WO2010130420A1 - Dispositif et procédé permettant de déterminer la position et l'orientation - Google Patents

Dispositif et procédé permettant de déterminer la position et l'orientation Download PDF

Info

Publication number
WO2010130420A1
WO2010130420A1 PCT/EP2010/002902 EP2010002902W WO2010130420A1 WO 2010130420 A1 WO2010130420 A1 WO 2010130420A1 EP 2010002902 W EP2010002902 W EP 2010002902W WO 2010130420 A1 WO2010130420 A1 WO 2010130420A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference axis
support means
determining
data
relative
Prior art date
Application number
PCT/EP2010/002902
Other languages
German (de)
English (en)
Inventor
Ulrich Priber
Steffen Ihlenfeldt
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP10722597A priority Critical patent/EP2429759A1/fr
Publication of WO2010130420A1 publication Critical patent/WO2010130420A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/16Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding peculiarly surfaces, e.g. bulged
    • B24B5/167Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding peculiarly surfaces, e.g. bulged for rolls with large curvature radius, e.g. mill rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/363Single-purpose machines or devices for grinding surfaces of revolution in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/37Single-purpose machines or devices for grinding rolls, e.g. barrel-shaped rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • G01B21/24Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing alignment of axes

Definitions

  • the present invention relates to a device and a method for determining the position and position of a carrying means relative to a reference axis, in particular for the high-precision guidance of a machine tool arranged on the carrying means or another device, such as e.g. a measuring system.
  • a mobile device for grinding Yankee cylinders is known.
  • This device dispenses with a precisely manufactured guide bed and instead uses a parallel to the cylinder axis tensioned steel wire as a reference axis.
  • the mobile device of WO 01/49451 is provided with a measuring system with the aid of which the distance between the device and the steel wire is determined.
  • An inclination sensor may additionally determine the inclination of the device within a plane perpendicular to the cylinder axis.
  • a disadvantage of this device is that only radial deviation in the machine guide can be detected and compensated. Other deviations, in particular deviations due to a tilting of the device relative to the cylinder axis, are not recognized and lead to errors in the measurement and processing of the workpiece.
  • a measuring device for determining the position and position of a carrier with respect to a reference axis, in particular for a mobile machine tool.
  • the measuring device comprises a first 2D position sensor mounted on the support means for determining first position data, which is a position of the first 2D position sensor relative to a reference axis ⁇ in a first plane, which in the is substantially perpendicular to the reference axis, indicate a second 2D position sensor spaced apart in the direction of the reference axis from the first 2D position sensor on the support means for determining second position data representing a position of the second 20-position sensor in a second plane substantially perpendicular to the reference axis, and an inclination sensor for detecting inclination data indicating an inclination of the carrying means about an axis of rotation substantially parallel to the reference axis, the position of the incline Trageschs relative to the reference axis in two coordinate directions perpendicular to the reference axis and the orientation of the
  • the measuring device comprises a processing unit for determining the position of the carrier relative to the reference axis in two coordinate directions perpendicular to the reference axis and / or the orientation of the carrier relative to three orthogonal axes of rotation from the first position data, the second position data and the tilt data.
  • the position and orientation of the carrying means determined by the processing unit can thus be used directly for the control of a tool likewise mounted on the carrying means.
  • the measuring device further comprises means for representing the reference axis, preferably a tensioned wire or thread or a laser beam, wherein the first and / or the second 2D position sensor are adapted to determine a distance to the means representing the reference axis.
  • the reference axis of the measuring device can be aligned with the workpiece to be machined or measured.
  • the first and / or the second 2D position sensor comprises a laser scanner or a photodetector array, whereby a precise and non-contact measurement is made possible.
  • the measuring device further comprises an axial position sensor mounted on the support for determining third position data indicating a position or a positional change of the axial position sensor parallel to the reference axis, wherein the processing unit in addition to determining the position of the support means relative to a reference point in a Coordinate direction is set parallel to the reference axis from the third position data.
  • the processing unit in addition to determining the position of the support means relative to a reference point in a Coordinate direction is set parallel to the reference axis from the third position data.
  • the measuring device further comprises a storage unit for storing calibration data indicating the position of the reference axis representing means relative to the reference axis, the processing unit being adapted to the position and / or orientation of the carrying means taking into account the position indicated by the calibration data to investigate.
  • the accuracy of the position and position determination can be further increased.
  • the calibration data indicates the position of two points of the wire or thread representing the reference axis in space.
  • the local coordinate system of the carrier can be transferred into the global coordinate system.
  • the calibration data preferably also take into account, in particular, sagging of the wire or thread representing the reference axis.
  • the measuring device further comprises means for tensioning the wire or thread representing the reference axis with a predetermined constant force.
  • the measuring device can further a force sensor for detecting the voltage of the wire or thread representing the reference axis, wherein the processing unit is adapted to calculate the amount of sag on the basis of the detected voltage.
  • the measuring device further comprises a distance sensor mounted on the carrier means for measuring the surface of a workpiece.
  • the distance sensor can be used both for measuring the workpiece surface and for calibrating the measuring device.
  • a method for determining the position and location of a carrier relative to a reference axis comprises the steps of: determining first position data which is a position of a first 2D position sensor mounted on the carrier means relative to one Reference axis in a first plane, which is substantially perpendicular to the reference axis indicate; Determining second position data which is a position of a second 2D position sensor, which is mounted in the direction of the reference axis spaced from the first 2D position sensor on the support means, relative to the reference axis in a second plane, which is substantially perpendicular to the reference axis, specify; Determining pitch data indicating an inclination of the carrier about an axis of rotation substantially parallel to the reference axis; and determining the position of the carrier relative to the reference axis in two coordinate directions perpendicular to the reference axis and / or the orientation of the carrier relative to three orthogonal axes of rotation from the first position data, the
  • a method for measuring the surface of a workpiece by means of a distance sensor mounted on a carrier means comprises the steps of: (a) determining the position and position of the carrier relative to a reference axis; (b) determining the distance between the support means and a point of the workpiece surface by means of the distance sensor; and (c) determining the position of the point of the workpiece surface relative to the reference axis from the determined position and position of the support means and the determined distance between the support means and the point of the workpiece surface.
  • the method further comprises the steps of: (d) moving the support means parallel to the reference axis; and repeating steps (a) through (d).
  • steps (d) through (d) for example, a diameter variation of the workpiece along the reference axis can be determined.
  • a method of machining the surface of a workpiece by means of a machine tool mounted on a support means comprises the steps of: (a) determining the position and position of the carrier relative to a reference axis and (b) controlling the machine tool in dependence on the determined position and position of the carrier.
  • the method further comprises the steps of: (c) moving the support means parallel to the reference axis; and repeating steps (a) through (c).
  • steps (a) through (c) for example, a diameter variation of the workpiece along the reference axis can be corrected by appropriate machining, in particular grinding.
  • the invention will now be described with reference to the accompanying drawing, which shows a schematic representation of the measuring device according to a preferred embodiment of the present invention.
  • the figure shows schematically the configuration of the measuring device according to the invention.
  • the global, space-stable coordinate system is referred to below as XYZ
  • the local coordinate system of the (mobile) measuring device is referred to as UVW.
  • position refers in the following to the translatory degrees of freedom, while “position” refers to the degree of freedom of rotation.
  • the position or the position of the carrying means is thus determined by the specification of three coordinates in the XYZ coordinate system or of three angles of rotation about the XYZ coordinate axes.
  • the basis for the position and orientation determination described below is a steel wire 150, which if possible is parallel to the reference axis 210 (here: roll axis or Z axis), whose slight deviation from the straightness is known or calculable.
  • the measuring device comprises a support means or a support 110, to which two 2D position sensors 120, 130 are fastened at a certain distance from each other.
  • the two position sensors are preferably arranged at opposite ends of the support, so that the distance between them in the direction of the reference axis is as large as possible.
  • the 2D position sensors measure the position of the support at the location of the respective sensor relative to the reference wire and provide first and second position data (ui, vi) and (u 2 , V2), respectively, the position of the reference wire in a plane parallel to the local Specify UV level, ie in a plane that is approximately perpendicular to the reference axis.
  • the two position sensors are aligned so that their measurement levels are substantially parallel to each other.
  • the measuring device further comprises an inclination sensor 140, which is also mounted on the support, and provides inclination data ⁇ , which indicate an inclination of the support about a local axis of rotation w, which is approximately parallel to the reference axis 210.
  • a machining tool (not shown), such as a grinder, may be mounted on the support 110.
  • the support itself can be displaceable on a guide 115, for example in the form of rails, in the axial direction, ie parallel to the reference axis.
  • the global X-Y coordinates of the support From the position data of the two position sensors and their known distance and the inclination data of the inclination sensor can be determined by a processing unit, the global X-Y coordinates of the support, so its position within a plane parallel to the XY plane.
  • the Z-coordinate of the support and thus its complete position description can be determined.
  • the measuring device may further comprise a distance sensor 170, with the aid of which the distance to the surface of the workpiece 200 can be determined.
  • a distance sensor 170 By moving the measuring device in the axial direction and rotating the workpiece about the reference axis, the surface of the workpiece can be measured by determining the distance to the surface and at the same time the position and position of the measuring device relative to the reference axis.
  • a position sensor preferably 2D laser scanners or two crossed 1 D laser scanners are used, but other suitable position sensors, such. Photodiode arrays o.a. be used.
  • a (nylon) thread or the like may be used as a reference instead of the tensioned steel wire.
  • Laser beam can be used as a reference axis.
  • optical detector arrays preferably CCDs or CMOS arrays in conjunction with semitransparent mirrors or prisms as a beam splitter for coupling the position signal from the reference beam in question.
  • tensioned wire or thread as a reference has the advantage, especially at longer distances, that its exact alignment on the workpiece can be easily adjusted by adjusting the two end points, whereas with a laser beam the beam direction at the location of the laser has to be adjusted very precisely.
  • the measuring device additionally has a force sensor which measures the tension of the wire or thread. From the determined voltage, the sag curve, i. the deviation from the reference axis can be determined as a function of the axial position (z-coordinate), for example by calculating or interpolating a calibration table.
  • the measuring device may also comprise means which ensure that the wire or thread is always tensioned with a constant, well-known force. In the simplest case, this may be a weight attached to the wire via a pulley.
  • the effects of mechanical vibrations in the tensioned wire or thread can also be eliminated by proper low-pass filtering (averaging) in position determination.
  • the (high-precision) position sensors naturally only have a limited measuring range (typically 13x13 mm), which must not be left when using the measuring device.
  • the exact position of the reference wire, filament, or laser beam in its permanently stable position must be known or determinable by calibration.
  • the distance sensor inter alia, laser triangulation, confocal displacement sensors, eddy current sensors (metallic surfaces), and other suitable sensors in question.
  • the data determined by the various sensors are fed to a processing unit.
  • the processing unit can be embodied, for example, as a microprocessor, microcontroller, programmable logic controller, or as a software component of a higher-level controller.
  • the distance sensor can be used to determine the distance to a known reference surface and the associated position data of the two position sensors and the inclination data of the inclination sensor at two points as far as possible in z-direction.
  • a reference surface for example, the workpiece surface comes into question if the diameter is known exactly at these locations. From the data obtained in this way, the wire position can be completely determined at two points.
  • the present invention has been particularly explained in connection with the measurement and processing of large cylindrical workpieces, but is generally applicable to any type of linear surveying and guiding tasks.
  • the present invention can be used particularly advantageously if highly accurate guidance over long distances of the order of magnitude of 10 m and longer is required, for example in the manufacture of aircraft wings, rotor blades of wind turbines and the like.
  • the measuring device for determining the position and position of a carrier with respect to a reference axis, in particular for high-precision guidance of a mobile machine tool or a special measuring system, thus comprises a first 2D position sensor mounted on a carrier for determining first position data, which is a position of the first 20 position sensor relative to a reference axis in a first plane perpendicular to the reference axis, a second 2D position sensor, which is mounted in the direction of the reference axis spaced from the first 2D position sensor on the support means for determining second position data, which is a position of the second Specify 2D position sensors relative to the reference axis in a second plane perpendicular to the reference axis, and an inclination sensor for detecting inclination data indicating inclination of the carrier about an axis of rotation parallel to the reference axis.
  • the reference axis may be represented by a laser beam or by a tensioned wire or thread.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un dispositif de mesure permettant de déterminer la position et l'orientation d'un moyen de support par rapport à un axe de référence, notamment pour guider avec une grande précision une machine-outil mobile ou un système de mesure spécial. Le dispositif de mesure comprend un premier capteur de position en 2D monté sur un moyen de support destiné à déterminer des premières données d'orientation qui indiquent une orientation du premier capteur de position en 2D par rapport à un axe de référence dans un premier plan perpendiculaire au plan de référence, un deuxième capteur de position en 2D qui est monté sur le moyen de support à distance du premier capteur de position en 2D dans la direction de l'axe de référence et est destiné à déterminer des deuxièmes données d'orientation qui indiquent une orientation du deuxième capteur de position en 2D par rapport à l'axe de référence dans un deuxième plan perpendiculaire à l'axe de référence ainsi qu'un capteur d'inclinaison destiné à déterminer des données d'inclinaison qui indiquent une inclinaison du moyen de support autour d'un axe de rotation parallèle à l'axe de référence. Il est possible, à partir de ces données, de déterminer la position du moyen de support par rapport à l'axe de référence dans deux directions de coordonnées perpendiculaires à l'axe de référence et l'orientation du moyen de support par rapport à trois axes de rotation orthogonaux. L'axe de référence peut être représenté par un faisceau laser ou par un fil métallique ou un fil tendu.
PCT/EP2010/002902 2009-05-15 2010-05-11 Dispositif et procédé permettant de déterminer la position et l'orientation WO2010130420A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10722597A EP2429759A1 (fr) 2009-05-15 2010-05-11 Dispositif et procédé permettant de déterminer la position et l'orientation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009021483.6 2009-05-15
DE200910021483 DE102009021483B3 (de) 2009-05-15 2009-05-15 Einrichtung und Verfahren zur Positions- und Lageermittlung

Publications (1)

Publication Number Publication Date
WO2010130420A1 true WO2010130420A1 (fr) 2010-11-18

Family

ID=42537513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002902 WO2010130420A1 (fr) 2009-05-15 2010-05-11 Dispositif et procédé permettant de déterminer la position et l'orientation

Country Status (3)

Country Link
EP (1) EP2429759A1 (fr)
DE (1) DE102009021483B3 (fr)
WO (1) WO2010130420A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512539A (zh) * 2012-06-18 2014-01-15 上海宝钢工业技术服务有限公司 轴辊的垂直度测量方法
EP2952435A1 (fr) * 2014-06-04 2015-12-09 Airbus Operations GmbH Procede et appareil pour l'alignement de segments
CN106595541A (zh) * 2015-10-16 2017-04-26 上海船舶工艺研究所 一种测量装置及其测量方法
CN108508842A (zh) * 2018-04-04 2018-09-07 中国工程物理研究院激光聚变研究中心 数控机床直线导轨的直线度误差检测方法
CN109855590A (zh) * 2019-01-12 2019-06-07 吉林大学 一种圆柱类零件弯曲变形轴线杠杆式连续测量方法
CN113601346A (zh) * 2021-09-06 2021-11-05 东莞兆泰机械设备有限公司 轧辊在线抛光设备
WO2021259313A1 (fr) * 2020-06-23 2021-12-30 宝山钢铁股份有限公司 Dispositif et procédé d'étalonnage d'outil métallurgique allongé basé sur un capteur de télémétrie laser

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117984B4 (de) 2011-11-09 2013-06-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Positionierungsvorrichtung zur Positionierung eines Bauteils und Verfahren zur Positionierung eines Bauteils
DE102014221877A1 (de) * 2014-10-28 2016-04-28 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum lagegenauen Platzieren eines zu bearbeitenden Objekts an einer Fertigungsvorrichtung
CN110986860B (zh) * 2019-10-22 2021-01-01 武汉大学 一种基于智能机器人的塔柱倾斜度判定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371975A (en) * 1990-01-04 1994-12-13 E. Lundmark Industrimatningar Process and device for machine-working or rolls and similar workpieces
US6169290B1 (en) * 1997-08-22 2001-01-02 Valmet-Karlstad Ab Method and measuring device for measuring at an envelope surface
US6283823B1 (en) * 1992-06-03 2001-09-04 Hitachi, Ltd. Rolling mill equipped with on-line roll grinding system and grinding wheel
US6802759B1 (en) * 1999-12-31 2004-10-12 Voith Paper Holding Gmbh Grinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9828473D0 (en) * 1998-12-24 1999-02-17 British Aerospace Non-contact positioning apparatus
DE102004033114A1 (de) * 2004-07-08 2006-01-26 Ibeo Automobile Sensor Gmbh Verfahren zur Kalibrierung eines Abstandsbildsensors
DE102005012107B4 (de) * 2005-03-09 2010-04-29 Angermeier Ingenieure Gmbh Meßsystem und Verfahren zur geodätischen Vermessung von Objekten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371975A (en) * 1990-01-04 1994-12-13 E. Lundmark Industrimatningar Process and device for machine-working or rolls and similar workpieces
US6283823B1 (en) * 1992-06-03 2001-09-04 Hitachi, Ltd. Rolling mill equipped with on-line roll grinding system and grinding wheel
US6169290B1 (en) * 1997-08-22 2001-01-02 Valmet-Karlstad Ab Method and measuring device for measuring at an envelope surface
US6802759B1 (en) * 1999-12-31 2004-10-12 Voith Paper Holding Gmbh Grinder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512539A (zh) * 2012-06-18 2014-01-15 上海宝钢工业技术服务有限公司 轴辊的垂直度测量方法
EP2952435A1 (fr) * 2014-06-04 2015-12-09 Airbus Operations GmbH Procede et appareil pour l'alignement de segments
CN105300339A (zh) * 2014-06-04 2016-02-03 空中客车德国运营有限责任公司 用于将区段对准的方法和设备
CN106595541A (zh) * 2015-10-16 2017-04-26 上海船舶工艺研究所 一种测量装置及其测量方法
CN108508842A (zh) * 2018-04-04 2018-09-07 中国工程物理研究院激光聚变研究中心 数控机床直线导轨的直线度误差检测方法
CN109855590A (zh) * 2019-01-12 2019-06-07 吉林大学 一种圆柱类零件弯曲变形轴线杠杆式连续测量方法
WO2021259313A1 (fr) * 2020-06-23 2021-12-30 宝山钢铁股份有限公司 Dispositif et procédé d'étalonnage d'outil métallurgique allongé basé sur un capteur de télémétrie laser
CN113601346A (zh) * 2021-09-06 2021-11-05 东莞兆泰机械设备有限公司 轧辊在线抛光设备

Also Published As

Publication number Publication date
EP2429759A1 (fr) 2012-03-21
DE102009021483B3 (de) 2011-02-24

Similar Documents

Publication Publication Date Title
DE102009021483B3 (de) Einrichtung und Verfahren zur Positions- und Lageermittlung
EP2834595B1 (fr) Méthode et appareil pour la réduction des erreurs associées à un dispositif de rotation lors de la détermination des coordonnées d'une pièce ou lors de l'usinage d'une pièce
EP2984442B1 (fr) Procédé permettant de déterminer un contour d'un objet à mesurer
DE102013216093B4 (de) Reduzieren von Fehlern einer Drehvorrichtung, insbesondere für die Bestimmung von Koordinaten eines Werkstücks oder die Bearbeitung eines Werkstücks
DE102012110673B4 (de) Werkzeugmaschine und Verfahren zur Vermessung eines Werkstücks
EP2807447B1 (fr) Procédé de détermination d'une valeur de correction pour un contrôle d'un palier à fluide, et machine présentant au moins un palier à fluide
EP0252164B1 (fr) Méthode et dispositif pour déterminer la position radiale d'un profil neuf obtenu par fraisage
DE4238504C2 (de) Verfahren zum Vermessen eines Werkzeuges
EP3049758A1 (fr) Réduction d'erreurs d'un dispositif de rotation qui est utilisée lors de la détermination de coordonnées d'une pièce ou lors de l'usinage d'une pièce
DE102010014386B4 (de) Verfahren zur Herstellung von Schraubenfedern durch Federwinden, sowie Federwindemaschine
WO2006128733A2 (fr) Appareil de mesure par coordonnees et procede pour mesurer un objet a l'aide d'un appareil de mesure par coordonnees
DE102014007201B4 (de) Vorrichtung und Verfahren zur geometrischen Vermessung eines Objekts
EP3559594A1 (fr) Dispositif destiné à être utilisé dans une machine-outil à commande numérique conçue pour être employée dans un procédé pour mesurer la machine-outil à commande numérique
WO2010054767A1 (fr) Dispositif et procédé pour déterminer une grandeur de mesure sur un objet à mesurer
EP3126073B1 (fr) Procédé et machine à enrouler les ressorts pour la production de ressorts hélicoïdaux par enroulement
DE69912162T2 (de) Schleifmaschine
DE10030087B4 (de) Verfahren und Vorrichtung zum Vermessen und Bearbeiten von Werkstücken
DE102004033119A1 (de) Regelungsverfahren für eine Werkzeugmaschine mit numerischer Steuerung, Werkzeugmaschine, sowie Bearbeitungskopf und Werkzeugaufnahme
DE60028511T2 (de) Kompensation des Tastersehnenlängefehler
EP4093571B1 (fr) Procédé pour usiner une pièce présentant deux dentures, dispositif de positionnement pour déterminer une position d'angle de rotation de référence de la pièce et machine-outil équipée d'un tel dispositif de positionnement
EP0603534A1 (fr) Dispositif et procédé pour le découpage par électro-érosion
WO2019086228A1 (fr) Étalonnage amélioré des machines-outil
DE10337911A1 (de) Multisensormesskopf für Mehrkoordinatenmess- und -prüfeinrichtungen
DE19848079A1 (de) Vorrichtung zur Werkzeugvoreinstellung
DE102011117984B4 (de) Positionierungsvorrichtung zur Positionierung eines Bauteils und Verfahren zur Positionierung eines Bauteils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010722597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010722597

Country of ref document: EP