WO2010131369A1 - Exhaust purifying catalyst and method of manufacturing the same - Google Patents

Exhaust purifying catalyst and method of manufacturing the same Download PDF

Info

Publication number
WO2010131369A1
WO2010131369A1 PCT/JP2009/059096 JP2009059096W WO2010131369A1 WO 2010131369 A1 WO2010131369 A1 WO 2010131369A1 JP 2009059096 W JP2009059096 W JP 2009059096W WO 2010131369 A1 WO2010131369 A1 WO 2010131369A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
layer thickness
layer
catalyst layer
Prior art date
Application number
PCT/JP2009/059096
Other languages
French (fr)
Japanese (ja)
Inventor
智章 砂田
秀章 植野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/059096 priority Critical patent/WO2010131369A1/en
Publication of WO2010131369A1 publication Critical patent/WO2010131369A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa

Definitions

  • the present invention relates to an exhaust gas purification catalyst suitable for purifying gas such as NO x contained in exhaust gas, and a method for producing the same.
  • a purification catalyst having a two-layer structure for example, in addition to a single layer structure in which a metal component is present in a single layer has been proposed.
  • a catalyst provided with two upper and lower catalyst layers in which Pt and Rh are included in different layers is known in consideration of the influence on catalytic activity due to solid solution of metals.
  • the exhaust gas-purifying catalyst In the exhaust gas-purifying catalyst, heat on the upstream side is easily dissipated to the downstream side, and heat degradation on the upstream side can be suppressed, and a certain degree of improvement is expected in terms of warm-up characteristics.
  • the temperature of the exhaust gas When the temperature of the exhaust gas is low, or when the gas temperature temporarily drops due to exhaust stop due to intermittent operation, etc., the heat retention performance that can maintain the purification activity may not be stably maintained.
  • the catalyst temperature is low immediately after the engine is started, and unpurified exhaust gas tends to flow out until the catalyst is activated.
  • the present invention has been made in view of the above situation. Under these circumstances, it is necessary to provide an exhaust gas purification catalyst that is hardly affected by the exhaust gas emission conditions, can maintain the catalytic activity stably, and maintain the purification performance, and a method for producing the same. ing.
  • the present invention provides the thinnest region (layer thickness Y) in the middle of the catalyst layer in the exhaust gas flow direction, and provides regions that are twice or more thicker than the layer thickness Y on the upstream side and downstream side thereof.
  • the present inventors have obtained knowledge that the balance between heat transfer ability and heat capacity that can enhance early activation and heat retention of the catalyst from a low temperature can be optimized, and is based on such knowledge.
  • the exhaust gas purifying catalyst according to the first aspect of the present invention includes a region having a layer thickness X that is twice or more the thinnest layer thickness Y at the intermediate position between the upstream end surface and the downstream end surface in the exhaust gas flow direction.
  • a catalyst layer having upstream and downstream of the position of the layer thickness Y in the exhaust gas flow direction is provided on the support base material.
  • the thickness Y of the layer is preferably in the range of 10 to 80 ⁇ m.
  • the position of the layer thickness Y is based on the center position at an equal distance L from both ends of the exhaust gas flow direction of the catalyst layer, the position up to L ⁇ 3/10 on the upstream side in the exhaust gas flow direction and L ⁇ 3 on the downstream side. The case where it has between the position to / 10 is preferable.
  • the intermediate position between the upstream end face and the downstream end face includes not only a position equidistant from the upstream end face and the downstream end face, but also an arbitrary position between the upstream end face and the downstream end face.
  • the exhaust gas purification catalyst In the exhaust gas purification catalyst according to the first aspect of the present invention, it is twice the thinnest layer thickness Y provided between the upstream end surface and the downstream end surface of the catalyst layer in the exhaust gas flow direction in which the exhaust gas flows.
  • the regions having the above layer thickness X are provided on the upstream side and the downstream side in the exhaust gas flow direction as viewed from the position of the layer thickness Y, and the thickness of the catalyst layer once decreases from the exhaust gas inflow side and then increases.
  • the catalyst in a low temperature state is activated in a short time, and for example, the engine of a hybrid vehicle in which gas emission stops and the catalyst temperature decreases
  • the heat of the catalyst can be maintained during intermittent stops or during low speed operation in which the catalyst temperature decreases as the exhaust gas temperature decreases.
  • the exhaust gas purifying catalyst of the first invention by providing a region where the layer thickness of the catalyst layer is increased to increase the pressure loss, heat transfer from the exhaust gas to the catalyst layer is accelerated, Since the heat capacity is reduced by providing the thin region having the layer thickness Y, the rate of temperature increase of the catalyst layer can be increased. Further, since the heat capacity is increased by increasing the upstream layer thickness and the downstream layer thickness of the region of the layer thickness Y, the heat is retained even when a relatively low temperature exhaust gas flows, Since the region of thickness Y is the thinnest, heat transfer to the downstream side in the exhaust gas flow direction is reduced, so that a temperature decrease on the downstream side of the region of layer thickness Y can be prevented.
  • the purification catalyst is activated in a short time, and when there is a possibility that the catalyst temperature is lowered, the heat is maintained and the catalyst activity is kept high, and the exhaust gas can be stably purified.
  • the ratio of the layer thickness X to the layer thickness Y is preferably 3.0 or more.
  • X / Y is 3.0 or more, it is possible to expand the catalyst temperature range in which the exhaust gas purification performance can be maintained to the low temperature side. As a result, the influence of the catalyst temperature on the catalyst performance is suppressed, the catalyst activity is kept high, and the exhaust gas can be stably purified.
  • the catalyst layer is provided on the upstream side from an intermediate position between the upstream end surface and the downstream end surface in the exhaust gas flow direction, and the first catalyst layer region in which the layer thickness gradually increases from the layer thickness Y toward the upstream side.
  • a second catalyst layer region which is provided downstream from the intermediate position and whose layer thickness gradually increases from the layer thickness Y toward the downstream side. That is, the volume of the in-cell gas flow passage increases from the upstream end surface in the exhaust gas flow direction toward the region of the layer thickness Y, and the volume decreases from the position of the layer thickness Y toward the downstream end surface.
  • the catalyst layer can be configured in a two-layer structure, and when configured in a two-layer structure, the catalyst layer includes a region having a total thickness of two layers and a layer thickness X that is twice or more the layer thickness Y. be able to.
  • the upper layer or the lower layer, or both the upper layer and the lower layer have a region having a layer thickness X that is twice or more the layer thickness Y, upstream of the position of the layer thickness Y in the exhaust gas flow direction It can be configured in a concave structure provided on the downstream side.
  • the method for producing an exhaust gas purification catalyst according to the second invention comprises a catalyst metal and a thickener, and the ratio of the viscosity b at a solid content of 80% by mass to the viscosity a at a solid content of 20% by mass (b / a ) Is provided at one end of the supporting base material, and the slurry is sucked from the other end, and the layer thickness is from one end of the supporting base material to the one end side from the middle position of the other end.
  • a first step of forming a catalyst layer having a region including a layer thickness X that is twice or more the thinnest layer thickness Y at the intermediate position; and the other end of the support substrate on which the catalyst layer is formed Providing the slurry, sucking the slurry from the one end, and a catalyst layer having a region including a layer thickness X that is twice or more as large as the layer thickness Y from the intermediate position to the other end side; And a second step to be formed.
  • the viscosity a at a solid content of 20% by mass is preferably in the range of 200 to 1000 mPa ⁇ s.
  • a water-soluble polymer can be suitably used.
  • a catalyst layer having a thickness that changes. Thereby, it has the area
  • a catalyst layer can be formed.
  • the slurry provided at one end of the support substrate is sucked from the other end, and the layer thickness is the thinnest layer thickness at the intermediate position from the intermediate position toward the one end.
  • the slurry is provided on the other end of the support substrate on which the catalyst layer is formed, and the slurry is sucked from the one end, A second catalyst layer region in which the layer thickness gradually increases from the layer thickness Y toward the other end from the intermediate position can be formed.
  • the present invention maintains catalytic activity that is easily impaired by the influence of operating conditions such as cold engine start, intermittent engine stop in a hybrid vehicle, and low speed operation, and exhibits stable and excellent exhaust gas purification performance.
  • a purifying system that can do this can be constructed.
  • an exhaust gas purification catalyst that is hardly affected by exhaust gas emission conditions (particularly gas temperature) and that can stably maintain catalytic activity and maintain purification performance, and a method for producing the same. Can do.
  • FIG. 1 is a perspective view showing a schematic structure of an exhaust gas purification catalyst according to a first embodiment of the present invention. It is a perspective view which expands and shows schematic structure of the cell which comprises the exhaust gas purification catalyst of FIG.
  • FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2. It is process drawing for demonstrating the process order which forms the catalyst layer of the exhaust gas purification catalyst of this invention. It is a schematic sectional drawing which shows the internal structure of the cell in the exhaust gas purification catalyst of 2nd Embodiment of this invention. It is a schematic sectional drawing which shows the internal structure of the cell in the exhaust gas purification catalyst of 3rd Embodiment of this invention.
  • the exhaust gas purification catalyst of the present embodiment is a catalyst layer having a single layer structure in which the layer thickness gradually increases from the center position of the catalyst layer that is equidistant from the inflow side end surface and the outflow side end surface of the exhaust gas toward each end surface. Is provided.
  • the exhaust gas purification catalyst 100 of the present embodiment has a plurality of through-holes (cells; hereinafter referred to as “cells”) 11 that divide the interior with walls and penetrate from one end to the other end. And a cylindrical monolith substrate having a porous structure formed thereon. Exhaust gas (gas) flowing in the direction of the arrow flows from one end surface of the cylindrical shape, is purified when flowing through the inside, and the purified gas is discharged from the other end.
  • cells through-holes
  • each cell constituting the exhaust gas purification catalyst 100 is in the half of the inflow side between the exhaust gas inflow end surface 12 and the outflow side end surface 13 with different thickness gradients of the catalyst layer in the cylindrical axial direction.
  • the region 15 and the half 16 on the outflow side are configured.
  • An example of a perspective configuration of each cell of the exhaust gas purification catalyst 100 is shown in FIG.
  • the cell 11 is formed in a cylindrical shape having a quadrangular cross section surrounded by walls on all sides, and exhaust gas can flow through a hollow portion inside the cylinder.
  • the interior of the cell 11 is centered on a position P that is equidistant (distance L) from each of the inflow side end surface 12 and the outflow side end surface 13, toward the inflow side end surface 12 and the outflow side end surface 13.
  • the catalyst layer 17 is formed so that the thickness gradually increases. That is, at the position P, the layer thickness is the thinnest.
  • the catalyst layer 17 is provided on the inner wall surface of the wall 14 forming each cell 11 as shown in FIG.
  • FIG. 3 is a view showing a cross section taken along the line A-A ′ of FIG. 2.
  • the catalyst layer 17 gradually starts from the layer thickness Y at the position P where the thickness is the smallest from the center position P that is equidistant from both end faces of the cell 11 (the inflow end face 12 and the outflow end face 13).
  • the layer thickness is increased. That is, the catalyst layer 17 includes a first catalyst layer region 15a in which the layer thickness gradually increases from the layer thickness Y toward the upstream side from the position P on the upstream side of the position P in the flow direction of the exhaust gas (gas).
  • a second catalyst layer region 16a On the downstream side of P, a second catalyst layer region 16a whose layer thickness gradually increases from the layer thickness Y from the position P toward the downstream side is provided.
  • the layer thickness X of the catalyst layer 17 on both end faces of the cell 11 is formed to be twice or more (X / Y ⁇ 2.0) with respect to the layer thickness Y at the position P.
  • the first catalyst layer region 15a and the second catalyst layer region 16a have the same catalyst configuration.
  • the layer thickness increases from the position P where the layer thickness is the thinnest, and the pressure loss increases.
  • the heat capacity can be reduced, so that the heating rate of the catalyst layer can be increased.
  • the heat capacity is increased by increasing the layer thickness from the layer thickness Y to twice or more in the first catalyst layer region 15a and the second catalyst layer region 16a, so that a relatively low temperature exhaust gas is generated. Even if it flows in, heat is retained.
  • the catalyst temperature tends to be low, but it is possible to activate the catalyst in a low temperature state in a short time.
  • the catalyst temperature is likely to drop when the gas emission is stopped, and during low speed operation, the exhaust gas temperature itself is low and the catalyst temperature is likely to drop. It is possible to maintain heat so that the catalytic activity can be purified.
  • the ratio (X / Y) of the layer thickness X on the upstream side and downstream side of the position P of the thinnest layer thickness Y to the layer thickness Y in the exhaust gas flow direction is 2.0 or more.
  • the ratio X / Y is preferably 3.0 or more.
  • the ratio X / Y is 3.0 or more, particularly when the temperature of the catalyst is raised, it is possible to maintain good purification performance even when the catalyst temperature is relatively low. Therefore, the temperature range in which the purification performance can be maintained is widened under both conditions of temperature rise and temperature fall, and a reduction in the purification performance due to the temperature fluctuation of the catalyst can be suppressed.
  • the ratio X / Y is preferably 3.0 or more, 6.0 or less, more preferably 4.0 or more, and 6.0 or less, and still more preferably 5. It is 0 or more and 6.0 or less.
  • the thinnest layer thickness Y is preferably in the range of 10 to 80 ⁇ m, more preferably in the range of 20 to 60 ⁇ m. If the thickness of the layer thickness Y is 10 ⁇ m or more, more preferably 20 ⁇ m or more, the desired performance can be maintained without impairing the purification efficiency of the exhaust gas flowing in, and if it is 80 ⁇ m or less, further 60 ⁇ m or less, the heat capacity This is advantageous in that becomes smaller.
  • the position of the thinnest layer thickness Y of the catalyst layer may be provided so as to be deviated from the center position equidistant from both end faces toward one end face side, and the same effect as when the layer thickness Y is at the position P is obtained. It is done.
  • the position of the thinnest layer thickness Y is the direction of the exhaust gas flow in the catalyst layer from the viewpoint of rapidly activating the catalyst at low temperatures and enhancing the heat retention when conditions such as the temperature and discharge amount of the exhaust gas fluctuate.
  • the center position P that is equidistant (distance L) from both ends is preferably between the position up to L ⁇ 3/10 on the upstream side and the position up to L ⁇ 3/10 on the downstream side.
  • the case where the layer thickness X in the first catalyst layer region 15a of the catalyst layer 17 and the layer thickness X in the second catalyst layer region 16a are the same has been described as an example.
  • the catalyst layer region 15a and the second catalyst layer region 16a may be configured to have different thicknesses and ratios of increasing thickness.
  • the catalyst layer 17 has a shape in which the thickness gradually increases from the position P toward both end faces as in the present embodiment, and the thickness is a stepped stepwise with a predetermined thickness from the position P toward both end faces.
  • the thickness may be increased, or the thickness may be gradually or stepwise increased from the position P to a predetermined position that does not reach the end face, and after reaching that thickness, the end face may have the same thickness, or a catalyst layer may be provided. No shape is acceptable.
  • the catalyst layer 17 may be configured to be provided on the wall 14 by coating a noble metal having catalytic ability as a catalyst metal.
  • the catalyst layer 17 stores, for example, NO x in an oxygen-excess lean atmosphere, and releases the occluded NO x by changing the exhaust gas atmosphere to a rich atmosphere with excess reducing components such as stoichiometric hydrogen.
  • it can be a NO x storage-and-reduction type of purification catalyst for reducing component is reacted with reduced purification such as HC and CO by the action of the noble metal.
  • noble metals include platinum (Pt), palladium (Rh), rhodium (Rh), and the like.
  • the catalyst layer can contain a NO x storage material such as an alkali metal such as Li, K, Na, Mg, Ca, St, or Ba, or an alkaline earth metal.
  • Pt is excellent in NO oxidation activity.
  • concentration of Pt in the catalyst layer is preferably in the range of 0.1 to 5 g / L from the viewpoint of NO oxidation efficiency. Further, Pd is higher the NO x reduction activity has oxidation activity of NO. Moreover, since Pd is highly stable in a lean atmosphere, the presence of Pd together with Pt can suppress the growth of Pt grains and keep the NO oxidation activity of Pt high.
  • Pt and Pd can be supported on a desired carrier and contained in the catalyst layer.
  • a desired carrier zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), silica, silica-alumina, ceria (CeO 2 ), oxide particles such as zeolite, and mixed particles thereof can be used.
  • ZrO 2 zirconium dioxide
  • Al 2 O 3 aluminum oxide
  • silica silica-alumina
  • oxide particles such as zeolite, and mixed particles thereof can be used. .
  • Pt-supported oxide particles supporting Pt may be mixed with Pd-supported oxide particles supporting Pd, or both Pt and Pd are supported.
  • Oxide particles may be used.
  • the Pt-supported oxide is, for example, a mixture of an oxide powder or granular material such as ZrO 2 powder and a diammineplatinum dinitrate solution, a platinum chloride solution, an ammineplatinum solution, and the like, followed by drying and firing (for example, 400 to For example, about 800 ° C.).
  • the oxide particles supporting both Pt and Pd are, for example, oxide powder such as ZrO 2 powder and granular materials, diammine platinum nitrate solution, platinum chloride solution, ammine platinum solution, and palladium nitrate. It can be obtained by mixing a solution, a palladium chloride solution and the like, drying, firing (for example, about 400 to 800 ° C.), and the like.
  • Rh is excellent in reducing activity of NO x.
  • the Rh to another layer from the layer containing Pt (preferably supported on a support) by the presence, is suppressed solid solution with Pt, favorably reducing NO x in a rich atmosphere, to purify NO x.
  • Rh can be supported on a desired carrier and contained in the layer, and the same carrier as described above can be used.
  • an Rh-supported oxide carrying Rh is prepared by mixing oxide powder such as ZrO 2 powder or granular material with a rhodium nitrate solution, a rhodium chloride solution, an ammine rhodium solution, and drying and firing (for example, For example, about 400 to 800 ° C.).
  • the first catalyst layer region 15a and the second catalyst layer region 16a of the catalyst layer 17 may have the same or different catalyst composition such as the type and ratio of the catalyst metal contained.
  • the supporting base material supports the catalyst layer, and a known material made of ceramics or metal can be selected depending on the purpose or circumstances. Specific examples include cordierite honeycomb substrates, SiC honeycomb substrates, metal honeycomb substrates, and the like.
  • the exhaust gas purification catalyst 100 includes a catalyst metal and a thickener, and the ratio (b / a) of the viscosity b at a solid content of 80% by mass to the viscosity a at a solid content of 20% by mass is 2.4 or more.
  • this slurry is provided on the exhaust gas inflow end surface 12 of the support base material, and the slurry is sucked from the outflow side end surface 13 which is the other end, whereby the inflow side end surface 12 and the outflow side end surface 13 of the support base material.
  • first catalyst layer region 15a in which the layer thickness gradually increases from the thinnest layer thickness Y at the position P from the center position P that is equidistant to the inflow side end surface 12, respectively.
  • the slurry is provided on the outflow side end surface 13 which is the other end of the support base in which the region 15a is formed, and the slurry is sucked from the inflow side end surface 12 of the exhaust gas, so that the center position P toward the outflow side end surface 13 Layer thickness It can be prepared by providing a step of forming a second catalyst layer region 16a which gradually increases from the thickness Y.
  • slurry is sequentially provided to one end (exhaust gas inflow end surface 12) and the other end (exhaust gas outflow end surface 13) of the support base material. It can be produced by performing an operation of sucking from the side where the slurry is not provided.
  • a holding member 53 that holds a predetermined amount of slurry is provided at one end (an inflow side end surface 12 in FIG. 1) of a support base material 51 such as a monolith base material. After supplying the slurry 52 (I slurry installation; coat (1)), the slurry is sucked from the other end (outflow side end face 13 in FIG. 1) to be absorbed into the supporting substrate (II slurry suction).
  • the holding member 53 covers the end of the support base 51 and holds the slurry supplied from a slurry supply member (not shown) on the end.
  • a slurry supply member (not shown)
  • suction may be performed simultaneously when slurry is supplied to the end face, or suction may be started after a predetermined amount of slurry is supplied to the end face.
  • the catalyst layer can be formed with a distribution in the coat thickness by utilizing the abrupt viscosity change caused by the increase in the solid content.
  • regions having a layer thickness X that is twice or more the layer thickness Y can be formed on the upstream side and the downstream side in the exhaust gas flow direction at the position of the layer thickness Y, respectively.
  • the outflow side end surface 13 that has been sucked is coated with slurry (III slurry installation; Coat (2)) and then sucking from the opposite outflow side end face 12 to absorb the slurry (IV slurry suction).
  • a thickener is used, and a slurry in which the ratio of the viscosity b to the viscosity a (b / a) satisfies b / a ⁇ 2.4 when the solid content changes is used.
  • the slurry includes at least a catalytic metal and a thickener, and generally includes a solvent such as water. Moreover, a slurry can be comprised using another component as needed. Examples of the catalyst metal are as described above. Moreover, the said thickener is a compound which raises the viscosity of a slurry, For example, water-soluble polymers, such as hydroxyethyl cellulose (HEC), carboxymethylcellulose, methylcellulose, polyvinyl alcohol, etc. can be used. The solid content concentration of the slurry is generally adjusted to a range of 20 to 60% by mass.
  • HEC hydroxyethyl cellulose
  • carboxymethylcellulose methylcellulose
  • polyvinyl alcohol polyvinyl alcohol
  • the ratio of the viscosity b at a solid content of 80% by mass (b / a) to the viscosity a at a solid content of 20% by mass is 2.4 or more. If the ratio b / a is less than 2.4, the degree of thickening caused by the increase in the solid content when the slurry is sucked is too small, and 2 for the thinnest layer thickness Y of the catalyst layer. A catalyst layer having a region having a layer thickness more than twice cannot be formed.
  • the content of the thickener in the slurry is preferably 0.5 to 8.0% by mass in a range satisfying the b / a with respect to the total mass of the slurry.
  • the viscosity (25 ° C.) of the slurry used for forming the catalyst layer is preferably 200 to 1000 mPa ⁇ s, and preferably 400 to 800 mPa ⁇ s. More preferred.
  • the viscosity a on the low-viscosity side with a low solid content is 200 mPa ⁇ s or more, more preferably 400 mPa ⁇ s or more, because the amount of solvent (especially water) is not too much, so the viscosity increases rapidly due to moisture absorption. A viscosity change is obtained and the thickness of the catalyst layer is easily changed.
  • the viscosity a is 1000 mPa ⁇ s or less, and further 800 mPa ⁇ s or less, the amount of solvent (especially water) is not small, so that the viscosity change due to moisture absorption is kept large, and from the substrate end face side to the inside It is easy to form a catalyst layer that is inclined toward the surface.
  • the viscosity in the present invention means a viscosity at 25 ° C. when a shear rate of 1 sec ⁇ 1 is applied, and is measured by a TV33 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the layer thickness is gradually increased from the center position of the catalyst layer toward the end surface as in the first embodiment.
  • a second catalyst layer is provided to form a two-layer structure.
  • the support substrate and the catalyst layer 17 can be configured in the same manner as in the first embodiment, and the same reference numerals are given to the same components as in the first embodiment, and the details thereof The detailed explanation is omitted.
  • a catalyst layer 22 carrying a noble metal (catalyst metal) having catalytic ability as a first catalyst layer.
  • a noble metal platinum (Pt), palladium (Rh), rhodium (Rh), and the like.
  • the catalyst layer can contain a NO x storage material such as an alkali metal such as Li, K, Na, Mg, Ca, St, or Ba, or an alkaline earth metal.
  • the thickness of the catalyst layer 22 is preferably in the range of 10 to 80 ⁇ m, more preferably in the range of 20 to 60 ⁇ m.
  • each cell constituting the exhaust gas purification catalyst 100 has a first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the upstream side from the position P in the cylindrical axial direction. And a second catalyst layer region 16a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the downstream side from the position P.
  • the thickness gradually increases from the inflow side end surface 12 and the outflow side end surface 13 toward the inflow side end surface 12 and the outflow side end surface 13 around the position P that is equidistant (distance L).
  • a third embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIG.
  • a catalyst layer having a layer thickness that gradually increases from the center position of the catalyst layer toward the end surface as in the first embodiment Furthermore, a second catalyst layer having no inclination in the layer thickness is provided to form a two-layer structure.
  • the support base material and the catalyst layer 17 can be configured in the same manner as in the first embodiment, and the catalyst layer 22 can be configured in the same manner as in the second embodiment.
  • the same reference numerals are assigned and detailed description thereof is omitted.
  • both end surfaces of the cell 31 are formed on the inner wall surface of the wall 14 forming the cell 31 constituting the exhaust gas purification catalyst as a first catalyst layer.
  • a catalyst layer 17 is provided in which the layer thickness gradually increases from the layer thickness Y at the center position P to more than twice the layer thickness Y from the center position P that is equidistant from the center position toward each end face.
  • a catalyst layer 22 on which a noble metal (catalyst metal) having catalytic ability is supported is provided as a second catalyst layer. Examples of the noble metal and the NO x storage material are as described above.
  • each cell constituting the exhaust gas purification catalyst 100 has a first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the upstream side from the position P in the cylindrical axial direction. And a second catalyst layer region 16a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the downstream side from the position P.
  • the thickness gradually increases from the inflow side end surface 12 and the outflow side end surface 13 toward the inflow side end surface 12 and the outflow side end surface 13 around the position P that is equidistant (distance L).
  • a fourth embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIG.
  • a catalyst layer having a non-inclined thickness is arranged in a partial region equidistant from the inflow side end surface and the outflow side end surface of the exhaust gas, and the layer thickness is directed to each end surface so as to sandwich the catalyst layer.
  • a catalyst layer that gradually increases in thickness is provided to form a single layer structure.
  • the support base and the catalyst layer 17 can be configured in the same manner as in the first embodiment, and the same reference numerals are given to the same components as in the first embodiment, and detailed description thereof is omitted.
  • the inner wall surface of the wall 14 forming the cell 41 constituting the exhaust gas purification catalyst has a center that is equidistant from both end surfaces (the inflow side end surface 12 and the outflow side end surface 13) of the cell 41.
  • a catalyst layer 17a on which a noble metal (catalytic metal) having catalytic ability is supported is provided in the region. Examples of the noble metal and the NO x storage material are as described above.
  • a catalyst layer 17 having a layer thickness that gradually increases from the end of the catalyst layer 17a is provided between the catalyst layer 17a, the inflow side end surface 12, and the outflow side end surface 13, a catalyst layer 17 having a layer thickness that gradually increases from the end of the catalyst layer 17a is provided.
  • the thickness of the catalyst layer 17a is the thinnest layer thickness Y in the cell, and the layer thickness gradually increases from the layer thickness Y toward both end surfaces of the cell.
  • the layer thickness of the catalyst layer at the outflow side end face 13 is more than twice the layer thickness Y.
  • the interior of each cell constituting the exhaust gas purification catalyst 100 has the first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y on the upstream side in the gas flow direction of the exhaust gas, and the downstream On the side, the second catalyst layer region 16a is formed such that the thickness of the catalyst layer gradually increases from the layer thickness Y.
  • the layer thickness Y can be in the same range as in the first embodiment.
  • the entire catalyst layer is formed so that the thickness gradually increases toward the inflow side end surface 12 and the outflow side end surface 13, so that the catalyst in the low temperature state can be quickly removed as in the first embodiment. It is possible to increase the temperature and activate the catalyst at the same time, improve the heat retaining property of the catalyst, and maintain the catalyst activity in a more stable range.
  • This Rh-supported oxide particle powder B was 60 g / L, a commercially available ⁇ -Al 2 O 3 powder 25 g / L, and hydroxyethyl cellulose in the amount shown in Table 1 below (ratio to the total mass of the slurry [mass%]). (Thickener) and 85 g / L of ion exchange water were mixed to form a slurry. As shown in Table 1 below, the content ratio of the thickener was changed to prepare six types of slurries having a solid content of 20% by mass.
  • each viscosity [mPa ⁇ s] at 25 ° C. when the solid content was adjusted from 20% by mass to 80% by mass every 20% by mass was given a shear rate of 1 sec ⁇ 1. It was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd.). The measurement results are shown in Table 1 below and FIG.
  • the slurries 1 to 5 containing the thickener have a sharp increase in viscosity after the solid content exceeds 40% by mass, compared with the conventional slurry 6 containing no thickener. I understand.
  • a holding member 53 that holds a predetermined amount of slurry as shown in FIG. 4 is attached to one end of the monolith substrate on which the lower catalyst coat layer is formed, and the other end is opened in a substrate receiving portion that communicates with a decompression device (not shown).
  • the inside of the base material can be sucked by decompression.
  • the slurry obtained above was supplied to the attached holding member 53, and the inside of the cell was sucked at a linear velocity of 55 m / s by reducing the pressure.
  • the slurry spread from one end (inflow side end face 12 in FIG. 1) to the center position P by suction. Then, it was dried at 120 ° C.
  • the holding member 53 is attached to the other end of the monolith substrate that has been sucked, and the other end is inserted into the opening of the substrate receiving portion that communicates with the decompression device so that the inside of the substrate can be sucked from the one end.
  • the slurry was sequentially supplied to the holding member 53, and the inside of the cell was sucked at a linear velocity of 55 m / s by reducing the pressure. As shown in FIG. 5, the slurry spreads from the other end (outflow side end face 13 in FIG. 1) to the center position P. Then, it dried at 120 degreeC and further baked at 500 degreeC. In this way, an upper catalyst coat layer (second catalyst layer) having an X / Y gradient described in Table 1 below was formed. The amount of Rh supported was 0.15 g / L.
  • the exhaust gas purification catalyst was placed in the start converter downstream of the engine, the engine was started, and the HC concentration [ppm] in the exhaust gas discharged was measured by MOTOR EXHAUST GAS ANALYZER [manufactured by Horiba, Ltd.].
  • the ratio of the HC gas concentration in the exhaust gas (outflow gas) after purification treatment (purification rate [%]) to the HC gas concentration in the introduced exhaust gas (inflow gas) is calculated from the following formula, and this is the gas purification capacity.
  • the following (1) was evaluated as an index for evaluating.
  • Purification rate [%] 100- ⁇ HC gas concentration in outflow gas / HC gas concentration in inflow gas x 100 ⁇
  • the evaluation was performed by adopting the temperature rise evaluation pattern shown in FIG. 9A and the temperature drop evaluation pattern shown in FIG. 9B. The former can evaluate the early activation of the catalyst, and the latter can evaluate the storage stability of the catalyst.
  • the “50% purification temperature” is the temperature of the inflowing gas when the purification rate becomes 50% in the temperature increase evaluation pattern and the temperature decrease evaluation pattern.
  • the temperature range in which the purification performance can be maintained is widened to the low temperature side as compared with the comparative (conventional) purification catalyst, and the purification performance is reduced due to the temperature drop. Suppressed. For this reason, it is possible to suppress the influence of operating conditions such as when the engine is cold started, when the engine is intermittently stopped in a hybrid vehicle, and during low-speed operation, and to stably exhibit excellent exhaust gas purification performance. Further, as shown in FIG.
  • the slurry prepared to a predetermined b / a value using a thickener has a large viscosity due to an increase in the solid content, and the formation of a catalyst layer having a desired X / Y can be achieved. I was able to do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An exhaust purifying catalyst (100) is provided with a catalyst layer (17) having a layer thickness gradually increasing from the center position (P) of a cell (11), which center position is equidistant from an exhaust inlet-side end surface (12) of the cell and from exhaust outlet-side end surface (13) of the cell, toward the end surfaces (12, 13) such that the layer thickness is Y, which is the smallest layer thickness, at the center position (P) and is X, which is greater by two or more times than the layer thickness Y, at the end surfaces (12, 13).

Description

排出ガス浄化触媒及びその製造方法Exhaust gas purification catalyst and method for producing the same
 本発明は、排出ガス中に含まれるNO等のガス浄化に好適な排出ガス浄化触媒及びその製造方法に関する。 The present invention relates to an exhaust gas purification catalyst suitable for purifying gas such as NO x contained in exhaust gas, and a method for producing the same.
 従来より、内燃機関の排ガスに含まれる窒素酸化物(NO)を浄化するための排出ガス浄化触媒として様々な触媒が提案されており、触媒金属として、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属やアルカリ金属やアルカリ土類金属などのNO吸蔵材を用いたもの等が一般に利用されている。 Conventionally, various catalysts have been proposed as exhaust gas purification catalysts for purifying nitrogen oxides (NO x ) contained in exhaust gas of internal combustion engines, and platinum (Pt), rhodium (Rh), palladium (Pd) as with the NO x storage material such as a noble metal or an alkali metal or an alkaline earth metal or the like and the like are generally utilized.
 また、浄化触媒の構造としては、金属成分を単一の層中に存在させた単一層構造のほか、例えば2層構造を有する浄化触媒が提案されている。例えば、金属同士の固溶体化による触媒活性への影響を考慮して、PtとRhを異なる層に含ませた上下2層の触媒層が設けられた触媒などが知られている。 Also, as the structure of the purification catalyst, a purification catalyst having a two-layer structure, for example, in addition to a single layer structure in which a metal component is present in a single layer has been proposed. For example, a catalyst provided with two upper and lower catalyst layers in which Pt and Rh are included in different layers is known in consideration of the influence on catalytic activity due to solid solution of metals.
 ところが、例えば自動車等に搭載された内燃機関から排出された排出ガスを浄化する場合、排出ガスは常に一定の温度や排出量で排出されるとは限らない。そのため、排出ガスを浄化する際に浄化触媒が所定温度に達していない場合には、浄化触媒の触媒活性が高まるまでの間に未浄化の排出ガスが大気中に流出することが懸念される。 However, for example, when purifying exhaust gas discharged from an internal combustion engine mounted on an automobile or the like, the exhaust gas is not always discharged at a constant temperature or discharge amount. Therefore, when the purification catalyst does not reach a predetermined temperature when purifying the exhaust gas, there is a concern that unpurified exhaust gas flows out into the atmosphere until the catalytic activity of the purification catalyst increases.
 上記に関連して、セル隔壁の細孔容積を排ガス上流側が排ガス下流側より大きくなるようにすることにより、触媒担持コート層の排ガス上流側の厚さを排ガス下流側より厚くした排ガス浄化用触媒が開示されている(例えば、特許文献1参照)。 In relation to the above, the exhaust gas purifying catalyst in which the pore volume of the cell partition wall is larger on the exhaust gas upstream side than on the exhaust gas downstream side so that the thickness of the catalyst support coat layer on the exhaust gas upstream side is thicker than that on the exhaust gas downstream side. Is disclosed (for example, see Patent Document 1).
特開2007-330860号公報JP 2007-330860 A
 上記の排ガス浄化用触媒では、上流側の熱が下流側に放熱されやすくなり、上流側の熱劣化を抑制できるとされ、ウォームアップ特性の点である程度の向上が期待されるが、排出される排出ガスの温度が低い場合、あるいは間欠運転等による排出停止などのためにガス温度が一時的に降下するような場合には、浄化活性を維持できる保温性能を安定的に保てないことがある。例えば、エンジン始動直後は触媒温度が低く、触媒が活性化するまで未浄化の排出ガスが流出しやすい。また、近年注目されているハイブリッド車では、間欠的にエンジンが停止するため、排出ガスが流れない時間帯があり触媒温度が下降しやすく、一定温度以上に触媒温度を保てないことがある。ハイブリッド車以外のガソリンエンジン車でも、車速が低速になる場合は、高速時に比べて排出ガスの温度は低いため、やはり触媒温度が下降しやすく、触媒温度を一定温度以上に保ち得ないことがある。 In the exhaust gas-purifying catalyst, heat on the upstream side is easily dissipated to the downstream side, and heat degradation on the upstream side can be suppressed, and a certain degree of improvement is expected in terms of warm-up characteristics. When the temperature of the exhaust gas is low, or when the gas temperature temporarily drops due to exhaust stop due to intermittent operation, etc., the heat retention performance that can maintain the purification activity may not be stably maintained. . For example, the catalyst temperature is low immediately after the engine is started, and unpurified exhaust gas tends to flow out until the catalyst is activated. Further, in a hybrid vehicle that has been attracting attention in recent years, the engine is intermittently stopped, so there are times when exhaust gas does not flow, the catalyst temperature tends to decrease, and the catalyst temperature may not be maintained above a certain temperature. Even in gasoline engine vehicles other than hybrid vehicles, when the vehicle speed is low, the exhaust gas temperature is lower than at high speeds, so the catalyst temperature tends to decrease and the catalyst temperature may not be kept above a certain temperature. .
 本発明は、上記状況に鑑みなされたものである。この状況のもと、排出ガスの排出条件の影響を受け難く、触媒活性を安定的に保って浄化性能を維持することができる排出ガス浄化触媒及びその製造方法を提供されることが必要とされている。 The present invention has been made in view of the above situation. Under these circumstances, it is necessary to provide an exhaust gas purification catalyst that is hardly affected by the exhaust gas emission conditions, can maintain the catalytic activity stably, and maintain the purification performance, and a method for producing the same. ing.
 本発明は、排出ガス流通方向において、触媒層の中間位置に最薄(層厚Y)の領域を設け、その上流側と下流側とに層厚Yより2倍以上厚くなる領域を設けることにより、触媒の低温からの早期活性化と保温性とを高めることができる熱伝達性と熱容量とのバランスの適正化が図れるとの知見を得、かかる知見に基づくものである。 The present invention provides the thinnest region (layer thickness Y) in the middle of the catalyst layer in the exhaust gas flow direction, and provides regions that are twice or more thicker than the layer thickness Y on the upstream side and downstream side thereof. The present inventors have obtained knowledge that the balance between heat transfer ability and heat capacity that can enhance early activation and heat retention of the catalyst from a low temperature can be optimized, and is based on such knowledge.
 第1の発明である排出ガス浄化触媒は、排出ガス流通方向の上流側端面と下流側端面との中間位置における最も薄い層厚Yに対して2倍以上の層厚Xを有する領域を、前記排出ガス流通方向における該層厚Yの位置の上流側及び下流側にそれぞれ有する触媒層を、支持基材の上に設けて構成したものである。 The exhaust gas purifying catalyst according to the first aspect of the present invention includes a region having a layer thickness X that is twice or more the thinnest layer thickness Y at the intermediate position between the upstream end surface and the downstream end surface in the exhaust gas flow direction. A catalyst layer having upstream and downstream of the position of the layer thickness Y in the exhaust gas flow direction is provided on the support base material.
 第1の発明において、層厚Yの厚みとしては、10~80μmの範囲であることが好ましい。また、層厚Yの位置は、触媒層の排ガス流通方向両端から等距離Lにある中心位置を基点に、排ガス流通方向の上流側にL×3/10までの位置と下流側にL×3/10までの位置との間に有する場合が好ましい。 In the first invention, the thickness Y of the layer is preferably in the range of 10 to 80 μm. In addition, the position of the layer thickness Y is based on the center position at an equal distance L from both ends of the exhaust gas flow direction of the catalyst layer, the position up to L × 3/10 on the upstream side in the exhaust gas flow direction and L × 3 on the downstream side. The case where it has between the position to / 10 is preferable.
 ここで、上流側端面と下流側端面との中間位置とは、上流側端面及び下流側端面からそれぞれ等距離の位置のみならず、上流側端面と下流側端面との間の任意の位置を含む。 Here, the intermediate position between the upstream end face and the downstream end face includes not only a position equidistant from the upstream end face and the downstream end face, but also an arbitrary position between the upstream end face and the downstream end face. .
 第1の発明に係る排出ガス浄化触媒においては、排出ガスが流通する排出ガス流通方向における触媒層の上流側端面と下流側端面との間に設けられた最も薄い層厚Yに対して2倍以上の層厚Xを有する領域を、層厚Yの位置からみて排出ガス流通方向の上流側と下流側とのそれぞれに設け、排出ガスの流入側から触媒層の厚みが一旦減少しその後増加する領域を有することで、例えば触媒温度が低くなるエンジンの冷間始動時には、低温状態の触媒を短時間に活性化し、また、例えばガス排出が停止して触媒温度が下降するハイブリッド車でのエンジンの間欠停止時や排出ガスの温度下降に伴なって触媒温度が低下する低速運転時には、触媒の熱を保持できる。 In the exhaust gas purification catalyst according to the first aspect of the present invention, it is twice the thinnest layer thickness Y provided between the upstream end surface and the downstream end surface of the catalyst layer in the exhaust gas flow direction in which the exhaust gas flows. The regions having the above layer thickness X are provided on the upstream side and the downstream side in the exhaust gas flow direction as viewed from the position of the layer thickness Y, and the thickness of the catalyst layer once decreases from the exhaust gas inflow side and then increases. By having a region, for example, at the time of cold start of an engine where the catalyst temperature becomes low, the catalyst in a low temperature state is activated in a short time, and for example, the engine of a hybrid vehicle in which gas emission stops and the catalyst temperature decreases The heat of the catalyst can be maintained during intermittent stops or during low speed operation in which the catalyst temperature decreases as the exhaust gas temperature decreases.
 すなわち、第1の発明の排出ガス浄化触媒においては、触媒層の層厚が厚くなる領域を設けて圧損が上昇することで、排出ガスから触媒層への熱伝達が速くなることに加え、触媒層に薄厚な層厚Yの領域を設けることで、熱容量が小さくなるので、触媒層の昇温速度を速くできる。また、層厚Yの領域の上流側及び下流側の層厚をそれぞれ厚くすることで、熱容量が大きくなるので、比較的低温の排出ガスが流入しても熱が保持されることに加え、層厚Yの領域は最薄であることで、排出ガス流通方向の下流側への熱伝達が小さくなるので、層厚Yの領域の下流側の温度低下を防止できる。
 これにより、触媒温度が低いときには浄化触媒を短時間のうちに活性化し、触媒温度が下降する可能性のあるときには熱を保持して触媒活性が高く保たれ、安定的に排出ガスの浄化が行なえる。
That is, in the exhaust gas purifying catalyst of the first invention, by providing a region where the layer thickness of the catalyst layer is increased to increase the pressure loss, heat transfer from the exhaust gas to the catalyst layer is accelerated, Since the heat capacity is reduced by providing the thin region having the layer thickness Y, the rate of temperature increase of the catalyst layer can be increased. Further, since the heat capacity is increased by increasing the upstream layer thickness and the downstream layer thickness of the region of the layer thickness Y, the heat is retained even when a relatively low temperature exhaust gas flows, Since the region of thickness Y is the thinnest, heat transfer to the downstream side in the exhaust gas flow direction is reduced, so that a temperature decrease on the downstream side of the region of layer thickness Y can be prevented.
As a result, when the catalyst temperature is low, the purification catalyst is activated in a short time, and when there is a possibility that the catalyst temperature is lowered, the heat is maintained and the catalyst activity is kept high, and the exhaust gas can be stably purified. The
 第1の発明においては、層厚Yに対する層厚Xの比率(X/Y)を3.0以上とすることが好ましい。X/Yが3.0以上であることにより、排出ガスの浄化性能を維持できる触媒温度の範囲を低温側に拡げることが可能である。これより、触媒温度の変動による触媒性能への影響が抑えられ、触媒活性が高く保たれ、安定的に排出ガスの浄化が行なえる。 In the first invention, the ratio of the layer thickness X to the layer thickness Y (X / Y) is preferably 3.0 or more. When X / Y is 3.0 or more, it is possible to expand the catalyst temperature range in which the exhaust gas purification performance can be maintained to the low temperature side. As a result, the influence of the catalyst temperature on the catalyst performance is suppressed, the catalyst activity is kept high, and the exhaust gas can be stably purified.
 特に、触媒層は、排出ガス流通方向の上流側端面と下流側端面との中間位置より上流側に設けられ、該上流側に向かって層厚が層厚Yから漸増する第1の触媒層領域と、この中間位置より下流側に設けられ、該下流側に向かって層厚が層厚Yから漸増する第2の触媒層領域とを設けた構造に構成するのが好ましい。すなわち、排出ガス流通方向の上流側端面から層厚Yの領域に向かってセル内ガス流通路の容積が拡大し、層厚Yの位置から下流側端面に向かって容積が縮小する構造である。このような構成では上記のように、触媒層に層厚Yの領域では熱容量が小さくなって触媒層の昇温が速くなると共に、容積が縮小する下流側に向かうにつれて圧損が上がり、排出ガスから触媒層への熱伝達が速くなる。更に、層厚Yの位置から容積が縮小する上流側及び下流側では、熱容量が大きくなるので、比較的低温の排出ガスが流入しても熱が保持される。逆に、最薄の層厚Yの領域では、排出ガス流通方向下流側への熱伝達が小さくなるので、層厚Yの領域の下流側での温度低下が防止される。これより、触媒温度が低いときには浄化触媒を迅速に活性化することができ、触媒温度が下降するときには熱を保持して触媒活性が保たれ、より安定的に排出ガスの浄化が行なえる。 In particular, the catalyst layer is provided on the upstream side from an intermediate position between the upstream end surface and the downstream end surface in the exhaust gas flow direction, and the first catalyst layer region in which the layer thickness gradually increases from the layer thickness Y toward the upstream side. And a second catalyst layer region which is provided downstream from the intermediate position and whose layer thickness gradually increases from the layer thickness Y toward the downstream side. That is, the volume of the in-cell gas flow passage increases from the upstream end surface in the exhaust gas flow direction toward the region of the layer thickness Y, and the volume decreases from the position of the layer thickness Y toward the downstream end surface. In such a configuration, as described above, in the region of the catalyst layer having a layer thickness Y, the heat capacity is reduced, the temperature of the catalyst layer is increased rapidly, and the pressure loss increases toward the downstream side where the volume is reduced. Heat transfer to the catalyst layer is faster. Furthermore, since the heat capacity increases on the upstream side and the downstream side where the volume decreases from the position of the layer thickness Y, heat is retained even if a relatively low temperature exhaust gas flows. On the contrary, in the region of the thinnest layer thickness Y, heat transfer to the downstream side in the exhaust gas flow direction becomes small, so that a temperature decrease on the downstream side of the region of layer thickness Y is prevented. As a result, when the catalyst temperature is low, the purification catalyst can be activated quickly, and when the catalyst temperature falls, the heat is maintained and the catalyst activity is maintained, and the exhaust gas can be purified more stably.
 また、触媒層は2層構造に構成することができ、2層構造に構成した場合に2層の合計厚で層厚Yに対して2倍以上の層厚Xを有する領域を含む構造にすることができる。例えば、2層構造のうち上層又は下層あるいは上層及び下層の両方が、層厚Yに対して2倍以上の層厚Xを有する領域を、排出ガス流通方向における層厚Yの位置の上流側及び下流側にそれぞれ設けられた凹状構造に構成することができる。 Further, the catalyst layer can be configured in a two-layer structure, and when configured in a two-layer structure, the catalyst layer includes a region having a total thickness of two layers and a layer thickness X that is twice or more the layer thickness Y. be able to. For example, in the two-layer structure, the upper layer or the lower layer, or both the upper layer and the lower layer have a region having a layer thickness X that is twice or more the layer thickness Y, upstream of the position of the layer thickness Y in the exhaust gas flow direction It can be configured in a concave structure provided on the downstream side.
 第2の発明である排出ガス浄化触媒の製造方法は、触媒金属と増粘剤とを含み、固形分量20質量%での粘度aに対する固形分量80質量%での粘度bの比率(b/a)が2.4以上であるスラリーを支持基材の一端に設け、他端から前記スラリーを吸引して、前記支持基材の一端及び他端の中間位置から前記一端の側に、層厚が前記中間位置における最も薄い層厚Yに対して2倍以上の層厚Xを含む領域を有する触媒層を形成する第1の工程と、前記触媒層が形成された前記支持基材の他端に前記スラリーを設け、前記一端からスラリーを吸引して、前記中間位置から前記他端の側に、層厚が前記層厚Yに対して2倍以上の層厚Xを含む領域を有する触媒層を形成する第2の工程と、を設けて構成されたものである。このとき、固形分量20質量%での粘度aは、200~1000mPa・sの範囲である場合が好ましい。増粘剤としては、水溶性高分子を好適に用いることができる。 The method for producing an exhaust gas purification catalyst according to the second invention comprises a catalyst metal and a thickener, and the ratio of the viscosity b at a solid content of 80% by mass to the viscosity a at a solid content of 20% by mass (b / a ) Is provided at one end of the supporting base material, and the slurry is sucked from the other end, and the layer thickness is from one end of the supporting base material to the one end side from the middle position of the other end. A first step of forming a catalyst layer having a region including a layer thickness X that is twice or more the thinnest layer thickness Y at the intermediate position; and the other end of the support substrate on which the catalyst layer is formed Providing the slurry, sucking the slurry from the one end, and a catalyst layer having a region including a layer thickness X that is twice or more as large as the layer thickness Y from the intermediate position to the other end side; And a second step to be formed. At this time, the viscosity a at a solid content of 20% by mass is preferably in the range of 200 to 1000 mPa · s. As the thickener, a water-soluble polymer can be suitably used.
 第2の発明に係る排出ガス浄化触媒の製造方法においては、スラリーを支持基材の一端(又は他端)に設け、その他端(又は一端)から吸引して触媒層領域を形成する場合に、増粘剤を含有するとともに、固形分量20質量%での粘度aに対する固形分量80質量%での粘度bの比率(b/a)を2.4以上としたスラリーを用いることで、スラリーの吸引時にスラリー中に含まれる溶媒(特に水分)が次第に吸収されて固形分量が増したときに、スラリーにある固形分量へ到達した以降に急激な粘度上昇を生じさせることができるので、固形分量(粘度)の増加に応じて厚みが変化した触媒層が形成される。これにより、排出ガスが流通する際の排出ガス流通方向における上流側と下流側の各端面の中間位置からそれぞれ上流側、下流側に層厚Yの2倍以上の層厚Xを有する領域を有する触媒層を形成できる。 In the method for producing an exhaust gas purification catalyst according to the second invention, when the slurry is provided at one end (or the other end) of the support base material and sucked from the other end (or one end) to form the catalyst layer region, By using a slurry containing a thickener and having a ratio (b / a) of viscosity b at a solid content of 80% by mass to a viscosity a at a solid content of 20% by mass of 2.4% or more, suction of the slurry Sometimes when the solvent (especially moisture) contained in the slurry is gradually absorbed and the solid content increases, it can cause a sudden increase in viscosity after reaching the solid content in the slurry. ) To form a catalyst layer having a thickness that changes. Thereby, it has the area | region which has the layer thickness X more than twice the layer thickness Y from the intermediate position of each end surface of the upstream and downstream in the exhaust gas distribution direction when exhaust gas distribute | circulates to an upstream and downstream, respectively. A catalyst layer can be formed.
 第2の発明では、第1の工程において、支持基材の一端に設けられたスラリーを他端から吸引して、前記中間位置から前記一端に向かって層厚が前記中間位置における最も薄い層厚Yから漸増する第1の触媒層領域を形成すると共に、第2の工程において、前記触媒層が形成された前記支持基材の他端に前記スラリーを設け、前記一端からスラリーを吸引して、前記中間位置から前記他端に向かって層厚が前記層厚Yから漸増する第2の触媒層領域を形成することができる。 In the second invention, in the first step, the slurry provided at one end of the support substrate is sucked from the other end, and the layer thickness is the thinnest layer thickness at the intermediate position from the intermediate position toward the one end. In addition to forming a first catalyst layer region gradually increasing from Y, in the second step, the slurry is provided on the other end of the support substrate on which the catalyst layer is formed, and the slurry is sucked from the one end, A second catalyst layer region in which the layer thickness gradually increases from the layer thickness Y toward the other end from the intermediate position can be formed.
 本発明は、エンジンの冷間始動時やハイブリッド車でのエンジンの間欠停止時、低速運転時などの運転条件の影響で損なわれやすい触媒活性を保持し、安定的に優れた排ガス浄化能を発揮し得る浄化系統を構築することができる。 The present invention maintains catalytic activity that is easily impaired by the influence of operating conditions such as cold engine start, intermittent engine stop in a hybrid vehicle, and low speed operation, and exhibits stable and excellent exhaust gas purification performance. A purifying system that can do this can be constructed.
 本発明によれば、排出ガスの排出条件(特にガス温度)の影響を受け難く、触媒活性を安定的に保って浄化性能を維持することができる排出ガス浄化触媒及びその製造方法を提供することができる。 According to the present invention, there is provided an exhaust gas purification catalyst that is hardly affected by exhaust gas emission conditions (particularly gas temperature) and that can stably maintain catalytic activity and maintain purification performance, and a method for producing the same. Can do.
本発明の第1実施形態の排出ガス浄化触媒の概略構造を示す斜視図である。1 is a perspective view showing a schematic structure of an exhaust gas purification catalyst according to a first embodiment of the present invention. 図1の排出ガス浄化触媒を構成するセルの概略構造を拡大して示す斜視図である。It is a perspective view which expands and shows schematic structure of the cell which comprises the exhaust gas purification catalyst of FIG. 図2のA-A’線断面図である。FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2. 本発明の排出ガス浄化触媒の触媒層を形成する工程順を説明するための工程図である。It is process drawing for demonstrating the process order which forms the catalyst layer of the exhaust gas purification catalyst of this invention. 本発明の第2実施形態の排出ガス浄化触媒におけるセルの内部構造を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of the cell in the exhaust gas purification catalyst of 2nd Embodiment of this invention. 本発明の第3実施形態の排出ガス浄化触媒におけるセルの内部構造を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of the cell in the exhaust gas purification catalyst of 3rd Embodiment of this invention. 本発明の第4実施形態の排出ガス浄化触媒におけるセルの内部構造を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of the cell in the exhaust gas purification catalyst of 4th Embodiment of this invention. スラリーの固形分量と粘度との関係を示すグラフである。It is a graph which shows the relationship between the solid content of a slurry, and a viscosity. 排出ガス浄化触媒を評価する際の流入ガス温度の昇温条件を示すグラフである。It is a graph which shows the temperature rising conditions of the inflow gas temperature at the time of evaluating an exhaust gas purification catalyst. 排出ガス浄化触媒を評価する際の流入ガス温度の降温条件を示すグラフである。It is a graph which shows the temperature fall conditions of the inflow gas temperature at the time of evaluating an exhaust gas purification catalyst. 流入ガス温度を昇温させた場合の排出ガス浄化触媒のX/Yと50%浄化温度との関係を示すグラフである。It is a graph which shows the relationship between X / Y of an exhaust gas purification catalyst at the time of raising inflow gas temperature, and 50% purification temperature. 流入ガス温度を降温させた場合の排出ガス浄化触媒のX/Yと50%浄化温度との関係を示すグラフである。It is a graph which shows the relationship between X / Y of an exhaust gas purification catalyst at the time of falling inflow gas temperature, and 50% purification temperature.
 以下、図面を参照して、本発明の排出ガス浄化触媒及びその製造方法の実施形態について詳細に説明する。但し、本発明においては、下記実施形態に制限されるものではない。 Hereinafter, embodiments of an exhaust gas purification catalyst and a method for producing the same of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment.
(第1実施形態)
 本発明の排出ガス浄化触媒の第1実施形態を図1~図4を参照して説明する。本実施形態の排出ガス浄化触媒は、排出ガスの流入側端面及び流出側端面からそれぞれ等距離にある触媒層の中心位置から各端面に向けて層厚が徐々に厚くなる単層構造の触媒層を設けて構成したものである。
(First embodiment)
A first embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIGS. The exhaust gas purification catalyst of the present embodiment is a catalyst layer having a single layer structure in which the layer thickness gradually increases from the center position of the catalyst layer that is equidistant from the inflow side end surface and the outflow side end surface of the exhaust gas toward each end surface. Is provided.
 本実施形態の排出ガス浄化触媒100は、図1に示すように、内部を壁で仕切って一端から他端に向けて貫通する貫通孔(セル;以下、「セル」という。)11が複数隣接して設けられて多孔構造が形成された円筒形のモノリス基材を備えて構成されている。矢印方向に流通する排出ガス(gas)は、円筒形の一方の端面から流入し、内部を流通する際に浄化されて他端から浄化後のガスが排出されるようになっている。 As shown in FIG. 1, the exhaust gas purification catalyst 100 of the present embodiment has a plurality of through-holes (cells; hereinafter referred to as “cells”) 11 that divide the interior with walls and penetrate from one end to the other end. And a cylindrical monolith substrate having a porous structure formed thereon. Exhaust gas (gas) flowing in the direction of the arrow flows from one end surface of the cylindrical shape, is purified when flowing through the inside, and the purified gas is discharged from the other end.
 排出ガス浄化触媒100を構成する各セルの内部は、円筒形の軸方向において、排出ガスの流入側端面12と流出側端面13との間が、触媒層の厚みの傾斜が異なる流入側半分の領域15と流出側半分の領域16とで構成されている。排出ガス浄化触媒100の各セルの斜視構成の例を図2に示す。図2に示すように、セル11は、壁で四方が取り囲まれた断面四角形の筒状に形成されており、筒内部の中空部を排出ガスが流通することができる。セル11の内部は、流入側端面12及び流出側端面13からそれぞれ等距離(距離L)の位置Pを中心に、4つの壁の内壁面に、流入側端面12と流出側端面13とに向かってそれぞれ厚みが漸増するように触媒層17が形成されている。つまり、位置Pにおいて、層厚が最も薄くなっている。 The inside of each cell constituting the exhaust gas purification catalyst 100 is in the half of the inflow side between the exhaust gas inflow end surface 12 and the outflow side end surface 13 with different thickness gradients of the catalyst layer in the cylindrical axial direction. The region 15 and the half 16 on the outflow side are configured. An example of a perspective configuration of each cell of the exhaust gas purification catalyst 100 is shown in FIG. As shown in FIG. 2, the cell 11 is formed in a cylindrical shape having a quadrangular cross section surrounded by walls on all sides, and exhaust gas can flow through a hollow portion inside the cylinder. The interior of the cell 11 is centered on a position P that is equidistant (distance L) from each of the inflow side end surface 12 and the outflow side end surface 13, toward the inflow side end surface 12 and the outflow side end surface 13. Thus, the catalyst layer 17 is formed so that the thickness gradually increases. That is, at the position P, the layer thickness is the thinnest.
 この触媒層17は、図3に示すように、各セル11を形成する壁14の内壁面に設けられている。図3は、図2のA-A’線断面を示す図である。触媒層17は、セル11の両方の端面(流入側端面12及び流出側端面13)からそれぞれ等距離にある中心位置Pから各端面に向かって、厚みの最も薄い位置Pの層厚Yから徐々に層厚が厚くなっている。すなわち、触媒層17は、排出ガス(gas)の流通方向における位置Pの上流側に、位置Pから上流側に向かって層厚が層厚Yから漸増する第1の触媒層領域15aと、位置Pの下流側に位置Pから下流側に向かって層厚が層厚Yから漸増する第2の触媒層領域16aとを有している。そして、セル11の両端面における触媒層17の層厚Xは、位置Pの層厚Yに対して2倍以上(X/Y≧2.0)となるように形成されている。なお、本実施形態において、第1の触媒層領域15aと第2の触媒層領域16aとは、同一の触媒構成となっている。 The catalyst layer 17 is provided on the inner wall surface of the wall 14 forming each cell 11 as shown in FIG. FIG. 3 is a view showing a cross section taken along the line A-A ′ of FIG. 2. The catalyst layer 17 gradually starts from the layer thickness Y at the position P where the thickness is the smallest from the center position P that is equidistant from both end faces of the cell 11 (the inflow end face 12 and the outflow end face 13). The layer thickness is increased. That is, the catalyst layer 17 includes a first catalyst layer region 15a in which the layer thickness gradually increases from the layer thickness Y toward the upstream side from the position P on the upstream side of the position P in the flow direction of the exhaust gas (gas). On the downstream side of P, a second catalyst layer region 16a whose layer thickness gradually increases from the layer thickness Y from the position P toward the downstream side is provided. The layer thickness X of the catalyst layer 17 on both end faces of the cell 11 is formed to be twice or more (X / Y ≧ 2.0) with respect to the layer thickness Y at the position P. In the present embodiment, the first catalyst layer region 15a and the second catalyst layer region 16a have the same catalyst configuration.
 このように、排出ガスの流入側から流出側に向けて触媒層17の厚みが減少し増加する構造を採用すると、層厚の最も薄い位置Pから層厚が厚くなって圧損が上昇することで、排出ガスから触媒層への熱伝達が速くなるようにし、さらに層厚Yの薄厚領域を設けることで、熱容量を小さくできることにより、触媒層の昇温速度を速くできる。これに加え、第1の触媒層領域15aと第2の触媒層領域16aとにおいて層厚Yから層厚を2倍以上に厚くすることで熱容量が大きくなることにより、比較的低温の排出ガスが流入しても熱が保持される。さらに、層厚Yの薄厚領域を設けることで排出ガス流通方向の下流側への熱伝達が小さくなることにより、下流側の温度低下を防止できる。その結果として、例えば、エンジンの冷間始動時には触媒温度が低くなりやすいが、低温状態の触媒を短時間に活性化することが可能である。また、ハイブリッド車でのエンジンの間欠停止時には、ガス排出が停止した場合に触媒温度が下降しやすく、低速運転時には、排出ガスの温度自体が低くなるために触媒温度も下降しやすいが、触媒の熱を保持して触媒活性を浄化可能なように維持することが可能である。 In this way, when a structure in which the thickness of the catalyst layer 17 decreases and increases from the exhaust gas inflow side to the outflow side is adopted, the layer thickness increases from the position P where the layer thickness is the thinnest, and the pressure loss increases. By increasing the heat transfer from the exhaust gas to the catalyst layer and providing a thin region with a layer thickness Y, the heat capacity can be reduced, so that the heating rate of the catalyst layer can be increased. In addition to this, the heat capacity is increased by increasing the layer thickness from the layer thickness Y to twice or more in the first catalyst layer region 15a and the second catalyst layer region 16a, so that a relatively low temperature exhaust gas is generated. Even if it flows in, heat is retained. Furthermore, by providing a thin region with a layer thickness Y, heat transfer to the downstream side in the exhaust gas flow direction is reduced, thereby preventing a temperature decrease on the downstream side. As a result, for example, when the engine is cold started, the catalyst temperature tends to be low, but it is possible to activate the catalyst in a low temperature state in a short time. In addition, when the engine is intermittently stopped in a hybrid vehicle, the catalyst temperature is likely to drop when the gas emission is stopped, and during low speed operation, the exhaust gas temperature itself is low and the catalyst temperature is likely to drop. It is possible to maintain heat so that the catalytic activity can be purified.
 触媒層の層厚としては、排ガス流通方向において、最も薄厚な層厚Yの位置Pの上流側及び下流側の層厚Xの、層厚Yに対する比率(X/Y)を2.0以上とするが、この比率X/Yは、3.0以上であることが好ましい。比率X/Yが3.0以上であることにより、特に触媒を昇温する際において、触媒温度が比較的低温でも浄化性能を良好に維持できる。よって、昇温時及び降温時のいずれの状況下において、浄化性能を維持できる温度領域が幅広になり、触媒の温度変動に伴なう浄化性能の低下を抑えることができる。
 比率X/Yは、図10及び図11に示されるように、効果の点で、3.0以上6.0以下が好ましく、4.0以上6.0以下がより好ましく、更に好ましくは5.0以上6.0以下である。
As the layer thickness of the catalyst layer, the ratio (X / Y) of the layer thickness X on the upstream side and downstream side of the position P of the thinnest layer thickness Y to the layer thickness Y in the exhaust gas flow direction is 2.0 or more. However, the ratio X / Y is preferably 3.0 or more. When the ratio X / Y is 3.0 or more, particularly when the temperature of the catalyst is raised, it is possible to maintain good purification performance even when the catalyst temperature is relatively low. Therefore, the temperature range in which the purification performance can be maintained is widened under both conditions of temperature rise and temperature fall, and a reduction in the purification performance due to the temperature fluctuation of the catalyst can be suppressed.
As shown in FIG. 10 and FIG. 11, the ratio X / Y is preferably 3.0 or more, 6.0 or less, more preferably 4.0 or more, and 6.0 or less, and still more preferably 5. It is 0 or more and 6.0 or less.
 触媒層17において、最も薄厚な層厚Yの厚みとしては、10~80μmの範囲とするのが好ましく、より好ましくは20~60μmの範囲である。層厚Yの厚みは、10μm以上、更には20μm以上であると、流入した排出ガスの浄化効率を損なうことなく所望の性能を保つことができ、80μm以下、更には60μm以下であると、熱容量が小さくなる点で有利である。 In the catalyst layer 17, the thinnest layer thickness Y is preferably in the range of 10 to 80 μm, more preferably in the range of 20 to 60 μm. If the thickness of the layer thickness Y is 10 μm or more, more preferably 20 μm or more, the desired performance can be maintained without impairing the purification efficiency of the exhaust gas flowing in, and if it is 80 μm or less, further 60 μm or less, the heat capacity This is advantageous in that becomes smaller.
 触媒層の最も薄い層厚Yの位置は、両端面から等距離の中心位置から一方の端面側に偏って設けられてもよく、層厚Yが前記位置Pにある場合と同様の効果が得られる。中でも特に、低温時の触媒を迅速に活性化し、排出ガスの温度や排出量等の条件が変動する際の保温性を高める観点から、最も薄い層厚Yの位置は、触媒層の排ガス流通方向両端から等距離(距離L)にある中心位置Pを基点として、上流側にL×3/10までの位置と下流側にL×3/10までの位置との間にあることが好ましい。 The position of the thinnest layer thickness Y of the catalyst layer may be provided so as to be deviated from the center position equidistant from both end faces toward one end face side, and the same effect as when the layer thickness Y is at the position P is obtained. It is done. In particular, the position of the thinnest layer thickness Y is the direction of the exhaust gas flow in the catalyst layer from the viewpoint of rapidly activating the catalyst at low temperatures and enhancing the heat retention when conditions such as the temperature and discharge amount of the exhaust gas fluctuate. The center position P that is equidistant (distance L) from both ends is preferably between the position up to L × 3/10 on the upstream side and the position up to L × 3/10 on the downstream side.
 本実施形態では、触媒層17の第1の触媒層領域15aでの層厚Xと第2の触媒層領域16aでの層厚Xとが同じ厚みである場合を例に説明したが、第1の触媒層領域15aと第2の触媒層領域16aとで層厚Xの厚みや厚くなる割合が異なる構造に構成されてもよい。 In the present embodiment, the case where the layer thickness X in the first catalyst layer region 15a of the catalyst layer 17 and the layer thickness X in the second catalyst layer region 16a are the same has been described as an example. The catalyst layer region 15a and the second catalyst layer region 16a may be configured to have different thicknesses and ratios of increasing thickness.
 また、触媒層17は、本実施形態のように位置Pから両端面に向けて厚みが徐々に厚くなる形状のほか、位置Pから両端面に向けて厚みが所定厚みで段階的に階段状に厚くなる形状でもよいし、位置Pから端面に達しない所定位置までに所定の厚みまで徐々にあるいは階段状に厚くなり、その厚みに達した以降は端面まで同一厚である、あるいは触媒層を設けない形状でもよい。 Further, the catalyst layer 17 has a shape in which the thickness gradually increases from the position P toward both end faces as in the present embodiment, and the thickness is a stepped stepwise with a predetermined thickness from the position P toward both end faces. The thickness may be increased, or the thickness may be gradually or stepwise increased from the position P to a predetermined position that does not reach the end face, and after reaching that thickness, the end face may have the same thickness, or a catalyst layer may be provided. No shape is acceptable.
 触媒層17は、触媒金属として触媒能を有する貴金属をコーティング等して壁14上に設けて構成されてもよい。触媒層17は、例えば、酸素過剰のリーン雰囲気でNOを吸蔵し、吸蔵されたNOを、排ガス雰囲気をストイキ~水素等の還元成分過剰なリッチ雰囲気に変化させることにより放出し、これを貴金属の作用によりHCやCO等の還元成分と反応させて還元し浄化するNO吸蔵還元型の浄化触媒とすることができる。貴金属の例としては、白金(Pt)、パラジウム(Rh)、ロジウム(Rh)等が挙げられる。また、触媒層には、Li、K、Na、Mg、Ca、St、Ba等のアルカリ金属、アルカリ土類金属などのNO吸蔵材料を含有することができる。 The catalyst layer 17 may be configured to be provided on the wall 14 by coating a noble metal having catalytic ability as a catalyst metal. The catalyst layer 17 stores, for example, NO x in an oxygen-excess lean atmosphere, and releases the occluded NO x by changing the exhaust gas atmosphere to a rich atmosphere with excess reducing components such as stoichiometric hydrogen. it can be a NO x storage-and-reduction type of purification catalyst for reducing component is reacted with reduced purification such as HC and CO by the action of the noble metal. Examples of noble metals include platinum (Pt), palladium (Rh), rhodium (Rh), and the like. Further, the catalyst layer can contain a NO x storage material such as an alkali metal such as Li, K, Na, Mg, Ca, St, or Ba, or an alkaline earth metal.
 Ptは、NOの酸化活性に優れている。Ptの触媒層中における含有濃度は、NOの酸化効率の観点から、0.1~5g/Lの範囲が好ましい。また、Pdは、NO還元活性が高いが、NOの酸化活性を有している。また、Pdはリーン雰囲気での安定性が高いため、Ptと共に存在させることで、Ptの粒成長を抑制し、Ptの持つNOの酸化活性を高く保つことができる。 Pt is excellent in NO oxidation activity. The concentration of Pt in the catalyst layer is preferably in the range of 0.1 to 5 g / L from the viewpoint of NO oxidation efficiency. Further, Pd is higher the NO x reduction activity has oxidation activity of NO. Moreover, since Pd is highly stable in a lean atmosphere, the presence of Pd together with Pt can suppress the growth of Pt grains and keep the NO oxidation activity of Pt high.
 Pt、Pdは、所望の担体に担持して触媒層中に含有することができる。担体としては、二酸化ジルコニウム(ZrO)や酸化アルミニウム(Al)、シリカ、シリカ-アルミナ、セリア(CeO)、ゼオライトなどの酸化物の粒子、並びにこれらの混合粒子を用いることができる。 Pt and Pd can be supported on a desired carrier and contained in the catalyst layer. As the support, zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), silica, silica-alumina, ceria (CeO 2 ), oxide particles such as zeolite, and mixed particles thereof can be used. .
 Pt、Pdを触媒層中に含有する場合、Ptが担持されたPt担持酸化物の粒子とPdが担持されたPd担持酸化物の粒子とを混合してもよいし、Pt及びPdをともに担持した酸化物粒子を用いてもよい。Pt担持酸化物は、例えば、ZrO粉末等の酸化物の粉状物や粒状物と、ジ硝酸ジアンミン白金溶液、塩化白金溶液、アンミン白金溶液などとを混合し、乾燥、焼成(例えば400~800℃程度)する等により得られる。また、Pt及びPdをともに担持した酸化物粒子は、例えば、ZrO粉末等の酸化物の粉状物や粒状物と、ジ硝酸ジアンミン白金溶液、塩化白金溶液、アンミン白金溶液などと、硝酸パラジウム溶液、塩化パラジウム溶液などとを混合し、乾燥、焼成(例えば400~800℃程度)する等により得ることができる。 When Pt and Pd are contained in the catalyst layer, Pt-supported oxide particles supporting Pt may be mixed with Pd-supported oxide particles supporting Pd, or both Pt and Pd are supported. Oxide particles may be used. The Pt-supported oxide is, for example, a mixture of an oxide powder or granular material such as ZrO 2 powder and a diammineplatinum dinitrate solution, a platinum chloride solution, an ammineplatinum solution, and the like, followed by drying and firing (for example, 400 to For example, about 800 ° C.). The oxide particles supporting both Pt and Pd are, for example, oxide powder such as ZrO 2 powder and granular materials, diammine platinum nitrate solution, platinum chloride solution, ammine platinum solution, and palladium nitrate. It can be obtained by mixing a solution, a palladium chloride solution and the like, drying, firing (for example, about 400 to 800 ° C.), and the like.
 Rhは、NOの還元活性に優れている。Ptを含む層とは別層にRhを(好ましくは担体に担持し)存在させることで、Ptとの固溶体化が抑えられ、リッチ雰囲気でNOを良好に還元し、NOを浄化する。 Rh is excellent in reducing activity of NO x. The Rh to another layer from the layer containing Pt (preferably supported on a support) by the presence, is suppressed solid solution with Pt, favorably reducing NO x in a rich atmosphere, to purify NO x.
 Rhは、所望の担体に担持して層中に含有することができ、担体には前記同様のものを用いることができる。Rhが担持された例えばRh担持酸化物は、ZrO粉末等の酸化物の粉状物や粒状物と、硝酸ロジウム溶液、塩化ロジウム溶液、アンミンロジウム溶液などとを混合し、乾燥、焼成(例えば400~800℃程度)する等により得られる。 Rh can be supported on a desired carrier and contained in the layer, and the same carrier as described above can be used. For example, an Rh-supported oxide carrying Rh is prepared by mixing oxide powder such as ZrO 2 powder or granular material with a rhodium nitrate solution, a rhodium chloride solution, an ammine rhodium solution, and drying and firing (for example, For example, about 400 to 800 ° C.).
 触媒層17の第1の触媒層領域15aと第2の触媒層領域16aとは、含有される触媒金属の種類や割合等の触媒組成は、同一でもよいし異なっていてもよい。 The first catalyst layer region 15a and the second catalyst layer region 16a of the catalyst layer 17 may have the same or different catalyst composition such as the type and ratio of the catalyst metal contained.
 支持基材は、触媒層を支持するものであり、目的や場合によりセラミックスや金属製の公知のものを選択することができる。具体的な例としては、コージェライト製ハニカム基材、SiC製ハニカム基材、メタルハニカム基材などが挙げられる。 The supporting base material supports the catalyst layer, and a known material made of ceramics or metal can be selected depending on the purpose or circumstances. Specific examples include cordierite honeycomb substrates, SiC honeycomb substrates, metal honeycomb substrates, and the like.
 排出ガス浄化触媒100は、触媒金属と増粘剤とを含み、固形分量20質量%での粘度aに対する固形分量80質量%での粘度bの比率(b/a)が2.4以上であるスラリーを用い、このスラリーを支持基材の排出ガスの流入側端面12に設け、その他端である流出側端面13からスラリーを吸引することにより、支持基材の流入側端面12及び流出側端面13からそれぞれ等距離にある中心位置Pから流入側端面12に向かって、層厚が位置Pにおける最も薄い層厚Yから漸増する第1の触媒層領域15aを形成する工程と、第1の触媒層領域15aが形成された支持基材の他端である流出側端面13にスラリーを設け、排出ガスの流入側端面12からスラリーを吸引することにより、中心位置Pから流出側端面13に向かって、層厚が層厚Yから漸増する第2の触媒層領域16aを形成する工程とを設けて作製することができる。 The exhaust gas purification catalyst 100 includes a catalyst metal and a thickener, and the ratio (b / a) of the viscosity b at a solid content of 80% by mass to the viscosity a at a solid content of 20% by mass is 2.4 or more. Using the slurry, this slurry is provided on the exhaust gas inflow end surface 12 of the support base material, and the slurry is sucked from the outflow side end surface 13 which is the other end, whereby the inflow side end surface 12 and the outflow side end surface 13 of the support base material. Forming a first catalyst layer region 15a in which the layer thickness gradually increases from the thinnest layer thickness Y at the position P from the center position P that is equidistant to the inflow side end surface 12, respectively, The slurry is provided on the outflow side end surface 13 which is the other end of the support base in which the region 15a is formed, and the slurry is sucked from the inflow side end surface 12 of the exhaust gas, so that the center position P toward the outflow side end surface 13 Layer thickness It can be prepared by providing a step of forming a second catalyst layer region 16a which gradually increases from the thickness Y.
 具体的には、図4に示すように、支持基材の一端(排出ガスの流入側端面12)及び他端(排出ガスの流出側端面13)に対して順次、スラリーを設け、そのスラリーをスラリーが設けられていない側から吸引する操作を行なうことにより作製することができる。
 図4の示すように、モノリス基材等の支持基材51の一端(図1中の流入側端面12)にスラリーの所定量を保持する保持部材53を設けておき、この保持部材53内にスラリー52を供給した後(I スラリー設置;コート(1))、その他端(図1の流出側端面13)から吸引してスラリーを支持基材内に吸収させる(II スラリー吸引)。保持部材53は、支持基材51の端部に被さって、図示しないスラリー供給部材から供給されたスラリーを端部上に保持する。吸引するタイミングには、特に制限はなく、例えば、端面にスラリーが供給されている際に同時に吸引してもよいし、端面にスラリーが所定量供給された後に吸引を開始してもよい。
Specifically, as shown in FIG. 4, slurry is sequentially provided to one end (exhaust gas inflow end surface 12) and the other end (exhaust gas outflow end surface 13) of the support base material. It can be produced by performing an operation of sucking from the side where the slurry is not provided.
As shown in FIG. 4, a holding member 53 that holds a predetermined amount of slurry is provided at one end (an inflow side end surface 12 in FIG. 1) of a support base material 51 such as a monolith base material. After supplying the slurry 52 (I slurry installation; coat (1)), the slurry is sucked from the other end (outflow side end face 13 in FIG. 1) to be absorbed into the supporting substrate (II slurry suction). The holding member 53 covers the end of the support base 51 and holds the slurry supplied from a slurry supply member (not shown) on the end. There is no particular limitation on the timing of suction. For example, suction may be performed simultaneously when slurry is supplied to the end face, or suction may be started after a predetermined amount of slurry is supplied to the end face.
 このとき、スラリー中の水分が基材に吸収されるが、水分吸収量は吸引方向よりも流入側端面12に近づく方向に大きくなり、それに伴ないスラリーの粘度も流入側端面に近いほど大きくなる。そして、スラリーに増粘剤を用い、固形分量が変化する際に粘度a(固形分量20質量%)に対する粘度b(固形分量80質量%)の比率(b/a)がb/a≧2.4を満たすようにスラリーを調整することにより、固形分量の増加に起因して生じる急激な粘度変化を利用し、コート厚みに分布を持たせて触媒層を形成することができる。具体的には、層厚Yの位置の排出ガス流通方向上流側及び下流側にそれぞれ層厚Yに対して2倍以上の層厚Xを有する領域を形成することができる。
 このようにして、支持基材の流入側端面12の側に触媒層を形成した後、図4に示すように、吸引を行なった流出側端面13にスラリーをコートして設け(III スラリー設置;コート(2))、その後、反対側の流出側端面12から吸引してスラリーを吸収する(IV スラリー吸引)。このときにも、増粘剤を用い、固形分量が変化する際に粘度aに対する粘度bの比率(b/a)がb/a≧2.4を満たすスラリーを用いる。
At this time, moisture in the slurry is absorbed by the base material, but the amount of moisture absorption increases in the direction closer to the inflow side end face 12 than in the suction direction, and the viscosity of the slurry increases accordingly as it approaches the inflow side end face. . Then, when a thickener is used in the slurry and the solid content changes, the ratio (b / a) of the viscosity b (solid content 80% by mass) to the viscosity a (solid content 20% by mass) is b / a ≧ 2. By adjusting the slurry so as to satisfy 4, the catalyst layer can be formed with a distribution in the coat thickness by utilizing the abrupt viscosity change caused by the increase in the solid content. Specifically, regions having a layer thickness X that is twice or more the layer thickness Y can be formed on the upstream side and the downstream side in the exhaust gas flow direction at the position of the layer thickness Y, respectively.
Thus, after forming the catalyst layer on the inflow side end surface 12 side of the support base material, as shown in FIG. 4, the outflow side end surface 13 that has been sucked is coated with slurry (III slurry installation; Coat (2)) and then sucking from the opposite outflow side end face 12 to absorb the slurry (IV slurry suction). Also at this time, a thickener is used, and a slurry in which the ratio of the viscosity b to the viscosity a (b / a) satisfies b / a ≧ 2.4 when the solid content changes is used.
 スラリーは、少なくとも触媒金属と増粘剤とを含み、一般には水などの溶媒を含む。また、スラリーは、必要に応じて、さらに他の成分を用いて構成することができる。
 前記触媒金属の例については、既述の通りである。また、前記増粘剤は、スラリーの粘度を高める化合物であり、例えば、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース,メチルセルロース,ポリビニルアルコール等の水溶性高分子などを用いることができる。スラリーの固形分濃度は、一般に20~60質量%の範囲に調整される。
The slurry includes at least a catalytic metal and a thickener, and generally includes a solvent such as water. Moreover, a slurry can be comprised using another component as needed.
Examples of the catalyst metal are as described above. Moreover, the said thickener is a compound which raises the viscosity of a slurry, For example, water-soluble polymers, such as hydroxyethyl cellulose (HEC), carboxymethylcellulose, methylcellulose, polyvinyl alcohol, etc. can be used. The solid content concentration of the slurry is generally adjusted to a range of 20 to 60% by mass.
 また、スラリーは、固形分量20質量%での粘度aに対する固形分量80質量%での粘度bの比率(b/a)を2.4以上とする。この比率b/aが2.4未満であると、スラリーを吸引する際の固形分量の増加に起因して生じる増粘の程度が小さすぎ、触媒層の最も薄厚な層厚Yに対して2倍以上の層厚を有する領域を有するような触媒層を形成することができない。
 この場合、増粘剤のスラリー中における含有量は、スラリー全質量に対し、前記b/aを満たす範囲において、0.5~8.0質量%であるのが好ましい。
In addition, the ratio of the viscosity b at a solid content of 80% by mass (b / a) to the viscosity a at a solid content of 20% by mass is 2.4 or more. If the ratio b / a is less than 2.4, the degree of thickening caused by the increase in the solid content when the slurry is sucked is too small, and 2 for the thinnest layer thickness Y of the catalyst layer. A catalyst layer having a region having a layer thickness more than twice cannot be formed.
In this case, the content of the thickener in the slurry is preferably 0.5 to 8.0% by mass in a range satisfying the b / a with respect to the total mass of the slurry.
 触媒層の形成に用いるスラリーの粘度(25℃)としては、固形分量を20質量%に調整したときの粘度aが200~1000mPa・sであるのが好ましく、400~800mPa・sであるのがより好ましい。固形分量の低い低粘度側の粘度aは、200mPa・s以上、更には400mPa・s以上であると、溶媒(特に水)量が多すぎないため、水分吸収に伴なう粘度の急激な増粘変化が得られ、触媒層の厚みを変化させやすい。また、粘度aが1000mPa・s以下、更には800mPa・s以下であることにより、溶媒(特に水)量が少なぎないため、水分吸収による粘度変化が大きく保たれ、基材端面側から内部に向けて傾斜する触媒層を形成しやすい。 As the viscosity (25 ° C.) of the slurry used for forming the catalyst layer, the viscosity a when the solid content is adjusted to 20% by mass is preferably 200 to 1000 mPa · s, and preferably 400 to 800 mPa · s. More preferred. The viscosity a on the low-viscosity side with a low solid content is 200 mPa · s or more, more preferably 400 mPa · s or more, because the amount of solvent (especially water) is not too much, so the viscosity increases rapidly due to moisture absorption. A viscosity change is obtained and the thickness of the catalyst layer is easily changed. Further, since the viscosity a is 1000 mPa · s or less, and further 800 mPa · s or less, the amount of solvent (especially water) is not small, so that the viscosity change due to moisture absorption is kept large, and from the substrate end face side to the inside It is easy to form a catalyst layer that is inclined toward the surface.
 本発明における粘度は、せん断速度1sec-1を与えたときの25℃での粘度をいい、TV33形粘度計(東機産業(株)製)により測定されるものである。 The viscosity in the present invention means a viscosity at 25 ° C. when a shear rate of 1 sec −1 is applied, and is measured by a TV33 viscometer (manufactured by Toki Sangyo Co., Ltd.).
(第2実施形態)
 本発明の排出ガス浄化触媒の第2実施形態を図5を参照して説明する。本実施形態は、モノリス基材の壁面に設けた層厚に傾斜のない第1触媒層の上に、第1実施形態と同様に層厚が触媒層の中心位置から端面に向けて徐々に厚くなる第2触媒層を設けて2層構造に構成したものである。
(Second Embodiment)
A second embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIG. In the present embodiment, on the first catalyst layer provided on the wall surface of the monolith substrate, the layer thickness is gradually increased from the center position of the catalyst layer toward the end surface as in the first embodiment. A second catalyst layer is provided to form a two-layer structure.
 なお、支持基材及び触媒層17(第2触媒層)は第1実施形態と同様に構成することができ、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。 The support substrate and the catalyst layer 17 (second catalyst layer) can be configured in the same manner as in the first embodiment, and the same reference numerals are given to the same components as in the first embodiment, and the details thereof The detailed explanation is omitted.
 図5に示すように、排出ガス浄化触媒を構成するセル21を形成する壁14の内壁面には、第1触媒層として、触媒能を有する貴金属(触媒金属)が担持された触媒層22が設けられている。貴金属の例としては、白金(Pt)、パラジウム(Rh)、ロジウム(Rh)等が挙げられる。また、触媒層には、Li、K、Na、Mg、Ca、St、Ba等のアルカリ金属、アルカリ土類金属などのNO吸蔵材料を含有することができる。 As shown in FIG. 5, on the inner wall surface of the wall 14 forming the cell 21 constituting the exhaust gas purification catalyst, there is a catalyst layer 22 carrying a noble metal (catalyst metal) having catalytic ability as a first catalyst layer. Is provided. Examples of noble metals include platinum (Pt), palladium (Rh), rhodium (Rh), and the like. Further, the catalyst layer can contain a NO x storage material such as an alkali metal such as Li, K, Na, Mg, Ca, St, or Ba, or an alkaline earth metal.
 触媒層22の厚みとしては、10~80μmの範囲とするのが好ましく、より好ましくは20~60μmの範囲である。 The thickness of the catalyst layer 22 is preferably in the range of 10 to 80 μm, more preferably in the range of 20 to 60 μm.
 そして、この触媒層22の上に第2触媒層として、セル21の両方の端面(流入側端面12及び流出側端面13)から等距離にある位置Pから各端面に向かって、中心位置Pの層厚Yから徐々に層厚が層厚Yの2倍以上に厚くなる触媒層17が形成されている。これにより、排出ガス浄化触媒100を構成する各セルの内部は、円筒形の軸方向において、位置Pから上流側に向かって触媒層の厚みが層厚Yから漸増する第1の触媒層領域15aと、位置Pから下流側に向かって触媒層の厚みが層厚Yから漸増する第2の触媒層領域16aとで構成されている。 Then, as a second catalyst layer on the catalyst layer 22, the center position P is moved from the position P that is equidistant from both end faces (the inflow side end face 12 and the outflow side end face 13) of the cell 21 toward each end face. A catalyst layer 17 is formed in which the layer thickness gradually increases from the layer thickness Y to twice or more the layer thickness Y. As a result, the inside of each cell constituting the exhaust gas purification catalyst 100 has a first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the upstream side from the position P in the cylindrical axial direction. And a second catalyst layer region 16a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the downstream side from the position P.
 本実施形態においても、流入側端面12及び流出側端面13からそれぞれ等距離(距離L)の位置Pを中心に、流入側端面12と流出側端面13とに向かってそれぞれ厚みが漸増するように触媒層全体が形成されていることにより、第1実施形態と同様に、低温状態の触媒を迅速に昇温、活性化することが可能であると共に、触媒の保温性が向上し、触媒活性を浄化可能な範囲により安定的に維持することが可能である。 Also in the present embodiment, the thickness gradually increases from the inflow side end surface 12 and the outflow side end surface 13 toward the inflow side end surface 12 and the outflow side end surface 13 around the position P that is equidistant (distance L). By forming the entire catalyst layer, as in the first embodiment, it is possible to quickly raise the temperature and activate the catalyst in a low temperature state, improve the heat retention of the catalyst, and improve the catalyst activity. It can be stably maintained in a purifiable range.
(第3実施形態)
 本発明の排出ガス浄化触媒の第3実施形態を図6を参照して説明する。本実施形態は、モノリス基材の壁面に第1触媒層として、第1実施形態と同様に層厚が触媒層の中心位置から端面に向けて徐々に厚くなる触媒層を有し、その上にさらに層厚に傾斜のない第2触媒層を設けて2層構造に構成したものである。
(Third embodiment)
A third embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIG. In the present embodiment, as the first catalyst layer on the wall surface of the monolith substrate, a catalyst layer having a layer thickness that gradually increases from the center position of the catalyst layer toward the end surface as in the first embodiment, Furthermore, a second catalyst layer having no inclination in the layer thickness is provided to form a two-layer structure.
 なお、支持基材及び触媒層17は第1実施形態と同様に、触媒層22は第2実施形態と同様にそれぞれ構成することができ、第1、第2実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。 The support base material and the catalyst layer 17 can be configured in the same manner as in the first embodiment, and the catalyst layer 22 can be configured in the same manner as in the second embodiment. The same reference numerals are assigned and detailed description thereof is omitted.
 図6に示すように、排出ガス浄化触媒を構成するセル31を形成する壁14の内壁面には、第1触媒層として、セル31の両方の端面(流入側端面12及び流出側端面13)から等距離にある中心位置Pから各端面に向かって、中心位置Pの層厚Yから徐々に層厚が層厚Yの2倍以上に厚くなる触媒層17が設けられている。この触媒層17の上には、第2触媒層として、触媒能を有する貴金属(触媒金属)が担持された触媒層22が設けられている。貴金属及びNO吸蔵材料の例は、既述の通りである。これにより、排出ガス浄化触媒100を構成する各セルの内部は、円筒形の軸方向において、位置Pから上流側に向かって触媒層の厚みが層厚Yから漸増する第1の触媒層領域15aと、位置Pから下流側に向かって触媒層の厚みが層厚Yから漸増する第2の触媒層領域16aとで構成されている。 As shown in FIG. 6, both end surfaces of the cell 31 (the inflow side end surface 12 and the outflow side end surface 13) are formed on the inner wall surface of the wall 14 forming the cell 31 constituting the exhaust gas purification catalyst as a first catalyst layer. A catalyst layer 17 is provided in which the layer thickness gradually increases from the layer thickness Y at the center position P to more than twice the layer thickness Y from the center position P that is equidistant from the center position toward each end face. On the catalyst layer 17, a catalyst layer 22 on which a noble metal (catalyst metal) having catalytic ability is supported is provided as a second catalyst layer. Examples of the noble metal and the NO x storage material are as described above. As a result, the inside of each cell constituting the exhaust gas purification catalyst 100 has a first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the upstream side from the position P in the cylindrical axial direction. And a second catalyst layer region 16a in which the thickness of the catalyst layer gradually increases from the layer thickness Y toward the downstream side from the position P.
 本実施形態においても、流入側端面12及び流出側端面13からそれぞれ等距離(距離L)の位置Pを中心に、流入側端面12と流出側端面13とに向かってそれぞれ厚みが漸増するように触媒層全体が形成されていることにより、第1実施形態と同様に、低温状態の触媒を迅速に昇温、活性化することが可能であると共に、触媒の保温性が向上し、触媒活性を浄化可能な範囲により安定的に維持することが可能である。 Also in the present embodiment, the thickness gradually increases from the inflow side end surface 12 and the outflow side end surface 13 toward the inflow side end surface 12 and the outflow side end surface 13 around the position P that is equidistant (distance L). By forming the entire catalyst layer, as in the first embodiment, it is possible to quickly raise the temperature and activate the catalyst in a low temperature state, improve the heat retention of the catalyst, and improve the catalyst activity. It can be stably maintained in a purifiable range.
(第4実施形態)
 本発明の排出ガス浄化触媒の第4実施形態を図7を参照して説明する。本実施形態は、排出ガスの流入側端面及び流出側端面からそれぞれ等距離の一部領域に厚みに傾斜のない触媒層を配置し、この触媒層を挟むように、層厚が各端面に向けて徐々に厚くなる触媒層を設けて単層構造に構成したものである。
(Fourth embodiment)
A fourth embodiment of the exhaust gas purification catalyst of the present invention will be described with reference to FIG. In the present embodiment, a catalyst layer having a non-inclined thickness is arranged in a partial region equidistant from the inflow side end surface and the outflow side end surface of the exhaust gas, and the layer thickness is directed to each end surface so as to sandwich the catalyst layer. Thus, a catalyst layer that gradually increases in thickness is provided to form a single layer structure.
 なお、支持基材及び触媒層17は第1実施形態と同様に構成することができ、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。 The support base and the catalyst layer 17 can be configured in the same manner as in the first embodiment, and the same reference numerals are given to the same components as in the first embodiment, and detailed description thereof is omitted.
 図7に示すように、排出ガス浄化触媒を構成するセル41を形成する壁14の内壁面には、セル41の両方の端面(流入側端面12及び流出側端面13)から等距離にある中心領域に、触媒能を有する貴金属(触媒金属)が担持された触媒層17aが設けられている。貴金属及びNO吸蔵材料の例は、既述の通りである。そして、この触媒層17aと流入側端面12、流出側端面13との間にはそれぞれ、触媒層17aの端部から徐々に層厚が厚くなる触媒層17が設けられている。ここでは、触媒層17aの厚みがセル内で最も薄い層厚Yになっており、この層厚Yからセルの両端面に向かって徐々に層厚が厚くなり、セル41の流入側端面12、流出側端面13において触媒層の層厚が層厚Yの2倍以上になっている。これにより、排出ガス浄化触媒100を構成する各セルの内部は、排出ガスのガス流通方向において、その上流側に触媒層の厚みが層厚Yから漸増する第1の触媒層領域15aと、下流側に触媒層の厚みが層厚Yから漸増する第2の触媒層領域16aとで構成されている。なお、層厚Yは第1実施形態と同様の範囲とすることができる。 As shown in FIG. 7, the inner wall surface of the wall 14 forming the cell 41 constituting the exhaust gas purification catalyst has a center that is equidistant from both end surfaces (the inflow side end surface 12 and the outflow side end surface 13) of the cell 41. A catalyst layer 17a on which a noble metal (catalytic metal) having catalytic ability is supported is provided in the region. Examples of the noble metal and the NO x storage material are as described above. Between the catalyst layer 17a, the inflow side end surface 12, and the outflow side end surface 13, a catalyst layer 17 having a layer thickness that gradually increases from the end of the catalyst layer 17a is provided. Here, the thickness of the catalyst layer 17a is the thinnest layer thickness Y in the cell, and the layer thickness gradually increases from the layer thickness Y toward both end surfaces of the cell. The layer thickness of the catalyst layer at the outflow side end face 13 is more than twice the layer thickness Y. As a result, the interior of each cell constituting the exhaust gas purification catalyst 100 has the first catalyst layer region 15a in which the thickness of the catalyst layer gradually increases from the layer thickness Y on the upstream side in the gas flow direction of the exhaust gas, and the downstream On the side, the second catalyst layer region 16a is formed such that the thickness of the catalyst layer gradually increases from the layer thickness Y. The layer thickness Y can be in the same range as in the first embodiment.
 本実施形態においても、流入側端面12及び流出側端面13に向けてそれぞれ厚みが漸増するように触媒層全体が形成されていることにより、第1実施形態と同様に、低温状態の触媒を迅速に昇温、活性化することが可能であると共に、触媒の保温性が向上し、触媒活性を浄化可能な範囲により安定的に維持することが可能である。 Also in the present embodiment, the entire catalyst layer is formed so that the thickness gradually increases toward the inflow side end surface 12 and the outflow side end surface 13, so that the catalyst in the low temperature state can be quickly removed as in the first embodiment. It is possible to increase the temperature and activate the catalyst at the same time, improve the heat retaining property of the catalyst, and maintain the catalyst activity in a more stable range.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[実施例1~5、比較例1]
(下層用複合酸化物の調製)
 0.3モル/Lの硝酸ジルコニウムと、0.3モル/Lの硝酸セリウム溶液と、0.3モル/Lの硝酸ランタン溶液と、0.3モル/Lの硝酸イットリウム溶液とを、酸化物質量比でZrO/CeO/La/Y=60/30/5/5となるように混合した硝酸系前駆体溶液を調製し、これをアンモニア水に滴下した。滴下終了後、生成した沈殿物を850℃で焼成することにより、Zr,Ce,La,Y複合酸化物を得た。
[Examples 1 to 5, Comparative Example 1]
(Preparation of lower layer composite oxide)
0.3 mol / L zirconium nitrate, 0.3 mol / L cerium nitrate solution, 0.3 mol / L lanthanum nitrate solution, and 0.3 mol / L yttrium nitrate solution are oxidized A nitric acid-based precursor solution mixed so as to have a quantitative ratio of ZrO 2 / CeO 2 / La 2 O 3 / Y 2 O 3 = 60/30/5/5 was prepared, and this was dropped into aqueous ammonia. After completion of the dropwise addition, the resulting precipitate was baked at 850 ° C. to obtain a Zr, Ce, La, Y composite oxide.
(上層用複合酸化物の調製)
 硝酸ジルコニウムと、硝酸セリウム溶液と、硝酸ネオジウム溶液と、硝酸アルミニウム溶液と、硝酸ランタンとを、酸化物質量比でZrO/CeO/Nd/Al/La=25.5/19.5/2.0/51/2.0となるように混合した硝酸系前駆体溶液を調製し、これをアンモニア水に滴下した。滴下終了後、生成した沈殿物を850℃で焼成することにより、Zr,Ce,Nd,Al,La複合酸化物を得た。
(Preparation of upper layer composite oxide)
Zirconium nitrate, cerium nitrate solution, neodymium nitrate solution, aluminum nitrate solution, and lanthanum nitrate in terms of oxide mass ratio ZrO 2 / CeO 2 / Nd 2 O 3 / Al 2 O 3 / La 2 O 3 = A nitric acid-based precursor solution mixed so as to be 25.5 / 19.5 / 2.0 / 51 / 2.0 was prepared, and this was dropped into aqueous ammonia. After completion of the dropping, the produced precipitate was baked at 850 ° C. to obtain a Zr, Ce, Nd, Al, La composite oxide.
(下側触媒コート層の形成)
 上記で得られたZr,Ce,La,Y複合酸化物に、0.5%のジ硝酸ジアンミン白金溶液を混合し、乾燥、500℃での焼成を行ない、Pt0.75g/Lが担持されたPt担持酸化物粒子粉末Aを作製した。
(Formation of lower catalyst coat layer)
The Zr, Ce, La, Y composite oxide obtained above was mixed with 0.5% diammineplatinum dinitrate solution, dried and fired at 500 ° C., and Pt 0.75 g / L was supported. Pt-supported oxide particle powder A was produced.
 このPt担持酸化物粒子粉末Aを120g/Lと、市販のγ-Al粉末40g/Lと、硫酸バリウム5g/Lと、イオン交換水160g/Lとを混合してスラリーとし、得られたスラリーを875mlのコージェライトモノリス基材にウォッシュコートした。その後、乾燥、焼成を行なって触媒コート層を形成した。更に、500℃で焼成し、下側触媒コート層(第1触媒層)を形成した。Pt担持量は、0.75g/Lであった。 120 g / L of this Pt-supported oxide particle powder A, 40 g / L of commercially available γ-Al 2 O 3 powder, 5 g / L of barium sulfate, and 160 g / L of ion-exchanged water were mixed to obtain a slurry. The resulting slurry was washcoated onto an 875 ml cordierite monolith substrate. Thereafter, drying and firing were performed to form a catalyst coat layer. Furthermore, it baked at 500 degreeC and formed the lower side catalyst coat layer (1st catalyst layer). The amount of Pt supported was 0.75 g / L.
(上側触媒コート層の形成)
 次に、上記で得られたZr,Ce,Nd,Al,La複合酸化物に、0.1%の硝酸ロジウム溶液を混合、乾燥し、500℃での焼成を行ない、Rh0.15g/Lが担持されたRh担持酸化物粒子粉末Bを作製した。
(Formation of upper catalyst coat layer)
Next, the Zr, Ce, Nd, Al, La composite oxide obtained above was mixed with a 0.1% rhodium nitrate solution, dried, fired at 500 ° C., and Rh 0.15 g / L was A supported Rh-supported oxide particle powder B was produced.
 このRh担持酸化物粒子粉末Bを60g/Lと、市販のγ-Al粉末25g/Lと、下記表1中に記載の量(スラリー全質量に対する比率[質量%])のヒドロキシエチルセルロース(増粘剤)と、イオン交換水85g/Lとを混合してスラリーとした。下記表1に示すように増粘剤の含有比率を変更し、固形分量20質量%の6種のスラリーを調製した。 This Rh-supported oxide particle powder B was 60 g / L, a commercially available γ-Al 2 O 3 powder 25 g / L, and hydroxyethyl cellulose in the amount shown in Table 1 below (ratio to the total mass of the slurry [mass%]). (Thickener) and 85 g / L of ion exchange water were mixed to form a slurry. As shown in Table 1 below, the content ratio of the thickener was changed to prepare six types of slurries having a solid content of 20% by mass.
-粘度の測定-
 調製した6種のスラリーについて、固形分量を20質量%から80質量%まで20質量%おきに調整したときの25℃での各粘度[mPa・s]を、せん断速度1sec-1を与えてTV33形粘度計(東機産業(株)製)を用いて測定した。測定結果は、下記表1及び図8に示す。
-Measurement of viscosity-
With respect to the six types of slurries prepared, each viscosity [mPa · s] at 25 ° C. when the solid content was adjusted from 20% by mass to 80% by mass every 20% by mass was given a shear rate of 1 sec −1. It was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd.). The measurement results are shown in Table 1 below and FIG.
 図8に示すように、増粘剤を含有するスラリー1~5は、増粘剤を含有しない従来のスラリー6に比べ、固形分量が40質量%を超えた後の増粘が急激であることが分かる。 As shown in FIG. 8, the slurries 1 to 5 containing the thickener have a sharp increase in viscosity after the solid content exceeds 40% by mass, compared with the conventional slurry 6 containing no thickener. I understand.
 下側触媒コート層が形成されたモノリス基材の一端に、図4のように所定量のスラリーを保持する保持部材53を取り付け、その他端を図示しない減圧装置と連通する基材受け部の開口に挿入し、減圧により基材内部を吸引できるようにした。取り付けられた保持部材53に上記で得たスラリーを供給し、減圧することによりセル内を線速度55m/sで吸引した。このとき、スラリーは、図5に示すように、吸引により一端(図1中の流入側端面12)から中心位置Pまで拡がった。その後、120℃で乾燥させた。続いて、吸引を行なったモノリス基材の他端に保持部材53を取り付け、反対側の一端を減圧装置と連通する基材受け部の開口に挿入し、該一端から基材内部を吸引できるようにした。保持部材53にスラリーを順次用いて供給し、減圧することによりセル内を線速度55m/sで吸引した。スラリーは、図5に示すように他端(図1中の流出側端面13)から中心位置Pまで拡がった。その後、120℃で乾燥させ、さらに500℃で焼成した。このようにして、下記表1に記載のX/Yの傾斜を有する上側触媒コート層(第2の触媒層)を形成した。Rh担持量は、0.15g/Lであった。 A holding member 53 that holds a predetermined amount of slurry as shown in FIG. 4 is attached to one end of the monolith substrate on which the lower catalyst coat layer is formed, and the other end is opened in a substrate receiving portion that communicates with a decompression device (not shown). The inside of the base material can be sucked by decompression. The slurry obtained above was supplied to the attached holding member 53, and the inside of the cell was sucked at a linear velocity of 55 m / s by reducing the pressure. At this time, as shown in FIG. 5, the slurry spread from one end (inflow side end face 12 in FIG. 1) to the center position P by suction. Then, it was dried at 120 ° C. Subsequently, the holding member 53 is attached to the other end of the monolith substrate that has been sucked, and the other end is inserted into the opening of the substrate receiving portion that communicates with the decompression device so that the inside of the substrate can be sucked from the one end. I made it. The slurry was sequentially supplied to the holding member 53, and the inside of the cell was sucked at a linear velocity of 55 m / s by reducing the pressure. As shown in FIG. 5, the slurry spreads from the other end (outflow side end face 13 in FIG. 1) to the center position P. Then, it dried at 120 degreeC and further baked at 500 degreeC. In this way, an upper catalyst coat layer (second catalyst layer) having an X / Y gradient described in Table 1 below was formed. The amount of Rh supported was 0.15 g / L.
 以上のように、増粘剤の含有割合を変更した6種のスラリーを順次用いることにより、下側触媒コート層及び上側触媒コート層の2層構造の触媒層が設けられた6種の排出ガス浄化触媒を作製した。 As described above, six types of exhaust gas provided with a catalyst layer having a two-layer structure of a lower catalyst coat layer and an upper catalyst coat layer by sequentially using six types of slurries having different contents of the thickener. A purification catalyst was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価]
 排出ガス浄化触媒をエンジンより下流のスタートコンバーターに配置してエンジンを始動し、MOTOR EXHAUST GAS ANALYZER〔(株)堀場製作所製〕により、排出される排出ガス中のHC濃度[ppm]を計測した。導入した排出ガス(流入ガス)中のHCガス濃度に対する浄化処理後の排出ガス(流出ガス)中のHCガス濃度の比率(浄化率〔%〕)を下記式より算出し、これをガス浄化能を評価する指標として下記(1)を評価した。
 浄化率[%]=100-{流出ガス中のHCガス濃度/流入ガス中のHCガス濃度×100}
 なお、評価は、図9Aに示す昇温評価パターンと図9Bに示す降温評価パターンとを採用して行なった。前者により触媒の早期活性化を、後者により触媒の保存性を評価することができる。
[Evaluation]
The exhaust gas purification catalyst was placed in the start converter downstream of the engine, the engine was started, and the HC concentration [ppm] in the exhaust gas discharged was measured by MOTOR EXHAUST GAS ANALYZER [manufactured by Horiba, Ltd.]. The ratio of the HC gas concentration in the exhaust gas (outflow gas) after purification treatment (purification rate [%]) to the HC gas concentration in the introduced exhaust gas (inflow gas) is calculated from the following formula, and this is the gas purification capacity. The following (1) was evaluated as an index for evaluating.
Purification rate [%] = 100-{HC gas concentration in outflow gas / HC gas concentration in inflow gas x 100}
The evaluation was performed by adopting the temperature rise evaluation pattern shown in FIG. 9A and the temperature drop evaluation pattern shown in FIG. 9B. The former can evaluate the early activation of the catalyst, and the latter can evaluate the storage stability of the catalyst.
(1)50%浄化温度
 作製した6種の排出ガス浄化触媒について、流入ガス中のHCガス濃度に対する流出ガス中のHC濃度の比率(浄化率〔%〕)が50%に達するのに必要な温度を求めた。結果を図10~図11に示す。
 なお、「50%浄化温度」は、昇温評価パターンと降温評価パターンとにおいて浄化率が50%になったときの流入ガスの温度である。
(1) 50% purification temperature For the six exhaust gas purification catalysts produced, the ratio of the HC concentration in the outflow gas to the HC gas concentration in the inflow gas (purification rate [%]) is required to reach 50%. The temperature was determined. The results are shown in FIGS.
The “50% purification temperature” is the temperature of the inflowing gas when the purification rate becomes 50% in the temperature increase evaluation pattern and the temperature decrease evaluation pattern.
 図10~図11に示すように、実施例では、比較(従来)の浄化触媒に比べ、浄化性能を維持できる温度幅が低温側に広がっており、温度降下に伴なう浄化性能の低下が抑制された。このため、エンジンの冷間始動時やハイブリッド車でのエンジンの間欠停止時、低速運転時などの運転条件の影響を低く抑えて、安定的に優れた排ガス浄化能を発揮することができる。また、図8に示すように、増粘剤を用いて所定のb/a値に調製したスラリーは固形分量の増加に起因した増粘が大きく、所望のX/Yを有する触媒層の形成が行なえた。 As shown in FIGS. 10 to 11, in the embodiment, the temperature range in which the purification performance can be maintained is widened to the low temperature side as compared with the comparative (conventional) purification catalyst, and the purification performance is reduced due to the temperature drop. Suppressed. For this reason, it is possible to suppress the influence of operating conditions such as when the engine is cold started, when the engine is intermittently stopped in a hybrid vehicle, and during low-speed operation, and to stably exhibit excellent exhaust gas purification performance. Further, as shown in FIG. 8, the slurry prepared to a predetermined b / a value using a thickener has a large viscosity due to an increase in the solid content, and the formation of a catalyst layer having a desired X / Y can be achieved. I was able to do it.
11,21,31,41・・・セル
12・・・排出ガスの流入側端面
13・・・排出ガスの流出側端面
17,17a,22・・・触媒層
52・・・スラリー
100・・・排出ガス浄化触媒
11, 21, 31, 41 ... cell 12 ... exhaust gas inflow side end surface 13 ... exhaust gas outflow side end surface 17, 17a, 22 ... catalyst layer 52 ... slurry 100 ... Exhaust gas purification catalyst

Claims (10)

  1.  排出ガス流通方向の上流側端面と下流側端面との中間位置における最も薄い層厚Yに対して2倍以上の層厚Xを有する領域を、前記排出ガス流通方向における該層厚Yの位置の上流側及び下流側にそれぞれ有する触媒層を、支持基材の上に備えた排出ガス浄化触媒。 An area having a layer thickness X that is twice or more the thinnest layer thickness Y at the intermediate position between the upstream end face and the downstream end face in the exhaust gas flow direction is the position of the layer thickness Y in the exhaust gas flow direction. An exhaust gas purification catalyst comprising a catalyst layer having upstream and downstream sides on a support substrate.
  2.  前記層厚Yに対する層厚Xの比率(X/Y)が3.0以上である請求項1に記載の排出ガス浄化触媒。 The exhaust gas purification catalyst according to claim 1, wherein the ratio (X / Y) of the layer thickness X to the layer thickness Y is 3.0 or more.
  3.  前記触媒層は、排出ガス流通方向における前記中間位置の上流側に設けられ、該上流側に向かって層厚が層厚Yから漸増する第1の触媒層領域と、前記中間位置の下流側に設けられ、該下流側に向かって層厚が層厚Yから漸増する第2の触媒層領域とを有する請求項1に記載の排出ガス浄化触媒。 The catalyst layer is provided upstream of the intermediate position in the exhaust gas flow direction, and a first catalyst layer region whose layer thickness gradually increases from the layer thickness Y toward the upstream side, and downstream of the intermediate position. The exhaust gas purifying catalyst according to claim 1, further comprising a second catalyst layer region that is provided and has a layer thickness that gradually increases from the layer thickness Y toward the downstream side.
  4.  前記触媒層は2層構造を有し、該2層構造の上層及び下層の少なくとも一方が、前記層厚Yに対して2倍以上の層厚Xを有する領域を、前記排出ガス流通方向における前記層厚Yの位置の上流側及び下流側にそれぞれ有する請求項1に記載の排出ガス浄化触媒。 The catalyst layer has a two-layer structure, and at least one of the upper layer and the lower layer of the two-layer structure has a region having a layer thickness X that is twice or more the layer thickness Y in the exhaust gas flow direction. The exhaust gas purification catalyst according to claim 1, which is respectively provided on the upstream side and the downstream side of the position of the layer thickness Y.
  5.  前記層厚Yの厚みが、10~80μmの範囲である請求項1に記載の排出ガス浄化触媒。 The exhaust gas purification catalyst according to claim 1, wherein the layer thickness Y is in the range of 10 to 80 µm.
  6.  前記層厚Yの位置は、触媒層の排ガス流通方向両端から等距離(L)にある中心位置を基点に、排ガス流通方向の上流側にL×3/10までの位置と下流側にL×3/10までの位置との間に有する請求項1に記載の排出ガス浄化触媒。 The position of the layer thickness Y is based on a central position equidistant (L) from both ends of the catalyst layer in the exhaust gas flow direction, with a position up to L × 3/10 on the upstream side in the exhaust gas flow direction and L × on the downstream side. The exhaust gas purifying catalyst according to claim 1, wherein the exhaust gas purifying catalyst is located between the position and up to 3/10.
  7.  触媒金属と増粘剤とを含み、固形分量20質量%での粘度aに対する固形分量80質量%での粘度bの比率(b/a)が2.4以上であるスラリーを支持基材の一端に設け、他端から前記スラリーを吸引して、前記支持基材の一端及び他端の中間位置から前記一端の側に、層厚が前記中間位置における最も薄い層厚Yに対して2倍以上の層厚Xを含む領域を有する触媒層を形成する第1の工程と、
     前記触媒層が形成された前記支持基材の他端に前記スラリーを設け、前記一端からスラリーを吸引して、前記中間位置から前記他端の側に、層厚が前記層厚Yに対して2倍以上の層厚Xを含む領域を有する触媒層を形成する第2の工程と、
     を有する排出ガス浄化触媒の製造方法。
    A slurry containing a catalyst metal and a thickener and having a ratio (b / a) of viscosity b at a solid content of 80% by mass to a viscosity at a solid content of 20% by mass of 2.4% or more is one end of a supporting substrate. The slurry is sucked from the other end, and the layer thickness is more than twice the thinnest layer thickness Y at the intermediate position from the intermediate position of the one end and the other end of the support base to the one end side. A first step of forming a catalyst layer having a region including a layer thickness X of
    The slurry is provided on the other end of the support base on which the catalyst layer is formed, the slurry is sucked from the one end, and the layer thickness is from the intermediate position to the other end side with respect to the layer thickness Y. A second step of forming a catalyst layer having a region including a layer thickness X of twice or more;
    A method for producing an exhaust gas purification catalyst having
  8.  前記第1の工程は、前記吸引により、前記中間位置から前記一端に向かって層厚が前記中間位置における最も薄い層厚Yから漸増する第1の触媒層領域を形成し、前記第2の工程は、前記吸引により、前記中間位置から前記他端に向かって層厚が前記層厚Yから漸増する第2の触媒層領域を形成する、請求項7に記載の排出ガス浄化触媒の製造方法。 The first step forms, by the suction, a first catalyst layer region in which the layer thickness gradually increases from the thinnest layer thickness Y at the intermediate position from the intermediate position toward the one end. The method for producing an exhaust gas purification catalyst according to claim 7, wherein a second catalyst layer region whose layer thickness gradually increases from the layer thickness Y toward the other end from the intermediate position is formed by the suction.
  9.  前記増粘剤が水溶性高分子である請求項7に記載の排出ガス浄化触媒の製造方法。 The method for producing an exhaust gas purification catalyst according to claim 7, wherein the thickener is a water-soluble polymer.
  10.  前記固形分量20質量%での粘度aが200~1000mPa・sである請求項7に記載の排出ガス浄化触媒の製造方法。 The method for producing an exhaust gas purification catalyst according to claim 7, wherein the viscosity a at the solid content of 20% by mass is 200 to 1000 mPa · s.
PCT/JP2009/059096 2009-05-15 2009-05-15 Exhaust purifying catalyst and method of manufacturing the same WO2010131369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059096 WO2010131369A1 (en) 2009-05-15 2009-05-15 Exhaust purifying catalyst and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059096 WO2010131369A1 (en) 2009-05-15 2009-05-15 Exhaust purifying catalyst and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010131369A1 true WO2010131369A1 (en) 2010-11-18

Family

ID=43084759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059096 WO2010131369A1 (en) 2009-05-15 2009-05-15 Exhaust purifying catalyst and method of manufacturing the same

Country Status (1)

Country Link
WO (1) WO2010131369A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080554A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Catalyst for cleaning exhaust gas
JP2016193390A (en) * 2015-03-31 2016-11-17 サンノプコ株式会社 Thickener, slurry for exhaust emission control catalyst and production method therefor, and internal combustion engine
US9662636B2 (en) 2014-04-17 2017-05-30 Basf Corporation Zoned catalyst composites
KR20180059895A (en) * 2015-09-30 2018-06-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Gasoline particulate filter
WO2022209533A1 (en) * 2021-03-30 2022-10-06 三井金属鉱業株式会社 Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343877A (en) * 1993-03-26 1994-12-20 Siemens Ag Catalyst for decreasing nitrogen oxide in exhaust gas of internal combustion engine
JP2005193170A (en) * 2004-01-08 2005-07-21 Toyota Motor Corp Catalyst for exhaust gas purification, method for producing catalyst for exhaust gas purification
JP2008178767A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Diesel oxidation catalyst
JP2008284542A (en) * 2007-04-20 2008-11-27 Ibiden Co Ltd Honeycomb filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343877A (en) * 1993-03-26 1994-12-20 Siemens Ag Catalyst for decreasing nitrogen oxide in exhaust gas of internal combustion engine
JP2005193170A (en) * 2004-01-08 2005-07-21 Toyota Motor Corp Catalyst for exhaust gas purification, method for producing catalyst for exhaust gas purification
JP2008178767A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Diesel oxidation catalyst
JP2008284542A (en) * 2007-04-20 2008-11-27 Ibiden Co Ltd Honeycomb filter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875862B1 (en) * 2012-11-20 2019-06-05 Toyota Jidosha Kabushiki Kaisha Catalyst for cleaning exhaust gas
CN104582846A (en) * 2012-11-20 2015-04-29 丰田自动车株式会社 Catalyst for cleaning exhaust gas
US20150238951A1 (en) * 2012-11-20 2015-08-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas catalyst
US9694354B2 (en) * 2012-11-20 2017-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas catalyst
WO2014080554A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Catalyst for cleaning exhaust gas
US9662636B2 (en) 2014-04-17 2017-05-30 Basf Corporation Zoned catalyst composites
JP2016193390A (en) * 2015-03-31 2016-11-17 サンノプコ株式会社 Thickener, slurry for exhaust emission control catalyst and production method therefor, and internal combustion engine
KR20180059895A (en) * 2015-09-30 2018-06-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Gasoline particulate filter
JP2018537265A (en) * 2015-09-30 2018-12-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Gasoline particulate filter
US11203958B2 (en) 2015-09-30 2021-12-21 Johnson Matthey Public Limited Company Gasoline particulate filter
KR102548689B1 (en) * 2015-09-30 2023-06-28 존슨 맛쎄이 퍼블릭 리미티드 컴파니 gasoline particulate filter
WO2022209533A1 (en) * 2021-03-30 2022-10-06 三井金属鉱業株式会社 Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JPWO2022209533A1 (en) * 2021-03-30 2022-10-06
JP7278518B2 (en) 2021-03-30 2023-05-19 三井金属鉱業株式会社 Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP4833605B2 (en) Exhaust gas purification catalyst
EP3207978B1 (en) Exhaust gas purification device
EP1793914B1 (en) Catalyst for purifying exhaust gases
CN109153014B (en) Catalyst for exhaust gas purification
US7446076B2 (en) Exhaust gas purification catalyst
CN108778491B (en) Catalyst for exhaust gas purification
US20120055141A1 (en) Catalyst For Gasoline Lean Burn Engines With Improved NO Oxidation Activity
JP5090673B2 (en) Honeycomb carrier for catalyst and exhaust gas purification catalyst using the same
JP2012035206A (en) Exhaust gas purifying catalyst
JP2009273988A (en) Catalyst for cleaning exhaust gas
WO2006046316A1 (en) Catalyst for exhaust gas purification
EP3632537A1 (en) Exhaust gas purification catalyst device
JP2003340291A (en) Exhaust gas cleaning catalyst
US10408102B2 (en) Oxidation catalyst device for exhaust gas purification
WO2010131369A1 (en) Exhaust purifying catalyst and method of manufacturing the same
US20220184591A1 (en) Particulate filter
JP5876475B2 (en) NOx storage catalyst with reduced Rh load
EP1810739B1 (en) Exhaust gas purification catalyst
JP2009000648A (en) Exhaust gas cleaning catalyst
WO2007055216A1 (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP4450984B2 (en) Exhaust gas purification catalyst
JP2002253968A (en) Catalyst for purifying exhaust gas
JP2015009163A (en) Exhaust gas purification catalyst
JP3748202B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP