WO2010124653A1 - 连铸机结晶器及其温度检测装置 - Google Patents

连铸机结晶器及其温度检测装置 Download PDF

Info

Publication number
WO2010124653A1
WO2010124653A1 PCT/CN2010/072381 CN2010072381W WO2010124653A1 WO 2010124653 A1 WO2010124653 A1 WO 2010124653A1 CN 2010072381 W CN2010072381 W CN 2010072381W WO 2010124653 A1 WO2010124653 A1 WO 2010124653A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper plate
detecting device
continuous casting
temperature detecting
inner sleeve
Prior art date
Application number
PCT/CN2010/072381
Other languages
English (en)
French (fr)
Inventor
田陆
黎锋果
Original Assignee
湖南镭目科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南镭目科技有限公司 filed Critical 湖南镭目科技有限公司
Publication of WO2010124653A1 publication Critical patent/WO2010124653A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal

Definitions

  • the invention relates to the field of continuous casting automation control, in particular to a continuous casting machine crystallizer and a temperature detecting device thereof. Background of the invention
  • the molten steel flows from the big bag through the long nozzle protection sleeve into the tundish, and then enters the crystallizer through the nozzle.
  • the mold is poorly slag, the casting speed is too fast, or other reasons lead to the birth.
  • the shell is in contact with the crystallizer copper plate to form a bond and cause steel leakage, resulting in huge economic losses.
  • the primary green shell When the continuous casting machine is normally produced, the primary green shell is not in direct contact with the crystallizer copper plate, and the protective slag liquid is interposed therebetween, and the temperature of the crystallizer copper plate is stable. When bonded, the green shell is in direct contact with the mold copper plate, and the temperature of the mold copper plate rises rapidly. Therefore, by detecting the temperature change of the mold copper plate, the leakage steel can be pre-treated and treated to avoid the occurrence of steel leakage accidents.
  • the steel leakage forecast temperature sensor used in the continuous casting production of steelworks usually adopts the welding structure, and the thermocouple wire or the thermal resistance wire of the temperature sensor is directly welded to the copper plate of the continuous casting machine mold, but this way It is not easy to disassemble, and the temperature measurement error of the thermocouple wire is not well controlled, and the error of the thermocouple wire itself cannot be calibrated. Summary of the invention
  • Embodiments of the present invention provide a temperature detecting device that is structurally simple, easy to install, and protected from water seepage.
  • Embodiments of the present invention also provide a continuous casting machine crystallizer having a temperature detecting device.
  • the embodiment of the invention provides a continuous casting machine crystallizer temperature detecting device, comprising: an outer sleeve adapted to pass through a crystallizer water tank and sealingly matched with the crystallizer copper plate; the inner sleeve is disposed in the outer sleeve, and has The waterproof protection end of the outer sleeve is extended; and the temperature sensing component is disposed in the inner sleeve to sense the temperature of the crystallizer copper plate.
  • the outer sleeve is screwed to the mold copper plate, and the waterproof protection end of the inner sleeve is closed.
  • the outer sleeve is provided with an elastic member and a nut, and one end of the elastic member is pressed into the sleeve on the inner side, and the other end is pressed on the nut.
  • the inner sleeve penetrates the nut.
  • the inner sleeve is screwed into the outer sleeve and is provided with an elastic anti-loose member.
  • the inner sleeve is screwed to the crystallizer copper plate, the waterproof protection end is open, and is sealingly matched with the mold copper plate.
  • the temperature sensing component includes: a body, a screw cap located at an end of the body, and a signal socket connected to the body.
  • the temperature sensing component further includes an elastic component and a sleeve sleeved on the body, and the body is provided with a shoulder.
  • an embodiment of the present invention provides a continuous casting machine crystallizer, wherein each side wall constituting the continuous casting machine crystallizer comprises a copper plate and a water tank located outside the copper plate, wherein at least one side wall is provided with a connection through the water tank.
  • the at least one temperature detecting device according to the above structure to the crystal copper plate, the outer sleeve or the inner sleeve of the temperature detecting device is screwed into the mounting hole of the copper plate.
  • the outer side wall of the water tank is provided with a wire trough and a wire trough.
  • an outer sleeve and an inner sleeve are provided, and the outer sleeve is sealingly matched with the mold copper plate to prevent water seepage, and the end portion of the inner sleeve forms a waterproof protection portion, and the temperature sensing portion of the temperature sensing component Form a closed or sealed waterproof protection.
  • FIG. 1 shows a temperature detecting device according to a first embodiment of the present invention
  • FIG. 2 shows a temperature detecting device according to a second embodiment of the present invention
  • FIG. 3 shows a third according to the present invention.
  • the temperature detecting device of the embodiment
  • FIG. 4 shows the temperature detecting device according to the fourth embodiment of the present invention
  • FIG. 5 shows a modification of the embodiment of the temperature detecting device shown in FIG. 4;
  • Figure 6 is a view showing the structure of a temperature sensing unit in the temperature detecting device according to the present invention.
  • Figure 7 is a view showing another configuration of the temperature sensing unit in the temperature detecting device according to the present invention.
  • Figure 8 is a view showing a temperature detecting device according to a fifth embodiment of the present invention
  • Figure 9 is a partially enlarged view showing the temperature detecting device shown in Figure 8;
  • Figure 10 is a view showing the temperature detecting device according to the sixth embodiment of the present invention in the case where the outer tube is tightened;
  • Fig. 11 is a view showing the temperature detecting device of the sixth embodiment of the present invention in the case where the outer casing is retracted.
  • Figure 12 shows a perspective view of a continuous casting machine crystallizer according to the present invention
  • Figure 13 shows another perspective view of the continuous casting machine crystallizer shown in Figure 12. Mode for carrying out the invention
  • Fig. 1 shows a temperature detecting device according to a first embodiment of the present invention.
  • a mounting hole 7A is provided in the copper plate 7 of the continuous casting machine crystallizer, and the temperature detecting means is screwed into the mounting hole 7A.
  • the temperature detecting device comprises: an outer sleeve 3 adapted to be connected to the crystallizer copper plate 7; an inner sleeve 2 penetrating in the outer sleeve 3, the one end 2A of which is in contact with the crystallizer copper plate 7 And a closed end; a temperature sensing component 1 disposed in the inner sleeve 2 for detecting the temperature of the crystallizer copper plate 7.
  • the temperature detecting device in this embodiment further includes: an elastic member 4 biased toward the inner sleeve 2 so as to be pressed on the copper plate 7 after the temperature detecting device is mounted to the crystallizer copper plate 7, and the copper plate is detected. 7 temperature; a nut 6 which is screwed into the inner sleeve 2 to press against the elastic member 4. By changing the screwing length of the nut 6, the biasing force of the elastic member 4 can be predetermined.
  • the end of the outer sleeve 3 is screwed into the copper plate 7, and the outer sleeve 3 is sleeved with a waterproof gasket 5, which can close the gap to prevent the gap from being screwed. Water seepage.
  • the outer sleeve 3 is screwed into the copper plate 7, and the inner sleeve 2 is in contact with the copper plate 7, and the inner and outer sleeves are separated. Therefore, when the outer sleeve 3 is loosened or the outer sleeve 3 is not well sealed with the copper plate, the inner sleeve 2 is in close contact with the copper plate under the action of the pressing force of the elastic member 4, forming a second re-sealing.
  • the outer sleeve 3 is screwed to the copper plate 7, it is not easy to loosen and is not easy to seep, and has a good fixing and sealing action.
  • the outer sleeve contacts the copper plate, and the thermocouple passes through the outer sleeve and detects the temperature of the copper plate, so that when the outer sleeve is loose or the contact is not tightly sealed, the water is easily removed from the outer sleeve.
  • the contact between the tube and the copper plate infiltrates, thereby affecting the accuracy of the temperature measurement ⁇ 1".
  • FIG. 2 shows a temperature detecting device according to a second embodiment of the present invention. As shown in FIG. 2, this embodiment differs from the first embodiment in that: the inner sleeve 2 penetrates the nut 6, and the temperature sensing assembly 1 passes.
  • the screwing portion 1A is screwed and fixed to the inner sleeve 2 .
  • the temperature sensing component 1 can also be connected to the inner sleeve 2 by other means, such as a bayonet connection.
  • FIG. 3 shows a temperature detecting device according to a third embodiment of the present invention.
  • a waterproof pad 10 is further provided at the end of the outer sleeve.
  • the waterproof mat 10 functions to double seal the water seepage gap to ensure that there is no water seepage at the portion where the inner sleeve 2 and the mold copper plate 7 are in close contact with each other, thereby affecting accurate measurement of temperature.
  • FIG. 4 shows a temperature detecting device according to a fourth embodiment of the present invention.
  • the inner sleeve 2 is provided with a screw portion 4A, and the inner sleeve 2 is directly screwed to the outer sleeve by the screw portion 4A.
  • tube 3 Further, a stepped surface 3A is disposed in the outer sleeve 3A, and a boss 2B is disposed on the outer wall of the inner sleeve 2.
  • a compression spring is disposed between the stepped surface 3A and the boss 2B to prevent the threaded connection from being loosened by the vibration of the crystallizer.
  • Figure 5 shows a variation of the embodiment of the temperature sensing device shown in Figures 1-4.
  • the end of the inner sleeve 2 is open, and a sealing jaw 10 is provided between the end of the inner sleeve 2 and the mold copper plate 7 to achieve a sense of the inner sleeve 2. Protection of the temperature components.
  • Fig. 6 shows a structure of a temperature sensing unit in the temperature detecting device according to the present invention.
  • the temperature sensing component 1 includes a body 11 , a sleeve 13 sleeved on the body 11 , and a spring 14 biased toward the sleeve 13 .
  • the body 11 is provided with a shoulder 12 near the end temperature sensing portion.
  • the beginning end of the body 11 is provided with a screwing portion 15
  • the signal socket 16 is electrically connected to the signal line of the screwing portion 15 .
  • the signal socket 16 can be used for connecting an external signal plug 17 , and the signal line can be realized by setting a signal plug and a socket. Quick connection and easy operation.
  • the temperature sensing component 1 when the temperature sensing component fails, it can be quickly connected, which can reduce the disadvantages of the existing wiring method (reconnecting the signal cable after re-connection), save operating time, and avoid the negative impact of wiring operation on the work site. .
  • the temperature sensing component 1 may also directly connect the signal line without setting the signal socket 16.
  • the end temperature sensing portion of the body 11 may be formed of a thermocouple or a thermistor.
  • the spring 14 is biased toward the sleeve 13, so that the end temperature sensing portion of the body is always in good thermal conduction with the closed end 2A of the inner sleeve. .
  • Fig. 7 shows another structure of a temperature sensing assembly in the temperature detecting device according to the present invention.
  • the temperature sensing component of the structure is different from the temperature sensing component shown in FIG. 6 in that the body 11 of the temperature sensing component comprises a screwing portion 15, a wrench portion 16 and a signal socket 17, which are directly screwed into the inner sleeve 2
  • the end temperature sensing portion of the body 11 is used to sense temperature changes.
  • an elastic gasket may be provided to prevent loosening.
  • 8 and 9 show a temperature detecting device according to a fifth embodiment of the present invention.
  • the temperature detecting means extends through the water tank 7, the end of the outer sleeve 3 abuts against the surface 7B of the crystallizer copper plate 7, and is provided with a sealing jaw or pad 5 for forming a first resealing.
  • the mold copper plate 7 is provided with a mounting hole 7A (for example, a threaded hole) for screwing the lower end of the inner sleeve 2, and the end of the inner sleeve 2 is provided with a sealing jaw or pad 10 for forming a second resealing.
  • the outer sleeve 3 is provided with internal threads
  • the inner sleeve 2 is provided with external threads
  • the inner sleeve 2 is screwed into the outer sleeve 3
  • the inner sleeve 2 is screwed onto the crystallizer copper plate 7, at which end the end of the inner sleeve 2
  • the portion may not be closed, and the end temperature sensing portion of the temperature sensing component in the inner sleeve 2 may directly contact the copper plate.
  • the inner sleeve 2 and the outer sleeve 3 may be provided with a anti-loose member such as a coil spring or a spring pad to prevent slack.
  • the sealing jaw or pad 5 prevents water from penetrating into the inner sleeve from the outer sleeve 3. Even if water permeates from the outer casing 3 into the inner casing 2, since the inner casing 2 is screwed into the crystallizer copper plate 7, the screw connection itself prevents the water from further penetrating into the temperature measuring zone of the temperature sensing component. Moreover, the end of the inner sleeve 2 is provided with a sealing or pad 10, which can further prevent water from penetrating into the temperature measuring area of the temperature sensing component, thereby improving the accuracy of temperature measurement.
  • the temperature detecting device comprises: an outer sleeve 3 adapted to pass through the crystallizer water tank and screwed to the crystallizer copper plate 7; the inner sleeve 2 is located at one end of the outer sleeve 3 near the crystallizer copper plate 7.
  • the utility model has a waterproof protection end which can extend out of the outer sleeve 3; the temperature sensing component 1 is disposed in the inner sleeve 2 to sense the temperature of the crystallizer copper plate 7.
  • the temperature sensing component 1 can be connected to the inner sleeve 2; or, since the inner sleeve 2 of the embodiment is short, the temperature sensing component 1 can also be connected to the outer sleeve 3.
  • the inner sleeve 2 is disposed inside the outer sleeve 3, and can be freely stretched to a certain extent.
  • the waterproof protective end of the inner sleeve 2 may be closed or open.
  • the waterproof protective end When the waterproof protective end is opened, it may include a sealing jaw 10 disposed at an end thereof to facilitate formation of a seal at the bottom of the mold copper plate 7.
  • a lock 25 can also be provided around the inner sleeve 2. If water penetrates from the thread, the seal 25 prevents water from flowing back from the gap between the inner sleeve 2 and the outer sleeve 3 until the temperature measuring zone of the temperature sensing unit 1.
  • the end of the inner sleeve 2 may be provided with a recess for providing the sealing jaw 10.
  • a groove may also be provided around the sleeve 2 for providing the sealing jaw 25.
  • the outer sleeve 3 has a "convex" shape transversely disposed along the central axis thereof, and the lower half of the font is located near the end of the crystallizer copper plate 7, and is used for mounting the inner sleeve.
  • the outer sleeve 3 is screwed to the mold copper plate 7, and the screw itself forms a seal, which is the first resealing.
  • the inner casing 2 and the sealing cymbal 10 at the bottom of the inner casing 2 are in close contact with the crystallizer copper plate 7, and the shape is also secondarily sealed.
  • the screw seal of the outer sleeve 3 and the mold copper plate 7 is not good, or the outer sleeve 3 is loosened or loosened due to crystallizer vibration or other reasons, water may penetrate from the screw joint, but the inner sleeve 2 is elastic.
  • the pressing force of the element 4 squeezes the sealing sleeve 10 at the bottom of the inner sleeve 2 and the inner sleeve 2 to closely contact the crystallizer copper plate 7, and the water does not enter the temperature measuring area of the temperature sensing component 1, thereby ensuring the accuracy of temperature measurement.
  • Figures 12 and 13 show perspective views of a continuous casting machine crystallizer in accordance with the present invention.
  • the first side wall 20A, the second side wall 20B, the third side wall 20C and the fourth side wall 20D constituting the continuous casting machine crystallizer 20 form a crystallizer molten steel section 20E, each of which includes a copper plate 7 respectively.
  • a water tank 7 located outside the copper plate, and each side wall is provided with a temperature detecting device mounting hole 21 penetrating through the water tank 7, and the copper plate 7, and the temperature detecting device
  • the fitting hole 21 may be an existing hole for connecting the water tank and the copper plate, or may be a separately machined hole for the temperature detecting device to be installed therein.
  • At least one row of temperature detecting device mounting holes 21 is provided on each side wall of the continuous casting machine crystallizer, and the outer wall of the water tank 7 is provided with a wire trough 22 connected to the temperature detecting device mounting hole 21 and assembled
  • the wire trough 23 of the wire trough 21 is connected to the end of the wire trough 23, and the signal lead of the temperature detecting device is led out to the outside of the crystallizer through the wire trough, the wire trough, and the outlet pipe.
  • two rows of temperature detecting devices are provided, wherein the wire chute 23 extends through a row of temperature detecting device mounting holes 21, and the other row of temperature detecting device mounting holes 21 passes obliquely.
  • the wire slot 21 is in communication with the wireway slot to facilitate signal maintenance of the temperature detecting device.
  • the crystallizer can be installed with a plurality of temperature detecting devices. If there is no wire trough, the cables of the temperature sensing component 1 are all exposed, and installation and maintenance are inconvenient. In addition, once the steel overflow occurs, the molten steel flows out and it is likely to burn the cable of the temperature sensing component 1, causing serious damage. When the cable trough is provided, the cable of the temperature sensing component 1 is completely hidden inside the cable trough, and even if the molten steel flows out, the cable can be protected to a certain extent, thereby protecting the temperature sensing component 1 and being convenient for installation and maintenance.
  • a thermal pad can be placed between the inner sleeve and the copper plate to improve thermal conductivity.
  • the inner sleeve can be made of a material having different thermal conductivity properties, for example, the material forming the closed end of the inner sleeve can have a higher thermal conductivity than the material of the other portion.
  • the temperature detecting device of the present invention can also be applied to a continuous casting machine crystallizer in which the wire trough 21 and the wire chute 23 are not provided.
  • the outer sleeve and the inner sleeve, the outer sleeve and the mold copper plate are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Continuous Casting (AREA)

Description

连铸机结晶器及其温度检测装置
技术领域
本发明涉及连铸自动化控制领域, 尤其涉及一种连铸机结晶器及其 温度检测装置。 发明背景
在连铸工艺的生产过程中, 钢液从大包通过长水口保护套管流入中 间包, 再经水口进入结晶器, 由于结晶器保护渣融渣不良、 拉坯速度过 快或其它原因导致初生坯壳与结晶器铜板接触, 形成粘结而产生漏钢, 造成巨大的经济损失。
在连铸机正常生产时, 初生坯壳不与结晶器铜板直接接触, 中间隔 着保护渣液, 结晶器铜板温度稳定。 粘结时, 初生坯壳与结晶器铜板直 接接触, 结晶器铜板温度迅速上升。 因此, 可以通过对结晶器铜板温度 变化的检测, 对漏钢进行预 >¾和处理, 避免漏钢事故的产生。
通常在温度检测过程中会受到水或其他因素的影响, 导致检测的温 度不准确。 目前, 炼钢厂连铸生产中所使用的漏钢预报温度传感器通常 采用碰焊结构, 直接将温度传感器的热电偶丝或热电阻丝碰焊到连铸机 结晶器铜板上, 但这种方式不易拆卸, 而且热电偶丝的测温误差柏松分 布也不好控制, 热电偶丝本身的误差也无法校准。 发明内容
本发明的实施例提供一种结构筒单、 安装方便、 免受渗水影响的温 度检测装置, 本发明的实施例还提供一种具有温度检测装置的连铸机结 晶器。 本发明实施例提供一种连铸机结晶器温度检测装置, 其包括: 外套 管, 适于穿设结晶器水箱, 并与结晶器铜板密封配合; 内套管, 设置于 外套管中, 具有可伸出外套管的防水保护端; 以及感温组件, 设置于内 套管中, 感测结晶器铜板的温度。
其中, 上述外套管螺接于结晶器铜板上, 内套管的防水保护端是封 闭的。
其中, 上述外套管中设有弹性元件和螺帽, 弹性元件的一端 4氏压内 套管上, 另一端 4氏压在螺帽上。
其中, 上述内套管贯穿螺帽。
其中, 上述内套管螺接于外套管中, 并且设有弹性防松件。
其中, 上述内套管螺接于结晶器铜板上, 防水保护端是敞口的, 并 且与结晶器铜板密封配合。
其中, 上述感温组件包括: 本体、 位于本体端部的螺接帽、 以及与 本体连接的信号插座。
其中, 上述感温组件还包括套设于本体上的弹性元件和套管, 本体 上设有挡肩。
另外, 本发明的实施例提供了一种连铸机结晶器, 构成连铸机结晶 器的各侧壁分别包括铜板和位于铜板外侧的水箱, 其中, 至少一侧壁上 设有贯穿水箱的连接至结晶器铜板的根据上述结构的至少一温度检测 装置, 温度检测装置的外套管或内套管螺接于铜板的安装孔中。
其中, 上述水箱的外侧壁上开设有走线槽和汇线槽。
在本发明的实施例温度检测装置中, 设置外套管和内套管, 外套管 与结晶器铜板密封配合, 防止渗水, 内套管的端部形成防水保护部, 对 感温组件的感温部位形成封闭或者密封防水保护。 通过这种设置, 可最 大限度地降低结晶器铜板的渗水的影响。 这样增加了感温组件的使用寿 命, 也提高了温度采集的准确度。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、 特征和优点。 下面将参照图, 对本发明的其它的目的、 特征和效果作进 一步详细的说明。 附图简要说明
构成本说明书的一部分、 用于进一步理解本发明的附图示出 了本发明的优选实施例,并与说明书一起用来说明本发明的原理。 图中:
图 1示出了才艮据本发明第一实施例的温度检测装置; 图 2示出了才艮据本发明第二实施例的温度检测装置; 图 3示出了才艮据本发明第三实施例的温度检测装置; 图 4示出了才艮据本发明第四实施例的温度检测装置; 图 5示出了图 4所示温度检测装置实施例的变型;
图 6 示出了才艮据本发明的温度检测装置中的感温组件的结 构;
图 7示出了才艮据本发明的温度检测装置中的感温组件的另一 种结构;
图 8示出了才艮据本发明第五实施例的温度检测装置; 图 9示出了图 8所示温度检测装置的局部放大图;
图 10 示出了才艮据本发明第六实施例的温度检测装置在外套 管拧紧情况下的示意图;
图 11 示出了本发明第六实施例的温度检测装置在外套管回 松情况下的示意图。
图 12示出了根据本发明的连铸机结晶器的透视图; 以及 图 13示出了图 12所示连铸机结晶器的另一透视图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举具体实 施例并参照附图, 对本发明作进一步详细说明。
图 1 示出了根据本发明第一实施例的温度检测装置。 如图 1 所示, 在连铸机结晶器的铜板 7上设有安装孔 7A, 温度检测装置 螺接于安装孔 7A 中。 在本实施例中, 温度检测装置包括: 外套 管 3 , 其适于连接至结晶器铜板 7上; 内套管 2, 其穿设于外套管 3中, 其一端 2A与结晶器铜板 7相接触, 且为封闭端; 感温组件 1 , 其设置于内套管 2中, 用于检测结晶器铜板 7的温度。 进一步 地, 本实施例中的温度检测装置还包括: 弹性元件 4, 其向内套 管 2偏压, 以便在温度检测装置安装至结晶器铜板 7后、 4氏压在 铜板 7上、 检测铜板 7温度; 螺帽 6 , 其螺接在内套管 2中, 抵 压弹性元件 4, 通过改变螺帽 6 的旋拧长度, 可预定弹性元件 4 的偏压力。
在本实施例中, 外套管 3的端部螺接于铜板 7 中, 外套管 3 上套设有防水垫片 5 , 该防水垫片 5可 ^"闭螺接间隙, 以防止从 螺接间隙处渗水。
在本实施例中, 外套管 3螺接到铜板 7中, 而内套管 2却是 接触到铜板 7的, 内外套管相分离。 因此, 当外套管 3松动或是 外套管 3与铜板密封不好时, 内套管 2在弹性元件 4的压迫力的 作用下, 使内套管 2紧密接触铜板, 形成了第二重密封。 采用这 种结构, 由于外套管 3螺接到铜板 7 , 不易松懈且不容易渗水, 具有较好的固定和密封作用。 即使外套管 3松懈了, 内套管 2在 弹性元件 4的作用力下还是紧贴着铜板 7上。 因此, 如果水从外 套管 3处渗入, 但是由于内套管 2还有封闭端 2A, 水也不会进入 内套管 2中的感温元件 1的测温区, 从而保证了测温的准确' I"生。 而且, 在实际应用中, 外套管 3最多回松 3- 8度, 而实验证明外 在实际应用中, 本实施例的温度检测装置具有很好的密封性, 可 以有效地防止水进入内套管 2中。
相比地, 在传统的安装方式中, 外套管接触到铜板, 热电偶 再穿过外套管并检测铜板的温度, 这样当外套管松懈或是接触处 密封不严时, 那么水就容易从外套管与铜板的接触处渗入, 从而 影响测温的准确<1 "生。
图 2示出了根据本发明第二实施例的温度检测装置, 如图 2 所示, 本实施例与第一实施例不同之处在于: 内套管 2贯穿螺帽 6 , 感温组件 1通过螺接部 1A螺接固定至内套管 2。 感温组件 1 也可以通过其他方式与内套管 2连接, 比如卡口连接等。
图 3示出了根据本发明第三实施例的温度检测装置, 如图 3 所示, 在外套管 3上除了套设有防水垫 5之外, 在外套管的端部 还设有防水垫 10, 该防水垫 10起到双重封闭渗水间隙的作用, 以确保内套管 2与结晶器铜板 7紧贴接触的部位不存在渗水而影 响温度的准确测量。
图 4示出了根据本发明的第四实施例的温度检测装置, 如图 4所示, 内套管 2上设有螺接部 4A, 内套管 2通过螺接部 4A直 接螺接在外套管 3中。 并且外套管 3A内设有台阶面 3A, 内套管 2外壁上设有凸台 2B , 台阶面 3A和凸台 2B之间设有压缩弹簧, 以防止螺纹连接因结晶器的振动而松脱。 图 5示出了图 1-4所示温度检测装置实施例的变型。 在该变 型实施例中, 内套管 2的端部是敞口的, 并且内套管 2的端部与 结晶器铜板 7之间设有密封圏 10, 以实现对内套管 2内的感温组 件的保护。
图 6示出了根据本发明温度检测装置中的感温组件的一种结 构。 如图 6所示, 感温组件 1包括本体 11、 套设于本体 11上的套 管 13、 向套管 13偏压的弹簧 14, 本体 11的靠近末端感温部位设 有挡肩 12, 在本体 11的始端设有螺接部 15 , 信号插座 16电连接 至螺接部 15的信号线上, 该信号插座 16可用于连接外部的信号 插头 17 ,通过设置信号插头和插座,可以实现信号线的快速连接, 操作方便。 另外, 当感温组件出现故障时, 可以快速连接, 这样 可以减少现有连线方式 (将信号线剪断后重新连接) 的弊端, 节 省操作时间, 避免接线操作对工作现场所带来的负面影响。 在其 它实施例中, 感温组件 1上也可以不设置信号插座 16, 而直接引 出信号线。
本体 11的末端感温部位可以由热电偶形成,也可以由热敏电 阻构成。 当感温组件 1通过螺接部 15螺接于内套管 2时, 弹簧 14向套管 13偏压, 这样可以保证本体的末端感温部位始终与内 套管的封闭端 2A热传导良好的接触。
图 7示出了根据本发明温度检测装置中的感温组件的另一种 结构。 该结构的感温组件与图 6所示的感温组件不同之处在于, 该感温组件的本体 11 包括螺接部 15、 扳手部 16和信号插座 17 , 直接螺接于内套管 2中,本体 11的末端感温部位用于感测温度变 化。 为防止外套管 3振动松脱, 可设置弹性垫片以防松脱。 图 8和图 9示出了根据本发明第五实施例的温度检测装置。 如图所示, 温度检测装置贯穿水箱 7,, 其外套管 3的端部抵靠在 结晶器铜板 7的表面 7B , 并且设有密封圏或垫 5 , 用于形成第一 重密封。 结晶器铜板 7上开设有安装孔 7A (例如螺纹孔), 用于 螺接内套管 2的下端, 内套管 2的端部设有密封圏或垫 10, 用于 形成第二重密封。 外套管 3设有内螺纹, 内套管 2设有外螺纹, 内套管 2螺接在外套管 3中, 内套管 2螺接在结晶器铜板 7上, 此时内套管 2的端部可不封闭, 内套管 2中的感温组件的末端感 温部位可以直接与铜板相接触。
另夕卜, 在水箱 7,外, 内套管 2和外套管 3之间可设置螺旋弹 簧或弹簧垫等防松件, 以防松懈。
根据本实施例,密封圏或垫 5防止水从外套管 3渗入内套管。 即使水从外套管 3渗入内套管 2, 由于内套管 2螺接于结晶器铜 板 7中, 螺接的连接方式本身可以防止水进一步渗入感温组件的 测温区。 并且, 内套管 2的端部设有密 †圏或垫 10, 可以进一步 防止水渗入感温组件的测温区, 从而提高测温的准确性。
图 10和 11 出了根据本发明第六实施例的温度检测装置。 如 图 10和 11所示, 温度检测装置包括: 外套管 3 , 适于穿设结晶 器水箱并与结晶器铜板 7螺接; 内套管 2位于外套管 3中的靠近 结晶器铜板 7的一端, 具有可伸出外套管 3的防水保护端; 感温 组件 1 , 设置于内套管 2中, 感测结晶器铜板 7的温度。 其中, 感温组件 1可以连接到内套管 2上; 或者, 由于本实施例的内套 管 2较短, 感温组件 1也可以连接到外套管 3上。 内套管 2设置 于外套管 3里面, 可以在一定程度上自由伸缩, 内套管 2与外套 管 3之间有弹性元件 4 , 用于外套管 3回松或是没有安装好的情 况下 (如图 11所示), 可以通过弹性元件 4的紧迫力使内套管 2 紧紧的压在结晶器铜板 7上。 内套管 2的防水保护端可以是封闭, 也可以是开孔的。 当防水保护端开孔时, 其可以包括设置于其端 部的密封圏 10, 以便于在结晶器铜板 7底部形成密封。 内套管 2 周围也可以设置密 †圏 25。 如果水从螺纹处渗入, 则密 †圏 25 可以防止水从内套管 2与外套管 3的间隙处回流直到感温组件 1 的测温区。 内套管 2的端部可以设有凹槽, 用于设置密封圏 10。 套管 2的周围也可以设有凹槽, 用于设置密封圏 25。
在本实施例中, 外套管 3沿其中轴线的剖面呈横放着的 "凸" 字型, "凸,,字型的下半部分位于靠近结晶器铜板 7的一端, 且用 于安装内套管 2以及弹性元件 4。
根据本实施例, 外套管 3与结晶器铜板 7螺接, 螺接本身就 形成了密封, 这是第一重密封。 在弹性元件 4的压迫力下使内套 管 2及内套管 2底部的密封圏 10紧密接触结晶器铜板 7 , 形也第 二重密封。
如果外套管 3与结晶器铜板 7的螺接密封不好, 或是外套管 3 由于结晶器振动或其它原因造成松动或回松, 水会从螺接处渗 入, 但是由于内套管 2在弹性元件 4的压迫力挤压下内套管 2及 内套管 2底部的密封圏 10紧密接触结晶器铜板 7 , 水不会进入感 温组件 1的测温区域, 保证了测温的准确性。
图 12和图 13示出了根据本发明的连铸机结晶器的透视图。 如图所示,构成连铸机结晶器 20的第一侧壁 20A、第二侧壁 20B、 第三侧壁 20C和第四侧壁 20D形成结晶器钢水截面 20E , 各侧壁 分别包括铜板 7和位于铜板外侧的水箱 7,, 各侧壁上分别设有贯 穿水箱 7,和铜板 7的温度检测装置安装孔 21 , 该温度检测装置安 装孔 21可以是现有的连接水箱和铜板的孔,也可以是单独加工的 孔, 供温度检测装置安装于其中。
在连铸机结晶器的各侧壁上设有至少一排温度检测装置安装 孔 21 ,并且水箱 7,的外壁上开设有连接至温度检测装置安装孔 21 的走线槽 22 以及汇集各所述走线槽 21 的汇线槽 23 , 汇线槽 23 的端部连接出线管, 温度检测装置的信号引线通过走线槽、 汇线 槽、 出线管引出至结晶器外。
在图 10和图 11所示的实施例中, 设有两排温度检测装置, 其中汇线槽 23贯穿一排温度检测装置安装孔 21 , 另一排温度检 测装置安装孔 21通过倾斜走向的走线槽 21与汇线槽连通, 以使 温度检测装置的信号布线便于维护。
在本实施例中, 结晶器可以安装很多个温度检测装置, 如果 没有走线槽, 感温组件 1 的电缆将全部棵露在外面, 安装与维护 很不方便。 再者一旦发生溢钢, 钢水流出来很可能会烧坏感温组 件 1的电缆, 造成严重的损失。 而设置走线槽, 感温组件 1的电 缆完全藏在走线槽里面了, 就算是钢水流出来也可以从一定程度 上保护电缆, 从而保护感温组件 1 , 并且安装与维护方便。
本领域技术人员容易想到: 内套管和铜板之间可设置导热垫 片来提高导热性能。 内套管可以由不同导热性能的材料制成, 例 如构成内套管的封闭端的材料的导热性能可大于其它部位的材料 的导热性能。 本发明的温度检测装置也可以应用于未设置走线槽 21 和汇线槽 23 的连铸机结晶器上。 上述各实施例中所记载的区 别技术特征可以相互引用和组合以获得较佳实施例。
通过以上描述可以看出, 根据本发明的温度检测保护装置, 在本发 明的温度检测保护装置中, 设置外套管和内套管, 外套管与结晶器铜板 密封配合, 防止渗水, 内套管的端部形成防水保护部, 对感温组件的感 温部位形成封闭或者密封防水保护。 通过这种设置, 可最大限度地降低 结晶器铜板的渗水的影响。 这样增加了感温组件的使用寿命, 也提高了 温度采集的准确度。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内所做的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1. 一种连铸机结晶器温度检测装置, 其特征在于, 包括:
外套管 (3), 适于穿设结晶器水箱 (7,)并与所述结晶器 铜板 (7) 密封配合;
内套管 (2), 设置于外套管 (3) 中, 具有可伸出所述外 套管 (3) 的防水保护端 (2A); 以及
感温组件 ( 1), 设置于所述内套管 (2) 中, 感测所述结 晶器铜板(7) 的温度。
2. 根据权利要求 1所述的连铸机结晶器温度检测装置,其特征 在于,
所述外套管( 3 )或内套管( 2 )螺接于所述结晶器铜板( 7 ) 上。
3. 根据权利要求 2所述的连铸机结晶器温度检测装置, 其特征 在于,
所述内套管 (2) 的防水保护端 (2A)是封闭的; 或者, 所述防水保护端 (2A) 是敞口的, 并且与所述结晶器铜 板(7) 密封配合。
4. 根据权利要求 2或 3所述的连铸机结晶器温度检测装置,其 特征在于,
所述外套管 (3) 中设有弹性元件(4)和螺帽(6), 所述 弹性元件(4)的一端抵压所述内套管 (2)上, 另一端抵压在 所述螺帽 (6) 上。
5. 根据权利要求 4所述的连铸机结晶器温度检测装置,其特征 在于, 所述内套管 (2) 贯穿所述螺帽 (6)。
6. 根据权利要求 2或 3所述的连铸机结晶器温度检测装置,其 特征在于,
所述内套管(2)螺接于外套管(3) 中, 并且设有弹性防 松件 ( 9 )。
7. 根据权利要求 1所述的连铸机结晶器温度检测装置, 其特征 在于,
所述外套管( 3 )螺接于所述结晶器铜板( 7 )上; 所述内 套管(2), 位于外套管(3)中的靠近结晶器铜板(7)的一端, 且通过位于内套管 (2) 与外套管 (3)之间的弹性元件 (4) 使其接靠在结晶器铜板(7) 上。
8. 根据权利要求 6所述的连铸机结晶器温度检测装置,其特征 在于,
所述内套管 (2) 的防水保护端 (2A)是封闭的; 或者, 所述防水保护端 (2A) 是敞口的, 并且与所述结晶器铜 板(7) 密封配合。
9. 根据权利要求 8所述的连铸机结晶器温度检测装置,其特征 在于, 所述防水保护端 (2A) 通过设置于其端部的防水垫 片或防水垫圏 (10) 与所述结晶器铜板(7) 密封配合。
10. 根据权利要求 8或 9所述的连铸机结晶器温度检测装置,其 特征在于, 当所述防水保护端 (2A) 敞口时, 其周围设有 防水垫片或防水垫圏 (25)。
11. 根据权利要求 1至 10中任一项所述的连铸机结晶器温度检 测装置, 其特征在于, 所述感温组件( 1 ) 包括: 本体( 11 )、 位于本体( 11 )端 部的螺接帽 ( 15 )、 以及与本体 ( 11 ) 连接的信号插座 ( 16 )。
12. 根据权利要求 11 所述的连铸机结晶器温度检测装置, 其特 征在于,
所述感温组件 ( 1 )还包括套设于所述本体 ( 11 ) 上的弹 性元件( 14 )和套管( 13 ), 所述本体 ( 11 )上设有挡肩 ( 12 )。
13. 一种连铸机结晶器, 构成连铸机结晶器( 20 )的各侧壁分别 包括铜板 ( 7 ) 和位于铜板外侧的水箱 (7,), 其特征在于, 至少一侧壁上设有贯穿水箱(7,)的并连接至结晶器铜板 ( 7 )的根据权利要求 1至 12中任一项所述的至少一温度检测 装置,
所述温度检测装置的外套管( 3 )或内套管( 2 )螺接于所 述铜板 ( 7 ) 的安装孔 (7A ) 中。
14. 根据权利要求 13所述的连铸机结晶器, 其特征在于,
所述水箱 (7, ) 的外侧壁上开设有所述走线槽(21 )和汇 线槽 ( 23 )。
PCT/CN2010/072381 2009-04-30 2010-04-30 连铸机结晶器及其温度检测装置 WO2010124653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910136116 CN101618440B (zh) 2009-04-30 2009-04-30 连铸机结晶器及其温度检测装置
CN200910136116.7 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010124653A1 true WO2010124653A1 (zh) 2010-11-04

Family

ID=41511943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072381 WO2010124653A1 (zh) 2009-04-30 2010-04-30 连铸机结晶器及其温度检测装置

Country Status (2)

Country Link
CN (1) CN101618440B (zh)
WO (1) WO2010124653A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224161A1 (de) * 2012-12-21 2014-06-26 Siemens Vai Metals Technologies Gmbh Temperaturfühler für eine Kokille in einer Stranggießmaschine
CN107614152A (zh) * 2015-04-08 2018-01-19 新日铁住金株式会社 连续铸造用铸模

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618440B (zh) * 2009-04-30 2013-09-18 湖南镭目科技有限公司 连铸机结晶器及其温度检测装置
CN115582550A (zh) * 2022-10-17 2023-01-10 深圳市深汕特别合作区万泽精密科技有限公司 中间包、中间包的漏钢保护系统及气雾化制粉装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
US5158128A (en) * 1988-09-01 1992-10-27 Sumitec, Inc. Thermocouple for a continuous casting machine
CN2281529Y (zh) * 1996-09-19 1998-05-13 吴启书 热电偶的改良构造
CN200993606Y (zh) * 2006-12-15 2007-12-19 武汉钢铁(集团)公司 弹簧压迫接触式温度传感器
CN101618440A (zh) * 2009-04-30 2010-01-06 湖南镭目科技有限公司 连铸机结晶器及其温度检测装置
CN201394636Y (zh) * 2009-04-30 2010-02-03 湖南镭目科技有限公司 连铸机结晶器温度检测装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205436A (ja) * 2004-01-21 2005-08-04 Yamaha Motor Co Ltd 鋳造機用温度センサおよび鋳造機
CN201127983Y (zh) * 2007-11-22 2008-10-08 中国第一重型机械集团公司 一种热电偶连接装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
US5158128A (en) * 1988-09-01 1992-10-27 Sumitec, Inc. Thermocouple for a continuous casting machine
CN2281529Y (zh) * 1996-09-19 1998-05-13 吴启书 热电偶的改良构造
CN200993606Y (zh) * 2006-12-15 2007-12-19 武汉钢铁(集团)公司 弹簧压迫接触式温度传感器
CN101618440A (zh) * 2009-04-30 2010-01-06 湖南镭目科技有限公司 连铸机结晶器及其温度检测装置
CN201394636Y (zh) * 2009-04-30 2010-02-03 湖南镭目科技有限公司 连铸机结晶器温度检测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224161A1 (de) * 2012-12-21 2014-06-26 Siemens Vai Metals Technologies Gmbh Temperaturfühler für eine Kokille in einer Stranggießmaschine
CN107614152A (zh) * 2015-04-08 2018-01-19 新日铁住金株式会社 连续铸造用铸模
EP3281722A4 (en) * 2015-04-08 2018-10-31 Nippon Steel & Sumitomo Metal Corporation Mold for continuous casting

Also Published As

Publication number Publication date
CN101618440B (zh) 2013-09-18
CN101618440A (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
WO2010124653A1 (zh) 连铸机结晶器及其温度检测装置
US20110243185A1 (en) Bridge Intelligent Cable System with Built-In Fiber Grating Sensor
CN201394636Y (zh) 连铸机结晶器温度检测装置
CN203011554U (zh) 一种伸缩式测温管
JP6194368B2 (ja) 連続鋳造鋳型のための温度検知器
CN106643461A (zh) 外置传感器及监测混凝土结构内部应变的方法
TWM441751U (en) Sensing module applied to ball-screw mechanism
CN107462340A (zh) 一种超温警示螺栓
CN202938921U (zh) 一种一体式热电偶温度传感器
CN207730280U (zh) 一种高温介质在线监测流量计
CN205138650U (zh) 一种一体化无线电缆温度传感器
CN201867272U (zh) 超声波热冷量表
CN206248026U (zh) 外置传感器
CN207147656U (zh) 一种超温警示螺栓
CN211373855U (zh) 一种热电偶固定用安装座
CN203163817U (zh) 一种太阳能热水器用水位水温传感器
CN219810544U (zh) 一种线损警报器
CN205104433U (zh) 一种温度补偿型热式流量开关
CN217059094U (zh) 一种便于提高检测精度的热电偶
CN205785556U (zh) 一种设置于水管的水温度传感器
CN218628701U (zh) 一种防水温度传感器
CN216283557U (zh) 一种具有多角度感应结构的接近开关传感器
CN202013251U (zh) 摩托车用垫片式缸体温度传感器
CN221238524U (zh) 一种620l密炼机胶料温度检测装置
JPH10197351A (ja) 道路表面温度検出センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27-02-2012 )

122 Ep: pct application non-entry in european phase

Ref document number: 10769342

Country of ref document: EP

Kind code of ref document: A1