac + V l B s +V2 B ) = (VlBc + V2As + VlA) One (V2Ac + VlBs + V2B)
とするのが好ましい。 トラッキング ·エラー信号は V 1 A - V 2 B It is preferred that Tracking error signal V 1 A-V 2 B
または Or
V I A - ( V l B c + V l B s )  V I A-(V l B c + V l B s)
(V2 Ac +V 2 As ) - V 2 B  (V2 Ac + V 2 As)-V 2 B
さらには Moreover
(V2 Ac +V 2 As ) 一 (V l B c + V l B s )  (V2 Ac + V 2 As) one (V1Bc + V1Bs)
(V2 Ac +V2 As +V l A) - (V l B c +V l B s + V2 B ) のいずれでも得ることができる。 さらに、 前述の実施例 2と同様に分割素子に跨 る検光子 47 と、 他の二つの光電変換素子に跨る検光子 46を互いの検光角を傾 けて設ければ、 光磁気信号は  Any of (V2Ac + V2As + VIA)-(VIBc + VIBs + V2B) can be obtained. Furthermore, if the analyzer 47 extending over the splitting element and the analyzer 46 extending over the other two photoelectric conversion elements are provided at an inclined angle of mutual analysis similarly to the second embodiment, the magneto-optical signal is
(V l B c +V l B s +V2 Ac +V2 As ) 一 ( V 1 A + V 2 B ) で得ることができる。 なお、 上記の トラッキング · エラー信号の演算において、 V 1 A - V 2 B  (V1Bc + V1Bs + V2Ac + V2As) It can be obtained in one (V1A + V2B). In the above calculation of the tracking error signal, V 1 A-V 2 B
を選べば、 ( V l B c + V2 A s ) および (V 2 A c +V l B s ) をまとめて扱 うことができるので、 光電変換素子上で結線ができて好都合である。 さらに、 光 磁気信号の演算 ( V l B c + V2A s +V2A c +V l B s ) に関わる光電変換 素子の加算容量を、 ( V 1 A + V 2 B ) に関わる加算容量と等しくすると、 差動 検出による同相ノイズの除去を効率よく行うことができて好ま しい。 By selecting, (V1Bc + V2As) and (V2Ac + V1Bs) can be handled collectively, which is convenient because a connection can be made on the photoelectric conversion element. Furthermore, if the addition capacity of the photoelectric conversion element relating to the calculation of the magneto-optical signal (V1Bc + V2As + V2Ac + V1Bs) is made equal to the addition capacity relating to (V1A + V2B) It is preferable because common mode noise can be efficiently removed by differential detection.
以上のように、 本実施例の構成によれば、 収束光路中に非点生成ホログラムを 置く際の不要な非点収差の影響を、 検出段階で取り除く ことができる。 その上、 互いに相補的に変化する ± 1次回折光を両方とも用いているので、 良好な合焦検 出が可能であり、 波長変動に対しても、 回折角の変化は長尺な光検出手段によつ て吸収され、 差動の中心もずれることはなく、 発光波長が変動し易い半導体レー ザ一などの光源を用いた場合にも、 ホログラムの利点を充分に活かすことができ る。  As described above, according to the configuration of the present embodiment, the influence of unnecessary astigmatism when the astigmatism generating hologram is placed in the convergent light path can be eliminated in the detection stage. In addition, since both the ± 1st-order diffracted lights that change complementarily to each other are used, good focus detection is possible, and changes in the diffraction angle are long even with wavelength fluctuations. Thus, the advantage of the hologram can be fully utilized even when using a light source such as a semiconductor laser in which the emission wavelength is easily changed without the center of the differential being shifted.
なお、 本実施例は、 分割線 85 pの左右で回折方向を変えてスポッ トを分離す るタイプについて説明した力 前述のように左右での回折分離角を変えてスポヅ トを分離するタイプでも、 同様に好適に構成できることは勿論である。  In this embodiment, the force described for the type that separates the spot by changing the diffraction direction on the left and right of the dividing line 85p is also used for the type that separates the spot by changing the diffraction separation angle on the left and right as described above. Of course, it is of course possible to suitably configure.
また、 先の実施例 7と同様、 ホログラム素子 85の配置位置の制限を緩和する ためには、 ホログラム素子 85に開 d絞りを設けることが有効である。 この他に、 本実施例のホログラム素子 85を、 先の実施例 6と同様にブレーズ 化することも可能である。 すなわち図 2 6において、 ホログラム素子 85, を非 点隔差を同じくした光束 86 B, 87 Aの光強度を大きくするようにブレーズ化 すると、 他方の 2本の面折光 (図示せず) の光強度をほとんどゼロにすることが でき、 上記のうち、 分割素子とした 2組の光電変換素子 88 B, 89 Aだけを設 ければよい。 光電変換素子 88 B c, & 8 B s, 88 A c, 88Asの出力をそ れぞれ V i c, V i s, V2 c, V2 sとすると、 フォーカシング 'エラー信号 は As in the case of the seventh embodiment, it is effective to provide an open d stop in the hologram element 85 in order to ease the restriction on the arrangement position of the hologram element 85. In addition, the hologram element 85 of the present embodiment can be blazed in the same manner as in the sixth embodiment. That is, in FIG. 26, when the hologram element 85, is blazed so as to increase the light intensity of the light fluxes 86B, 87A having the same astigmatic difference, the light intensity of the other two face-folded lights (not shown) is obtained. Can be made almost zero, and only the two sets of photoelectric conversion elements 88 B and 89 A which are divided elements need to be provided. Assuming that the outputs of the photoelectric conversion elements 88 Bc, & 8 Bs, 88 Ac, and 88 As are Vic, Vis, V2 c, and V2 s, respectively, the focusing error signal is
( V 1 c + V2 s ) 一 (V2 c + V 1 s )  (V1c + V2s) One (V2c + V1s)
また、 トラヅキング ·エラー信号は  Also, the tracking error signal is
( V 1 c + V 1 s ) - ( V2 c + V2 s )  (V 1 c + V 1 s)-(V2 c + V2 s)
で得ることができる。 さらに各光電変換素子 88 B, 89 Aの前面に、 互いに検 光角の異なる検光子 70, 71を設ければ、 光磁気再生信号は  Can be obtained at Further, if the analyzers 70 and 71 having different detection angles are provided in front of the respective photoelectric conversion elements 88 B and 89 A, the magneto-optical reproduction signal can be obtained.
C V 1 c + V 1 s ) 一 C V2 c + V2 s )  C V 1 c + V 1 s) C V2 c + V2 s)
で得られる。 これは上記のトラッキング ·エラー信号と同じ演算である力 光磁 気信号の帯域が高いため、 電気的に信号の帯域を分離すれば両者を独立に得るこ とができる。 Is obtained. This is because the band of the magneto-optical signal, which is the same operation as the above tracking error signal, is high. Therefore, if the signal band is electrically separated, both can be obtained independently.
以上のように構成した光へッ ドは、 有限系のため製造時の調整項目も少なく、 —段と小型化が可能であって、 さらにば製造後の信頼性も高いうえに、 光源の片 側だけに光電変換素子 88B, 89 Aを配置すれば良く、 製造が一段と容易であ つて好ましい。  The optical head configured as described above has a small number of adjustment items at the time of manufacture because it is a finite system. — It can be made much smaller, and has high reliability after manufacturing. It is only necessary to dispose the photoelectric conversion elements 88B and 89A only on the side, which is preferable because the manufacture is easier.
また、 このようにブレーズ化した場合には、 復路の回折光と重なる往路の不要 な回折光がほとんど発生しないので、 ホログラム素子 85 ' の配置位置の制限は なくなり、 ホログラム素子 85 ' を光源から十分に離れた位置に配置できる。 こ の場合にはホログラムの回折角を小さく保ちながら、 光源と光電変換素子との距 離を離すことができるので、 製造はさらに容易となって好ましい e  In addition, in the case of such a blaze, there is almost no unnecessary diffracted light on the outward path overlapping with the diffracted light on the return path, so that there is no restriction on the arrangement position of the hologram element 85 ′, and the hologram element 85 ′ can be sufficiently moved from the light source. It can be placed at a remote location. In this case, the distance between the light source and the photoelectric conversion element can be increased while the diffraction angle of the hologram is kept small, so that the manufacturing is further facilitated and preferable.
なお、 この場合にも互いに相補的に変化する ± 1次回折光を両方とも用いてい るので、 良好な合焦検出が可能であり、 波長変動に対しても、 回折角の変化は長 尺な光検出手段によって襠俊され、 差動の中心もずれることはなく、 発光波長が 変動し易い半導钵レーザーなどの光潁を用いた場合にも、 ホログラムの利点を充 分に活かすことができる。 In this case as well, since both the ± 1st-order diffracted lights that change complementarily to each other are used, good focus detection is possible, and the change in the diffraction angle with respect to wavelength fluctuation is a long light. The advantage of the hologram is achieved even when a light source such as a semiconductor laser is used, in which the center of the differential is not displaced and the emission wavelength is liable to fluctuate due to the detection means. Can be used for minutes.
(実施例 9 )  (Example 9)
図 2 7は、 本発明の第九の実施例を示し、 前出したものと同一の符号は同様の 機能部材を表すものとする。 半導体レーザー 3 8からの発散光は、 ビームスプリ ヅ夕 9 1で曲折され、 コ リメータレンズ 3 9によって平行光とされている。 平行 光束中には対物レンズ 4 0が配置され、 これを通った光が記憶媒体面 4 1 で収斂 する記録 Z再生ビームを形成している。 対物レンズ 4 0は記憶媒体 4 1の トラッ ク溝と垂直な方向に移動可能とされており、 対物レンズ 4 0の移動によってビー ムを所望のトラック上に移動できる。 また、 このときの対物レンズ 4 0の移動量 を裨出するレンズシフ トセンサ 9 2が設けられている。 媒体面による反射光は、 対物レンズ 4 0によ り再び略平行光束とされて光路を逆進し、 コ リメ一夕 レンズ 3 9により収束光とされてビームスプリヅ夕 9 1 に入射する。 ここで直進する光 束は、 次いで配置された負の検出レンズ 9 3を通ってホログラム素子 9 5 に入射 する。 ここでホログラム素子 9 5は、 実施例 4 と同様に分割線 9 5 pによ り左右 の 2領域 9 5 A, 9 5 Bに分けられており、 それぞれの領域のスポヅ トは、 左右 の領域での回折分離角を変えることで分離されている。 いずれの領域も補正され た双曲線パターンを有しており、 4つの非点収斂光束 9 6 A, 9 6 B , 9 7 A, 9 7 Bを発生している。  FIG. 27 shows a ninth embodiment of the present invention, and the same reference numerals as those described above denote the same functional members. The divergent light from the semiconductor laser 38 is bent at the beam splitter 91 and is made parallel by the collimator lens 39. An objective lens 40 is arranged in the parallel light beam, and the light passing therethrough forms a recording Z reproduction beam that converges on the storage medium surface 41. The objective lens 40 is movable in a direction perpendicular to the track groove of the storage medium 41, and the beam can be moved to a desired track by moving the objective lens 40. In addition, a lens shift sensor 92 for providing the amount of movement of the objective lens 40 at this time is provided. The light reflected by the medium surface is converted into a substantially parallel light beam again by the objective lens 40, travels backward in the optical path, is converged by the collimating lens 39, and is incident on the beam splitter 91. The light beam that travels straight here then enters the hologram element 95 through the negative detection lens 93 arranged. Here, the hologram element 95 is divided into two left and right regions 95A and 95B by a dividing line 95p as in the fourth embodiment, and the spots of each region are divided into the left and right regions. Is changed by changing the diffraction separation angle at. Each region has a corrected hyperbolic pattern, and generates four astigmatic light beams 96 A, 96 B, 97 A, and 97 B.
これらの光束を受光するために、 実施例 4と同様に直線上に配置された回折方 向に長尺の 4組の光電変換素子 9 8 A , 9 8 Β , 9 9 A, 9 9 Bが設けられてお り、 必要に応じては、 光量を有効に用いるために周辺領域を設けた分割素子とさ れている。 それぞれの光電変換出力を V 1 A, V 1 B , V 2 A, V 2 Bとすると、 フォーカシング · エラ一信号は  In order to receive these light beams, four pairs of photoelectric conversion elements 98 A, 98 Β, 99 A, and 99 B, which are arranged in a straight line and are long in the diffraction direction, similarly to the fourth embodiment. It is provided as a divisional element provided with a peripheral area in order to effectively use the light amount as necessary. Assuming that each photoelectric conversion output is V 1 A, V 1 B, V 2 A, V 2 B, the focusing error signal is
( V 1 A + V 1 B ) 一 ( V 2 A + V 2 B )  (V 1 A + V 1 B) one (V 2 A + V 2 B)
で得ることができ、 これ一定値とするよ うに対物レンズ 4 0をフォーカス方向に 駆動させ、 常に媒体面 4 1上に記録 Z再生ビームを収斂させるこ とができる。 ま た、 トラヅキング · エラー信号は The objective lens 40 is driven in the focus direction so that the value becomes a constant value, and the recording Z reproduction beam can always be converged on the medium surface 41. Also, the tracking error signal is
( V 1 A + V 2 A ) 一 ( V 1 B + V 2 B )  (V 1 A + V 2 A) one (V 1 B + V 2 B)
の演算により得ることができる。 これが一定値をとるように対物レンズ 4 ◦を 卜 ラヅク横断方向に移動させればよいが、 この構成では対物レンズ 4 0の位置によ つてエラー信号がオフセヅ トを発生する。 レンズシフ トセンサ 9 2はこのオフセ ッ 卜を補正するために設けられており、 レンズシフ卜センサ出力に適切な係数を 乗じてトラッキング ·エラー信号に加算することで、 オフセヅ トを取り除くこと ができる。 したがって、 この補正されたトラヅキング ·エラー信号を一定値とす るように対物レンズ 4 0のトラヅキングサーボ制御を行えば、 常にトラヅク上に 記録/再生ビームを収斂させることができる。 Can be obtained. It is sufficient to move the objective lens 4 ° in the cross-track direction so that this takes a constant value, but in this configuration, it depends on the position of the objective lens 40. The error signal generates an offset. The lens shift sensor 92 is provided to correct the offset, and the offset can be removed by multiplying the output of the lens shift sensor by an appropriate coefficient and adding it to the tracking error signal. Therefore, if the tracking servo control of the objective lens 40 is performed so that the corrected tracking error signal has a constant value, the recording / reproducing beam can always be converged on the track.
本実施例の構成によれば、 軽量な対物レンズ 4 0のみを トラッキング動作させ ることができるので、 高速のトラッキングが要求される場合などに用いて好適で ある。  According to the configuration of the present embodiment, since only the lightweight objective lens 40 can perform the tracking operation, it is suitable for use where high-speed tracking is required.
なお、 検光子を、 前記の場合と同様に設ければ、 光磁気信号の検出が可能であ ることは言うまでもない。 また、 検出倒に設けた負の検出レンズ 9 3は、 縦倍率 を高めて合焦検出の感度を向上させている。 また、 前述したように検出レンズ 9 3に故意に非点収差を与えて、 収束光路のホログラム素子 9 5で発生する不要な 非点収差を打ち消すことが有効である。  It is needless to say that a magneto-optical signal can be detected by providing an analyzer in the same manner as described above. In addition, the negative detection lens 93 provided for detection has a high vertical magnification to improve the focus detection sensitivity. Further, as described above, it is effective to intentionally impart astigmatism to the detection lens 93 to cancel unnecessary astigmatism generated in the hologram element 95 in the converging light path.
この場合にも、 上記の場合と同様に、 小型で低コストでありながら、 必要な信 号を全て得ることができる。 そして、 いずれの信号の演算にも、 4個の光電変換 素子の出力を全て用いることができる上に、 いずれの信号とも異なる演算により 発生できるので、 光量の無駄がなく、 信号間のクロス トークも少なく、 良質な各 種信号を得ることが可能である。 さらに、 光源の波長変動に対しても、 回折スボ ヅ トの移動による影藿はなく、 また、 合焦検出の差動中心がずれることもなく、 発光波長が変動し易い半導体レーザーなどの光源を用いた場合にも、 ホログラム 素子の利点を充分に活かすことができる。 従って、 本実施例の光ヘッ ドを搭載し た光記億装置は、 良質な出力信号に支えられ、 信頼性が高く高性能で、 かつ小型 ヘッ ドにより装置全体も小型化される。  In this case, as in the case described above, all necessary signals can be obtained while being small in size and low in cost. In addition, all the outputs of the four photoelectric conversion elements can be used for the operation of any signal, and can be generated by an operation different from any of the signals, so that there is no waste of light amount and there is no crosstalk between signals. It is possible to obtain few and high quality signals. Furthermore, even when the wavelength of the light source fluctuates, there is no influence due to the movement of the diffraction lens, and the light source such as a semiconductor laser whose emission wavelength is liable to fluctuate without a shift of the differential center of focus detection. Even when used, the advantages of the hologram element can be fully utilized. Therefore, the optical storage device equipped with the optical head according to the present embodiment is supported by high-quality output signals, has high reliability and high performance, and can be downsized by the small head.
(実施例 1 0 )  (Example 10)
図 2 8ないし図 2 9は、 本発明の第十の実施例を示し、 図 2 8において、 半導 体レーザー 2 1からの発散光は、 コリメ一夕レンズ 2 2によって平行光とされ、 斜めに配置された反射型のホログラム素子 1 0 0に至る。 往路では、 正反射する 0次光だけが逭宜距離に配置された対物レンズ 2 4を通つて、 光記億媒体 2 5面 上で収斂する記録 Z再生ビームを形成している。 入射ビームの媒体面 2 5による 反射光は発散光となって逆進し、 対物レンズ 2 4によ り略平行光束とされて再び ホログラム素子 1 0 0に至って回折されている。 回折光はコリ メ一夕 レンズ 2 2 により屈折され、 コ リメータ レンズ 2 2の焦点面 2 2 f 付近で同一面内に配置さ れた光電変換素子 1 0 1 , 1 0 2によって受光されている。 FIGS. 28 to 29 show a tenth embodiment of the present invention. In FIG. 28, the divergent light from the semiconductor laser 21 is collimated by the collimating lens 22 and is oblique. To the reflection-type hologram element 100 which is arranged in the hologram. On the outward path, only the specularly reflected zero-order light passes through the objective lens 24 disposed at an appropriate distance to form a recording Z reproduction beam converging on the optical storage medium 25. Depends on the medium plane of the incident beam The reflected light becomes divergent light, travels backward, is converted into a substantially parallel light beam by the objective lens 24, and reaches the hologram element 100 again to be diffracted. The diffracted light is refracted by the collimating lens 22 and received by the photoelectric conversion elements 101 and 102 arranged in the same plane near the focal plane 22 f of the collimator lens 22. .
ここにホログラム素子 1 0 0は、 前述の双曲線パターンに反射面の傾斜方向に 関する 1次元的な補正を施すことにより、 先のいく つかのホログラム素子と同様 な非点収敛光束を生成するパターンを求めることができ、 以上の構成によつて、 前述した実施例の場合と同様に合焦検出を行うことができる。 また、 ホログラム 素子 1 0 0を実施例 2と同様の分割型と し、 光電変換素子を 4個設けて実施例と 同様の光へッ ドおよび光記億装置を構成できることも勿論である。  Here, the hologram element 100 is a pattern that generates a non-point-collected luminous flux similar to some of the preceding hologram elements by applying one-dimensional correction to the above-described hyperbolic pattern with respect to the inclination direction of the reflection surface. With the above configuration, it is possible to perform focus detection in the same manner as in the above-described embodiment. Further, it is a matter of course that the hologram element 100 is of a split type as in the second embodiment, and four photoelectric conversion elements are provided to form the same optical head and optical storage device as in the embodiment.
なお、 このようにホログラム素子 1 0 0を斜めに配置した場合に、 光束の生た る回折方向を傾斜方向にとると、 収束光路中にホログラム素子を配置した場合と 同様に、 一方の回折光束の非点隔差が大きくなり他方の光束の非点隔差が小さく なる現象や、 正反射光からの回折光の角度が ± 1次光で異なって、 中心からのス ボッ トの距離が 2つの光束で違ってく るなどの変化が現れてく る。 このため、 反 射ホログラム素子 1 0 0による光束の回折方向は、 傾斜方向と直角な方向にとる 方が図示の場合よ りもさらに好ましい。  When the hologram element 100 is arranged obliquely as described above and the diffraction direction in which the light beam is generated is set to the inclined direction, one of the diffracted light beams becomes the same as when the hologram element is arranged in the convergent light path. The astigmatism of the other beam becomes smaller and the astigmatism of the other beam becomes smaller, or the angle of the diffracted light from the specularly reflected light differs for ± 1st order light, and the distance of the robot from the center is two Changes such as differences appear. For this reason, it is more preferable that the direction of diffraction of the light beam by the reflection hologram element 100 be in a direction perpendicular to the tilt direction than in the case shown in the figure.
なお、 分割型のホログラム素子 1 0 0によって構成する場合には、 前述のよう に反射ホログラム素子 1 0 0をブレーズ化し、 各領域の一光束ずつを使用するよ うに構成すれば、 上記の非点隔差が異なる問題は回避でき、 回折方向を傾斜方向 と一致させた場合でも良好な合焦検出が可能となって好ま しい。  In the case where the reflection hologram element 100 is constituted by the segmented hologram element 100, as described above, if the reflection hologram element 100 is blazed to use one light flux in each area, the above-described astigmatism is obtained. The problem of the difference in the distance can be avoided, and good focus detection is possible even when the diffraction direction is made coincident with the tilt direction, which is preferable.
さらに、 図 2 9のような有限光学系においてホログラム素子 1 0 5を反射型と しても、 本実施例のような 1次元的な補正を施すことで、 同様の検出系を構成で きる。 この場合にも光束の生たる回折方向を傾斜方向とは直交してとった方がよ り好ましいが、 収束光路による非点隔差の変化を斜設による非点隔差の変化で打 ち消すように配置することもできる。 またブレーズ化によって得られる効果も上 述と同等である。  Further, even if the hologram element 105 is a reflection type in a finite optical system as shown in FIG. 29, a similar detection system can be configured by performing one-dimensional correction as in this embodiment. In this case as well, it is more preferable that the diffraction direction in which the luminous flux is generated is orthogonal to the inclination direction. They can also be placed. The effect obtained by brazing is the same as described above.
(実施例 1 1 )  (Example 11)
図 3 0は、 本発明の第十一の実施例を示し、 先の実施例 1 と同様の構成におけ る光電変換素子 2 9 または光電変換素子 3 0力 図 3 0 ( a)のような 4個の短冊状 の受光領域 1 10 a, 1 10 b, 1 10 c, 1 1 0 dを並列してなる四分割素子 1 10とされている。 FIG. 30 shows an eleventh embodiment of the present invention, in which the photoelectric conversion element 29 or the photoelectric conversion element 30 has the same configuration as that of the first embodiment, as shown in FIG. 4 strips The light receiving areas 110a, 110b, 110c, 110d are arranged in parallel to form a quadrant element 110.
本構成において、 媒体が合焦位置から外れた場合には、 図 3 0 (b)のように、 投 影される光スポッ ト 31の形状が縦長楕円〜横長楕円に変化するので、 4個の受 光領域の出力を左からそれぞれ V 1, V2, V3, V4とすると  In this configuration, when the medium goes out of the focus position, the shape of the projected light spot 31 changes from a vertical ellipse to a horizontal ellipse as shown in FIG. Assuming that the output of the receiving area is V1, V2, V3, V4 from the left, respectively
( V2 +V3 ) 一 (V I + V4 )  (V2 + V3) one (V I + V4)
によって合焦誤差が検出できる。  Thereby, a focusing error can be detected.
一方、 媒体のトラック方向を四分割素子 1 10の分割方向に平行とすれば、 光 ビームがトラックから外れた場合には、 図 3ひ(c)のように、 投影される光スボヅ ト 3 1の位置が左右に振れるので  On the other hand, if the track direction of the medium is parallel to the dividing direction of the quadrant 110, and if the light beam deviates from the track, the projected light spot 31 will be as shown in FIG. Because the position of can swing from side to side
( V 1 + V 2 ) 一 ( V3 + V )  (V 1 + V 2) one (V3 + V)
によってトラック誤差が検出できる。  Thus, a track error can be detected.
なお、 四分割素子 110は光電変換素子 29, 30のいずれかの代わりに 1個 だけ用いてもよいし、 2個とも用いてもよい。  It should be noted that the quadrant 110 may be replaced with either one of the photoelectric conversion elements 29 and 30, or one of them may be used.
実施例 1から 1 1において、 各種信号を得るための潢算は、 式の変形に応じて 加算と減算が逆になることがありうるが、 本発明の範囲内の変更である。  In the first to eleventh embodiments, the calculation for obtaining various signals may be performed in a manner that the addition and the subtraction are reversed depending on the modification of the equation, but this is a change within the scope of the present invention.
産業上の利用可能性  Industrial applicability
以上説明したように、 本発明に係る合焦検出機構は、 差動出力を得るための 2 つの光電変換素子を同一の面内に平置できるので、 寸法精度を高めた製造が容易 である。 さらに、 波長変動に対して差動の中心がずれることがなく、 発光波長が 変動しやすい半導体レーザーなどの光源を用いた場合にも、 ホログラム素子の利 点を十分に活かすことができる。 また、 本発明の光ヘッ ドは、 極めて部品点数の 少ない構成で、 小型で低コス 卜でありながら、 光記億装置に必要な信号を効率よ く得ることができ、 良質な再生信号、 プリビッ ト信号および各種エラー信号を得 られる。 また、 上述の光ヘッ ドを搭載した本発明の光記億装置は小型、 かつ高性 能なものが簡単な構成で安価に実現可能である。 以上のように、 本発明は当該分 野において多大な効果を奏するものであり、 本発明が利用される可能性は極めて 高い。  As described above, in the focus detection mechanism according to the present invention, two photoelectric conversion elements for obtaining a differential output can be arranged in the same plane, so that manufacturing with improved dimensional accuracy is easy. Furthermore, the advantage of the hologram element can be fully utilized even when a light source such as a semiconductor laser whose emission wavelength is liable to be changed without the center of the differential being shifted with respect to the wavelength change. Further, the optical head of the present invention has a configuration with an extremely small number of parts, is small in size and low in cost, and can efficiently obtain a signal required for the optical storage device. Signal and various error signals. Further, the optical storage device of the present invention equipped with the above-mentioned optical head can be realized at a low cost with a simple configuration and high performance. As described above, the present invention has a great effect in this field, and the possibility of using the present invention is extremely high.

Claims

請 求 の 範 囲 The scope of the claims
1 . 合焦目標面からの反射光を収斂させる検出光学系と、 1. A detection optical system that converges the reflected light from the focusing target surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段とを備え、  A pair of light detection means arranged on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、  A longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element,
前記ホログラム素子は、 双曲線群または補正された双曲線群に概ね沿って同相 かつ周期的な光変調率パターンを有し、  The hologram element has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
前記ホログラム素子により回折されたビーム断面形状が相補的に変化する一対 の非点回折光束を一対の前記光検出手段により検出し、  A pair of astigmatic diffracted light beams whose beam cross-sectional shapes diffracted by the hologram element change complementarily are detected by the pair of light detection means;
—対の前記光検出手段の出力の差を演算することにより前記目標面への合焦を 検出することを特徴とする合焦検出機構。  A focus detection mechanism for detecting the focus on the target surface by calculating the difference between the outputs of the pair of light detection means;
2 . 合焦目標面からの反射光を収斂させる検出光学系と、  2. A detection optical system that converges the reflected light from the focusing target surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段を備え、  A pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、  A longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the hologram element,
前記ホログラム素子は、 二つ以上の領域に分割され、 分割された各々の領域に 双曲線群または補正された双曲線群に概ね沿って同相かつ周期的な光変調率パ夕 一ンを有し、  The hologram element is divided into two or more regions, and each of the divided regions has an in-phase and periodic light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group,
前記ホログラム素子の異なつた領域によ り回折された非点回折光束は互いに分 離され、  The astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
前記ホログラム素子の異なった領域によ り回折され、 ビーム断面形状が相補的 に変化する一対の非点回折光束を一対の前記光検出手段により検出し、  A pair of astigmatic diffracted light beams, which are diffracted by different regions of the hologram element and whose beam cross-sectional shapes change complementarily, are detected by the pair of light detecting means;
—対の前記光検出手段の出力の差を潢算することにより、 前記目標面への合焦 を検出することを特徴とする合焦検出機構。  A focus detection mechanism for detecting the focus on the target surface by calculating the difference between the outputs of the pair of light detection means;
3 . 前記ホログラム素子はブレーズ化されたホログラム素子であるこ とを特徴と する請求の範囲第 2項記載の合焦検出機構。 3. The hologram element is a blazed hologram element. 3. The focus detection mechanism according to claim 2, wherein:
4. 前記検出光学系は、 前記目標面へ光束を入射させる投影光学系と共通とした ことを特徴とする請求の範囲第 1項ないし請求の範囲第 3項記載の合焦検出機構。  4. The focus detection mechanism according to claim 1, wherein the detection optical system is common to a projection optical system that causes a light beam to enter the target surface.
5. 前記検出光学系は、 前記投影光学系とは少なく とも一部を独立とし、 前記検 出光学系の倍率を前記投影光学系の倍率とは異ならせたことを特徴とする請求の 範囲第 1項ないし請求の範囲第 3項記載の合焦検出機構。  5. The detection optical system is at least partially independent of the projection optical system, and a magnification of the detection optical system is different from a magnification of the projection optical system. 4. The focus detection mechanism according to claim 1 or claim 3.
6 . 前記検出光学系は、 前記投影光学系とは少なく とも一部を独立とし、 前記ホ ログラムを除く前記検出光学系に前記ホログラム素子の回折方向に関する非点収 差を持たせたことを特徴とする請求の範囲第 1項ないし請求の範囲第 3項記載の 合焦検出機構。  6. The detection optical system is at least partially independent of the projection optical system, and the detection optical system excluding the hologram has an astigmatic difference in the diffraction direction of the hologram element. 4. The focus detection mechanism according to claim 1, wherein:
7 . 前記光検出手段は、 長尺な光検出素子と、 前記光検出素子の少なくとも一部 を包囲する別の光検出素子とからなり、 両者の差の出力を前記光検出手段の出力 として用いることを特徴とする請求の範囲第 1項ないし請求の範囲第 6項記載の 合焦検出機構。  7. The light detecting means includes a long light detecting element and another light detecting element surrounding at least a part of the light detecting element, and an output of a difference between the two is used as an output of the light detecting means. 7. The focus detection mechanism according to claim 1, wherein the focus detection mechanism comprises:
8. 請求の範囲第 1項ないし請求の範囲第 7項記載の合焦検出機構を備え、 再生 または記録光ビームの光記億媒体面への合焦検出に用いることを特徴とする光へ ヅ Ko  8. A light source comprising the focus detection mechanism according to claims 1 to 7, which is used for detecting the focus of a reproduction or recording light beam on the surface of an optical recording medium. Ko
9. 前記光検出手段の出力を用いて、 前記光記億媒体の記録ビッ トの再生を行う ことを特徴とする請求の範囲第 8項記載の光へッ ド。  9. The optical head according to claim 8, wherein a recording bit of said optical storage medium is reproduced using an output of said optical detection means.
1 0. 前記光検出手段の前面に検光子を備え、 前記光記億媒体の光磁気記録によ る記録ビッ卜の再生を行うことを特徴とする請求の範囲第 8項記載の光へッ ド。  10. The optical head according to claim 8, further comprising an analyzer in front of said light detecting means, for reproducing a recording bit by magneto-optical recording of said optical recording medium. De.
1 1 . 前記光検出手段を前記光記億媒体面のトラック接線方向に対応する分割鎳 により二つに分割し、 分割された前記光検出手段の出力の差により前記光ビーム のトラッキング誤差を検出することを特徴とする請求の範囲第 8項ないし請求の 範囲第 1 0項記載の光へヅド。  11. The light detecting means is divided into two by a splitter corresponding to a track tangential direction of the optical recording medium surface, and a tracking error of the light beam is detected based on a difference between outputs of the divided light detecting means. The optical head according to claim 8, wherein the optical head is characterized in that:
1 2. 再生または記録光ビームの光記億媒体面からの反射光を収敛させる検出光 学系と、  1 2. A detection optics system that collects the reflected light of the reproducing or recording light beam from the optical recording medium surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に鬨して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段群を備え、 —対の前記光検出手段群の各々は、 それぞれ二つの光検出手段からなり、 前記光検出手段の長手方向を、 前記ホログラム素子による回折方向に概ね沿つ て配置し、 A pair of light detection means groups disposed on the same plane that is substantially conjugate to the target surface in lieu of the detection optical system; Each of the pair of light detection means groups comprises two light detection means, and the longitudinal direction of the light detection means is arranged substantially along the direction of diffraction by the hologram element;
前記ホログラム素子は、 前記光記億媒体面の 卜ラック接線方向に対応する分割 線により二つに分割され、 分割された各々の領域に双曲線群または補正された双 曲線群に概ね沿って同相かつ周期的な光変調率パターンを有し、  The hologram element is divided into two by a dividing line corresponding to a track tangent direction of the optical recording medium surface, and each of the divided areas is substantially in-phase with a hyperbolic group or a corrected hyperbolic group substantially in line. Having a periodic light modulation rate pattern,
前記ホログラム素子の異なった領域によ り回折された非点回折光束は互いに分 離され、  The astigmatic diffracted light beams diffracted by different regions of the hologram element are separated from each other,
ビーム断面形状が同一傾向で変化し、 前記ホログラム素子の異なる領域からの 二つの前記非点回折光束からなる光束群を非点回折光束群と定義したとき、 ビー ム断面形状が相補的に変化する一対の非点回折光束群を一対の前記光検出手段群 により検出し、  When the beam cross-sectional shape changes with the same tendency, and the light beam group including the two astigmatic diffraction light beams from different regions of the hologram element is defined as the astigmatic diffraction light beam group, the beam cross-sectional shape changes complementarily. A pair of astigmatic diffracted light beams are detected by a pair of the light detection means groups,
—対の前記光検出手段群の各々の前記光検出手段の出力和をと り、 一対の前記 出力和の差を演算して前記目標面への合焦を検出し、  -Taking the output sum of the light detection means of each of the pair of light detection means groups, calculating the difference between the pair of output sums, and detecting the focus on the target surface;
前記ホログラム素子の同一領域から回折された二つの前記非点回折光束を前記 光検出手段により検出して合計出力をと り、 二つの前記合計出力の差を演算して 前記光ビームのトラヅキング誤差を検出することを特徴とする光へッ ド。  The two astigmatic diffracted light beams diffracted from the same area of the hologram element are detected by the light detecting means to obtain a total output, and a difference between the two total outputs is calculated to calculate a tracking error of the light beam. Light head characterized by detection.
1 3 . 前記光検出手段の検出出力を用いて、 前記光記億媒体の記録ビッ トの再生 を行う請求の範囲第 1 2項記載の光へッ ド。  13. The optical head according to claim 12, wherein the detected bit of the optical storage medium is reproduced by using a detection output of the optical detection means.
1 4. 前記光検出手段の前面に検光子を備え、 前記光記憶媒体の光磁気記録によ る記録ビッ 卜の再生を行う請求の範囲第 1 2項記載の光へッ ド。  14. The optical head according to claim 12, wherein an analyzer is provided on a front surface of the light detecting means, and the recording bit is reproduced by magneto-optical recording on the optical storage medium.
1 5 . 前記ホログラム素子の異なる領域からの相補的な非点回折光束どう しが近 接するように、 前記光変調率パターンを配置し、 近接した 2組の前記回折光束を 受光する 2組の前記光検出手段の前面に、 互いの組に対し透過軸の方位角が異な つた検光子を備えた請求の範囲第 1 4項記載の光へッ ド。  15. The light modulation rate pattern is arranged so that complementary astigmatic diffracted light beams from different regions of the hologram element come close to each other, and two sets of the diffracted light beams that are close to each other are received. 15. The light head according to claim 14, further comprising an analyzer having a different azimuth of a transmission axis with respect to each pair on a front surface of the light detecting means.
1 6 . 前記光検出手段は、 長尺な光検出素子と、 前記光検出素子の少なく とも一 部を包囲する別の光検出素子とからなり、 両者の差の出力を前記光検出手段の出 力として用いることを特徴とする請求の範囲第 1 2項ないし請求の範囲第 1 5項 記載の光へッ ド。  16. The light detecting means comprises a long light detecting element and another light detecting element surrounding at least a part of the light detecting element, and outputs the difference between the two to the output of the light detecting means. 16. The optical head according to claim 12, wherein the optical head is used as a force.
1 7 . 再生または記録光ビームの光記億媒体面からの反射光を収斂させる検出光 学系と、 1 7. Detection light that converges the light reflected from the optical storage medium of the reproduction or recording light beam Academic and
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一平面上に配置された一対 の光検出手段を備え、  A pair of light detection means disposed on the same plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記光検出手段の長手方向を、 前記ホ口グラム素子による回折方向に概ね沿つ て配置し、  A longitudinal direction of the light detecting means is arranged substantially along a diffraction direction by the chopper element,
前記ホログラム素子は、 前記光記億媒体面のトラ、ソク接線方向に対応する分割 線により二つに分割され、 分割された各々の領域に双曲線群または補正された双 曲線群に概ね沿って同相かつ周期的な光変調率パターンを有し、 かつブレーズ化 されており、  The hologram element is divided into two by a dividing line corresponding to the tangent and tangential directions of the surface of the optical recording medium, and the divided areas are substantially in-phase with each other in a hyperbolic group or a corrected hyperbolic group. And has a periodic light modulation rate pattern and is blazed,
前記ホログラム素子の異なった領域により回折された非点回折光束は互いに分 難され、  The astigmatic diffracted light beams diffracted by different regions of the hologram element are mutually difficult,
前記ホログラム素子の異なった領域により回折され、 ビーム断面形状が相捕的 に変化する一対の前記非点回折光東を一対の前記光検出手段により検出し、 前記光検出手段は長尺な光検出素子と前記光検出素子の少なくとも一部を包囲 する別の光検出素子とからなり、  A pair of the astigmatic diffracted light beams, which are diffracted by different regions of the hologram element and whose beam cross-sectional shapes change additively, are detected by a pair of the light detection means. An element and another light detection element surrounding at least a part of the light detection element,
前記長尺な光検出素子の出力と前記長尺な光検出素子の少なくとも一部を包囲 する前記の別の光検出素子の出力との出力差をとり、 一対の前記出力差の差を演 算して前記目標面への合焦を検出し、  An output difference between the output of the long light detection element and the output of the another light detection element surrounding at least a part of the long light detection element is calculated, and a difference between the pair of the output differences is calculated. To detect the focus on the target surface,
—対の前記長尺な光検出手段の出力の差を演算することにより、 トラッキング 誤差を検出することを特徴とする光へッ ド。  —A light head characterized in that a tracking error is detected by calculating a difference between outputs of the pair of long light detecting means.
1 8. 請求の範囲第 1 7項記載の光へヅ ドにおいて、 前記長尺な光検出素子と前 記光検出素子の少なくとも一部を包囲する前記の別の光検出素子との出力和をと り、 一対の前記出力和の差を演算することにより、 トラッキング誤差を検出する ことを特徴とする光へヅ ド。  18. The light head according to claim 17, wherein the output sum of the long light detection element and the another light detection element surrounding at least a part of the light detection element is calculated. A light head characterized in that a tracking error is detected by calculating a difference between a pair of the output sums.
1 9. 前記光検出手段の検出出力を用いて、 前記光記億媒体の記録ビッ トの再生 を行うことを特徴とする請求の範囲第 1 7項ないし請求の範面第 1 8項記載の光 へヅ ド。  19. The recording bit of the optical storage medium is reproduced by using a detection output of the photodetecting means, wherein the recording bit is reproduced. Light head.
2 0. 前記光検出手段の前面に検光子を備え、 前記光記億媒体の光磁気記録によ る記録ピットの再生を行うことを特徴とする請求の範囲第 1 7項ないし請求の範 囲第 1 8項記載の光へ、ソ ド。 20. The apparatus according to claim 17, wherein an analyzer is provided in front of said light detecting means, and reproduction of recording pits by magneto-optical recording of said optical recording medium is performed. Item 18 to the light described in box 18.
2 1 . 前記光変調率パターンをそれぞれ別の角度だけ回転させることにより、 前 記非点回折光束を分離することを特徴とする請求の範囲第 1 2項ないし請求の範 囲第 2 0項記載の光へッ ド。  21. The astigmatism diffracted light beam is separated by rotating the light modulation rate patterns by different angles, respectively. 21. The claim 12 through claim 20. Light head.
2 2 . 前記光変調率パターンをそれぞれ別の周期とすることによ り、 前記非点回 折光束を分離することを特徴とする請求の範囲第 1 2項ないし請求の範囲第 2 0 項記載の光へッ ド。  22. The astigmatism diffraction light beam is separated by setting the light modulation rate patterns to have different periods, respectively. Light head.
2 3 . 前記検出光学系は、 前記光ビームの投影光学系と共通と したことを特徴と する請求の範囲第 1 2項ないし請求の範囲第 2 2項記載の光へッ ド。  23. The light head according to claim 12, wherein said detection optical system is common to said light beam projection optical system.
2 4. 前記検出光学系は、 前記光ビームの投影光学系とは少なく とも一部を独立 と し、 前記検出光学系の倍率を前記投影光学系の倍率とは異ならせたことを特徴 とする請求の範囲第 1 2項ないし請求の範囲第 2 2項記載の光へッ ド。  2 4. The detection optical system is at least partially independent of the light beam projection optical system, and the magnification of the detection optical system is different from the magnification of the projection optical system. The optical head according to claim 12 or claim 22.
2 5 . 前記検出光学系は、 前記光束の投影光学系とは少なく とも一部を独立とし、 前記ホログラムを除く前記検出光学系に前記ホログラム素子の回折方向に関する 非点収差を持たせたことを特徴とする請求の範囲第 1 2項ないし請求の範囲第 2 25. The detection optical system is at least partially independent of the projection optical system of the light flux, and the detection optical system excluding the hologram has astigmatism in the diffraction direction of the hologram element. Features Claims 1 to 2 or Claims 2
2項記載の光へッ ド。 Optical head according to item 2.
2 6 . 光記億媒体上に再生または記録光ビームを照射する請求の範囲第 8項ない し請求の範囲第 1 0項記載の光へッ ドと、 前記光へッ ドの合焦検出結果に基づき 焦点合わせを行うフォーカシング手段とを備えたことを特徴とする光記憶装置。 2 7 . 光記憶媒体上に再生または記録光ビームを照射する請求の範囲第 1 1項な いし請求の範囲第 2 5項記載の光へッ ドと、 前記光へッ ドの合焦検出結果に基づ き焦点合わせを行うフォーカシング手段と、 前記光へッ ドのトラッキング誤差の 検出結果に基づき トラヅク合わせを行う トラッキング手段とを備えたことを特徴 とする光記億装置。 捕正された請求の範囲 26. The optical head according to claim 8 or claim 10 for irradiating a reproduction or recording light beam onto the optical recording medium, and a focus detection result of the optical head according to claim 8 or 10. An optical storage device, comprising: focusing means for performing focusing based on the following. 27. The optical head according to claim 11 or claim 25, wherein the optical storage medium is irradiated with a reproduction or recording light beam, and a focus detection result of the optical head. An optical storage device comprising: focusing means for performing focusing on the basis of: and tracking means for performing focusing based on the detection result of the tracking error of the optical head. Claims captured
[1993年 4月 9日(09.04.93)国際事務局受理;出願当初の請求の範囲 1-27は捕正された請求  [Accepted by the International Bureau on April 9, 1993 (09.04.93); Claims 1-27 as originally filed were captured
の範囲 1-35に置き換えられた。 (6頁) I  Range was replaced with 1-35. (Page 6) I
1 . 合焦目標面からの反射光を収斂させる検出光学系と、 1. A detection optical system that converges the reflected light from the focusing target surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一の検出平面上に配置され た一対の光検出手段とを備え、  A pair of light detection means arranged on the same detection plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記ホログラム素子は、 前記検出平面上に最小錯乱円を形成する互いに非点収 差の方位が直交した一対の非点収斂光束を発生し、  The hologram element generates a pair of astigmatic light beams that form a minimum circle of confusion on the detection plane and whose astigmatic directions are orthogonal to each other,
—対の前記非点収斂光束を一対の前記光検出手段により検出し、  -Detecting the pair of astigmatic light beams by the pair of light detection means;
一対の前記光検出手段の出力を比較することにより、 前記目標面への合焦を検 出することを特徵とする合焦検出機構。  A focus detection mechanism for detecting focus on the target surface by comparing outputs of a pair of the light detection means.
2 . 前記ホログラム素子は、 双曲線群または捕正され'た双曲線群に概ね沿った光 変調率パターンを有することを特徴とする請求の範囲第 1項記載の合焦検出機構。  2. The focus detection mechanism according to claim 1, wherein the hologram element has a light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group.
3 . 合焦目標面からの反射光を収斂させる検出光学系と、  3. A detection optical system that converges the reflected light from the focusing target surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記目標面と概ね共役な同一の検出平面上に配置され た一対の光検出手段とを備え、  A pair of light detection means arranged on the same detection plane that is substantially conjugate with the target surface with respect to the detection optical system,
前記ホログラム素子は、 二つ以上の領域に分割され、 前記検出平面上で最小錯 乱円を形成する互いに非点収差の方位が直交した一対の非点収斂光束を、 二つの 異なった前記領域から発生し、  The hologram element is divided into two or more regions, and forms a pair of astigmatic convergent light beams that form a minimum circle of confusion on the detection plane and whose astigmatism directions are orthogonal to each other, from two different regions. Occurs
一対の前記非点収斂光束を一対の前記光検出手段により検出し、  Detecting the pair of astigmatic convergent light beams by the pair of light detection means,
—対の前記光検出手段の出力を比較することにより、 前記百標面への合焦を検 出することを特徴とする合焦検出機構。  A focus detection mechanism for detecting focus on the centroid by comparing outputs of the pair of light detection means;
4 . 前記ホログラム素子の各領域は、 双曲線群または捕正された双曲線群に概ね 沿った光変調率パターンを有することを特徵とする請求の範囲第 3項記載の合焦 検出機構。  4. The focus detection mechanism according to claim 3, wherein each region of the hologram element has a light modulation rate pattern substantially along a hyperbolic group or a captured hyperbolic group.
5 · 前記ホログラム素子はブレーズ化されていることを特徵とする請求の範囲第 3項または請求の範囲第 4項記載の合焦検出機構。  5. The focus detection mechanism according to claim 3, wherein the hologram element is blazed.
6 . 前記検出光学系は、 前記目標面へ光束を入射させる投影光学系と共通とした ことを特徴とする請求の範囲第 1項ないし請求の範囲第 5項記載の合焦検出機構。 6. The focus detection mechanism according to claim 1, wherein the detection optical system is common to a projection optical system that causes a light beam to enter the target surface.
7 . 前記検出光学系は、 前記投影光学系とは少なく とも一部を独立と し、 前記検 出光学系の倍率を前記投影光学系の倍率とは異ならせたこ とを特徴とする請求の 範囲第 1項ないし請求の範囲第 5項記載の合焦検出機構。 7. The detection optical system is at least partially independent of the projection optical system, and the magnification of the detection optical system is different from the magnification of the projection optical system. 6. The focus detection mechanism according to claim 1 or claim 6.
8 . 前記検出光学系は、 前記投影光学系とは少なく とも一部を独立と し、 前記ホ 口グラム素子を除く前記検出光学系に、 前記ホログラム素子の主たる回折面と平 行または垂直な方位の非点収差を持たせたことを特徵とする請求の範囲第 1項な いし請求の範囲第 5項記載の合焦検出機構。  8. The detection optical system is at least partially independent of the projection optical system, and the detection optical system excluding the hologram element has an orientation parallel or perpendicular to a main diffraction surface of the hologram element. 6. The focus detection mechanism according to claim 1, wherein the astigmatism is given.
9 . 前記光検出手段は、 長尺な光検出素子と、 前記光検出素子の少なく とも一部 を包囲する別の光検出素子とからなり、 両者の出力の差を前記光検出手段の出力 と して用いるこ とを特徵とする請求の範囲第 1項ないし請求の範囲第 8項記載の 合焦検出機構。  9. The light detecting means is composed of a long light detecting element and another light detecting element surrounding at least a part of the light detecting element, and a difference between outputs of both the light detecting element and an output of the light detecting means. 9. The focus detection mechanism according to claim 1, wherein the focus detection mechanism is used.
1 0 . 請求の範囲第 1項ないし請求の範囲第 9項記載の合焦検出機構を備え、 再 生または記録光ビームの光記億媒体面への合焦検出に用いるこ とを特徴とする光 へッ ド。  10. A focus detection mechanism according to claim 1 to claim 9, wherein the focus detection mechanism is used for playback or focus detection of a recording light beam on an optical recording medium surface. Light head.
1 1 . 前記光検出手段の出力を用いて、 前記光記億媒体の記録ピッ トの再生を行 'う ことを特徵とする請求の範囲第 1 0項記載の光へッ ド。  11. The optical head according to claim 10, wherein a recording pit of said optical storage medium is reproduced using an output of said optical detection means.
1 2 前記光検出手段の前面に検光子を備え、 前記光記億媒体の光磁気記録によ る記録ビッ トの再生を行う ことを特徵とする請求の範囲第 1 0項または請求の範 囲第 1 1項記載の光へッ ド。  12. The apparatus according to claim 10, wherein an analyzer is provided on a front surface of the light detecting means, and reproduction of recording bits by magneto-optical recording of the optical recording medium is performed. An optical head according to item 11.
1 3 . 前記光検出手段を前記光記億媒体面の トラック接線方向に対応する分割線 により二つに分割し、 分割された前記光検出手段の出力を比較することによ り前 記光ビームの トラツキング誤差を検出することを特徵とする請求の範囲第 1 0項 ないし請求の範囲第 1 2項記載の光へッ ド。  13. The light beam is divided into two parts by a dividing line corresponding to a track tangent direction of the optical recording medium surface, and the output of the divided light detecting means is compared with the light beam. The optical head according to claim 10, wherein the tracking error is detected.
1 4 . 再生または記録光ビームの光記憶媒体面からの反射光を収斂させる検出光 学系と、  1 4. A detection optical system for converging the reflected light of the reproducing or recording light beam from the optical storage medium surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記光記億媒体面と概ね共役な同一の検出平面上に配 置された二対の光検出手段とを備え、  And two pairs of light detection means disposed on the same detection plane that is substantially conjugate with the optical storage medium surface with respect to the detection optical system,
前記ホログラム素子は、 少なく とも前記光記億媒体面の トラ ック接線方向に対 応する分割線により二つの領域に分割され、 前記ホログラム素子の二つの前記領域から、 前記検出平面上で最小錯乱円を形 成する互いに非点収差の方位が直交した各一対の非点収斂光束を、 互いに分離し て発生し、 The hologram element is divided into at least two regions by a dividing line corresponding to a track tangential direction of the optical recording medium surface, From the two regions of the hologram element, a pair of astigmatic convergence light beams that form a circle of least confusion on the detection plane and whose astigmatism directions are orthogonal to each other are generated by being separated from each other,
二対の前記非点収斂光束を二対の前記光検出手段により検出し、  Two pairs of the astigmatic light beams are detected by two pairs of the light detection means,
同じ対に属する前記光検出手段の出力を比較することにより、 前記光記億媒体 面への合焦を検出し、  By comparing the outputs of the light detecting means belonging to the same pair, the focusing on the optical storage medium surface is detected,
異なる対に属する前記光検出手段の出力を比較することにより、 前記光ビーム のトラッキング誤差を検出することを特徵とする光ヘッ ド。 - An optical head characterized in that a tracking error of the light beam is detected by comparing outputs of the light detecting means belonging to different pairs. -
1 5 . 前記ホログラム素子の各領域は、 双曲線群または捕正された双曲線群に概 ね沿つた光変調率パターンを有することを特徵とする請求の範囲第 1 4項記載の 光へッ ド。 15. The light head according to claim 14, wherein each region of said hologram element has a light modulation rate pattern substantially along a hyperbolic group or a captured hyperbolic group.
1 6 . —方の同じ対に属する前記光検出手段の出力和と、 他方の同じ対に属する 前記光検出手段の出力和との差を実質的に得る演算により、 前記光ビームのトラ ッキング誤差を検出することを特徵とする請求の範囲第 1 4項または請求の範囲 第 1 5項記載の光へヅ ド。  16. The tracking error of the light beam is calculated by substantially obtaining the difference between the output sum of the light detection means belonging to the same pair and the output sum of the light detection means belonging to the other same pair. The optical head according to claim 14 or claim 15, characterized in that the optical head is detected.
1 -7 . 互いに異なる対に属する一組の前記光検出手段の出力和と、 他のもう一組 の前記光検出手段の出力和との差を実質的に得る演算により、 前記光記億媒体面 への合焦を検出することを特徵とする請求の範囲第 1 4項ないし請求の範囲第 1 6項記載の光へッド。  1 -7. The optical storage medium is calculated by substantially obtaining a difference between the output sum of one set of the light detection means belonging to a different pair and the output sum of another set of the light detection means. 17. The optical head according to claim 14, wherein focus on a surface is detected.
1 8 . 前記光検出手段の検出出力を用いて、 前記光記億媒体の記録ピッ トの再生 を行う請求の範囲第 1 4項ないし請求の範囲第 1 7項記載の光へッド。  18. The optical head according to claim 14, wherein a recording pit of the optical recording medium is reproduced by using a detection output of the photodetecting means.
1 9 . 前記光検出手段の前面に検光子を備え、 前記光記億媒体の光磁気記録によ る記録ビッ トの再生を行う請求の範囲第 1 4項ない'し請求の範囲第 1 8項に記載 の光へヅド。  19. The photodetector according to claim 14, further comprising an analyzer in front of said light detecting means, for reproducing recorded bits by magneto-optical recording of said optical recording medium. Light head as described in section.
2 0 . 二群の前記光検出手段の前面に、 二つの群で互いに透過軸の方位角が異な つた検光子を備え、 異なる群に属する前記光検出手段の出力を比較することによ り、 前記光記億媒体の光磁気記録による記録ビッ トの再生を行う請求の範囲第 1 9項記載の光へッド。  20.In front of the two groups of light detection means, two groups are provided with analyzers having different transmission axis azimuth angles, and the outputs of the light detection means belonging to different groups are compared. 20. The optical head according to claim 19, wherein recording bits are reproduced by magneto-optical recording on said optical storage medium.
2 1 . 前記光検出手段ば、 長尺な光検出素子と、 前記光検出素子の少なく とも一 部を包囲する別の光検出素子とからなり、 雨者の差の出力を前記光検出手段の出 力として用いることを特徵とする請求の範囲第 1 4項ないし請求の範囲第 2 0項 記載の光へッ ド。 21. The light detecting means comprises a long light detecting element, and another light detecting element surrounding at least a part of the light detecting element, and outputs an output of a rain difference to the light detecting means. Out The optical head according to claim 14, wherein the optical head is used as a force.
2 2 . 再生または記録光ビームの光記億媒体面からの反射光を収斂させる検出光 学系と、  2 2. A detection optical system that converges the reflected light of the reproducing or recording light beam from the optical recording medium surface,
前記検出光学系中に配置されたホログラム素子と、  A hologram element arranged in the detection optical system,
前記検出光学系に関して前記光記億媒体面と概ね共役な同一の検出平面上に配 置された一対の光検出手段を備え、  A pair of light detection means disposed on the same detection plane that is substantially conjugate to the optical storage medium surface with respect to the detection optical system;
前記光検出手段は長尺な光検出素子と前記光検出素子の少なく とも一部を包囲 する別の光検出素子とからなり、  The light detection means includes a long light detection element and another light detection element surrounding at least a part of the light detection element,
前記ホログラム素子は、 少なく とも前記光記億媒体面の トラック接線方向に対 応する分割線により二 に分割され、 前記検出平面上で最小錯乱円を形成する互 いに非点収差の方位が直交した一対の非点収斂光束を、 二つの異なった前記領域 から互いに分離して発生し、  The hologram element is divided into at least two parts by a dividing line corresponding to a track tangent direction of the optical storage medium surface, and forms a minimum circle of confusion on the detection plane, and the directions of astigmatism are orthogonal to each other. Generated as a pair of astigmatic convergent light beams separated from each other from the two different regions,
—対の前記非点収斂光束を一対の前記光検出手段により検出し、  -Detecting the pair of astigmatic light beams by the pair of light detection means;
前記長尺な光検出素子の出力とこれを包囲する前記の別の光検出素子の出力と の出力差を、 一対の前記光検出手段について比較することにより前記光記億媒体 面への合焦を検出し、  By comparing the output difference between the output of the long light detecting element and the output of the another light detecting element surrounding the long light detecting element with respect to the pair of the light detecting means, focusing on the optical recording medium surface is performed. To detect
—対の前記長尺な光検出素子のみの出力を比較するこ とにより、 前記光ビーム の トラッキング誤差を検出することを特徴とする光へッ ド。  —A light head characterized by detecting a tracking error of the light beam by comparing outputs of only the pair of long light detecting elements.
2 3 . 前記ホログラム素子の各領域は、 双曲線群または補正された双曲線群に概 ね沿った光変調率パターンを有することを特徴とする請求の範囲第 2 2項記載の 光へ、ソ ド。 23. The light source according to claim 22, wherein each region of the hologram element has a light modulation rate pattern substantially along a hyperbolic group or a corrected hyperbolic group.
2 4 · 前記ホログラム素子はブレーズ化されていることを特徴とする請求の範囲 第 2 2項または請求の範囲第 2 3項記載の光へッ ド。  24. The optical head according to claim 22, wherein said hologram element is blazed.
2 5 . 請求の範囲第 2 2項ないし請求の範囲第 2 4項記載の光へッ ドにおいて、 前記長尺な光検出素子とこれを包囲する前記の別の光検出素子との出力和を、 一 対の前記光検出手段について比較することにより、 前記光ビームの トラッキング 誤差を検出することを特徵とする光へッ ド。  25. The optical head according to claim 22 or claim 24, wherein the output sum of the long photodetector and the another photodetector surrounding the long photodetector is calculated. A light head characterized by detecting a tracking error of the light beam by comparing a pair of the light detection means.
2 6 . 前記光検出手段の検出出力を用いて、 前記光記憶媒体の記録ピッ トの再生 を行う ことを特徴とする請求の範囲第 2 2項ないし請求の範囲第 2 5項記載の光 33 へッ o 26. The light according to claim 22 or 25, wherein the recording pit of said optical storage medium is reproduced by using a detection output of said light detecting means. 33 He o
2 7 . 前記光検出手段の前面に検光子を備え、 前記光記億媒体の光磁気記録によ る記録ビッ トの再生を行うことを特徵とする請求の範囲第 2 2項ないし請求の範 囲第 2 6項記載の光へヅド。  27. The method according to claim 22, wherein an analyzer is provided in front of said light detecting means, and reproduction of recording bits by magneto-optical recording of said optical recording medium is performed. 26. A light head according to item 26.
2 8 . 前記ホログラム素子の分割された二つの前記領域において、 各領域の回折 面を互いに傾けて配置することにより、 前記非点収斂光束を互いに分離すること を特徴とする請求の範囲第 1 4項ないし請求の範囲第 2 7項記載の光へ、ソド。  28. In the two divided areas of the hologram element, the astigmatic light beams are separated from each other by arranging the diffractive surfaces of the respective areas at an angle to each other. 27. The light according to claim 27 or claim 27.
2 9 . 前記ホログラム素子の分割された二つの前記領域において、 各領域の回折 角を互いに相違させて選択することにより、 前記非点収斂光束を互いに分離する ことを特徴とする請求の範囲第 1 4項ないし請求の範囲第 2 7項記載の光へッ ド。  29. In the two divided areas of the hologram element, the non-point convergent light beams are separated from each other by selecting diffraction angles of the respective areas different from each other. The optical head according to claim 4 to claim 27.
3 0 . 前記検出光学系は、 前記光ビームの投影光学系と共通としたことを特徴と する請求の範囲第 1 4項ないし請求の範囲第 2 9項記載の光へッド。  30. The optical head according to claims 14 to 29, wherein said detection optical system is common to said light beam projection optical system.
' 3 1 . 前記検出光学系は、 前記光ビームの投影光学系とは少なく とも一部を独立 とし、 前記検出光学系の倍率を前記投影光学系の倍率とは異ならせたことを特徴 とする請求の範囲第 1 4項ないし請求の範囲第 2 9項記載の光へヅ ド。  '31. The detection optical system is at least partially independent of the light beam projection optical system, and the magnification of the detection optical system is different from the magnification of the projection optical system. The optical head according to claim 14 to claim 29.
3 2 . 前記検出光学系は、 前記光束の投影光学系とは少なくとも一部を独立とし、 前記ホログラムを除く前記検出光学系に、 前記ホログラム素子の主たる回折面と 平行または垂直な方位の非点収差を持たせたことを特徵とする請求の範囲第 1 2 項ないし請求の範囲第 2 9項記載の光へッ ド。  32. The detection optical system is at least partially independent of the light beam projection optical system, and the detection optical system excluding the hologram has an astigmatism in a direction parallel or perpendicular to a main diffraction surface of the hologram element. The optical head according to claim 12, wherein the optical head has an aberration.
3 3 . 光記億媒体上に再生または記録光ビームを照射する請求の範囲第 1 0項な いし請求の範囲第 1 2項記載の光へッドと、 前記光へッ ト'の合焦検出結果に基づ き焦点合わせを行うフオーカシング手段とを備えたことを特徴とする光記億装置。  33. The optical head according to claim 10 or claim 12 for irradiating a reproduction or recording light beam onto the optical recording medium, and focusing on the optical head 'and the optical head according to claim 10. An optical storage device comprising: focusing means for performing focusing based on a detection result.
3 4 . 光記億媒体上に再生または記録光ビームを照射する請求の範囲第 1 3項な いし請求の範囲第 3 2項記載の光へッドと、 前記光へッ ドの合焦検出結果に基づ き焦点合わせを行うフオーカシング手段と、 前記光へッ ドのトラッキング誤差の 検出結果に基づきトラック合わせを行う トラッキング手段とを備えたことを特徵 とする光記億装置。  34. The optical head according to claim 13 or claim 32, wherein the reproducing or recording light beam is irradiated onto the optical recording medium, and the focus detection of the optical head. An optical storage device comprising: focusing means for performing focusing based on a result; and tracking means for performing tracking based on a detection result of the tracking error of the optical head.
3 5 . 光記億媒体上に再生または記録光ビームを照射し、 第一出力ないし第四出 力で区別される四種からなる光電変換出力を出力する光ヘッ ドを有し、  35. An optical head for irradiating a reproduction or recording light beam onto the optical recording medium and outputting four types of photoelectric conversion outputs distinguished by a first output to a fourth output,
実質的に 〔第一出力 +第二出力) ― 〔第三出力 +第四出力〕 の演算を行って、 3s Effectively, [1st output + 2nd output)-[3rd output + 4th output] 3s
前記光記億媒体面上への前記光ビームの合焦を検出し、 Detecting the focus of the light beam on the optical storage medium surface;
実質的に (第一出力 +第三出力) 一 (第二出力 +第四出力〕 の演算を行って、 前記光記億媒体面上への前記光ビームのト ラ ッキング誤差を検出し、  Substantially calculating (first output + third output) one (second output + fourth output) to detect a tracking error of the light beam on the optical recording medium surface;
実質的に (第一出力 +第四出力) 一 〔第二出力 +第三出力〕 の演算を行って、 前記光記憶媒体面上の光磁気記録ビッ トを再生することを特徴とする光記億装置, An optical recording method comprising: performing substantially (first output + fourth output) 1 [second output + third output] to reproduce a magneto-optical recording bit on the optical storage medium surface; Billion devices,
条約第 19条に基づく説明書 請求の範囲の捕正は、 請求の範囲の表現と搆成を実施例に基づい て適正にする こ と によ り 本発明の特徵を よ り 明確化する ために行つ たも のであ り、 詳細は以下の通 り であ る。 請求の範囲第 1 項は、 出願時における請求の範囲第 1 項か ら基本 構成を取り 出 し、 適切な表現を用いて、 本発明の合焦検出機構の特 徴を よ り 明確化し たも のであ る。 請求の範囲第 2項は、 出願時における請求の範囲第 1 項に記載さ れていたホ ロ グラ ム素子の特徴を適切に表現 し、 その特徴を よ り 明 確化 し たも のであ る。 請求の範囲第 3項は、 出願時における請求の範囲第 2項から基本 構成を取り 出 し、 適切な表現を用いて、 本発明の合焦検出機構の特 徴をよ り 明確化 し たも のであ る。 饋求の範囲第 4項は、 出願時における請求の範囲第 2項に記載さ れていたホ ロ グラ ム素子の特徵を適切に表現し、 その特徵を よ' り 明 確化し たも のであ る。 請求の範囲第 5項は、 出願時における請求の範囲第 3項において、 速切な表現によ り 文章を整え、 引用 している請求の範囲の番号を変 更し た も のである。 請求の範囲第 6項は、 出願時における請求の範囲第 4項において、 引用 し てい る請求の範囲の番号のみを変更し た も のであ る。 請求の範囲第 7項は、 出願時における請求の範囲第 5項において、 引用 し ている請求の範囲の番号のみを変更し た も のであ る。 請求の範囲第 8項は、 出願時における請求の範囲第 6項において. 適切な表現を用い る こ と によ り 特徵を明確化 し、 引用 している請求 の範囲の番号を変更 し たも のであ る。 請求の範囲第 9 項は、 出願時に おけ る請求の範囲第 7 項にお いて. 適切な表現に よ り 文章を整 え、 引用 し て い る請求の範囲の番号を変 更 し た も のであ る。 請求の範囲第 1 0項は、 出願時におけ る請求の範囲第 8 項に おい て、 引用 し て い る請求の範囲の番号のみ を変更 し た も ので あ る。 請求の範囲第 1 1 項は、 出願時におけ る請求の範囲第 9 項に おい て、 引用 し てい る請求の範囲 の番号のみを変更 し た も ので あ る。 請求の範囲第 1 2項は、 出願時におけ る請求の範囲第 1 0項にお いて、 引用 し てい る請求の範囲の番号のみを変更 し た も のであ る。 請求の範囲第 1 3項は、 出願時におけ る請求の範囲第 1 1 項にお いて、 適切な表現を用 い る こ と に よ り 特徴を明確化 し、 引用 し て い る請求の範囲の番号を変更 し た も のであ る。 請求の範囲第 1 4項は、 出願時におけ る請求の範囲第 1 2 項から 基本構成を取 り 出 し、 適切な表現を用いて、 本発明の光ヘ ッ ド の特 徴を よ り 明確化 し たも のであ る。 請求の範囲第 1 5項は、 出願時におけ る請求の範囲第 1 2 項に記 載さ れていたホ ロ グラ ム素子の特徴を適切に表現 し、 そ の特徴を よ り 明確化 し た も のであ る。 請求の範囲第 1 6項は、 出願時におけ る請求の範囲第 1 2 項に記 載さ れてい た ト ラ ッ キ ン グ誤差検出の特徵を適切に表現 し、 そ の特 徴を よ り 明確化 し た も のであ る。 請求の範囲第 1 7項は、 出願時に おけ る請求の範囲第 1 2 項に記 載さ れてい た合焦検出の特徴を適切に表現 し、 そ の特徴を よ り 明確 化 し た も のであ る。 請求の範囲第 1 8項は、 出願時におけ る請求の範囲第 1 3 項にお いて、 引用 し て い る請求の範囲の番号のみを変更 し た も のであ る。 請求の範囲第 1 9項は、 出願時における請求の範囲第 1 4項にお いて、 引用 してい る請求の範囲の番号のみを変更し たも のであ る。 請求の範囲第 2 0項は、 出願時における請求の範囲第 1 5項に記 載さ れていた光磁気記録の記録ビ ッ ト の再生の特徴を適切に表現し, その特徵を よ り 明確化 し た も のであ る。 請求の範囲第 2 1 項は、 出顆時における請求の範囲第 1 6項にお いて、 引用 してい る請求の範囲の番号のみを変更し たも のであ る。 請求の範囲第 2 2項ほ、 出願時における請求の範囲第 1 7項から 基本搆成を取り 出 し、 適切な表現を用いて、 本発明の光ヘ ッ ドの特 徵を よ り 明確化 し たも のであ る。 請求の範囲第 2 3項は、 出願時における請求の範囲第 1 7項に記 載されていたホ ロ グラ ム素子の特徴を適切に表現 し、 その特徵を よ り 明確化 し たも のであ る。 請求の範囲第 2 4項は、 出願時における請求の範囲第 1 7項に記 載されていたホロ グラ ム素子の特徴を'適切に表 ¾し、 その特徵を よ り 明確化し たも のであ る。 請求の一範囲第 2 5項は、 .出願時における請求の範囲第 1 8項にお いて、 適切な表現を用いる こ と によ り 特徵を明確化 し、 引用 し てい る請求の範囲の番号を変更し たも のであ る。 請求の範囲第 2 6項は、 出願時における請求の範囲第 1 9項にお いて、 引用 している請求の範囲の番号のみを変更 し たも のであ る。 請求の範囲第 2 7項は、 出願時における請求の範囲第 2 0項にお いて、 引用 している請求の範囲の番号のみを変更 し たも のであ る。 請求の範囲第 2 8項ば、 出願時における請求の範囲第 2 1 項にお いて、 適切な表現を用い る こ と によ り 特徴を明確化 し、 引用 し てい る請求の範囲の番号を変更し たも のであ る。 請求の範囲第 2 9 項は、 出願時 に お け る 請求 の範囲第 2 2 項 に お いて、 適切な表現 を 用 い る こ と に よ り 特徴 を 明確化 し、 引 用 し て い る請求 の範囲 の番号を 変更 し た も の で あ る。 請求の範囲第 3 0 項は、 出願時 に お け る請求 の範囲第 2 3 項 に お いて、 引用 し て い る請求の範囲の 番号 の み を 変更 し た も の で あ る。 請求の範囲第 3 1 項は、 出願時 に お け る 請求 の範囲第 2 4 項 に お いて、 引用 し て い る請求の範囲の 番号の み を 変更 し た も の で あ る。 請求の範囲第 3 2 項は、 出願時 に お け る請求 の範囲第 2 5 項 に お いて、 適切な表現 を 用 い る こ と に よ り 特徴 を 明確化 し、 引 用 し て い る請求の範囲 の番号を 変更 し た も の で あ る。 請求の範囲.第 3 3 項は、 出願時 に お け る請求 の範囲第 2 6 項 に お いて、 引用 し て い る請求の範囲の 番号の み を 変更 し た も の で あ る。 請求の範囲第 3 4 項は、 出願時 に お け る請求 の範囲第 2 7 項 に お いて、 引用 し て い る請求の範囲の 番号の み を 変 更 し た も の で あ る。 請求の範囲第 3 5 項は、 出願時 の 明細書に 開示 さ れて い る 範 囲 内 で新た に作成 し た も の で、 本発明 の光記憶装置 に適用 さ れ る 信号の 演算の特徵 を 明確化 し た も の で あ る。 Statements under Article 19 of the Convention Claims shall be collected in order to further clarify the features of the present invention by making the wording of claims and the composition of the claims appropriate based on the embodiments. The details are as follows. Claim 1 extracts the basic structure from claim 1 at the time of filing, and uses appropriate expressions to further clarify the features of the focus detection mechanism of the present invention. It is. Claim 2 is an appropriate representation of the features of the hologram element described in claim 1 at the time of filing, and further clarification of the features. Claim 3 extracts the basic structure from claim 2 at the time of filing, and uses appropriate expressions to further clarify the features of the focus detection mechanism of the present invention. It is. The fourth range of the feedback appropriately expresses the characteristics of the hologram element described in the second claim at the time of filing, and further clarifies the characteristics. You. Claim 5 is the same as Claim 3 at the time of filing, with the text being arranged in a timely manner and the number of the cited claim being changed. Claim 6 is the same as claim 4 at the time of filing, except that the number of the cited claim is changed. Claim 7 is the same as claim 5 at the time of filing, except that only the number of the cited claim is changed. Claim 8 is the same as claim 6 at the time of filing. Clarified features by using appropriate expressions, and changed the number of the cited claim. It is. Claim 9 is the same as claim 7 at the time of filing. The text has been rearranged using appropriate expressions, and the number of the cited claim has been changed. is there. Claim 10 is the same as claim 8 at the time of filing, except that only the number of the cited claim is changed. Claim 11 is the same as claim 9 at the time of filing, except that the number of the cited claim is changed. Claim 12 is the same as claim 10 at the time of filing, except that the number of the cited claim is changed. Claim 13 is a claim that clarifies the features by using appropriate expressions in claim 11 at the time of filing and cites the claim. The number has been changed. Claim 14 extracts the basic structure from claim 12 at the time of filing, and uses appropriate expressions to make the characteristics of the optical head of the present invention more clear. It has become Claim 15 properly expressed the features of the hologram element described in claim 12 at the time of filing and clarified the features. It is a thing. Claim 16 provides an appropriate representation of the tracking error detection features described in claim 12 at the time of filing, and describes the features in more detail. It is clarified. Claim 17 is an appropriate representation of the features of focus detection described in claim 12 at the time of filing, and clarifies the features. is there. Claim 18 is the same as claim 13 at the time of filing, except that the number of the cited claim is changed. Claim 19 is the same as claim 14 at the time of filing, except that the number of the cited claim is changed. Claim 20 describes appropriately the characteristics of reproducing the recording bit of magneto-optical recording described in claim 15 at the time of filing, and makes the characteristics clearer. It has become Claim 21 is the same as claim 16 at the time of condyle, except that the number of the cited claim is changed. Extract the basic feature from claim 17 at the time of filing, and clarify the characteristics of the optical head of the present invention using appropriate expressions. It is. Claim 23 is a statement that appropriately expresses the features of the holographic element described in claim 17 at the time of filing and clarifies the features. You. Claim 24 is an 'appropriate representation of the features of the holographic element described in claim 17 at the time of filing, and further clarification of the features. You. Claim No. 25 of the claim shall contain the number of the claim that clarifies the features by using appropriate expressions in the claim 18 at the time of filing and cites the claim. Has been changed. Claim 26 is the same as claim 19 at the time of filing, except that only the number of the cited claim is changed. Claim 27 is the same as claim 20 at the time of filing, except that the number of the cited claim is changed. Claim 28 states that the features of claim 21 at the time of filing were clarified by using appropriate expressions, and the number of the cited claim was changed. It has been changed. Claim 29 states the features of the claim 22 at the time of filing by clarifying the features by using appropriate expressions. The claim number has been changed. Claim 30 is the same as claim 23 at the time of filing, except that the number of the quoted claim is changed. Claim 31 is the same as claim 24 at the time of filing, except that only the number of the cited claim is changed. Claim 32 is a clarification and use of features by using appropriate language in claim 25 at the time of filing. The claim number has been changed. Claims. Paragraph 33 is a variation of Claim 26 at the time of filing, with the only change being the number of the cited claim. Claim 34 is the same as claim 27 at the time of filing, except that the number of the cited claim is changed. Claim 35 is newly created within the range disclosed in the specification at the time of filing, and is characterized by a signal operation applied to the optical storage device of the present invention. Is clarified.
PCT/JP1992/001441 1991-11-08 1992-11-06 Focus detecting mechanism and optical head and optical storage using the same WO1993009535A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05508321A JP3132001B2 (en) 1991-11-08 1992-11-06 Focus detection mechanism, optical head and optical recording apparatus using the same
KR1019930702028A KR100191884B1 (en) 1991-11-08 1992-11-06 Focus detecting mechanism and optical head and optical storage using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP29332991 1991-11-08
JP3/293329 1991-11-08
JP33724591 1991-12-19
JP3/337245 1991-12-19
JP8554192 1992-04-07
JP4/85541 1992-04-07

Publications (1)

Publication Number Publication Date
WO1993009535A1 true WO1993009535A1 (en) 1993-05-13

Family

ID=27304898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001441 WO1993009535A1 (en) 1991-11-08 1992-11-06 Focus detecting mechanism and optical head and optical storage using the same

Country Status (3)

Country Link
JP (1) JP3132001B2 (en)
KR (1) KR100191884B1 (en)
WO (1) WO1993009535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058100C (en) * 1994-10-25 2000-11-01 株式会社三协精机制作所 Photo pick-up device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179237A (en) * 1987-12-28 1989-07-17 Olympus Optical Co Ltd Optical pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179237A (en) * 1987-12-28 1989-07-17 Olympus Optical Co Ltd Optical pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058100C (en) * 1994-10-25 2000-11-01 株式会社三协精机制作所 Photo pick-up device

Also Published As

Publication number Publication date
KR100191884B1 (en) 1999-06-15
KR930703669A (en) 1993-11-30
JP3132001B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US5391865A (en) Optical pickup apparatus and optical grating assembly therefor
JP3155287B2 (en) Optical information recording / reproducing device
US4829506A (en) Apparatus for optically scanning an information plane
US5101389A (en) Optical information recording/reproducing apparatus
WO2004038708A1 (en) Optical head and optical disk unit
JP4106208B2 (en) Optical pickup device
US5673241A (en) Focus detection mechanism and optical head and optical storage device that use it
JPH09282680A (en) Optical device for optical disk device
US7064900B2 (en) Optical pickup device and optical disk device and optical device and composite optical element
US5648946A (en) Optical pick-up apparatus with holographic optical element to diffract both forward and return light beams
US6181666B1 (en) Optical pickup
JPH11296873A (en) Optical pickup device, and device and method for error detection
US7345982B2 (en) Optical pickup device, optical disk drive, optical device and composite optical element
EP0323320B1 (en) Optical head and tracking method using same
JPH1097753A (en) Optical head, tilt detector and optical information processor
JPH08212566A (en) Focusing detection means, optical head and optical storage
WO1993009535A1 (en) Focus detecting mechanism and optical head and optical storage using the same
JPH1011785A (en) Optical head
JP2886353B2 (en) Optical information recording / reproducing device
JP3115761B2 (en) Optical head
JP3837100B2 (en) Optical pickup device
JP2004014039A (en) Optical head and optical disk system
JP4053455B2 (en) Optical integrated unit and optical pickup device including the same
JP2744448B2 (en) Optical information recording / reproducing device
KR100265732B1 (en) Optical pickup

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1019930702028

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1993 87681

Country of ref document: US

Date of ref document: 19930910

Kind code of ref document: A