WO2010121515A1 - 信号传送方法及其相关设备 - Google Patents

信号传送方法及其相关设备 Download PDF

Info

Publication number
WO2010121515A1
WO2010121515A1 PCT/CN2010/071598 CN2010071598W WO2010121515A1 WO 2010121515 A1 WO2010121515 A1 WO 2010121515A1 CN 2010071598 W CN2010071598 W CN 2010071598W WO 2010121515 A1 WO2010121515 A1 WO 2010121515A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile terminal
control signal
duration
signal
Prior art date
Application number
PCT/CN2010/071598
Other languages
English (en)
French (fr)
Inventor
沈晓冬
刘光毅
韩璐
姜大洁
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to US13/265,711 priority Critical patent/US8666440B2/en
Priority to EP10766605.9A priority patent/EP2424131B1/en
Publication of WO2010121515A1 publication Critical patent/WO2010121515A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a nickname transmission method and related mobile terminal, base station, and background smear
  • the three-generation mobile communication system (3GPP, 3rd Generation Partnership Project) currently supports the duplex mode mainly including:
  • Frequency Division Duplex that is, the downlink time slot is transmitted in the downlink carrier of the paired FDD spectrum, and the uplink time slot is transmitted in the uplink carrier wave, and the base station and the mobile terminal can simultaneously receive and transmit data;
  • Time Division Duplex that is, the uplink and downlink time slots are transmitted on the same TDD carrier by means of time division;
  • Half-duplex FDD that is, the downlink time slot is transmitted in the downlink carrier of the paired FDD spectrum, the uplink time slot is transmitted in the uplink carrier, and the transmission and reception occur at different times, and the time division is adopted. separate.
  • the frame structure of Long Term Evolution is as shown in Figure 1.
  • the frame structure of LTE TDD is shown in Figure 2.
  • one frame includes 10 subframes
  • each subframe is a Transmission Time Interval (TTI)
  • the duration is lms
  • one subframe includes two slots
  • 3GPP currently supports beamforming technology (ie, supporting single-antenna port mode of operation), which uses port 5's dedicated pilot to demodulate the signal.
  • the beamforming technology requires the transmitting end to know the channel state information in order to transmit the signal better.
  • the base station since the uplink and downlink channels are different in frequency, it is not easy. That is, the base station cannot estimate the corresponding channel state signal of the downlink frequency by using the sounding reference signal (SRS, Sounding Reference Signal) sent by the mobile terminal in the uplink carrier frequency. Similarly, the mobile terminal cannot estimate the corresponding channel state information of the uplink frequency by the SRS sent by the base station in the downlink frequency. Whether it is a mobile terminal or a base station, the current channel state of each channel can be obtained relatively accurately, which is necessary for control signal transmission and reception.
  • SRS Sounding Reference Signal
  • the embodiments of the present invention provide a signal transmission method and related equipment, so that a future mobile communication system that adopts a downlink carrier to introduce uplink transmission is compatible with an existing mobile terminal and a future mobile terminal.
  • the embodiment of the invention provides a signal transmission method, including:
  • the base station determines a special transmission time interval TTI in the downlink carrier wave; the special TTI includes a corresponding duration of the first type of mobile terminal sending an uplink sounding signal to the base station; the first type of mobile terminal is in the special TTI a mobile terminal that transmits an uplink sounding signal to the base station;
  • the base station Transmitting, by the base station, a first control signal in a first duration of the special ; the first control signal causing the second type of mobile terminal to consider that the base station does not send a downlink signal within a remaining duration of the special TTI;
  • the second type of mobile terminal is a mobile terminal that does not send an uplink sounding signal to the base station in the special network.
  • the embodiment of the invention further provides a base station, including:
  • a determining unit configured to determine a special transmission time interval TTI in the downlink carrier; the special TTI includes a corresponding duration of the first type of mobile terminal sending an uplink sounding signal to the base station; the first type of mobile terminal is in the The mobile terminal that sends an uplink sounding signal to the base station in a special TTI
  • An nickname sending unit configured to send a first control signal in a first duration of the special TTI; the first control signal causing the second type of mobile terminal to consider the remaining duration in the special TTI
  • the base station does not send a downlink signal; the second type of mobile terminal is a mobile terminal that does not send an uplink sounding signal to the base station in the special ⁇ .
  • the embodiment of the present invention further provides a mobile terminal, including: a determining unit and a signal sending unit; the determining unit is configured to determine a special transmission time interval in the downlink carrier wave; the special TTI includes the signal sending unit Transmitting, to the base station, a corresponding duration of the uplink sounding signal; and ignoring the first control signal sent by the base station in the first time period in the special TTI; the first control signal causing the second type of mobile terminal to consider the special TTI
  • the base station does not send a downlink signal in the remaining time period;
  • the second type mobile terminal is a mobile terminal that does not send an uplink sounding signal to the base station in the special TTI;
  • the signal transmitting unit is configured to send a uplink sounding signal to the base station in a second time period in the special TTI.
  • the embodiment of the present invention further provides a mobile communication system, including: a base station, a first type mobile terminal, and a second type mobile terminal;
  • the base station is configured to determine a special transmission time interval TTI in the downlink carrier wave, where the special TTI includes a corresponding duration of the uplink type detection signal sent by the first type of mobile terminal, and the first time in the special TTI Transmitting a first control signal for a period of time; and receiving an uplink sounding signal sent by the first type of mobile terminal within a second duration of the special TTI;
  • the first type of mobile terminal is configured to determine the special TTI; and ignore the first control signal; and send the uplink sounding signal within a second time period of the special TTI;
  • the second type of mobile terminal is configured to: according to the first control signal, consider that the base station does not send a downlink signal in a remaining duration of the special TTI.
  • the base station sends a first control signal in a first time period in a special frame in the downlink carrier wave;
  • the special TTI includes a first type mobile terminal that sends an uplink sounding signal to the base station in the special network Corresponding duration of the uplink detection signal sent by the base station; correspondingly, the first type of mobile terminal ignores the first control signal, and sends an uplink detection number in a second duration of the special TTI; not to the base station in the special TTI Transmitting, by the second type of mobile terminal, the uplink detecting signal, according to the received first control signal, that the base station in the special time zone is not sent by the base station Line signal.
  • the first type of mobile terminal represents a future mobile terminal
  • the second type of mobile terminal represents an existing mobile terminal.
  • the existing mobile terminal has been A control signal considers that the base station does not transmit a downlink signal in the remaining time period of the special ,, and further determines that the remaining time in the special TTI receives the downlink signal, and therefore, in the special TTI, when the mobile terminal is in the corresponding duration
  • the existing mobile terminal determines the performed operation (ie, does not receive the downlink signal), and prevents the existing mobile terminal from transmitting the uplink sounding signal within the corresponding time period, and cannot control according to the base station.
  • the signal that performs the corresponding operation does not work normally, that is, the future mobile communication system that adopts the downlink carrier to introduce the uplink transmission is compatible with the existing mobile terminal and the future mobile terminal.
  • S 1 is a schematic diagram of a frame structure of an LTE FDD
  • FIG. 2 is a schematic diagram of a frame structure of an LTE TDD
  • FIG. 3 is a flowchart of a signal transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a state of signal transmission in each of the downlink carriers in the embodiment of the present invention.
  • FIG. 5A and FIG. 5B are schematic diagrams showing the structure of an MBSFN subframe in LTE Rel8;
  • FIG. 6 is a second schematic diagram showing a state of signal transmission in each TTI in a downlink carrier wave according to an embodiment of the present invention
  • FIG. 7 is a third schematic diagram of a state of signal transmission in each TTI in a downlink carrier according to an embodiment of the present invention.
  • FIG. 8 is a fourth schematic diagram showing a state of signal transmission in each TTI in a downlink carrier wave according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a mobile communication system according to an embodiment of the present invention. detailed description
  • an implementation manner is to introduce a downlink SRS transmission in an uplink carrier, and an uplink SRS transmission in a downlink carrier.
  • the future mobile terminal estimates channel state information of the uplink carrier according to the received downlink SRS. And transmitting, according to the estimated channel state information of the uplink carrier, an uplink signal to the base station in the uplink carrier wave; the base station estimating the channel state information of the downlink carrier wave according to the received uplink SRS, and estimating the channel state of the downlink carrier according to the estimated Information, sending a downlink signal to the mobile terminal on the downlink carrier,
  • the downlink carrier is introduced into the uplink SRS transmission scheme
  • the uplink carrier is introduced into the downlink SRS transmission scheme, where the uplink carrier is introduced into the FDD uplink carrier.
  • the FDD uplink and downlink carriers are respectively arranged on two TDD carriers with a certain interval, that is, one TDD carrier is determined as an uplink carrier, and another TDD carrier having a certain interval from the TDD carrier is used as a downlink carrier,
  • the scheme is applied to the uplink carrier (one TDD carrier) and the downlink carrier (another TDD carrier), so that the future mobile terminal and the base station can work on the TDD carrier according to the FDD working mode.
  • the above-mentioned future mobile communication system obscures the difference in the implementation of the existing FDD system and the TDD system, and is a mobile communication system having the advantages of the existing FDD system and the TDD system.
  • the existing mobile terminal when receiving the downlink signal, the existing mobile terminal requires the base station to continuously transmit the downlink signal in the downlink carrier wave, and first transmits the control signal in each TO, and the existing mobile terminal according to the control The signal performs corresponding operations in the TTI, and when there are existing mobile terminals and future mobile terminals in the future mobile communication system, since the uplink transmission is introduced in the downlink carrier, when the mobile terminal moves in a special TTI in the future During transmission, the existing mobile terminal does not perform uplink transmission in the special TTI, and cannot perform corresponding operations according to the control signal sent by the base station, resulting in failure to work normally, making the future mobile communication system incompatible with existing mobile terminals and future mobile terminals. .
  • an embodiment of the present invention provides a signal transmission method, as shown in FIG. 3, include:
  • Step S301 The base station determines a special TTI in the downlink carrier wave.
  • the special TTI includes a corresponding duration of the first type of mobile terminal transmitting an uplink sounding signal (Uplink SRS) to the base station; wherein the first type of mobile terminal is a mobile terminal that sends an Uplink SRS to the base station in the special TTI.
  • Uplink SRS uplink sounding signal
  • Step S302 The base station sends the first control signal in the first duration of the special TTI.
  • the first control signal causes the second type of mobile terminal to consider that the base station does not send a downlink signal for the remaining time in the special TTI; wherein the second type of mobile terminal is a mobile terminal that does not send an Uplink SRS to the base station in the special TTI.
  • the first type of mobile terminal represents a future mobile terminal
  • the second type of mobile terminal represents an existing mobile terminal.
  • the following uses the “future mobile terminal” and “existing mobile” in conjunction with the accompanying drawings. Terminal "The above method of the present invention is described in detail.
  • FIG. 4 it is a schematic diagram of a state of signal transmission in each TTI in a downlink carrier wave according to an embodiment of the present invention, wherein "D" is used for downlink signal transmission, and "U” is used for uplink signal transmission.
  • a TTI including a corresponding duration of uplink signal (Uplink SRS) transmission by a mobile terminal in the future is referred to as a special TTI, and a suffix used for downlink signal transmission only is referred to as a normal TTI.
  • the base station determines a special TTI in the downlink carrier according to the preset policy. For example, a preferred preset strategy is that the two special TTIs are separated by four common TTIs.
  • the base station transmits the first control signal for the first time period in the special TTI.
  • the existing mobile terminal receives the first control signal, and after parsing the first control signal, considers that the base station does not send the downlink signal in the remaining time period in the special frame, therefore, the existing mobile terminal according to the first control signal Do not attempt to receive any downstream signals for the remaining time in the special frame.
  • the future mobile terminal ignores the first control signal transmitted by the base station within the first duration of the special TTI. Specifically, the first control signal is not received; or the first control signal is received, but the first control signal is not parsed or directly discarded; or the first control signal is received and parsed, but according to the first control signal, It is considered that the base station does not transmit the downlink signal for the remaining time in the special TTI. Therefore, the future mobile terminal does not consider the remaining in the special TTI based on the first control signal. The base station does not transmit a downlink signal within the duration.
  • the future mobile terminal transmits an Uplink SRS to the base station within the second time period of the special TTI.
  • the base station Based on the received Uplink SRS, the base station estimates the channel state information of the downlink carrier, and sends a downlink signal in the normal frame according to the channel state information.
  • the base station in the embodiment of the present invention transmits the first control signal in the first time period of the special ⁇ for the existing mobile terminal to receive and parse, and consider that the base station in the remaining time in the special TTI is not
  • MBSFN multicast broadcast single frequency network
  • an MBSFN control signal sent by the base station is also used for determining, after the mobile terminal receives and parses, determining The base station does not send the downlink signal in the remaining time period in the TTI. Therefore, in order to not make any modification to the existing mobile terminal, the MBSFN control signal can be used as the first control signal in the embodiment of the present invention.
  • the MBSFN scheme in LTE Rel8 is as shown in Figs. 5A and 5B, and the base station transmits broadcast data to the mobile terminal within the frame corresponding to the MBSFN subframe.
  • the first MBSFN control signal or the second MBSFN control signal is sent to the mobile terminal in a period of time in the ,, and the mobile terminal sends broadcast data or does not send the downlink signal in the remaining duration of the TTI, and the mobile terminal receives
  • the first type of MBSFN control signal or the second type of MBSFN control signal sent by the base station in the previous period of time in the TTI according to the first type of MBSFN control signal, the mobile terminal considers that the base station transmits broadcast data in the remaining length of the TTI, Correspondingly, the broadcast data sent by the base station is received in the remaining time length in the TTI; according to the second MBSFN control signal, the mobile terminal does not send the downlink signal in the remaining time period in the TTI, and correspondingly, in the TTI Do not attempt to receive
  • the second MBSFN control signal When the second MBSFN control signal is used as the first control signal in the embodiment of the present invention, no hardware modification or enhancement of functions may be performed for the existing mobile terminal. For the future mobile terminal, since the second MBSFN control signal in the normal TTI still needs to make the future mobile terminal think that the base station does not send the downlink signal in the remaining time period in the T, it is necessary for the mobile terminal in the future to be in the special TTI.
  • the second MBSFN control signal is different from the normal TTI, for example, does not receive the second MBSFN control signal in a special TTI; or receives The second MBSFN control signal, but not parsing; or receiving and parsing the second MBSFN control signal, but according to the second MBSFN control signal, the base station does not consider to transmit the downlink signal in the remaining time period in the special TTI.
  • the embodiment of the present invention can also implement the method of the present invention by using a brand-new control signal as the first control signal, and only needs to have the function of the first control signal.
  • the existing mobile terminal needs to be identified. A function of a control signal.
  • the base station may also send data to the future mobile terminal in the first time period, as shown in FIG. 6 :
  • the difference from the slot structure of the special TTI shown in FIG. 4 is that the base station transmits the first control signal in the first time period of the first duration in the special TTI; and transmits the first time in the second time period of the first duration a soil control signal; and transmitting data to the future mobile terminal during a third time period of the first duration.
  • the future mobile terminal receives the second control signal sent by the base station in the second time period; and receives data sent by the base station in the third time period according to the second control signal.
  • the mobile terminal may receive data corresponding to itself in the data sent by the base station according to the second control signal, without receiving the remaining data; for example, the mobile terminal may determine, according to the second control signal, the first The base station transmitted data during the three time periods.
  • the base station may further send the first control signal in a first time period of the first duration in the special TTI; and send the third control signal in the second time period of the first time duration.
  • the future mobile terminal receives the third control signal sent by the base station in the second time period, and according to the third control signal, considers that the base station does not send the downlink signal in the third time period in the first time duration.
  • a guard interval (GP, Guard Period) duration may be left between the first duration and the second duration in the special scheme, the special TTI
  • GP Guard Period
  • a GP may also be left between the first duration and the second duration in the special TTI shown in FIG. 6 to reduce interference between uplink and downlink signals, and the slot structure is as shown in FIG. 8. .
  • the first duration and the second duration in the special TTI, and the first period, the second period, and the third period in the first duration, and the first duration With the GP between the second duration, the specific slot length can be flexibly configured.
  • the signal transmission method according to the above embodiment of the present invention, correspondingly, another embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG. 9, including: a determining unit 901, configured to Determining a special time in the downlink carrier wave; the special TTI includes a corresponding duration of the first type of mobile terminal transmitting the uplink sounding signal to the base station; the first type of mobile terminal is a mobile terminal transmitting the uplink sounding signal to the base station in the special network ;
  • the signal sending unit 902 is configured to send a first control signal in a first time period in the special TTI, where the first control signal causes the second type mobile terminal to consider that the base station does not send a downlink signal in the remaining time period in the special TTI;
  • the second type of mobile terminal is a mobile terminal that does not send an uplink measurement signal to the base station in the special TTI.
  • the signal sending unit 902 is configured to send the first control signal in a first time period of the first duration; and send a second control signal in a second time period of the first duration; the second The control signal is for informing the first type of mobile terminal to receive data; and transmitting data in a third time period of the first duration.
  • the signal sending unit 902 is configured to send the first control nickname in a first time period of the first duration; and send a third control signal in a second time period of the first duration;
  • the third control signal causes the first type of mobile terminal to consider that the base station does not transmit the downlink signal in the third period of the first duration.
  • the foregoing base station further includes:
  • the signal receiving unit 903 is configured to receive an uplink sounding signal sent by the first type of mobile terminal in the second time period of the special TTI.
  • the signal transmission method according to the above embodiment of the present invention correspondingly, another embodiment of the present invention further provides a mobile terminal, which may also be referred to as a future mobile terminal, and its structure is shown in FIG. , comprising: a determining unit 1001 and a signal sending unit 1002;
  • the determining unit 1001 is configured to determine a special TTI in the downlink carrier wave, where the special TTI includes a corresponding duration of sending the uplink sounding signal by the signal sending unit 1002 to the base station, and ignoring sending, by the base station, the first time duration in the special frame First control signal; the first control signal makes The second type of mobile terminal considers that the base station does not transmit the downlink signal in the remaining time period in the special TTI; the second type of mobile terminal is the mobile terminal that does not send the uplink sounding signal to the base station in the special type; the signal sending unit 1002 is configured to The second time in the special frame sends an uplink sounding signal to the base station,
  • the determining unit is configured to ignore the first control signal sent by the base station in the first time period of the first duration;
  • the above mobile terminal further includes:
  • the signal receiving unit 1003 is configured to receive, by the base station, a second control signal that is sent in a second time period of the first duration; and receive, according to the second control signal, data sent by the base station in a third time period of the first duration .
  • the determining unit is configured to ignore the first control signal sent by the base station in the first time period of the first duration;
  • the above mobile terminal further includes:
  • the receiving unit 1003 is configured to receive a third control signal that is sent by the base station in the second time period of the first duration; and, according to the third control signal, that the base station is not sent in the third time period of the first duration Downstream signal.
  • the signal transmission method according to the above embodiment of the present invention and correspondingly, another embodiment of the present invention further provides a mobile communication system, and a schematic structural diagram thereof is shown in FIG. 11 , including: a base station 1101 a type of mobile terminal 1102 and a second type of mobile terminal 1103;
  • the base station 1101 is configured to determine a special ⁇ in the downlink carrier; the special ⁇ includes a corresponding duration of the uplink type detection signal sent by the first type of mobile terminal 1102; and the first time in the special ⁇ a control signal; and receiving an uplink sounding signal sent by the first type of mobile terminal 1102 in the second time period of the special type;
  • the first type of mobile terminal 1102 is configured to determine the special ⁇ ; and ignore the first control signal; and send an uplink sounding signal in a second time period in the special ⁇ ;
  • the second type of mobile terminal 1103 is configured to: according to the first control signal, that the base station 1101 does not send a downlink signal in the remaining duration of the special ⁇ .
  • the base station 1101 is configured to send the first control signal in a first time period of the first time duration; and send a second control signal in a second time period of the first time duration; Sending data within a third period of time;
  • the first type of mobile terminal 1102 is configured to receive a second control signal, and receive data sent by the base station 1101 according to the second control signal,
  • the base station 1101 is configured to send the first control signal in a first time period of the first duration; and send a third control signal in a second time period of the first duration;
  • the first type of mobile terminal 1102 is configured to receive a third control signal; and, according to the third control nickname, that the base station 1101 does not send a downlink signal in a third period of the first duration.
  • the base station determines a special TTI in the downlink carrier wave, where the special type includes the first type mobile terminal that sends the uplink sounding signal to the base station in the special TTI, and sends the uplink detection to the base station. a corresponding duration of the signal; the base station transmits a first control apostrophe within the first duration of the special TTI; the first control signal causes the second type of mobile terminal not transmitting the uplink sounding signal to the base station in the special ⁇ to consider the special The base station does not transmit a downlink signal for the remaining time in the TTI.
  • the solution provided by the embodiment of the present invention enables the existing mobile terminal to work normally in the future mobile communication system that adopts the downlink carrier wave to introduce the uplink transmission, and realizes that the future mobile communication system is compatible with the existing mobile terminal and the future mobile terminal. .

Description

信号传送方法及其相关设备 技术领域
本发明涉及移动通信技术领域, 尤其涉及一种倌号传送方法及其相关移 动终端、 基站, 背景抹术
第三代移动通信系统( 3GPP, 3rd Generation Partnership Project ) 目前支 持的双工方式主要包括:
1. 频分双工(FDD, Frequency Division Duplex ): 即在配对的 FDD频谱 的下行载波中传输下行时隙, 上行栽波中传输上行时隙, 基站和移动终端可 同时接收和发送数据;
2. 时分双工(TDD, Time Division Duplex ): 即上下行时隙通过时分的方 式在同一个 TDD载波上传输;
3. 半双工频分双工 (Half-duplex FDD ): 即在配对的 FDD频谱的下行载 波中传输下行时隙, 上行载波中传输上行时隙, 并且发送和接收不同时发生, 通过时分的方式分开。
其中, 长期演进(LTE, Long Term Evolution ) FDD的帧结构如图 1所 示, LTE TDD的帧结构如图 2所示, 图 1和图 2中, 一个帧的时长为 Tf = 207200Ts = 10ms,一个帧包括 10个子帧,每个子帧为一个传输时间间隔( TTI, Transmission Time Interval ), 时长为 lms, 一个子帧包括两个时隙, 一个时隙 的时长为 15360Ts = 0.5ms。
3GPP目前支持波束赋形技术(即支持单天线端口 (Single-antenna port ) 工作模式), 其采用 port 5的专用导频对信号进行解调。 波束赋形技术需要发 送端了解信道状态信息, 才能较好的发送信号。 在 FDD系统中, 由于上下行 信道栽频不同, 无法对易。 即基站无法通过移动终端在上行载频中发送的探 测信号(SRS, Sounding Reference Signal )来估计下行栽频的相应信道状态信 息; 同理, 移动终端也无法通过基站在下行栽频中发送的 SRS来估计上行栽 频的相应信道状态信息。 而无论是移动终端还是基站, 能够相对准确地获取 各信道的当前信道状态, 对于控制信号发送和接收都是十分必要的。
因此, 在未来将产生融合了现有 FDD系统和 TDD系统的技术特点的移 动通信系统, 相应的产生与现有移动终端相比, 具备了新功能的未来移动终 有移^终端可能无法正常工作, 即存在未来移动通信系统无法兼容现有移动 终端与未来移动终端的问题。
^月 >^
本发明实施例提供一种信号传送方法及其相关设备, 使得采用下行载波 引入上行传输的未来移动通信系统, 兼容现有移动终端与未来移动终端。
本发明实施例提供一种信号传送方法, 包括:
基站确定下行栽波中的特殊传输时间间隔 TTI;所述特殊 TTI中包含第一 类型 动终端向所述基站发送上行探测信号的相应时长; 所述第一类型移动 终端为在所述特殊 TTI中向所述基站发送上行探测信号的移动终端;
所述基站在所述特殊 ΤΉ 中的第一时长内发送第一控制信号; 所述第一 控制信号使第二类型移动终端认为所述特殊 TTI 中的剩余时长内所述基站未 发送下行信号; 所述第二类型移动终端为在所述特殊 ΤΉ 中不向所述基站发 送上行探测信号的移动终端。
本发明实施例还提供一种基站, 包括:
定单元, 用于确定下行载波中的特殊传输时间间隔 TTI; 所述特殊 TTI 中包含第一类型移动终端向所述基站发送上行探测信号的相应时长; 所述第 一类型移动终端为在所述特殊 TTI 中向所述基站发送上行探测信号的移动终
佶号发送单元, 用于在所述特殊 TTI中的第一时长内发送第一控制信号; 所述第一控制信号使第二类型移动终端认为所述特殊 TTI 中的剩余时长内所 述基站未发送下行信号; 所述第二类型移动终端为在所述特殊 ττι 中不向所 述基站发送上行探测信号的移动终端 .
本发明实施例再提供一种移动终端, 包括: 确定单元和信号发送单元; 所述确定单元,用于确定下行栽波中的特殊传输时间间隔 ΤΉ; 所述特殊 TTI中包含所述信号发送单元向基站发送上行探测信号的相应时长;以及忽略 所述基站在所述特殊 TTI 中的第一时长内发送的第一控制信号; 所述第一控 制信号使第二类型移动终端认为所述特殊 TTI中的剩余时长内所述基站未发 送下行信号; 所述第二类型移动终端为在所述特殊 TTI 中不向所述基站发送 上行探测信号的移动终端;
^述信号发送单元, 用于在所述特殊 TTI中的第二时长内向基站发送上 行探测信号。
本发明实施例再提供一种移动通信系统, 包括: 基站、 第一类型移动终 端和第二类型移动终端;
所述基站, 用于确定下行栽波中的特殊传输时间间隔 TTI; 所述特殊 TTI 中包含所述第一类型移动终端向其发送上行探测信号的相应时长; 以及在所 述特殊 TTI 中的第一时长内发送第一控制信号; 以及接收所述第一类型移动 终端在所述特殊 TTI中的第二时长内发送的上行探测信号;
所述第一类型移动终端,用于确定所述特殊 TTI; 以及忽略所述第一控制 信号; 以及在所述特殊 TTI中的第二时长内发送所述上行探测信号;
所述第二类型移动终端,用于才艮据所述第一控制信号,认为所述特殊 TTI 中的剩余时长内所述基站未发送下行信号。
本发明实施例中, 基站在下行栽波中的特殊 ΓΠ 中的第一时长内发送第 一控制信号; 该特殊 TTI中包含在该特殊 ΤΉ中向基站发送上行探测信号的 第一类型移动终端向基站发送上行探测信号的相应时长; 相应的, 第一类型 移动 端忽略该第一控制信号, 以及在该特殊 TTI 中的第二时长内发送上行 探测^ "号; 在该特殊 TTI 中不向基站发送上行探测信号的第二类型移动终端 根据接收的该第一控制信号, 认为该特殊 ΤΉ中的剩余时长内基站未发送下 行信号。 上述第一类型移动终端表示未来移动终端, 第二类型移动终端表示 现有移动终端, 当未来移动终端在该特殊 TTI中的相应时长内向基站发送上 行探测信号时, 由于现有移动终端已经根据第一控制信号认为该特殊 ΤΉ 中 的剩余时长内基站未发送下行信号, 进而可以确定在该特殊 TTI 中的剩余时 长内木接收下行信号, 因此, 在该特殊 TTI中, 当未来移动终端在相应时长 内向基站发送上行探测信号时, 现有移动终端确定了执行的操作 (即不接收 下行信号), 避免了现有移动终端因在该相应时长内不发送上行探测信号, 且 无法根据基站发送的控制信号执行相应操作而导致的无法正常工作, 即实现 了采用下行栽波引入上行传输的未来移动通信系统兼容现有移动终端与未来 移动终端。 附图说明
S 1为 LTE FDD的帧结构示意图;
图 2为 LTE TDD的帧结构示意图;
图 3为本发明实施例提供的一种信号传送方法流程图;
图 4为本发明实施例中下行载波中的每个 ΤΉ内进行信号传输的状态示 意图之一;
图 5A、 图 5B为 LTE Rel8中 MBSFN子帧结构示意图;
图 6为本发明实施例中下行栽波中的每个 TTI内进行信号传输的状态示 意图之二;
图 7为本发明实施例中下行载波中的每个 TTI内进行信号传输的状态示 意图之三;
图 8为本发明实施例中下行栽波中的每个 TTI内进行信号传输的状态示 意图之四;
图 9为本发明实施例提供的一种基站结构示意图;
图 10为本发明实施例提供的一种移动终端结构示意图;
图 11为本发明实施例提供的一种移动通信系统结构示意图。 具体实施方式
在未来的移动通信系统中, 一种实现方式为在上行栽波引入下行 SRS传 输, 在下行载波引入上行 SRS传输, 相应的, 未来移动终端根据接收到的下 行 SRS, 估计上行载波的信道状态信息, 并根据估计得到的上行载波的信道 状态信息, 在上行栽波向基站发送上行信号; 基站根据接收到的上行 SRS, 估计下行栽波的信道状态信息, 并根据估计得到的下行载波的信道状态信息, 在下行载波向移动终端发送下行信号,
具体的, 例如,将上述在下行载波引入上行 SRS传输方案应用于 FDD下 行载波中,将上述在上行载波引入下行 SRS传输方案应用于 FDD上行载波中 , 可
又例如, 将 FDD上下行栽波分别配置在两个具有一定间隔的 TDD载波 上, 即确定一个 TDD栽波作为上行载波, 与该 TDD载波具有一定间隔的另 一 TDD载波作为下行载波, 将上述方案应用于该上行载波(一个 TDD载波) 和下行载波(另一 TDD载波)中,可以使得未来移动终端和基站之间按照 FDD 工作 式工作在 TDD栽波上,
可见, 上述的未来移动通信系统模糊了现有 FDD系统和 TDD系统实现 上的差异, 是一种同时具备现有 FDD系统和 TDD系统优点的移动通信系统。
但是, 在目前的移动通信系统中, 现有移动终端在接收下行信号时, 要 求基站在下行栽波连续的发送下行信号, 且在每个 TO中首先发送控制信号, 现有移动终端根据该控制信号在该 TTI中执行相应操作, 而当在未来的移动 通信系统中同时存在现有移动终端和未来移动终端时, 由于在下行载波引入 了上行传输, 当未来移动终端在一个特殊 TTI 内进行上行传输时, 现有移动 终端因在该特殊 TTI 内不进行上行传输, 且无法根据基站发送的控制信号执 行相应操作, 导致无法正常工作, 使得未来移动通信系统无法兼容现有移动 终端与未来移动终端。
为解决上述问题, 本发明实施例提供一种信号传送方法, 如图 3 所示, 包括:
步骤 S301、 基站确定下行栽波中的特殊 TTI。
ά特殊 TTI 中包含第一类型移动终端向基站发送上行探测信号 (Uplink SRS ) 的相应时长; 其中, 第一类型移动终端为在该特殊 TTI 中向基站发送 Uplink SRS的移动终端
步骤 S302、 基站在该特殊 TTI中的第一时长内发送第一控制信号。
该第一控制信号使第二类型移动终端认为该特殊 TTI 中的剩余时长内基 站未发送下行信号; 其中, 第二类型移动终端为在该特殊 TTI 中不向基站发 送 Uplink SRS的移动终端。
上述第一类型移动终端表示未来移动终端, 上述第二类型移动终端表示 现有移动终端, 为描述方便且便于理解本发明实施例, 下面结合附图, 使用 "未来移动终端" 和 "现有移动终端" 对本发明上述方法进行详细描述。
如图 4所示, 为本发明实施例下行栽波中的每个 TTI内进行信号传输的 状态示意图, 其中, 用 "D"表示下行信号传输, 用 "U"表示上行信号传输。 本实施例中, 将包括未来移动终端进行上行探测信号( Uplink SRS )传输的相 应时长的 TTI称为特殊 TTI,将仅用于进行下行信号传输的 ΤΉ称为普通 TTI。 基站根据预设策略确定下行载波中的特殊 TTI,例如,一种较佳的该预设策略 为两个特殊 TTI之间间隔四个普通 TTI,
基站在特殊 TTI 中的第一时长内发送第一控制信号。 现有移动终端接收 该第一控制信号, 并对该第一控制信号解析后, 认为该特殊 ΤΉ 中的剩余时 长内基站未发送下行信号, 因此, 现有移动终端根据该第一控制信号, 在特 殊 ΤΉ中的剩余时长内不试图接收任何下行信号。
未来移动终端忽略基站在该特殊 TTI 中的第一时长内发送的该第一控制 信号。 具体可以为: 不接收该第一控制信号; 或者接收该第一控制信号, 但 不解析该第一控制信号或直接丢弃; 或者接收并解析该第一控制信号, 但根 据该第一控制信号不认为在该特殊 TTI中的剩余时长内基站不发送下行信号。 因此,:未来移动终端不会根据该第一控制信号, 认为在该特殊 TTI 中的剩余 时长内基站未发送下行信号。
未来移动终端在该特殊 TTI中的第二时长内向基站发送 Uplink SRS。 基 站根据接收到的 Uplink SRS, 估计下行栽波的信道状态信息, 并根据该信道 状态信息在普通 ΤΉ中发送下行信号.
根据上述描述可知, 本发明实施例中的基站在特殊 ΤΉ 中的第一时长内 发送^第一控制信号用于, 现有移动终端接收并解析后, 认为该特殊 TTI 中 的剩余时长内基站未发送下行信号 而 LTE Rel8 ( Release 8 ) 中的多播广播 单频网络 ( MBSFN, Multicast Broadcast Single Frequency Network )方案中, 基站发送的一种 MBSFN控制信号同样用于,移动终端接收并解析后,确定该 TTI中的剩余时长内基站未发送下行信号, 因此, 为了不对现有移动终端做任 何修改, 本发明实施例中可以将这种 MBSFN控制信号作为第一控制信号。
LTE Rel8中的 MBSFN方案如图 5A、 5B所示,基站在对应 MBSFN子帧 的 ΤΉ内向移动终端发送广播数据。 具体为, 在该 ΤΉ中的一段时长内向移 动终端发送第一种 MBSFN控制信号或第二种 MBSFN控制信号, 在该 TTI 中的剩余时长内向移动终端发送广播数据或不发送下行信号, 移动终端接收 基站在该 TTI 中的前一段时长内发送的第一种 MBSFN控制信号或第二种 MBSFN控制信号,根据第一种 MBSFN控制信号移动终端认为在该 TTI中的 剩余衧长内基站发送广播数据, 相应的, 在该 TTI中的剩余时长内接收基站 发送的广播数据; 根据第二种 MBSFN控制信号移动终端认为在该 TTI中的 剩余时长内基站未发送下行信号, 相应的, 在该 TTI 中的剩余时长内不试图 接收斧何下行信号。
将上述第二种 MBSFN控制信号作为本发明实施例中的第一控制信号时, 对于现有移动终端来讲, 可以不做任何硬件改动和功能的增强。 对于未来移 动终^, 由于在普通 TTI内上述第二种 MBSFN控制信号仍需要使未来移动 终端认为在该 ΤΉ 中的剩余时长内基站不发送下行信号, 因此, 需要未来移 动终端在特殊 TTI内对该第二种 MBSFN控制信号进行与在普通 TTI内不同 的处 ¾, 例如, 在特殊 TTI内不接收该第二种 MBSFN控制信号; 或者接收 该第二种 MBSFN控制信号,但不解析; 或者接收并解析该第二种 MBSFN控 制信号, 但根据该第二种 MBSFN控制信号不认为在该特殊 TTI中的剩余时 长内基站不发送下行信号。
当然, 本发明实施例也可以采用一种全新的控制信号作为第一控制信号 实现本发明方法, 只需具备上述第一控制信号的功能即可, 此时需要使得现 有移动终端具备识别该第一控制信号的功能。
较佳的, 为提高特殊 TTI的时隙资源利用率, 本发明实施例中, 基站还 可以夺第一时长中向未来移动终端发送数据, 具体如图 6所示:
与图 4所示的特殊 TTI的对隙结构的区别在于, 基站在特殊 TTI中的第 一时长中的第一时段内发送第一控制信号; 在该第一时长中的第二时段内发 送第土控制信号; 以及在该第一时长中的第三时段内向未来移动终端发送数 据。 相应的, 未来移动终端接收基站在该第二时段内发送的该第二控制信号; 以及根据该第二控制信号, 接收基站在该第三时段内发送的数据。 具体的, 例如, 未来移动终端可以根据该第二控制信号接收基站发送的数据中对应其 自身的数据, 而不接收其余数据; 又例如, 未来移动终端可以根据该第二控 制信号确定在该第三时段内基站发送了数据。
本发明实施例中, 基站还可以在特殊 TTI中的第一时长中的第一时段内 发送第一控制信号; 在该第一时长中的第二时段内发送笫三控制信号。 相应 的, 未来移动终端接收基站在该第二时段内发送的该第三控制信号, 并根据 该第三控制信号, 认为在第一时长中的笫三时段内基站未发送下行信号。
较佳地, 为减小上下行信号之间的干扰, 本发明实施例中, 特殊 ΤΉ 中 的第一时长和第二时长之间可以留有保护间隔(GP, Guard Period ) 时长, 该 特殊 TTI的时隙结构具体如图 7所示。
本发明实施例中, 图 6所示的特殊 TTI中的第一时长和第二时长之间同 样可以留有 GP, 以减小上下行信号之间的干扰, 其时隙结构如图 8所示。
本发明实施例提供的上述信号传送方法中, 特殊 TTI 中的第一时长和第 二时长, 以及第一时长中的第一时段、 第二时段和笫三时段, 以及第一时长 与第二时长之间的 GP, 具体的时隙长度可以灵活配置,
基于同一发明构思, 根据本发明上述实施例提供的信号传送方法, 相应 地, 本发明另一实施例还提供了一种基站, 其结构示意图如图 9所示, 包括: 确定单元 901 , 用于确定下行栽波中的特殊 ΤΉ; 该特殊 TTI中包含第一 类型移动终端向上述基站发送上行探测信号的相应时长; 第一类型移动终端 为在该特殊 ΓΠ中向基站发送上行探测信号的移动终端;
信号发送单元 902, 用于在该特殊 TTI 中的第一时长内发送第一控制信 号; 该第一控制信号使第二类型移动终端认为该特殊 TTI 中的剩余时长内上 述基站未发送下行信号; 第二类型移动终端为在该特殊 TTI 中不向基站发送 上行楝测信号的移动终端,
佳的, 上述信号发送单元 902, 用于在该第一时长中的第一时段内发送 该第一控制信号; 以及在该第一时长中的第二时段内发送第二控制信号; 该 第二控制信号用于告知第一类型移动终端接收数据; 以及在该第一时长中的 第三时段内发送数据。
较佳的, 上述信号发送单元 902, 用于在该第一时长中的第一时段内发送 该第一控制倌号; 以及在该第一时长中的第二时段内发送第三控制信号; 该 第三控制信号使笫一类型移动终端认为上述基站在该第一时长中的第三时段 内未发送下行信号.
较佳的, 上述基站, 还包括:
信号接收单元 903,用于接收第一类型移动终端在该特殊 TTI中的第二时 长内发送的上行探测信号。
基于同一发明构思, 根据本发明上述实施例提供的信号传送方法, 相应 地, 本发明另一实施例还提供了一种移动终端, 也可以称作未来移动终端, 其结构示意图如图 10所示, 包括: 确定单元 1001和信号发送单元 1002;
上述确定单元 1001, 用于确定下行栽波中的特殊 TTI; 该特殊 TTI中包 含上述信号发送单元 1002向基站发送上行探测信号的相应时长; 以及忽略基 站在该特殊 ΤΉ 中的第一时长内发送的第一控制信号; 该第一控制信号使第 二类型移动终端认为该特殊 TTI 中的剩余时长内基站未发送下行信号; 第二 类型移动终端为在该特殊 ΤΤΙ中不向基站发送上行探测信号的移动终端; 上述信号发送单元 1002, 用于在该特殊 ΤΤΙ中的第二时长内向基站发送 上行探测信号,
较佳的, 上述确定单元, 用于忽略基站在该第一时长中的第一时段内发 送的该第一控制信号;
上述移动终端, 还包括:
信号接收单元 1003, 用于接收基站在该第一时长中的第二时段内发送的 第二控制信号; 以及根据该第二控制信号接收基站在该第一时长中的第三时 段内发送的数据。
较佳的, 上述确定单元, 用于忽略基站在该第一时长中的第一时段内发 送的该第一控制信号;
上述移动终端, 还包括:
号接收单元 1003, 用于接收基站在该第一时长中的第二时段内发送的 第三控制信号; 以及根据该第三控制信号, 认为基站在该第一时长中的第三 时段内未发送下行信号。
基于同一发明构思, 根据本发明上述实施例提供的信号传送方法, 相应 地, 本发明另一实施例还提供了一种移动通信系统, 其结构示意图如图 11所 示, 包括: 基站 1101、 第一类型移动终端 1102和第二类型移动终端 1103;
上述基站 1101, 用于确定下行栽波中的特殊 ΤΤΙ; 该特殊 ΤΉ中包含上 述第一类型移动终端 1102向其发送上行探测信号的相应时长; 以及在该特殊 ΤΤΙ中的第一时长内发送第一控制信号;以及接收上述第一类型移动终端 1102 在该特殊 ΤΤΙ中的第二时长内发送的上行探测信号;
上述第一类型移动终端 1102, 用于确定该特殊 ΤΤΙ; 以及忽略该第一控 制信夸; 以及在该特殊 ΤΤΙ中的第二时长内发送上行探测信号;
上述第二类型移动终端 1103,用于根据该第一控制信号,认为该特殊 ΤΤΙ 中的剩余时长内上述基站 1101未发送下行信号。 较佳的, 上述基站 1101, 用于在该笫一时长中的第一时段内发送该第一 控制信号; 以及在该第一时长中的第二时段内发送第二控制信号; 以及在该 第一时长中的第三时段内发送数据;
上述第一类型移动终端 1102, 用于接收第二控制信号; 以及根据该第二 控制信号接收上述基站 1101发送的数据,
较佳的, 上述基站 1101, 用于在该第一时长中的第一时段内发送该第一 控制信号; 以及在该第一时长中的第二时段内发送第三控制信号;
上述第一类型移动终端 1102, 用于接收第三控制信号; 以及根据该第三 控制倌号,认为上述基站 1101在该第一时长中的第三时段内未发送下行信号。
综上所述, 本发明实施例提供的方案, 基站确定下行栽波中的特殊 TTI; 该特殊 ΤΠ中包含在该特殊 TTI中向基站发送上行探测信号的第一类型移动 终端向基站发送上行探测信号的相应时长; 基站在该特殊 TTI 中的第一时长 内发送第一控制倌号; 该第一控制信号使在该特殊 ΓΠ 中不向基站发送上行 探测信号的第二类型移动终端认为该特殊 TTI中的剩余时长内基站未发送下 行信号。 采用本发明实施例提供的方案, 使得现有移动终端在采用了下行栽 波引入上行传输的未来移动通信系统中可以正常的工作, 实现了该未来移动 通信系统兼容现有移动终端与未来移动终端。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围, 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种信号传送方法, 其特征在于, 包括:
基站确定下行栽波中的特殊传输时间间隔 ΤΉ;所述特殊 TTI中包含第一 类型移动终端向所述基站发送上行探测信号的相应时长; 所述第一类型移动 所述基站在所述特殊 TTI 中的第一时长内发送第一控制信号; 所述第一 控制信号使第二类型移动终端认为所述特殊 TTI 中的剩余时长内所述基站未 发送下行信号; 所述第二类型移动终端为在所述特殊 TTI 中不向所述基站发 送上行探测信号的移动终端。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站在所述第一时长中 的第一时段内发送所述第一控制信号;
所述方法, 还包括:
^述基站在所述第一时长中的第二时段内发送第二控制信号, 所述第二 控制信号用于告知所述第一类型移动终端接收数据;
所述基站在所述第一时长中的第三时段内发送数据。
3、 如权利要求 1所述的方法, 其特征在于, 所述基站在所述第一时长中 的第一时段内发送所述第一控制信号;
所述方法, 还包括:
所述基站在所述第一时长中的第二时段内发送第三控制信号;
所述第三控制信号使所述第一类型移动终端认为所述基站在所述第一时 长中的第三时段内未发送下行信号。
4、 如权利要求 1-3任一所述的方法, 其特征在于, 还包括:
所述基站接收所述第一类型移动终端在所述特殊 ΓΠ 中的第二时长内发 送的所述上行探测信号。
5、 如权利要求 4所述的方法, 其特征在于, 所述第一时长与所述第二时 长之间预留有保护间隔时长,
6、 如权利要求 1-3任一所述的方法, 其特征在于, 所述第一控制信号被 所迷第一类型移动终端忽略。
7、 一种基站, 其特征在于, 包括:
确定单元, 用于确定下行栽波中的特殊传输时间间隔 TTI; 所述特殊 TTI 中包含第一类型移动终端向所述基站发送上行探测信号的相应时长; 所述第 一类型移动终端为在所述特殊 TTI 中向所述基站发送上行探测信号的移动终
信号发送单元, 用于在所述特殊 ΤΤΙ中的第一时长内发送第一控制信号; 所述第一控制信号使第二类型移动终端认为所述特殊 ΤΤΙ 中的剩余时长内所 述基站未发送下行信号; 所述第二类型移动终端为在所述特殊 ΤΉ 中不向所 述基站发送上行探测信号的移动终端。
8、 如权利要求 7所述的基站, 其特征在于, 所述信号发送单元, 用于在 所述第一时长中的第一时段内发送所述第一控制信号; 以及在所述第一时长 中的第二时段内发送第二控制信号; 所述第二控制信号用于告知所述第一类 型移动终端接收数据; 以及在所述第一时长中的第三时段内发送数据。
9、 如权利要求 7所述的基站, 其特征在于, 所述信号发送单元, 用于在 所述第一时长中的第一时段内发送所述第一控制信号; 以及在所述第一时长 中的第二时段内发送第三控制信号; 所述第三控制信号使所述第一类型移动 终端认为所述基站在所述第一时长中的第三时段内未发送下行信号。
10、 如权利要求 7-9任一所述的基站, 其特征在于, 还包括:
号接收单元, 用于接收所述第一类型移动终端在所述特殊 ΤΤΙ 中的第 二时长内发送的所述上行探测倌号,
11、 一种移动终端, 其特征在于, 包括: 确定单元和信号发送单元; 所述确定单元, 用于确定下行栽波中的特殊传输时间间隔 ΤΉ; 所述特殊 ΤΉ中包含所述信号发送单元向基站发送上行探测信号的相应时长;以及忽略 所述基站在所述特殊 ΤΠ 中的第一时长内发送的第一控制信号; 所述第一控 制信号使第二类型移动终端认为所述特殊 ΤΉ中的剩余时长内所述基站未发 送下行信号; 所述第二类型移动终端为在所述特殊 TTI 中不向所述基站发送 上行探测信号的移动终端;
述信号发送单元, 用于在所述特殊 ΤΠ中的第二时长内向基站发送上 行探测信号。
12、 如权利要求 11所述的移动终端, 其特征在于, 所述确定单元, 用于 忽略所述基站在所述第一时长中的第一时段内发送的所述第一控制信号; 所述移动终端, 还包括:
信号接收单元, 用于接收基站在所述第一时长中的第二时段内发送的第 二控制信号; 以 艮据所述第二控制信号接收基站在所述第一时长中的第三 时段 发送的数据。
13、 如权利要求 11所述的移动终端, 其特征在于, 所述确定单元, 用于 忽略所述基站在所述第一时长中的第一时段内发送的所述第一控制信号; 所述移动终端, 还包括:
信号接收单元, 用于接收基站在所述第一时长中的第二时段内发送的第 三控制信号; 以及根据所述第三控制信号, 认为所述基站在所述第一时长中 的第三时段内未发送下行信号。
14、 一种移动通信系统, 其特征在于, 包括: 基站、 第一类型移动终端 和第 ^类型移动终端;
所述基站, 用于确定下行载波中的特殊传输时间间隔 ΤΉ; 所述特殊 TTI 中包含所述第一类型移动终端向其发送上行探测信号的相应时长; 以及在所 述特殊 ΓΠ 中的第一时长内发送第一控制信号; 以及接收所述第一类型移动 终端在所述特殊 TO中的第二时长内发送的上行探测信号;
所述第一类型移动终端,用于确定所述特殊 ΤΉ; 以及忽略所述第一控制 信号; 以及在所述特殊 TTI中的第二时长内发送所述上行探测信号;
所述第二类型移动终端,用于根据所述第一控制信号,认为所述特殊 TTI 中的剩余时长内所述基站未发送下行信号。
15、 如权利要求 14所述的系统, 其特征在于, 所述基站, 用于在所述第 一时长中的第一时段内发送所述第一控制信号; 以及在所述第一时长中的第 二时段内发送第二控制信号; 以及在所述第一时长中的第三时段内发送数据; 所述第一类型移动终端, 用于接收所述第二控制信号; 以及根据所述第 二控制信号接收所述基站发送的所述数据。
16、 如权利要求 14所述的系统, 其特征在于, 所述基站, 用于在所述第 一时 ^中的第一时段内发送所述第一控制信号; 以及在所述第一时长中的第 二时段内发送第三控制信号;
所述第一类型移动终端, 用于接收所述第三控制信号; 以及根据所述第 三控制信号, 认为所述基站在所述第一时长中的第三时段内未发送下行信号。
PCT/CN2010/071598 2009-04-23 2010-04-07 信号传送方法及其相关设备 WO2010121515A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/265,711 US8666440B2 (en) 2009-04-23 2010-04-07 Signal transmission method and related device thereof
EP10766605.9A EP2424131B1 (en) 2009-04-23 2010-04-07 Signal transmission method and related device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910082643.4 2009-04-23
CN2009100826434A CN101873698B (zh) 2009-04-23 2009-04-23 信号传送方法及其相关设备

Publications (1)

Publication Number Publication Date
WO2010121515A1 true WO2010121515A1 (zh) 2010-10-28

Family

ID=42998297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071598 WO2010121515A1 (zh) 2009-04-23 2010-04-07 信号传送方法及其相关设备

Country Status (4)

Country Link
US (1) US8666440B2 (zh)
EP (1) EP2424131B1 (zh)
CN (1) CN101873698B (zh)
WO (1) WO2010121515A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348602A (zh) * 2013-08-09 2015-02-11 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
CN111654918A (zh) * 2015-07-03 2020-09-11 华为技术有限公司 一种通信方法及装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706677B1 (en) * 2011-05-03 2016-08-10 Samsung Electronics Co., Ltd. Method and apparatus for user equipment receiving mbms service processing semi-permanent scheduling from mbsfn subframe in wireless communication system
CN103313400B (zh) * 2012-03-14 2016-03-02 华为技术有限公司 控制信令的发送、接收方法、网络侧设备和用户设备
US9131498B2 (en) 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
US9445283B2 (en) 2013-08-23 2016-09-13 Huawei Technologies Co., Ltd. Channel sounding for frequency division duplex system
JP6140043B2 (ja) * 2013-09-26 2017-05-31 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
CN104883237B (zh) * 2014-02-28 2018-03-09 中兴通讯股份有限公司 一种数据传输方法、装置及系统
CN106465341B (zh) * 2014-03-25 2019-12-17 华为技术有限公司 信道状态信息获取方法及设备
CN105099632B (zh) 2014-04-23 2019-12-13 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备
US11432305B2 (en) 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US11019620B2 (en) * 2014-05-19 2021-05-25 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
US10764912B2 (en) * 2014-10-13 2020-09-01 Qualcomm Incorporated Scheduling request modes for enhanced component carriers
US10123323B2 (en) * 2014-10-24 2018-11-06 Qualcomm Incorporated Dynamic uplink/downlink frame structure for enhanced component carriers
US10110363B2 (en) * 2015-01-29 2018-10-23 Qualcomm Incorporated Low latency in time division duplexing
US9629066B2 (en) * 2015-02-24 2017-04-18 Huawei Technologies Co., Ltd. System and method for transmission time intervals
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
US10075970B2 (en) * 2015-03-15 2018-09-11 Qualcomm Incorporated Mission critical data support in self-contained time division duplex (TDD) subframe structure
US10342012B2 (en) 2015-03-15 2019-07-02 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure
US9814058B2 (en) 2015-05-15 2017-11-07 Qualcomm Incorporated Scaled symbols for a self-contained time division duplex (TDD) subframe structure
US9992790B2 (en) 2015-07-20 2018-06-05 Qualcomm Incorporated Time division duplex (TDD) subframe structure supporting single and multiple interlace modes
WO2017027996A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 下行信号的发送方法及装置、下行信号的接收方法及装置
US10432386B2 (en) * 2015-10-19 2019-10-01 Qualcomm Incorporated Flexible time division duplexing (TDD) subframe structure with latency reduction
EP3427433B1 (en) 2016-03-10 2020-06-03 Telefonaktiebolaget LM Ericsson (PUBL) Short transmission time intervals in time division duplex downlink and uplink subframes
JP6692910B2 (ja) 2016-03-30 2020-05-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法
CN107294680B (zh) * 2016-03-31 2020-10-09 上海诺基亚贝尔股份有限公司 用于tdd系统的通信方法及装置
JP6726761B2 (ja) 2016-03-31 2020-07-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 待ち時間削減のためのスペシャルサブフレーム設定
WO2017195172A1 (en) 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Subframe selection for introducing short ttis in tdd
CN110267226B (zh) * 2018-03-12 2021-07-20 华为技术有限公司 信息发送的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203020A (zh) * 2006-12-11 2008-06-18 华为技术有限公司 上行控制时隙分配方法、系统以及移动台
WO2008156293A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
CN101378290A (zh) * 2008-09-23 2009-03-04 中兴通讯股份有限公司 信号发送控制方法和装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493079B1 (ko) * 2001-11-02 2005-06-02 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 광대역 부호 분할다중 접속 통신 시스템에서 순방향 채널 품질을 보고하는장치 및 방법
US7889755B2 (en) * 2005-03-31 2011-02-15 Qualcomm Incorporated HSDPA system with reduced inter-user interference
EP3211946B1 (en) * 2005-10-04 2018-09-19 Huawei Technologies Co., Ltd. A method and system for determining the group number used by mobile terminals having a same frequency band position for receiving signals in idle mode
WO2007139459A1 (en) * 2006-05-29 2007-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Channel quality prediction in hsdpa systems
US9265028B2 (en) * 2006-06-09 2016-02-16 Qualcomm Incorporated Multicast/broadcast reporting for wireless networks
PL2049306T3 (pl) 2006-07-31 2013-12-31 Element Six Abrasives Sa Wypraski ścierne
US8094638B2 (en) * 2006-08-22 2012-01-10 Texas Instruments Incorporated Adaptive selection of transmission parameters for reference signals
ES2706020T3 (es) * 2006-11-01 2019-03-27 Qualcomm Inc Diseño de señal de referencia para búsqueda de células en un sistema de comunicación inalámbrica ortogonal
US7986959B2 (en) * 2007-02-14 2011-07-26 Qualcomm Incorporated Preamble based uplink power control for LTE
KR20090113377A (ko) * 2007-02-28 2009-10-30 가부시키가이샤 엔티티 도코모 기지국장치 및 통신제어방법
RU2009134088A (ru) * 2007-02-28 2011-04-10 НТТ ДоСоМо, Инк. (JP) Базовая станция и способ управления связью
US8824420B2 (en) * 2007-03-22 2014-09-02 Mitsubishi Electric Research Laboratories, Inc. Method and system for generating antenna selection signals in OFDM tranceivers with fewer RF chains than antennas in MIMO wireless networks
KR101491964B1 (ko) * 2007-07-30 2015-03-09 삼성전자주식회사 통신 시스템에서 서로 다른 신호 타입을 송수신하는 방법 및 시스템
US8238297B2 (en) * 2007-07-31 2012-08-07 Samsung Electronics Co., Ltd Method and system for dimensioning scheduling assignments in a communication system
CN101772932B (zh) * 2007-08-08 2014-12-10 知识产权之桥一号有限责任公司 无线通信基站装置和关联对应设定方法
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
KR101444977B1 (ko) * 2007-10-29 2014-09-26 옵티스 와이어리스 테크놀리지, 엘엘씨 이동국 및 송신 방법
US8331297B2 (en) * 2007-12-10 2012-12-11 Mitsubishi Electric Research Laboratories, Inc. Method and system for generating antenna selection signals in wireless networks
US8780790B2 (en) * 2008-01-07 2014-07-15 Qualcomm Incorporated TDD operation in wireless communication systems
CA2714968C (en) * 2008-02-15 2016-10-11 Research In Motion Limited Systems and methods for assignment and allocation of mixed-type combinations of slots
EP4106461B1 (en) * 2008-03-19 2024-01-17 NEC Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
CN102106107B (zh) * 2008-05-21 2015-09-23 诺基亚通信公司 经由pucch配置针对任意系统带宽部署lte ul系统
US8654623B2 (en) * 2008-06-25 2014-02-18 Qualcomm Incorporated Scrambling under an extended physical-layer cell identity space
KR101497154B1 (ko) * 2008-06-26 2015-03-02 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
WO2010013959A2 (en) * 2008-07-30 2010-02-04 Lg Electronics Inc. Method and apparatus of receiving data in wireless communication system
US8489950B2 (en) * 2008-08-06 2013-07-16 Nokia Siemens Networks Oy Discontinuous reception retransmission timer and method
US8825100B2 (en) * 2008-08-11 2014-09-02 Blackberry Limited Method and system for providing a power boost for a wireless communication link using a subset of subcarrier frequencies of the wireless communication link channel as a reduced bandwidth channel
JP2010045548A (ja) * 2008-08-11 2010-02-25 Ntt Docomo Inc 基地局、移動局、信号送信方法及び信号受信方法
JP2012507960A (ja) * 2008-10-31 2012-03-29 インターデイジタル パテント ホールディングス インコーポレイテッド 複数のアップリンク搬送波を使用するワイヤレス送信のための方法および装置
WO2010062061A2 (ko) * 2008-11-03 2010-06-03 엘지전자주식회사 다중 반송파 시스템에서 통신방법 및 장치
US8483149B2 (en) * 2008-12-05 2013-07-09 Nokia Siemens Networks Oy Resource allocation technique for physical uplink control channel blanking
KR101711864B1 (ko) * 2008-12-23 2017-03-03 엘지전자 주식회사 반송파 집성 환경에서의 상향링크 αck/nack 시그널링
KR20100073976A (ko) * 2008-12-23 2010-07-01 엘지전자 주식회사 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치
AU2009335014B2 (en) * 2008-12-30 2014-02-27 Interdigital Patent Holdings, Inc Control channel feedback for multiple downlink carrier operations
US8374133B2 (en) * 2009-02-06 2013-02-12 Telefonaktiebolaget L M Ericsson (Publ) Shared Uplink Notification Bursts (SUNB)
US8547896B2 (en) * 2009-02-18 2013-10-01 Lg Electronics Inc. Signal transmitting/receiving method for a relay node and relay node using the method
US8320267B2 (en) * 2009-06-23 2012-11-27 Motorola Mobility Llc Reference signal sounding for uplink pilot time slot in wireless communication system
WO2012005494A2 (ko) * 2010-07-06 2012-01-12 엘지전자 주식회사 무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치
TW201320692A (zh) * 2011-08-10 2013-05-16 Ind Tech Res Inst 資料傳送方法及使用此方法的基地台及用戶端設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203020A (zh) * 2006-12-11 2008-06-18 华为技术有限公司 上行控制时隙分配方法、系统以及移动台
WO2008156293A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
CN101378290A (zh) * 2008-09-23 2009-03-04 中兴通讯股份有限公司 信号发送控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2424131A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348602A (zh) * 2013-08-09 2015-02-11 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
US10327237B2 (en) 2013-08-09 2019-06-18 Samsung Electronics Co., Ltd. Hybrid duplex communication method, BS and terminal
CN104348602B (zh) * 2013-08-09 2019-06-18 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
CN111654918A (zh) * 2015-07-03 2020-09-11 华为技术有限公司 一种通信方法及装置
CN111654918B (zh) * 2015-07-03 2024-03-05 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN101873698A (zh) 2010-10-27
US8666440B2 (en) 2014-03-04
EP2424131B1 (en) 2016-04-06
CN101873698B (zh) 2012-12-26
EP2424131A1 (en) 2012-02-29
EP2424131A4 (en) 2015-05-20
US20120135773A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2010121515A1 (zh) 信号传送方法及其相关设备
KR102353395B1 (ko) 무선 통신 시스템에 있어서 디바이스-대-디바이스 피드백 송신을 핸들링하는 방법 및 장치
US11224017B2 (en) Method and apparatus for operating in a discontinuous reception mode employing carrier aggregation
JP5876585B2 (ja) 無線通信システムにおいて様々なタイマーによる動作
CN114258653A (zh) 用于在无线通信中使用harq的方法和装置
KR102041189B1 (ko) 무선 통신 시스템에서 mbms 서비스를 수신하는 단말이 mbsfn 서브프레임에서 반영구적 스케쥴링 을 처리하는 방법 및 장치
WO2011047619A1 (zh) 一种载波聚合实现方法、装置与系统
JP2019036951A (ja) 無線通信システムにおけるsfi(スロットフォーマット情報)衝突を処理するための方法及び装置
EP2524451B1 (en) Apparatus and method for relay switching time
US9526096B2 (en) PDCCH monitoring scheme considering EPDCCH
CN114208084A (zh) 用于确定无线通信中的harq定时的方法和装置
EP2826168B1 (en) Method and system for handling ue behavior in inter-band carrier aggregation with cell specific tdd configuration
WO2014067140A1 (zh) 一种信息传输方法、用户设备及基站
WO2012142840A1 (zh) 一种下行控制信息的处理方法和系统
AU2010296186A1 (en) Method for transmitting a sounding reference signal in a wireless communication system, and apparatus for same
CN110100493B (zh) 用于指示或使用关于后续物理下行链路控制信道传输的信息的技术
WO2012119563A1 (zh) 一种无线通信系统中载波聚合的实现方法及系统
US11483846B2 (en) Communication technique setting method for device-to-device direct communication in wireless communication system, and device therefor
WO2010130209A1 (zh) 下行测量导频的配置和发送方法和装置
US20150189690A1 (en) Drx operation in a wireless communication system
WO2022001850A1 (zh) 资源指示方法、装置及通信设备
WO2012146154A1 (zh) 多载波通信系统中上行同步方法及系统
WO2013004157A1 (zh) 控制信令的检测、发送方法及用户设备、基站
CN107888333B (zh) 经由用于覆盖扩展的上行链路信道收发数据的方法及其装置
WO2022002050A1 (zh) 传输处理方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010766605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13265711

Country of ref document: US