WO2010130161A1 - 提高垂直轴风力发电机叶片采风效率的方法及其风叶系统 - Google Patents

提高垂直轴风力发电机叶片采风效率的方法及其风叶系统 Download PDF

Info

Publication number
WO2010130161A1
WO2010130161A1 PCT/CN2010/070405 CN2010070405W WO2010130161A1 WO 2010130161 A1 WO2010130161 A1 WO 2010130161A1 CN 2010070405 W CN2010070405 W CN 2010070405W WO 2010130161 A1 WO2010130161 A1 WO 2010130161A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind
vertical axis
frame
blades
Prior art date
Application number
PCT/CN2010/070405
Other languages
English (en)
French (fr)
Inventor
魏彬
Original Assignee
Wei Bin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2009/071740 external-priority patent/WO2010130082A1/zh
Priority claimed from PCT/CN2009/072198 external-priority patent/WO2010142076A1/zh
Application filed by Wei Bin filed Critical Wei Bin
Publication of WO2010130161A1 publication Critical patent/WO2010130161A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a method for improving the wind collecting efficiency of a vertical axis wind turbine blade and a blade system for the vertical axis wind power generator.
  • the blades of the earliest vertical-axis wind turbines use a circular arc-shaped double-blade structure, also known as the ⁇ -type or the Darieu double-leaf structure, which has a wind-receiving area due to its wind-receiving area.
  • ⁇ -type or the Darieu double-leaf structure which has a wind-receiving area due to its wind-receiving area.
  • Small, correspondingly requires a higher starting wind speed vertical axis wind turbines with such blades have not been vigorously developed, the reason is that its power generation effect is always not ideal.
  • the blades of the H-type vertical-axis wind turbines are based on the principle of air tunnel mechanics, and the wind tunnel simulation for the vertical axis rotates.
  • the blade adopts an airfoil shape, and when the wind wheel rotates, it is not subject to change efficiency due to deformation; it is composed of 4-5 wind blades in a vertical straight line, and is fixed by a 4 or 45-shaped wheel hub and connected to the blade.
  • the wind wheel composed of the connecting rod is driven by the wind wheel to send the rare earth permanent magnet generator to the controller for control, and the electric energy used for the load is matched.
  • the speed of the wind turbine increases faster (the torque rises faster), and the power generation speed increases accordingly, and the power generation curve becomes full.
  • the vertical wind turbine's rated wind speed is smaller than that of the existing horizontal axis wind turbine, and it generates a large amount of electricity at low wind speeds.
  • the blades on both sides of the existing vertical-axis wind turbines receive the wind at the same time and the torques are opposite.
  • the torques cancel each other out, and the output torque is not large, which directly affects the power generation effect of the vertical-axis wind turbine.
  • the object of the present invention is to provide a method for improving the wind collecting efficiency of a blade system of a vertical axis wind power generator which can start a wind power generator under low wind and has a very small wind resistance.
  • Another object of the present invention is to design a blade system for a vertical axis wind turbine that can start a wind turbine under low wind and has a very low wind resistance.
  • the blade system of the vertical axis wind power generator of the invention has the characteristics of simple structure and convenient manufacture.
  • the method for improving the wind collecting efficiency of a blade system of a vertical axis wind power generator of the present invention is to design a blade system of a vertical axis wind power generator, the blade system comprising at least two or two sets of blades, such that one or a group of When the windward surface of the windward blade is perpendicular to the wind direction, the maximum wind force is received, and at least one or a group of wind deflectors on the leeward side are parallel to the wind direction, and wind resistance is hardly generated.
  • the blade of the present invention is subjected to a one-way limiter on the windward side so that the wind shield is maintained perpendicular to the wind direction at the maximum plane, and the wind shield of the wind blade on the leeward side is not subject to a single It acts on the limiter and can be rotated 90 degrees around the horizontal or vertical axis so that the windshield is parallel to the wind direction, and almost no wind resistance is generated.
  • the air collecting efficiency of the present invention can be greatly improved.
  • the present invention can also design the blade to include a frame and a windshield disposed in the frame. a structure, the windshield is movably connected to the frame, and when the wind is greater than a predetermined wind force of the blade, a gap is formed between the frame and the windshield to leak excess wind, so that the blade remains substantially constant.
  • Rotating speed or designing the blade as a structure including a frame and a windshield disposed in the frame, the windshield being movably connected to the frame, the windshield being divided into two or more Partly, each part is also movably connected; and when the wind is greater than the predetermined wind power of the wind blade, a gap is formed between the frame and the windshield surface or between different portions of the windshield surface, leaking excess wind power, so that The blades maintain a substantially constant speed.
  • the present invention can be implemented by the following technical solutions.
  • a first technical solution of the present invention is to design a blade system for a vertical axis wind power generator, comprising at least two blades, and a blade shaft is disposed above a horizontal axis of the balance of each blade,
  • the distance between the blade axis and the horizontal axis of equilibrium should satisfy the force difference between the upper and lower blades of the blade, so that the blade turns from the horizontal state to the vertical state under the force difference due to the windless state.
  • the wind blade rotates along the blade axis in a windy state; one end of the blade shaft is fixedly connected with the wind turbine shaft, and the wind blade is movably connected with the blade shaft, and the wind-proof surface of the blade is in the same plane as the axis of the blade axis.
  • a restrictor for restricting the horizontal rotation of the blade in the vertical state is provided on the blade shaft.
  • the vane includes a bezel and a windshield disposed within the bezel, and bearings are disposed on opposite vertical frames of the bezel, the bearing being disposed on the vane shaft.
  • the material used for the windshield surface is a non-permeable fabric or a non-permeable nonwoven fabric.
  • a weight is provided above or below the blade shaft.
  • a coil spring is provided on the blade shaft, and one end of the coil spring is fixed to the blade shaft, and the other end of the coil spring is abutted on one side of the blade.
  • the limiter in the present invention is straight or right angled.
  • the blade system further includes a wind blade, a turntable, a cable and a bracket, and the lower end of the wind blade is fixedly connected with the upper plane of the turntable, and the lower plane of the turntable and the wind
  • the leaf shaft is fixedly connected, and one end of the wire is fixed on the side of the turntable, and the other end of the wire is fixedly connected to one side of the blade through the bracket.
  • the blade system further includes a wind direction detector and a motor.
  • the wind direction detector controls the rotation of the motor according to the wind direction, thereby driving the blade to rotate, so that the blade is in a vertical state when the wind is facing the wind, and is horizontal when the wind is leeward.
  • the wind direction detector is disposed on the blade shaft.
  • the motor is disposed on one side of the blade and drives the blade to rotate through the gear teeth.
  • a second technical solution of the present invention is to provide a blade system for a vertical axis wind power generator, comprising at least two sets of blades, each of the blades comprising at least one blade, above and below each group of blades
  • Each of the vane shafts is fixedly connected to the wind turbine shaft, and the vane is movably connected to the vane shaft through a vertical rotating shaft, and the vertical shaft axis is located at the vane
  • One side of the vertical symmetry line divides the blade into a large semi-blade portion and a small semi-blade portion with the vertical axis of the vertical axis as a baseline, and the wind on the blade axis with respect to the small semi-blade portion of each blade
  • At least one side of the face is provided with a limiter for restricting the blade from rotating under the action of the wind.
  • the at least two sets of blades are two to six sets.
  • Each set of blades comprises 1-10 blades.
  • the blade includes a frame and a windshield disposed within the frame.
  • the material used for the windshield surface is a non-permeable fabric or a non-permeable nonwoven fabric.
  • a third technical solution of the present invention is to provide a blade system for a vertical axis wind power generator, comprising at least two sets of blades, each of the blades comprising at least one blade, above and below each group of blades
  • Each of the vane shafts is fixedly connected to the wind turbine shaft, and the vane is movably connected to the vane shaft through a vertical rotating shaft, and the vertical shaft axis is located at the vane
  • One side of the vertical symmetry line divides the blade into a large semi-leaf blade portion and a small semi-blade portion with the vertical axis of the vertical axis as a baseline, and the leeward of the majority of the blade portion of each blade on the blade axis
  • At least one side of the face is provided with a limiter for restricting the blade from rotating under the action of the wind.
  • At least one restrictor for restricting the one-way rotation of the wind blade under the action of the wind is provided on the wind turbine shaft with respect to the leeward side of the large half-blade portion of the blade adjacent to the wind turbine shaft.
  • the vertical axis wind power generator adopting the blade system of the vertical axis wind power generator of the invention has the following advantages: First, the safety is high; in the present invention, problems such as falling off, breaking and flying out of the blade are well solved, so The utility model has the advantages of high safety; second, strong wind resistance and low noise; third, the radius of gyration is small, and in the case of the same power generation, the invention has a smaller radius of gyration than other forms of wind power generation, saves space, and improves at the same time. Efficiency; Fourth, the use of a wide range of wind speeds, while maximizing the use of wind resources, while obtaining a larger total power generation, improve the economics of the use of wind power equipment.
  • the invention also has the structure of being very simple, easy to maintain, suitable for large, medium and small wind turbines; low cost; detachable transportation, light weight, on-site installation, convenient transportation; can produce super large blades, so that single machine power generation Increased; the requirements for the wind tower are relatively low; the wind direction is not required, and the wind direction can be adapted.
  • Figure 1 is a schematic perspective view of an embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of one of the blades of Figure 1.
  • Fig. 3 is a schematic enlarged view showing another blade of the present invention.
  • Fig. 4 is a schematic enlarged view of a third type of vane.
  • Fig. 5 is a schematic structural view of an enlarged structure of a fourth type of vane.
  • Figure 6 is a perspective view showing the structure of a fifth embodiment of the present invention.
  • Fig. 7 is a perspective view showing the structure of the embodiment of the present invention with attached blades.
  • Figure 8 is a perspective view showing the structure of the torsion spring structure of the present invention.
  • Fig. 9 is a perspective view showing the structure of an embodiment of the present invention with a wind direction wind detector and a motor.
  • Figure 10 is a schematic perspective view of a six embodiment of the present invention.
  • Figure 11 is a perspective view showing the structure of a seventh embodiment of the present invention.
  • Figure 12 is a perspective view showing the structure of an eighth embodiment of the present invention.
  • Figure 13 is a perspective view showing the structure of a ninth embodiment of the present invention.
  • Figure 14 is a perspective view showing the structure of a tenth embodiment of the present invention.
  • Figure 15 is a plan view showing the planar structure of an eleventh embodiment of the present invention.
  • Fig. 16 is a schematic plan view showing the structure of Fig. 15 after being blown by the wind.
  • Figure 17 is a top plan view showing the embodiment of Figure 16 of the present invention.
  • Figure 18 is a plan view showing the structure of a twelfth embodiment of the present invention.
  • Figure 19 is a plan view showing the planar structure of a fourth embodiment of the blade of the present invention.
  • Figure 20 is a plan view showing the planar structure of a fifth embodiment of the blade of the present invention.
  • Figure 21 is a plan view showing the sixth embodiment of the blade of the present invention.
  • the method for improving the wind collecting efficiency of a blade system of a vertical axis wind power generator of the present invention is to design a blade system of a vertical axis wind power generator, the blade system comprising at least two or two sets of blades, such that one or a group of When the windward surface of the windward blade is perpendicular to the wind direction, at least one or a group of wind deflectors on the leeward side are parallel to the wind direction.
  • the blade of the present invention is subjected to a one-way limiter on the windward side so that the wind shield is maintained perpendicular to the wind direction at the maximum plane, and the wind shield of the wind blade on the leeward side is not subject to a single It acts on the limiter and can be rotated 90 degrees around the horizontal or vertical axis so that the windshield is parallel to the wind direction, and almost no wind resistance is generated.
  • the air collecting efficiency of the present invention can be greatly improved.
  • the present invention can also design the blade to include a frame and a windshield disposed in the frame. a structure, the windshield is movably connected to the frame, and when the wind is greater than a predetermined wind force of the blade, a gap is formed between the frame and the windshield to leak excess wind, so that the blade remains substantially constant.
  • Rotating speed or designing the blade as a structure including a frame and a windshield disposed in the frame, the windshield being movably connected to the frame, the windshield being divided into two or more Partly, each part is also movably connected; and when the wind is greater than the predetermined wind power of the wind blade, a gap is formed between the frame and the windshield surface or between different portions of the windshield surface, leaking excess wind power, so that The blades maintain a substantially constant speed.
  • a blade system of a vertical axis wind turbine includes two blades 1 which are parallel to the horizontal above the horizontal axis 2 (dashed line in the figure) of each blade 1
  • the blade shaft 3 of the direction balance axis 2, the horizontal balance axis 2 in the present invention is an imaginary line which assumes that the horizontal direction balances the horizontal direction of the axis 2, and the blade 1 is just balanced up and down.
  • the blades may be vertically erected along the blade axis 3; in the present invention, the distance H between the blade shaft 3 and the horizontal balance axis 2 is to satisfy the force difference between the upper and lower blades 3 ( In this embodiment, the gravity difference is.
  • the blade 1 Connecting, in this example, the blade 1 includes a frame 11 and a windshield 12 disposed in the frame 11, and a bearing 13 is disposed on each of the opposite vertical frames of the frame 11, the bearing 13 Provided on the blade shaft 3; the wind shield 12 of the blade 1 is in the same plane as the axis of the blade shaft 3
  • the restrictor 14 for restricting the horizontal rotation of the blade 1 in the vertical state is provided on the blade shaft 3, and in this example, the limiter 14 is blown from the paper surface to the viewer. In the direction, the limiter 14 is just placed on the frame 11 of the blade 1 on the left side in the figure.
  • the blade 1 on the left side of the figure cannot be rotated in the direction of the viewer, and has the maximum wind resistance, and the blade 1 on the right side in the figure Under the action of the wind along the blade shaft 3, the horizontal rotation is close to the horizontal level, and has the minimum wind resistance, thereby forming a moment on the blade shaft 3, causing the blade shaft 3 to rotate, and driving the generator 5 to generate electricity.
  • the blade 1 on the left side of the figure is rotated 180 degrees to the other side, the blade 1 is also blown horizontally by the wind under the action of the wind (as shown by the right fan blade in the figure, the right side of the figure
  • the wind blade is not finished in a horizontal state, mainly for the convenience of explanation and view.
  • the wind blade has the smallest wind resistance, which is beneficial to the rotation of the blade system.
  • the blade system of the two blades 1 may have a dead point (when rotated to 90 degrees as shown in the figure) when starting up, in which case only an external force needs to be applied at the dead point. By making it pass the dead point, the present invention can be rotated continuously under the action of inertia.
  • the weight 6 can be placed above or below the blade 1.
  • the blade 1 of the present invention may be revolved along the rotor shaft 4 along the wind turbine shaft 4 or horizontally along the blade shaft 3 in one direction.
  • the blade system of the present invention is explained by symmetrical arrangement of two blades 1 .
  • the invention can also be designed as a blade system composed of three blades 1 , at this time, three blades It is preferably arranged in a star-shaped structure, that is, a structure in which the angle between the blades 3 of the adjacent two blades 1 is 120 degrees.
  • the present invention can also be designed as a structure of four blades, five blades or six blades, which are arranged into four blades, five blades or six blades, and their respective phases.
  • the angle between the blades 3 of the adjacent two blades 1 is preferably equal.
  • the angle between the blades 3 of the adjacent blades 1 is 90 degrees; In the case of the blades, the angle between the blades 3 of the adjacent two blades 1 is 72 degrees; when the blades are six blades, the angle between the blades 3 of the adjacent blades 1 is 60. degree.
  • the material used for the windshield 12 is a non-permeable fabric, which has a certain tensile force, such as canvas, which can withstand a certain wind force and has a light weight, which is favorable for installation and transport.
  • all soft materials or hard materials with light weight and strong tensile strength can be used, such as airtight non-woven fabrics, among which soft materials with light tensile strength are preferred.
  • the restrictor 14 of the present invention may be straight or rectangular, and may have other geometric shapes as long as it can block the blade 1 and ensure that it can only rotate horizontally in one direction.
  • the weight 6 can improve the balance of the two ends of the blade shaft 3, so that the difference in gravity between the two ends is large, so that the blade can be reduced in the windward direction, close to the parallel ground state, and quickly turned to the vertical under the action of gravity. The status is sufficient. The smaller the difference in gravity, the greater the wind difference between the blades on both sides of the wind turbine shaft, and the higher the utilization of wind energy.
  • the weight of the counterweight is easily adjusted and can be placed inside the blade or outside the blade.
  • the blade 1 is a plane, preferably a quadrilateral, surrounded by a steel tubular structure, and the intermediate plane can be composed of canvas or a wind-tight fiber with sufficient tension to reduce the weight.
  • FIGS. 2 to 5 disclose the structure of several typical blades 1 .
  • the structure shown in Fig. 2 is such that its weight 6 is located below the blade shaft 3 of the blade 1; the structure shown in Fig. 3 is such that the weight 6 is located above the blade axis 3 of the blade 1;
  • the structure shown is that its weight 6 is located in the lower middle of the blade shaft 3 of the blade 1;
  • the structure shown in Fig. 5 is such that its weight 6 is located above the blade axis 3 of the blade 1 and on the right side, and
  • the frame is integrally connected, and FIGS. 2 to 5 illustrate that the weight 6 can be disposed at any position above or below the blade 1 as long as it is advantageous to adjust the distance H between the blade shaft 3 and the horizontal balance axis 2.
  • FIG. 6 is an embodiment of the present invention having four blades.
  • four blades are symmetrically disposed in two pairs, and the blades 3 of the adjacent blades 1 are respectively arranged. The angle between them is 90 degrees.
  • the wind turbine shaft 4 is extended upward to form an extension 41, and the blade shaft 3 is pulled by the diagonal cable 42.
  • FIG. 7 is a schematic perspective structural view of an embodiment of the present invention with a fan blade.
  • the blade system further includes a wind blade 71, a turntable 72, a wire 73, and a bracket 74.
  • the lower end of the wind blade 71 is fixedly connected to the upper surface of the turntable 72, and the lower plane of the turntable 72 passes.
  • the support rod 75 is fixedly connected to the blade shaft 3, and one end of the pull wire 73 is fixed on the side surface of the turntable 72, and the other end of the pull wire 73 is fixedly connected to one side of the blade 1 through the bracket 74.
  • the system for adding the airfoil 71 is mainly used when the blade 3 of the blade 1 is positively concentric with the horizontal axis 2 (i.e., the distance between the blade axis 3 and the horizontal axis 2) Use when H is equal to zero.
  • the air-bearing blade 71 is added, which can rotate under the action of the wind by the air-bearing blade 71 when the blade 1 is in equilibrium, thereby driving the turntable 72 to rotate, the turntable 72 pulling the pull wire, pulling the wire to pull the lower part of the wind blade, thereby breaking the blade
  • the balance of 1 makes the entire system work properly.
  • the additional function of the attachment of the blade 74 is to accelerate the horizontal rotation of the blade 1 when the blade 1 is facing the wind.
  • the system for adding the airfoil 71 can also be used when the distance H between the blade shaft 3 and the horizontal balance axis 2 is greater than zero. At this time, the blade 71 can accelerate the horizontal rotation speed of the blade 1. .
  • FIG. 8 is a schematic perspective structural view of an embodiment of the present invention with a torsion spring structure. Such an embodiment is improved on the basis of the embodiment shown in FIG. 1, which is provided with a coil spring 8 on the blade shaft 3, and the coil spring 8 is fixed at one end to the blade shaft 3, The other end of the coil spring 8 abuts against one side of the vane 1.
  • the coil spring 8 functions as a weight 6.
  • FIG. 9 is a schematic perspective structural view of an embodiment of the present invention with a wind direction wind detector and a motor.
  • the fan blade system may further include a wind direction detector 9 and a motor 10, the wind direction detector 9 controls the rotation of the motor 10 according to the wind direction, and the motor 10 drives the fan blade 1 to rotate, so that the blade 1 winds up. It is in a vertical state and is horizontal when leeward.
  • the wind direction detector 9 is disposed on the blade shaft 3.
  • the motor 10 is disposed on the back of the blade 1 and drives the blade 1 to rotate horizontally through the teeth 101.
  • the working principle of the invention is that when there is wind, since the area of the upper and lower ends of the blade 1 is different, the generated wind is different, and when the wind difference is greater than the gravity difference between the two ends of the blade, the blade 1 is caused by the blade 3 Rotating horizontally for the center, the greater the wind, the greater the angle of rotation, until nearly 90 degrees parallel to the wind direction, at which time the wind resistance is minimal.
  • the other blade 1 which is symmetrical to the wind turbine shaft 4, at this time cannot be rotated due to the limitation of the limiter 14 of the blade 1, and is perpendicular to the ground, generating maximum resistance. At this time, a wind difference is generated on both sides of the wind turbine shaft 4, so that the blade 1 Rotates around the wind turbine shaft 4.
  • the blade 1 After the vertical blade 1 rotates more than 90 degrees along the wind turbine shaft 4, since the limiter 14 of the blade 1 is limited in one direction, the blade 1 rotates horizontally along the blade axis 3 to reduce the wind resistance; the horizontal blade 1 After rotating 90 degrees along the wind turbine shaft 4, at this time, the blade 1 is parallel to the wind direction, and there is no wind resistance at the upper and lower ends. Due to the gravity difference of the blade 1, the blade 1 is rotated 90 degrees horizontally, perpendicular to the ground, due to the blade 1 The limit of the limiter 14 is that the blade produces maximum wind resistance.
  • the blade 1 rotates horizontally, from horizontal to vertical, from vertical to horizontal, and the resistance changes from minimum to maximum, from maximum to minimum, so that the blade rotates along the wind turbine shaft 4, making the wind
  • the axle 4 drives the generator 5 to rotate to generate electric power.
  • FIG. 10 shows a blade system of six vertical axis wind turbines having two sets of blades, including two sets of blades, which are referred to as a first group of blades 201 and a second group of blades 202.
  • the first group of blades 201 includes a first blade 2011, the second group of blades 202 includes a second blade 2021, and a first upper blade shaft 2012 is disposed above the first group of blades 201.
  • a first lower blade shaft 2013 is disposed below the first group of blades 201, and the inner ends of the first upper blade shaft 2012 and the first lower blade shaft 2013 are fixedly coupled to the wind wheel shaft 203; the first wind The leaf 2011 is movably connected to the first upper blade shaft 2012 and the first lower blade shaft 2013 by a first vertical axis of rotation 2014 (the first blade 2011 can be rotated along the first blade axis 2014), the first vertical The shaft axis line 20141 is located outside the first vertical symmetry line 20111 of the first fan blade 2011, and divides the first fan blade 2011 into a first large fan blade portion 20112 with the first vertical axis axis line 20141 as a baseline.
  • the first small semi-leaf portion 20113 is on the first upper blade axis 2012 and the first lower blade axis 2013 relative to the first fan blade 2011
  • One side of the windward side of the first small semi-blade part 20113 is provided for restricting the first wind blade 2011 under the action of the wind (in this example, the wind direction is indicated by the arrow 204 in the figure, the wind is from the inside out
  • the first limiter 2051 that can only be rotated in one direction (in the figure, the first limiter located on the first lower blade axis 2013 is not visible due to the occlusion of the first blade 2011).
  • a second upper blade shaft 2022 is disposed above the second group of blades 202, and a second lower blade shaft 2023 is disposed below the second group of blades 202.
  • the second upper blade shaft 2022 and the The inner end of the second lower air shaft 2023 is fixedly connected to the wind turbine shaft 203; the second air blade 2021 is movably connected to the second upper air shaft 2022 and the second lower air shaft 2023 through the second vertical rotating shaft 2024.
  • the second vertical rotation axis line 20241 is located outside the second vertical symmetry line 20211 of the second blade 2021, and divides the second blade 2021 into the second largest half wind with the second vertical axis axis 20241 as a baseline.
  • the leaf portion 20212 and the second small half blade portion 20213 are on the windward side of the second small half blade portion 20213 of the second blade 2021 on the second upper blade shaft 2022 and the second lower blade shaft 2023.
  • the wind turbine shaft 203 of the present invention is connected to the generator 205, and the generator 205 is erected by the uprights 206. In the case of wind, the blades can drive the generator 205 to rotate to generate electric energy.
  • the second blade 2021 On one side of the wind wheel shaft 203, the second blade 2021 will rotate clockwise along the second vertical axis 2024 under the action of the wind, but due to the second upper blade on the windward side with respect to the second small half blade portion 20213
  • a second limiter 2052 is disposed on each of the shaft 20211 and the second lower blade shaft 20212 to block the second blade 2021 from continuing to rotate clockwise, such that the second blade 2021 and the second upper blade shaft 20211 and the second The lower blade shaft 20212 is formed as a whole.
  • the second blade 2021 drives the second upper blade shaft 20211 and the second lower blade shaft 20212 to rotate along the reverse needle, thereby driving the wind wheel shaft 203 to reverse.
  • the second blade 2021 When the second blade 2021 is rotated by 90 degrees, the side of the second blade 2021 faces the wind direction, and the wind resistance is small. At this time, the large blade portion 20212 of the second blade 2021 is still close to the side of the wind wheel shaft 203.
  • the second blade 2021 continues to rotate counterclockwise, over 90 degrees At this time, the second limiter 2052 is already located on the leeward side. At this time, the second limiter 2052 loses the restriction effect on the second blade 2021. At this time, under the action of the wind, the second half of the second blade 2021.
  • the vane portion 20212 will rotate counterclockwise along the second vertical axis 2024, while away from the wind wheel shaft 203, such as when the second vane 2021 is rotated to 180 degrees, it will be in the position of the first vane 2011 shown in the figure.
  • the first blade rotates 90 degrees counterclockwise from the position shown in the figure, the direction of the first blade 2011 remains unchanged.
  • the large blade portion of the first blade 2011 is 20112.
  • it is rotated 90 degrees counterclockwise, it will naturally be located close to the side of the wind wheel shaft 203; when the first blade 2011 continues to rotate to 180 degrees, the first blade 2021 will be in the second blade shown in the figure. State; the wind wheel shaft 203 is rotated 360 degrees.
  • the first blade 2011 and the second blade 2021 are alternately operated, so that the wind turbine shaft 203 can be rotated without interruption, thereby achieving the purpose of power generation.
  • the wind direction 204 is the wind direction as shown in the figure, and the working process of the present invention. If the wind direction 204 is exactly opposite to the wind direction shown in the figure, the present invention can also work in this case, except that the initial effective work station is the station where the first fan blade 2011 is located, and the same is Counterclockwise rotation, the working process, please readers to analyze, no longer repeat them here.
  • the large half blade portion of the blade is close to the side of the wind turbine shaft 3.
  • the present invention can also be designed such that when the effective station is located, the small half blade portion of the blade is Close to the structure of the side of the wind wheel shaft 203, at this time, the limiter must also be placed on the blade shaft side with respect to the windward side of the small half blade. This structure can also work equally, and the reader should analyze the working process. , will not repeat them here.
  • FIG. 11 is a schematic perspective structural view of a seventh embodiment of the present invention.
  • the embodiment shown in Fig. 11 is substantially the same as the structure shown in Fig. 10, except that the embodiment shown in Fig. 10 has only two sets of blades, and the embodiment shown in Fig. 11 includes three sets of blades, and three groups.
  • the blades are arranged in three equal divisions along the cross section of the rotor shaft 203.
  • the working process of such an embodiment is similar to the working process of the embodiment shown in FIG. I will not repeat them here.
  • FIG. 12 is a schematic perspective structural view of an eighth embodiment of the present invention.
  • Figure 12 is a blade system of a vertical axis wind turbine comprising four sets of blades.
  • FIG. 13 is a schematic perspective view of a ninth embodiment of the present invention. It is a modification based on the embodiment shown in Fig. 12, which is to change a large wind blade shown in Fig. 10 to Fig. 12 into a plurality of small wind blades, and the structure of each small wind blade is the same as Fig. 10
  • the structure of the large wind blade shown in Fig. 12 is the same. In this way, changing the large wind blade to the small wind blade structure is more advantageous for manufacturing and transportation, and the wind blade can be 1-10 blades. The working process is not repeated here.
  • FIG. 14 is a schematic perspective structural view of a tenth embodiment of the present invention.
  • the embodiment shown in Fig. 14 is similar to the embodiment shown in Fig. 13 in that it includes a plurality of small blades in each set of blades, except that the embodiment shown in Fig. 14 includes six sets of blades. The working process of this embodiment will not be described here.
  • one of the blade structures in Figs. 10 to 12 can be changed to a plurality of blade structures.
  • the blade of the present invention may also be designed to include a bezel and a windshield disposed in the bezel, which is not illustrated in the present invention.
  • the material used for the windshield may be a non-permeable fabric or may be made of a non-permeable nonwoven.
  • FIG. 15 shows a blade system of a vertical axis wind turbine with two sets of blades (a schematic diagram in a static wind state), including two sets of blades, which are referred to as a first group of blades 201. And a second set of blades 202, the first set of blades 201 comprising a first blade 2011, the second set of blades 202 comprising a second blade 2021, a set above the first set of blades 201
  • the first upper blade shaft 2012 is provided with a first lower blade shaft 2013 below the first group of blades 201, and the inner ends of the first upper blade shaft 2012 and the first lower blade shaft 2013 and the rotor shaft 203 a first connection;
  • the first wind blade 2011 is movably connected to the first upper blade shaft 2012 and the first lower blade shaft 2013 by a first vertical axis 2014 (the first blade 2011 may be along the first blade axis 2014) Rotating), the first vertical rotating shaft axis line 20141 is located outside the first vertical symmetry line 20111 of the first wind blade 2011,
  • the wind is blown from the inside out, and the first limiter 2051 can only be rotated in one direction (in the figure, each of the first lower blade shaft 2013 and the first upper blade shaft 2012 is respectively provided)
  • a first limiter 2051 obviously, the first limiter 2051 can be provided only on the first lower blade shaft 2013 or only on the first upper blade axis 2012; the first limiter can be set only one, or can be set
  • the first limiter 2051 may be separately provided on the wind turbine shaft 203 or may be provided in cooperation with the first upper blade shaft 2012 and the first lower blade shaft 2013.
  • a second upper blade shaft 2022 is disposed above the second group of blades 202, and a second lower blade shaft 2023 is disposed below the second group of blades 202.
  • the second upper blade shaft 2022 and the The inner end of the second lower air shaft 2023 is fixedly connected to the wind turbine shaft 203; the second air blade 2021 is movably connected to the second upper air shaft 2022 and the second lower air shaft 2023 through the second vertical rotating shaft 2024.
  • the second vertical rotation axis line 20241 is located outside the second vertical symmetry line 20211 of the second blade 2021, and divides the second blade 2021 into the second largest half wind with the second vertical axis axis 20241 as a baseline.
  • the leaf portion 20212 and the second small half blade portion 20213 are on the leeward side of the second upper blade portion 2022 and the second lower blade shaft 2023 with respect to the second large half blade portion 20213 of the second blade 2021.
  • each of the second lower blade shaft 2023 and the second upper blade shaft 2022 is provided with a first The limiter 2052, obviously, the second limiter 2052 may be disposed only on the second lower blade shaft 2023 or only on the second upper blade shaft 2022; the second limiter 2052 may be provided only one or more. Further, the second limiter 2052 may be separately disposed on the wind turbine shaft 203 or may be disposed in cooperation with the second upper blade shaft 2022 and the second lower blade shaft 2023.
  • the first upper blade shaft 2012 and the first lower blade shaft 2013, and the second blade shaft 2022 and the second blade shaft 2023 are symmetrically disposed on the wind turbine shaft 203.
  • the wind turbine shaft 203 of the present invention is connected to the generator 205, and the generator 205 is erected by the uprights 206. In the case of wind, the blades can drive the generator 205 to rotate to generate electric energy.
  • the second wind blade 2021 continues to rotate counterclockwise, when it passes 90 degrees, at this time, the second limiter 2052 loses the restriction effect on the second wind blade 2021, at this time, the role of the wind
  • the second large half blade portion 20212 of the second blade 2021 will rotate counterclockwise along the second vertical axis 2024, and away from the wind wheel shaft 203, such as when the second blade 2021 is rotated to 180 degrees, The position of the first fan blade 2011 shown; similarly, when the first fan blade is reversed from the position shown in the figure When the needle direction is rotated by 90 degrees, the direction of the first blade 2011 remains unchanged.
  • the large blade portion 20112 of the first blade 2011 is naturally located close to the wind wheel axis when it is rotated 90 degrees counterclockwise. 203 side; when the first blade 2011 continues to rotate to 180 degrees, the first blade 2021 will be in the state of the second blade shown in the figure; the wind wheel shaft 203 is rotated 360 degrees.
  • the first blade 2011 and the second blade 2021 are alternately operated, so that the wind turbine shaft 203 can be rotated without interruption, thereby achieving the purpose of power generation.
  • a first limit line 2015 is provided in the first fan blade 2011, and a second limit line 2025 is provided on the second fan blade 2021, the first limit line 2015 and the first limit line The other end of the second limit line 2025 is respectively connected with the first upper blade shaft 2012 and the second upper blade shaft 2022.
  • the limit line is straightened, and only the blade rotates 0 degrees to 90 degrees. Rotate within the range.
  • each group of wind vane groups only includes one wind blade for analysis.
  • the present invention can also be designed to be larger than two groups of wind vane groups, such as the three groups of vanes shown in FIG. 11 described above.
  • a blade system of a vertical axis wind turbine of four sets of blades as shown in FIG. It can also be designed as several small blades as shown in Fig. 13, and the structure of each small blade is the same as that of the large blade shown in Fig. 15 to Fig. 17, which changes the big blade to the small blade.
  • the structure is more conducive to manufacturing and transportation, and the blades can be 1-10 blades.
  • FIG. 18 is a plan view showing the structure of a twelfth embodiment of the present invention.
  • the embodiment shown in Fig. 18 is similar to the embodiment shown in Figs. 15 to 17, except that the position of the generator 205 in the embodiment shown in Fig. 18 is different, and the position of the generator 205 in Fig. 18 is in the two blades. Between groups.
  • the blade of the present invention may also be designed to include a bezel and a structure of a windshield disposed within the bezel.
  • FIGS. 19 to 21 are all suitable for the blades of the first technical solution, the second technical solution, and the first technical solution described above.
  • the wind blade structure described in FIG. 19 to FIG. 21 has a core between the frame 11 of the blade and the windshield 12 disposed in the frame, or divides the windshield 12 into at least two portions, and each of The portions are connected by the elastic members 15, so that when the windshield 12 is large in wind force, a gap can be formed between the windshield 12 and the frame 11, or between the two portions of the windshield 12, The leakage of a part of the air, thereby reducing the pressure of the wind on the windshield 12, does not cause the motor of the present invention to turn too fast, causing a malfunction, such as a failure of the motor to be burned.
  • the windshield disposed in the bezel is divided into at least two portions, each of which is connected by an elastic member.
  • FIG. 19 is a plan view showing the planar structure of a fourth embodiment of the blade according to the present invention.
  • the embodiment shown in Fig. 19 divides the windshield surface 12 disposed in the bezel 11 into four sections, each of which is formed in a triangular shape, and the bottom edge of the first triangle is connected to the bezel 11, and each The triangular portions are connected by elastic members 15. It is obvious that the windshield 12 can be divided into four triangular portions, and can also have two portions, three portions, five portions, and the like.
  • FIG. 20 is a schematic plan view showing a fifth embodiment of the blade according to the present invention.
  • the windshield surface 12 is also divided into four parts, each part is formed into a triangle, and the bottom edge of the first triangle is connected with the frame 11, wherein the other two sides of one triangular part are elastic with the first elongated shape.
  • the piece 16a and the second elongate elastic 16b are connected; the other two sides of the second triangular portion are connected to the third elongate elastic member 17a and the fourth elongate elastic member 17b; the other two sides of the third triangular portion and the fifth elongate shape
  • the elastic member 18a and the sixth elongated elastic member 18b are connected; the other two sides of the fourth triangular portion are connected to the seventh elongated elastic member 19a and the eighth elongated elastic member 19b; the first elongated elastic member 16a, the first The two elongate elastic members 16b, the third elongate elastic members 17a, the fourth elongate elastic members 17b, the fifth elongate elastic members 18a, the sixth elongate elastic members 18b, the seventh elongate elastic members 19a and the eighth length
  • the elastic members 19b cross the middle of the windshield 12 and are connected to each other.
  • FIG. 21 is a schematic plan view showing a sixth embodiment of the blade according to the present invention.
  • the embodiment shown in FIG. 21 has a relatively simple structure.
  • the four sides and four corners of the windshield surface 12 are directly connected to the four sides and four corners of the frame 11 through the elastic member 15.
  • the elastic member or the elongated elastic member in the present invention may be a spring or rubber band, or an elastic member made of other elastic material.
  • the material used for the windshield 12 may be a non-permeable fabric or may be made of a non-permeable nonwoven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

提高垂直轴风力发电机叶片采风效率的方法及其风叶系统
技术领域
  本发明涉及一种提高垂直轴风力发电机叶片采风效率的方法及其垂直轴风力发电机的风叶系统。
背景技术
  最早的垂直轴风力发电机的风叶采用的是圆弧形双风叶的结构,也就是所谓的Φ型或称为达里厄双风叶结构,这种结构的风叶由于其受风面积小,相应的需要较高的启动风速,带这种风叶的垂直轴风力发电机一直未得到大力发展,究其原因是其发电效果始终不太理想。
  近年来,人们提出了采用H型风叶来代替传统圆弧形双风叶的结构,  H型垂直轴风力发电机的风叶是采用空气洞力学原理,针对垂直轴旋转的风洞模拟,风叶采用飞机翼形形状,在风轮旋转时,它不会受到因变形而改变效率等;它用垂直直线4-5个风叶组成,由4角形或5角形形状的轮毂固定、连接风叶的连杆组成的风轮,由风轮带动稀土永磁发电机发电送往控制器进行控制,输配负载所用的电能。
  根据H型风力发电机的原理,风轮的转速上升速度提高较快(力矩上升速度快),它的发电功率上升速度也相应变快,发电曲线变得饱满。在同样功率下,垂直轴风力发电机的额定风速较现有水平轴风力发电机要小,并且它在低风速运转时发电量也较大。这种H型风力发电机的风叶系统虽然有上述优点,但是,在风轮的转速上升速度及发电曲线方面也还存在许多需要改进之处。
  总的来说,现有的垂直轴风力发电机的两侧风叶均是同时接受风力而扭矩相反的,扭矩相互抵消,输出力矩不大,而直接影响到垂直轴风力发电机的发电效果。
发明内容
  本发明目的是向社会提供一种在微风下即可以启动风力发电机,并且风阻非常小的提高垂直轴风力发电机的叶片系统采风效率的方法。
  本发明的另一个目的是设计一种在微风下即可以启动风力发电机,并且风阻非常小的垂直轴风力发电机的风叶系统。
  本发明的垂直轴风力发电机的风叶系统具有结构简单,制作方便的特点。
  本发明的提高垂直轴风力发电机的叶片系统采风效率的方法是设计一种垂直轴风力发电机的叶片系统,所述叶片系统包括至少两片或两组风叶,使其中一片或一组处于迎风面的风叶的挡风面与风向垂直时,接受最大风力,而其中至少一片或一组处于背风面的风叶的挡风面与风向平行,几乎不产生风阻。具体地说,本发明中的风叶在处于迎风面受单向限制器的作用,使挡风面保持以最大平面与风向垂直,而处于背风面的风叶的挡风面,则不受单向限制器的作用,并可以绕水平轴或垂直轴旋转90度,使挡风面与风向平行,几乎不产生风阻。这样,就可以大大提高本发明的采风效率。
  为了保持风叶系统不受风力大小变化,而使风叶系统时快时慢,对发电机产生影响,本发明还可以将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,并令当风力大于风叶预定的风力时,所述边框与挡风面之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速;或者将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,所述挡风面被分成两个或两个以上的部分,每个部分之间也活动连接;并令当风力大于风叶预定的风力时,所述边框与挡风面之间或者挡风面的不同部分之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速。
  为了实现上述的提高垂直轴风力发电机的叶片系统采风效率的方法,本发明可以采用下述几种技术方案实现。
  本发明的第一种技术方案是:设计一种垂直轴风力发电机的风叶系统,包括至少两片风叶,在每片风叶的水平方向平衡轴线的上方设有风叶轴,所述风叶轴与水平方向平衡轴线之间的距离要满足风叶轴上、下的力差,使风叶在无风状态下,风叶由水平状态在力差的作用下迅速地转为垂直状态,在有风状态下风叶沿风叶轴旋转;风叶轴的一端与风轮轴固定连接,风叶与风叶轴活动连接,风叶的挡风面与风叶轴的轴线在同一平面内,在风叶轴上设有用于限制风叶在垂直状态时,只能单向水平转动的限制器。
  作为对本发明的改进,所述风叶包括边框和设置在边框内的挡风面,在所述边框的相对两竖直的边框上设有轴承,所述轴承设置在所述风叶轴上。
  所述挡风面所用材料为不透风纤维布或不透风无纺布。
  作为对本发明的进一步改进,在所述风叶轴的上方或下方设有配重块。
  作为对本发明的更进一步改进,在所述风叶轴上设有盘簧,所述盘簧一端固定在风叶轴上,所述盘簧的另一端抵在所述风叶一面上。
  本发明中的限制器是直形或直角形。
  作为对本发明的另一种改进,所述风叶系统还包括附风叶、转盘、拉线及支架,所述附风叶下端与所述转盘上平面固定连接,所述转盘下平面与所述风叶轴固定连接,所述拉线一端固定在所述转盘的侧面上,所述拉线的另一端通过支架后与风叶的一面固定连接。
  所述风叶系统还包括风向检测器及电机,所述风向检测器根据风向,控制电机转动,从而带动风叶转动,而使风叶迎风时呈竖直状态,背风时呈水平状态。
  所述风向检测器设置在所述风叶轴上。
  所述电机设置在风叶一面,并通过轮齿带动风叶旋转。
  本发明的第二种技术方案是:提供一种垂直轴风力发电机的叶片系统,包括至少两组风叶,所述每组风叶至少包括一片风叶,在每组风叶的上方和下方各设有一根风叶轴,所述风叶轴的一端与风轮轴固定连接,所述风叶通过垂直转轴与所述风叶轴活动连接,所述垂直转轴轴心线位于所述风叶的垂直对称线的一侧,将风叶以垂直转轴轴心线为基线分为大半风叶部和小半风叶部,在所述风叶轴上相对于每片风叶的小半风叶部的迎风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
  所述至少两组风叶是二至六组。
  所述每组风叶包括1-10片风叶。
  所述风叶包括边框和设置在边框内的挡风面。
  所述挡风面所用材料为不透风纤维布或不透风无纺布。
  本发明的第三种技术方案是:提供一种垂直轴风力发电机的叶片系统,包括至少两组风叶,所述每组风叶至少包括一片风叶,在每组风叶的上方和下方各设有一根风叶轴,所述风叶轴的一端与风轮轴固定连接,所述风叶通过垂直转轴与所述风叶轴活动连接,所述垂直转轴轴心线位于所述风叶的垂直对称线的一侧,将风叶以垂直转轴轴心线为基线分为大半风叶部和小半风叶部,在所述风叶轴上相对于每片风叶的大半风叶部的背风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
  在所述风轮轴上相对于靠近风轮轴的风叶的大半风叶部的背风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
  采用了本发明垂直轴风力发电机的风叶系统的垂直轴风力发电机具有如下优点:一是安全性高;本发明中风叶脱落、断裂和风叶飞出等问题得到了较好的解决,故安全性高;二是抗风能力强和噪音小;三是回转半径小,在相同发电功率的情况下,本发明具有比其他形式风力发电具有更小的回转半径,节省了空间,同时提高了效率;四是利用风速范围广,在最大限度利用风力资源的同时获得了更大的发电总量,提高了风电设备使用的经济性。此外,本发明还具有结构非常简单,易于维护,可适合大中小型风力发电机;成本低;可拆散运输,重量轻,可现场安装,方便运输;可制作超大型风叶,使单机发电量增高;对风塔的要求相对较低;不需对风向,可自适应风向等优点。
附图说明
 图1是本发明一种实施例立体结构示意图。
 图2是图1中一个风叶的放大结构示意图。
 图3是本发明另一种风叶的放大结构示意图。
 图4是第三种风叶的放大结构示意图。
 图5是第四种风叶的放大结构的结构示意图。
 图6是本发明第五种实施例的立体结构示意图。
 图7是本发明带附风叶的实施例立体结构示意图。
 图8是本发明带扭簧结构的实施例立体结构示意图。
 图9是本发明带风向测风器及电机的实施例立体结构示意图。
 图10是本发明六种实施例立体结构示意图。
 图11是本发明第七种实施例立体结构示意图。
 图12是本发明第八种实施例立体结构示意图。
 图13是本发明第九种实施例立体结构示意图。
 图14是本发明第十种实施例立体结构示意图。
 图15是本发明第十一种实施例平面结构示意图。
 图16是图15被风吹动后的平面结构示意图。
 图17是本发明图16所示实施例俯视结构示意图。
 图18是本发明第十二种实施例平面结构示意图。
 图19是本发明中的风叶第四种实施例平面结构示意图。
 图20是本发明中的风叶第五种实施例平面结构示意图。
 图21是是本发明中的风叶第六种实施例平面结构示意图。
具体实施方式
  本发明的提高垂直轴风力发电机的叶片系统采风效率的方法是设计一种垂直轴风力发电机的叶片系统,所述叶片系统包括至少两片或两组风叶,使其中一片或一组处于迎风面的风叶的挡风面与风向垂直时,至少一片或一组处于背风面的风叶的挡风面与风向平行。具体地说,本发明中的风叶在处于迎风面受单向限制器的作用,使挡风面保持以最大平面与风向垂直,而处于背风面的风叶的挡风面,则不受单向限制器的作用,并可以绕水平轴或垂直轴旋转90度,使挡风面与风向平行,几乎不产生风阻。这样,就可以大大提高本发明的采风效率。具体实施方式,可以参见后述各结合附所描述各个实施例部分。
  为了保持风叶系统不受风力大小变化,而使风叶系统时快时慢,对发电机产生影响,本发明还可以将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,并令当风力大于风叶预定的风力时,所述边框与挡风面之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速;或者将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,所述挡风面被分成两个或两个以上的部分,每个部分之间也活动连接;并令当风力大于风叶预定的风力时,所述边框与挡风面之间或者挡风面的不同部分之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速。
  请参见图1,它是一种垂直轴风力发电机的风叶系统,包括两片风叶1,在每片风叶1的水平方向平衡轴线2(图中虚线)的上方设有平行于水平方向平衡轴线2的风叶轴3,本发明中的水平方向平衡轴线2是一根假想线,它假想水平方向平衡轴线2的水平方向,该风叶1正好上下平衡。在无风状态下,风叶可以沿风叶轴3垂直竖立;本发明中所述风叶轴3与水平方向平衡轴线2之间的距离H要满足风叶轴3上、下的力差(本实施中为重力差,当然,也可以人为的设置其它作用力,如用扭力、拉力等作用力,关于这种作用力的实例在后叙述),使风叶1在无风状态下,风叶1由水平状态能迅速地转为垂直状态(本例中,就是重力差能使风叶1在无风状态下迅速由平行于地面转为垂直于地面即可),在有风状态下风叶1可以沿风叶轴3旋转;风叶轴3的一端与垂直于地面的风轮轴4固定连接,风轮轴的另一端与发电机5的转子轴相接,风叶1与风叶轴3活动连接,本例中,所述风叶1包括边框11和设置在边框11内的挡风面12,在所述边框11的相对两竖直的边框上各设有一个轴承13,所述轴承13设置在所述风叶轴3上;风叶1的挡风面12与风叶轴3的轴线在同一平面内,在风叶轴3上设有用于限制风叶1在垂直状态时,只能单向水平转动的限制器14,本例中,限制器14是在当风从纸面吹向观图者的方向时,限制器14正好顶在图中左边的风叶1的边框11上,使用图中左边的风叶1不能继续向观图者方向转动,具有最大风阻,而图中右边的风叶1,沿风叶轴3在风的作用下,水平旋转接近水平,具有最小风阻,从而对风叶轴3形成一个力矩,使风叶轴3旋转,带动发电机5发电。当图中左边的风叶1向另一侧旋转180度时,同样是在风力的作用下,该风叶1就会被风吹为水平状态(如图中右边风叶所示,图中右边风叶并没有完画为水平状态,主要是为了便于说明及视图),此时,该风叶风阻最小,有利于风叶系统旋转。这种两个风叶1的风叶系统,在启动时,可能会存在死点(如图中所示旋转到90度时)的问题,这时,只需要在该死点处,施加一个外力,使其越过死点,本发明就可以在惯性的作用下,周而复始的不停旋转。为了精准地调整风叶轴3与水平方向平衡轴线2之间的距离H,以使风叶系统达到最佳效果,可以在风叶1上或下设置配重块6。本发明中的风叶1既可以随着风叶轴3沿着风轮轴4公转,也可以沿着风叶轴3单向水平转动。
  图1中是以两片风叶1对称设置对本发明的风叶系统进行了解释,实际上,本发明还可以设计成由三片风叶1组成的风叶系统,这时,三片风叶最好设置成星形结构,即相邻两片风叶1的风叶轴3之间的夹角为120度的结构。同样的道理,本发明还可以设计成由四片风叶,五片风叶或六片风叶的结构,被设置成四片风叶,五片风叶或六片风叶时,其各自相邻两片风叶1的风叶轴3之间的夹角最好相等,如四片风叶时,相邻两片风叶1的风叶轴3之间的夹角为90度;五片风叶时,相邻两片风叶1的风叶轴3之间的夹角为72度;六片风叶时,相邻两片风叶1的风叶轴3之间的夹角为60度。图1中,所述挡风面12所用材料为不透风纤维布,该纤维布要具有一定的抗拉力,如帆布,即可以承受一定的风力,又具有较轻的重量,有利于安装和运输。显然,一切具有质量轻,抗拉力强的软质材料或硬质材料均可以使用,如不透风无纺布等,其中,以具有抗拉力的质量轻的软质材料为最优。本发明中的限制器14可以是直形的,也可以是直角形的,还可以其它几何形状,只要能挡住风叶1,保证其只能单向水平旋转即可以。配重块6可以改善风叶轴3两端的平衡,使两端的面积差较大时重力差减小,使风叶能在迎风减小、在接近平行地面状态,在重力作用下快速转为垂直状态就足够。此重力差越小,风轮轴两边风叶的风力差越大,风能的利用率越高。配重块的重量很易调整,位置可在风叶内或风叶外。风叶1为一平面,以四边体为佳,其四周为钢性管状结构,中间平面可用帆布或足够拉力的不透风纤维组成,重量减轻。
  请参见图2至图5,图2至图5揭示了几种典型的风叶1的结构。图2所示的结构是其配重块6位于风叶1的风叶轴3的下方;图3所示的结构是其配重块6位于风叶1的风叶轴3的上方;图4所示的结构是其配重块6位于风叶1的风叶轴3的下方中间;图5所示的结构是其配重块6位于风叶1的风叶轴3的上方右边,并与边框连接为一体,图2至图5说明,配重块6可以设置在风叶1的上或下方的任何位置,只要有利于调节风叶轴3与水平方向平衡轴线2距离H即可。
  请参见图6,图6是本发明具有四片风叶的一种实施例,本实施例中,四片风叶1成两对分别对称设置,相邻两片风叶1的风叶轴3之间的夹角为90度。为了防止风叶轴3过长,而造成工作时不稳定,本实例中将风轮轴4向上延伸构成延伸段41,再用斜拉线42拉住风叶轴3。
  请参见图7,图7是本发明带附风叶的实施例立体结构示意图。本实施例中,所述风叶系统还包括附风叶71、转盘72、拉线73及支架74,所述附风叶71下端与所述转盘72上平面固定连接,所述转盘72下平面通过支杆75与所述风叶轴3固定连接,所述拉线73一端固定在所述转盘72的侧面上,所述拉线73的另一端通过支架74后与风叶1的一面固定连接,这种增加附风叶71的系统,主要是用在当风叶1的风叶轴3正好处在与水平方向平衡轴线2同轴上时(即风叶轴3与水平方向平衡轴线2之间的距离H等于零时)使用。增加附风叶71,它可以在风叶1处于平衡状态时,通过附风叶71在风力的作用下旋转,从而带动转盘72旋转,转盘72拉动拉线,拉线拉动风叶下部,从而打破风叶1的平衡状态,使整个系统可以正常工作。加装附风叶71另一个作用是使风叶1迎风时加快风叶1的水平转动。当然,增加附风叶71的系统,也可以用于风叶轴3与水平方向平衡轴线2之间的距离H大于零的情况,这时,附风叶71可以加快风叶1的水平旋转速度。
  请参见图8,图8是本发明带扭簧结构的实施例立体结构示意图。这种实施例是在图1所示实施的基础上改进而来,它是在所述风叶轴3上设有盘簧8,所述盘簧8一端固定在风叶轴3上,所述盘簧8的另一端抵在所述风叶1一面上,本实施例中,所述盘簧8起到配重块6的作用。
  请参见图9,图9是本发明带风向测风器及电机的实施例立体结构示意图。这种实施例中,所述风叶系统还可以包括风向检测器9及电机10,所述风向检测器9根据风向,控制电机10转动,电机10带动风叶1转动,而使风叶1迎风时呈竖直状态,背风时呈水平状态。本例中,所述风向检测器9设置在所述风叶轴3上。所述电机10设置在风叶1背面,并通过轮齿101带动风叶1水平旋转。
  本发明的工作原理是有风时,由于风叶1上下两端的面积不一样,产生的风力不一样,此风力差大于风叶轴两端的重力差时,会使风叶1以风叶轴3为中心水平旋转,风力越大,转动角度越大,直到接近90度与风向平行,此时风阻最小。对称于风轮轴4的另一风叶1,此时由于风叶1的限制器14的限制,无法转动,垂直于地面,产生最大的阻力,此时风轮轴4两边产生风力差,使风叶1以风轮轴4为中心旋转。垂直的风叶1沿风轮轴4旋转大于90度后,由于风叶1的限制器14是单方向限制,此时风叶1沿风叶轴3水平旋转,减小风阻;水平的风叶1沿风轮轴4旋转90度后,此时风叶1与风向平行,上下两端都无风阻,由于风叶1的重力差,风叶1水平旋转90度,与地面垂直,由于风叶1的限制器14的限制,此时风叶产生最大风阻。这样风叶1不停的水平旋转、由水平转为垂直,又由垂直转为水平,阻力由最小变为最大,由最大又变为最小,使风叶沿风轮轴4不停旋转,使风轮轴4带动发电机5旋转,产生电力。
  请参见图10,图10所示是六种具有两组风叶的垂直轴风力发电机的叶片系统,包括两组风叶,称之为第一组风叶201和第二组风叶202,所述第一组风叶201包括第一风叶2011,所述第二组风叶202包括第二风叶2021,在第一组风叶201的上方设有一根第一上风叶轴2012,在第一组风叶201的下方设有一根第一下风叶轴2013,所述第一上风叶轴2012和第一下风叶轴2013的内端与风轮轴203固定连接;所述第一风叶2011通过第一垂直转轴2014与所述第一上风叶轴2012和第一下风叶轴2013上下活动连接(第一风叶2011可沿第一风叶轴2014旋转),所述第一垂直转轴轴心线20141位于所述第一风叶2011的第一垂直对称线20111的外侧,将第一风叶2011以第一垂直转轴轴心线20141为基线分为第一大半风叶部20112和第一小半风叶部20113,在所述第一上风叶轴2012和第一下风叶轴2013上相对于第一风叶2011的第一小半风叶部20113的迎风面一侧各设有一个用于限制第一风叶2011在风的作用下(本例中设风向为图中箭头204所示,风是从里向外吹的),只能单向转动的第一限制器2051(本图中,位于第一下风叶轴2013上的第一限制器,由于第一风叶2011的遮挡而不可见)。在所述第二组风叶202的上方设有一根第二上风叶轴2022,在第二组风叶202的下方设有一根第二下风叶轴2023,所述第二上风叶轴2022和第二下风叶轴2023的内端与风轮轴203固定连接;所述第二风叶2021通过第二垂直转轴2024与所述第二上风叶轴2022和所述第二下风叶轴2023活动连接,所述第二垂直转轴轴心线20241位于所述第二风叶2021的第二垂直对称线20211的外侧,将第二风叶2021以第二垂直转轴轴心线20241为基线分为第二大半风叶部20212和第二小半风叶部20213,在所述第二上风叶轴2022和第二下风叶轴2023上相对于第二风叶2021的第二小半风叶部20213的迎风面一侧各设有一个用于限制第二风叶2021在风的作用下(本例中设风向为图中箭头204所示,风是从里向外吹的),只能单向转动的第二限制器2052(本图中,位于第二下风叶轴2023上的第二限制器,由于第二风叶2021的遮挡而不可见)。本实施例中,所述第一上风叶轴2012和第一下风叶轴2013,与所述第二风叶轴2022和第二风叶轴2023是以风轮轴203对称设置的。将本发明中的风轮轴203与发电机205连接,并将发电机205通过立杆206竖立,在有风的情况下,风叶就可带动发电机205旋转,而产生电能。
  下面叙述本实施例的工作原理。本实施例中,当风沿箭头204的方向吹向里时,所述第二风叶2021的位置为有效作业工位,如图所示第二风叶2021的第二大半风叶部20212靠风轮轴203的一侧,在风的作用下第二风叶2021会沿第二垂直转轴2024顺时针方向旋转,但是,由于在相对于第二小半风叶部20213的迎风面的第二上风叶轴20211和第二下风叶轴20212上各设有一个第二限制器2052,阻挡第二风叶2021继续顺时针方向旋转,这样就使得第二风叶2021与第二上风叶轴20211和第二下风叶轴20212构成一个整体,在风的作用下,第二风叶2021就会带动第二上风叶轴20211和第二下风叶轴20212沿逆进针方同旋转,从而带动风轮轴203也逆时针旋转;当第二风叶2021旋转90度时,第二风叶2021侧面对着风向,风阻较小,此时,第二风叶2021的大半风叶部20212还是靠近风轮轴203的一侧;第二风叶2021继续逆时针方向旋转,越过90度时,此时,第二限制器2052已位于背风面,此时,第二限制器2052对第二风叶2021失去限制作用,这时,在风的作用下,第二风叶2021的第二大半风叶部20212会沿第二垂直转轴2024逆时针方向旋转,而远离风轮轴203,如当第二风叶2021旋转到180度时,就会处于图中所示的第一风叶2011的位置;类似的,当第一风叶从如图中所示位置逆时针方向旋转90度时,其第一风叶2011的方向保持不变,这时,第一风叶2011的大半风叶部20112在其逆时针方向旋转90度时,会自然地位于靠近风轮轴203一侧;第一风叶2011继续旋转至180度时,第一风叶2021就会处于图中所示的第二风叶的状态;完成了风轮轴203旋转360度。本实施例中,第一风叶2011和第二风叶2021如此交替作用,就可以实现风轮轴203不间断的旋转,从而达到发电的目的。
  上面分析了,风向204如图中所示的风向,本发明的工作过程。如果风向204正好与图中所示的风向相反,这种情况下,本发明同样是可以工作的,只不过刚开始的有效工位是图中第一风叶2011所处的工位,同样是逆时针旋转,其工作过程,请读者自已分析,在这里不再赘述。
  本实施例中,在有效工位时,风叶的大半风叶部是靠近风轮轴3一侧的,实际上,本发明也可以设计成在有效工位时,风叶的小半风叶部是靠近风轮轴203一侧的结构,这时,限制器也必须设置在相对于小半风叶的迎风面一侧的风叶轴上,这种结构也是同样可以工作的,其工作过程请读者自已分析,在这里不再赘述。
 请参见图11,图11是本发明第七种实施例立体结构示意图。图11所示实施例与图10所示实施的结构大体相同,所不同的地是图10所示实施例只有两组风叶,而图11所示实施例包括有三组风叶,并且三组风叶沿风轮轴203的横截面三等分布置。此种实施例的工作过程与图10所示实施例的工作过程类似。在这里不再赘述。
 请参见图12,图12是本发明第八种实施例立体结构示意图。图12是包括四组风叶的垂直轴风力发电机的叶片系统。
 请参见图13,图13是本发明第九种实施例立体结构示意图。它是在图12所示实施例基础上的改时,它是将图10至图12所示的一片大风叶,改成了若干个小风叶,每片小风叶的结构都与图10至图12所示的大风叶结构相同,这种,将大风叶改为小风叶结构更有利于制造和运输,风叶可以是1-10片风叶。其工作过程在这里不再赘述。
 请参见图14,图14是本发明第十种实施例立体结构示意图。图14所示实施例与图13所示实施例类似,都是在每组风叶里包括多片小风叶,所不同的是图14所示实施例中包括6组风叶。这种实施例的工作过程这里不再赘述。
  很显然,本发明中也可以将图10至图12中的一片风叶结构改为多片风叶结构。此外,本发明中的风叶也可以设计成包括边框和设置在边框内的挡风面的结构,本发明中未画图示意。 显然,所述挡风面所用材料可以为不透风纤维布或可以为不透风无纺布制做。
  请参见图15,图15所示是六种具有两组风叶的垂直轴风力发电机的叶片系统(静风状态时的示意图),包括两组风叶,称之为第一组风叶201和第二组风叶202,所述第一组风叶201包括第一风叶2011,所述第二组风叶202包括第二风叶2021,在第一组风叶201的上方设有一根第一上风叶轴2012,在第一组风叶201的下方设有一根第一下风叶轴2013,所述第一上风叶轴2012和第一下风叶轴2013的内端与风轮轴203固定连接;所述第一风叶2011通过第一垂直转轴2014与所述第一上风叶轴2012和第一下风叶轴2013上下活动连接(第一风叶2011可沿第一风叶轴2014旋转),所述第一垂直转轴轴心线20141位于所述第一风叶2011的第一垂直对称线20111的外侧,将第一风叶2011以第一垂直转轴轴心线20141为基线分为第一大半风叶部20112和第一小半风叶部20113,在所述第一上风叶轴2012和第一下风叶轴2013上相对于第一风叶2011的第一大半风叶部20112的迎风面一侧各设有一个用于限制第一风叶2011在风的作用下(本例中设风向为图中箭头204所示,风是从里向外吹的),只能单向转动的第一限制器2051(本图中,分别在第一下风叶轴2013上和第一上风叶轴2012上各设有一个第一限制器2051,显然,第一限制器2051可以只设在第一下风叶轴2013上或只设在第一上风叶轴2012上;第一限制器可以只设一个,也可以设置多外,根据需要而定;此外,第一限制器2051也可以单独设置在风轮轴203上,也可以与第一上风叶轴2012和第一下风叶轴2013上的配合设置)。在所述第二组风叶202的上方设有一根第二上风叶轴2022,在第二组风叶202的下方设有一根第二下风叶轴2023,所述第二上风叶轴2022和第二下风叶轴2023的内端与风轮轴203固定连接;所述第二风叶2021通过第二垂直转轴2024与所述第二上风叶轴2022和所述第二下风叶轴2023活动连接,所述第二垂直转轴轴心线20241位于所述第二风叶2021的第二垂直对称线20211的外侧,将第二风叶2021以第二垂直转轴轴心线20241为基线分为第二大半风叶部20212和第二小半风叶部20213,在所述第二上风叶轴2022和第二下风叶轴2023上相对于第二风叶2021的第二大半风叶部20213的背风面一侧各设有一个用于限制第二风叶2021在风的作用下(本例中设风向为图中箭头204所示,风是从里向外吹的),只能单向转动的第二限制器2052(本图中,分别在第二下风叶轴2023上和第二上风叶轴2022上各设有一个第二限制器2052,显然,第二限制器2052可以只设在第二下风叶轴2023上或只设在第二上风叶轴2022上;第二限制器2052可以只设一个,也可以设置多外,根据需要而定;此外,第二限制器2052也可以单独设置在风轮轴203上,也可以与第二上风叶轴2022和第二下风叶轴2023上的配合设置)。本实施例中,所述第一上风叶轴2012和第一下风叶轴2013,与所述第二风叶轴2022和第二风叶轴2023是以风轮轴203对称设置的。将本发明中的风轮轴203与发电机205连接,并将发电机205通过立杆206竖立,在有风的情况下,风叶就可带动发电机205旋转,而产生电能。
  下面结合图16和图17叙述本实施例的工作原理。本实施例中,当风沿箭头204(见图17)的方向吹向里时,所述第二风叶2021的位置为有效作业工位,如图16和图17所示第二风叶2021的第二大半风叶部20212靠风轮轴203的一侧,在第二大半风叶部20212背风面设有第二限制器2052,在风的作用下,第二风叶2021带动第二限制器2052,从而带动风轮轴203旋转;当第二风叶2021旋转90度时,第二风叶2021侧面对着风向,风阻较小,此时,第二风叶2021的第二大半风叶部20212还是靠近风轮轴203的一侧;第二风叶2021继续逆时针方向旋转,越过90度时,此时,第二限制器2052对第二风叶2021失去限制作用,这时,在风的作用下,第二风叶2021的第二大半风叶部20212会沿第二垂直转轴2024逆时针方向旋转,而远离风轮轴203,如当第二风叶2021旋转到180度时,就会处于图中所示的第一风叶2011的位置;类似的,当第一风叶从如图中所示位置逆时针方向旋转90度时,其第一风叶2011的方向保持不变,这时,第一风叶2011的大半风叶部20112在其逆时针方向旋转90度时,会自然地位于靠近风轮轴203一侧;第一风叶2011继续旋转至180度时,第一风叶2021就会处于图中所示的第二风叶的状态;完成了风轮轴203旋转360度。本实施例中,第一风叶2011和第二风叶2021如此交替作用,就可以实现风轮轴203不间断的旋转,从而达到发电的目的。为了达到限制风叶在一定范围内旋转,在第一风叶2011设有第一限位线2015,在第二风叶2021上设有第二限位线2025,第一限位线2015和第二限位线2025的另一端分别与第一上风叶轴2012和第二上风叶轴2022连接,当风叶旋转90度,所述限位线被拉直,只让风叶旋转0度至90度范围内旋转。
  上面以两组风叶组,每组风叶组只包括一片风叶进行了分析,实际上,本发明还可以设计成大于两组风叶组,如上述的图11所示的三组风叶;或如图12所示的四组风叶的垂直轴风力发电机的叶片系统等等。也可以设计成如图13所示的若干个小风叶,并且每片小风叶的结构都与图15至图17所示的大风叶结构相同,这种,将大风叶改为小风叶结构更有利于制造和运输,风叶可以是1-10片风叶。
  请参见图18,图18是本发明第十二种实施例平面结构示意图。图18所示实施例与图15至图17所示实施例类似,所不同的是图18所示实施例中的发电机205所处的位置不同,图18中发电机205位置处于两风叶组之间。本发明中的风叶也可以设计成包括边框和设置在边框内的挡风面的结构。
  下述图19至图21所示的各种风叶的结构,均适合于上述的第一种技术方案、第二种技术方案和第一种技术方案中的风叶。
  图19至图21所述的风叶结构,其核心是将风叶的边框11与设置在边框内的挡风面12之间,或者将挡风面12分成至少两个部分,且使每个部分之间用弹性件15连接,这样,可以实现当挡风面12在风力较大时,可以使挡风面12与边框11之间,或者挡风面12的两个部分之间形成间隙,而泄露一部分空气,从而减少风对挡风面12的压力,不致于使本发明电机转的过快,而引起故障,如电机被烧毁等故障。
  所述设置在边框内的挡风面被分成至少两个部分,每个部分之间通过弹性件相连接。
  请参见图19,图19是本发明中的风叶第四种实施例平面结构示意图。图19所示的实施例,它是将所述设置在边框11内的挡风面12分成四个部分,每个部分均成三角形,第个三角形的底边与边框11相连接,而每个三角形部分之间都用弹性件15相连。很显然,挡风面12除了可以分成四个三角形部分外,还可以两个部分,三个部分,五个部分等。
  请参见图20,图20是本发明中的风叶第五种实施例平面结构示意图。本实施例中,所述挡风面12也被分成四个部分,每个部分均成三角形,第个三角形的底边与边框11相连接,其中一个三角形部分的另外两边与第一长形弹性件16a和第二长形弹性16b连接;第二个三角形部分的另外两边与第三长形弹性件17a和第四长形弹性件17b连接;第三个三角形部分的另外两边与第五长形弹性件18a和第六长形弹件18b连接;第四个三角形部分的另外两边与第七长形弹性件19a和第八长形弹性件19b连接;所述第一长形弹性件16a、第二长形弹性件16b、第三长形弹性件17a、第四长形弹性件17b、第五长形弹性件18a、第六长形弹性件18b、第七长形弹性件19a和第八长形弹性件19b交叉于挡风面12的中间,且相互之间连接。
  请参见图21,图21是是本发明中的风叶第六种实施例平面结构示意图。图21所示的实施例结构比较简单,它是将挡风面12四边及四角直接与边框11的四边及四角通过弹性件15连接。
  本发明中的弹性件或长形弹性件可以是弹簧或橡皮筋,或者其它具有弹性的材料所做成的弹性件。
  本发明中,所述挡风面12所用材料可以为不透风纤维布或可以为不透风无纺布制做。

Claims (1)

  1. 1.一种提高垂直轴风力发电机的叶片系统采风效率的方法,其特征在于:设计一种垂直轴风力发电机的叶片系统,所述叶片系统包括至少两片或两组风叶,使其中一片或一组处于迎风面的风叶的挡风面与风向垂直时,至少一片或一组处于背风面的风叶的挡风面与风向平行。
    2.根据权利要求1所述的提高垂直轴风力发电机的叶片系统采风效率的方法,其特征在于:将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,并令当风力大于风叶预定的风力时,所述边框与挡风面之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速;或者将所述风叶设计成包括边框和设置在边框内的挡风面的结构,所述挡风面与所述边框活动连接,所述挡风面被分成两个或两个以上的部分,每个部分之间也活动连接;并令当风力大于风叶预定的风力时,所述边框与挡风面之间或者挡风面的不同部分之间产生间隙,泄露多余的风力,使风叶保持基本恒定的转速。
    3.一种垂直轴风力发电机的叶片系统,其特征在于:包括至少两片风叶,在每片风叶的水平方向平衡轴线的上方设有风叶轴,所述风叶轴与水平方向平衡轴线之间的距离要满足风叶轴上、下的力差,使风叶在无风状态下,风叶由水平状态在力差的作用下迅速地转为垂直状态,在有风状态下风叶沿风叶轴旋转;风叶轴的一端与风轮轴固定连接,风叶与风叶轴活动连接,风叶的挡风面与风叶轴的轴线在同一平面内,在风叶轴上设有用于限制风叶在垂直状态时,只能单向水平转动的限制器。
    4.根据权利要求3所述的垂直轴风力发电机的叶片系统,其特征在于:所述风叶包括边框和设置在边框内的挡风面,在所述边框的相对两竖直的边框上设有轴承,所述轴承设置在所述风叶轴上。
    5.根据权利要求4所述的垂直轴风力发电机的叶片系统,其特征在于:所述边框与设置在边框内的挡风面是通过弹性件连接的。
    6.根据权利要求5所述的垂直轴风力发电机的叶片系统,其特征在于:所述设置在边框内的挡风面被分成至少两个部分,每个部分之间通过弹性件相连接;或者所述设置在边框内的挡风面被分成至少两个部分,每个部分与弹性件相连,所述弹性件再与边框连接。
    7.根据权利要求3至6中任何一项权利要求所述的垂直轴风力发电机的叶片系统,其特征在于:在所述风叶轴的上方或下方设有配重块。
    8.根据权利要求3至6中任何一项权利要求所述的垂直轴风力发电机的叶片系统,其特征在于:所述叶片系统还包括附叶片、转盘、拉线及支架,所述附叶片下端与所述转盘上平面固定连接,所述转盘下平面与所述风叶轴固定连接,所述拉线一端固定在所述转盘的侧面上,所述拉线的另一端通过支架后与风叶的一面固定连接。
    9.根据权利要求3所述的垂直轴风力发电机的叶片系统,其特征在于:所述叶片系统还包括风向检测器及电机,所述风向检测器根据风向,控制电机转动,从而带动风叶转动,而使风叶迎风时呈竖直状态,背风时呈水平状态。
    10.根据权利要求9所述的垂直轴风力发电机的叶片系统,其特征在于:所述风向检测器设置在所述风叶轴上。
    11.根据权利要求9所述的垂直轴风力发电机的叶片系统,其特征在于:所述电机设置在风叶一面,并通过轮齿带动风叶旋转。
    12.一种垂直轴风力发电机的叶片系统,其特征在于:包括至少两组风叶,所述每组风叶至少包括一片风叶,在每组风叶的上方和下方各设有一根风叶轴,所述风叶轴的一端与风轮轴固定连接,所述风叶通过垂直转轴与所述风叶轴活动连接,所述垂直转轴轴心线位于所述风叶的垂直对称线的一侧,将风叶以垂直转轴轴心线为基线分为大半风叶部和小半风叶部,在所述风叶轴上相对于每片风叶的小半风叶部的迎风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
    13.根据权利要求12所述的垂直轴风力发电机的叶片系统,其特征在于:所述至少两组风叶是二组至六组。
    14.根据权利要求12或13所述的垂直轴风力发电机的叶片系统,其特征在于:所述每组风叶包括1-10片风叶。
    15.根据权利要求14所述的垂直轴风力发电机的叶片系统,其特征在于:所述风叶包括边框和设置在边框内的挡风面。
    16.根据权利要求15所述的垂直轴风力发电机的叶片系统,其特征在于:所述边框与设置在边框内的挡风面是通过弹性件连接的。
    17.根据权利要求15所述的垂直轴风力发电机的叶片系统,其特征在于:所述设置在边框内的挡风面被分成至少两个部分,每个部分之间通过弹性件相连接;或者所述设置在边框内的挡风面被分成至少两个部分,每个部分与弹性件相连,所述弹性件再与边框连接。
    18.一种垂直轴风力发电机的叶片系统,其特征在于:包括至少两组风叶,所述每组风叶至少包括一片风叶,在每组风叶的上方和下方各设有一根风叶轴,所述风叶轴的一端与风轮轴固定连接,所述风叶通过垂直转轴与所述风叶轴活动连接,所述垂直转轴轴心线位于所述风叶的垂直对称线的一侧,将风叶以垂直转轴轴心线为基线分为大半风叶部和小半风叶部,在所述风叶轴上相对于每片风叶的大半风叶部的背风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
    19.根据权利要求18所述的垂直轴风力发电机的叶片系统,其特征在于:在所述风轮轴上相对于靠近风轮轴的风叶的大半风叶部的背风面一侧设有至少一个用于限制风叶在风的作用下,只能单向转动的限制器。
    20.根据权利要求18或19所述的垂直轴风力发电机的叶片系统,其特征在于:在所述第一风叶设有第一限位线,在第二风叶上设有第二限位线,第一限位线和第二限位线的另一端分别与第一上风叶轴和第二上风叶轴连接。
    21.根据权利要求20所述的垂直轴风力发电机的叶片系统,其特征在于:所述至少两组风叶是二组至六组。
    22.根据权利要求21所述的垂直轴风力发电机的叶片系统,其特征在于:所述风叶包括边框和设置在边框内的挡风面。
    23.根据权利要求22所述的垂直轴风力发电机的叶片系统,其特征在于:所述边框与设置在边框内的挡风面是通过弹性件连接的。
    24.根据权利要求22所述的垂直轴风力发电机的叶片系统,其特征在于:所述设置在边框内的挡风面被分成至少两个部分,每个部分之间通过弹性件相连接;或者所述设置在边框内的挡风面被分成至少两个部分,每个部分与弹性件相连,所述弹性件再与边框连接。
PCT/CN2010/070405 2009-05-12 2010-01-28 提高垂直轴风力发电机叶片采风效率的方法及其风叶系统 WO2010130161A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2009/071740 2009-05-12
PCT/CN2009/071740 WO2010130082A1 (zh) 2009-05-12 2009-05-12 垂直轴风力发电机的风叶系统
PCT/CN2009/072198 WO2010142076A1 (zh) 2009-06-09 2009-06-09 垂直轴风力发电机的风叶系统
CNPCT/CN2009/072198 2009-06-09

Publications (1)

Publication Number Publication Date
WO2010130161A1 true WO2010130161A1 (zh) 2010-11-18

Family

ID=43084627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070405 WO2010130161A1 (zh) 2009-05-12 2010-01-28 提高垂直轴风力发电机叶片采风效率的方法及其风叶系统

Country Status (1)

Country Link
WO (1) WO2010130161A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081713A (zh) * 2020-08-19 2020-12-15 济南泉格斯能源科技有限公司 一种垂直轴牛顿流体动能吸收装置
CN112903921A (zh) * 2021-01-27 2021-06-04 深圳市威标检测技术有限公司 一种环境检测用气体检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB178932A (en) * 1921-01-24 1922-04-24 Percy Ernest Hurst A new or improved air-motor applicable as a mechanical toy and for driving purposes
GB1561296A (en) * 1977-09-09 1980-02-20 Berry J Fluid stream engine
CN2067768U (zh) * 1989-12-21 1990-12-19 吴中平 风叶能自转和公转的风车
CN2929236Y (zh) * 2006-04-28 2007-08-01 张祥铭 翻转风力发电机
CN101050750A (zh) * 2007-03-29 2007-10-10 高龙关 可自动调节迎风截面的垂直轴式风力发电机风叶结构
JP2008106622A (ja) * 2006-10-23 2008-05-08 Shuichi Sakoda 風力発電用羽根回転装置及び該回転装置を備えた風力発電装置
CN101201042A (zh) * 2006-12-13 2008-06-18 戴胜祝 风力发电机的风扇结构
DE202008014231U1 (de) * 2008-07-21 2009-02-12 Glushko, Viktor, Dr. Windrad mit einer Vertikalachse

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB178932A (en) * 1921-01-24 1922-04-24 Percy Ernest Hurst A new or improved air-motor applicable as a mechanical toy and for driving purposes
GB1561296A (en) * 1977-09-09 1980-02-20 Berry J Fluid stream engine
CN2067768U (zh) * 1989-12-21 1990-12-19 吴中平 风叶能自转和公转的风车
CN2929236Y (zh) * 2006-04-28 2007-08-01 张祥铭 翻转风力发电机
JP2008106622A (ja) * 2006-10-23 2008-05-08 Shuichi Sakoda 風力発電用羽根回転装置及び該回転装置を備えた風力発電装置
CN101201042A (zh) * 2006-12-13 2008-06-18 戴胜祝 风力发电机的风扇结构
CN101050750A (zh) * 2007-03-29 2007-10-10 高龙关 可自动调节迎风截面的垂直轴式风力发电机风叶结构
DE202008014231U1 (de) * 2008-07-21 2009-02-12 Glushko, Viktor, Dr. Windrad mit einer Vertikalachse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081713A (zh) * 2020-08-19 2020-12-15 济南泉格斯能源科技有限公司 一种垂直轴牛顿流体动能吸收装置
CN112903921A (zh) * 2021-01-27 2021-06-04 深圳市威标检测技术有限公司 一种环境检测用气体检测装置

Similar Documents

Publication Publication Date Title
AU2005268680B2 (en) Vertical-axis wind turbine
US4342539A (en) Retractable wind machine
KR101561585B1 (ko) 발전효율을 증대시킨 날개 가변형 조력 겸용 풍력발전기
CN203272013U (zh) 可伸缩的风力发电机叶片
CA2543285A1 (en) Wind turbine having airfoils for blocking and directing wind and rotors with or without a central gap
CN108488034A (zh) 旋转半径自动可调的竖轴式风力发电机
WO2010130161A1 (zh) 提高垂直轴风力发电机叶片采风效率的方法及其风叶系统
WO2015168970A1 (zh) 高低风速兼容型风电机组
CN103047084A (zh) 一种伞形风力发电机组及工作方法
CN110360049A (zh) 一种水平轴风力发电机
CN206738071U (zh) 风力发电装置
CN102410145B (zh) 多绕组变极变速风叶立式风力发电系统
CN203050988U (zh) 百叶窗梯形软翼式垂直轴偏距风力机
CN202768276U (zh) 防飓风形风力发电机
US20100124506A1 (en) Vertical axis wind turbine blade
CN115539296A (zh) 一种桅杆式无叶片风力发电装置
CN114718806A (zh) 一种偏航调节式垂直轴风机及其工作方法
CN114542391A (zh) 一种适用于极端环境防雷防积雪的风力发电装置
CN112087186B (zh) 一种风能与太阳能一体化发电设备
WO2010130082A1 (zh) 垂直轴风力发电机的风叶系统
KR20150009639A (ko) 수직형 풍력발전기의 프레임구조
CN113074084A (zh) 一种风力发电机用风控防过速装置
CN101886610B (zh) 垂直轴风力发电机的风叶系统
WO2012050540A1 (ru) Ветроэнергетическая турбина (варианты)
CN202768240U (zh) 双段叶片风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-04-2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10774502

Country of ref document: EP

Kind code of ref document: A1