WO2010126258A2 - 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망 - Google Patents

무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망 Download PDF

Info

Publication number
WO2010126258A2
WO2010126258A2 PCT/KR2010/002585 KR2010002585W WO2010126258A2 WO 2010126258 A2 WO2010126258 A2 WO 2010126258A2 KR 2010002585 W KR2010002585 W KR 2010002585W WO 2010126258 A2 WO2010126258 A2 WO 2010126258A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
upls
light
wavelength
polarization
Prior art date
Application number
PCT/KR2010/002585
Other languages
English (en)
French (fr)
Other versions
WO2010126258A3 (ko
Inventor
이창희
문실구
이훈근
김준영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to EP10769903.5A priority Critical patent/EP2429100A4/en
Priority to US13/318,318 priority patent/US20120106965A1/en
Priority to CN2010800227829A priority patent/CN102449937A/zh
Publication of WO2010126258A2 publication Critical patent/WO2010126258A2/ko
Publication of WO2010126258A3 publication Critical patent/WO2010126258A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention provides a wavelength division multiplex optical communication light source capable of high-speed transmission of an optical signal using an unpolarized light source (UPLS) and a wavelength division multiplexing passive optical network having the same.
  • WDM-PON Wavelength Division Multiplexed-Passive Optical Network (WDM-PON).
  • the present invention is a non-coherent injecting by replacing the existing polarized light source (PLS) for outputting light of one direction polarization with a non-polarization light source (UPLS) for outputting light of unpolarized light
  • PLS polarized light source
  • UPLS non-polarization light source
  • the optical signal can be transmitted at a high speed of 1.25 Gb / s or more while dramatically reducing the light intensity, and the noise intensity can be lowered even at a given incoherent light intensity, thereby providing a large capacity and high speed of the optical subscriber network at low cost.
  • the present invention relates to a wavelength division multiplex optical communication light source capable of high-speed transmission of an optical signal using an unpolarized light source (UPLS), and a wavelength division multiplex passive optical subscriber network having the same.
  • Subscribers receive 100 Mb / s or more to accommodate next-generation services such as high-definition television (HDTV / IP-TV), Video On Demand (VOD), and Education On Demand (EOD) that require high bandwidth.
  • WDM-PON which can provide high quality of service (QoS) while providing bandwidth, is recognized as the ultimate alternative.
  • QoS quality of service
  • the bandwidth of optical subscriber networks required in the future is expected to increase gradually.
  • an arrayed waveguide grating is widely used as a WDM-PON as a wavelength division multiple filter.
  • WDM-PON an arrayed waveguide grating
  • the wavelength of the light source assigned to each subscriber and the temperature of the AWG itself change. Therefore, in order to facilitate wavelength control and management according to temperature change as a light source that can be used regardless of the wavelength allocated to each subscriber, wavelength-independent operation, that is, color-independent operation (ie, color-independent operation) There is a need for a low cost light source with free operation.
  • Hyun-Deok Kim, et As an example of a light source with such wavelength independence, Hyun-Deok Kim, et.
  • Wavelength-locked Fabry-Perot laser diodes of Kim Hyun-Duk et al. Generate multiple modes of incoherent light output from Broadband Light Source (BLS). It is a method of injecting into FP LD and fixing the oscillation wavelength of FP LD to the wavelength of the injected non-coherent light. At this time, as a transmission light source used in subscribers and telephone stations, an F-P LD having a characteristic of outputting polarized light in one direction was used.
  • the light source used in the optical communication must have a low relative intensity noise (RIN) for excellent transmission quality.
  • RIN relative intensity noise
  • F-P LD oscillating in multiple modes is not suitable for use as a light source for WDM systems or a light source for WDM-PON because of the high relative intensity noise (RIN) making it difficult to transmit good quality optical signals.
  • the F-P LD that oscillates in the multi-mode due to high mode division noise is impossible to use as a communication light source.
  • a wavelength-locked F-P LD that significantly reduces mode division noise by injecting incoherent light from the outside and oscillating the F-P LD in a pseudo single mode and a method of constructing a WDM-PON using the same have been proposed.
  • the WDM-PON using a wavelength-locked F-P LD has the following problems when trying to accommodate a large number of channels in one PON by increasing data transmission speed or narrowing a wavelength interval.
  • an externally injected BLS based on Amplified Spontaneous Emission determines the bandwidth of incoherent light injected by the bandwidth of the AWG used. Therefore, the non-coherent light output from the ASE-based BLS has a high noise since the non-coherent light is filtered beforehand.
  • the higher the transmission rate of data provided per subscriber the better the light source used should have better noise characteristics.
  • the narrower the AWG bandwidth or the narrower the channel spacing the worse the RIN of the injected non-coherent light.
  • the F-P LD should be operated in a high gain saturation region to reduce the noise of incoherent light injected.
  • the intensity of the injected non-coherent light must be increased, and thus the intensity of the output of the BLS must be increased.
  • the BLS doubles the price of the BLS when the power of the output is doubled.
  • high output BLS is expensive and increases the overall cost of the system. This acts as a barrier to the large capacity and high speed of WDM-PON.
  • this problem is common in both the case of using a wavelength-locked F-P LD as a light source for a WDM-PON and a case of using a reflective semiconductor optical amplifier (RSOA) of a wavelength injection method.
  • RSOA reflective semiconductor optical amplifier
  • the present invention has been made to solve the above problems, while significantly reducing the intensity of the non-coherent light injected into the wavelength-locked Fabry-Perot laser diode using the unpolarized light source (UPLS) that outputs polarized light in all directions, while reducing the intensity of 1.25 Gb. It is to realize a low-cost wavelength division multiplex optical communication light source and a WDM-PON including the same that enable high-speed transmission of more than / s and further lower the noise intensity of the light source at a given incoherent light intensity. .
  • UPLS unpolarized light source
  • a light source for wavelength division multiplex optical communication includes: a broadband incoherent light source (BLS); A waveguide array grating (AWG) for spectral partitioning the incoherent light output from the broadband incoherent light source (BLS); A circulator connected between the BLS and the AWG; And a plurality of unpolarized light sources (UPLS), each of which is connected to the AWG and is infused with the incoherent light spectrally divided by the AWG and wavelength locked.
  • BLS broadband incoherent light source
  • AWG waveguide array grating
  • UPLS unpolarized light sources
  • a wavelength division multiplexing passive optical subscriber network comprises: a telephone station (OLT) having n first optical transceivers (TRx); Remote Node (RN); a plurality of subscribers ONT (ONT1, ..., ONTn) having n second optical transceivers TRx; A single mode optical fiber (SMF) connecting the OLT and the RN; And a plurality of distribution optical fibers (DF1, ..., DFn) connecting the RN and the plurality of ONTs (ONT1, ..., ONTn), wherein the first optical transceiver (TRx) is a downlink data optical beam, respectively.
  • the second optical receiver Rx includes a second PD for converting the transmitted downlink optical signal into an electrical signal.
  • a wavelength division multiplexing passive optical subscriber network includes: a telephone station (OLT); Remote Node (RN); A plurality of subscribers (ONTs) (ONT1, ..., ONTn); A single mode optical fiber (SMF) connecting the OLT and the RN; And a plurality of distribution optical fibers (DF1, ..., DFn) connecting the RN and the plurality of ONTs (ONT1, ..., ONTn), wherein the OLT oscillates in the A band and thus has a first non-coherence.
  • An A-band wideband non-coherent light source for outputting light; A B-band BLS oscillating in the B band to output a second incoherent light; A first circulator 1 connected to the A-band BLS; A second circulator 2 connected to the B-band BLS; A first waveguide array grating (AWG1) having n output ports to filter the first non-coherent light into n groups; A first WDM filter (WDM1) connected to the first circulator, the second circulator and the first AWG, respectively; A second WDM filter (WDM2) connected to the first circulator, the second circulator and the SMF, respectively; And n first optical transceivers (TRx), each connected to the first AWG, wherein the RN is arranged in a second waveguide having n output ports to filter the second non-coherent light into n groups.
  • a plurality of ONTs each including n second optical transceivers TRx connected to the second AWG, respectively, and the first optical transceivers TRx
  • a plurality of ONTs each including n second optical transceivers TRx connected to the second AWG, respectively, and the first optical transceivers TRx
  • WDM3 WDM filter
  • a first optical transmitter (Tx) connected to the third WDM filter and transmitting a downlink data optical signal
  • a first optical receiver Rx connected to the third WDM filter and receiving the uplink data optical signal, wherein the second optical transceiver TRx is separated through the second AWG, respectively.
  • a fourth WDM filter WDM4 to which a call is input A second optical transmitter (Tx) connected to the fourth WDM filter and transmitting the uplink data optical signal; And a second optical receiver (Rx) connected to the fourth WDM filter and receiving the downlink data optical signal, wherein the first optical transmitter (Tx) is wavelength-locked to the first non-coherent light.
  • Unpolarized light source UPLS
  • UPLS Unpolarized light source
  • the second optical transmitter Tx includes: a second UPLS wavelength-immersed in the second non-coherent light
  • a second driver circuit for modulating the second UPLS
  • the first optical receiver Rx converts the first photodiode PD for converting the transmitted uplink optical signal into an electrical signal.
  • the second optical receiver Rx includes a second PD for converting the transmitted downlink optical signal into an electrical signal.
  • a wavelength division multiplexing passive optical subscriber network comprises: a telephone station (OLT); Remote Node (RN); A plurality of subscribers (ONTs) (ONT1, ..., ONTn); A single mode optical fiber (SMF) connecting the OLT and the RN; And a plurality of distribution optical fibers (DF1, ..., DFn) connecting the RN and the plurality of ONTs (ONT1, ..., ONTn), wherein the OLT has a first AWG having n output ports.
  • AWG1 AWG1; And n first optical transceivers (TRx), each connected to the first AWG, wherein the RN includes a second AWG having n output ports (AWG2), wherein the plurality of ONTs (ONT1,. .., ONTn) includes n second optical transceivers TRx, each connected to the second AWG, and each of the first optical transceivers TRx includes an uplink data optical signal separated through the first AWG.
  • AWG2 AWG having n output ports
  • first driver circuit for modulating the wideband or multiwavelength first UPLS, wherein the second optical transmitter (Tx) comprises a wideband or multiwavelength second UPLS; And a second driver circuit for modulating the wideband or multi-wavelength second UPLS, wherein the first optical receiver Rx converts the transmitted uplink optical signal into an electrical signal.
  • a wavelength division multiplexing passive optical network (WDM-PON) for transmitting broadcast signals and communication signals comprises: a telephone station (OLT); Remote Node (RN); A plurality of subscribers (ONTs) (ONT1, ..., ONTn); A single mode optical fiber (SMF) connecting the OLT and the RN; And a plurality of distribution optical fibers (DF1, ..., DFn) connecting the RN and the plurality of ONTs (ONT1, ..., ONTn), wherein the OLT has a first AWG having n output ports.
  • AWG1 A wideband or multi-wavelength unpolarized light source (UPLS) for outputting an optical signal modulated with a broadcast signal;
  • WDM WDM filter
  • ONT (ONT1, ..., ONTn) includes n second optical transceivers TRx connected to the second AWG, respectively, and the second optical transceivers TRx are separated through the second AWG, respectively.
  • a third optical receiver Rx3 connected to the second WDM filter and receiving an optical signal modulated by the broadcast signal output from the broadband or multi-wavelength UPLS.
  • wavelength division multiplex optical communication light source using the unpolarized light source (UPLS) according to the present invention, and the wavelength division multiplex passive optical network (WDM-PON) having the same, the following effects are achieved.
  • UPLS unpolarized light source
  • WDM-PON wavelength division multiplex passive optical network
  • the intensity of BLS output light which is required in conventional polarized light source (PLS) can be reduced to about 1/10, so that the overall cost of the system can be significantly reduced. Can be implemented.
  • the light source UPLS having a non-polarization characteristic may further increase the transmission speed because the relative intensity noise RIN of the output light is lower than that of the light source PLS of the polarization characteristic even when injecting incoherent light of the same intensity.
  • the polarized Fabry-Perot laser diodes perform due to a decrease in output intensity and an increase in noise. This deterioration is caused when the use of a non-polarization-pebble-Perot laser diode does not occur by degrading the performance of the non-polarization-febrid-ferret laser diode by using a characteristic in which each polarization oscillates at a different wavelength.
  • the field of application is limited because the transmission speed is limited by the increase of noise at the time of spectral division, whereas the light source of the non-polarization characteristic (UPLS) according to the present invention has more than twice the transmission speed. It is possible to increase the transmission characteristics.
  • UPLS non-polarization characteristic
  • 1 is a light source for a wavelength division multiplexing optical communication network using a polarization-free light source that is immersed in the injected non-intrusive light according to the present invention.
  • FIG. 2 is a view illustrating an output light that varies according to the intensity of non-coherent light injected to compare performance of a polarized light source wavelength-immersed in injected non-coherent light and a non-polarized light source immersed in non-coherent light according to the present invention. It shows noise.
  • Figure 3 is a non-polarization characteristics of the oscillation wavelength is different according to the polarization in order to compare the performance of the general polarized light source wavelength-immersed in the injected non-interfering light and the non-polarization light source wavelength-immersed in the injected non-interfering light according to the present invention Shows the output spectrum of a Fabry-Perot laser diode.
  • FIG. 4 is a diagram illustrating a first embodiment of a wavelength division multiplexing optical subscriber network having a polarized light source that is immersed in injected non-coherent light according to an embodiment of the present invention shown in FIG. 1.
  • FIG. 5 is a diagram illustrating a wavelength division multiplexing optical subscriber network using a spectral partitioned unpolarized light source according to a second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a wavelength division multiplexing optical subscriber network for transmitting a broadcast signal and a communication signal using a polarized light source according to a third embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a non-coherent light output from a broadband incoherent light source (BLS) according to an embodiment of the present invention, and a non-polarized light source whose wavelength is immersed in the injected non-coherent light. As shown in FIG.
  • BSS broadband incoherent light source
  • a light source for wavelength division multiplexing optical communication includes a broadband incoherent light source (BLS); A waveguide array lattice (AWG) for spectral partitioning the incoherent light output from the broadband incoherent light source (BLS); A circulator connected between the BLS and the AWG; And a plurality of Un-Polarized Light Sources or polarization independent light sources (hereinafter referred to as "UPLSs"), each of which is connected to the AWG and is infused with the incoherent light spectrally divided by the AWG. It consists of Here the circulator may alternatively be implemented as an optocoupler.
  • the operation principle of the wavelength division multiplex optical communication light source according to an embodiment of the present invention will be described in detail.
  • the non-coherent light output from the BLS is input to the AWG via a circulator. Thereafter, the non-coherent light is split by spectrum according to the plurality of output terminals of the AWG. In this case, the non-coherent light is spectral split in the AWG, and the noise increases rapidly. Thereafter, the spectral divided non-coherent light is injected into a plurality of UPLS connected to the output terminal of the AWG. Each of the plurality of UPLSs is immersed in the injected non-coherent light, and outputs the same wavelength as the injected non-coherent light.
  • the plurality of UPLS outputs optical signals corresponding to the center wavelengths of the pass bands of the plurality of output terminals of the AWG, respectively.
  • the optical signals output from the plurality of UPLS are multiplexed again through the AWG, and then output through the circulator.
  • UPLS used in an embodiment of the present invention shown in FIG. 1 may be a non-polarization Fabry-Perot laser diode (FP LD) and a non-polarization reflective semiconductor optical amplifier (RSOA). have.
  • FP LD non-polarization Fabry-Perot laser diode
  • RSOA non-polarization reflective semiconductor optical amplifier
  • an antireflection coating may be applied to the front mirror to increase the injection efficiency, or a high reflection coating to the rear mirror may increase the output power.
  • the non-polarized F-P LD when the bias current is greater than the oscillation threshold current, when the bias current increases, the difference in output power according to the polarization of the unpolarized F-P LD may increase.
  • the narrower the passband of the AWG or the narrower the channel spacing the worse the relative intensity noise (RIN) of the incoherent light injected.
  • the polarization light source (PLS) is operated in a high gain saturation region for high speed transmission of an optical signal.
  • the noise of the injected incoherent light should be reduced and transmitted. That is, the intensity of the injected non-coherent light must be increased, and accordingly, the output intensity of the BLS must be high.
  • FIG. 2 is a non-coherent light injected to compare the performance of the polarized light source (PLS) wavelength-immersed in the injected non-coherent light and the unpolarized light source (UPLS) wavelength-immersed in the injected non-coherent light according to the present invention It shows the noise of the output light that changes according to the light intensity. That is, FIG. 2 illustrates a light source (PLS) having a polarization characteristic immersed in the injected non-intrusive light according to the injection power of the injected non-coherent light and a non-polarization characteristic immersed in the injected non-intrusive light. The measured value of RIN of the optical signal output from the light source UPLS is shown.
  • PLS polarized light source
  • UPLS unpolarized light source
  • the polarized light source PLS and the non-polarized light source UPLS operate in a higher gain saturation region. This further reduces the noise of the incoherent light injected. Accordingly, as the intensity of the incoherent light injected as shown in FIG. 2 increases, the noise RIN of the light output from the wavelength-locked light source is lowered. As shown in FIG. 2
  • the light source PLS of the polarization characteristic should be injected with incoherent light of approximately -9 dBm,
  • the intensity of the light output from the BLS must also be increased. For example, assuming a WDM-PON system with 32 channels (or subscribers) and a transmission length of 20 km, the loss of fiber optics and optics is about 11 dB, the filtering loss at AWG is 3 dB, and 32 subscribers. Because the loss is 16 dB, a BLS with an output strength of 21 dBm, which is 30 dB higher than -9 dBm, is required.
  • the high output BLS increases Rayleigh backscattering and nonlinear effects, thus limiting the performance of the system.
  • high-power BLS is an expensive optical device, it increases the overall cost of the system and becomes an obstacle to the implementation of economical optical subscriber network.
  • the intensity of incoherent light must be injected under the same conditions (when RIN is approximately -112 dB / Hz) and the intensity is approximately -19 dBm. . Therefore, in an embodiment of the present invention, even if low intensity non-coherent light is injected, low RIN can be obtained. That is, when the required value of RIN is approximately -112 dB / Hz, the non-polarized light source UPLS requires injection of incoherent light of approximately -19 dBm.
  • the non-polarization light source UPLS under the same conditions as the above-mentioned light source PLS having the polarization characteristic (i.e., in the WDM-PON having 32 channels or 32 subscribers and having a transmission length of 20 km), -19 A BLS with an output strength of 11 dBm 30 dB higher than dBm is required. That is, compared with the case of using the polarized light source PLS, the use of the light source UPLS having a non-polarization characteristic differs in the required output power of the BLS by 10 dB.
  • the output strength of the BLS can be reduced to 1/10, thereby reducing the overall cost of the system, thereby implementing an economical optical subscriber network.
  • the light source UPLS having the non-polarization characteristic may further increase the transmission speed since the output noise RIN is lower than that of the light source PLS having the polarization characteristic when injecting incoherent light of the same intensity.
  • a 3 dB lower RIN can double the transmission rate. As shown in FIG.
  • the light source UPLS having the non-polarization characteristic has a maximum difference value of approximately 4 dB from the light source PLS having the polarization characteristic (the intensity of the injected non-coherent light is approximately -12 dBm). Occation). Therefore, in the present invention, since the transmission speed can be increased by more than twice as compared with the prior art, it is possible to implement a high speed optical subscriber network.
  • the light source UPLS having the wavelength-immersed in the non-coherent light injected has another advantage compared to the light source PLS having the wavelength-immersed in the non-coherent light injected.
  • the Fabry-Perot laser diode (F-P LD) is a light source that oscillates in a multi-mode.
  • the F-P LD may be used as a wavelength-locked light source by injecting incoherent light.
  • the F-P LD is a wavelength-locked polarization characteristic F-P LD, the performance is excellent when the mode wavelength of the F-P LD is similar to the wavelength of the injected non-coherent light.
  • the intensity of the output is also reduced, and the noise is increased, so that the FP LD of the wavelength-locked polarization characteristic is degraded.
  • the performance degradation of the F-P LD of such polarization characteristics does not occur.
  • FIG. 3 shows an oscillation wavelength according to polarization in order to compare the performance of a general polarized light source immersed in injected non-coherent light and a non-polarized light source immersed in injected non-coherent light according to the present invention.
  • the figure shows the output spectrum of this Fabry-Perot laser diode of another non-polarization characteristic.
  • the F-P LD of the general polarization characteristic when the wavelength of the injected non-coherent light is, for example, between the mode wavelengths of the first polarization of the F-P LD shown in FIG. 3, the F-P LD of the general polarization characteristic is degraded in performance. However, as shown in FIG. 3, the F-P LD of the non-polarization characteristic outputs not only the light of the first polarization but also the light of the second polarization perpendicular to the light of the first polarization.
  • the performance of the FP LD of the non-polarization characteristic is reduced because the wavelength of the light of the second polarized light is the same. Is prevented.
  • the wavelengths of the multiple modes of the first polarized light and the second polarized light are different from each other. It can have a value.
  • an anti-reflective coating may be applied to the front mirror to increase the injection efficiency of the non-polarized F-P LD, or a high-reflective coating may be applied to the rear mirror to increase the output power of the non-polarized F-P LD.
  • a high-reflective coating may be applied to the rear mirror to increase the output power of the non-polarized F-P LD.
  • an increase in the bias current may increase the difference in output power due to polarization.
  • FIG. 4 is a diagram illustrating a first embodiment of the WDM-PON having a polarized light source that is wavelength-immersed in injected non-coherent light according to the embodiment of the present invention shown in FIG. 1.
  • a WDM-PON is a telephone station (OLT: Optical Line Termination), a remote node (RN), a plurality of subscribers (ONT: Optical Network Termination) (ONT1). .., ONTn), a single mode optical fiber (SMF) connecting the OLT and the RN, and a plurality of distribution optical fibers (DF1, ..) connecting the RN and the plurality of ONTs (ONT1, ..., ONTn). ., DFn).
  • OLT Optical Line Termination
  • RN remote node
  • ONTn Optical Network Termination
  • SMF single mode optical fiber
  • DF1 distribution optical fibers
  • the OLT is an A-band wideband non-coherent light source (A-band BLS: hereinafter referred to as "A-band BLS") that oscillates in the A band and outputs the first non-coherent light;
  • a B-band BLS that oscillates in the B band and outputs a second incoherent light;
  • a first circulator 1 connected to the A-band BLS;
  • a second circulator 2 connected to the B-band BLS;
  • a first waveguide array grating (AWG1) having n output ports to filter the first non-coherent light into n groups;
  • a first WDM filter (WDM1) connected to the first circulator, the second circulator and the first AWG, respectively;
  • a second WDM filter (WDM2) connected to the first circulator, the second circulator and the SMF, respectively;
  • And n first optical transceivers TRx connected to the first AWGs, respectively.
  • the RN also includes a second waveguide array grating AWG2 having n output ports to filter the second non-coherent light into n groups.
  • the plurality of ONTs (ONT1, ..., ONTn) includes n second optical transceivers TRx, each connected to the second AWG.
  • the first optical transceiver TRx includes a third WDM filter to which an uplink data optical signal separated through the first AWG is input. WDM3); A first optical transmitter (Tx) connected to the third WDM filter and transmitting a downlink data optical signal; And a first optical receiver Rx connected to the third WDM filter and receiving the uplink data optical signal.
  • the second optical transceiver (TRx) comprises a fourth WDM filter (WDM4) to which the downlink data optical signal, respectively, separated through the second AWG is input; A second optical transmitter (Tx) connected to the fourth WDM filter and transmitting the uplink data optical signal; And a second optical receiver Rx connected to the fourth WDM filter and receiving the downlink data optical signal.
  • the first optical transmitter (Tx) may include a first unpolarized light source (UPLS) wavelength-immersed in the first incoherent light; And a first driver circuit for modulating the first UPLS, wherein the second optical transmitter Tx includes: a second UPLS wavelength-immersed in the second non-coherent light; And a second driver circuit for modulating the second UPLS.
  • the first optical receiver Rx includes a first photo diode (PD) for converting the transmitted uplink optical signal into an electrical signal, and the second optical receiver Rx includes the transmitted And a second PD for converting the down data optical signal into an electrical signal.
  • PD
  • the A-band BLS and the B-band BLS oscillating in the A and B bands of the OLT, respectively, are used as an injection light source of wavelength-locked UPLS for transmission of downlink and uplink signals.
  • the uplink ONT light source using the UPLS will be described below, but those skilled in the art will fully understand that the description may be equally applied to the OLT light source for the downlink signal.
  • the second incoherent light output from the B-band BLS of the OLT is filtered and separated through the second AWG of the RN after passing through the second circulator, the second WDM filter (WDM2), and the SMF.
  • the signals separated by the second AWG are input to the plurality of ONTs (ONT1, ..., ONTn) through the plurality of distribution optical fibers (DF1, ..., DFn).
  • Each input signal passes through a fourth WDM filter in each ONT, and is injected into the UPLS of the second optical transmitter Tx to perform wavelength locking.
  • the uplink data optical signal output from UPLS which is immersed in the injected second non-coherent light, is passed through a fourth WDM filter, a plurality of distributed optical fibers (DF1, ..., DFn), a second AWG of RN, and an SMF. Passes through the second WDM, the second circulator, and the first WDM on the OLT side. Then, the uplink data optical signal passing through the first WDM passes through the first AWG, demultiplexed into n groups, and then passes through a third WDM filter of the OLT. Thereafter, the uplink data optical signal is transmitted to the first optical receiver Rx, which is a receiving end.
  • the first optical transmitter Tx of the OLT and the first optical transmitter Tx of the plurality of ONTs are respectively used.
  • a non-polarization Fabry Perot laser diode (FP LD) or a non-polarization reflective semiconductor optical amplifier (RSOA) may be used.
  • the second non-coherent light output from the B-band BLS has a non-polarization characteristic, and noise is sharply increased when the second AWG of the RN is filtered and separated.
  • the light sources used in the first or second transmitters Tx of ONT or OLT output only the first polarized light oscillating in only one direction, spectral-divided non-intrusive light of polarized light is not used for ONT or OLT.
  • spectral segmented unpolarized incoherent light with an RIN value of -109 dB / Hz has an approximate -106 dB / Hz with an RIN value of approximately 3 dB higher when only the first polarized light in one direction is passed.
  • the light sources used in the first or second transmitter (Tx) of the ONT or OLT must be operated in the high saturation gain region.
  • both spectral partitioned ASEs having no polarization characteristics can be utilized, and even when injecting low intensity incoherent light, 1.25 Gb / s Because of the transmission, WDN-PON can be implemented at low cost.
  • FIG. 5 is a diagram illustrating a wavelength division multiplexing passive optical subscriber network using a spectral divided unpolarized light source (UPLS) according to a second embodiment of the present invention.
  • UPLS spectral divided unpolarized light source
  • the WDM-PON is OLT, RN, a plurality of ONT (ONT1, ..., ONTn), the SMF connecting the OLT and the RN, and the RN and It includes a plurality of distribution optical fibers (DF1, ..., DFn) for connecting the plurality of ONT (ONT1, ..., ONTn).
  • the OLT may include a first AWG having n output ports (AWG1); And n first optical transceivers TRx connected to the first AWGs, respectively.
  • the RN also includes a second AWG (AWG2) with n output ports.
  • each of the plurality of ONTs (ONT1, ..., ONTn) includes n second optical transceivers TRx respectively connected to the second AWG.
  • the first optical transceiver TRx includes a first WDM filter through which uplink optical signals separated through the first AWG are input.
  • WDM1 WDM1
  • a first optical transmitter (Tx) connected to the first WDM filter and transmitting a downlink data optical signal
  • a first optical receiver Rx connected to the first WDM filter and receiving the uplink data optical signal, wherein the second optical transceiver TRx is separated through the second AWG, respectively.
  • a second WDM filter WDM2 to which a call is input;
  • a second optical transmitter (Tx) connected to the second WDM filter and transmitting the uplink data optical signal;
  • a second optical receiver Rx connected to the second WDM filter and receiving the downlink data optical signal.
  • the first optical transmitter Tx includes a first unpolarized light source UPLS having a broadband or multi wavelength; And a first driver circuit for modulating the wideband or multiwavelength first UPLS, wherein the second optical transmitter (Tx) comprises a wideband or multiwavelength second UPLS; And a second driver circuit for modulating the wideband or multi-wavelength second UPLS.
  • the first optical receiver Rx includes a first photodiode PD for converting the transmitted upward data optical signal into an electrical signal
  • the second optical receiver Rx includes the transmitted downward data optical And a second PD for converting the signal into an electrical signal.
  • LD, or RSOA with no polarization property may be used.
  • the output light of the broadband or multi-wavelength second UPLS located in the plurality of ONTs is directly modulated and upward. Is sent.
  • the wideband uplink data optical signals or the multiwavelength uplink data optical signals outputted from the wideband or multi-wavelength second UPLS pass through the second WDM filter and the plurality of distribution optical fibers DF1,. Spectral-divided by the second AWG, only wavelength components matching the transmission wavelength of the second AWG are selected and transmitted.
  • uplink data optical signals of different transmission wavelengths selected by the n ports of the second AWG are multiplexed by the second AWG and transmitted over the SMF to the OLT.
  • the multiplexed uplink optical signals are demultiplexed in the first AWG located in the OLT and received through the first WDM filter to the first optical receiver Rx, respectively.
  • noise is sharply increased while the output light of the wideband or multi-wavelength first and second UPLS is spectrally divided in the first AWG and the second AWG, respectively.
  • FIG. 6 is a diagram illustrating a wavelength division multiplexing passive optical subscriber network for transmitting a broadcast signal and a communication signal using a non-polarization light source according to a third embodiment of the present invention.
  • the WDM-PON includes an OLT, an RN, a plurality of ONTs (ONT1, ..., ONTn), an SMF connecting the OLT and the RN, and the RN; It includes a plurality of distribution optical fibers (DF1, ..., DFn) for connecting the plurality of ONT (ONT1, ..., ONTn).
  • the OLT includes a first AWG having n output ports (AWG1); N first optical transceivers (TRx) respectively connected to the first AWGs; A wideband or multi-wavelength unpolarized light source (UPLS) for outputting an optical signal modulated with a broadcast signal; And a WDM filter (WDM) for combining the optical signal modulated with the broadcast signal with the downlink data optical signal multiplexed in the first AWG, wherein the first optical transceiver (TRx) is separated through the first AWG.
  • AWG1 output ports
  • TRx first optical transceivers
  • UPLS wideband or multi-wavelength unpolarized light source
  • WDM WDM filter
  • the RN also includes a second AWG (AWG2) with n output ports.
  • the plurality of ONTs (ONT1, ..., ONTn) includes n second optical transceivers TRx respectively connected to the second AWG.
  • the second WDM filter in which the second optical transmitter TRx receives the downlink data optical signals separated through the second AWG, respectively, is input.
  • WDM2 WDM2
  • a second optical transmitter (Tx) connected to the second WDM filter and transmitting the uplink data optical signal
  • a second optical receiver (Rx2) connected to the second WDM filter and receiving the downlink data optical signal
  • a third optical receiver Rx3 connected to the second WDM filter and receiving an optical signal modulated by the broadcast signal output from the broadband or multi-wavelength UPLS.
  • F-P LD having no polarization characteristic or RSOA having no polarization characteristic may be used as a broadband or multi-wavelength UPLS for broadcast signal transmission.
  • the downlink data optical signal transmitted from the first optical transmitter Tx located in the OLT is multiplexed in the first AWG and then combined with the broadcast signal in the WDM filter (WDM).
  • WDM WDM filter
  • the broadband or multi-wavelength UPLS used for transmitting the broadcast signal oscillates in a wavelength band different from that of the light source used for transmitting the uplink data signal and the downlink data signal.
  • the multiplexed downlink data optical signal and broadcast signal are demultiplexed in the second AWG of the RN past the SMF.
  • the demultiplexed downlink data optical signal and the broadcast signal pass through the plurality of distributed optical fibers DF1,..., DFn, and then are downlinked by the second WDM filter WDM2 of the plurality of ONTs. It is divided into data optical signal and broadcast signal.
  • the separated downlink optical signal is transmitted to the second optical receiver Rx2, and the separated broadcast signal is transmitted to the third optical receiver Rx3.
  • the uplink data optical signal output from the second optical transmitter Tx located in the plurality of ONTs is multiplexed while passing through the second AWG.
  • the multiplexed uplink data optical signal is demultiplexed in the first AWG after passing through the SMF and through the WDM filter of the OLT.
  • the demultiplexed uplink data optical signal is transmitted to the first optical receiver Rx through the first WDM filter WDM1.
  • Non-polarized broadband or multi-wavelength UPLS provides broadcast services to multiple subscribers with a single light source, but lower noise even when spectral segmentation is performed with the same bandwidth as compared to a conventional light source (PLS). It is possible to increase the number of broadcast signals that can be provided to the or improve the quality of the broadcast signal.
  • PLS conventional light source

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명에 따른 파장분할 다중방식 광통신용 광원은 광대역 비간섭성 광원(BLS); 상기 광대역 비간섭성 광원(BLS)에서 출력된 비간섭성 광을 스펙트럼 분할하는 도파로 배열 격자(AWG); 상기 BLS와 상기 AWG의 사이에 연결된 서큘레이터(Circulator); 각각이 상기 AWG에 연결되며, 상기 AWG에 의해 스펙트럼 분할된 상기 비간섭성 광이 주입되어 파장 잠김된 복수의 무편광 광원(UPLS)을 포함하는 것을 특징으로 한다. 본 발명의 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장 분할 다중방식 수동형 광 가입자망을 사용하는 경우, 특히 파장 잠김된 패브리 페롯 레이저 다이오드에 주입되는 비간섭성 광의 세기를 비약적으로 낮추면서도 1.25 Gb/s 이상의 고속전송이 가능하고, 주어진 비간섭성 광의 세기에서 광원의 잡음 세기를 더 낮추는 것이 가능하다.

Description

무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망
본 발명은 무편광 광원(UPLS: Un-Polarized Light Source or polarization independent light source)을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망(WDM-PON: Wavelength Division Multiplexed-Passive Optical Network)에 관한 것이다. 좀 더 구체적으로, 본 발명은 기존의 한 방향의 편광의 빛을 출력하는 편광 광원(PLS: Polarized Light Source)을 무편광의 빛을 출력하는 무편광 광원(UPLS)으로 대체하여 주입되는 비간섭성 광의 세기를 비약적으로 낮추면서도 광신호를 1.25 Gb/s 이상의 고속으로 전송이 가능하게 하고, 주어진 비간섭성 광의 세기에서도 잡음의 세기를 더 낮출 수 있어 저가로 광 가입자망의 대용량화 및 고속화를 제공할 수 있는 무편광 광원(UPLS)을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망에 관한 것이다.
현재의 가입자망은 대부분 전화선을 이용한 ADSL, VDSL, 또는 동축 케이블을 이용한 케이블 모뎀 등으로 인터넷에 대한 접속을 제공하고 있다. 이러한 전화선 또는 동축 케이블은 모두 구리선을 이용하여 제공되는 것으로, 가입자에게 제공할 수 있는 대역폭은 전송거리에 따라 다르지만 대략 최대 10 Mb/s 정도의 한계를 가지고 있다. 그러나, 인터넷의 급속한 확산으로 기존의 음성, 텍스트 위주의 서비스가 영상 중심의 서비스로 전환되면서 가입자망의 고속화에 대한 요구가 급격히 증가하고 있다. 이러한 고속화 요구를 충족시키기 위한 방안의 하나로 하나의 네트워크 기반을 통해 영상, 데이터, 및 음성이 통합된 서비스를 공급하기 위해, 통신 사업자 및 CATV 사업자가 구축하고 있는 각자의 가입자망의 진화(evolution)가 요구된다. 높은 대역폭을 요구하는 고화질 텔레비전(HDTV/IP-TV), 주문형 비디오(VOD: Video On Demand), 주문형 교육방송(EOD: Education On Demand) 등의 차세대 서비스를 수용하기 위해서는 가입자에게 100 Mb/s 이상의 대역폭을 제공하면서 높은 서비스 품질(QoS: Quality of Service)을 보장할 수 있는 WDM-PON이 궁극적인 대안으로 인식되고 있다. 또한 미래에 요구되는 광 가입자망의 대역폭은 점차 증가할 것으로 예상된다.
일반적으로 WDM-PON에서는 파장분할 다중 필터로 도파로 배열격자(AWG: Arrayed Waveguide Grating)가 널리 사용되고 있다. 그러나, 외부 온도가 변하면 각 가입자당 할당된 광원의 파장 및 AWG자체의 온도가 변하게 된다. 따라서, 각 가입자당 할당된 파장에 무관하게 사용될 수 있는 광원으로서 온도 변화에 따른 파장 제어 및 관리를 용이하게 하기 위해서는, 파장 무의존성 동작, 즉 컬러 무의존성 동작(wavelength-independent operation, i.e., color-free operation)을 구비한 저가의 광원이 필수적으로 요구된다. 이러한 파장 무의존성을 구비한 광원의 한 예로 김현덕 등(Hyun-Deok Kim, et. al)은 2000년 8월에 "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser"라는 제목으로 IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067-1069에 발표한 논문에서 파장 잠김된 패브리 페롯 레이저 다이오드(Wavelength-Locked Fabry-Perot laser diode)를 제안한 바 있다. 김현덕 등의 파장 잠김된 패브리 페롯 레이저 다이오드(F-P LD: Fabry-Perot laser diode)는 광대역 비간섭성 광원(BLS: Broadband Light Source)에서 출력된 비간섭성 광(incoherent light)을 다중모드로 발진하는 F-P LD에 주입하여, 주입된 비간섭성 광의 파장에 F-P LD의 발진 파장을 고정시키는 방법이다. 이 때, 가입자 및 전화국에서 사용되는 송신 광원으로는 한쪽 방향의 편광만 출력하는 특성을 가진 F-P LD가 사용되었다.
한편, 광통신에 사용되는 광원은 우수한 전송 품질을 위해 낮은 상대 세기 잡음(RIN: Relative Intensity Noise)을 가져야 한다. 예를 들어, 다중 모드로 발진하는 F-P LD는 높은 상대 세기 잡음(RIN)으로 인해 양호한 품질의 광신호 전송이 어려워지기 때문에 WDM 시스템용 광원 또는 WDM-PON용 광원으로 사용하기에 적합하지 않다. 좀 더 구체적으로, F-P LD의 다중 모드 중 하나의 모드만을 선택하게 되면, 높은 모드 분할 잡음이 발생하여 다중 모드로 발진하는 F-P LD는 통신용 광원으로 사용하는 것이 불가능하다. RIN을 감소시키는 방법으로 외부에서 비간섭성 광을 주입하여 F-P LD를 유사 단일 모드로 발진시킴으로써 모드 분할 잡음을 대폭 줄인 파장 잠김된 F-P LD와 이를 이용한 WDM-PON을 구성하는 방법이 제안되었다. 그러나, 파장 잠김된 F-P LD를 이용한 WDM-PON은 데이터의 전송 속도를 높이거나, 파장 간격을 좁혀서 하나의 PON에서 많은 채널을 수용하고자 하는 경우 다음과 같은 문제가 발생한다.
파장 잠김된 F-P LD의 구현을 위해 외부에서 주입되는 자연방출광(ASE: Amplified Spontaneous Emission) 기반의 BLS는 사용되는 AWG의 대역폭에 의해 주입되는 비간섭성 광의 대역폭이 결정된다. 따라서 ASE 기반의 BLS에서 출력된 비간섭성 광은 주입시 비간섭성 광이 미리 필터링 과정을 거치므로 높은 잡음을 가질 수 밖에 없다. 일반적으로 가입자당 제공되는 데이터의 전송 속도가 높을수록, 사용되는 광원은 더 우수한 잡음 특성을 가져야만 한다. 그러나, AWG 대역폭이 좁을수록 또는 채널 간격이 좁을수록 주입되는 비간섭성 광의 RIN이 나빠지게 된다. 이는 파장 잠김된 F-P LD의 잡음 특성에도 영향을 주기 때문에, 고속의 전송을 위해서는 F-P LD를 높은 이득 포화(gain saturation) 영역에서 동작시켜 주입되는 비간섭성 광의 잡음을 줄여서 전송하여야 한다. 그러나, F-P LD를 높은 이득 포화(gain saturation) 영역에서 동작시키기 위해서는 주입되는 비간섭성 광의 세기를 높여야 하고, 따라서 BLS의 출력의 세기도 높아져야 한다. BLS는 출력의 세기가 2배가 될 때, BLS의 가격이 2배 이상 증가된다. 따라서, 높은 출력의 BLS는 고가이고, 시스템의 전체 비용을 증가시키게 된다. 이는 WDM-PON의 대용량화와 고속화에 장애 요인으로 작용한다. 또한 이러한 문제점은 WDM-PON용 광원으로 파장 잠김된 F-P LD를 사용하는 경우 및 파장 주입 방식의 반사형 반도체 광증폭기(RSOA: Reflective Semiconductor Optical Amplifier)를 사용하는 경우 모두에서 공통적으로 나타난다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 모든 방향의 편광을 출력하는 무편광 광원(UPLS)을 이용하여 파장 잠김된 패브리 페롯 레이저 다이오드에 주입되는 비간섭성 광의 세기를 비약적으로 낮추면서도 1.25 Gb/s 이상의 고속전송이 가능하게 하고, 주어진 비간섭성 광의 세기에서 광원의 잡음 세기를 추가로 더 낮추어 출 수 있는 파장분할 다중방식 광통신용 광원 및 이를 구비한 WDM-PON을 저가로 구현하기 위한 것이다.
본 발명의 제 1 특징에 따른 파장분할 다중방식 광통신용 광원은 광대역 비간섭성 광원(BLS); 상기 광대역 비간섭성 광원(BLS)에서 출력된 비간섭성 광을 스펙트럼 분할하는 도파로 배열 격자(AWG); 상기 BLS와 상기 AWG의 사이에 연결된 서큘레이터(Circulator); 각각이 상기 AWG에 연결되며, 상기 AWG에 의해 스펙트럼 분할된 상기 비간섭성 광이 주입되어 파장 잠김된 복수의 무편광 광원(UPLS)을 포함하는 것을 특징으로 한다.
본 발명의 제 2 특징에 따른 파장분할 다중방식 수동형 광 가입자망(WDM-PON)은 n개의 제 1 광송수신기(TRx)를 구비한 전화국(OLT); 원격노드(RN: Remote Node); n개의 제 2 광송수신기(TRx)를 구비한 복수의 가입자(ONT)(ONT1,...,ONTn); 상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함하고, 상기 제 1 광송수신기(TRx)는 각각 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고, 상기 제 2 광송수신기(TRx)는 각각 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며, 상기 제 1 광송신기(Tx)는 제 1 무편광 광원(UPLS); 및 상기 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 제 2 UPLS; 및 상기 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하며, 상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는 것을 특징으로 한다.
본 발명의 제 3 특징에 따른 파장분할 다중방식 수동형 광 가입자망(WDM-PON)은 전화국(OLT); 원격노드(RN: Remote Node); 복수의 가입자(ONT)(ONT1,...,ONTn); 상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함하고, 상기 OLT는 A대역에서 발진하여 제 1 비간섭성 광을 출력하는 A-대역 광대역 비간섭성 광원(A-대역 BLS); B대역에서 발진하여 제 2 비간섭성 광을 출력하는 B-대역 BLS; 상기 A-대역 BLS에 연결되는 제 1 서큘레이터(circulator1); 상기 B-대역 BLS에 연결되는 제 2 서큘레이터(circulator2); 상기 제 1 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 1 도파로 배열 격자(AWG1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 제 1 AWG에 각각 연결되는 제 1 WDM 필터(WDM1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 SMF에 각각 연결되는 제 2 WDM 필터(WDM2); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함하며, 상기 RN은 상기 제 2 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 2 도파로 배열 격자(AWG2)를 포함하고, 상기 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하며, 상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 3 WDM 필터(WDM3); 상기 제 3 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 3 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고, 상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 4 WDM 필터(WDM4); 상기 제 4 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 4 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며, 상기 제 1 광송신기(Tx)는 상기 제 1 비간섭성 광에 파장 잠김된 제 1 무편광 광원(UPLS); 및 상기 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 상기 제 2 비간섭성 광에 파장 잠김된 제 2 UPLS; 및 상기 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하며, 상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는 것을 특징으로 한다.
본 발명의 제 4 특징에 따른 파장분할 다중방식 수동형 광 가입자망(WDM-PON)은 전화국(OLT); 원격노드(RN: Remote Node); 복수의 가입자(ONT)(ONT1,...,ONTn); 상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함하고, 상기 OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함하며, 상기 RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함하고, 상기 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하며, 상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG 를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고, 상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2); 상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며, 상기 제 1 광송신기(Tx)는 광대역 또는 다파장의 제 1 무편광 광원(UPLS); 및 상기 광대역 또는 다파장의 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 광대역 또는 다파장의 제 2 UPLS; 및 상기 광대역 또는 다파장의 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하고, 상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는 것을 특징으로 한다.
본 발명의 제 5 특징에 따른 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망(WDM-PON)은 전화국(OLT); 원격노드(RN: Remote Node); 복수의 가입자(ONT)(ONT1,...,ONTn); 상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함하고, 상기 OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx); 방송 신호로 변조된 광신호를 출력하는 광대역 또는 다파장의 무편광 광원(UPLS); 및 상기 방송 신호로 변조된 광신호를 상기 제 1 AWG에서 다중화된 하향 데이터 광신호와 결합시키기 위한 WDM 필터(WDM)를 포함하고, 상기 제 1 광송수신기(TRx)는 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 상기 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하며, 상기 RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함하고, 상기 복수의 ONT(ONT1,...,ONTn)는 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하고, 상기 제 2 광송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2); 상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 전달하는 제 2 광송신기(Tx); 상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx2); 및 상기 제 2 WDM 필터에 연결되며 상기 광대역 또는 다파장의 UPLS에서 출력된 상기 방송 신호로 변조된 광신호를 수신하는 제 3 광수신기(Rx3)를 포함하는 것을 특징으로 한다.
본 발명에 따른 무편광 광원(UPLS)를 이용한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망(WDM-PON)에서는 다음과 같은 효과가 달성된다.
1. 낮은 세기의 비간섭성 광을 주입하더라도 낮은 RIN을 얻을 수 있다.
2. 무편광 특성의 광원(UPLS)을 사용할 경우 종래 편광 광원(PLS)에서 요구되었던 BLS 출력광의 세기를 약 1/10으로 줄일 수 있어 시스템의 전체 비용을 현저하게 줄일 수 있어서 저가로 광 가입자망의 구현할 수 있다.
3. 무편광 특성의 광원(UPLS)은 동일한 세기의 비간섭성 광을 주입하더라도 출력광의 상대 세기 잡음(RIN)이 편광 특성의 광원(PLS)보다 더 낮기 때문에 전송 속도를 더 높일 수 있다.
4. 종래 기술에서는 주입된 비간섭성 광의 파장이 편광 특성의 페브리-페롯 레이저 다이오드의 모드 파장 사이에 있는 경우 편광 특성의 페브리-페롯 레이저 다이오드는 출력 세기의 감소 및, 잡음 증가로 인하여 성능이 저하되는데, 무편광 특성의 페브리-페롯 레이저 다이오드를 사용할 경우 각각의 편광이 다른 파장에서 발진하는 특성을 이용하여 무편광 특성의 페브리-페롯 레이저 다이오드의 성능 저하가 발생하지 않는다.
5. 기존의 편광 특성의 광원에서는 스펙트럼 분할 시에 잡음의 증가에 따라 전송 속도가 제한되어 적용 가능한 분야가 좁았던 반면, 본 발명에 따른 무편광 특성의 광원(UPLS)은 전송 속도를 2배 이상 증가시킬 수 있고, 전송특성을 향상시킬 수 있다.
6. 방송 신호를 효율적으로 수용할 수 있다.
본 발명의 추가적인 장점은 동일 또는 유사한 참조번호가 동일한 구성요소를 표시하는 첨부 도면을 참조하여 이하의 설명으로부터 명백히 이해될 수 있다.
도 1은 본 발명에 따른 주입된 비간섭성 광에 파장 잠김된 무편광 광원을 이용한 파장분할 다중방식 광통신망용 광원이다.
도 2는 본 발명에 따른 주입된 비간섭성 광에 파장 잠김된 편광 광원과 주입된 비간섭성 광에 파장 잠김된 무편광 광원의 성능을 비교하기 위하여 주입되는 비간섭성 광의 세기 따라 변하는 출력광의 잡음을 나타낸 것이다.
도 3은 주입된 비간섭성 광에 파장 잠김된 일반적인 편광 광원과 본 발명에 따른 주입된 비간섭성 광에 파장 잠김된 무편광 광원의 성능을 비교하기 위하여 편광에 따라 발진 파장이 다른 무편광 특성의 페브리-페롯 레이저 다이오드의 출력 스펙트럼을 도시한 도면이다.
도 4는 도 1에 도시된 본 발명의 일 실시예에 따른 주입된 비간섭성 광에 파장 잠김된 무편광 광원을 구비한 파장분할 다중방식 광 가입자망의 제 1 실시예를 도시한 도면이다.
도 5는 본 발명의 제 2 실시예에 따른 스펙트럼 분할된 무편광 광원을 이용한 파장 분할 다중방식 광 가입자망을 도시한 도면이다.
도 6은 본 발명의 제 3 실시예에 따른 무편광 광원을 이용하여 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 광 가입자망을 도시한 도면이다.
이하에서 본 발명의 실시예 및 도면을 참조하여 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른, 광대역 비간섭성 광원(BLS)에서 출력된 비간섭성 광을 무편광 광원에 주입하고, 주입된 비간섭성 광에 파장 잠김된 무편광 광원을 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 파장분할 다중방식 광통신용 광원은 광대역 비간섭성 광원(BLS); 상기 광대역 비간섭성 광원(BLS)에서 출력된 비간섭성 광을 스펙트럼 분할하는 도파로 배열격자(AWG); 상기 BLS와 상기 AWG의 사이에 연결된 서큘레이터(Circulator); 및 각각이 상기 AWG에 연결되며, 상기 AWG에 의해 스펙트럼 분할된 상기 비간섭성 광이 주입되어 파장 잠김된 복수의 무편광 광원(Un-Polarized Light Source or polarization independent light source: 이하 "UPLS"라 합니다)으로 구성된다. 여기서 서큘레이터는 대안적으로 광 커플러(coupler)로 구현될 수도 있다. 이하에서는 본 발명의 일 실시예에 따른 파장분할 다중방식 광통신용 광원의 동작원리가 상세히 기술된다.
다시 도 1을 참조하면, BLS에서 출력된 비간섭성 광은 서큘레이터(Circulator)를 거쳐 AWG에 입력된다. 그 후, 비간섭성 광은 AWG의 복수의 출력 단자에 따라 스펙트럼 별로 분할된다. 이 경우, 비간섭성 광은 AWG에서 스펙트럼 분할되면서 잡음이 급격히 증가한다. 그 후, 스펙트럼 분할된 비간섭성 광은 AWG의 출력 단자에 연결된 복수의 UPLS에 주입된다. 복수의 UPLS 는 각각 주입된 비간섭성 광에 파장 잠김되어, 주입된 비간섭성 광과 동일한 파장을 출력한다. 즉, 복수의 UPLS 는 각각 AWG의 복수의 출력 단자의 통과 대역의 중심 파장과 일치하는 광신호를 출력한다. 복수의 UPLS에서 출력된 광신호들은 다시 AWG를 통과하여 다중화된 후, 서큘레이터(Circulator)를 거쳐 출력된다.
도 1에 도시된 본 발명의 일 실시예에 사용되는 UPLS로는 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD), 무편광 특성의 반사형 반도체 광증폭기(RSOA: Reflective Semiconductor Optical Amplifier)가 사용될 수 있다. 또한, 무편광 특성의 F-P LD의 경우는 전면 거울에 무반사 코팅을 하여 주입 효율을 높이거나, 후면 거울에 고반사 코팅을 하여 출력 파워를 높일 수 있다. 한편, 무편광 F-P LD는 바이어스 전류가 발진 임계전류 이상인 경우, 바이어스 전류가 증가하면 무편광 F-P LD의 편광에 따른 출력 파워의 차이가 증가할 수 있다.
한편, AWG의 통과 대역폭이 좁을수록 또는 채널 간격이 좁을수록 주입되는 비간섭성 광의 상대 세기 잡음(RIN)이 나빠지게 된다. 주입되는 비간섭성 광에 파장 잠김되는 광원으로 일반적인 편광 특성의 광원(PLS)을 사용할 경우, 광신호의 고속 전송을 위해서 편광 특성의 광원(PLS)을 높은 이득 포화(gain saturation) 영역에서 동작시켜 주입되는 비간섭성 광의 잡음을 줄여서 전송하여야 한다. 즉, 주입되는 비간섭성 광의 세기를 높여야 하고, 그에 따라 BLS의 출력 세기도 높아야 한다.
도 2는 본 발명에 따른 주입된 비간섭성 광에 파장 잠김된 편광 광원(PLS)과 주입된 비간섭성 광에 파장 잠김된 무편광 광원(UPLS)의 성능을 비교하기 위하여 주입되는 비간섭성 광의 세기 따라 변하는 출력광의 잡음을 나타낸 것이다. 즉, 도 2에는 주입되는 비간섭성 광의 세기(injection power)에 따른 주입된 비간섭성 광에 파장 잠김된 편광 특성의 광원(PLS) 및 주입된 비간섭성 광에 파장 잠김된 무편광 특성의 광원(UPLS)에서 출력된 광신호의 RIN의 측정값이 도시되어 있다.
일반적으로 주입되는 비간섭성 광에 파장 잠김된 광원의 경우, 주입되는 비간섭성 광의 세기가 높아질수록 편광 특성의 광원(PLS) 및 무편광 특성의 광원(UPLS)은 더 높은 이득 포화 영역에서 동작하여 주입되는 비간섭성 광의 잡음을 더 감소시킨다. 이에 따라 도 2에서 보는 바와 같이 주입되는 비간섭성 광의 세기가 높아질수록 파장 잠김된 광원에서 출력되는 광의 잡음(RIN)은 낮아진다. 도2a에 도시된 바와 같이, 예를 들어 고속 전송을 위해 요구되는 RIN이 대략 -112 dB/Hz인 경우 편광 특성의 광원(PLS)은 대략 -9 dBm의 비간섭성 광이 주입되어야 하고, 이를 위해 BLS에서 출력되는 광의 세기도 함께 높아져야 한다. 예를 들어, 채널 수(또는 가입자수)가 32이고 전송 길이가 20 km인 WDM-PON 시스템을 가정하면, 광섬유 및 광소자의 손실이 약 11 dB, AWG에서의 필터링 손실이 3 dB, 32 가입자를 위한 손실이 16 dB 이기 때문에 -9 dBm보다 30 dB만큼 더 높은 21 dBm의 출력 세기를 가진 BLS가 요구된다. 그러나, 높은 출력의 BLS는 레일리 역산란(Rayleigh backscattering) 및 비선형 효과를 증가시키기 때문에, 시스템의 성능을 제약하게 된다. 또한 높은 출력의 BLS는 고가의 광소자이기 때문에, 시스템의 전체 비용을 증가시켜 경제적인 광 가입자망의 구현에 장애요소가 된다.
한편, 본 발명의 일 실시예에 사용되는 무편광 광원(UPLS)를 사용할 경우, 동일한 조건 하에서 (RIN이 대략 -112 dB/Hz인 경우) 주입되어야 비간섭성 광을 세기는 대략 -19 dBm이다. 따라서, 본 발명의 일 실시예에서는 낮은 세기의 비간섭성 광을 주입하더라도 낮은 RIN을 얻을 수 있다. 즉, 요구되는 RIN의 값이 대략 -112 dB/Hz인 경우 무편광 특성의 광원(UPLS)은 대략 -19 dBm의 비간섭성 광의 주입이 요구된다. 상술한 편광 특성의 광원(PLS)과 동일한 조건하에서(즉, 채널 수 또는 가입자수가 32이고, 전송 길이가20 km인 WDM-PON에서) 무편광 특성의 광원(UPLS)을 사용하는 경우, -19 dBm보다 30 dB 더 높은 11 dBm의 출력 세기를 가진 BLS가 요구된다. 즉, 무편광 특성의 광원(UPLS)을 사용하는 경우가 편광 광원(PLS)를 사용하는 경우와 비교하여 요구되는 BLS의 출력 세기는 10 dB 차이가 난다. 여기서 10 dB는 로그(log)값으로 10 배 차이이기 때문에, BLS의 출력 세기를 1/10으로 줄일 수 있고, 그에 따라 시스템의 전체 비용을 줄여 경제적인 광 가입자망의 구현할 수 있다. 또한 무편광 특성의 광원(UPLS)은 동일한 세기의 비간섭성 광의 주입하는 경우 출력 잡음(RIN)이 편광 특성의 광원(PLS)보다 더 낮기 때문에 전송 속도를 더 높일 수 있다. 일반적으로 RIN이 3 dB 낮아지면 전송 속도가 2배 증가될 수 있다. 도 2에 도시된 바와 같이, 무편광 특성의 광원(UPLS)은 편광 특성의 광원(PLS)보다 RIN의 차이값이 최대로 대략 4 dB이다(주입되는 비간섭성 광의 세기가 대략 -12 dBm인 경우). 따라서, 본원 발명에서는 종래 기술에 비해 전송 속도가 2배 이상 증가될 수 있으므로 고속의 광 가입자망의 구현이 가능해진다.
한편 주입되는 비간섭성 광에 파장 잠김된 무편광 특성의 광원(UPLS)은 주입되는 비간섭성 광에 파장 잠김된 편광 특성의 광원(PLS)에 비교하여 또 다른 장점을 갖는다. 구체적으로, 페브리-페롯 레이저 다이오드(F-P LD)는 다중 모드(multi-mode)로 발진하는 광원이다. 이러한 F-P LD는 비간섭성 광을 주입하여 파장 잠김된 광원으로 사용될 수 있다. F-P LD가 파장 잠김된 편광 특성의 F-P LD인 경우 그 성능은 F-P LD의 모드 파장과 주입된 비간섭성 광의 파장이 유사한 경우에 우수하다. 반면에, 주입된 비간섭성 광의 파장이 편광 특성의 F-P LD의 모드 파장 사이에 존재하는 경우에는 출력의 세기도 감소되고, 잡음이 증가되어 파장 잠김된 편광 특성의 F-P LD는 그 성능이 저하된다. 그러나, 주입되는 비간섭성 광에 파장 잠김된 무편광 특성의 F-P LD에서는 이러한 편광 특성의 F-P LD의 성능 저하가 발생하지 않는다.
좀 더 구체적으로, 도 3은 주입된 비간섭성 광에 파장 잠김된 일반적인 편광 광원과 본 발명에 따른 주입된 비간섭성 광에 파장 잠김된 무편광 광원의 성능을 비교하기 위하여 편광에 따라 발진 파장이 다른 무편광 특성의 페브리-페롯 레이저 다이오드의 출력 스펙트럼을 도시한 도면이다.
도 3을 참조하면, 주입된 비간섭성 광의 파장이 예를 들어 도 3에 도시된 F-P LD의 제 1 편광의 모드 파장 사이에 있는 경우, 일반적인 편광 특성의 F-P LD는 그 성능이 저하된다. 그러나, 무편광 특성의 F-P LD는 도 3에 도시된 바와 같이 제 1편광의 빛 뿐만 아니라 제 1편광의 빛과 수직한 제 2편광의 빛도 함께 출력한다. 따라서, 주입된 비간섭성 광의 파장이 F-P LD의 제 1 편광의 빛의 모드 파장 사이에 있는 경우에도 제 2편광의 빛의 모드 파장과는 일치하게 되기 때문에 무편광 특성의 F-P LD에서는 성능 저하가 방지된다. 무편광 특성의 F-P LD 제작 시에 레이저의 캐비티(cavity) 길이와 매질 등을 조절하면, 도 3에서 알 수 있는 바와 같이 제 1편광의 빛과 제 2 편광의 빛의 다중 모드의 파장이 서로 다른 값을 갖도록 할 수 있다. 이 경우, 전면 거울에 무반사 코팅을 하여 무편광 특성의 F-P LD의 주입 효율을 높이거나, 후면 거울에 고반사 코팅을 하여 무편광 특성의 F-P LD의 출력 파워를 높일 수 있다. 또한, 무편광 F-P LD에서는 바이어스 전류가 발진 임계전류 이상인 경우, 바이어스 전류가 증가하면 편광에 따른 출력 파워의 차이가 증가할 수 있다.
도 4는 도 1에 도시된 본 발명의 일 실시예에 따른 주입된 비간섭성 광에 파장 잠김된 무편광 광원을 구비한 WDM-PON 의 제 1 실시예를 도시한 도면이다.
도3을 참조하면, 본 발명의 일 실시예에 따른 WDM-PON은 전화국(OLT: Optical Line Termination), 원격노드(RN: Remote Node), 복수의 가입자(ONT: Optical Network Termination)(ONT1,...,ONTn), 상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF), 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함한다. 여기서, 상기 OLT는 A대역에서 발진하여 제 1 비간섭성 광을 출력하는 A-대역 광대역 비간섭성 광원(A-band BLS: 이하 "A-대역 BLS"라 합니다); B대역에서 발진하여 제 2 비간섭성 광을 출력하는 B-대역 BLS(B-band BLS); 상기 A-대역 BLS에 연결되는 제 1 서큘레이터(circulator1); 상기 B-대역 BLS에 연결되는 제 2 서큘레이터(circulator2); 상기 제 1 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 1 도파로 배열 격자(AWG1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 제 1 AWG에 각각 연결되는 제 1 WDM 필터(WDM1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 SMF에 각각 연결되는 제 2 WDM 필터(WDM2); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함한다. 또한, 상기 RN은 상기 제 2 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 2 도파로 배열 격자(AWG2)를 포함한다. 아울러, 상기 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함한다.
상술한 도 4에 도시된 본 발명의 제 1 실시예에 따른 WDM-PON에서는, 상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 3 WDM 필터(WDM3); 상기 제 3 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 3 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함한다. 상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 4 WDM 필터(WDM4); 상기 제 4 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 4 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함한다. 상기 제 1 광송신기(Tx)는 상기 제 1 비간섭성 광에 파장 잠김된 제 1 무편광 광원(UPLS); 및 상기 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 상기 제 2 비간섭성 광에 파장 잠김된 제 2 UPLS; 및 상기 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함한다. 또한, 상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD: Photo Diode)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하행 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함한다.
이하에서는 상술한 도 4에 도시된 본 발명의 제 1 실시예에 따른 WDM-PON에서 광원의 동작원리가 상세히 기술된다.
다시 도 4를 참조하면, OLT의 A대역과 B대역에서 각각 발진하는 A-대역 BLS 및 B-대역 BLS는 하향 및 상향 신호의 전송을 위한 파장 잠김된 UPLS의 주입 광원으로 이용된다. 본 명세서에서는 이하에서 UPLS을 이용한 상향 신호용 ONT 광원의 동작에 대해서만 설명하지만, 당업자라면 이러한 설명은 하향 신호용 OLT광원의 경우에도 동일하게 적용될 수 있다는 것을 충분히 이해할 수 있을 것이다.
OLT의 B-밴드 BLS에서 출력된 제 2 비간섭성 광은 제 2 서큘레이터, 제 2 WDM 필터(WDM2), SMF를 지나 RN의 제 2 AWG를 통해 필터링되어 분리된다. 제 2 AWG 에 의해 분리된 신호는 복수의 분배 광섬유(DF1,...,DFn)를 통해 복수의 ONT(ONT1,...,ONTn)에 입력된다. 입력된 각각의 신호는 각각의 ONT 내의 제 4 WDM 필터를 통과하여 제 2 광송신기(Tx)의 UPLS에 주입되어 파장 잠김이 이루어진다. 주입된 제 2 비간섭성 광에 파장 잠김된 UPLS에서 출력된 상향 데이터 광신호는 제 4 WDM 필터, 복수의 분배 광섬유(DF1,...,DFn), RN의 제2 AWG, 및 SMF를 거쳐 OLT측의 제 2 WDM, 제 2 서큘레이터, 및 제 1 WDM을 통과한다. 그 후, 제 1 WDM을 통과한 상향 데이터 광신호는 제 1 AWG를 통과하여 n개의 그룹으로 역다중화된 후 OLT의 제 3 WDM 필터를 통과한다. 그 후, 상향 데이터 광신호는 수신단인 제 1 광수신기(Rx)로 전달된다.
도 4에 도시된 본 발명의 제 1 실시예에서는, OLT의 제 1 광송신기(Tx) 및 복수의 ONT(ONT1,...,ONTn)의 제 2광송신기(Tx)에 각각 사용되는 제 1및 제 2 UPLS로 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD), 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)가 사용될 수도 있다.
B-밴드BLS에서 출력된 제 2 비간섭성 광은 무편광의 특성을 가지는데, RN의 제 2 AWG를 통해 필터링되어 분리될 때 잡음이 급격히 증가하게 된다. 종래 기술에서는 ONT또는 OLT의 제 1 또는 제 2송신기(Tx)에서 사용된 광원들은 한 방향으로만 진동하는 제 1 편광 빛만 출력하였기 때문에 무편광의 스펙트럼 분할된 비간섭성 광이 ONT또는 OLT용으로 사용되는 광원에 주입되더라도, 광원에서는 입력된 무편광의 스펙트럼 분할된 비간섭성 광 중에서 한 방향의 제 1 편광 빛만이 입력, 증폭, 및 변조되어 출력되고, 제 1 편광에 대해서 수직하게 진동하는 편광 빛들은 낭비되었다. 특히, RIN 값이 -109 dB/Hz인 스펙트럼 분할된 무편광의 비간섭성 광은 한 방향의 제 1 편광 빛만 통과되는 경우 RIN값이 대략 3 dB가 더 높은 대략 -106 dB/Hz를 갖기 때문에, 1.25 Gb/s 전송을 위해서는 ONT또는 OLT의 제 1 또는 제 2 송신기(Tx)에 사용된 광원들을 높은 포화 이득 영역에서 동작시켜야 한다. 그러나 본 발명에서처럼 ONT 및 OLT에 제 1 및 제 2 UPLS를 사용하는 경우에는 무편광 특성의 스펙트럼 분할된 ASE를 모두 활용할 수 있고, 또한 낮은 세기의 비간섭성 광을 주입하는 경우에도 1.25 Gb/s 전송이 가능하기 때문에 저가로 WDN-PON을 구현할 수 있다.
도 5는 본 발명의 제 2 실시예에 따른 스펙트럼 분할된 무편광 광원(UPLS)을 이용한 파장분할 다중방식 수동형 광 가입자망을 도시한 도면이다.
도 5를 참조하면, 본 발명의 제 2 실시예에 따른 WDM-PON은 OLT, RN, 복수의 ONT(ONT1,...,ONTn), 상기 OLT과 상기 RN을 연결하는 SMF, 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함한다. 여기서, 상기 OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함한다. 또한, 상기 RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함한다. 아울러, 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함한다.
상술한 도 5에 도시된 본 발명의 제 2 실시예에 따른 WDM-PON에서는, 상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG 를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고, 상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2); 상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함한다. 상기 제 1 광송신기(Tx)는 광대역 또는 다파장의 제 1 무편광 광원(UPLS); 및 상기 광대역 또는 다파장의 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 광대역 또는 다파장의 제 2 UPLS; 및 상기 광대역 또는 다파장의 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함한다. 또한, 상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함한다.
도 5에 도시된 본 발명의 제 2 실시예에서는, 제 1 광송신기(Tx) 및 제 2 광송신기(Tx)에 각각 사용되는 광대역 또는 다파장의 제 1 및 제 2 UPLS로 무편광 특성의 F-P LD, 또는 무편광 특성의 RSOA가 사용될 수도 있다.
이하에서는 상술한 도 5에 도시된 본 발명의 제 2 실시예에 따른 WDM-PON에서 광원의 동작원리가 상세히 기술된다. 본 명세서에서는 이하에서 UPLS를 이용한 상향 신호용 ONT 광원의 동작에 대해서만 설명하지만, 당업자라면 이러한 설명은 하향 신호용 OLT 광원의 경우에도 동일하게 적용될 수 있다는 것을 충분히 이해할 수 있을 것이다.
다시 도 5를 참조하면, 본 발명의 제 2 실시예에 따른 WDM-PON에서는 복수의 ONT(ONT1,...,ONTn)에 위치한 광대역 또는 다파장의 제 2 UPLS의 출력광이 직접 변조되어 상향 전송된다. 상기 광대역 또는 다파장의 제 2 UPLS에서 출력된 광대역의 상향 데이터 광신호들 또는 다파장의 상향 데이터 광신호들은 제 2 WDM 필터 및 복수의 분배 광섬유(DF1,...,DFn)를 지나 RN의 제 2 AWG에 의해 스펙트럼 분할되어, 제 2 AWG의 투과 파장과 일치하는 파장 성분만 선택되어 전송된다. 따라서, 제 2 AWG의 n개의 포트에 의해 선택된 상이한 투과 파장의 상향 데이터 광신호들이 제 2 AWG에 의해 다중화되어 SMF를 지나 OLT로 전송된다. 다중화된 상향 광신호들은 OLT에 위치한 제 1 AWG에서 역다중화되고, 제 1 WDM 필터를 지나 제 1광수신기(Rx)로 각각 수신된다. 이러한 방식의 WDM-PON에서는 광대역 또는 다파장의 제 1 및 제 2 UPLS의 출력광이 각각 제 1 AWG 및 제 2 AWG에서 스펙트럼 분할되는 과정에서 잡음이 급격히 증가된다. 종래 기술에서는 ONT및 OLT에서 이러한 스펙트럼 분할 방식을 이용한 광원으로 편광 특성의 광원 또는 한 방향의 편광 빛만 전송하는 광원을 사용하여 한 방향의 편광 빛만을 전송하였다. 그러나, 상향 데이터 광신호용 광원 및 하향 데이터 광신호용 광원으로 각각 무편광 특성의 광원(UPLS)을 사용하면 출력광이 동일한 대역폭으로 스펙트럼 분할되는 경우에도 편광 특성의 광원(PLS)에 비해 잡음 특성이 더 우수하기 때문에 전송 가능한 대역폭을 증가시킬 수 있다.
도 6은 본 발명의 제 3 실시예에 따른 무편광 광원을 이용하여 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망을 도시한 도면이다.
도 6을 참조하면, 본 발명의 제 3 실시예에 따른 WDM-PON은 OLT, RN, 복수의 ONT(ONT1,...,ONTn), 상기 OLT과 상기 RN을 연결하는 SMF, 및 상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)를 포함 한다. 여기서, OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx); 방송 신호로 변조된 광신호를 출력하는 광대역 또는 다파장의 무편광 광원(UPLS); 및 상기 방송 신호로 변조된 광신호를 상기 제 1 AWG에서 다중화된 하향 데이터 광신호와 결합시키기 위한 WDM 필터(WDM)를 포함하되, 상기 제 1 광송수신기(TRx)는 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 상기 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함한다. 또한, RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함한다. 아울러, 복수의 ONT(ONT1,...,ONTn)는 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함한다.
상술한 도 6에 도시된 본 발명의 제 3 실시예에 따른 WDM-PON에서는, 상기 제2 광송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2); 상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 전달하는 제 2 광송신기(Tx); 상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx2); 및 상기 제 2 WDM 필터에 연결되며 상기 광대역 또는 다파장의 UPLS에서 출력된 상기 방송 신호로 변조된 광신호를 수신하는 제 3 광수신기(Rx3)를 포함한다.
도 6에 도시된 본 발명의 제 3 실시예에서는, 방송 신호 전송을 위한 광대역 또는 다파장의 UPLS로 무편광 특성의 F-P LD, 또는 무편광 특성의 RSOA가 사용될 수도 있다.
이하에서는 상술한 도 6에 도시된 본 발명의 제 3 실시예에 따른 WDM-PON에서 광원의 동작원리가 상세히 기술된다.
다시 도 6을 참조하면, OLT에 위치한 제 1 광송신기(Tx)에서 전송된 하향 데이터 광신호는 제 1 AWG에서 다중화된 후 WDM 필터(WDM)에서 방송 신호와 합쳐진다. 이 경우, 방송 신호의 전송을 위해 사용되는 광대역 또는 다파장 의 UPLS는 상향 데이터 광신호 및 하향 데이터 광신호의 전송을 위해 사용되는 광원과는 다른 파장 대역에서 발진한다. 다중화된 하향 데이터 광신호와 방송 신호는 SMF를 지나 RN의 제 2 AWG에서 역다중화된다. 역다중화된 하향 데이터 광신호 및 방송 신호는 복수의 분배 광섬유(DF1,...,DFn)를 지난 뒤, 복수의ONT(ONT1,...,ONTn)의 제 2 WDM 필터(WDM2)에서 하향 데이터 광신호와 방송 신호로 분리된다. 분리된 하향 데이터 광신호는 제2 광수신기(Rx2)로 전달되고, 분리된 방송 신호는 제3 광수신기(Rx3)로 전달된다. 복수의 ONT에 위치한 제 2 광송신기(Tx)에서 출력된 상향 데이터 광신호는 제 2 AWG를 통과하면서 다중화된다. 다중화된 상향 데이터 광신호는 SMF를 지나 OLT의 WDM 필터를 통과 후에 제 1 AWG에서 역다중화된다. 역다중화된 상향 데이터 광신호는 제 1 WDM 필터(WDM1)를 통해 제 1 광수신기(Rx)로 전달된다.
무편광 특성의 광대역 또는 다파장의 UPLS는 하나의 광원으로 다수의 가입자에게 방송 서비스를 제공하면서도, 기존의 편광 특성의 광원(PLS)에 비해 동일한 대역폭으로 스펙트럼 분할 시에도 잡음이 낮기 때문에 복수의 ONT에게 제공할 수 있는 방송 신호의 수를 증가시키거나 방송 신호의 품질을 향상시킬 수 있다.
다양한 변형예가 본 발명의 범위를 벗어남이 없이 본 명세서에 기술되고 예시된 구성 및 방법으로 만들어질 수 있으므로, 상기 상세한 설명에 포함되거나 첨부 도면에 도시된 모든 사항은 예시적인 것으로 본 발명을 제한하기 위한 것이 아니다. 따라서, 본 발명의 범위는 상술한 예시적인 실시예에 의해 제한되지 않으며, 이하의 청구범위 및 그 균등물에 따라서만 정해져야 한다.

Claims (35)

  1. 파장분할 다중방식 광통신용 광원에 있어서,
    광대역 비간섭성 광원(BLS);
    상기 광대역 비간섭성 광원(BLS)에서 출력된 비간섭성 광을 스펙트럼 분할하는 도파로 배열 격자(AWG);
    상기 BLS와 상기 AWG의 사이에 연결된 서큘레이터(Circulator);
    각각이 상기 AWG에 연결되며, 상기 AWG에 의해 스펙트럼 분할된 상기 비간섭성 광이 주입되어 파장 잠김된 복수의 무편광 광원(UPLS)
    을 포함하는 파장분할 다중방식 광통신용 광원.
  2. 제 1항에 있어서,
    상기 서큘레이터(Circulator)가 광 커플러(Coupler)로 구현되는 파장분할 다중방식 광통신용 광원.
  3. 제 1항 또는 제 2항에 있어서,
    상기 복수의 무편광 광원(UPLS)은 각각 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD) 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)인 파장분할 다중방식 광통신용 광원.
  4. 제 3항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 편광에 따라 발진 파장이 서로 다른 값을 갖는 제 1편광의 빛 및 상기 제 1편광의 빛과 수직한 제 2편광의 빛을 함께 출력하는 파장분할 다중방식 광통신용 광원.
  5. 제 3항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 상기 무편광 특성의 F-P LD는 전면 거울에 무반사 코딩을 하여 높은 주입 효율을 갖는 파장분할 다중방식 광통신용 광원.
  6. 제 3항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 후면 거울에 고반사 코딩을 하여 높은 출력 파워를 갖는 파장분할 다중방식 광통신용 광원.
  7. 제 3항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 바이어스 전류가 증가하면 상기 무편광 특성의 F-P LD의 편광에 따른 광출력의 세기가 증가하는 파장분할 다중방식 광통신용 광원.
  8. 파장분할 다중방식 수동형 광 가입자망(WDM-PON)에 있어서,
    n개의 제 1 광송수신기(TRx)를 구비한 전화국(OLT);
    원격노드(RN: Remote Node);
    n개의 제 2 광송수신기(TRx)를 구비한 복수의 가입자(ONT)(ONT1,...,ONTn);
    상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및
    상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)
    를 포함하고,
    상기 제 1 광송수신기(TRx)는 각각 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고,
    상기 제 2 광송수신기(TRx)는 각각 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며,
    상기 제 1 광송신기(Tx)는 제 1 무편광 광원(UPLS); 및 상기 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 제 2 UPLS; 및 상기 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하며,
    상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는
    파장분할 다중방식 수동형 광 가입자망.
  9. 제 8항에 있어서,
    상기 제 1 UPLS는 상기 OLT에 위치되는 A-대역 광대역 비간섭성 광원(A-대역 BLS)에 의해 A대역에서 발진하여 출력된 제 1 비간섭성 광에 파장 잠김되고,
    상기 제 2 UPLS는 상기 OLT에 위치되는 B-대역 BLS에 의해 B대역에서 발진하여 출력된 제 2 비간섭성 광에 파장 잠김되는
    파장분할 다중방식 수동형 광 가입자망.
  10. 제 9항에 있어서,
    상기 제 1 비간섭성 광 및 상기 제 2 비간섭성 광이 각각 자연방출광(ASE) 기반의 비간섭성 광인 파장분할 다중방식 수동형 광 가입자망.
  11. 제 8항에 있어서,
    상기 제 1 UPLS 및 상기 제 2 UPLS는 각각 광대역 UPLS또는 다파장의 UPLS로 구현되는 파장분할 다중방식 수동형 광 가입자망.
  12. 제 8항 내지 제 11항 중 어느 한 항에 있어서,
    상기 제 1 UPLS 및 상기 제 2 UPLS는 각각 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD) 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)인 파장분할 다중방식 수동형 광 가입자망.
  13. 제 12항에 있어서,
    상기 제 1 UPLS 및 상기 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 편광에 따른 발진 파장이 서로 다른 값을 갖는 제 1편광의 빛 및 상기 제 1편광의 빛과 수직한 제 2편광의 빛을 함께 출력하는 파장분할 다중방식 수동형 광 가입자망.
  14. 제 12항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 전면 거울에 무반사 코딩을 하여 높은 주입 효율을 갖는 파장분할 다중방식 수동형 광 가입자망.
  15. 제 12항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 후면 거울에 고반사 코딩을 하여 높은 출력 파워를 갖는 파장분할 다중방식 수동형 광 가입자망.
  16. 제 12항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 바이어스 전류가 증가하면 상기 무편광 특성의 F-P LD의 편광에 따른 광출력의 세기가 증가하는 파장분할 다중방식 수동형 광 가입자망.
  17. 파장분할 다중방식 수동형 광 가입자망(WDM-PON)에 있어서,
    전화국(OLT);
    원격노드(RN: Remote Node);
    복수의 가입자(ONT)(ONT1,...,ONTn);
    상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및
    상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)
    를 포함하고,
    상기 OLT는 A대역에서 발진하여 제 1 비간섭성 광을 출력하는 A-대역 광대역 비간섭성 광원(A-대역 BLS); B대역에서 발진하여 제 2 비간섭성 광을 출력하는 B-대역 BLS; 상기 A-대역 BLS에 연결되는 제 1 서큘레이터(circulator1); 상기 B-대역 BLS에 연결되는 제 2 서큘레이터(circulator2); 상기 제 1 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 1 도파로 배열 격자(AWG1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 제 1 AWG에 각각 연결되는 제 1 WDM 필터(WDM1); 상기 제 1 서큘레이터, 상기 제 2 서큘레이터 및 상기 SMF에 각각 연결되는 제 2 WDM 필터(WDM2); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함하며,
    상기 RN은 상기 제 2 비간섭성 광을 n 개의 그룹으로 필터링하도록 n개의 출력 포트를 구비한 제 2 도파로 배열 격자(AWG2)를 포함하고,
    상기 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하며,
    상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 3 WDM 필터(WDM3); 상기 제 3 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 3 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고,
    상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 4 WDM 필터(WDM4); 상기 제 4 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 4 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며,
    상기 제 1 광송신기(Tx)는 상기 제 1 비간섭성 광에 파장 잠김된 제 1 무편광 광원(UPLS); 및 상기 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고,
    상기 제 2 광송신기(Tx)는 상기 제 2 비간섭성 광에 파장 잠김된 제 2 UPLS; 및 상기 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하며,
    상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고,
    상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는
    파장분할 다중방식 수동형 광 가입자망.
  18. 제 17항에 있어서,
    상기 제 1 UPLS 및 상기 제 2 UPLS는 각각 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD) 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)인 파장분할 다중방식 수동형 광 가입자망.
  19. 제 18항에 있어서,
    상기 제 1 UPLS 및 상기 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 편광에 따른 발진 파장이 서로 다른 값을 갖는 제 1편광의 빛 및 상기 제 1편광의 빛과 수직한 제 2편광의 빛을 함께 출력하는 파장분할 다중방식 수동형 광 가입자망.
  20. 제 18항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 전면 거울에 무반사 코딩을 하여 높은 주입 효율을 갖는 파장분할 다중방식 수동형 광 가입자망.
  21. 제 18항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 후면 거울에 고반사 코딩을 하여 높은 출력 파워를 갖는 파장분할 다중방식 수동형 광 가입자망.
  22. 제 18항에 있어서,
    상기 복수의 무편광 광원(UPLS)이 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 바이어스 전류가 증가하면 상기 무편광 특성의 F-P LD의 편광에 따른 광출력의 세기가 증가하는 파장분할 다중방식 수동형 광 가입자망.
  23. 제 17항 또는 제 18항에 있어서,
    상기 제 1 비간섭성 광 및 상기 제 2 비간섭성 광이 각각 자연방출광(ASE) 기반의 비간섭성 광인 파장분할 다중방식 수동형 광 가입자망.
  24. 파장분할 다중방식 수동형 광 가입자망(WDM-PON)에 있어서,
    전화국(OLT);
    원격노드(RN: Remote Node);
    복수의 가입자(ONT)(ONT1,...,ONTn);
    상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및
    상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)
    를 포함하고,
    상기 OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 및 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx)를 포함하며,
    상기 RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함하고,
    상기 복수의 ONT(ONT1,...,ONTn)는 각각 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하며,
    상기 제 1 광송수신기(TRx)는 각각 상기 제 1 AWG 를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하고,
    상기 제 2 광 송수신기(TRx)는 각각 상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2); 상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 송신하는 제 2 광송신기(Tx); 및 상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx)를 포함하며,
    상기 제 1 광송신기(Tx)는 광대역 또는 다파장의 제 1 무편광 광원(UPLS); 및 상기 광대역 또는 다파장의 제 1 UPLS를 변조하기 위한 제 1 구동회로(Driver)를 포함하고, 상기 제 2 광송신기(Tx)는 광대역 또는 다파장의 제 2 UPLS; 및 상기 광대역 또는 다파장의 제 2 UPLS를 변조하기 위한 제 2 구동회로(Driver)를 포함하고,
    상기 제 1 광수신기(Rx)는 전송된 상기 상향 데이터 광신호를 전기신호로 변환하는 제 1 포토다이오드(PD)를 포함하고, 상기 제 2 광수신기(Rx)는 전송된 상기 하향 데이터 광신호를 전기신호로 변환하는 제 2 PD를 포함하는
    파장분할 다중방식 수동형 광 가입자망.
  25. 제 24항에 있어서,
    상기 광대역 또는 다파장의 제 1 UPLS 및 상기 광대역 또는 다파장의 제 2 UPLS는 각각 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD) 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)인 파장분할 다중방식 수동형 광 가입자망.
  26. 제 25항에 있어서,
    상기 광대역 또는 다파장의 제 1 UPLS 및 상기 광대역 또는 다파장의 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 편광에 따른 발진 파장이 서로 다른 값을 갖는 제 1편광의 빛 및 상기 제 1편광의 빛과 수직한 제 2편광의 빛을 함께 출력하는 파장분할 다중방식 수동형 광 가입자망.
  27. 제 25항에 있어서,
    상기 광대역 또는 다파장의 제 1 UPLS 및 상기 광대역 또는 다파장의 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 전면 거울에 무반사 코딩을 하여 높은 주입 효율을 갖는 파장분할 다중방식 수동형 광 가입자망.
  28. 제 25항에 있어서,
    상기 광대역 또는 다파장의 제 1 UPLS 및 상기 광대역 또는 다파장의 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 후면 거울에 고반사 코딩을 하여 높은 출력 파워를 갖는 파장분할 다중방식 수동형 광 가입자망.
  29. 제 25항에 있어서,
    상기 광대역 또는 다파장의 제 1 UPLS 및 상기 광대역 또는 다파장의 제 2 UPLS가 각각 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 바이어스 전류가 증가하면 상기 무편광 특성의 F-P LD의 편광에 따른 광출력의 세기가 증가하는 파장분할 다중방식 수동형 광 가입자망.
  30. 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망(WDM-PON)에 있어서,
    전화국(OLT);
    원격노드(RN: Remote Node);
    복수의 가입자(ONT)(ONT1,...,ONTn);
    상기 OLT과 상기 RN을 연결하는 단일 모드 광섬유(SMF); 및
    상기 RN과 상기 복수의 ONT(ONT1,...,ONTn)를 연결하는 복수의 분배 광섬유(DF1,...,DFn)
    를 포함하고,
    상기 OLT는 n개의 출력 포트를 구비한 제 1 AWG(AWG1); 상기 제 1 AWG에 각각 연결되는 n개의 제 1 광송수신기(TRx); 방송 신호로 변조된 광신호를 출력하는 광대역 또는 다파장의 무편광 광원(UPLS); 및 상기 방송 신호로 변조된 광신호를 상기 제 1 AWG에서 다중화된 하향 데이터 광신호와 결합시키기 위한 WDM 필터(WDM)를 포함하고,
    상기 제 1 광송수신기(TRx)는 상기 제 1 AWG를 통해 분리된 상향 데이터 광신호가 입력되는 제 1 WDM 필터(WDM1); 상기 제 1 WDM 필터에 연결되며 상기 하향 데이터 광신호를 송신하는 제 1 광송신기(Tx); 및 상기 제 1 WDM 필터에 연결되며 상기 상향 데이터 광신호를 수신하는 제 1 광수신기(Rx)를 포함하며,
    상기 RN은 n개의 출력 포트를 구비한 제 2 AWG(AWG2)를 포함하고,
    상기 복수의 ONT(ONT1,...,ONTn)는 상기 제 2 AWG에 각각 연결되는 n개의 제 2 광송수신기(TRx)를 포함하고,
    상기 제 2 광송수신기(TRx)는 각각
    상기 제 2 AWG를 통해 분리된 상기 하향 데이터 광신호가 입력되는 제 2 WDM 필터(WDM2);
    상기 제 2 WDM 필터에 연결되며 상기 상향 데이터 광신호를 전달하는 제 2 광송신기(Tx);
    상기 제 2 WDM 필터에 연결되며 상기 하향 데이터 광신호를 수신하는 제 2 광수신기(Rx2); 및
    상기 제 2 WDM 필터에 연결되며 상기 광대역 또는 다파장의 UPLS에서 출력된 상기 방송 신호로 변조된 광신호를 수신하는 제 3 광수신기(Rx3)
    를 포함하는
    방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
  31. 제 30항에 있어서,
    상기 광대역 또는 다파장의 UPLS는 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD) 또는 무편광 특성의 반사형 반도체 광증폭기(RSOA)인 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
  32. 제 31항에 있어서,
    상기 광대역 또는 다파장의 UPLS가 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 편광에 따른 발진 파장이 서로 다른 값을 갖는 제 1편광의 빛 및 상기 제 1편광의 빛과 수직한 제 2편광의 빛을 함께 출력하는 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
  33. 제 31항에 있어서,
    상기 광대역 또는 다파장의 UPLS가 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 전면 거울에 무반사 코딩을 하여 높은 주입 효율을 갖는 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
  34. 제 31항에 있어서,
    상기 광대역 또는 다파장의 UPLS가 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 상기 무편광 특성의 F-P LD는 후면 거울에 고반사 코딩을 하여 높은 출력 파워를 갖는 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
  35. 제 31항에 있어서,
    상기 광대역 또는 다파장의 UPLS가 상기 무편광 특성의 페브리 페롯 레이저 다이오드(F-P LD)인 경우, 바이어스 전류가 증가하면 상기 무편광 특성의 F-P LD의 편광에 따른 광출력의 세기가 증가하는 방송 신호와 통신 신호를 전송하는 파장분할 다중방식 수동형 광 가입자망.
PCT/KR2010/002585 2009-04-30 2010-04-23 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망 WO2010126258A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10769903.5A EP2429100A4 (en) 2009-04-30 2010-04-23 LIGHT SOURCE FOR WAVELENGTH DIVISION MULTIPLEXING OPTICAL COMMUNICATIONS FOR HIGH SPEED TRANSMISSION OF OPTICAL SIGNAL THROUGH AN UN POLARIZED LIGHT SOURCE, AND PASSIVE OPTICAL NETWORK THUS MULTIPLEXED COMPRISING SAME
US13/318,318 US20120106965A1 (en) 2009-04-30 2010-04-23 optical source for wavelength division multiplexed optical network capable of high-speed transmission of an optical signal by using un-polarized light source and a wavelength division multiplexed-passive optical network having the same
CN2010800227829A CN102449937A (zh) 2009-04-30 2010-04-23 能够使用非偏振光源来高速传输光学信号的波分复用光纤网络的光源以及具有该光源的波分复用无源光纤网络

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0038002 2009-04-30
KR1020090038002A KR101195255B1 (ko) 2009-04-30 2009-04-30 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망

Publications (2)

Publication Number Publication Date
WO2010126258A2 true WO2010126258A2 (ko) 2010-11-04
WO2010126258A3 WO2010126258A3 (ko) 2011-01-13

Family

ID=43032661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002585 WO2010126258A2 (ko) 2009-04-30 2010-04-23 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망

Country Status (5)

Country Link
US (1) US20120106965A1 (ko)
EP (1) EP2429100A4 (ko)
KR (1) KR101195255B1 (ko)
CN (1) CN102449937A (ko)
WO (1) WO2010126258A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710361B (zh) * 2012-06-01 2015-09-30 华为技术有限公司 一种分布式基站信号传输系统及通信系统
CN102710576B (zh) * 2012-06-15 2015-08-12 上海大学 相干检测无色正交频分复用波分复用无源光网络系统和传输方法
US9197352B2 (en) 2013-03-11 2015-11-24 Google Inc. Increasing the capacity of a WDM-PON with wavelength reuse

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361035A3 (de) * 1988-09-27 1990-10-31 Siemens Aktiengesellschaft Halbleiterlaseranordnung und Verfahren zu ihrem Betrieb
KR100680815B1 (ko) * 2004-11-09 2007-02-08 한국과학기술원 Fp- ld의 상호 주입을 이용한 광대역 비간섭성 광원을주입하여 파장 고정된 fp- ld의 광 변조방법 및 그시스템
KR100703388B1 (ko) * 2004-12-29 2007-04-03 삼성전자주식회사 광송수신기 및 이를 이용한 수동형 광가입자망
KR100703470B1 (ko) * 2005-04-18 2007-04-03 삼성전자주식회사 파장분할다중 방식의 광원 및 이를 이용한 수동형광가입자망
KR100736692B1 (ko) * 2006-01-09 2007-07-06 한국과학기술원 저잡음 특성의 광대역 비간섭성 광원을 주입하여 파장잠김된 패브리 페롯 레이저 다이오드의 파장 무의존성동작을 구현하는 파장분할 다중방식 수동형 광 가입자망
KR100786040B1 (ko) * 2006-05-19 2007-12-17 한국과학기술원 높은 스펙트럼 효율을 구비한 전송 포맷을 이용하여 고속광신호 전송이 가능한 파장 분할 다중방식 수동형 광가입자망
EP2146410A1 (en) * 2008-07-18 2010-01-20 Alcatel, Lucent Method of and photonic device for eliminating or substantially reducing sensitivity to polarization of an injected optical signal and method of manufacturing such photonic device.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYUN-DEOK KIM ET AL.: "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser", IEEE PHOTON, TECHNOL. LETT., vol. 12, no. 8, August 2000 (2000-08-01), pages 1067 - 1069
See also references of EP2429100A4

Also Published As

Publication number Publication date
US20120106965A1 (en) 2012-05-03
CN102449937A (zh) 2012-05-09
KR20100119078A (ko) 2010-11-09
WO2010126258A3 (ko) 2011-01-13
EP2429100A4 (en) 2015-01-07
EP2429100A2 (en) 2012-03-14
KR101195255B1 (ko) 2012-10-29

Similar Documents

Publication Publication Date Title
KR100786040B1 (ko) 높은 스펙트럼 효율을 구비한 전송 포맷을 이용하여 고속광신호 전송이 가능한 파장 분할 다중방식 수동형 광가입자망
KR100875922B1 (ko) Wdm 수동형 광가입자망에서의 파장 무의존 광원을이용한 하향 광송신 장치 및 그 방법과, 그를 이용한광선로 종단 시스템
US8238753B2 (en) Optical line terminal
KR101087263B1 (ko) 파장 가변 레이저의 발진 파장을 조절하는 장치 및 방법, 및 이를 구비한 파장 분할 다중방식 수동형 광 가입자망
US8073334B2 (en) Optical modulation method and system in wavelength locked FP-LD by injecting broadband light source using mutually injected FP-LD
EP1887724B1 (en) A wavelength division multiplexing passive optical network and its implement method
KR100785436B1 (ko) 방송 서비스와 통신 서비스를 융합한 파장분할 다중방식수동형 광 가입자망
US7421206B2 (en) Optical transceiver for transmitting light source control information and optical network using the same
US20080131125A1 (en) Loopback-type wavelength division multiplexing passive optical network system
WO2010093195A2 (ko) 저잡음 다파장 광원을 구비한 저잡음 광신호의 전송 장치, 저잡음 다파장 광원을 이용한 방송 신호 전송 장치, 및 이를 구비한 광가입자망
WO2007143931A1 (fr) Réseau optique passif à multiplexage par répartition en longueur d'onde wavelena
CN101719804A (zh) 一种波分复用无源光网络中无色onu的实现方法和装置
KR101103686B1 (ko) 파장 분할 다중화 방식의 수동형 광가입자망 시스템, 및 데이터 전송 방법
WO2010126258A2 (ko) 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망
Park et al. An evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies
CN105516831B (zh) 基于微波光子滤波的光接入网的拉曼抑制系统
KR100916858B1 (ko) 다중의 주입 전극을 구비한 다중 모드 레이저 다이오드를사용하는 파장 분할 다중방식 수동형 광 가입자망
AU2017225642B2 (en) Agrregator-based cost-optimized communications topology for a point-to-multipoint network
KR100767898B1 (ko) 광동축 혼합망과 광파장 다중화 전송망에서 광선로를공용하는 광전송 시스템 및 방법
KR20070084966A (ko) 발광다이오드를 이용한 파장분할 다중화 방식 수동형광가입자망 시스템 및 이를 위한 광송수신기
US20050025484A1 (en) Wavelength-division-multiplexed passive optical network using multi-wavelength lasing source and reflective optical amplification means
Berrettini et al. Colorless WDM-PON performance improvement exploiting a service-ONU for multiwavelength distribution
KR100932899B1 (ko) Wdm-pon의 광선로 종단 시스템에서 파장 무의존 하향광송신 장치 및 방법
KR101106789B1 (ko) 이득포화 효과를 가지는 광원을 이용한 잡음 억제 장치 및 방법, 및 이를 구비한 광가입자망
JP2002314507A (ja) スペクトルスライス光伝送方法および伝送装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022782.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769903

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010769903

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13318318

Country of ref document: US