WO2010122714A1 - アンテナ評価装置及び方法 - Google Patents

アンテナ評価装置及び方法 Download PDF

Info

Publication number
WO2010122714A1
WO2010122714A1 PCT/JP2010/002243 JP2010002243W WO2010122714A1 WO 2010122714 A1 WO2010122714 A1 WO 2010122714A1 JP 2010002243 W JP2010002243 W JP 2010002243W WO 2010122714 A1 WO2010122714 A1 WO 2010122714A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
antenna
signal
transmission
trigger
Prior art date
Application number
PCT/JP2010/002243
Other languages
English (en)
French (fr)
Inventor
坂田勉
山本温
天利悟
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011510162A priority Critical patent/JPWO2010122714A1/ja
Priority to EP10766777.6A priority patent/EP2423695A4/en
Priority to CN201080002152.5A priority patent/CN102105804B/zh
Priority to US13/054,845 priority patent/US8779994B2/en
Publication of WO2010122714A1 publication Critical patent/WO2010122714A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers

Definitions

  • the present invention relates to an antenna evaluation apparatus for evaluating the performance of an antenna of a wireless communication apparatus and an antenna evaluation method using the antenna evaluation apparatus.
  • a plurality of transmitting antennas for modeling a scatterer are provided at equal intervals on a circumference having a predetermined radius, and in the vicinity of the center of each installation position of the scatterer antenna
  • An antenna evaluation device that generates spatially multiple waves has been proposed (see, for example, Patent Document 1 and Non-Patent Documents 1 to 4).
  • the transmission signal generated by the signal generator is divided into the same number of transmission signals as the number of scatterer antennas, and each divided transmission signal is transmitted through the phase shifter and the attenuator. It radiates from the corresponding scatterer antenna.
  • a desired fading environment such as a Rayleigh fading environment can be generated at the center of each installation position of the scatterer antenna by adjusting each phase shift amount of the phase shifter and each attenuation amount of the attenuator.
  • the receiving antenna of evaluation object is installed in the center of each installation position of a scatterer antenna, and the performance of the receiving antenna in a fading environment can be evaluated based on the received signal received by the receiving antenna.
  • Tsutomu Sakata et al. "Effective performance evaluation of terminal antenna by spatial fading emulator", Matsushita Technical Journal, Vol. 52, No. 5, pp. 70-75, October 2006.
  • Tsutomu Sakata et al. "Channel Capacity Measurement of MIMO Antenna with Spatial Fading Emulator", Proceedings of 2007 IEICE Society Conference, B-1-9, September 2007.
  • Tsutomu Sakata et al. "Spatial Multiple Wave Generator for Measuring Terminal MIMO Antennas with Configurable Angle Spectrum, Technical Report of IEICE, Vol. 108, No. 5, pp. 13-18, April 2008".
  • FIG. 19 is a graph showing an example of received power received using an antenna evaluation apparatus according to the prior art.
  • f D is a Doppler frequency and t is time.
  • the antenna evaluation device was used to measure the amplitude and phase of the received signal in any measurement period T1, T2 or T3 during the generation of the desired fading environment.
  • the lengths of the measurement periods T1, T2 and T3 are identical to each other, the lengths of the respective measurement periods are sufficiently compared with the period of fluctuation of the received signal. If not set long, statistical properties such as the average value of the received signal in each measurement period will differ from each other. For this reason, there is a problem that when the length of the measurement period is shortened, the evaluation accuracy of the receiving antenna is lowered.
  • An antenna evaluation apparatus comprises a plurality of N scatterer antennas provided respectively at predetermined positions different from one another, signal generation means for generating a predetermined transmission signal, and a plurality N of the transmission signals.
  • the transmission signals are distributed, and at least one of the phase and amplitude of each of the distributed transmission signals is changed, and the transmission signals after each change are radio waves from the scatterer antennas corresponding to the respective transmission signals.
  • An antenna evaluation apparatus comprising: transmitting means for respectively emitting the light; and receiving means for receiving the multiple waves of the radiated radio waves using the receiving object of evaluation object disposed substantially at the center of each position Starting the operations of the signal generating means, the transmitting means and the evaluating means including the receiving means substantially simultaneously, and based on the received multiple waves the nature of the receiving antenna Characterized by comprising a control means for evaluating.
  • control means is characterized in that the operations of the signal generation means and the reception means excluding the transmission means are substantially simultaneously stopped.
  • At least one of the signal generation means, at least one of the transmission means, and at least one of the reception means, and when the control means evaluates the reception antenna (A) selecting at least one signal generating means from the at least one signal generating means as an evaluating means to be used for evaluation, and (b) evaluating the at least one transmitting means from the at least one transmitting means (C) selecting at least one receiving means from the at least one receiving means as an evaluating means to be used for evaluation, and starting each operation of the selected evaluating means substantially simultaneously It is characterized by
  • control means is characterized in that the operations of the signal generation means and the reception means excluding the transmission means among the selected evaluation means are substantially simultaneously stopped.
  • the antenna evaluation apparatus further includes trigger generation means for generating a trigger signal and outputting the trigger signal to the evaluation means in response to a trigger generation request signal from the control means, the control means generating the trigger A request signal is generated and output to the trigger generation means, and the evaluation means is characterized by starting each operation substantially simultaneously in response to the trigger signal.
  • control means further includes trigger generation means for generating a trigger signal and outputting the trigger signal to the evaluation means, and the evaluation means substantially performs each operation in response to the trigger signal. It is characterized by starting at the same time.
  • an antenna evaluation method comprising: N plurality of scatterer antennas respectively provided at predetermined positions different from one another; signal generation means for generating a predetermined transmission signal; and N pieces of the transmission signals
  • the transmission signals are distributed, and at least one of the phase and amplitude of each of the distributed transmission signals is changed, and the transmission signals after each change are radio waves from the scatterer antennas corresponding to the respective transmission signals.
  • An antenna evaluation apparatus comprising: transmitting means for respectively emitting; and receiving means for receiving the multiple waves of the radiated radio waves using the receiving object of evaluation object disposed substantially at the center of each position.
  • the operations of the evaluation means including the signal generation means, the transmission means and the reception means are started substantially simultaneously, and based on the received multiple waves. Characterized in that it comprises a control step of evaluating the performance of the receiving antenna Te.
  • control step further includes the step of stopping the operations of the signal generation unit and the reception unit except the transmission unit substantially simultaneously.
  • the antenna evaluation device includes at least one of the signal generation means, at least one of the transmission means, and at least one of the reception means, and the control step is performed on the reception antenna.
  • the control step is performed on the reception antenna.
  • control step further includes the step of substantially simultaneously stopping each operation of the signal generation unit and the reception unit excluding the transmission unit among the selected evaluation units. I assume.
  • the antenna evaluation device further includes trigger generation means for generating a trigger signal and outputting the trigger signal to the evaluation means in response to the trigger generation request signal, and the control step is performed by the trigger.
  • the method may further include the step of generating a generation request signal and outputting the generated request signal to the trigger generation means, wherein the evaluation means starts the respective operations substantially simultaneously in response to the trigger signal.
  • control step further includes the step of generating a trigger signal and outputting the trigger signal to the evaluation means, the evaluation means starting each operation substantially simultaneously in response to the trigger signal. It is characterized by
  • each operation of the evaluation means including the signal generation means, the transmission means and the reception means used for evaluating the performance of the reception antenna is started substantially simultaneously and received. Since the performance of the receiving antenna is evaluated based on multiple waves, multiple waves are generated with high reproducibility at the installation position of the receiving antenna compared to the prior art, and evaluation of the receiving antenna can be performed in a short time and with high accuracy. Can be done.
  • FIG. 18 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control measurement device 200H of FIG. 17; It is a graph which shows an example of the received power received using the antenna evaluation apparatus which concerns on a prior art.
  • FIG. 1 is a perspective view of an essential part showing a configuration of an antenna evaluation apparatus (also referred to as a spatial multiple wave generation apparatus or a fading emulator) according to a first embodiment of the present invention
  • FIG. 2 is a multiple wave of FIG. It is a block diagram which shows the structure of control measurement apparatus 200A.
  • FIG. 3 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control and measurement apparatus 200A of FIG.
  • the antenna evaluation apparatus includes seven scatterer antennas 50a-1 to 50a-7 provided respectively at predetermined positions different from one another, and a signal generator generating a transmission signal S22a. 22a and the transmission signal S22a are divided into seven transmission signals, and the phases and amplitudes of the transmission signals after the distribution are changed, and the transmission signals after each change correspond to the transmission signals.
  • a transmitting circuit 30a that emits radio waves from scatterer antennas 50a-1 to 50a-7, and a receiving antenna 60a to be evaluated that is disposed substantially at the center of each installation position of scatterer antennas 50a-1 to 50a-7.
  • the signal used for evaluation of the performance of the reception antenna 60a In the antenna evaluation apparatus provided with the receiver 21a for receiving the multiple waves of the radiated radio wave, the signal used for evaluation of the performance of the reception antenna 60a.
  • the antenna evaluation apparatus is installed in a radio anechoic chamber, and includes scatterer antennas 50a-1 to 50a-7, which are half-wave dipole antennas, and a multiple wave control measurement apparatus 200A. Is configured.
  • the receiving antenna 60a to be evaluated is a half-wave dipole antenna that receives vertically polarized radio waves.
  • Each of the scatterer antennas 50a-1 to 50a-7 has a feeding point height H from the floor surface at each vertex of the scatterer antenna support 101 assembled in a lattice shape having a regular hexagonal shape. It is mounted vertically so that it is in position and radiates vertically polarized radio waves.
  • the scatterer antennas 50a-1 to 50a-7 are arranged at equal intervals on the circumference of the radius R.
  • the center of the position of each feeding point of the scatterer antennas 50a-1 to 50a-7 is the origin of the right-handed XYZ coordinate system
  • the upper direction is the positive direction of the Z axis with respect to the origin
  • scattering from the origin The direction toward the body antenna 50a-1 is taken as the positive direction of the Y axis.
  • the receiving antenna 60a is vertically mounted at the top of the receiving antenna support 102, which is a pole, with the feeding point set at the origin and receiving vertically polarized radio waves.
  • the scatterer antenna support base 101 and the reception antenna support base 102 are formed of a resin material such as polypropylene or vinyl chloride.
  • the height H from the floor surface of each of the scatterer antennas 50a-1 to 50a-7 and the reception antenna 60a is set to 1.5 m, and the distance R from the origin of each feed point is 1.2. It is set to 5m.
  • the multiple wave control and measurement apparatus 200A is configured to include a computer 10, a network analyzer 20a having a receiver 21a and a signal generator 22a, a transmission circuit 30a, and a trigger generation circuit 70.
  • the transmission circuit 30a includes the D / A converter 11a, the distributor 12a, and the phase shifters 13a-1 to 13a-7 provided corresponding to the scatterer antennas 50a-1 to 50a-7, respectively. It comprises a phase shift circuit 13a and an attenuation circuit 14a provided with attenuators 14a-1 to 14a-7 provided corresponding to the scatterer antennas 50a-1 to 50a-7, respectively.
  • the signal generator 20a, the transmission circuit 30a, and the receiver 21a constitute an evaluation circuit 80A for evaluating the performance of the reception antenna 60a.
  • the trigger generation circuit 70 when the trigger generation request signal S10t is received from the computer 10, the trigger generation circuit 70 generates the trigger signal S70 and outputs it to at least one of the D / A converter 11a, the signal generator 22a, and the receiver 21a.
  • the network analyzer 20a is set in the single frequency mode to generate the transmission signal S22a which is a non-modulated continuous wave signal having a frequency of 2.14 GHz in the signal generator 22a, the transmission output level is +5 dBm, and the display screen Are set to be polar coordinates of the scattering parameter S21.
  • the output terminal of the network analyzer 20 a is port 1 and the input terminal is port 2.
  • the signal generator 22a and the receiver 21a are set to start or stop the signal generation process and the reception process, respectively, in response to the input trigger signal S70.
  • the signal generator 22a starts generating the transmission signal S22a in response to the trigger signal S70, and outputs the transmission signal S22a to the distributor 12a.
  • the transmission signal S22a is divided into seven in the divider 12a and output to the phase shifters 13a-1 to 13a-7.
  • Each of the phase shifters 13a-1 to 13a-7 shifts the phase of the input transmission signal by a predetermined phase shift amount corresponding to the phase shift amount control voltage from the D / A converter 11a to correspond.
  • the signal is output to the attenuators 14a-1 to 14a-7.
  • Each of the attenuators 14a-1 to 14a-7 attenuates the input phase-shifted transmission signal by a predetermined attenuation amount corresponding to the attenuation amount control voltage from the D / A converter 11a, and the attenuator 14a It radiates as radio waves of vertical polarization from scatterer antennas 50a-1 to 50a-7 corresponding to -1 to 14a-7.
  • the antenna evaluation apparatus of FIG. 1 since the antenna evaluation apparatus of FIG. 1 is installed in the radio anechoic chamber, the influence of the reflected wave reflected by the ceiling, floor surface, wall surface, etc. is sufficiently smaller than direct wave, and the installation position of the receiving antenna 60a , Multiple waves consisting of direct waves radiated from the scatterer antennas 50a-1 to 50a-7 are generated.
  • the computer 10 shifts each phase shift amount in the phase shifters 13a-1 to 13a-7 so as to generate multiple waves in a desired fading environment such as Rayleigh fading or Nakagami-Rice fading at the installation position of the receiving antenna 60a.
  • Each attenuation amount in the attenuators 14a-1 to 14a-7 is calculated.
  • digital multiple wave control including a phase shift amount control voltage corresponding to the calculated phase shift amount, an attenuation amount control voltage corresponding to the calculated attenuation amount, and a measurement period Tm for generating a multiple wave.
  • a signal is generated and output to the D / A converter 11a.
  • f D is the Doppler frequency
  • ⁇ n is the azimuth of the scatterer antenna 50 a-n estimated from the receiving antenna 60 a
  • ⁇ shift is the azimuth of the traveling direction of the receiving antenna 60 a
  • ⁇ n is the initial phase is there.
  • the azimuth angle ⁇ 1 obtained by estimating the scatterer antenna 50a-1 from the reception antenna 60a is zero degree
  • the azimuth angles ⁇ n and ⁇ shift are measured clockwise with respect to the reception antenna 60a.
  • the initial phase ⁇ n is determined using uniform random numbers.
  • the D / A converter 11a responds to the trigger signal S70 to convert the input multiwave control signal into an analog phase shift control voltage and attenuation corresponding to the phase shift of the phase shifters 13a-1 to 13a-7.
  • the period of D / A conversion processing is set to a predetermined measurement period Tm.
  • the start timing of the D / A conversion process by the D / A converter 11a is the start timing of the wireless transmission operation by the transmission circuit 30a.
  • the receiver 21a receives the multiple waves of the radio waves radiated by the scatterer antennas 50a-1 to 50a-7 using the receiving antenna 60a in response to the trigger signal S70, and receives the amplitude and the phase of the received signal.
  • the reception process to measure is started, and reception data including each data of the measured amplitude and phase is output to the computer 10.
  • the computer 10 evaluates the performance of the receiving antenna 60a based on the received data from the receiver 21a.
  • the computer 10 generates a multiple wave control signal and outputs it to the D / A converter 11a.
  • the D / A converter 11a is put in a trigger waiting state.
  • the computer 10 outputs a trigger standby instruction signal instructing the signal generator 22a and the receiver 21a to stand by for the trigger signal S70.
  • the signal generator 22a and the receiver 21a are put in the trigger standby state.
  • the computer 10 outputs a trigger generation request signal S10t to the trigger generation circuit 70 instructing the D / A converter 11a, the signal generator 22a and the receiver 21a to output the trigger signal S70 substantially simultaneously.
  • the trigger generation circuit 70 generates a trigger signal S70 and outputs it to the D / A converter 11a, the signal generator 22a and the receiver 21a substantially simultaneously.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10 to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs to the computer 10 a multiple wave generation end notification signal notifying that generation of multiple waves is stopped. . On the other hand, the signal generator 22a and the receiver 21a respectively start signal generation processing and reception processing in response to the trigger signal S70. Here, the D / A conversion process, the signal generation process, and the reception process are started substantially simultaneously.
  • the computer 10 generates a trigger generation request signal S10t that instructs the signal generator 22a and the receiver 21a to output the trigger signal S70 substantially simultaneously in response to the multiple wave generation end notification signal. Output to In response to this, the trigger generation circuit 70 generates a trigger signal S70 and outputs it to the signal generator 22a and the receiver 21a substantially simultaneously. In response, the signal generator 22a and the receiver 21a respectively stop the signal generation process and the reception process substantially simultaneously. Furthermore, the receiver 21a outputs received data including the measured amplitude and phase data to the computer 10. The computer 10 evaluates the performance of the receiving antenna 60a based on the received data from the receiver 21a.
  • the D / A converter 11a, the signal generator 22a, and the receiver 21a respond to the trigger signal S70 to perform D / A conversion processing, signal generation processing, and reception processing.
  • the start timings of the operations of the signal generator 22a, the transmission circuit 30a and the receiver 21a constituting the evaluation circuit 80A are substantially synchronized with each other. Therefore, it is possible to generate substantially the same multiple wave at the installation position of the receiving antenna 60a only by setting the initial phase ⁇ n of the radio wave transmitted from each scatterer antenna 50a-n to the same in different antenna evaluation processing. .
  • the measurement period Tm can be shortened as compared to the prior art. Therefore, the evaluation of the receiving antenna 60a can be performed in a short time and with high accuracy as compared with the prior art. According to the present embodiment, for example, even if the receiving antenna 60a is replaced with another receiving antenna, substantially the same multiple waves can be received by the receiving antenna 60a and another receiving antenna.
  • the operation is automatically performed.
  • D / A conversion processing, signal generation processing and reception processing can be started.
  • FIG. 4 is a block diagram showing a configuration of a multiple wave control and measurement apparatus 200B according to a second embodiment of the present invention
  • FIG. 5 shows an antenna evaluation process performed by the multiple wave control and measurement apparatus 200B of FIG. It is a sequence diagram shown.
  • the multiple wave control measurement apparatus 200B according to the present embodiment is characterized by further including a network analyzer 20b including a receiver 21b, as compared to the multiple wave control generation apparatus 200A according to the first embodiment.
  • the receiving antenna to be evaluated is the diversity antenna 60d including the receiving antenna 60a and the receiving antenna 60b which is a half-wave dipole antenna for receiving radio waves of vertical polarization.
  • the receiving antennas 60a and 60b are located at coordinate positions (0, ⁇ / 4, 0) and coordinate positions (0, - ⁇ / 4, 0) in the XYZ coordinate system. They are respectively provided and mounted vertically to receive vertically polarized radio waves. Is the wavelength of radio waves emitted from the scatterer antennas 50a-1 to 50a-7.
  • the receiving antennas 60a and 60b constitute a diversity antenna 60d.
  • the trigger generation circuit 70 when the trigger generation request signal S10t is received from the computer 10, the trigger generation circuit 70 generates a trigger signal S70 and sends it to at least one of the D / A converter 11a, the signal generator 22a and the receivers 21a and 21b. Output.
  • the receiver 21b is set to start or stop the reception process in response to the input trigger signal S70, similarly to the receiver 21a. Further, in the reception process, the receiver 21b receives the multiple waves of the radio waves radiated by the scatterer antennas 50a-1 to 50a-7 using the receiving antenna 60b, and measures the amplitude and the phase of the received signal. . Then, the received data including each data of the measured amplitude and phase is output to the computer 10.
  • the signal generator 20a, the transmission circuit 30a, the receiver 21a, and the receiver 21b constitute an evaluation circuit 80A for evaluating the performance of the diversity antenna 60d.
  • the computer 10 generates a multiple wave control signal and outputs it to the D / A converter 11a.
  • the D / A converter 11a is put in a trigger waiting state.
  • the computer 10 outputs a trigger standby instruction signal instructing the signal generator 22a and the receivers 21a and 21b to stand by for the trigger signal S70.
  • the signal generator 22a and the receivers 21a and 21b are put in the trigger standby state.
  • the computer 10 generates a trigger generation request signal S10t that instructs the D / A converter 11a, the signal generator 22a and the receivers 21a and 21b to output the trigger signal S70 substantially simultaneously.
  • the trigger generation circuit 70 generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the D / A converter 11a, the signal generator 22a and the receivers 21a and 21b.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10 to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs to the computer 10 a multiple wave generation end notification signal notifying that generation of multiple waves is stopped. . On the other hand, the signal generator 22a starts signal generation processing in response to the trigger signal S70. The receivers 21a and 21b each start reception processing in response to the trigger signal S70. Here, the D / A conversion process, the signal generation process, and the reception processes by the receivers 21a and 21b are started substantially simultaneously.
  • the computer 10 generates a trigger generation request signal S10t that instructs the signal generator 22a and the receivers 21a and 21b to output the trigger signal S70 substantially simultaneously in response to the multiple wave generation end notification signal. Output to 70.
  • the trigger generation circuit 70 generates a trigger signal S70 and outputs it to the signal generator 22a and the receivers 21a and 21b substantially simultaneously.
  • the signal generator 22a and the receivers 21a and 21b respectively stop the signal generation process and the reception process substantially simultaneously.
  • the receivers 21a and 21b output received data including data of the measured amplitude and phase to the computer 10, respectively.
  • the computer 10 evaluates the performance of the diversity antenna 60d based on each received data from the receivers 21a and 21b.
  • the D / A converter 11a, the signal generator 22a, and the receivers 21a and 21b perform D / A conversion processing, signal generation processing, and the like in response to the trigger signal S70.
  • the reception processes are respectively started substantially simultaneously. That is, the start timings of the operations of the signal generator 22a, the transmission circuit 30a, and the receivers 21a and 21b constituting the evaluation circuit 80B are substantially synchronized with each other. Therefore, it is possible to generate substantially the same multiple wave at the installation position of the diversity antenna 60d simply by setting the initial phase ⁇ n of the radio wave transmitted from each scatterer antenna 50a-n to the same in different antenna evaluation processing. .
  • the measurement period Tm can be shortened as compared to the prior art. Therefore, the diversity antenna 60d can be evaluated in a short time and with high accuracy as compared to the prior art.
  • the diversity antenna 60d is provided with two receiving antennas 60a and 60b, but the present invention is not limited to this, and three or more receiving antennas may be provided.
  • a network analyzer configured in the same manner as the network analyzer 20b may be provided for each additional receiving antenna, and the start timings of reception processing in each network analyzer may be synchronized with each other.
  • FIG. 6 is a block diagram showing the configuration of a multiple wave control and measurement apparatus 200C according to a third embodiment of the present invention
  • FIG. 7 shows an antenna evaluation process performed by the multiple wave control and measurement apparatus 200C of FIG. It is a sequence diagram shown.
  • the multiple wave control and measurement apparatus 200C according to the present embodiment includes scatterer antennas 50b-1 to 50b-7, which are half-wave dipole antennas, respectively, as compared to the multiple wave control and measurement apparatus 200A according to the first embodiment. It is characterized by further comprising a distributor 40 and a transmission circuit 30b.
  • the transmission circuit 30b includes a D / A converter 11b, a splitter 12b, and phase shifters 13b-1 to 13b-7 provided corresponding to the scatterer antennas 50b-1 to 50b-7, respectively. And a attenuator 14b having attenuators 14b-1 to 14b-7 provided in correspondence to the scatterer antennas 50b-1 to 50b-7, respectively.
  • the signal generator 20a, the transmission circuits 30a and 30b, and the receiver 21a constitute an evaluation circuit 80C for evaluating the performance of the reception antenna 60a.
  • the scatterer antenna 50b-n is provided at a position at which the feeding point of the scatterer antenna 50b-n is separated from the feeding point of the scatterer antenna 50a-n by a distance ⁇ / 2 in the direction away from the origin, and It is mounted horizontally on the scatterer antenna support base 101 so as to emit radio waves of waves.
  • the coordinate positions of the feeding points of the scatterer antennas 50a-1 and 50b-1 in the XYZ coordinate system are (0, R, 0) and (0, R + ⁇ / 2, 0), respectively.
  • the longitudinal direction of the scatterer antenna 50b-n is provided parallel to the tangent of the circle centered on the origin.
  • the computer 10 performs phase shifters 13a-1 to 13a-7 and 13b-1 to 13b- so as to generate multiple waves in a desired fading environment such as Rayleigh fading or Nakagami-rice fading at the installation position of the receiving antenna 60a. 7 for calculating the phase shift amount and attenuation amount calculated for each phase shift amount and each attenuation amount for the attenuators 14a-1 to 14a-7 and 14b-1 to 14b-7, and measurement for generating multiple waves
  • a digital multiwave control signal including a period Tm is generated and output to the D / A converter 11a.
  • the initial phase ⁇ n of the vertically polarized radio wave radiated by the scatterer antenna 50a-n is different from the initial phase ⁇ n of the horizontally polarized radio wave radiated by the scatterer antenna 50b-n. Determined based on random numbers.
  • the trigger generation circuit 70 when the trigger generation request signal S10t is received from the computer 10, the trigger generation circuit 70 generates the trigger signal S70 and sends it to at least one of the D / A converters 11a and 11b, the signal generator 22a and the receiver 21a. Output.
  • the distributor 40 divides the transmission signal S22a generated by the signal generator 22a into two and outputs the signal to the distributors 12a and 12b.
  • the D / A converter 11b responds to the trigger signal S70 to input an input multiple wave control signal, and an analog phase shift amount control voltage and attenuation corresponding to the phase shift amount of the phase shifters 13b-1 to 13b-7.
  • the period of D / A conversion processing is set to a predetermined measurement period Tm.
  • the start timing of the D / A conversion process by the D / A converter 11 b is the start timing of the wireless transmission operation by the transmission circuit 30 b.
  • the transmission signal S22a from the divider 40 is divided into seven in the divider 12b and output to the phase shifters 13b-1 to 13b-7.
  • Each of the phase shifters 13b-1 to 13b-7 shifts the phase of the input transmission signal by a predetermined phase shift amount corresponding to the phase shift amount control voltage from the D / A converter 11b to correspond.
  • Each of the attenuators 14b-1 to 14b-7 attenuates the input phase-shifted transmission signal by a predetermined attenuation amount corresponding to the attenuation amount control voltage from the D / A converter 11b, and the attenuator 14b It radiates as radio waves of horizontal polarization from scatterer antennas 50b-1 to 50b-7 corresponding to -1 to 14b-7.
  • the computer 10 generates multiple wave control signals for the D / A converters 11a and 11b and outputs them to the D / A converters 11a and 11b. In response to this, the D / A converters 11a and 11b are put in a trigger waiting state. Furthermore, the computer 10 outputs a trigger standby instruction signal instructing the signal generator 22a and the receiver 21a to stand by for the trigger signal S70. In response to this, the signal generator 22a and the receiver 21a are put in the trigger standby state.
  • the computer 10 generates a trigger generation request signal S10t for instructing the D / A converters 11a and 11b, the signal generator 22a and the receiver 21a to output the trigger signal S70 substantially simultaneously.
  • the trigger generation circuit 70 generates the trigger signal S70 and outputs it to the D / A converters 11a and 11b, the signal generator 22a and the receiver 21a substantially simultaneously.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10 to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs to the computer 10 a multiple wave generation end notification signal notifying that generation of multiple waves is stopped. .
  • the D / A converter 11b responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10 to the phase shift control voltage and attenuator 14b-1 to the phase shifters 13b-1 to 13b-7. Start D / A conversion processing to convert to attenuation control voltage for 14b-7.
  • the transmission circuit 30b starts the wireless transmission operation.
  • the D / A converter 11b stops the D / A conversion process when the measurement period Tm elapses, and outputs to the computer 10 a multiple wave generation end notification signal notifying that generation of multiple waves is stopped.
  • the signal generator 22a and the receiver 21a respectively start signal generation processing and reception processing in response to the trigger signal S70.
  • each D / A conversion process by the D / A converters 11a and 11b, the signal generation process, and the reception process are started substantially simultaneously.
  • the computer 10 When the computer 10 receives the multiwave generation end notification signal from each of the D / A converters 11a and 11b, it generates a trigger instructing the signal generator 22a and the receiver 21a to output the trigger signal S70 substantially simultaneously.
  • the request signal S10t is output to the trigger generation circuit 70.
  • the trigger generation circuit 70 generates a trigger signal S70 and outputs it to the signal generator 22a and the receiver 21a substantially simultaneously.
  • the signal generator 22a and the receiver 21a respectively stop the signal generation process and the reception process substantially simultaneously.
  • the receiver 21a outputs received data including the measured amplitude and phase data to the computer 10.
  • the computer 10 evaluates the performance of the receiving antenna 60a based on the received data from the receiver 21a.
  • the D / A converters 11a and 11b, the signal generator 22a and the receiver 21a respond to the trigger signal S70 to perform D / A conversion processing, signal generation processing, and the like.
  • the reception processes are respectively started substantially simultaneously. That is, the start timings of the operations of the signal generator 22a, the transmission circuits 30a and 30b, and the receiver 21a constituting the evaluation circuit 80C are substantially synchronized with each other.
  • the initial phase ⁇ n of the radio wave transmitted from each scatterer antenna 50a-n is set to the same in different antenna evaluation processing, and the initial phase ⁇ n of the radio wave transmitted from each scatterer antenna 50b-n is different.
  • the same multiple waves can be generated at the installation position of the receiving antenna 60a only by setting the same in the evaluation process.
  • the measurement period Tm can be shortened as compared to the prior art. Therefore, the evaluation of the receiving antenna 60a can be performed in a short time and with high accuracy as compared with the prior art.
  • radio waves of vertical polarization and horizontal polarization are simultaneously radiated, they are generated in an actual fading environment at the installation position of the receiving antenna 60a as compared to the fading control measurement device 200c according to the first embodiment. Can generate multiple waves close to multiple waves.
  • the scatterer antennas 50a-1 to 50a-7 radiate radio waves of vertical polarization
  • the scatterer antennas 50b-1 to 50b-7 radiate radio waves of vertical polarization.
  • the present invention is not limited to this, and in a configuration provided with a plurality of transmission circuits configured similarly to the transmission circuit 30a, the plurality of D / A converters 11a, the signal generator 22a, and the reception of the plurality of transmission circuits.
  • the processing start timings of the machine 21a may be synchronized with each other using the trigger signal S70.
  • the scatterer antenna 50b-n is a position where the feeding point of the scatterer antenna 50b-n is separated from the feeding point of the scatterer antenna 50a-n by a distance ⁇ / 2 in the direction away from the origin.
  • the present invention is not limited to this, and the scatterer antenna 50b-n has a distance ⁇ / 2 in the direction closer to the origin with respect to the feed point of the scatterer antenna 50a-n. It may be provided at a distant position.
  • FIG. 8 is a block diagram showing the configuration of a multiple wave control and measurement apparatus 200D according to a fourth embodiment of the present invention
  • FIG. 9 shows an antenna evaluation process performed by the multiple wave control and measurement apparatus 200D of FIG. It is a sequence diagram shown.
  • the multiple wave control measurement apparatus 200D according to the present embodiment is different from the scatterer antennas 50b-1 to 50b-7 in comparison with the multiple wave control measurement apparatus 200C according to the third embodiment, and is used for radio waves of vertical polarization. It is characterized in that it further comprises: a network analyzer 20b comprising a radiating antenna 50c-1 to 50c-7 and a receiver 21b.
  • the receiving antenna 60b and the network analyzer 20b are configured in the same manner as in the second embodiment.
  • a MIMO (Multiple Input Multiple Output) antenna provided with receiving antennas 60a and 60b, which are half-wave dipole antennas for receiving radio waves of vertically polarized waves, is an antenna to be evaluated. It is 60m.
  • the receiving antennas 60a and 60b constitute a two-element MIMO antenna 60m.
  • the scatterer antenna 50c-n is provided at a position where the feeding point of the scatterer antenna 50c-n is separated from the feeding point of the scatterer antenna 50a-n by a distance ⁇ / 2 in a direction away from the origin. It is vertically mounted on the scatterer antenna support base 101 so as to emit vertically polarized radio waves.
  • the coordinate positions in the XYZ coordinate system of the feeding points of the scatterer antennas 50a-1 and 50c-1 are (0, R, 0) and (0, R + ⁇ / 2, 0), respectively.
  • an antenna evaluation sub-process P1 using scatterer antennas 50a-1 to 50a-7 and a receiving antenna 60a is performed in the multiple wave control and measurement apparatus 200D.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30a, and the receiver 21a, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the antenna evaluation sub-process P1 is the same as the process from the timing when the multiple wave control signal is transmitted to the timing when the received data is received by the computer 10 in the antenna evaluation process of FIG.
  • the computer 10 obtains received data when the reception antenna 60a receives multiple waves of vertically polarized radio waves radiated by the scatterer antennas 50a-1 to 50a-7.
  • an antenna evaluation sub-process P2 using the scatterer antennas 50a-1 to 50a-7 and the receiving antenna 60b is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30a, and the receiver 21b, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10 obtains received data when the reception antenna 60b receives multiple waves of vertically polarized radio waves emitted by the scatterer antennas 50a-1 to 50a-7.
  • the initial phase ⁇ n of the scatterer antenna 50a-n used in the antenna evaluation sub-process P2 is the same as the initial phase ⁇ n of the scatterer antenna 50a-n used in the antenna evaluation sub-process P1.
  • an antenna evaluation sub-process P3 using the scatterer antennas 50c-1 to 50c-7 and the receiving antenna 60a is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30b, and the receiver 21a, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10 obtains received data when the multiple antenna of vertically polarized radio waves radiated by the scatterer antennas 50c-1 to 50c-7 is received by the receiving antenna 60a.
  • the initial phase ⁇ n of the scatterer antenna 50c-n used in the antenna evaluation sub-process P3 is different from the initial phase ⁇ n corresponding to the scatterer antenna 50a-n used in the antenna evaluation sub-process P1.
  • an antenna evaluation sub-process P4 using the scatterer antennas 50c-1 to 50c-7 and the receiving antenna 60b is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30b, and the receiver 21b, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10 obtains received data when the reception antenna 60b receives multiple waves of vertically polarized radio waves radiated by the scatterer antennas 50c-1 to 50c-7.
  • the initial phase ⁇ n of the scatterer antenna 50c-n used in the antenna evaluation sub-process P4 is the same as the initial phase ⁇ n of the scatterer antenna 50c-n used in the antenna evaluation sub-process P3.
  • the computer 10 calculates a channel response matrix of MIMO based on the reception data obtained in each of the antenna evaluation sub-processes P1 to P4, and evaluates the MIMO transmission characteristics such as the eigenvalues and transmission capacity of the MIMO.
  • the start timings of the operations of the signal generator 22a, the transmission circuit 30a, and the receiver 21a constituting the evaluation circuit 80D in the antenna evaluation sub-process P1 are substantially synchronized with each other.
  • the start timings of the operations of the signal generator 22a, the transmission circuit 30a, and the receiver 21b that constitute the evaluation circuit 80D in the antenna evaluation sub-process P2 are substantially synchronized with each other.
  • the initial phase ⁇ n for the scatterer antenna 50a-n used in the antenna evaluation sub-process P2 is the same as the initial phase ⁇ n for the scatterer antenna 50a-n used in the antenna evaluation sub-process P1.
  • FIG. 10 is a perspective view of a receiving antenna support 102A according to a fifth embodiment of the present invention.
  • the receiving antenna support 102A includes a base 103, a pole 104 rotating on the base in the rotational direction Ra with the Z axis as a rotation axis, a table 105 fixed on the pole 104, and a table A pole 106 fixed to the edge of the ring 105, and a receiving antenna attachment member 107 provided at the upper end of the pole 106 and rotated in a rotational direction Re around a rotation axis parallel to the XY plane are configured.
  • the base 103, the pole 104, the table 105, the pole 106, and the receiving antenna mounting member 107 are made of resin.
  • the receiving antenna 60 a is attached to the mobile phone 150 fixed to the receiving antenna attachment member 107.
  • the pole 104 is rotated and fixed by a predetermined angle
  • the receiving antenna mounting member 107 is rotated and fixed by a predetermined angle, whereby the elevation angle of the receiving antenna 60a (between the Z axis and the elevation angle And the azimuth angle may be set to the desired elevation angle and the desired azimuth angle, respectively, to evaluate the performance of the receiving antenna 60a.
  • the performance of the receiving antenna 60a can be evaluated with higher accuracy in an environment where the mobile phone 150 is actually used, as compared with the above embodiments.
  • FIG. 11 is a block diagram showing the configuration of a multiple wave control and measurement apparatus 200E according to a modification of the first embodiment of the present invention.
  • FIG. 12 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control and measurement apparatus 200E of FIG.
  • the multiple wave control measurement apparatus 200E according to the present modification includes the computer 10A including the trigger generation circuit 70A instead of the computer 10. It is characterized by
  • the computer 10A generates a trigger signal S70 at a predetermined timing and outputs it to at least one of the D / A converter 11a, the signal generator 22a, and the receiver 21a.
  • the D / A converter 11a, the signal generator 22a, and the receiver 21a respond to the trigger signal S70 from the computer 10A, and the D / A converter 11a, the signal generator 22a, and the receiver according to the first embodiment. Each operates similarly to 21a.
  • the computer 10A generates a multiple wave control signal and outputs it to the D / A converter 11a.
  • the D / A converter 11a is put in a trigger waiting state.
  • the computer 10A outputs a trigger standby instruction signal instructing the signal generator 22a and the receiver 21a to stand by for the trigger signal S70.
  • the signal generator 22a and the receiver 21a are put in the trigger standby state.
  • the computer 10A generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the D / A converter 11a, the signal generator 22a and the receiver 21a.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10A to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs a multiple wave generation end notification signal notifying that generation of multiple waves is stopped to the computer 10A. . On the other hand, the signal generator 22a and the receiver 21a respectively start signal generation processing and reception processing in response to the trigger signal S70. Here, the D / A conversion process, the signal generation process, and the reception process are started substantially simultaneously.
  • the computer 10A In response to the multiple wave generation end notification signal, the computer 10A generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the signal generator 22a and the receiver 21a. In response, the signal generator 22a and the receiver 21a respectively stop the signal generation process and the reception process substantially simultaneously. Furthermore, the receiver 21a outputs received data including the measured amplitude and phase data to the computer 10A. The computer 10A evaluates the performance of the receiving antenna 60a based on the received data from the receiver 21a.
  • the multiple wave control and measurement apparatus 200E according to the present variation has the same unique effects as the multiple wave control and measurement apparatus 200A according to the first embodiment.
  • FIG. 13 is a block diagram showing the configuration of a multiple wave control and measurement apparatus 200F according to a modification of the second embodiment of the present invention.
  • FIG. 14 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control and measurement apparatus 200F of FIG.
  • a multiple wave control measurement apparatus 200F according to the present modification includes a computer 10A provided with a trigger generation circuit 70A in place of the computer 10 in comparison with the multiple wave control measurement apparatus 200B according to the second embodiment. It is characterized by
  • the computer 10A generates a trigger signal S70 at a predetermined timing and outputs it to at least one of the D / A converter 11a, the signal generator 22a, and the receivers 21a and 21b. Also, the D / A converter 11a, the signal generator 22a, the receiver 21a, and the receiver 21b respond to the trigger signal S70 from the computer 10A to generate the D / A converter 11a according to the second embodiment, and generate a signal. It operates in the same manner as the receiver 22a, the receiver 21a, and the receiver 21b.
  • the computer 10A generates a multiple wave control signal and outputs it to the D / A converter 11a. In response to this, the D / A converter 11a is put in a trigger waiting state. Further, the computer 10A outputs a trigger standby instruction signal instructing the signal generator 22a and the receivers 21a and 21b to stand by for the trigger signal S70. In response to this, the signal generator 22a and the receivers 21a and 21b are put in the trigger standby state. Next, the computer 10A generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the D / A converter 11a, the signal generator 22a and the receivers 21a and 21b.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10A to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs a multiple wave generation end notification signal notifying that generation of multiple waves is stopped to the computer 10A. . On the other hand, the signal generator 22a starts signal generation processing in response to the trigger signal S70. The receivers 21a and 21b each start reception processing in response to the trigger signal S70. Here, the D / A conversion process, the signal generation process, and the reception processes by the receivers 21a and 21b are started substantially simultaneously.
  • the computer 10A In response to the multiple wave generation end notification signal, the computer 10A generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the signal generator 22a and the receivers 21a and 21b. In response to this, the signal generator 22a and the receivers 21a and 21b respectively stop the signal generation process and the reception process substantially simultaneously. Furthermore, the receivers 21a and 21b output received data including data of the measured amplitude and phase to the computer 10A, respectively. The computer 10A evaluates the performance of the diversity antenna 60d based on each received data from the receivers 21a and 21b.
  • the multiple wave control and measurement apparatus 200F according to the present modification has the same unique effect as the multiple wave control and measurement apparatus 200B according to the second embodiment.
  • FIG. 15 is a block diagram showing the configuration of a multiple wave control measurement apparatus 200G according to a modification of the third embodiment of the present invention.
  • FIG. 16 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control and measurement apparatus 200G of FIG.
  • the multiple wave control and measurement apparatus 200G according to the present modification includes a computer 10A including a trigger generation circuit 70A instead of the computer 10. It is characterized by
  • the computer 10A generates a trigger signal S70 at a predetermined timing and outputs it to at least one of the D / A converters 11a and 11b, the signal generator 22a, and the receiver 21a.
  • the D / A converters 11a and 11b, the signal generator 22a, and the receiver 21a respond to the trigger signal S70 from the computer 10A, and the D / A converters 11a and 11b according to the third embodiment, the signal generator 22a and receiver 21a operate similarly.
  • the computer 10A generates multiple wave control signals for the D / A converters 11a and 11b and outputs them to the D / A converters 11a and 11b. In response to this, the D / A converters 11a and 11b are put in a trigger waiting state. Further, the computer 10A outputs a trigger standby instruction signal instructing the signal generator 22a and the receiver 21a to stand by for the trigger signal S70. In response to this, the signal generator 22a and the receiver 21a are put in the trigger standby state. Next, the computer 10A generates a trigger signal S70 and outputs it to the D / A converters 11a and 11b, the signal generator 22a and the receiver 21a substantially simultaneously.
  • the D / A converter 11a responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10A to the phase shift amount control voltage and attenuator 14a-1 to 14a- for the phase shifters 13a-1 to 13a-7. 7. Start D / A conversion processing to convert to attenuation control voltage for 7. Thus, the transmission circuit 30a starts the wireless transmission operation. Then, the D / A converter 11a stops the D / A conversion processing when the measurement period Tm elapses, and outputs a multiple wave generation end notification signal notifying that generation of multiple waves is stopped to the computer 10A. .
  • the D / A converter 11b responds to the trigger signal S70 to shift the multiple wave control signal received from the computer 10A to the phase shift amount control voltage and attenuator 14b-1 to the phase shifters 13b-1 to 13b-7. Start D / A conversion processing to convert to attenuation control voltage for 14b-7.
  • the transmission circuit 30b starts the wireless transmission operation.
  • the D / A converter 11b stops the D / A conversion process when the measurement period Tm elapses, and outputs to the computer 10A a multiple wave generation end notification signal notifying that generation of multiple waves is stopped.
  • the signal generator 22a and the receiver 21a respectively start signal generation processing and reception processing in response to the trigger signal S70.
  • each D / A conversion process by the D / A converters 11a and 11b, the signal generation process, and the reception process are started substantially simultaneously.
  • the computer 10A When receiving the multiple wave generation end notification signals from the D / A converters 11a and 11b, the computer 10A generates a trigger signal S70 and outputs the trigger signal S70 substantially simultaneously to the signal generator 22a and the receiver 21a. In response, the signal generator 22a and the receiver 21a respectively stop the signal generation process and the reception process substantially simultaneously. Furthermore, the receiver 21a outputs received data including the measured amplitude and phase data to the computer 10A. The computer 10A evaluates the performance of the receiving antenna 60a based on the received data from the receiver 21a.
  • the multiple wave control and measurement apparatus 200G according to the present variation exhibits the same unique effects as the multiple wave control and measurement apparatus 200C according to the third embodiment.
  • FIG. 17 is a block diagram showing the configuration of a multiple wave control and measurement apparatus 200H according to a modification of the fourth embodiment of the present invention.
  • FIG. 18 is a sequence diagram showing an antenna evaluation process performed by the multiple wave control and measurement apparatus 200H of FIG.
  • the multiple wave control measurement apparatus 200H according to the present modification is provided with a computer 10A provided with a trigger generation circuit 70A instead of the computer 10. It is characterized by
  • the computer 10A generates a trigger signal S70 at a predetermined timing and outputs it to at least one of the D / A converters 11a and 11b, the signal generator 22a, and the receiver 21a.
  • the D / A converters 11a and 11b, the signal generator 22a, and the receiver 21a respond to the trigger signal S70 from the computer 10A, and the D / A converters 11a and 11b according to the third embodiment, the signal generator 22a and receiver 21a operate similarly.
  • an antenna evaluation sub-process P1A using scatterer antennas 50a-1 to 50a-7 and a receiving antenna 60a is performed in the multiple wave control and measurement apparatus 200H.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30a, and the receiver 21a, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the antenna evaluation sub-process P1A is the same as the process from the timing when the multiple wave control signal is transmitted to the timing when the received data is received by the computer 10A in the antenna evaluation process of FIG.
  • the computer 10A obtains received data when the reception antenna 60a receives a multiple wave of vertically polarized radio waves radiated by the scatterer antennas 50a-1 to 50a-7.
  • an antenna evaluation sub-process P2A using the scatterer antennas 50a-1 to 50a-7 and the receiving antenna 60b is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30a, and the receiver 21b, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10A obtains received data when the reception antenna 60b receives a multiple wave of vertically polarized radio waves emitted by the scatterer antennas 50a-1 to 50a-7.
  • the initial phase ⁇ n of the scatterer antenna 50a-n used in the antenna evaluation sub-process P2A is the same as the initial phase ⁇ n of the scatterer antenna 50a-n used in the antenna evaluation sub-process P1A.
  • an antenna evaluation sub-process P3A using the scatterer antennas 50c-1 to 50c-7 and the receiving antenna 60a is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30b, and the receiver 21a, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10A obtains received data when the reception antenna 60a receives a multiple wave of vertically polarized radio waves radiated by the scatterer antennas 50c-1 to 50c-7.
  • the initial phase ⁇ n regarding the scatterer antenna 50c-n used in the antenna evaluation sub-process P3A is different from the initial phase ⁇ n corresponding to the scatterer antenna 50a-n used in the antenna evaluation sub-process P1A.
  • an antenna evaluation sub-process P4A using the scatterer antennas 50c-1 to 50c-7 and the receiving antenna 60b is performed.
  • the computer 10 selects the signal generator 22a, the transmission circuit 30b, and the receiver 21b, and configures an evaluation circuit 80D for evaluating the performance of the MIMO antenna 60m.
  • the computer 10A obtains received data when the reception antenna 60b receives a multiple wave of vertically polarized radio waves radiated by the scatterer antennas 50c-1 to 50c-7.
  • the initial phase ⁇ n for the scatterer antenna 50c-n used in the antenna evaluation sub-process P4A is the same as the initial phase ⁇ n for the scatterer antenna 50c-n used in the antenna evaluation sub-process P3A.
  • computer 10A calculates a channel response matrix of MIMO based on the reception data obtained in each of antenna evaluation sub-processes P1A to P4A, and evaluates MIMO transmission characteristics such as the eigenvalues and transmission capacity of MIMO.
  • the multiple wave control and measurement apparatus 200G according to the present variation exhibits the same unique effects as the multiple wave control and measurement apparatus 200D according to the third embodiment.
  • the antenna evaluation sub-processes P1 and P2 may be performed simultaneously, and the antenna evaluation sub-processes P3 and P4 may be performed simultaneously.
  • the process of simultaneously performing the antenna evaluation sub-processes P1 and P2 and the process of simultaneously performing the antenna evaluation sub-processes P3 and P4 are the same as the antenna evaluation process according to the second embodiment.
  • the antenna evaluation sub-process P1 and P3 can not be performed simultaneously.
  • the antenna evaluation sub-process P3 by using the transmission circuit 30a instead of the transmission circuit 30b, the circuit size of the entire antenna evaluation apparatus can be reduced compared to the fourth embodiment by reducing the transmission circuit 30b.
  • the antenna evaluation sub-processes P1A and P2A may be performed simultaneously, and the antenna evaluation sub-processes P3A and P4A may be performed simultaneously.
  • the process of simultaneously performing the antenna evaluation sub-processes P1A and P2A and the process of simultaneously performing the antenna evaluation sub-processes P3A and P4A are the same as the antenna evaluation process according to the modification of the second embodiment.
  • the initial phase ⁇ n related to the scatterer antenna 50c-n used in the antenna evaluation sub-process P3A is different from the initial phase ⁇ n corresponding to the scatterer antenna 50a-n used in the antenna evaluation sub-process P1A, the antenna evaluation sub-process P1A and P3A can not be performed simultaneously.
  • the transmission circuit 30b is eliminated to compare the circuit scale of the entire antenna evaluation apparatus with the modification of the fourth embodiment. It can be made smaller.
  • a signal generator 22a instead of the network analyzers 20a and 20b, a signal generator 22a, and a modulator that modulates a predetermined carrier wave signal according to the transmission signal S22a to generate a modulation wave signal; It is possible to provide first and second transmission / reception devices respectively provided with a demodulator for demodulating a received signal received using the antenna 60a and a receiver 21a for performing reception processing on the demodulated received signal. . At this time, the first and second transmission / reception devices generate modulated wave signals that are orthogonal to each other, and output the modulated wave signals to the distributors 12a and 12b, respectively.
  • the start timings of the respective signal generation processes by the two signal generators, the respective D / A conversion processes by the two D / A converters 11a and 11b, and the respective reception processes by the two receivers are synchronized with each other.
  • the modulation waves orthogonal to each other are simultaneously radiated using transmission circuits 30a and 30b, and the multiple waves are simultaneously received using two receiving antennas 60a and 60b. Then, MIMO transmission characteristics can be evaluated.
  • the scatterer antenna 50c-n has a distance ⁇ in the direction in which the feeding point of the scatterer antenna 50c-n is away from the origin with respect to the feeding point of the scatterer antenna 50a-n. It was installed at a position separated by / 2.
  • the present invention is not limited to this, and the scatterer antenna 50c-n has a distance ⁇ / 2 in a direction closer to the origin with respect to the feed point of the scatterer antenna 50a-n. It may be provided at a remote position.
  • the transmission signal S22a generated by the signal generator 22a is divided by 14 to obtain phase shifters 13a-1 to- A divider may be provided to output to 13a-7, 13b-1 to 13b-7.
  • the scatterer antennas 50a-1 to 50a-7, 50b-1 to 50b-7, 50c-1, and 50c-7 are arranged at equal intervals on the circumference,
  • the present invention is not limited to this, and two or more scatterer antennas may be disposed around the receiving antenna to be evaluated.
  • the signal generator 22a generates the transmission signal S22a that is a non-modulated continuous wave signal in each of the above-described embodiments and the modifications thereof, the present invention is not limited to this, and a modulated wave signal may be generated. .
  • the computer 10 responds to the waveform generation end notification signals from the D / A converters 11a and 11b to the signal generator 22a and the receivers 21a and 21b being processed.
  • the trigger generation circuit 70 was controlled to transmit the trigger signal S70.
  • the present invention is not limited to this, and the trigger generation circuit 70 transmits the trigger signal S70 to the D / A converters 11a and 11b, the signal generator 22a, and the receivers 21a and 21b in the trigger waiting state.
  • Control the trigger generation circuit 70 to transmit the trigger signal S70 to the D / A converters 11a and 11b, the signal generator 22a, and the receivers 21a and 21b after at least the measurement period Tm has elapsed.
  • the transmission circuits 30a and 30b divide the input transmission signal into seven transmission signals and change the phases and amplitudes of the divided transmission signals.
  • the present invention is not limited thereto, and the input transmission signal may be divided into seven transmission signals to change at least one of the phase and the amplitude of each of the divided transmission signals.
  • the computer 10 is configured as follows: You just need to control it.
  • the computer 10 selects (a) at least one signal generator from the at least one signal generator 22a as an evaluation means to use for evaluation when performing an evaluation of the receiving antenna, and (b) at least one transmission.
  • At least one transmitter circuit from circuit 30a is selected as an evaluation means to be used for evaluation, and (c) at least one receiver from at least one receiver 21a is selected and selected as an evaluation means to be used for evaluation.
  • the operation of the trigger generation circuit 70 may be controlled so as to start each operation of the evaluated means substantially simultaneously.
  • the computer 10 may control the operation of the trigger generation circuit 70 so as to stop the operations of the signal generator and the receiver excluding the transmission circuit substantially at the same time among the selected evaluation means.
  • the computer 10A may be controlled as follows. .
  • the computer 10A selects (a) at least one signal generator from the at least one signal generator 22a as an evaluation means to use for evaluation when performing an evaluation of the receiving antenna, and (b) at least one transmission.
  • At least one transmitter circuit from circuit 30a is selected as an evaluation means to be used for evaluation, and (c) at least one receiver from at least one receiver 21a is selected and selected as an evaluation means to be used for evaluation.
  • the operation of the trigger generation circuit 70 may be controlled so as to start each operation of the evaluated means substantially simultaneously.
  • the computer 10 may control the operation of the trigger generation circuit 70 so as to stop the operations of the signal generator and the receiver excluding the transmission circuit substantially at the same time among the selected evaluation means.
  • each operation of the evaluation means including the signal generation means, the transmission means and the reception means used for the evaluation of the performance of the reception antenna is substantially performed. Since the performance of the receiving antenna is evaluated based on the received multiple waves by starting simultaneously, the multiple waves are generated with high reproducibility at the installation position of the receiving antenna as compared with the prior art, and the evaluation of the receiving antenna is performed. Can be performed in a short time and with high accuracy.
  • trigger generation circuit 80A, 80B, 80C, 80D ... evaluation circuit, 101 ... Scatterer antenna support, 102, 102A ... Receiving antenna support, 150: Mobile phone, 200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H ... multiwave control measurement apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 信号発生器(22a)からの送信信号は分配器(12a)において7分配され、分配後の各送信信号の位相及び振幅は、移相回路(13a)及び減衰回路(14a)において変化される。減衰回路(14a)からの各送信信号は、散乱体アンテナ(50a-1~50a-7)から放射される。受信機(21a)は、放射された電波の多重波を受信アンテナ(60a)を用いて受信する。コンピュータ(10)はトリガー発生回路(70)を用いて、D/Aコンバータ(11a)、信号発生器(22a)及び受信機(21a)の各動作を実質的に同時に開始させる。

Description

アンテナ評価装置及び方法
 本発明は、無線通信装置のアンテナの性能を評価するためのアンテナ評価装置及び当該アンテナ評価装置を用いたアンテナ評価方法に関する。
 従来、散乱体をモデル化するための複数の送信アンテナ(以下、散乱体アンテナという。)を所定の半径を有する円周上に等間隔に設け、当該散乱体アンテナの各設置位置の中心付近に空間的な多重波を生成するアンテナ評価装置が提案されている(例えば、特許文献1及び非特許文献1~4を参照。)。このようなアンテナ評価装置において、信号発生器によって発生された送信信号は、散乱体アンテナの数と同数の送信信号に分配され、分配後の各送信信号はそれぞれ移相器及び減衰器を介して対応する散乱体アンテナから放射される。このとき、移相器の各移相量及び減衰器の各減衰量をそれぞれ調整することにより、散乱体アンテナの各設置位置の中心にレイリーフェージング環境などの所望のフェージング環境を生成できる。このため、散乱体アンテナの各設置位置の中心に評価対象の受信アンテナを設置し、受信アンテナによって受信された受信信号に基づいて、フェージング環境下における受信アンテナの性能を評価できる。
特開2005-227213号公報。
坂田勉ほか、「空間フェージングエミュレータによる端末アンテナの実効性能評価」、松下テクニカルジャーナル、第52巻、第5号、70頁~75頁、2006年10月。 坂田勉ほか、「空間フェージングエミュレータによるMIMOアンテナのチャネル容量測定」、電子情報通信学会2007年ソサイエティ大会講演論文集、B-1-9,2007年9月。 坂田勉ほか、「角度スペクトラムが設定可能な端末MIMOアンテナ測定用空間多重波生成装置、電子情報通信学会技術研究報告、第108巻、第5号、13頁~18頁、2008年4月」。 坂田勉ほか、「多重波生成装置による複数クラスター伝搬環境下における端末MIMOアンテナ測定用空間多重波生成装置によるアンテナの伝送特性評価」、電子情報通信学会技術研究報告、第108巻、第429号、121頁~126頁、2009年4月。
 図19は、従来技術に係るアンテナ評価装置を用いて受信された受信電力の一例を示すグラフである。図19においてfはドップラー周波数であり、tは時間である。従来は、アンテナ評価装置を用いて所望のフェージング環境を生成している期間中の任意の測定期間T1,T2又はT3において、受信信号の振幅及び位相を測定していた。このとき、フェージング環境の再現性を高くするためには、測定期間の長さを受信信号の変動の周期に比較して十分に長く設定する必要があった。例えば、図19に示すように、測定期間の長さT1,T2,T3の長さが互いに同一であっても、当該各測定期間の長さが受信信号の変動の周期に比較して十分に長く設定されていない場合には、各測定期間における受信信号の平均値などの統計的な性質が互いに異なってしまう。このため、測定期間の長さを短くすると受信アンテナの評価精度が下がってしまうという課題があった。
 本発明の目的は以上の問題点を解決し、従来技術に比較して、受信アンテナの評価を短時間でかつ高精度に行うことができるアンテナ評価装置及び方法を提供することにある。
 第1の発明に係るアンテナ評価装置は、互いに異なる所定の位置にそれぞれ設けられた複数N個の散乱体アンテナと、所定の送信信号を発生する信号発生手段と、上記送信信号を複数N個の送信信号に分配して、当該分配後の各送信信号の位相及び振幅のうちの少なくとも一方を変化させて、上記各変化後の送信信号を当該各送信信号に対応する上記各散乱体アンテナから電波としてそれぞれ放射する送信手段と、上記各位置の実質的に中心に配置された評価対象の受信アンテナを用いて、上記放射された電波の多重波を受信する受信手段とを備えたアンテナ評価装置において、上記信号発生手段、上記送信手段及び上記受信手段を含む評価手段の各動作を実質的に同時に開始させ、上記受信された多重波に基づいて上記受信アンテナの性能を評価する制御手段を備えたことを特徴とする。
 上記アンテナ評価装置において、上記制御手段は、上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を、実質的に同時に停止させることを特徴とする。
 また、上記アンテナ評価装置において、少なくとも1つの上記信号発生手段と、少なくとも1つの上記送信手段と、少なくとも1つの上記受信手段とを備え、上記制御手段は、上記受信アンテナの評価を行うときに、(a)上記少なくとも1つの信号発生手段から少なくとも1つの信号発生手段を評価のために使用する評価手段として選択し、(b)上記少なくとも1つの送信手段から少なくとも1つの送信手段を評価のために使用する評価手段として選択し、(c)上記少なくとも1つの受信手段から少なくとも1つの受信手段を評価のために使用する評価手段として選択し、上記選択した評価手段の各動作を実質的に同時に開始させることを特徴とする。
 さらに、上記アンテナ評価装置において、上記制御手段は、上記選択した評価手段のうち上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させることを特徴とする。
 またさらに、上記アンテナ評価装置において、上記制御手段からのトリガー発生要求信号に応答して、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、上記制御手段は、上記トリガー発生要求信号を発生して上記トリガー発生手段に出力し、上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする。
 また、上記アンテナ評価装置において、上記制御手段は、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする。
 第2の発明に係るアンテナ評価方法は、互いに異なる所定の位置にそれぞれ設けられた複数N個の散乱体アンテナと、所定の送信信号を発生する信号発生手段と、上記送信信号を複数N個の送信信号に分配して、当該分配後の各送信信号の位相及び振幅のうちの少なくとも一方を変化させて、上記各変化後の送信信号を当該各送信信号に対応する上記各散乱体アンテナから電波としてそれぞれ放射する送信手段と、上記各位置の実質的に中心に配置された評価対象の受信アンテナを用いて、上記放射された電波の多重波を受信する受信手段とを備えたアンテナ評価装置を用いたアンテナ評価方法において、上記信号発生手段、上記送信手段及び上記受信手段を含む評価手段の各動作を実質的に同時に開始させ、上記受信された多重波に基づいて上記受信アンテナの性能を評価する制御ステップを含むことを特徴とする。
 上記アンテナ評価方法において、上記制御ステップは、上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させるステップをさらに含むことを特徴とする。
 また、上記アンテナ評価方法において、上記アンテナ評価装置は、少なくとも1つの上記信号発生手段と、少なくとも1つの上記送信手段と、少なくとも1つの上記受信手段とを備え、上記制御ステップが、上記受信アンテナの評価を行うときに、(a)上記少なくとも1つの信号発生手段から少なくとも1つの信号発生手段を評価のために使用する評価手段として選択し、(b)上記少なくとも1つの送信手段から少なくとも1つの送信手段を評価のために使用する評価手段として選択し、(c)上記少なくとも1つの受信手段から少なくとも1つの受信手段を評価のために使用する評価手段として選択し、上記選択した評価手段の各動作を実質的に同時に開始させることを特徴とする。
 さらに、上記アンテナ評価方法において、上記制御ステップは、上記選択した評価手段のうち上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させるステップをさらに含むことを特徴とする。
 またさらに、上記アンテナ評価方法において、上記アンテナ評価装置は、トリガー発生要求信号に応答して、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、上記制御ステップが、上記トリガー発生要求信号を発生して上記トリガー発生手段に出力するステップをさらに含み、上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする。
 また、上記アンテナ評価方法において、上記制御ステップが、トリガー信号を発生して上記評価手段に出力するステップをさらに含み、上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする。
 本発明に係るアンテナ評価装置及び方法によれば、受信アンテナの性能の評価のために用いる信号発生手段、送信手段及び受信手段を含む評価手段の各動作を実質的に同時に開始させ、受信された多重波に基づいて上記受信アンテナの性能を評価するので、従来技術に比較して、受信アンテナの設置位置において高い再現性で多重波を生成して、受信アンテナの評価を短時間でかつ高精度に行うことができる。
本発明の第1の実施形態に係るアンテナ評価装置の構成を示す要部斜視図である。 図1の多重波制御測定装置200Aの構成を示すブロック図である。 図2の多重波制御測定装置200Aによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第2の実施形態に係る多重波制御測定装置200Bの構成を示すブロック図である。 図4の多重波制御測定装置200Bによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第3の実施形態に係る多重波制御測定装置200Cの構成を示すブロック図である。 図6の多重波制御測定装置200Cによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第4の実施形態に係る多重波制御測定装置200Dの構成を示すブロック図である。 図8の多重波制御測定装置200Dによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第5の実施形態に係る受信アンテナ支持台102Aの斜視図である。 本発明の第1の実施形態の変形例に係る多重波制御測定装置200Eの構成を示すブロック図である。 図11の多重波制御測定装置200Eによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第2の実施形態の変形例に係る多重波制御測定装置200Fの構成を示すブロック図である。 図13の多重波制御測定装置200Fによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第3の実施形態の変形例に係る多重波制御測定装置200Gの構成を示すブロック図である。 図15の多重波制御測定装置200Gによって実行されるアンテナ評価処理を示すシーケンス図である。 本発明の第4の実施形態の変形例に係る多重波制御測定装置200Hの構成を示すブロック図である。 図17の多重波制御測定装置200Hによって実行されるアンテナ評価処理を示すシーケンス図である。 従来技術に係るアンテナ評価装置を用いて受信された受信電力の一例を示すグラフである。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
第1の実施形態.
 図1は、本発明の第1の実施形態に係るアンテナ評価装置(空間多重波生成装置又はフェージングエミュレータともいう。)の構成を示す要部斜視図であり、図2は、図1の多重波制御測定装置200Aの構成を示すブロック図である。また、図3は、図2の多重波制御測定装置200Aによって実行されるアンテナ評価処理を示すシーケンス図である。
 詳細後述するように、本実施形態に係るアンテナ評価装置は、互いに異なる所定の位置にそれぞれ設けられた7個の散乱体アンテナ50a-1~50a-7と、送信信号S22aを発生する信号発生器22aと、送信信号S22aを7個の送信信号に分配して、当該分配後の各送信信号の位相及び振幅を変化させて、上記各変化後の送信信号を当該各送信信号に対応する上記各散乱体アンテナ50a-1~50a-7から電波としてそれぞれ放射する送信回路30aと、散乱体アンテナ50a-1~50a-7の各設置位置の実質的に中心に配置された評価対象の受信アンテナ60aを用いて、上記放射された電波の多重波を受信する受信機21aとを備えたアンテナ評価装置において、受信アンテナ60aの性能の評価のために用いる信号発生器22a、送信回路30aのD/Aコンバータ11a及び受信機21aを含む評価回路80Aの各動作を実質的に同時に開始させ、受信された多重波に基づいて受信アンテナ60aの性能を評価するコンピュータ10を備えたことを特徴としている。
 図1において、本実施形態に係るアンテナ評価装置は電波暗室内に設置されており、それぞれ半波長ダイポールアンテナである散乱体アンテナ50a-1~50a-7と、多重波制御測定装置200Aとを備えて構成される。本実施形態において、評価対象の受信アンテナ60aは、垂直偏波の電波を受信する半波長ダイポールアンテナである。散乱体アンテナ50a-1~50a-7はそれぞれ、正7角筒の形状を有する格子状に組み立てられた散乱体アンテナ支持台101の各頂点部に、給電点の高さが床面からHの位置になりかつ垂直偏波の電波を放射するように縦置きに取り付けられている。これにより、散乱体アンテナ50a-1~50a-7は半径Rの円周上に等間隔に配置されている。ここで、散乱体アンテナ50a-1~50a-7の各給電点の位置の中心を右手系のXYZ座標系の原点とし、原点に対して上方向をZ軸の正の方向とし、原点から散乱体アンテナ50a-1へ向かう方向をY軸の正の方向とする。受信アンテナ60aは、ポールである受信アンテナ支持台102の頂点部に、給電点が原点に設置されかつ垂直偏波の電波を受信するように縦置きに取り付けられている。本実施形態において、散乱体アンテナ支持台101及び受信アンテナ支持台102は、ポリプロピレン又は塩化ビニルなどの樹脂材料によって形成されている。また、散乱体アンテナ50a-1~50a-7及び受信アンテナ60aの各給電点の床面からの高さHは1.5mに設定されており、各給電点の原点からの距離Rは1.5mに設定されている。
 図2において、多重波制御測定装置200Aは、コンピュータ10と、受信機21a及び信号発生器22aを備えたネットワークアナライザ20aと、送信回路30aと、トリガー発生回路70とを備えて構成される。さらに、送信回路30aは、D/Aコンバータ11aと、分配器12aと、散乱体アンテナ50a-1~50a-7にそれぞれ対応して設けられた移相器13a-1~13a-7を備えた移相回路13aと、散乱体アンテナ50a-1~50a-7にそれぞれ対応して設けられた減衰器14a-1~14a-7を備えた減衰回路14aとを備えて構成される。なお、信号発生器20aと、送信回路30aと、受信機21aとは、受信アンテナ60aの性能を評価するための評価回路80Aを構成する。ここで、トリガー発生回路70は、トリガー発生要求信号S10tをコンピュータ10から受信すると、トリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21aのうちの少なくとも1つに出力する。また、ネットワークアナライザ20aは、信号発生器22aにおいて2.14GHzの周波数を有する無変調連続波信号である送信信号S22aを発生する単一周波数モードに設定されており、送信出力レベルは+5dBm、表示画面は散乱パラメータS21の極座標表示となるようにそれぞれ設定されている。このとき、ネットワークアナライザ20aの出力端子がポート1であり、入力端子がポート2である。また、信号発生器22a及び受信機21aは、入力されるトリガー信号S70に応答して信号発生処理及び受信処理をそれぞれ開始又は停止するように設定されている。
 信号発生器22aは、トリガー信号S70に応答して送信信号S22aの発生を開始し、送信信号S22aを分配器12aに出力する。送信信号S22aは分配器12aにおいて7分配され、移相器13a-1~13a-7にそれぞれ出力される。移相器13a-1~13a-7はそれぞれ、入力される送信信号の位相を、D/Aコンバータ11aからの移相量制御電圧に対応する所定の移相量だけ移相させて、対応する減衰器14a-1~14a-7に出力する。減衰器14a-1~14a-7はそれぞれ、入力される移相された送信信号を、D/Aコンバータ11aからの減衰量制御電圧に対応する所定の減衰量だけ減衰させて、当該減衰器14a-1~14a-7に対応する散乱体アンテナ50a-1~50a-7から垂直偏波の電波として放射する。ここで、図1のアンテナ評価装置は電波暗室内に設置されているので、天井、床面、壁面などで反射する反射波の影響は直接波に比較して十分小さく、受信アンテナ60aの設置位置において、散乱体アンテナ50a-1~50a-7から放射された直接波からなる多重波が生成される。
 コンピュータ10は、受信アンテナ60aの設置位置においてレイリーフェージング又は仲上-ライスフェージングなどの所望のフェージング環境における多重波を生成するように、移相器13a-1~13a-7における各移相量及び減衰器14a-1~14a-7における各減衰量を算出する。そして、算出された移相量に対応する移相量制御電圧と、算出された減衰量に対応する減衰量制御電圧と、多重波を生成するための計測期間Tmとを含むデジタルの多重波制御信号を発生してD/Aコンバータ11aに出力する。ここで、n番目(n=1,2,…,Nであり、本実施形態においてN=7である。)の散乱体アンテナ50a-nから放射される電波の位相変化量Pn(t)は、次式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、fはドップラー周波数であり、φnは受信アンテナ60aから見込んだ散乱体アンテナ50a-nの方位角であり、φshiftは受信アンテナ60aの進行方向の方位角であり、αnは初期位相である。なお、受信アンテナ60aから散乱体アンテナ50a-1を見込んだ方位角φ1をゼロ度とし、方位角φn及びφshiftは受信アンテナ60aに対して時計回りに測定される。また、初期位相αnは一様乱数を用いて決定される。
 D/Aコンバータ11aは、トリガー信号S70に応答して、入力される多重波制御信号を、移相器13a-1~13a-7の移相量に対応するアナログの移相量制御電圧及び減衰器14a-1~14a-7の減衰量に対応するアナログの減衰量制御電圧に変換するD/A変換処理を開始して、移相器13a-1~13a-7及び減衰器14a-1~14a-7に出力する。ここで、D/A変換処理の期間は、所定の計測期間Tmに設定されている。なお、D/Aコンバータ11aによるD/A変換処理の開始タイミングは、送信回路30aによる無線送信動作の開始タイミングである。受信機21aは、トリガー信号S70に応答して、散乱体アンテナ50a-1~50a-7によって放射された電波の多重波を受信アンテナ60aを用いて受信して受信された信号の振幅及び位相を測定する受信処理を開始し、測定された振幅及び位相の各データを含む受信データをコンピュータ10に出力する。コンピュータ10は、受信機21aからの受信データに基づいて、受信アンテナ60aの性能を評価する。
 次に、図3を参照して、図2の多重波制御測定装置200Aによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10は多重波制御信号を発生してD/Aコンバータ11aに出力する。これに応答して、D/Aコンバータ11aはトリガー待ち状態にされる。さらに、コンピュータ10は信号発生器22a及び受信機21aに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれトリガー待機状態にされる。次に、コンピュータ10は、D/Aコンバータ11a、信号発生器22a及び受信機21aに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21aに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10から受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10に出力する。一方、信号発生器22a及び受信機21aはそれぞれ、トリガー信号S70に応答して、信号発生処理及び受信処理を開始する。ここで、D/A変換処理と、信号発生処理と、受信処理とは実質的に同時に開始される。
 コンピュータ10は、多重波生成終了通知信号に応答して、信号発生器22a及び受信機21aに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生して信号発生器22a及び受信機21aに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21aは、測定された振幅及び位相の各データを含む受信データをコンピュータ10に出力する。コンピュータ10は、受信機21aからの受信データに基づいて、受信アンテナ60aの性能を評価する。
 以上詳述したように、本実施形態によれば、D/Aコンバータ11a、信号発生器22a及び受信機21aは、トリガー信号S70に応答して、D/A変換処理、信号発生処理及び受信処理をそれぞれ実質的に同時に開始する。すなわち、評価回路80Aを構成する信号発生器22a、送信回路30a及び受信機21aの各動作の開始タイミングは互いに実質的に同期している。このため、各散乱体アンテナ50a-nから送信される電波の初期位相αnを、異なるアンテナ評価処理において同一に設定するだけで、受信アンテナ60aの設置位置において実質的に同一の多重波を生成できる。さらに、アンテナ評価処理毎に実質的に同一の多重波を従来技術に比較して高い再現性で生成できるので、計測期間Tmを従来技術に比較して短くできる。従って、受信アンテナ60aの評価を従来技術に比較して短時間でかつ高精度に行うことができる。本実施形態によれば、例えば、受信アンテナ60aを別の受信アンテナに交換しても、受信アンテナ60aと別の受信アンテナとで実質的に同一の多重波を受信できる。
 また、本実施形態によれば、D/Aコンバータ11a、信号発生器22a及び受信機21aをそれぞれトリガー待ち状態にした後に、トリガー発生要求信号S10tをトリガー発生回路70に出力するだけで、自動的にD/A変換処理、信号発生処理及び受信処理を開始できる。
第2の実施形態.
 図4は、本発明の第2の実施形態に係る多重波制御測定装置200Bの構成を示すブロック図であり、図5は、図4の多重波制御測定装置200Bによって実行されるアンテナ評価処理を示すシーケンス図である。本実施形態に係る多重波制御測定装置200Bは、第1の実施形態に係る多重波制御生成装置200Aに比較して、受信機21bを備えたネットワークアナライザ20bをさらに備えたことを特徴としている。さらに、本実施形態では、評価対象の受信アンテナは、受信アンテナ60a及び垂直偏波の電波を受信する半波長ダイポールアンテナである受信アンテナ60bを備えたダイバーシチアンテナ60dである。
 受信アンテナ60a及び60bは、受信アンテナ支持台102の頂点部に、給電点がXYZ座標系での座標位置(0,λ/4,0)及び座標位置(0,-λ/4,0)にそれぞれ設けられ、かつ垂直偏波の電波を受信するように縦置きに取り付けられている。ただし、λは散乱体アンテナ50a-1~50a-7から放射される電波の波長である。受信アンテナ60a及び60bは、ダイバーシチアンテナ60dを構成する。また、トリガー発生回路70は、トリガー発生要求信号S10tをコンピュータ10から受信すると、トリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21a,21bのうちの少なくとも1つに出力する。さらに、ネットワークアナライザ20bにおいて、受信機21bは、受信機21aと同様に、入力されるトリガー信号S70に応答して受信処理を開始又は停止するように設定されている。また、受信機21bは、受信処理において、散乱体アンテナ50a-1~50a-7によって放射された電波の多重波を受信アンテナ60bを用いて受信し、受信された信号の振幅及び位相を測定する。そして、測定された振幅及び位相の各データを含む受信データをコンピュータ10に出力する。なお、信号発生器20aと、送信回路30aと、受信機21aと、受信機21bとは、ダイバーシチアンテナ60dの性能を評価するための評価回路80Aを構成する。
 次に、図5を参照して、図4の多重波制御測定装置200Bによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10は多重波制御信号を発生してD/Aコンバータ11aに出力する。これに応答して、D/Aコンバータ11aはトリガー待ち状態にされる。さらに、コンピュータ10は信号発生器22a及び受信機21a,21bに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21a,21bはそれぞれトリガー待機状態にされる。次に、コンピュータ10は、D/Aコンバータ11a、信号発生器22a及び受信機21a,21bに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21a,21bに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10から受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10に出力する。一方、信号発生器22aはトリガー信号S70に応答して信号発生処理を開始する。また、受信機21a,21bはそれぞれ、トリガー信号S70に応答して受信処理を開始する。ここで、D/A変換処理と、信号発生処理と、受信機21a,21bによる各受信処理とは実質的に同時に開始される。
 コンピュータ10は、多重波生成終了通知信号に応答して信号発生器22a及び受信機21a,21bに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生して信号発生器22a及び受信機21a,21bに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21a,21bはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21a及び21bはそれぞれ、測定された振幅及び位相の各データを含む受信データをコンピュータ10に出力する。コンピュータ10は、受信機21a,21bからの各受信データに基づいて、ダイバーシチアンテナ60dの性能を評価する。
 以上詳述したように、本実施形態によれば、D/Aコンバータ11a、信号発生器22a及び受信機21a,21bは、トリガー信号S70に応答して、D/A変換処理、信号発生処理及び受信処理をそれぞれ実質的に同時に開始する。すなわち、評価回路80Bを構成する信号発生器22a、送信回路30a及び受信機21a,21bの各動作の開始タイミングは互いに実質的に同期している。このため、各散乱体アンテナ50a-nから送信される電波の初期位相αnを、異なるアンテナ評価処理において同一に設定するだけで、ダイバーシチアンテナ60dの設置位置において実質的に同一の多重波を生成できる。さらに、アンテナ評価処理毎に実質的に同一の多重波を従来技術に比較して高い再現性で生成できるので、計測期間Tmを従来技術に比較して短くできる。従って、ダイバーシチアンテナ60dの評価を従来技術に比較して短時間でかつ高精度に行うことができる。
 なお、本実施形態において、ダイバーシチアンテナ60dは2つの受信アンテナ60a,60bを備えたが、本発明はこれに限られず、3つ以上の複数の受信アンテナを備えてもよい。このとき、追加の受信アンテナ毎にネットワークアナライザ20bと同様に構成されたネットワークアナライザを設け、各ネットワークアナライザにおける受信処理の開始タイミングを互いに同期させればよい。
第3の実施形態.
 図6は、本発明の第3の実施形態に係る多重波制御測定装置200Cの構成を示すブロック図であり、図7は、図6の多重波制御測定装置200Cによって実行されるアンテナ評価処理を示すシーケンス図である。本実施形態に係る多重波制御測定装置200Cは、第1の実施形態に係る多重波制御測定装置200Aに比較して、それぞれ半波長ダイポールアンテナである散乱体アンテナ50b-1~50b-7と、分配器40と、送信回路30bとをさらに備えたことを特徴としている。ここで、送信回路30bは、D/Aコンバータ11bと、分配器12bと、散乱体アンテナ50b-1~50b-7にそれぞれ対応して設けられた移相器13b-1~13b-7を備えた移相回路13bと、散乱体アンテナ50b-1~50b-7にそれぞれ対応して設けられた減衰器14b-1~14b-7を備えた減衰回路14bとを備えて構成される。なお、信号発生器20aと、送信回路30a,30bと、受信機21aとは、受信アンテナ60aの性能を評価するための評価回路80Cを構成する。
 散乱体アンテナ50b-nは、散乱体アンテナ50b-nの給電点が散乱体アンテナ50a-nの給電点に対して原点から遠ざかる方向に距離λ/2だけ離れた位置に設けられ、かつ水平偏波の電波を放射するように、散乱体アンテナ支持台101に横置きに取り付けられている。例えば、散乱体アンテナ50a-1,50b-1の各給電点のXYZ座標系での座標位置はそれぞれ、(0,R,0),(0,R+λ/2,0)である。なお、散乱体アンテナ50b-nの長手方向は、原点を中心とする円の接線に対して平行になるように設けられる。
 コンピュータ10は、受信アンテナ60aの設置位置においてレイリーフェージング又は仲上-ライスフェージングなどの所望のフェージング環境における多重波を生成するように移相器13a-1~13a-7,13b-1~13b-7における各移相量及び減衰器14a-1~14a-7,14b-1~14b-7における各減衰量を算出し、算出された移相量及び減衰量ならびに多重波を生成するための計測期間Tmを含むデジタルの多重波制御信号を発生してD/Aコンバータ11aに出力する。ここで、散乱体アンテナ50a-nによって放射される垂直偏波の電波の初期位相αnは、散乱体アンテナ50b-nによって放射される水平偏波の電波の初期位相βnとは、互いに異なる一様乱数に基づいて決定される。また、トリガー発生回路70は、トリガー発生要求信号S10tをコンピュータ10から受信すると、トリガー信号S70を発生してD/Aコンバータ11a,11b、信号発生器22a及び受信機21aのうちの少なくとも1つに出力する。さらに、分配器40は、信号発生器22aによって発生された送信信号S22aを2分配して分配器12a及び12bに出力する。
 D/Aコンバータ11bは、トリガー信号S70に応答して、入力される多重波制御信号を、移相器13b-1~13b-7の移相量に対応するアナログの移相量制御電圧及び減衰器14b-1~14b-7の減衰量に対応するアナログの減衰量制御電圧に変換するD/A変換処理を開始して、移相器13b-1~13b-7及び減衰器14b-1~14b-7に出力する。ここで、D/A変換処理の期間は、所定の計測期間Tmに設定されている。なお、D/Aコンバータ11bによるD/A変換処理の開始タイミングは、送信回路30bによる無線送信動作の開始タイミングである。分配器40からの送信信号S22aは分配器12bにおいて7分配され、移相器13b-1~13b-7にそれぞれ出力される。移相器13b-1~13b-7はそれぞれ、入力される送信信号の位相を、D/Aコンバータ11bからの移相量制御電圧に対応する所定の移相量だけ移相させて、対応する減衰器14b-1~14b-7に出力する。減衰器14b-1~14b-7はそれぞれ、入力される移相された送信信号を、D/Aコンバータ11bからの減衰量制御電圧に対応する所定の減衰量だけ減衰させて、当該減衰器14b-1~14b-7に対応する散乱体アンテナ50b-1~50b-7から水平偏波の電波として放射する。
 次に、図7を参照して、図6の多重波制御測定装置200Cによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10はD/Aコンバータ11a及び11bのための多重波制御信号をそれぞれ発生して、D/Aコンバータ11a及び11bに出力する。これに応答して、D/Aコンバータ11a及び11bはトリガー待ち状態にされる。さらに、コンピュータ10は信号発生器22a及び受信機21aに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれトリガー待機状態にされる。次に、コンピュータ10は、D/Aコンバータ11a,11b、信号発生器22a及び受信機21aに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生してD/Aコンバータ11a,11b、信号発生器22a及び受信機21aに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10から受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10に出力する。また、D/Aコンバータ11bは、トリガー信号S70に応答して、コンピュータ10から受信した多重波制御信号を移相器13b-1~13b-7に対する移相量制御電圧及び減衰器14b-1~14b-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30bは無線送信動作を開始する。そして、D/Aコンバータ11bは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10に出力する。一方、信号発生器22a及び受信機21aはそれぞれ、トリガー信号S70に応答して、信号発生処理及び受信処理を開始する。ここで、D/Aコンバータ11a,11bによる各D/A変換処理と、信号発生処理と、受信処理とは実質的に同時に開始される。
 コンピュータ10は、D/Aコンバータ11a及び11bから多重波生成終了通知信号をそれぞれ受信すると、信号発生器22a及び受信機21aに対してトリガー信号S70を実質的に同時に出力することを指示するトリガー発生要求信号S10tをトリガー発生回路70に出力する。これに応答して、トリガー発生回路70はトリガー信号S70を発生して信号発生器22a及び受信機21aに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21aは、測定された振幅及び位相の各データを含む受信データをコンピュータ10に出力する。コンピュータ10は、受信機21aからの受信データに基づいて、受信アンテナ60aの性能を評価する。
 以上詳述したように、本実施形態によれば、D/Aコンバータ11a,11b、信号発生器22a及び受信機21aは、トリガー信号S70に応答して、D/A変換処理、信号発生処理及び受信処理をそれぞれ実質的に同時に開始する。すなわち、評価回路80Cを構成する信号発生器22a、送信回路30a,30b及び受信機21aの各動作の開始タイミングは互いに実質的に同期している。このため、各散乱体アンテナ50a-nから送信される電波の初期位相αnを異なるアンテナ評価処理において同一に設定し、かつ各散乱体アンテナ50b-nから送信される電波の初期位相βnを異なるアンテナ評価処理において同一に設定するだけで、受信アンテナ60aの設置位置において実質的に同一の多重波を生成できる。さらに、アンテナ評価処理毎に実質的に同一の多重波を従来技術に比較して高い再現性で生成できるので、計測期間Tmを従来技術に比較して短くできる。従って、受信アンテナ60aの評価を従来技術に比較して短時間でかつ高精度に行うことができる。また、垂直偏波及び水平偏波の電波が同時に放射されるので、受信アンテナ60aの設置位置において、第1の実施形態に係るフェージング制御測定装置200cに比較してより実際のフェージング環境において生成される多重波に近い多重波を生成できる。
 なお、本実施形態において、散乱体アンテナ50a-1~50a-7はそれぞれ垂直偏波の電波を放射し、散乱体アンテナ50b-1~50b-7はそれぞれ垂直偏波の電波を放射した。しかしながら、本発明はこれに限られず、送信回路30aと同様にそれぞれ構成された複数の送信回路を備えた構成において、当該複数の送信回路の複数のD/Aコンバータ11a、信号発生器22a及び受信機21aの各処理開始タイミングを、トリガー信号S70を用いて互いに同期させてもよい。
 また、本実施形態において、散乱体アンテナ50b-nは、散乱体アンテナ50b-nの給電点が散乱体アンテナ50a-nの給電点に対して原点から遠ざかる方向に距離λ/2だけ離れた位置に設けられた。しかしながら、本発明はこれに限られず、散乱体アンテナ50b-nは、散乱体アンテナ50b-nの給電点が散乱体アンテナ50a-nの給電点に対して原点に近づく方向に距離λ/2だけ離れた位置に設けられたてもよい。
第4の実施形態.
 図8は、本発明の第4の実施形態に係る多重波制御測定装置200Dの構成を示すブロック図であり、図9は、図8の多重波制御測定装置200Dによって実行されるアンテナ評価処理を示すシーケンス図である。本実施形態に係る多重波制御測定装置200Dは、第3の実施形態に係る多重波制御測定装置200Cに比較して、散乱体アンテナ50b-1~50b-7に代えて垂直偏波の電波を放射する散乱体アンテナ50c-1~50c-7を備え、受信機21bを備えたネットワークアナライザ20bとをさらに備えたことを特徴としている。なお、受信アンテナ60b及びネットワークアナライザ20bは、第2の実施形態と同様に構成される。また、本実施形態において、評価対象のアンテナは、それぞれ垂直偏波の電波を受信する半波長ダイポールアンテナである受信アンテナ60a及び60bを備えたMIMO(Multiple Input Multiple Output(多入力多出力))アンテナ60mである。
 図8において、受信アンテナ60a及び60bは2素子のMIMOアンテナ60mを構成する。また、散乱体アンテナ50c-nは、散乱体アンテナ50c-nの給電点が散乱体アンテナ50a-nの給電点に対して原点から遠ざかる方向に距離λ/2だけ離れた位置に設けられ、かつ垂直偏波の電波を放射するように、散乱体アンテナ支持台101に縦置きに取り付けられている。例えば、散乱体アンテナ50a-1,50c-1の各給電点のXYZ座標系での座標位置はそれぞれ、(0,R,0),(0,R+λ/2,0)である。
 次に、図9を参照して、図8の多重波制御測定装置200Dによって実行されるフェージング測定処理を説明する。まず始めに、多重波制御測定装置200Dにおいて、散乱体アンテナ50a-1~50a-7及び受信アンテナ60aを用いるアンテナ評価サブ処理P1が行われる。アンテナ評価サブ処理P1において、コンピュータ10は、信号発生器22aと、送信回路30aと、受信機21aとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P1は、図3のアンテナ評価処理における、多重波制御信号が送信されるタイミングから、受信データがコンピュータ10によって受信されるタイミングまでの処理と同一である。アンテナ評価サブ処理P1によって、コンピュータ10は、散乱体アンテナ50a-1~50a-7によって放射された垂直偏波の電波の多重波を受信アンテナ60aで受信したときの受信データを得る。
 引き続き、アンテナ評価サブ処理P1と同様に、散乱体アンテナ50a-1~50a-7及び受信アンテナ60bを用いるアンテナ評価サブ処理P2が行われる。アンテナ評価サブ処理P2において、コンピュータ10は、信号発生器22aと、送信回路30aと、受信機21bとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P2によって、コンピュータ10は、散乱体アンテナ50a-1~50a-7によって放射された垂直偏波の電波の多重波を受信アンテナ60bで受信したときの受信データを得る。なお、アンテナ評価サブ処理P2において用いられる散乱体アンテナ50a-nに関する初期位相αnは、アンテナ評価サブ処理P1において用いられる散乱体アンテナ50a-nに関する初期位相αnと同一である。
 次に、アンテナ評価サブ処理P1と同様に、散乱体アンテナ50c-1~50c-7及び受信アンテナ60aを用いるアンテナ評価サブ処理P3が行われる。アンテナ評価サブ処理P3において、コンピュータ10は、信号発生器22aと、送信回路30bと、受信機21aとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P3によって、コンピュータ10は、散乱体アンテナ50c-1~50c-7によって放射された垂直偏波の電波の多重波を受信アンテナ60aで受信したときの受信データを得る。なお、アンテナ評価サブ処理P3において用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P1において用いられる散乱体アンテナ50a-nに対応する初期位相αnと異なる。
 引き続き、アンテナ評価サブ処理P1と同様に、散乱体アンテナ50c-1~50c-7及び受信アンテナ60bを用いるアンテナ評価サブ処理P4が行われる。アンテナ評価サブ処理P4において、コンピュータ10は、信号発生器22aと、送信回路30bと、受信機21bとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P4によって、コンピュータ10は、散乱体アンテナ50c-1~50c-7によって放射された垂直偏波の電波の多重波を受信アンテナ60bで受信したときの受信データを得る。なお、アンテナ評価サブ処理P4において用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P3において用いられる散乱体アンテナ50c-nに関する初期位相γnと同一である。
 そして、コンピュータ10は、各アンテナ評価サブ処理P1~P4において得られた受信データに基づいてMIMOのチャネル応答行列を算出し、MIMOの固有値及び伝送容量などのMIMO伝送特性を評価する。
 以上詳述したように、本実施形態によれば、アンテナ評価サブ処理P1において評価回路80Dを構成する信号発生器22a、送信回路30a及び受信機21aの各動作の開始タイミングは互いに実質的に同期しており、アンテナ評価サブ処理P2において評価回路80Dを構成する信号発生器22a、送信回路30a及び受信機21bの各動作の開始タイミングは互いに実質的に同期している。さらに、アンテナ評価サブ処理P2において用いられる散乱体アンテナ50a-nに関する初期位相αnは、アンテナ評価サブ処理P1において用いられる散乱体アンテナ50a-nに関する初期位相αnと同一である。従って、アンテナ評価サブ処理P1及びP2において、互いに実質的に同一の多重波が生成される。同様に、アンテナ評価サブ処理P3及びP4において、互いに実質的に同一の多重波が生成される。従って、従来技術に比較して高い再現性で多重波を生成でき、MIMOアンテナ60mの評価を短時間でかつ高精度に行うことができる。
第5の実施形態.
 図10は、本発明の第5の実施形態に係る受信アンテナ支持台102Aの斜視図である。図10において、受信アンテナ支持台102Aは、基台103と、基台の上にZ軸を回転軸として回転方向Raに回転するポール104と、ポール104の上に固定されたテーブル105と、テーブル105の縁部に固定されたポール106と、ポール106の上端部に設けられXY平面に平行な回転軸の周りに回転方向Reに回転する受信アンテナ取り付け部材107とを備えて構成される。なお、基台103と、ポール104とテーブル105と、ポール106と、受信アンテナ取り付け部材107とは、樹脂によって形成されている。また、受信アンテナ60aは、受信アンテナ取り付け部材107に固定された携帯電話機150に取り付けられている。本実施形態によれば、ポール104を所定の角度だけ回転させて固定し、受信アンテナ取り付け部材107を所定の角度だけ回転させて固定することにより、受信アンテナ60aの仰角(Z軸との間の角度である。)及び方位角をそれぞれ、所望の仰角及び所望の方位角に設定して受信アンテナ60aの性能を評価できる。これにより、上記各実施形態に比較して、携帯電話機150が実際に使用される環境において受信アンテナ60aの性能をより高い精度で評価できる。
第1の実施形態の変形例.
 図11は、本発明の第1の実施形態の変形例に係る多重波制御測定装置200Eの構成を示すブロック図である。また、図12は、図11の多重波制御測定装置200Eによって実行されるアンテナ評価処理を示すシーケンス図である。本変形例に係る多重波制御測定装置200Eは、第1の実施形態に係る多重波制御測定装置200Aに比較して、コンピュータ10に代えて、トリガー発生回路70Aを備えたコンピュータ10Aを備えたことを特徴としている。
 図11において、コンピュータ10Aは、所定のタイミングにおいて、トリガー信号S70を発生して、D/Aコンバータ11a、信号発生器22a及び受信機21aのうちの少なくとも1つに出力する。また、D/Aコンバータ11a、信号発生器22a及び受信機21aは、コンピュータ10Aからのトリガー信号S70に応答して、第1の実施形態に係るD/Aコンバータ11a、信号発生器22a及び受信機21aと同様に、それぞれ動作する。
 次に、図12を参照して、図11の多重波制御測定装置200Eによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10Aは多重波制御信号を発生してD/Aコンバータ11aに出力する。これに応答して、D/Aコンバータ11aはトリガー待ち状態にされる。さらに、コンピュータ10Aは信号発生器22a及び受信機21aに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれトリガー待機状態にされる。次に、コンピュータ10Aは、トリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21aに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10Aから受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10Aに出力する。一方、信号発生器22a及び受信機21aはそれぞれ、トリガー信号S70に応答して、信号発生処理及び受信処理を開始する。ここで、D/A変換処理と、信号発生処理と、受信処理とは実質的に同時に開始される。
 コンピュータ10Aは、多重波生成終了通知信号に応答して、トリガー信号S70を発生して信号発生器22a及び受信機21aに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21aは、測定された振幅及び位相の各データを含む受信データをコンピュータ10Aに出力する。コンピュータ10Aは、受信機21aからの受信データに基づいて、受信アンテナ60aの性能を評価する。
 以上説明したように、本変形例に係る多重波制御測定装置200Eは、第1の実施形態に係る多重波制御測定装置200Aと同様の特有の効果を奏する。
第2の実施形態の変形例.
 図13は、本発明の第2の実施形態の変形例に係る多重波制御測定装置200Fの構成を示すブロック図である。また、図14は、図13の多重波制御測定装置200Fによって実行されるアンテナ評価処理を示すシーケンス図である。本変形例に係る多重波制御測定装置200Fは、第2の実施形態に係る多重波制御測定装置200Bに比較して、コンピュータ10に代えて、トリガー発生回路70Aを備えたコンピュータ10Aを備えたことを特徴としている。
 図13において、コンピュータ10Aは、所定のタイミングで、トリガー信号S70を発生してD/Aコンバータ11a、信号発生器22a及び受信機21a,21bのうちの少なくとも1つに出力する。また、D/Aコンバータ11a、信号発生器22a、受信機21a、及び受信機21bは、コンピュータ10Aからのトリガー信号S70に応答して、第2の実施形態に係るD/Aコンバータ11a、信号発生器22a、受信機21a、及び受信機21bと同様に、それぞれ動作する。
 次に、図14を参照して、図13の多重波制御測定装置200Fによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10Aは多重波制御信号を発生してD/Aコンバータ11aに出力する。これに応答して、D/Aコンバータ11aはトリガー待ち状態にされる。さらに、コンピュータ10Aは信号発生器22a及び受信機21a,21bに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21a,21bはそれぞれトリガー待機状態にされる。次に、コンピュータ10Aは、トリガー信号S70を発生して、D/Aコンバータ11a、信号発生器22a及び受信機21a,21bに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10Aから受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10Aに出力する。一方、信号発生器22aはトリガー信号S70に応答して信号発生処理を開始する。また、受信機21a,21bはそれぞれ、トリガー信号S70に応答して受信処理を開始する。ここで、D/A変換処理と、信号発生処理と、受信機21a,21bによる各受信処理とは実質的に同時に開始される。
 コンピュータ10Aは、多重波生成終了通知信号に応答して、トリガー信号S70を発生して信号発生器22a及び受信機21a,21bに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21a,21bはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21a及び21bはそれぞれ、測定された振幅及び位相の各データを含む受信データをコンピュータ10Aに出力する。コンピュータ10Aは、受信機21a,21bからの各受信データに基づいて、ダイバーシチアンテナ60dの性能を評価する。
 以上説明したように、本変形例に係る多重波制御測定装置200Fは、第2の実施形態に係る多重波制御測定装置200Bと同様の特有の効果を奏する。
第3の実施形態の変形例.
 図15は、本発明の第3の実施形態の変形例に係る多重波制御測定装置200Gの構成を示すブロック図である。また、図16は、図15の多重波制御測定装置200Gによって実行されるアンテナ評価処理を示すシーケンス図である。本変形例に係る多重波制御測定装置200Gは、第3の実施形態に係る多重波制御測定装置200Cに比較して、コンピュータ10に代えて、トリガー発生回路70Aを備えたコンピュータ10Aを備えたことを特徴としている。
 図15において、コンピュータ10Aは、所定のタイミングで、トリガー信号S70を発生してD/Aコンバータ11a,11b、信号発生器22a及び受信機21aのうちの少なくとも1つに出力する。また、D/Aコンバータ11a,11b、信号発生器22a及び受信機21aは、コンピュータ10Aからのトリガー信号S70に応答して、第3の実施形態に係るD/Aコンバータ11a,11b、信号発生器22a及び受信機21aと同様に動作する。
 次に、図16を参照して、図15の多重波制御測定装置200Gによって実行されるフェージング測定処理を説明する。まず始めに、コンピュータ10AはD/Aコンバータ11a及び11bのための多重波制御信号をそれぞれ発生して、D/Aコンバータ11a及び11bに出力する。これに応答して、D/Aコンバータ11a及び11bはトリガー待ち状態にされる。さらに、コンピュータ10Aは信号発生器22a及び受信機21aに対して、トリガー信号S70の待機を指示するトリガー待機指示信号を出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれトリガー待機状態にされる。次に、コンピュータ10A、トリガー信号S70を発生してD/Aコンバータ11a,11b、信号発生器22a及び受信機21aに実質的に同時に出力する。
 D/Aコンバータ11aは、トリガー信号S70に応答して、コンピュータ10Aから受信した多重波制御信号を移相器13a-1~13a-7に対する移相量制御電圧及び減衰器14a-1~14a-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30aは無線送信動作を開始する。そして、D/Aコンバータ11aは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10Aに出力する。また、D/Aコンバータ11bは、トリガー信号S70に応答して、コンピュータ10Aから受信した多重波制御信号を移相器13b-1~13b-7に対する移相量制御電圧及び減衰器14b-1~14b-7に対する減衰量制御電圧に変換するD/A変換処理を開始する。これにより、送信回路30bは無線送信動作を開始する。そして、D/Aコンバータ11bは、計測期間Tmが経過したときにD/A変換処理を停止して、多重波の生成が停止したことを通知する多重波生成終了通知信号をコンピュータ10Aに出力する。一方、信号発生器22a及び受信機21aはそれぞれ、トリガー信号S70に応答して、信号発生処理及び受信処理を開始する。ここで、D/Aコンバータ11a,11bによる各D/A変換処理と、信号発生処理と、受信処理とは実質的に同時に開始される。
 コンピュータ10Aは、D/Aコンバータ11a及び11bから多重波生成終了通知信号をそれぞれ受信すると、トリガー信号S70を発生して信号発生器22a及び受信機21aに実質的に同時に出力する。これに応答して、信号発生器22a及び受信機21aはそれぞれ、信号発生処理及び受信処理を実質的に同時に停止する。さらに、受信機21aは、測定された振幅及び位相の各データを含む受信データをコンピュータ10Aに出力する。コンピュータ10Aは、受信機21aからの受信データに基づいて、受信アンテナ60aの性能を評価する。
 以上説明したように、本変形例に係る多重波制御測定装置200Gは、第3の実施形態に係る多重波制御測定装置200Cと同様の特有の効果を奏する。
第4の実施形態の変形例.
 図17は、本発明の第4の実施形態の変形例に係る多重波制御測定装置200Hの構成を示すブロック図である。また、図18は、図17の多重波制御測定装置200Hによって実行されるアンテナ評価処理を示すシーケンス図である。本変形例に係る多重波制御測定装置200Hは、第3の実施形態に係る多重波制御測定装置200Dに比較して、コンピュータ10に代えて、トリガー発生回路70Aを備えたコンピュータ10Aを備えたことを特徴としている。
 図17において、コンピュータ10Aは、所定のタイミングで、トリガー信号S70を発生してD/Aコンバータ11a,11b、信号発生器22a及び受信機21aのうちの少なくとも1つに出力する。また、D/Aコンバータ11a,11b、信号発生器22a及び受信機21aは、コンピュータ10Aからのトリガー信号S70に応答して、第3の実施形態に係るD/Aコンバータ11a,11b、信号発生器22a及び受信機21aと同様に動作する。
 次に、図18を参照して、図17の多重波制御測定装置200Hによって実行されるフェージング測定処理を説明する。まず始めに、多重波制御測定装置200Hにおいて、散乱体アンテナ50a-1~50a-7及び受信アンテナ60aを用いるアンテナ評価サブ処理P1Aが行われる。アンテナ評価サブ処理P1Aにおいて、コンピュータ10は、信号発生器22aと、送信回路30aと、受信機21aとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P1Aは、図12のアンテナ評価処理における、多重波制御信号が送信されるタイミングから、受信データがコンピュータ10Aによって受信されるタイミングまでの処理と同一である。アンテナ評価サブ処理P1Aによって、コンピュータ10Aは、散乱体アンテナ50a-1~50a-7によって放射された垂直偏波の電波の多重波を受信アンテナ60aで受信したときの受信データを得る。
 引き続き、アンテナ評価サブ処理P1Aと同様に、散乱体アンテナ50a-1~50a-7及び受信アンテナ60bを用いるアンテナ評価サブ処理P2Aが行われる。アンテナ評価サブ処理P2Aにおいて、コンピュータ10は、信号発生器22aと、送信回路30aと、受信機21bとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P2Aによって、コンピュータ10Aは、散乱体アンテナ50a-1~50a-7によって放射された垂直偏波の電波の多重波を受信アンテナ60bで受信したときの受信データを得る。なお、アンテナ評価サブ処理P2Aにおいて用いられる散乱体アンテナ50a-nに関する初期位相αnは、アンテナ評価サブ処理P1Aにおいて用いられる散乱体アンテナ50a-nに関する初期位相αnと同一である。
 次に、アンテナ評価サブ処理P1Aと同様に、散乱体アンテナ50c-1~50c-7及び受信アンテナ60aを用いるアンテナ評価サブ処理P3Aが行われる。アンテナ評価サブ処理P3Aにおいて、コンピュータ10は、信号発生器22aと、送信回路30bと、受信機21aとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P3Aによって、コンピュータ10Aは、散乱体アンテナ50c-1~50c-7によって放射された垂直偏波の電波の多重波を受信アンテナ60aで受信したときの受信データを得る。なお、アンテナ評価サブ処理P3Aにおいて用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P1Aにおいて用いられる散乱体アンテナ50a-nに対応する初期位相αnと異なる。
 引き続き、アンテナ評価サブ処理P1Aと同様に、散乱体アンテナ50c-1~50c-7及び受信アンテナ60bを用いるアンテナ評価サブ処理P4Aが行われる。アンテナ評価サブ処理P4Aにおいて、コンピュータ10は、信号発生器22aと、送信回路30bと、受信機21bとを選択して、MIMOアンテナ60mの性能を評価するための評価回路80Dを構成する。アンテナ評価サブ処理P4によって、コンピュータ10Aは、散乱体アンテナ50c-1~50c-7によって放射された垂直偏波の電波の多重波を受信アンテナ60bで受信したときの受信データを得る。なお、アンテナ評価サブ処理P4Aにおいて用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P3Aにおいて用いられる散乱体アンテナ50c-nに関する初期位相γnと同一である。
 そして、コンピュータ10Aは、各アンテナ評価サブ処理P1A~P4Aにおいて得られた受信データに基づいてMIMOのチャネル応答行列を算出し、MIMOの固有値及び伝送容量などのMIMO伝送特性を評価する。
 以上説明したように、本変形例に係る多重波制御測定装置200Gは、第3の実施形態に係る多重波制御測定装置200Dと同様の特有の効果を奏する。
 なお、第4の実施形態において、アンテナ評価サブ処理P1及びP2を同時に行い、アンテナ評価サブ処理P3及びP4を同時に行ってもよい。この場合、アンテナ評価サブ処理P1及びP2を同時に行う処理及びアンテナ評価サブ処理P3及びP4を同時に行う処理はそれぞれ、第2の実施形態に係るアンテナ評価処理と同様である。さらに、アンテナ評価サブ処理P3において用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P1において用いられる散乱体アンテナ50a-nに対応する初期位相αnと異なるので、アンテナ評価サブ処理P1及びP3を同時に行うことはできない。しかしながら、アンテナ評価サブ処理P3において、送信回路30bに代えて送信回路30aを用いることにより、送信回路30bを削減してアンテナ評価装置全体の回路規模を第4の実施形態に比較して小さくできる。
 また、第4の実施形態の変形例において、アンテナ評価サブ処理P1A及びP2Aを同時に行い、アンテナ評価サブ処理P3A及びP4Aを同時に行ってもよい。この場合、アンテナ評価サブ処理P1A及びP2Aを同時に行う処理及びアンテナ評価サブ処理P3A及びP4Aを同時に行う処理はそれぞれ、第2の実施形態の変形例に係るアンテナ評価処理と同様である。さらに、アンテナ評価サブ処理P3Aにおいて用いられる散乱体アンテナ50c-nに関する初期位相γnは、アンテナ評価サブ処理P1Aにおいて用いられる散乱体アンテナ50a-nに対応する初期位相αnと異なるので、アンテナ評価サブ処理P1A及びP3Aを同時に行うことはできない。しかしながら、アンテナ評価サブ処理P3Aにおいて、送信回路30bに代えて送信回路30aを用いることにより、送信回路30bを削減してアンテナ評価装置全体の回路規模を第4の実施形態の変形例に比較して小さくできる。
 また、第4の実施形態及びその変形例において、ネットワークアナライザ20a及び20bに代えて、信号発生器22aと、所定の搬送波信号を送信信号S22aに従って変調して変調波信号を発生する変調器と、アンテナ60aを用いて受信された受信信号を復調する復調器と、復調後の受信信号に対して受信処理を行う受信機21aとをそれぞれ備えた第1及び第2の送受信装置を設けてもよい。このとき、第1及び第2の送受信装置は、互いに直交する変調波信号を発生して、分配器12a及び12bにそれぞれ出力する。さらに、2つの信号発生器による各信号発生処理と、2つのD/Aコンバータ11a,11bによる各D/A変換処理と、2つの受信機による各受信処理の開始タイミングを互いに同期させる。これにより、第4の実施形態及びその変形例に比較して、互いに直交する変調波を送信回路30a,30bを用いて同時に放射し、2つの受信アンテナ60a,60bを用いて多重波を同時に受信してMIMO伝送特性を評価できる。
 また、第4の実施形態及びその変形例において、散乱体アンテナ50c-nは、散乱体アンテナ50c-nの給電点が散乱体アンテナ50a-nの給電点に対して原点から遠ざかる方向に距離λ/2だけ離れた位置に設けられた。しかしながら、本発明はこれに限られず、散乱体アンテナ50c-nは、散乱体アンテナ50c-nの給電点が散乱体アンテナ50a-nの給電点に対して原点に近づく方向に距離λ/2だけ離れた位置に設けられてもよい。
 また、第3及び第4の実施形態及びその変形例において、分配器40,12a、12bに代えて、信号発生器22aによって発生された送信信号S22aを14分配して移相器13a-1~13a-7,13b-1~13b-7に出力する分配器を設けてもよい。
 さらに、上記各実施形態及びその変形例において、散乱体アンテナ50a-1~50a-7,50b-1~50b-7,50c-1,50c-7を円周上に等間隔に配置したが、本発明はこれに限られず、2個以上の複数の散乱体アンテナを、評価対象の受信アンテナの周囲に配置すればよい。
 またさらに、上記各実施形態及びその変形例において、信号発生器22aは無変調連続波信号である送信信号S22aを発生したが、本発明はこれに限られず、変調波信号を発生してもよい。
 また、上記各実施形態及びその変形例において、コンピュータ10はD/Aコンバータ11a及び11bからの波形生成終了通知信号に応答して、処理中の信号発生器22a及び受信機21a,21bに対してトリガー信号S70を送信するようにトリガー発生回路70を制御した。しかしながら、本発明はこれに限られず、トリガー待ち状態にされているD/Aコンバータ11a及び11b、信号発生器22a及び受信機21a,21bに対してトリガー信号S70を送信するようにトリガー発生回路70を制御してから、少なくとも計測期間Tmが経過した後に、D/Aコンバータ11a及び11b、信号発生器22a及び受信機21a,21bに対してトリガー信号S70を送信するようにトリガー発生回路70を制御してもよい。さらに、コンピュータ10は、D/Aコンバータ11aからの多重波生成終了通知信号に応答して、トリガー発生要求信号S10tを出力せずに、信号発生器22a及び受信機21aの動作をそれぞれ停止させてもよい。
 またさらに、上記各実施形態及びその変形例において、送信回路30a,30bは、入力される送信信号を7個の送信信号に分配して当該分配後の各送信信号の位相及び振幅を変化させたが、本発明はこれに限られず、入力される送信信号を7個の送信信号に分配して当該分配後の各送信信号の位相及び振幅のうちの少なくとも一方を変化させてもよい。
 また、少なくとも1つの信号発生器22aと、少なくとも1つの送信回路30aと、少なくとも1つの受信機21aと、コンピュータ10と、トリガー発生回路70とを備えたアンテナ評価装置において、コンピュータ10は、以下のように制御すればよい。コンピュータ10は、受信アンテナの評価を行うときに、(a)少なくとも1つの信号発生器22aから少なくとも1つの信号発生器を評価のために使用する評価手段として選択し、(b)少なくとも1つの送信回路30aから少なくとも1つの送信回路を評価のために使用する評価手段として選択し、(c)少なくとも1つの受信機21aから少なくとも1つの受信機を評価のために使用する評価手段として選択し、選択した評価手段の各動作を実質的に同時に開始させるように、トリガー発生回路70の動作を制御すればよい。さらに、コンピュータ10は、選択した評価手段のうち、送信回路を除く信号発生器及び受信機の各動作を実質的に同時に停止させるように、トリガー発生回路70の動作を制御すればよい。
 さらに、少なくとも1つの信号発生器22aと、少なくとも1つの送信回路30aと、少なくとも1つの受信機21aと、コンピュータ10Aとを備えたアンテナ評価装置において、コンピュータ10Aは、以下のように制御すればよい。コンピュータ10Aは、受信アンテナの評価を行うときに、(a)少なくとも1つの信号発生器22aから少なくとも1つの信号発生器を評価のために使用する評価手段として選択し、(b)少なくとも1つの送信回路30aから少なくとも1つの送信回路を評価のために使用する評価手段として選択し、(c)少なくとも1つの受信機21aから少なくとも1つの受信機を評価のために使用する評価手段として選択し、選択した評価手段の各動作を実質的に同時に開始させるように、トリガー発生回路70の動作を制御すればよい。さらに、コンピュータ10は、選択した評価手段のうち、送信回路を除く信号発生器及び受信機の各動作を実質的に同時に停止させるように、トリガー発生回路70の動作を制御すればよい。
 以上詳述したように、本発明に係るアンテナ評価装置及び方法によれば、受信アンテナの性能の評価のために用いる信号発生手段、送信手段及び受信手段を含む評価手段の各動作を実質的に同時に開始させ、受信された多重波に基づいて上記受信アンテナの性能を評価するので、従来技術に比較して、受信アンテナの設置位置において高い再現性で多重波を生成して、受信アンテナの評価を短時間でかつ高精度に行うことができる。
10,10A…コンピュータ、
11a,11b…D/Aコンバータ、
12a,12b…分配器、
13a,13b…移相回路、
13a-1~13a-7,13b-1~13b-7…移相器、
14a,14b…減衰回路、
14a-1~14a-7,14b-1~14b-7…減衰器、
20a,20b…ネットワークアナライザ、
21a,21b…受信機、
22a…信号発生器、
30a,30b…送信回路、
40…分配器、
50a-1~50a-7,50b-1~50b-7,50c-1~50c-7…散乱体アンテナ、
60a,60b…受信アンテナ、
70…トリガー発生回路、
80A,80B,80C,80D…評価回路、
101…散乱体アンテナ支持台、
102,102A…受信アンテナ支持台、
150…携帯電話機、
200A,200B,200C,200D,200E,200F,200G,200H…多重波制御測定装置。

Claims (12)

  1.  互いに異なる所定の位置にそれぞれ設けられた複数N個の散乱体アンテナと、
     所定の送信信号を発生する信号発生手段と、
     上記送信信号を複数N個の送信信号に分配して、当該分配後の各送信信号の位相及び振幅のうちの少なくとも一方を変化させて、上記各変化後の送信信号を当該各送信信号に対応する上記各散乱体アンテナから電波としてそれぞれ放射する送信手段と、
     上記各位置の実質的に中心に配置された評価対象の受信アンテナを用いて、上記放射された電波の多重波を受信する受信手段とを備えたアンテナ評価装置において、
     上記信号発生手段、上記送信手段及び上記受信手段を含む評価手段の各動作を実質的に同時に開始させ、上記受信された多重波に基づいて上記受信アンテナの性能を評価する制御手段を備えたことを特徴とするアンテナ評価装置。
  2.  上記制御手段は、上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を、実質的に同時に停止させることを特徴とする請求項1記載のアンテナ評価装置。
  3.  少なくとも1つの上記信号発生手段と、少なくとも1つの上記送信手段と、少なくとも1つの上記受信手段とを備え、
     上記制御手段は、上記受信アンテナの評価を行うときに、
    (a)上記少なくとも1つの信号発生手段から少なくとも1つの信号発生手段を評価のために使用する評価手段として選択し、
    (b)上記少なくとも1つの送信手段から少なくとも1つの送信手段を評価のために使用する評価手段として選択し、
    (c)上記少なくとも1つの受信手段から少なくとも1つの受信手段を評価のために使用する評価手段として選択し、
     上記選択した評価手段の各動作を実質的に同時に開始させることを特徴とする請求項1記載のアンテナ評価装置。
  4.  上記制御手段は、上記選択した評価手段のうち上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させることを特徴とする請求項3記載のアンテナ評価装置。
  5.  上記制御手段からのトリガー発生要求信号に応答して、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、
     上記制御手段は、上記トリガー発生要求信号を発生して上記トリガー発生手段に出力し、
     上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする請求項1から4までのうちのいずれか1つに記載のアンテナ評価装置。
  6.  上記制御手段は、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、
     上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする請求項1から4までのうちのいずれか1つ記載のアンテナ評価装置。
  7.  互いに異なる所定の位置にそれぞれ設けられた複数N個の散乱体アンテナと、
     所定の送信信号を発生する信号発生手段と、
     上記送信信号を複数N個の送信信号に分配して、当該分配後の各送信信号の位相及び振幅のうちの少なくとも一方を変化させて、上記各変化後の送信信号を当該各送信信号に対応する上記各散乱体アンテナから電波としてそれぞれ放射する送信手段と、
     上記各位置の実質的に中心に配置された評価対象の受信アンテナを用いて、上記放射された電波の多重波を受信する受信手段とを備えたアンテナ評価装置を用いたアンテナ評価方法において、
     上記信号発生手段、上記送信手段及び上記受信手段を含む評価手段の各動作を実質的に同時に開始させ、上記受信された多重波に基づいて上記受信アンテナの性能を評価する制御ステップを含むことを特徴とするアンテナ評価方法。
  8.  上記制御ステップは、上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させるステップをさらに含むことを特徴とする請求項7記載のアンテナ評価方法。
  9.  上記アンテナ評価装置は、少なくとも1つの上記信号発生手段と、少なくとも1つの上記送信手段と、少なくとも1つの上記受信手段とを備え、
     上記制御ステップが、上記受信アンテナの評価を行うときに、
    (a)上記少なくとも1つの信号発生手段から少なくとも1つの信号発生手段を評価のために使用する評価手段として選択し、
    (b)上記少なくとも1つの送信手段から少なくとも1つの送信手段を評価のために使用する評価手段として選択し、
    (c)上記少なくとも1つの受信手段から少なくとも1つの受信手段を評価のために使用する評価手段として選択し、
     上記選択した評価手段の各動作を実質的に同時に開始させることを特徴とする請求項7記載のアンテナ評価方法。
  10.  上記制御ステップは、上記選択した評価手段のうち上記送信手段を除く上記信号発生手段及び上記受信手段の各動作を実質的に同時に停止させるステップをさらに含むことを特徴とする請求項9記載のアンテナ評価方法。
  11.  上記アンテナ評価装置は、トリガー発生要求信号に応答して、トリガー信号を発生して上記評価手段に出力するトリガー発生手段をさらに備え、
     上記制御ステップが、上記トリガー発生要求信号を発生して上記トリガー発生手段に出力するステップをさらに含み、
     上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする請求項7から10までのうちのいずれか1つに記載のアンテナ評価方法。
  12.  上記制御ステップが、トリガー信号を発生して上記評価手段に出力するステップをさらに含み、
     上記評価手段は、上記トリガー信号に応答して各動作を実質的に同時に開始することを特徴とする請求項7から10までのうちのいずれか1つに記載のアンテナ評価方法。
PCT/JP2010/002243 2009-04-23 2010-03-29 アンテナ評価装置及び方法 WO2010122714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011510162A JPWO2010122714A1 (ja) 2009-04-23 2010-03-29 アンテナ評価装置及び方法
EP10766777.6A EP2423695A4 (en) 2009-04-23 2010-03-29 DEVICE AND METHOD FOR CHECKING AN ANTENNA
CN201080002152.5A CN102105804B (zh) 2009-04-23 2010-03-29 天线评价装置以及方法
US13/054,845 US8779994B2 (en) 2009-04-23 2010-03-29 Antenna evaluating apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of substantially simultaneous stop and start

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009104847 2009-04-23
JP2009-104847 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010122714A1 true WO2010122714A1 (ja) 2010-10-28

Family

ID=43010844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002243 WO2010122714A1 (ja) 2009-04-23 2010-03-29 アンテナ評価装置及び方法

Country Status (5)

Country Link
US (1) US8779994B2 (ja)
EP (1) EP2423695A4 (ja)
JP (2) JPWO2010122714A1 (ja)
CN (1) CN102105804B (ja)
WO (1) WO2010122714A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118106B2 (en) * 2012-03-07 2015-08-25 Verizon Patent And Licensing Inc. Variable orientation antenna platform
KR101856756B1 (ko) * 2016-11-07 2018-05-10 한국표준과학연구원 신호 발생기 및 신호 발생기를 포함하는 측정 시스템
CN109425789A (zh) * 2017-08-24 2019-03-05 中航贵州飞机有限责任公司 一种飞机机载天线测试装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186973A (ja) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp 無線端末用試験装置および無線端末用電波環境試験装置
JP2000209166A (ja) * 1999-01-13 2000-07-28 Kokusai Electric Co Ltd 無線端末機の電磁界環境特性評価システム
JP2005227213A (ja) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd アンテナ評価装置とそれを用いた測定方法
JP2007127587A (ja) * 2005-11-07 2007-05-24 Mitsubishi Electric Corp アレーアンテナ測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010173A (ja) * 1996-06-25 1998-01-16 Advantest Corp アンテナ特性評価方法及び装置
JP3287398B2 (ja) * 1998-09-01 2002-06-04 日本電気株式会社 Cdma受信機及びcdma受信機における間欠受信方法
JP2004125426A (ja) * 2002-09-30 2004-04-22 Ntt Advanced Technology Corp 電界強度測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186973A (ja) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp 無線端末用試験装置および無線端末用電波環境試験装置
JP2000209166A (ja) * 1999-01-13 2000-07-28 Kokusai Electric Co Ltd 無線端末機の電磁界環境特性評価システム
JP2005227213A (ja) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd アンテナ評価装置とそれを用いた測定方法
JP2007127587A (ja) * 2005-11-07 2007-05-24 Mitsubishi Electric Corp アレーアンテナ測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423695A4 *

Also Published As

Publication number Publication date
EP2423695A4 (en) 2014-10-15
US8779994B2 (en) 2014-07-15
JPWO2010122714A1 (ja) 2012-10-25
CN102105804B (zh) 2014-01-01
JP2015111149A (ja) 2015-06-18
EP2423695A1 (en) 2012-02-29
CN102105804A (zh) 2011-06-22
US20110128196A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5653914B2 (ja) アンテナ評価装置及び方法
US10594017B2 (en) Antenna device and method for transmitting and/or receiving a signal
KR102198841B1 (ko) Esa 계측을 위한 방법 및 시스템
JP6682440B2 (ja) 車両に対するワイヤレス通信をテストするための方法及び装置
JP5612257B2 (ja) マルチアンテナ測定方法、マルチアンテナ測定システム
JP2019074519A (ja) アンテナ装置および測定方法
JP5474949B2 (ja) アンテナ評価装置及びアンテナ評価方法
CN106712864B (zh) 一种智能天线性能测试及优化的方法及装置
JP5767966B2 (ja) アンテナ評価装置及びアンテナ評価方法
JP2009049966A (ja) 無線評価装置
US10574332B2 (en) Radio communication system and radio monitoring control system
WO2010122714A1 (ja) アンテナ評価装置及び方法
CN108352619A (zh) 一种反射面天线及天线对准方法
JP2000209166A (ja) 無線端末機の電磁界環境特性評価システム
Codau et al. Experimental evaluation of a beamforming-capable system using NI USRP software defined radios
JP2011257326A (ja) アンテナ評価システム及びアンテナ評価方法
Khawaja et al. Indoor coverage enhancement for mmwave systems with passive reflectors: Measurements and ray tracing simulations
CN111106858A (zh) 基于天线阵列设计的无线功率传输的设备及方法
GB2578211A (en) Over the air test configuration and method
JPH07162376A (ja) 端末通信状態試験装置
JP2004080607A (ja) アンテナ測定システム、アンテナ測定装置及び携帯無線装置
JP2012078215A (ja) アンテナ評価装置及びアンテナ評価方法
KR20210054294A (ko) 전파 환경 특성을 재현하기 위한 전자파 잔향실
Higashiyama et al. A cost-effective method for MIMO antenna system to evaluate human exposure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002152.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510162

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13054845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010766777

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE