WO2010127424A1 - Processo de produção de fertilizantes orgânicos e organominerais com alta concentração de carbono utilizando processos físicos e agentes biológicos - Google Patents

Processo de produção de fertilizantes orgânicos e organominerais com alta concentração de carbono utilizando processos físicos e agentes biológicos Download PDF

Info

Publication number
WO2010127424A1
WO2010127424A1 PCT/BR2010/000147 BR2010000147W WO2010127424A1 WO 2010127424 A1 WO2010127424 A1 WO 2010127424A1 BR 2010000147 W BR2010000147 W BR 2010000147W WO 2010127424 A1 WO2010127424 A1 WO 2010127424A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
soil
mill
organic matter
formulation
Prior art date
Application number
PCT/BR2010/000147
Other languages
English (en)
French (fr)
Inventor
João CALDERÕN
Original Assignee
Calderon Joao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calderon Joao filed Critical Calderon Joao
Priority to CA 2798880 priority Critical patent/CA2798880A1/en
Publication of WO2010127424A1 publication Critical patent/WO2010127424A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a process for producing an agricultural input, more specifically a process for producing organic and mineral fertilizers based on the carbon concentration of the in natura organic material and relating said concentration to the fractions of natural minerals and / or processed minerals, promoting high physical interaction of the materials involved and biologically activating and enriching the compound.
  • the objective of placing in the soil products consisting of the sum of the minerals NPK, Ca, Mg, S and others, forming at least 16 indispensable elements, with high carbon concentration, is to offer the plant a living and active environment, where in the soil-plant relationship there is quantity and quality of nutrients, that is, forming a rich solution in the soil, feeding the vegetable with the richness of mineral and biological nutrients.
  • Soil organic matter together with biochemical reactions formed with humic mass (humic acids) are very important factors in the process of soil formation.
  • the degree of mineralization of organic matter in the soil is an undisputed issue, thus leading to the theme of adding organic matter to the soil via conventional process, decomposing it before application to the soil and reaching the soil at an already stabilized stage.
  • this decomposition will occur until it reaches stages where the carbon / nitrogen ratio is below 18: 1, seeking ever lower levels, sometimes reaching up to 5: 1, that is, a very organic matter. low in carbon.
  • humic acids should promote continued biochemical reactions in the soil, leaving all the energy of these reactions in it, not releasing and pouring said energy into the atmosphere. All humic acids in the soil have grouped genetic codes and biological processes of microorganisms.
  • a complete fertilizer is a fertilizer balanced, with adequate levels of minerals, raw organic matter and biological increments that will allow high activity of organic acids.
  • the importance of having a product that has not been composted has all the effects already cited biologically, counting and being in combination with other nutrients to fulfill the actions that nature promotes by recycling nutrients. (Wallace, A. and Wallace, GA, "A possible flaw in the new 1993 Environmental Protection Agency rule on deposits due to heavy metal interaction," Comm. Soil Sci. Annual Plant., Vol. 25, p. 129-135, 1994).
  • the nitrogen element is also of high value, acting on the biological system of organic matter, allowing for organic and biochemical reactions. Thus, it is important to state that it is not enough to have organic matter present in the compositions; it must be alive and active. Nitrogen participation, in addition to the fraction in the organic mass, plays an important role in the fraction of organic matter and in the formulated form, that is, in the balance of minerals and organic matter.
  • Nitrogen is an element that participates in all metabolic reactions of the plant and is of great importance. It is present in the composition of the most important biomolecules such as: ATP, NADH, NADPH, chlorophyll, proteins and numerous enzymes. Nitrogen has been intensively studied to maximize the efficiency of its use. To this end, it has been sought decrease nitrogen losses in the soil and improve the absorption and metabolization of this element within the plant.
  • the efficiency of the use of nitrogen added to the soil refers to the degree of recovery of this element by the plants, considering the losses that usually occur. Usually less than 50% of the nitrogen applied as fertilizer is used by crops. Soil losses are due to the numerous processes to which nitrogen is subjected. Nitrogen is mainly lost by nitrate leaching, ammonia volatilization and emission of N 2 O and other nitrogen oxides, according to Anghinoni, I., "Nitrogen fertilization in the states of Rio Grande do Sul and Santa Catarina", 1986, in: Santana, MBM, “Nitrogen Fertilization in Brazil", CEPLAC / SBCS, Ilhéus, 1986, Cap. I, p. 1-18.
  • Nitrogen uptake and assimilation by the plant are multiregulated processes and integrated with the overall metabolism of the plant. Multiregulation of nitrogen metabolism makes it difficult to identify specific metabolic points that are most limiting to increased productivity.
  • Nitrogen source and site of assimilation airway or soil
  • biostimulant Besides the macronutrients (N, P, K, Ca, Mg and S) and micronutrients (Zn, B, Mn, Cu, Fe, Mo, Co, Si, and others) essential to plant development, it complements These include the use of biological agents that act in various ways on the soil and even on the plant. They may be called biological regulators, stimulants or activators. Mixing two or more plant regulators with other substances (amino acids, nutrients and vitamins) is referred to as biostimulant, according to Castro, PR of CE, Vieira, EL, "Bioregulators and biostimulants in corn crop", in: Fancelli, AL, Dourado Neto, D.
  • the identification and cloning of the genes of the high affinity transporters of the plant may help in genetic improvement programs to obtain more efficient plants in the absorption of nitrogen in a wide range of availability of this nutrient in the soil.
  • amino acids brings more nutrients to the formulation, in a lively and active manner, allowing the reactions of organic matter to be accelerated and also helping the organic acids present in organic matter to form compounds rich in soil solution. absorbed by the plant.
  • these Organic compounds stimulate plant growth through greater cell division, cell elongation and cell differentiation and thus increase the absorption capacity of nutrients and water, directly reflecting on development ( seed germination, growth and development, flowering, fruiting, senescence) and crop yield (Castro, PR de CE, Vieira, EL, "Bioregulators and biostimulants in corn crop” in: Fancelli, AL, Dourado Neto, D (Ed.), "Corn: Strategies for High Productivity", Esalq / USP / LPV, Piracicaba, 2003, pp. 99-115).
  • Nonpolar organic compounds increase the ability of substances to circulate through the supporting membranes, due to their constitution (proteins and phospholipids).
  • Brazilian patent application PI 8303056-5 describes a process for obtaining simple organic fertilizer and organomineral fertilizer in which, after treatment, stabilization and degradation of manure, it is pelleted, dried and ground.
  • the resulting product may be supplemented with lignite humus to obtain a granulated simple organic fertilizer after granulation.
  • Said resulting product may further receive miscellaneous mineral raw materials other than lignite humus, obtaining, after granulation, an organomineral fertilizer. After the granulation of either type of fertilizer, these are packaged in plastic bags, ending the industrial production cycle.
  • said patent application does not provide for strict control over key nutrient ratios such as N / C, P / C, K / C, MFA / C and AHF / minerals. Such control is essential for the operation of the process proposed by the present invention.
  • Brazilian Patent No. PI 8600757-2 refers to a process of producing fertilizer from a wide range of organic waste from urban, industrial or agricultural origin. Said process has a low energy cost, can be applied in small, medium or large scale and produces a fertilizer totally free of pathogens.
  • Patent Document PI 8600757-2 does not comprise a step of activating and biological enriching the processed pasta using AHF and AMF as proposed in the present invention.
  • phosphorus is in a slow release form, which means that the plant can gradually absorb it, thus reducing the losses of this element in the soil.
  • Said process further provides for an embodiment of the invention wherein the carnalite is replaced by a magnesium chloride solution.
  • a magnesium-rich fertilizer is obtained, where the phosphorus is also in a slow release form to the plants.
  • DAP is replaced by ammonia and phosphoric acid.
  • Patent application no. PI 0606043-9 relates to a fertilizer having in its composition nitrogen in protein form (plant and animal protein) dosed in equilibrium which leads to a rapid and lasting beneficial effect on plantations and in the ground.
  • Said fertilizer composition is deodorized by catalytic enzymatic biological additives which simultaneously improve digestion and processing of organic materials and facilitate integration with mineral components.
  • patent application PI 0606043-9 does not provide for the same concentration ranges of major nutrients, all of which are below what was obtained through the process object of the present search.
  • the reference application does not describe the process of obtaining the fertilizer, being restricted only to the composition.
  • Figure 1 shows a schematic diagram illustrating the production of powdered or mashed organic fertilizers
  • Figure 2 shows a schematic diagram illustrating the production of granular organomineral fertilizers
  • Figure 3 shows a schematic diagram illustrating the production of powdered or mashed organomineral fertilizers.
  • the organic fertilizers of the present invention are formulated with 100% natural raw materials, organic materials of various origins and natural minerals without chemical processing, only physical.
  • the organic fertilizer compositions of the present invention consider the percentage of organic matter where it must reach the minimum carbon percentage of 15%, 1% nitrogen, maximum carbon: nitrogen ratio (C: N) of 18: 1 and cation exchange: total organic carbon (CTC: C) of 20: 1.
  • C: N maximum carbon: nitrogen ratio
  • CTC: C total organic carbon
  • the mixture of fresh organic raw materials and Minerals occur under conditions where their interactions are intense, promoted by the reduction of the particles of the whole mass that make up the formulation, at the same instant.
  • the intense mixing, drying of the dough and the significant particle size reduction occur in the traditional equipment of these operations, conventionally used in the market fertilizer and mining industries, which are able to promote these functions (mixers, dryers and mills), or through a multiprocessor mill, equipment which represents the set of equipment described, processing the mass appropriately heavy, making it unique, uniform, low humidity and with granulometry ranging from 0.5 to 2.5mm to powder (particle size 0.1 to 0.5mm).
  • Fresh organic matter must be processed in such a way that the carbon has minimal losses, which occurs in the NPK + C Process, from stoichiometric mass balances, union of said organic matter with other plant nutrition elements, such as minerals. , and processing in equipment (mixer, dryer and traditional mill (s) or multiprocessor mills) that interact with the mass intimately.
  • This mass is then activated and enriched biologically (biological agents, AHF and AMF), allowing its average decomposition, or is processed in the equipment set (mixer, dryer and mill), promoting the interactions between the tiny transformed particles. on the equipment.
  • ABI Human and Fulvic Acid
  • AMF Flagetable Amino Acids
  • AHF - "Humic and Fulvic Acids" (ABI): The presence of fulvic acid has ionic action forming biomineral organic complexes, which retain the cations and anions of the mineral raw materials present in the composition of the organic fertilizer of the present invention. The action of these biomineral complexes prevents the nutrient elements, made available to the soil solution and, consequently, to the plant, from becoming loose in the soil, because in the presence of strong ions they can be sequestered and / or complexed, forming insoluble complexes and making the nutrients unavailable. would go to the plant. Thus, the presence of fulvic acid in the quantity ratio of these ions present in soluble or solubilized mineral masses allows not losing them to the soil.
  • Formulations should therefore take into account the carbon concentration from one or more organic materials, preferably they may come from animal sources (animal waste) and plant sources (agro-industry and crop residues) and be mixed together. , as seen in Kiehl, EJ, "50 Questions and Answers on Organic Compost", Sao Paulo, PMSP / ESALQ, 1979, p.9, 1. 17, where there are residues:
  • High Decomposition Capacity - 30 to 60 days The addition of AHF in the formulated product in the presence of medium to high organic matter (carbon) concentration and medium to low concentration of humic acids formed by the medium to low stage of matter decomposition Organic, aims to help the reactions, catalyzing the decomposition and, consequently, chelating the soluble salts present in the formulated mixture.
  • the amount of added AHF is sufficient for the chelation process (formation of biomineral compounds) in the established relationship, leaving the ones being formed by decomposing surplus organic matter and enriching the final formulated product, which will further assist the biological activities of the soil.
  • MFA - "Fish and vegetable amino acids” (AB2): These are intended to have a dual function in the formulation, namely:
  • The. Activate the organic matter that is in the middle stage of decomposition and underwent the physical intervention of reducing moisture and the number of microorganisms (by the action of temperature and the extraction of water contained in the organic matter).
  • This biological agent and nutrient replenishes carbon with nitrogen (amino acid composition) in organic matter, providing conditions to assist in the decomposition process of the formulated product's organic matter.
  • nitrogen amino acid composition
  • attack reactions of organic acids with any mineral is a common process in the soil or even when organic matter is mixed with them, such as natural phosphates (phosphorus) where microorganisms play the role of breaking this ore, medium to long-term reactions (30 to 120 days) depending on the quality of the organic matter and the carbon concentration, thus increasing the attack reactions of organic acids with any mineral.
  • organic matter such as natural phosphates (phosphorus) where microorganisms play the role of breaking this ore, medium to long-term reactions (30 to 120 days) depending on the quality of the organic matter and the carbon concentration, thus increasing the
  • compositions with the presence of natural phosphates the sum of the volume used for carbon with the volume used for natural phosphate is adopted, with relative order of importance, since they act in both situations (purposes described above).
  • amino acids are great soil solution enrichers and are also used in the nutrition of. plants and thus enrich the fertilizer product.
  • Nitrogen of these amino acids participates in the formation reactions of biomineral compounds and biochemicals in plants, which are driven by xylem (plant system entrance channel), favoring ATP production processes, translated by improved of chlorophyll synthesis reactions and therefore by increasing glucose content (Taiz, L. and Zeiger, E., "Plant Physiology", S ⁇ o Paulo, Artmed, 2004, p. 719).
  • the formulations will go into the soil with part of their ongoing reactions and available mineral and biological nutrients to the plant, and over the following hours and days, the organic reactions will continue: the acids Organic compounds present and those added to the formulation will continue to attack the minerals and gradually make available the remaining percentages of nutrients to the plant.
  • Glycine an amino acid component and precursor of chlorophyll synthesis, is an important metal chelator, which itself is important as a micronutrient for plants.
  • the processed formulation is activated biologically by enhancing the biological activities of the organic matter, enriching it and all the mass in the post-processing step in the mixer, dryer and mill (s) or in a multiprocessor mill.
  • these biological elements act by forming biochemical reactions which generate rich molecules that, in the soil solution, go to the plant to assist in its metabolism, responding to its greater development and improvement, both quantitatively and qualitatively.
  • Organic acids formed at the decomposition stage in which the organic matter is processed (in natura) will also go to the soil, where the said decomposition process will continue to find favorable environment for this, such as moisture (it is planted in the period of rainfall) and temperature, allowing for ultra-fast reaction speeds (minutes or hours) due to the tiny particles in which nutrients were transformed during physical and physical-chemical processing, and which also received additives for the purpose of being biologically activated after processing, where part of the microorganisms is lost, and enrich this mass with important organic elements for the soil and the plant.
  • NPK + C is the result of the physical and biological processing of the formulation that aims to intensify the chemical and biological interactions, promoting high speed (biochemical kinetics) of formation of biochemical compounds, and not losing the high amounts of carbon normally lost in the conventional decomposition processes of the chemical.
  • organic matter which depletes organic matter by 40% to 70% of the carbon mass present, which is primarily responsible for the formation of organic acids and therefore biological reactions.
  • the plant for the production of said organic fertilizer comprises:
  • organomineral fertilizers of the present invention are formulated with organic matter of various origins and inorganic matter, natural and / or chemically processed minerals.
  • organomineral fertilizer compositions of the present invention in terms of primary macronutrients, should consider a minimum organic matter (carbon) percentage of 8% and a minimum NPK (macronutrient) nutrient sum of 10%.
  • NPK macronutrient
  • secondary macronutrients Ca, Mg and S
  • the minimum sum of 5% must be reached.
  • micronutrients a minimum sum of 4% is required.
  • Other guarantees can be stated according to the results of the composition, where each raw material has its value of macros and micronutrients necessary for plant development.
  • the mixture of in natura organic raw materials and natural and / or processed minerals occurs under conditions where their interactions are intense and promoted by the reduction of the particles of the whole mass that make up the formulation, at the same moment.
  • the intense mixing, drying and high particle size reduction occur in the traditional equipment of these operations, conventionally used in the market fertilizer and mining industries, which promote these functions (mixers, dryers and mills), or through a multiprocessor mill, which represents the set of equipment described above and is responsible for processing the properly weighed mass, making it unique, uniform, low humidity and with a particle size that can vary from granulate (2 to 4mm particle size) to powder (particle size 0.1 at 0.5mm).
  • the most commonly employed raw materials formulations are:
  • DAP Diammonium phosphate
  • the stoichiometric balance of the formulations - carbon versus natural and / or transformed minerals - is the result of the mass of elements such as nitrogen, which is the active energy of organic molecules, and of the other nutrients (+) and (-) present in the mass that, when Gathering transformed minerals understood as soluble salts, has high activity and dissociation in a short time and with high physical interactions, causing instant reactions.
  • These Compositions in a practical way, still not reaching high physical reduction levels, were also studied in private field work in several crops, such as grains (soybean and corn) and in fruit production (melon, bananas, etc.). knowledge about the process used to obtain the product by the farmer, with satisfactory results in productivity and quality (brix grade).
  • the processed formulation (mass) is activated biologically increasing the biological activities of organic matter, enriching it and the whole mass in the step after the physical and physicochemical processing and in the act of granulation.
  • These biological elements act, as mentioned above, forming biochemical reactions, retaining soluble nutrients present in the formulation and obtaining rich molecules that, in the soil solution, follow to the plant, assisting in its metabolism, responding to its development and fruit improvement. quantitatively and qualitatively.
  • the biological agents, AHF and AMF, added in the steps after processing of the formulations in the high reduction mixer, dryer and mill assembly size (from 35 mesh to 200 mesh), or in the multiprocessor mill, and during the granulation process, will act as follows:
  • AHF - "Humic and Fulvic Acids" (ABI): The action of these organic acids is in its composition. The presence of fulvic acid has ionic action forming biomineral organic complexes, which retain the cations and anions of the mineral raw materials present in the organomineral fertilizer composition of the present invention. The action of these biomineral complexes prevents the nutrient elements, made available to the soil solution and, consequently, to the plant, from becoming loose in the soil, because in the presence of strong ions they can be sequestered and / or complexed, forming insoluble complexes and making the nutrients unavailable. would go to the plant.
  • fulvic acid in the ratio of quantities of these ions present in soluble or solubilized mineral masses allows not losing them to the soil.
  • AHF-Minerals Ratio 0.70mL AHF / Kg Macro and Micronutrients.
  • Formulations should therefore take into account the carbon concentration from one or more organic materials, preferably they may come from animal sources (animal waste) and plant sources (agro-industry and crop residues) and be mixed together. , as seen in iehl, EJ, "50 Questions and Answers on Organic Compost", Sao Paulo, PMSP / ESALQ, 1979, p.9, 1. 17, where there are residues:
  • the amount of added AHF is sufficient for the chelation process (formation of biomineral compounds) in the established relationship, leaving those being formed by the decomposition of surplus organic matter and enriching the final formulated product, which will further assist the biological activities of the product. ground.
  • The. Activate the organic matter that is in the middle stage of decomposition and underwent the physical intervention of reducing moisture and the number of microorganisms (by the action of temperature and the extraction of water contained in the organic matter).
  • This biological agent and nutrient replenishes carbon with nitrogen (amino acid composition) in organic matter, providing conditions to assist in the decomposition process of the formulated product's organic matter.
  • nitrogen amino acid composition
  • compositions with the presence of natural phosphates the sum of the volume used for carbon with the volume used for natural phosphate is adopted, with relative order of importance, since they act in both situations (purposes described above).
  • amino acids are great soil solution enrichers, and are also used in plant nutrition and thus enrich the fertilizer product.
  • nitrogen of these amino acids participates in the formation reactions of biomineral compounds and biochemicals in plants, which are driven by xylem (plant system entrance channel), favoring the processes of production of ATP, translated by improved chlorophyll synthesis reactions and therefore by increased glucose content (Taiz, L. and Zeiger, E., Plant Physiology ", S ⁇ o Paulo, Artmed, 2004, p. 719).
  • the formulations will go to the soil with part of their ongoing reactions and nutrients available to the plant and over the next few days the organic reactions will proceed with the active microorganisms and the present generated and added organic acids (AHF) to the formulation. , which will continue to attack the minerals once they find a favorable environment, such as humidity (planted in the rainy season) and temperature, allowing for ultra-fast reaction speeds (minutes or hours) at ratio of the tiny particles in which the nutrients were transformed in the physical and physicochemical processing, thus making the other nutrient percentages available to the plant.
  • AHF organic acids
  • humic organic acids also act chemically, retaining the cations of nutrients in chemically transformed minerals (soluble salts), forming biochemicals and not allowing them to be free and retained by strong soil anions such as iron and aluminum in this case. phosphorus, and volatilized and leached as in the case of nitrogen and potassium. Thus, no losses occur and the retention efficiency of these soluble nutrients added to the soil, which should reach the plant, is above 95%.
  • the organomineral fertilizer obtained via NP + C process is the result of the physical and biological processing of the formulation that aims to intensify the chemical and biological interactions, promoting high speed (biochemical kinetics) of formation of biochemical compounds, and not losing the high amounts of carbon.
  • conventional organic matter decomposition (composting) processes which deplete organic matter by 40% to 70% of the carbon mass present, which is primarily responsible for the formation of organic acids and hence biological reactions.
  • the plant for the production of said organomineral fertilizer comprises:
  • Granulator used to process the powdered formulation into granules with the addition of water and biological element (c) ;
  • Figures 2 and 3 illustrate two different embodiments of said production process, the namely: manufacture of granulated fertilizers ( Figure 2) and manufacture of powdered or mashed fertilizers ( Figure 3).
  • Tests were performed to compare the efficiency of conventional fertilizers with organomineral fertilizers of the present invention in soybean crop.
  • Table 2 shows the dosages of KCl used in treatments 10, 11 and 12 previously shown in Table 1 for a conventional formulation.
  • the minimum amount of formulation for each treatment is 300 kg.
  • Each plot consisted of ten lines spaced 0.5 meters apart with a length of 50 meters, totaling an area of 250 square meters for each plot.
  • the experiment presented a total area of 19,000 square meters. 10 square meters were collected, only the 4 central lines of 5 meters of each plot, considering 3 border lines for each side of the plot.
  • the installation of the experiment was performed with its demarcation and subsequent collection of soil samples at depths of 0-20 cm and 20-40 cm to characterize the experimental area.
  • the conduction of the experimental area followed the same standards adopted for commercial areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)

Abstract

A presente invenção refere-se a um processo para a produção de fertilizantes orgânicos e organominerais baseando-se na concentração de carbono do material orgânico in natura e relacionando a referida concentração com as frações de minerais naturais e/ou minerais transformados, promovendo uma alta interação física dos materiais envolvidos e ativando e enriquecendo biologicamente o composto.

Description

"PROCESSO DE PRODUÇÃO DE FERTILIZANTES ORGÂNICOS E ORGANOMINERAIS COM ALTA CONCENTRAÇÃO DE CARBONO UTILIZANDO PROCESSOS FÍSICOS E AGENTES BIOLÓGICOS"
Campo da Invenção
A presente invenção refere-se a um processo para a produção de um insumo agrícola, mais especificamente um processo para a produção de fertilizantes orgânicos e organominerais baseando-se na concentração de carbono do material orgânico in natura e relacionando a referida concentração com as frações de minerais naturais e/ou minerais transformados, promovendo uma alta interação física dos materiais envolvidos e ativando e enriquecendo biologicamente o composto.
Antecedentes da Invenção
O objetivo de colocar no solo produtos que consistem da soma dos minerais NPK, Ca, Mg, S e demais, formando no mínimo os 16 elementos indispensáveis, com alta concentração de carbono, é de oferecer à planta um ambiente vivo e ativo, onde na relação solo-planta haja quantidade e qualidade de nutrientes, ou seja, formar uma solução rica no solo, alimentando o vegetal com a riqueza dos nutrientes minerais e biológicos.
Na Austrália, por exemplo, tem-se alta preocupação com a salinidade provocada pelos nutrientes inorgânicos, principalmente sais extremamente solúveis em pHs ácidos, os quais acidulam os solos e provocam a perda da estrutura dos mesmos e sua vida microbiológica (Shaxson, T.F., "Produção e proteção integradas em microbacias", em: XXI Congresso Brasileiro de Ciências do Solo, "A responsabilidade social da ciência do solo", Campinas, SBCS, 1988, págs . 263-272). A compactação é outro problema do solo que provoca redução de produtividade, devido primeiramente à perda do carbono orgânico do solo. A diminuição de um por cento (1%) do carbono orgânico do solo é mais agressiva que a degradação causada pela erosão.
Sabemos pelo menos 20 razões que envolvem os três aspectos conceituais - físico, químico e biológico - para se atingir altos níveis de produção com produtos de alta qualidade. As razões da importância da concentração de matéria orgânica no solo, de acordo com Albrecht, W.A., "Perda da matéria orgânica do solo e sua restauração", págs. 347-360, Soils and Men, 1938, Yearbook of Agr., US Govt. Printing Office, Washington, DC; Cole, C.V., Williams, J., Shaffer, M. e Hanson, J. , "Matéria orgânica e nutrientes como componentes de modelos de sistemas de produção agrícola" em: Follett, R.F., Stewart, J.W.B. e Cole, C.V. (eds) , "Fertilidade do solo e matéria orgânica como componentes críticos de sistema de produção", págs. 147-166, 1987, SSSA Spec. Publ . 19, ASA and SSSA, Madison, WI ; Doran, J.W. e Smith, M.S., "Gerenciamento da matéria orgânica e utilização de solos e nutrientes fertilizantes, págs. 53-72, em: Follett, R.F., Stewart, J.W.B. e Cole, C.V. (eds), "Fertilidade do solo e matéria orgânica como componentes críticos de sistema de produção", págs. 147- 166, 1987, SSSA Spec. Publ. 19, ASA and SSSA, Madison, WI, são as seguintes:
a. Não permitir a erosão do solo;
b. Fornecer nutrientes ao solo;
c. Proteger o solo contra variações de pH;
d. Reter água no solo;
e. Aumentar a capacidade de troca catiônica, protegendo o encontro dos ânions do solo com os nutrientes, o que promove a perda dos mesmos;
f . Diminuir a compactação do solo;
g. Armazenar nutrientes no solo sem perdê-los de uma a outra safra;
h. Reduzir o aquecimento do solo;
i. Condicionar um solo mais poroso, mesmo quando ligeiramente molhado;
j . Permitir mais reações com os minerais existentes no solo;
k. Dar mais saúde ao solo e, por conseguinte, reduzir doenças de plantas;
1. Dar ao solo melhor aeração e maior permeabilidade;
m. Proteger o solo das reações dos metais pesados existentes no mesmo e da toxidez do sal;
n. Ser um mecanismo para armazenamento do C02 atmosférico adicional;
o. Oferecer rendimentos de produção em razão da potencialização dos fatores expostos;
p. Promover a recomposição microbiana do solo, inibindo as substâncias tóxicas;
q. Promover o crescimento de plantas fora de um ambiente ácido;
r. Permitir o recebimento de outros microorganismos que reciclam nutrientes no solo;
s. Promover a formação do solo; e
t. Oferecer combinações bioquímicas no solo que enriqueçam os frutos, como seu brix.
Já existem muitos trabalhos evidenciando o valor da matéria orgânica no solo, como em Darst, B.C. e Murphy, L.S., "Matéria orgânica no solo: um ingrediente integral na produção de colheitas", 1989, Better Crops 74 (1) : 4-5; e KIEHL, E.J., "Fertilizantes Organominerais" , Piracicaba, Editora Agronómica Ceres, 1993, págs. 1-6, os quais documentam com propriedade essas vantagens. A matéria orgânica atua como fonte de energia para os microorganismos do solo e outros organismos e é essencial ao produto químico e à saúde biológica e física do solo.
A matéria orgânica adicionada ao solo na presença de outros nutrientes essenciais às plantas, em proporções apropriadas um em relação ao outro, como cálcio, enxofre, nitrogénio e outros nutrientes, são sinérgicos na natureza, com estudos que mostram que se pode induzir as populações microbianas ao reagir as mesmas com o carbono, formando moléculas complexas de húmus e de outras frações orgânicas, conforme em Doran, J.W. e Smith, M.S., "Gerenciamento da matéria orgânica e utilização de solos e nutrientes fertilizantes, págs. 53-72, em: Follett, R.F., Stewart, J.W.B. e Cole, C.V. (eds) , "Fertilidade do solo e matéria orgânica como componentes críticos de sistema de produção", págs. 147-166, 1987, SSSA Spec. Publ . 19, ASA and SSSA, Madison, WI; Hallam, .J. e Bartholomew, W.V., "Influência da taxa de adição de resíduos de plantas na aceleração da decomposição de matéria orgânica de solos", Soil Sei Soe. Am. J. , 1953, vol. 17, págs. 365-368.
A matéria orgânica do solo juntamente com as reações bioquímicas formadas com a massa húmica (ácidos húmicos) são fatores de grande importância no processo de formação do solo. O grau de mineralização da matéria orgânica no solo é um assunto não discutido, conduzindo assim ao tema de adicionar matéria orgânica ao solo via processo convencional, decompondo esta antes da aplicação ao solo e chegando ao referido solo num estágio já estabilizado. Dessa forma, tem sido apresentado que esta decomposição venha a ocorrer até atingir estágios onde a relação carbono/nitrogénio está abaixo de 18:1, buscando níveis cada vez mais baixos, atingindo por vezes até 5:1, ou seja, uma matéria orgânica muito pobre em carbono. Em resumo, tem-se pouco entendimento biológico no que se refere à ação dos ácidos húmicos, porém, nestes últimos anos, já se pode acrescentar que estas reações também resultam no desenvolvimento dos perfis do solo, além da qualidade nutricional do mesmo (Joffe, J.S., "Pedologia", Rutgers Univ. Press, New Brunswick, N.J., 1936; e Konovoa, L.K.J., "Rotas de degradação de carbono na oxidação de sistemas heterocíclicos aromáticos", Dept. of Chemistry, Wright State University, Dayton, Ohio 45431, 22 de agosto de 1969) . Os ácidos húmicos devem promover continuadas reações bioquímicas no solo, deixando toda a energia destas reações no mesmo, não desprendendo e despejando a referida energia na atmosfera. Todos os ácidos húmicos no solo tem agrupados códigos genéticos e processos biológicos dos microorganismos.
Sabe-se hoje que os solos mais ricos, acima dos trópicos, contem geralmente de 2.200 a 5.600 kg de nitrogênio/ha . Esta quantidade é baixa e nos solos abaixo dos trópicos é ainda mais baixa. Entretanto, se for dada atenção a este importante tema fazendo uma análise da vantagem de adicionar 2% de nitrogénio via adição de matéria orgânica, será observado que os microorganismos que mineralizam os nutrientes da matéria orgânica disponibilizam estes para o consumo da planta, sendo possível reter no solo de 100 a 250 kg de nitrogênio/ha/ano . O que não se sabe é que simultaneamente se está perdendo de 990 a 2.470 kg de carbono. Isto representa de 1.540 a 3.740 kg de matéria orgânica preciosa sendo perdida. Esse procedimento vem sendo praticado em demasia por muitos fazendeiros que adotam plantios orgânicos e convencionais e que usam os resíduos de outras culturas (como plantios diretos) , levando à decomposição da matéria orgânica e à perda de nitrogénio e carbono, o que consequentemente empobrece a referida matéria orgânica.
Podemos observar que a natureza trabalha de modo a fornecer resíduos da planta para a própria planta, porque se entende que a única fonte de carbono é o ar e este também dispõe de nitrogénio em 70% da sua composição. O nitrogénio é convertido na planta de 2 para NH3. Esta reação (N2 + 6H + 6e~ → 2NH3, na presença de Fe e Mo) é uma das importantes reações que ocorre no solo, paralela às reações de fotossíntese. O pesquisador Brady (Brady, N.C. e eil, R.R., "A natureza e propriedades dos solos", 13a ed., Prentice Hall, Upper Saddle River, 2002, pág . 960) acrescenta que, quando o nitrogénio encontra-se em excesso, a relação do carbono e outros nutrientes fica comprometida, ou seja, este nitrogénio biológico não será usado e será perdido .
A Engenharia Genética de microorganismos específicos de matéria orgânica e de solos mostra a necessidade de se aumentar os níveis da matéria orgânica no solo. Os resíduos orgânicos oriundos de lixo doméstico podem ajudar a repor a massa de carbono perdida no solo e desprendida na atmosfera, de acordo com Wallace, A., "A matéria orgânica do solo deve ser restaurada para níveis próximos aos originais", Commun . Soil Sei. Plant Anual., vol. 25, págs. 29-35. Estima-se que se pode retornar anualmente ao solo de 3,5 a 5,4 toneladas/hectare de resíduos de colheita ou de agroindústrias . Este volume, se reposto anualmente, já é significativo e poderia manter os solos em bom equilíbrio com bons níveis de matéria orgânica, segundo Follett, R.F., Stewart, J.W.B. e Cole, C.V. (eds) , "Fertilidade do solo e matéria orgânica como componentes críticos de sistema de produção", págs . 147-166, 1987, SSSA Spec. Publ . 19, ASA and SSSA, Madison, WI . As 5,4 toneladas de desperdício orgânico representam aproximadamente 1 tonelada de carbono. Com a eficiência de 25% nos processos de decomposição, calcula-se que um quarto do carbono é perdido.
Se os resíduos das colheitas fossem reinseridos no solo, com o contínuo aumento de produtividade destas áreas, pela qualidade que o solo iria atingir poder-se-ia ter altas colheitas, significando uma taxa de 8,8 toneladas de matéria orgânica/hectare e outros 100 a 204 kg de carbono ficariam retidos. Isto adicionaria entre 890 e 1480 kg de carbono retido/hectare por colheita.
O processo de compostagem da matéria orgânica é tecnicamente indevido (Wallace, A., "A matéria orgânica do solo deve ser restaurada para níveis próximos aos originais", Commun. Soil Sei. Plant Anual., vol. 25, págs. 29-35), pois aumenta a concentração de C02 no ar, é de alto custo e pode-se trabalhar e aplicar no solo de 15 a 30 vezes volumes estudados e admitidos para diversas culturas, provocando assim' desinteresse e inviabilidade do uso deste processo em culturas extensivas, obtendo rendimentos agronómicos similares ou maiores aos obtidos com os fertilizantes convencionais.
Um fertilizante completo é um fertilizante equilibrado, com níveis adequados de minerais, matéria orgânica crua e incrementos biológicos que permitirão alta atividade dos ácidos orgânicos. A importância de ter um produto que não foi compostado tem todos os efeitos já citados biologicamente, contando e estando em combinação com outros nutrientes para cumprir as ações que a natureza promove reciclando os nutrientes. (Wallace, A. e Wallace, G.A., "Uma possível falha na nova regra de 1993 da Agência de Proteção ao Meio Ambiente sobre depósitos devido à interação de metais pesados", Comm. Soil Sei. Plant Anual., vol. 25, págs. 129-135, 1994).
Na interpretação das perdas de carbono, podemos acrescentar as formas erradas de uso e até mesmo o processo de decomposição, os quais empobrecem o solo.
Além da necessidade de se ter uma matéria mais rica em carbono, o elemento nitrogénio também tem alto valor, agindo no sistema biológico da matéria orgânica, permitindo as reações orgânicas e bioquímicas. Desta forma, é importante expor que não basta ter a matéria orgânica presente nas composições; é preciso que esta esteja viva e ativa. A participação do nitrogénio, além da fração existente na massa orgânica, exerce papel importante na fração da matéria orgânica e no formulado elaborado, ou seja, no balanceamento de minerais e matérias orgânicas.
0 nitrogénio é um elemento que participa de todas as reações metabólicas da planta, tendo assim grande importância. Ele está presente na composição das mais importantes biomoléculas, tais como: ATP, NADH, NADPH, clorofila, proteínas e inúmeras enzimas. 0 nitrogénio tem sido intensamente estudado, no sentido de maximizar a eficiência do seu uso. Para tanto, tem-se procurado diminuir as perdas de nitrogénio no solo, bem como melhorar a absorção e a metabolização do referido elemento no interior da planta.
A eficiência da utilização do nitrogénio adicionado ao solo se refere ao grau de recuperação desse elemento pelas plantas, considerando as perdas que geralmente ocorrem. Normalmente, menos de 50% do nitrogénio aplicado sob a forma de fertilizante é utilizado pelas culturas. As perdas no solo são devido aos inúmeros processos aos quais o nitrogénio está sujeito. O nitrogénio é perdido principalmente pela lixiviação do nitrato, volatilização da amónia e emissão de N20 e outros óxidos de nitrogénio, de acordo com Anghinoni, I., "Adubação nitrogenada nos estados do Rio Grande do Sul e Santa Catarina", 1986, em: Santana, M.B.M., "Adubação nitrogenada no Brasil", CEPLAC/SBCS, Ilhéus, 1986, Cap. I, págs . 1-18.
A absorção e assimilação de nitrogénio pela planta são processos multirregulados e integrados ao metabolismo geral da planta. A multirregulação do metabolismo do nitrogénio torna complexa a identificação de pontos metabólicos específicos que sejam mais limitantes para o incremento da produtividade. A fonte de nitrogénio e o local de assimilação (via aérea ou solo) podem ser importantes, especialmente em condições de crescimento nas quais a disponibilidade de energia é limitante. Os cuidados para que o nitrogénio esteja presente nas proporções certas e nos momentos certos, conforme os ciclos das plantas, ajudam na adição de nitrogénio via matéria orgânica de média a alta concentração de nitrogénio e/ou na adição de compostos biológicos com alta concentração deste elemento, como os aminoácidos, permitindo melhor equilíbrio da relação carbono : nitrogénio, buscando relações de 10:1 a 30:1.
Pode-se dizer que além dos macronutrientes (N, P, K, Ca, Mg e S) e micronutrientes (Zn, B, Mn, Cu, Fe, Mo, Co, Si, e outros) essenciais ao desenvolvimento da planta, complementa estes o uso de agentes biológicos que atuam de diversas formas no solo e até mesmo na planta. Eles podem ser chamados de reguladores, estimulantes ou ativadores biológicos. A mistura de dois ou mais reguladores vegetais com outras substâncias (aminoácidos, nutrientes e vitaminas) é designada como bioestimulante, conforme Castro, P.R. de C.E., Vieira, E.L., "Biorreguladores e bioestimulantes na cultura do milho", em: Fancelli, A.L., Dourado Neto, D. (Ed.), "Milho: estratégias para alta produtividade", Esalq/USP/LPV, Piracicaba, 2003, págs . 99- 115. A utilização dessas substâncias aumenta de importância à medida em que aumenta o potencial genético das culturas e quando se objetiva a obtenção de altos rendimentos e a melhoria da qualidade do produto colhido.
A identificação e a clonagem dos genes dos transportadores de alta afinidade da planta poderão auxiliar nos programas de melhoramento genético na obtenção de plantas mais eficientes na absorção de nitrogénio em uma ampla faixa de disponibilidade deste nutriente no solo.
A adição de aminoácidos permite levar mais nutrientes à formulação, de forma viva e ativa, permitindo que as reações da matéria orgânica sejam mais aceleradas e ajudando também para que os ácidos orgânicos presentes na matéria orgânica formem compostos ricos para a solução do solo, que será absorvida pela planta.
O papel dos aminoácidos é importante e tem sido pouco estudado na nutrição via solo (radicular). Pode-se afirmar que o mecanismo segundo o qual o nível de aminoácidos no floema da raiz regula a absorção e assimilação de nitrogénio pela planta foi sugerido por Imsande, J., Touraine, B.N., "Demanda e regulação da captação de nitrato", Plant Physiology, Lancaster, Vol. 105, págs . 3-7, 1994. Ele é embasado na constatação de que, durante o rápido crescimento vegetativo, são altas as taxas de redução de nitrato e síntese de aminoácidos nas folhas. Ali mesmo é utilizada a maioria dos aminoácidos para a síntese de clorofila, rubisco e outras proteínas e, com isso, é baixo o nível de aminoácidos no floema que entra nas raízes, o que nos leva a admitir que este pode e deve fazer parte do sistema de nutrição da planta. Por outro lado, durante a fase reprodutiva, diminui a taxa de redução de nitrato; em paralelo, em função da remobilização do nitrogénio foliar para o desenvolvimento das inflorescências, aumenta a exportação de aminoácidos das folhas, enriquecendo, com esses compostos, o floema que entra nas raízes. O mecanismo proposto sugere que esses aminoácidos provocam uma redução na taxa de absorção de NO3. A ação dos aminoácidos sobre a absorção de nitrogénio ainda não é conhecida. Provavelmente, os altos níveis de aminoácidos nas raízes inibem a ação dos transportadores de NO3 na membrana e a síntese da enzima redutase do nitrato (Lea, P.J., "Metabolismo do nitrogénio", em: Lea, P.J., e Leegood, R.C., "Bioquímica da planta e biologia molecular", John Wiley and Sons, Chichester, 1993, Cap. 7, págs. 155- 180; e Lea, P.J., "Metabolismo primário do nitrogénio", em: Dey, P.M. e Harborne, J.B., "Bioquímica da planta", Academic, 1997, Cap. 7, págs. 273-313).
Durante o ciclo de desenvolvimento das culturas, esses compostos orgânicos, dependendo de sua composição, concentração e proporção das substâncias, estimulam o crescimento vegetal através de uma maior divisão celular, elongação celular e diferenciação celular e, dessa forma, aumentam a capacidade de absorção de nutrientes e água, refletindo diretamente no desenvolvimento (germinação de sementes, crescimento e desenvolvimento, floração, frutificação, senescência) e na produtividade das culturas (Castro, P.R. de C.E., Vieira, E.L., "Biorreguladores e bioestimulantes na cultura do milho", em: Fancelli, A.L., Dourado Neto, D. (Ed.), "Milho: estratégias para alta produtividade", Esalq/USP/LPV, Piracicaba, 2003, págs . 99- 115) . A ação dos ativadores biológicos, além das várias funções, tem interação com a nutrição das plantas, aumentando a eficiência na absorção, transporte e assimilação dos nutrientes. Compostos orgânicos de natureza apolar aumentam a capacidade de circulação de substâncias através das membranas, que são apoiares, em função de sua constituição (proteínas e fosfolipídios) .
A literatura de patentes também relata alguns processos de obtenção de fertilizantes contendo nitrogénio, fósforo e potássio. Porém, não existem relatos de processos visando o enriquecimento do solo com carbono.
0 pedido de patente brasileiro PI 8303056-5 descreve um processo de obtenção de adubo orgânico simples e adubo organomineral em que, após o tratamento, estabilização e degradação do esterco, o mesmo é peletizado, seco e moido. O produto resultante pode ser suplementado com húmus de linhita, obtendo-se, após a granulação, um adubo orgânico simples granulado. O referido produto resultante pode ainda receber outras matérias primas minerais diversas além do húmus de linhita, obtendo-se, após a granulação, um adubo organomineral . Após a granulação de qualquer um dos dois tipos de adubo, estes são embalados em sacos plásticos, encerrando o ciclo de produção industrial.
Mais especificamente, podemos observar que em uma determinada etapa do referido processo o esterco é suplementado com matéria orgânica, nitrogénio, fósforo, potássio, cálcio, enxofre, magnésio e micronutrientes, cujas fontes principais utilizadas são: húmus de linhita, nitrato de potássio, nitrato de amónio, sulfato de amónio, fosfato de amónio, uréia, superfosfatos, DAP, MAP, cloreto de potássio, entre outros. Porém, o pedido de patente PI 8303056-5 não explora especificamente a importância do uso de agentes biológicos (ácidos húmicos e fúlvicos) , os quais são adicionados para promover reações bioquímicas no solo. Além disso, o referido pedido de patente não prevê um controle rigoroso das principais relações entre os nutrientes, como por exemplo, N/C, P/C, K/C, AMF/C e AHF/minerais . Esse controle é essencial para o funcionamento do processo proposto pela presente invenção.
A patente brasileira n° PI 8600757-2 refere-se a um processo de produção de fertilizante a partir de uma ampla série de resíduos orgânicos de origem urbana, industrial ou agrícola. 0 referido processo apresenta um baixo custo energético, pode ser aplicado em pequena, média ou grande escala e produz um fertilizante totalmente isento de agentes patogênicos.
Todavia, o processo proposto pela presente invenção não prevê etapas de reação ácida e/ou alcalina de forma a tratar a massa orgânica inicial e eliminar os agentes patogênicos; não existe uma etapa de cura no processo da presente invenção; e o documento de patente PI 8600757-2 não compreende uma etapa de ativação e enriquecimento biológico da massa processada utilizando AHF e AMF, conforme proposto na presente invenção.
A patente brasileira n° PI 0704583-2 descreve um processo o qual tem a finalidade de aproveitar a carnalita como fonte de potássio e magnésio na. granulação química de fertilizantes. A carnalita (KCl .MgCl2.6H20) é adicionada a um granulador do tipo tambor rotativo, prato, "pug-mill", entre outros, juntamente com DAP, amónia e outros fertilizantes convencionais para formar fosfato duplo de magnésio e amónio (NH4.MgPO4.nH2O) , cloreto de amónio e cloreto de potássio. Portanto, além de viabilizar a utilização da carnalita, de característica extremamente higroscópica, o processo permite a obtenção de fosfato duplo de magnésio e amónio. Neste sal duplo, o fósforo está numa forma de liberação lenta, o que significa que a planta pode absorvê-lo gradativamente, reduzindo assim as perdas deste elemento no solo. O referido processo ainda prevê uma modalidade da invenção onde a carnalita é substituída por uma solução de cloreto de magnésio. Nesse caso, obtém-se um fertilizante rico em magnésio, onde o fósforo também se encontra numa forma de liberação lenta para as plantas. Além disso, é apresentada uma modalidade onde o DAP é substituído por amónia e ácido fosfórico.
É importante notar que a patente em análise se refere mais especificamente ao enriquecimento do fertilizante em termos de nitrogénio, potássio e fósforo, não se preocupando com o teor de carbono disponível. Ademais, nenhuma referência é feita em relação ao uso de agentes biológicos para compor a formulação fertilizante. 0 pedido de patente n° PI 0606043-9 refere-se a um fertilizante que possui, em sua composição, nitrogénio na forma protéica (proteína vegetal e animal) dosado em equilíbrio, o qual leva a um efeito benéfico rápido e duradouro nas plantações e no solo. A referida composição fertilizante é desodorizada por aditivos biológicos enzimáticos catalisadores, os quais melhoram simultaneamente a digestão e o processamento dos materiais orgânicos e facilitam a integração com os componentes minerais.
O documento sob análise prevê o uso de agentes biológicos, de modo a promover reações bioquímicas no solo. Verifica-se também uma certa preocupação em controlar o teor de carbono, de maneira a enriquecer o solo com este nutriente essencial. Porém, o pedido de patente PI 0606043- 9 não prevê as mesmas faixas de concentração dos principais nutrientes, estando todas elas abaixo do que foi obtido através do processo objeto da presente busca. Ademais, o pedido em referência não descreve o processo de obtenção do fertilizante, ficando restrito apenas à composição.
Conforme mencionado anteriormente, há uma necessidade crescente de revitalização e aumento da fertilidade dos solos, repondo aos mesmos seus principais nutrientes minerais e carbono, de forma a substituir os fertilizantes convencionais.
Objeto da Invenção
É objeto da presente invenção descrever um processo para a produção de fertilizantes orgânicos e organominerais baseando-se na concentração de carbono do material orgânico in natura e relacionando a referida concentração com as frações de minerais naturais e/ou minerais transformados, promovendo uma alta interação física dos materiais envolvidos e ativando e enriquecendo biologicamente o composto .
É ainda objeto da presente invenção descrever estes fertilizantes, utilizando o processo aqui descrito.
Descrição das Figuras
A presente invenção será descrita com base nas figuras em anexo, em que:
- a Figura 1 mostra um diagrama esquemático, o qual ilustra a produção de fertilizantes orgânicos em pó ou farelados;
- a Figura 2 mostra um diagrama esquemático, o qual ilustra a produção de fertilizantes organominerais granulados; e
- a Figura 3 mostra um diagrama esquemático, o qual ilustra a produção de fertilizantes organominerais em pó ou farelados.
Descrição Detalhada da Invenção
• Fertilizantes Orgânicos
Os fertilizantes orgânicos da presente invenção são formulados com matérias primas 100% naturais, matérias orgânicas de diversas origens e minerais naturais sem processamentos químicos, apenas físicos.
As composições de fertilizantes orgânicos da presente invenção consideram o percentual de matéria orgânica, onde esta deve atingir o percentual mínimo de carbono de 15%, 1% de nitrogénio, relação carbono : nitrogénio (C:N) máxima de 18:1 e capacidade de troca catiônica : carbono orgânico total (CTC:C) de 20:1. As demais garantias podem ser declaradas conforme os resultados da composição, ' onde cada matéria prima tem seu valor de macro e micronutrientes necessários ao desenvolvimento das plantas.
A mistura das matérias primas orgânicas in natura e dos minerais dá-se em condições onde as interações destas são intensas, promovidas pela redução das partículas de toda massa que compõe a formulação, num mesmo instante. A intensa mistura, secagem da massa e a sensível redução granulométrica ocorrem nos equipamentos tradicionais destas operações, convencionalmente utilizados em indústrias de fertilizantes e mineração existentes no mercado, os quais são capazes de promover estas funções (misturadores, secadores e moinhos) , ou através de um moinho multiprocessador, equipamento o qual representa o conjunto de equipamentos descrito, processando a massa devidamente pesada, tornando-a única, uniforme, de baixa umidade e com granulometria que pode variar de microgranulado (granulometria de 0,5 a 2,5mm) a pó (granulometria de 0,1 a 0 , 5mm) .
As matérias primas mais comumente empregadas nas formulações de fertilizantes orgânicos são:
a) Matérias primas orgânicas:
- Torta de mamona;
- Torta de algodão;
- Torta de girassol;
- Torta de filtro de usina de cana-de-açúcar;
- Bagaço de cana;
- Resíduo de algodão;
- Casca de café;
- Esterco de gado;
- Esterco de galinha (poedeira) ;
- Cama de frango;
- Esterco de suínos;
- Rumem de gado;
- Sangue de gado; e - Cinzas de madeira.
b) Matérias primas minerais (naturais in situ - apenas processamentos físicos) :
- Fosfatos naturais;
- Fosfatos naturais reativos;
- Feldspato;
- Calcários;
- Gipsita;
- Enxofre;
- Vermiculitas;
- Pó de mármore;
- Minerais intemperizados; e
- Basalto.
A elaboração das formulações fertilizantes pelo processo NPK+C para a fabricação de fertilizantes orgânicos tem premissas técnicas visando atuar de forma a disponibilizar os nutrientes presentes nos minerais naturais e na matéria orgânica in natura presentes, permitindo que a formulação químico-biológica possa atender agronomicamente .
As premissas básicas são: as concentrações de matéria orgânica (%M.O) na composição, isto é, de carbono orgânico "compostável" (%C. O) e de minerais naturais; os elementos químicos que estes minerais possuem na sua composição e suas cargas iónicas (+) e (-) ; e a concentração e relações dos agentes biológicos com o carbono e com a fração mineral, observando assim as reações químicas e bioquímicas que se formarão na massa formulada.
O balanço estequiométrico das formulações - carbono versus minerais naturais - é fruto da massa de elementos como o nitrogénio, que é energia ativã de moléculas orgânicas, " e dos demais nutrientes (+) e (-) presentes na massa e que, às vezes, de forma prática, também foram estudados em trabalhos privados de campo em diversas culturas sem conhecimento sobre o processo utilizado para obter o produto por parte do agricultor, com resultados muitos satisfatórios em produtividade e qualidade (grau brix) . Estas relações estabelecidas estão apresentadas abaixo.
Relações de Nutrientes (Macronutrientes e Micronutrientes ) /Carbono - "Limites Mínimos":
Nitrogénio: 0,9%N/%C
Fósforo: 1, 16%P/%C
Potássio: 1,35%K/%C
Micronutrientes: l,0%Mic/%C
A matéria orgânica in natura deve ser processada de forma que o carbono tenha mínimas perdas, o que ocorre no Processo NPK+C, a partir de balanços estequiométricos de massa, união da referida matéria orgânica com outros elementos de nutrição dos vegetais, como os minerais, e processamento nos equipamentos (misturador, secador e moinho (s) tradicional (is) ou ainda moinhos multiprocessadores) que interagem a massa intimamente. A seguir, a referida massa é ativada e enriquecida biologicamente (agentes biológicos, AHF e AMF) , permitindo uma decomposição média da mesma, ou é processada no conjunto de equipamentos (misturador, secador e moinho) , promovendo as interações entre as minúsculas partículas transformadas no equipamento. Toda essa carga segue para o solo e lá complementa o ciclo de decomposição em um estágio e com o carbono envolvido biologicamente, sem perdas, reagindo com nutrientes, disponibilizando-os às plantas e não permitindo suas perdas com agentes que retém estes nutrientes pelas reações iónicas (ex. : ferro e alumínio) , formando complexos insolúveis, ou por lixiviação.
Os agentes biológicos, AHF - "Ácido Húmico e Fúlvico" (denominados ABI) e AMF - "Aminoácidos de Peixes ou Vegetais" (denominados AB2), adicionados nas etapas após o processamento dos formulados para mistura intensa, secagem e grande redução granulométrica (menos de 35 mesh a 200 mesh) , ou nos moinhos multiprocessadores, e durante o processo de granulação, irão agir da seguinte forma:
1. AHF - "Ácidos Húmicos e Fúlvicos" (ABI): A presença do ácido fúlvico tem ação iônica formando complexos orgânicos biominerais, os quais retêm os cátions e ânions das matérias primas minerais presentes na composição do fertilizante orgânico da presente invenção. A ação destes complexos biominerais impede que os elementos nutrientes, disponibilizados à solução do solo e, consequentemente, à planta, fiquem soltos no solo, pois na presença de íons fortes podem ser sequestrados e/ou complexados, formando complexos insolúveis e indisponibilizando os nutrientes que seguiriam para a planta. Assim, a presença do ácido fúlvico na relação de quantidade destes íons presentes nas massas de minerais solúveis ou solubilizados permite não perder os mesmos para o solo. Os macro e micronutrientes adicionados com a fertilização do solo ou mesmo os existentes neste, indispensáveis às plantas, tem na sua participação em massa valores que admitidos sobre a média superior (conforme ensaios realizados em áreas experimentais e comerciais) necessitam de massa correspondente de ácidos húmicos para a formação das reações biominerais, levando-se em conta a carga iônica destes elementos. Relação AHF-Minerais : 0,70mL AHF/Kg Macro e Micronutrientes .
A matéria orgânica no estágio mais avançado de sua decomposição, observado pela relação carbono : nitrogénio menor que 18, forma estes ácidos orgânicos (húmicos, fúlvicos e maléicos) . Desta forma, as matérias orgânicas mais ricas em carbono formarão mais estes ácidos desejáveis, permitindo desta forma a quelação dos ions presentes nos nutrientes necessários a todos os vegetais.
As formulações deverão, dessa forma, levar em conta a concentração de carbono proveniente de uma ou mais matérias orgânicas, de preferência que estas possam advir de fontes animais (resíduos animais) e de fontes vegetais (resíduos de agroindústrias e de culturas) e serem misturadas, como se vê em Kiehl, E.J., "50 Perguntas e Respostas sobre Composto Orgânico", São Paulo, PMSP/ESALQ, 1979, pág.9, 1. 17, onde se tem resíduos:
Vegetais : Alta Concentração de Carbono - >60% C
Baixa Capacidade de Decomposição - 60 a 120 dias Animais : Baixa Concentração de Carbono - <50% C
Alta Capacidade de Decomposição - 30 a 60 dias A adição de AHF no produto formulado, na presença de média a alta concentração de matéria orgânica (carbono) e de média a baixa concentração de ácidos húmicos formados, pelo médio a baixo estágio de decomposição da matéria orgânica, visa ajudar as reações, catalisando a decomposição e, consequentemente, quelar os sais solúveis presentes na mistura formulada.
A quantidade de AHF adicionado é suficiente para o processo de quelação (formação dos compostos biominerais) na relação estabelecida, ficando os que estão sendo formados pela decomposição da matéria orgânica excedente e enriquecendo o produto final formulado, que ajudará ainda mais as atividades biológicas do solo.
2. AMF - "Aminoácidos de peixe e de vegetais" (AB2) : Estes tem a finalidade de exercer dupla função na formulação, a saber:
a. Ativar a matéria orgânica que está em médio estágio de decomposição e sofreu a intervenção física de redução de umidade e do número de microrganismos (pela ação da temperatura e na extração da água contida na matéria orgânica) . Este agente e nutriente biológico repõe o carbono com o nitrogénio (composição dos aminoácidos) na matéria orgânica, propiciando condições para ajudar no processo de decomposição da matéria orgânica do produto formulado. Assim, repondo o carbono perdido durante o processo de mistura, secagem e moagem, ou num moinho multiprocessador, ativando intensamente a matéria orgânica do formulado (biologicamente) e também enriquecendo as propriedades e as interações da matéria orgânica no solo, é permitida a recuperação de nutrientes indisponíveis no solo para a planta, tornando-os disponíveis.
b. A presença de fosfatos na forma de mineral natural obriga que a matéria orgânica aja intensamente nestes, atacando-os com os ácidos orgânicos formados e os adicionados, formando compostos orgânicos biominerais disponíveis para a planta.
As reações de ataque dos ácidos orgânicos com qualquer mineral é um processo comum existente no solo ou mesmo quando se mistura matéria orgânica com estes, como por exemplo com os fosfatos naturais (fósforo) onde os microrganismos exercem o papel de quebrar este minério, reações que ocorrem de médio a longo prazo (30 a 120 dias) a depender da qualidade da matéria orgânica e da concentração de carbono, e desta forma incrementa-se o
5
processo biológico quando se tem a presença dos aminoácidos, agentes carregados de nitrogénio-
Relação AMF - Carbono: 2,6mL AMF/%C
Relação AMF - Fosfato Natural: 0,65mL AMF/%C
Nas composições com a presença de fosfatos naturais adota-se o somatório do volume usado para o carbono com o volume usado para o fosfato natural, com ordem de importância relativa, uma vez que estes atuam em ambas as situações (finalidades descritas acima) .
Equivalência de consumo: 42% para carbono
58% para fosfatos naturais Deve-se acrescentar que os aminoácidos são grandes enriquecedores da solução do solo, sendo também empregados na nutrição de. plantas e, desta forma, enriquecem o produto fertilizante .
O nitrogénio destes aminoácidos, na forma orgânica, participa das reações de formação de compostos biominerais e compostos bioquímicos nas plantas, os quais são levados pelo xilema (canal de entrada do sistema da planta) , favorecendo os processos de produção de ATP, traduzido pela melhora das reações de síntese da clorofila e, por conseguinte, pelo aumento do teor de glicose (Taiz, L. e Zeiger, E. , "Fisiologia vegetal", São Paulo, Artmed, 2004, pág. 719) .
As formulações irão para o solo com parte de suas reações em andamento e de nutrientes minerais e biológicos disponíveis à planta e, no decorrer das horas e dos dias seguintes, as reações orgânicas prosseguirão: os ácidos orgânicos presentes e os adicionados na formulação continuarão atacando os minerais e disponibilizando gradativamente os percentuais remanescentes de nutrientes à planta. A glicina, componente dos aminoácidos e precursora da síntese de clorofila, é importante quelante de metais, os quais por siia vez são importantes como micronutrientes para as plantas.
Há fortes interações de caráter iônico na solução do solo, a qual é formada e está presente nas zonas próximas da raiz. A referida solução desce pelo canal do floema, chega à raiz e reage com os compostos orgânicos e inorgânicos, formando complexos bioquímicos que enriquecem a mesma. Em seguida, a solução sobe para a planta pelo xilema, levando os nutrientes às folhas para compor a elaboração da fotossíntese e para os frutos.
Estas reações e comportamentos já são vistos na natureza nas florestas e demais biomas com o cair das folhas e restos vegetais no solo, os quais estando em decomposição - (formação dos ácidos orgânicos) vão atacando os minerais existentes no solo, disponibilizando-os às plantas. Assim, o processo de formulação busca agir da mesma forma, porém com maior velocidade e intensidade nas reações, com a adição de agentes biológicos, os quais potencializarão a atividade biológica natural da matéria orgânica, solubilizando os nutrientes dos minerais naturais e mineralizando, isto é, convertendo de orgânicos para minerais, os nutrientes presentes na matéria orgânica.
A formulação (massa) processada é ativada biologicamente incrementando as atividades biológicas da matéria orgânica, enriquecendo esta e toda a massa na etapa pós-processamento no misturador, secador e moinho (s) ou num moinho multiprocessador. Conforme dito anteriormente, esses elementos biológicos atuam formando reações bioquímicas as quais geram moléculas ricas que, na solução do solo, seguem para a planta para auxiliar no metabolismo desta, respondendo em maior desenvolvimento e na melhoria dos frutos, tanto quantitativa como qualitativamente. Os ácidos orgânicos formados no estágio de decomposição em que a matéria orgânica é processada (in natura) também irão para o solo, onde prosseguirá o referido processo de "decomposição" ao encontrar ambiente favorável para tal, como umidade (planta-se no período de chuvas) e temperatura, permitindo velocidades de reação ultra-rápidas (minutos ou horas) em razão das minúsculas partículas em que foram transformados os nutrientes durante os processamentos físicos e físico-químicos, e que também receberam aditivos com o propósito de serem ativados biologicamente após o processamento, onde parte dos microrganismos é perdida, e enriquecer esta massa com elementos orgânicos importantes para o solo e a planta.
Assim, o fertilizante orgânico obtido via processo
NPK+C é fruto do processamento físico e biológico da formulação que visa intensificar as interações químicas e biológicas, promovendo alta velocidade (cinética bioquímica) de formação de compostos bioquímicos, e não perder as altas quantidades de carbono normalmente perdidas nos processos convencionais de decomposição da matéria orgânica (compostagem) , os quais empobrecem a matéria orgânica de 40% a 70% em relação à massa de carbono presente, principal responsável na formação dos ácidos orgânicos e, por conseguinte, das reações biológicas.
Recomenda-se deixar o produto fertilizante orgânico, o qual é um produto mineral-biológico, estocado por 72 horas antes de ser expedido.
A planta para a produção do referido fertilizante orgânico compreende:
- Triturador de facas utilizado para triturar a matéria orgânica(a) ;
- Peneira rotativa para a matéria orgânica(a);
- Moega de pesagem (silo) para a preparação da composição;
- Transportador de correia I utilizado para transferir o material pesado para o misturador ou moinho;
- Moinho de facas;
- Misturador helicoidal;
- Secador com tambor rotativo;
- Moinho de martelos;
- Moinho multiprocessador (b) ;
- Mixer I (ativador biológico) utilizado para fazer a aplicação dos agentes biológicos;
- Elevador de canecas utilizado para transferir o formulado processado aos silos de ensaque ou "Big Bag";
- Silo de recepção de formulado a ensacar;
- Silo de recepção de formulado a condicionar em "Big Bag"; e
- Silo de escoamento do formulado ao "Big Bag".
(a) Equipamentos não empregados quando se usa o moinho multiprocessador.
(b) Os moinhos multiprocessadores substituem o conjunto misturador, secador e moinho de martelos.
Uma melhor compreensão da referida planta de produção de fertilizante orgânico da presente invenção pode ser obtida através da Figura 1.
® Fertilizantes Organominerais Os fertilizantes organominerais da presente invenção são formulados com matéria orgânica de diversas origens e matéria inorgânica, minerais naturais e/ou processados quimicamente .
As composições de fertilizantes organominerais da presente invenção, em termos de macronutrientes primários, devem considerar o percentual de matéria orgânica (carbono) mínimo de 8% e o somatório de nutrientes NPK (macronutrientes) mínimo de 10%. Em relação aos macronutrientes secundários (Ca, Mg e S) , deve-se atingir o somatório mínimo de 5%. No que tange os micronutrientes, é requerido um somatório mínimo de 4%. Demais garantias podem ser declaradas conforme os resultados da composição, onde cada matéria prima tem seu valor de macros e micronutrientes necessários ao desenvolvimento das plantas.
A mistura das matérias primas orgânicas in natura e dos minerais naturais e/ou transformados dá-se em condições onde as interações destas são intensas e promovidas pela redução das partículas de toda massa que compõe a formulação, num mesmo instante. A intensa mistura, secagem e alta redução granulométrica ocorrem nos equipamentos tradicionais destas operações, convencionalmente utilizados nas indústrias de fertilizantes e mineração existentes no mercado, os quais promovem estas funções (misturadores, secadores e moinhos), ou através de um moinho multiprocessador, o qual representa o conjunto de equipamentos descrito anteriormente e é responsável por processar a massa devidamente pesada, tornando-a única, uniforme, com baixa umidade e com granulometria que pode variar de granulado (granulometria de 2 a 4mm) a pó (granulometria de 0,1 a 0,5mm). As matérias primas mais comumente empregadas formulações são:
a) Matérias primas orgânicas:
- Torta de mamona;
- Torta de algodão;
- Torta de girassol;
- Torta de filtro de usina de cana-de-açúcar
- Bagaço de cana;
- Resíduo de algodão;
- Casca de café;
- Esterco de gado;
- Esterco de galinha (poedeira) ;
- Cama de frango;
- Esterco de suínos;
- Rumem de gado;
- Sangue de gado; e
- Cinzas de madeira.
b) Matérias primas minerais:
b.l- Minerais Naturais:
- Fosfatos naturais;
- Fosfatos naturais reativos;
- Feldspato;
- Calcários;
- Gipsita;
- Enxofre;
- Vermiculitas ;
- Pó de mármore;
- Minerais intemperizados ; e
- Basalto.
b.2- Minerais Transformados:
- Uréia; - Sulfato de amónio;
- Nitrato de amónio;
- Superfosfato simples;
- Superfosfato triplo;
- Monoamônio fosfato (MAP) ;
- Diamônio fosfato (DAP) ;
- Cloreto de potássio; e
- Nitrato de potássio.
A elaboração de formulações fertilizantes através do processo NPK+C da presente invenção para a fabricação de fertilizantes organominerais tem premissas técnicas visando atuar de forma a disponibilizar os nutrientes presentes nos minerais naturais, nos minerais processados (produto de reações químicas) e na matéria orgânica (in natura) presentes, permitindo desta forma atender agronomicamente.
As premissas básicas são: as concentrações de matéria orgânica (%M.O) na composição, isto é, de carbono orgânico "compostável" (%C.O), de minerais naturais e/ou transformados; os elementos químicos que estes minerais possuem na sua composição e suas cargas iónicas ( +) e (-) ; e a concentração e relações dos agentes biológicos com o Carbono e com a fração mineral, observando assim as reações químicas e bioquímicas que se formarão na massa formulada.
O balanço estequiométrico das formulações - carbono versus minerais naturais e/ou transformados - é fruto da massa de elementos como o nitrogénio, que é energia ativa de moléculas orgânicas, e dos demais nutrientes (+) e (-) presentes na massa que, ao reunir minerais transformados entendidos como sais solúveis, tem alta atividade e dissociação em curto tempo e com as altas interações físicas, provocando reações instantâneas. Estas composições, de forma prática, ainda sem atingir níveis de processamento com alta redução física, também foram estudadas em trabalhos privados de campo em diversas culturas, como em grãos (soja e milho) e na fruticultura (melão, bananas, etc.) , sem conhecimento sobre o processo utilizado para obter o produto por parte do agricultor, com resultados satisfatórios em produtividade e qualidade (grau brix) . Estas relações estabelecidas estão apresentadas abaixo .
Relações de Nutrientes (Macronutrientes e Micronutrientes ) / Carbono - "Limites Mínimos":
Nitrogénio: 0,9%N/%C
Fósforo: 1,16%P/%C
Potássio: 1,35%K/%C
Micronutrientes: l,0%Mic/%C
Limite mínimo de carbono estabelecido pela matéria orgânica (MO): 2,1 Kg MO / Kg sais solúveis
A formulação (massa) processada é ativada biologicamente incrementando as atividades biológicas da matéria orgânica, enriquecendo esta e toda a massa na etapa após os processamentos físicos e físico-químicos e no ato da granulação. Esses elementos biológicos atuam, conforme mencionado anteriormente, formando reações bioquímicas, retendo nutrientes solúveis presentes na formulação e obtendo moléculas ricas que, na solução do solo, seguem para a planta auxiliando no metabolismo da mesma, respondendo em maior desenvolvimento e na melhoria dos frutos, quantitativa e qualitativamente.
Os agentes biológicos, AHF e AMF, adicionados nas etapas após o processamento dos formulados no conjunto misturador, secador e moinho para alta redução granulométrica (menso de 35 mesh a 200 mesh) , ou no moinho multiprocessador, e durante o processo de granulação, irão agir da seguinte forma:
1. AHF - "Ácidos Húmicos e Fúlvicos" (ABI): A ação destes ácidos orgânicos está em sua composição. A presença do ácido fúlvico tem ação iônica formando complexos orgânicos biominerais, os quais retêm os cátions e ânions das matérias primas minerais presentes na composição fertilizante organomineral da presente invenção. A ação destes complexos biominerais impede que os elementos nutrientes, disponibilizados à solução do solo e, consequentemente, à planta, fiquem soltos no solo, pois na presença de ions fortes podem ser sequestrados e/ou complexados, formando complexos insolúveis e indisponibilizando os nutrientes que seguiriam para a planta. Assim, a presença do ácido fúlvico na relação de quantidades destes ions presentes nas massas de minerais solúveis ou solubilizados permite não perder os mesmos para o solo. Os macro e micronutrientes adicionados com a fertilização do solo ou mesmo os existentes neste, indispensáveis às plantas, tem na sua participação em massa valores que admitidos sobre a média superior (conforme ensaios realizados em áreas experimentais e comerciais) necessitam de massa correspondente de ácidos húmicos para a formação das reações biominerais, levando-se em conta a carga iônica destes elementos.
Relação AHF-Minerais : 0,70mL AHF/Kg Macro e Micronutrientes .
A matéria orgânica no estágio mais avançado de sua decomposição, observado pela relação carbono : nitrogénio menor que 18, forma estes ácidos orgânicos (húmicos, fúlvicos e maléicos) . Desta forma, as matérias orgânicas mais ricas em carbono formarão mais estes ácidos desejáveis, permitindo desta forma a quelação dos ions presentes nos nutrientes necessários a todos os vegetais.
As formulações deverão, dessa forma, levar em conta a concentração de carbono proveniente de uma ou mais matérias orgânicas, de preferência que estas possam advir de fontes animais (resíduos animais) e de fontes vegetais (resíduos de agroindústrias e de culturas) e serem misturadas, como se vê em iehl, E.J., "50 Perguntas e Respostas sobre Composto Orgânico", São Paulo, PMSP/ESALQ, 1979, pág.9, 1. 17, onde se tem resíduos:
Vegetais : Alta Concentração de Carbono - >60% C
Baixa Capacidade de Decomposição - 60 a 120 dias Animais : Baixa Concentração de Carbono - <50% C
i
Alta "Capacidade de Decomposição - 30 a 60 dias A adição de AHF no produto formulado, na presença de média a alta concentração de matéria orgânica (carbono) e de média a baixa concentração de ácidos húmicos formados, pelo médio a baixo estágio de decomposição da matéria orgânica, visa ajudar as reações, catalisando a decomposição e, consequentemente, quelar os sais solúveis presentes na mistura formulada.
A quantidade de AHF adicionado é suficiente para o processo de quelação (formação dos compostos biominerais) na relação estabelecida, ficando os que estão sendo formados pela decomposição da matéria orgânica excedente e enriquecendo o produto final formulado, que ajudará ainda mais as ativida es biológicas do solo.
2. AMF - "Aminoácidos de peixe e de vegetais" (AB2) : Estes tem a finalidade de exercer dupla função na formulação, a saber :
a. Ativar a matéria orgânica que está em médio estágio de decomposição e sofreu a intervenção física de redução de umidade e do número de microrganismos (pela ação da temperatura e na extração da água contida na matéria orgânica) . Este agente e nutriente biológico repõe o carbono com o nitrogénio (composição dos aminoácidos) na matéria orgânica, proporcionando condições para auxiliar no processo de decomposição da matéria orgânica do produto formulado. Assim, repondo o carbono perdido durante o processo de mistura, secagem e moagem, ou num moinho multiprocessador, ativando intensamente a matéria orgânica do formulado (biologicamente) e também enriquecendo as propriedades e ' as interações da matéria orgânica no solo, é permitida a recuperação de nutrientes indisponíveis no solo para a planta, tornando-os disponíveis.
b. A presença de fosfatos na forma de mineral natural obriga que a matéria orgânica aja intensamente nestes, atacando-os com os ácidos orgânicos formados e os adicionados, formando compostos orgânicos biominerais disponíveis para a planta.
As reações de ataque dos ácidos orgânicos com qualquer mineral é um processo comum existente no solo ou mesmo quando se mistura matéria orgânica com estes, como por exemplo com os fosfatos naturais (fósforo) , onde os microorganismos exercem o papel de quebrar este minério, reações que ocorrem de médio a longo prazo (30 a 120 dias) a depender da qualidade da matéria orgânica e da concentração de carbono, e desta forma incrementa-se o processo biológico quando se tem a presença dos aminoácidos, agente carregados de nitrogénio. Relação A F - Carbono: 2,6mL AMF/%C
Relação AMF - Fosfato Natural: 0,65mL AMF/%C
Nas composições com a presença de fosfatos naturais adota-se o somatório do volume usado para o carbono com o volume usado para o fosfato natural, com ordem de importância relativa, uma vez que estes atuam em ambas as situações (finalidades descritas acima) .
Equivalência de consumo: 42% para carbono
58% para fosfatos naturais Deve-se observar mais uma vez que os aminoácidos são grandes enriquecedores da solução do solo, sendo também empregados na nutrição de plantas e, desta forma, enriquecem o produto fertilizante.
Conforme já mencionado anteriormente, o nitrogénio destes aminoácidos, na forma orgânica, participa das reações de formação de compostos biominerais e compostos bioquímicos nas plantas, os quais são levados pelo xilema (canal de entrada do sistema da planta), favorecendo os processos de produção de ATP, traduzido pela melhora das reações de síntese da clorofila e, por conseguinte, pelo aumento do teor de glicose (Taiz, L. e Zeiger, E., Fisiologia vegetal", São Paulo, Artmed, 2004, pág. 719) .
As formulações irão para o solo com parte de suas reações em andamento e de nutrientes disponíveis à planta e, no decorrer dos dias seguintes, as reações orgânicas prosseguirão com os microorganismos ativos e com os ácidos orgânicos presentes, gerados e adicionados (AHF) à formulação, os quais continuarão atacando os minerais, uma vez que encontrem ambiente favorável para tal, como umidade (planta-se no período de chuvas) e temperatura, permitindo velocidades de reação ultra-rápidas (minutos ou horas) em razão das minúsculas partículas em que foram transformados os nutrientes nos processamentos físicos e físico-químicos, disponibilizando desse modo os demais percentuais de nutrientes à planta. Estes ácidos orgânicos húmicos também agem quimicamente, retendo os cátions dos nutrientes existentes nos minerais transformados quimicamente (sais solúveis) , formando compostos bioquímicos e não permitindo que estes fiquem livres e sejam retidos pelos ânions fortes do solo, como o ferro e o alumínio no caso do fósforo, e os volatilizados e lixividos como no caso do nitrogénio e do potássio. Assim, não ocorrem perdas e a eficiência de retenção destes nutrientes solúveis adicionados ao solo, os quais devem chegar à planta, fica acima de 95%.
Há fortes interações de caráter iônico na solução do solo, a qual é formada e está presente nas zonas próximas da raiz. A referida solução desce pelo canal do floema, chega à raiz e reage com os compostos orgânicos e inorgânicos, formando complexos bioquímicos que enriquecem a mesma. Em seguida, a solução sobe para a planta pelo xilema, levando os nutrientes às folhas para compor a elaboração da fotossíntese e para os frutos.
Estas reações e comportamentos já são vistos na natureza nas florestas e demais biomas com o cair das folhas e restos vegetais no solo, os quais estando em decomposição (formação dos ácidos orgânicos) vão atacando os minerais existentes no solo, disponibilizando-os às plantas. Assim, o processo de formulação busca agir da mesma forma, porém com maior velocidade e intensidade nas reações, com a adição de agentes biológicos, os quais potencializarão a atividade biológica natural da matéria orgânica, solubilizando os nutrientes dos minerais naturais e retendo os nutrientes dos minerais processados (químicos
- sais solúveis) e reduzindo os nutrientes a minúsculas partículas, as quais permitem altas interações químicas e biológicas .
Assim, o fertilizante organomineral obtido via processo NP +C é fruto do processamento físico e biológico da formulação que visa intensificar as interações químicas e biológicas, promovendo alta velocidade (cinética bioquímica) de formação de compostos bioquímicos, e não perder as altas quantidades de carbono normalmente perdidas nos processos convencionais de decomposição da matéria orgânica (compostagem) , os quais empobrecem a matéria orgânica de 40% a 70% em relação à massa de carbono presente, principal responsável na formação dos ácidos orgânicos e, por conseguinte, das reações biológicas.
Recomenda-se deixar o produto fertilizante organomineral estocado por 72 horas antes de ser expedido.
A planta para a produção do referido fertilizante organomineral compreende:
- Triturador de facas utilizado para triturar a matéria orgânica (a) ;
- Peneira rotativa para a matéria orgânica ía>;
- Moega de pesagem (silo) para a preparação da composição;
- Transportador de correia I utilizado para transferir o material pesado para o misturador ou moinho;
- Moinho de facas;
- Misturador helicoidal;
- Secador com tambor rotativo;
- Moinho de martelos;
- Moinho multiprocessador (b) ;
- Mixer I (ativador biológico) utilizado para fazer a aplicação dos agentes biológicos;
- Elevador de canecas I utilizado para transferir o formulado processado ao granulado íc) ;
- Granulador utilizado para processar o formulado em pó em grânulos com adição de água e elemento biológico (c) ;
- Secador rotativo utilizado para secar os granulados formados (c) ;
- Peneira vibratória utilizada para classificar os grânulos formados (c) ;
- Moinho utilizado para moer os grânulos grossos, os guais foram reprovados e que retornarão ao processo (c);
- Transportador de correia II utilizado para transferir os grânulos finos e moídos para retorno ao processo (c);
- Elevador de canecas II utilizado para transferir o formulado processado aos silos de ensaque ou "Big Bag";
- Silo de recepção de formulado a ensacar;
- Silo de recepção de formulado a condicionar em "Big Bag"; e
- Silo de escoamento do formulado ao "Big Bag".
(a) Equipamentos não empregados quando se usa o moinho multiprocessador .
(b) Os moinhos multiprocessadores substituem o conjunto misturador, secador e moinho de martelos.
(c) São equipamentos complementares para uma planta de fabricação de fertilizantes organominerais granulados. Os demais equipamentos constituem a planta de fabricação de fertilizantes em pó ou farelados.
Uma melhor compreensão da referida planta de produção de fertilizante organomineral da presente invenção pode ser obtida através das Figuras 2 e 3, as quais ilustram duas modalidades diferentes do referido processo de produção, a saber: fabricação de fertilizantes granulados (Figura 2) e fabricação de fertilizantes em pó ou farelados (Figura 3) .
Os exemplos apresentados a seguir tem a finalidade de apenas ilustrar a invenção e facilitar sua compreensão, não possuindo qualquer caráter limitante da mesma.
Exem los
Foram realizados ensaios para comparar a eficiência de fertilizantes convencionais com os fertilizantes organominerais da presente invenção na cultura de soja.
Para a realização dos referidos ensaios, foram escolhidas áreas onde o solo possuía baixos teores de fósforo e textura média. Foi utilizada uma variedade de soja precoce, 'visando avaliar o plantio de milho safrinha (efeito residual de fontes de P2O5) . Com isso, foram avaliados os efeitos de três tratamentos principais, de acordo com a presente invenção, com diferentes fontes e proporções de P205 e com três doses de P2O5, utilizando a cultura da soja como planta teste, conforme a Tabela 1 em anexo. Além disso, a referida tabela apresenta os efeitos de um tratamento com uma formulação convencional e os efeitos de um tratamento com uma formulação em branco (testemunha absoluta) .
A Tabela 2 mostra as dosagens de KC1 utilizadas nos tratamentos 10, 11 e 12 anteriormente apresentados na Tabela 1, para uma formulação convencional.
As quantidades de P2O5 utilizadas foram baseadas nos teores totais das fontes de P2O5, sendo exemplificadas na Tabela 3 em anexo.
É importante observar que a quantidade mínima de formulação para cada tratamento é de 300 Kg.
0 delineamento experimental utilizado nos presentes ensaios foi o de blocos casualizados, sendo composto por treze tratamentos dispostos em quatro repetições, perfazendo um total de cinquenta e duas parcelas.
Cada parcela era composta por dez linhas espaçadas entre si por 0,5 metro com comprimento de 50 metros, totalizando uma área de 250 metros quadrados para cada parcela. O experimento apresentou uma área total de 19.000 metros quadrados. Foram colhidos 10 metros quadrados, apenas as 4 linhas centrais de 5 metros de cada parcela, considerando 3 linhas de bordadura para cada lateral da parcela .
A instalação do experimento foi realizada com a sua demarcação e posterior coleta de amostras de solo nas profundidades de 0-20 cm e 20-40 cm para a caracterização da área experimental. A condução da área experimental seguiu os mesmos padrões adotados para áreas comerciais.
Os parâmetros avaliados durante a condução do experimento foram:
- Produtividade média de grãos (kg/ha) ;
- Matéria seca (avaliação da parte área de 10 plantas no estágio R2/R5) ;
- Teores foliares de nutrientes (época da diagnose foliar: inicio do florescimento - RI) ;
- Peso médio de 1000 grãos (colheita) ; e
- Análise química do solo (rotina + P resina + P Mehlich) .
Os resultados obtidos utilizando fosfato natural, MAP e uma combinação destes dois produtos são apresentados na tabela 3 em anexo, bem como os resultados obtidos utilizando fertilizantes convencionais.
Analisando os resultados mencionados acima, podemos verificar que a dosagem de 90 Kg/ha (equivalente a 45 Kg/ha de fertilizante organomineral) foi a que melhor se aplicou às condições de fertilidade em que o solo se encontrava, sendo que na referida dosagem o produto com 100% de fosfato natural teve o mesmo desempenho que o produto convencional. Além disso, podemos observar que, nas diferentes dosagens testadas, os fertilizantes organominerais obtiveram resultados similares aos fertilizantes convencionais, porém com 50% a menos de P205 nos tratamentos destes.
As dosagens de P2O5 nos tratamentos dos fertilizantes organominerais estão presentes nas tabelas em anexo, bem. como as dosagens dos fertilizantes convencionais, porém representam 50% de P205 aplicado, uma vez que as composições são:
- fertilizantes organominerais utilizados: NPK 02-10-10;
- fertilizante convencional utilizado: NPK 02-20-20.
Tabela 1
Figure imgf000042_0001
(*) Alta solubilidade em CNA + H20
Baixa solubilidade em CNA + ¾0
Tabela 2
Figure imgf000043_0001
Tabela 3
Figure imgf000043_0002
Tabela 4
Figure imgf000043_0003
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001

Claims

REIVINDICAÇÕES
1. Processo de produção de um fertilizante orgânico caracterizado pelo fato de compreender as etapas de:
(a) Triturar a matéria orgânica através de um triturador de facas;
(b) Peneirar a matéria orgânica através de uma peneira rotativa;
(c) Preparar a composição utilizando uma moega de pesagem;
(d) Transferir o material pesado para um misturador ou moinho através de um transportador de correia;
(e) Moer o material em um moinho de facas;
(f) Misturar o material em um misturador helicoidal;
(g) Secar o material em um secador com tambor rotativo; (h) Moer o material obtido em um moinho de martelos;
(i) Aplicar os agentes biológicos através de um misturador ativador biológico;
(j) Transferir o formulado processado aos silos de ensaque através de um elevador de canecas;
(k) Ensacar o formulado em um silo de recepção;
(1) Condicionar o formulado em sua embalagem em um silo de recepção; e
(m) Escoar o formulado para a embalagem em um silo de escoamento .
2. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de utilizar um moinho multiprocessador para substituir as etapas de (a) até (h) .
3- Processo, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que as matérias primas orgânicas empregadas nas formulações de fertilizantes orgânicos são provenientes de torta de mamona, torta de algodão, torta de girassol, torta de filtro de usina de cana-de-açúcar, bagaço de cana, resíduo de algodão, casca de café, esterco de gado, esterco de galinha (poedeira) , cama de frango, esterco de suínos, rumem de gado, sangue de gado e cinzas de madeira.
4. Processo, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que as matérias primas minerais empregadas nas formulações de fertilizantes orgânicos são fosfatos naturais, fosfatos naturais reativos, feldspato, calcários, gipsita, enxofre, vermiculitas, pó de mármore, minerais intemperizados e basalto.
5. Processo, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que os agentes biológicos empregados na etapa (i) são preferivelmente ácidos húmicos e fúlvicos (AHF) e aminoácidos de peixes e vegetais (AMF) .
6. Processo de produção de um fertilizante organomineral caracterizado pelo fato de compreender as etapas de:
(a) Triturar a matéria orgânica através de um triturador de facas;
(b) Peneirar a matéria orgânica através de uma peneira rotativa ;
(c) Preparar a composição utilizando uma moega de pesagem;
(d) Transferir o material pesado para um misturador ou moinho através de um transportador de correia;
(e) Moer o material em um moinho de facas;
(f) Misturar o material em um misturador helicoidal;
(g) Secar o material em um secador com tambor rotativo;
(h) Moer o material obtido em um moinho de martelos;
(i) Aplicar os agentes biológicos através de um misturador ativador biológico; (j) Transferir o formulado processado para um granulador através de um elevador de canecas;
(k) Processar o formulado em pó em grânulos com adição de água e elementos biológicos em um granulador; (1) Secar os granulados formados na etapa anterior em um secador rotativo;
(m) Classificar os grânulos formados em uma peneira vibratória;
(n) Moer os grânulos grossos, os quais foram reprovados e retornarão ao processo, em um moinho;
(o) Transferir os grânulos finos e moídos para retorno ao processo através de um segundo transportador de correia;
(p) Transferir o formulado processado aos silos de ensaque através de um elevador de canecas;
(q) Ensacar o formulado em um silo de recepção;
(r) Condicionar o formulado em sua embalagem em um silo de recepção; e
(s) Escoar o formulado para a embalagem em um silo de escoamento.
7. Processo, de acordo com a reivindicação 6, caracterizado pelo fato de utilizar um moinho multiprocessador para substituir as etapas de (a) até (h) .
8. Processo, de acordo com a reivindicação 6 ou 7, caracterizado pelo fato de que as matérias primas orgânicas empregadas nas formulações de fertilizantes orgânicos são provenientes de torta de mamona, torta de algodão, torta de girassol, torta de filtro de usina de cana-de-açúcar, bagaço de cana, resíduo de algodão, casca de café, esterco de gado, esterco de galinha (poedeira) , cama de frango, esterco de suínos, rumem de gado, sangue de gado e cinzas de madeira.
9. Processo, de acordo com a reivindicação 6 ou 7, caracterizado pelo fato de que as matérias primas minerais empregadas nas formulações de fertilizantes orgânicos são fosfatos naturais, fosfatos naturais reativos, feldspato, calcários, gipsita, enxofre, vermiculitas, pó de mármore, minerais intemperizados, basalto, uréia, sulfato de amónio, nitrato de amónio, superfosfato simples, superfosfato triplo, monoamônio fosfato (MAP) , diamônio fosfato (DAP) , cloreto de potássio e nitrato de potássio.
10. Processo, de acordo com a reivindicação 6 ou 7, caracterizado pelo fato de que os agentes biológicos empregados na etapa (i) são preferivelmente ácidos húmicos e fúlvicos (AHF) e aminoácidos de peixes e vegetais (AMF) .
PCT/BR2010/000147 2009-05-08 2010-05-07 Processo de produção de fertilizantes orgânicos e organominerais com alta concentração de carbono utilizando processos físicos e agentes biológicos WO2010127424A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2798880 CA2798880A1 (en) 2009-05-08 2010-05-07 Method for producing organic and organo-mineral fertilisers with high carbon concentration using physical and biological process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0901482A BRPI0901482B1 (pt) 2009-05-08 2009-05-08 processo de produção de fertilizantes organominerais com alta concentração de carbono utilizando processos físicos e biológicos
BR0901482-9 2009-05-08

Publications (1)

Publication Number Publication Date
WO2010127424A1 true WO2010127424A1 (pt) 2010-11-11

Family

ID=43049864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000147 WO2010127424A1 (pt) 2009-05-08 2010-05-07 Processo de produção de fertilizantes orgânicos e organominerais com alta concentração de carbono utilizando processos físicos e agentes biológicos

Country Status (3)

Country Link
BR (1) BRPI0901482B1 (pt)
CA (1) CA2798880A1 (pt)
WO (1) WO2010127424A1 (pt)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584481A (zh) * 2012-04-06 2012-07-18 湖南金叶肥料有限责任公司 一种棉花活性专用肥及制备方法
CN102584491A (zh) * 2012-04-05 2012-07-18 杨骁仓 一种用于向日葵种植的生物有机复混肥料及其制备方法
CN103204749A (zh) * 2013-04-15 2013-07-17 潍坊神洲生物肥料有限公司 一种生物肥料成型、干燥系统
CN103265340A (zh) * 2013-06-06 2013-08-28 广西喷施宝股份有限公司 利用甘蔗渣生产的生物有机肥料及其制备方法
CN108329166A (zh) * 2018-02-07 2018-07-27 唐山海奥有机肥有限公司 一种利用袋装堆肥技术制造有机肥的方法
CN110627567A (zh) * 2019-10-18 2019-12-31 华裕农业科技有限公司 有机肥生产线及生产车间
CN113636887A (zh) * 2021-08-09 2021-11-12 西华师范大学 一种提高桑叶氨基酸含量的营养液及方法
CN114474487A (zh) * 2022-02-10 2022-05-13 河北智漫环保科技有限公司 一种残膜处理分选再利用生产线

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2015464B1 (nl) * 2015-09-18 2017-04-19 Golstein Mestsystemen B V Systeem voor het verwerken, in het bijzonder het hygiëniseren en drogen, van dierenmest.
WO2024059123A1 (en) * 2022-09-14 2024-03-21 U.S. Borax, Inc. Fertiliser product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8207171A (pt) * 1982-12-07 1984-07-17 Jose Luiz Vaz Da Silva Processo de obtencao de fertilizante organico-mineral pelo tratamento com acido fosforico
BR8604838A (pt) * 1986-10-06 1988-05-31 Kenkichi Fujimori Aperfeicoamento em processo de fabricacao de fertilizante potassico
BR9404048A (pt) * 1994-09-19 1996-10-01 Arao Horowitz Processo para produção de fertilizante nitrogenado-fosfatado derivado do bissulfato de amónio obtido do aproveitamento do dióxido de carbono da fermentação alcoolica
PL178209B1 (pl) * 1995-06-28 2000-03-31 Piotr Karleszko Sposób wytwarzania nawozu organiczno-mineralnego
US20030205072A1 (en) * 2000-11-09 2003-11-06 Van Der Merwe Pieter Gideo Soil improving and fertilising composition
WO2004043878A1 (en) * 2002-11-14 2004-05-27 Shell Internationale Research Maatschappij B.V. A process for the manufacture of sulphur-containing ammonium phosphate fertilizers
BRPI0505770A (pt) * 2005-12-29 2007-09-25 Petroleo Brasileiro Sa processo para obtenção de fertilizante de liberação lenta de fósforo
CN101298396A (zh) * 2008-02-26 2008-11-05 朱庆然 一种生物有机无机复混肥料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8207171A (pt) * 1982-12-07 1984-07-17 Jose Luiz Vaz Da Silva Processo de obtencao de fertilizante organico-mineral pelo tratamento com acido fosforico
BR8604838A (pt) * 1986-10-06 1988-05-31 Kenkichi Fujimori Aperfeicoamento em processo de fabricacao de fertilizante potassico
BR9404048A (pt) * 1994-09-19 1996-10-01 Arao Horowitz Processo para produção de fertilizante nitrogenado-fosfatado derivado do bissulfato de amónio obtido do aproveitamento do dióxido de carbono da fermentação alcoolica
PL178209B1 (pl) * 1995-06-28 2000-03-31 Piotr Karleszko Sposób wytwarzania nawozu organiczno-mineralnego
US20030205072A1 (en) * 2000-11-09 2003-11-06 Van Der Merwe Pieter Gideo Soil improving and fertilising composition
WO2004043878A1 (en) * 2002-11-14 2004-05-27 Shell Internationale Research Maatschappij B.V. A process for the manufacture of sulphur-containing ammonium phosphate fertilizers
BRPI0505770A (pt) * 2005-12-29 2007-09-25 Petroleo Brasileiro Sa processo para obtenção de fertilizante de liberação lenta de fósforo
CN101298396A (zh) * 2008-02-26 2008-11-05 朱庆然 一种生物有机无机复混肥料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584491A (zh) * 2012-04-05 2012-07-18 杨骁仓 一种用于向日葵种植的生物有机复混肥料及其制备方法
CN102584481A (zh) * 2012-04-06 2012-07-18 湖南金叶肥料有限责任公司 一种棉花活性专用肥及制备方法
CN103204749A (zh) * 2013-04-15 2013-07-17 潍坊神洲生物肥料有限公司 一种生物肥料成型、干燥系统
CN103204749B (zh) * 2013-04-15 2014-07-02 潍坊神洲生物肥料有限公司 一种生物肥料成型、干燥系统
CN103265340A (zh) * 2013-06-06 2013-08-28 广西喷施宝股份有限公司 利用甘蔗渣生产的生物有机肥料及其制备方法
CN103265340B (zh) * 2013-06-06 2015-07-01 广西喷施宝股份有限公司 利用甘蔗渣生产的生物有机肥料及其制备方法
CN108329166A (zh) * 2018-02-07 2018-07-27 唐山海奥有机肥有限公司 一种利用袋装堆肥技术制造有机肥的方法
CN110627567A (zh) * 2019-10-18 2019-12-31 华裕农业科技有限公司 有机肥生产线及生产车间
CN113636887A (zh) * 2021-08-09 2021-11-12 西华师范大学 一种提高桑叶氨基酸含量的营养液及方法
CN114474487A (zh) * 2022-02-10 2022-05-13 河北智漫环保科技有限公司 一种残膜处理分选再利用生产线

Also Published As

Publication number Publication date
BRPI0901482B1 (pt) 2016-09-06
BRPI0901482A2 (pt) 2011-01-18
CA2798880A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
Kumar et al. Chapter-5 the impact of chemical fertilizers on our environment and ecosystem
WO2010127424A1 (pt) Processo de produção de fertilizantes orgânicos e organominerais com alta concentração de carbono utilizando processos físicos e agentes biológicos
CN101633587B (zh) 盐碱地改良增肥剂及其制备方法
Srikanth et al. Direct and residual effect of enriched composts, FYM, vermicompost and fertilizers on properties of an Alfisol
AU2006327874A1 (en) Fertilizer
CA2556714A1 (en) Organo phosphatic fertilizer
CN101337840A (zh) 一种生物复合肥的制造方法
AU2020300257B2 (en) Improved fertiliser
Vakal et al. Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers
CN108383617A (zh) 一种有机磷复合肥的制备方法
CN104003780A (zh) 一种氮硫磷肥及其制备方法
CN106916041A (zh) 一种玉米专用高效长效缓释复合肥及其制备方法
RU2511296C2 (ru) Способ получения композитных органоминеральных удобрений для внесения в почву и готовых почвенных субстратов
Wahid et al. Addition of rock phosphate to different organic fertilizers influences phosphorus uptake and wheat yield
Korzeniowska et al. Improvement of the solubility of rock phosphate by co-composting it with organic components
CN107721730A (zh) 一种酸性肥料的制备方法
Delgado et al. Fertilizers
CN1196345A (zh) 腐殖酸与碳铵有机无机配方肥
Mukherjee et al. Soil conditioner and fertilizer industry
CN105820014A (zh) 一种有机无机水溶性复混肥料及其制备方法
Iqbal et al. IMPACT OF ROCK PHOSPHATE ENRICHED COMPOST AND PHOSPHORUS SOLUBILIZING BACTERIA ON MAIZE GROWTH AND NUTRIENT UPTAKE.
US8968440B1 (en) Fertilizer production
AU2021408092B2 (en) Further improved fertilizer
CN116267159B (zh) 应用工、农业废弃物促进砂质土壤树木生长的方法
Mdlambuzi et al. Maize (Zea Mays L) Production in a Semiarid Area of South Africa from Co-Application of Biogas Slurry with Chemical Fertilizer and Effects on Soil Quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10771919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2798880

Country of ref document: CA