WO2012119563A1 - 一种无线通信系统中载波聚合的实现方法及系统 - Google Patents

一种无线通信系统中载波聚合的实现方法及系统 Download PDF

Info

Publication number
WO2012119563A1
WO2012119563A1 PCT/CN2012/072119 CN2012072119W WO2012119563A1 WO 2012119563 A1 WO2012119563 A1 WO 2012119563A1 CN 2012072119 W CN2012072119 W CN 2012072119W WO 2012119563 A1 WO2012119563 A1 WO 2012119563A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
secondary carrier
primary
primary carrier
subframe
Prior art date
Application number
PCT/CN2012/072119
Other languages
English (en)
French (fr)
Inventor
毛磊
张银成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012119563A1 publication Critical patent/WO2012119563A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and system for implementing carrier aggregation in a wireless communication system. Background technique
  • the Long Term Evolution (LTE-A) system proposes Carrier Aggregation (CA) technology, which is designed for user equipments (UEs with corresponding capabilities).
  • UE user equipment
  • UE User Equipment
  • the maximum downlink transmission bandwidth supported by the system is 20 MHz.
  • Carrier aggregation is to aggregate two or more component carriers (CC, Component Carriers) to support more than 20 MHz and no more than 100 MHz. Downlink transmission bandwidth.
  • CC component carriers
  • the component carrier may use a frequency band already defined by LTE, or may use a frequency band specifically added for LTE-A. Based on the current spectrum resource shortage, it is impossible to always have a continuous component carrier in the frequency domain that can be allocated to the operator. Therefore, carrier aggregation is continuous in the frequency domain according to each component carrier, and can be divided into continuous carrier aggregation and discontinuous carrier aggregation. . Carrier aggregation can be divided into single-band carrier aggregation and multiple-frequency carrier aggregation according to whether each component carrier is in the same frequency band.
  • the so-called single-band carrier aggregation means that all component carriers participating in carrier aggregation are in the same frequency band, and carrier aggregation in a single frequency band may be continuous carrier aggregation or non-continuous carrier aggregation.
  • the so-called cross-band carrier aggregation means that the component carriers participating in carrier aggregation can originate from different frequency bands.
  • a UE with carrier aggregation capable LTE-A can transmit and receive data on multiple component carriers at the same time, and an LTE UE can only send and receive data on one LTE-compatible component carrier.
  • the UE may use more than one carrier resource, which increases the maximum used resource of the UE, thereby increasing the maximum rate of the UE, and on the other hand, selecting a better resource for more resources.
  • the UE uses, thereby improving the spectrum usage efficiency of the UE.
  • the UE in order for the UE to support multi-carrier aggregation, the UE also needs to improve its own receiving/transmitting capability, and needs to receive/transmit data on more carriers and wider frequency bands at the same time.
  • the UE's radio frequency needs to support higher bandwidth, baseband. Design needs to support more data processing capabilities and more power consumption of components have brought great challenges to the UE.
  • One cell supports multiple carriers, and these carriers are time-synchronized; each carrier is configured with a synchronization signal, a system message, and a common pilot, and each carrier can be backward compatible with the LTE R8 UE.
  • the system may configure one of the carriers as the primary carrier (PCell, Primary Cell) for the UE, and may also configure one or more secondary carriers (SCell, Serving Cell); Note that the primary carrier and the secondary are referred to herein.
  • the carrier is configured for the same UE, and the primary carrier/secondary carrier configured for different UEs may be different.
  • the primary carrier and secondary carrier set configured by the UE can be adjusted.
  • the downlink time slot of each carrier transmits a common pilot for user measurement.
  • the carrier includes a primary carrier and a secondary carrier, including transmitting system messages, synchronization signals, common pilots, and the like on each carrier (the carrier includes a primary carrier and a secondary carrier), which inevitably causes a problem of unnecessary resource occupation, thereby causing the base station to be unnecessary. It consumes power and may cause interference to signals of neighboring cells.
  • the main purpose of the embodiments of the present invention is to provide a method and system for implementing carrier aggregation in a wireless communication system, which can avoid unnecessary power consumption of the base station and possible interference to signals of neighboring cells.
  • a method for implementing carrier aggregation in a wireless communication system comprising: configuring a cell to be composed of one primary carrier and multiple secondary carriers; using a primary carrier to transmit system messages, and/or synchronization signals, and/or common pilots;
  • the use of the secondary carrier is dynamically configured by the system.
  • the method further includes: if the paging information is to be sent, sending the paging information by using the primary carrier;
  • the common pilot is sent in each downlink service subframe of the primary carrier; when the secondary carrier subframe resource is used, the common pilot is only transmitted in the subframe carrying the service data .
  • the use of the dynamically configured secondary carrier specifically includes: using only part of the secondary carrier; or using only part of the secondary carrier; or, closing the signal transmission of the entire secondary carrier.
  • the use of the dynamically configured secondary carrier specifically includes: configuring, by using signaling on the primary carrier, the terminal to use the currently closed resource in the secondary carrier, or using the resource already opened in the secondary carrier.
  • the method further includes: configuring the primary carrier to be backward compatible or non-backward compatible, and configuring the primary carrier to control the secondary carrier; and configuring the terminal to perform random access on the primary carrier.
  • the method further includes: configuring the secondary carrier to be non-backward compatible, and the secondary carrier is attached to the primary carrier, and the idle terminal cannot reside on the secondary carrier independently.
  • the method further includes: configuring the secondary carrier to not carry control signaling, and maintaining a fixed timing relationship between the secondary carrier and the primary carrier, where the system frame number of the secondary carrier is the same as the primary carrier or maintaining a fixed offset, and the secondary carrier has no independent cell. logo.
  • the method further includes: configuring a secondary carrier to be used as a service resource, in a secondary carrier subframe No control domain, only traffic channels.
  • the method further includes: configuring a physical layer parameter of the secondary carrier to notify the terminal by the primary carrier; the physical layer parameter specifically includes: a bandwidth, a frequency, or a pilot symbol.
  • a system for implementing carrier aggregation in a wireless communication system comprising: a configuration unit, configured to configure a cell to be composed of one primary carrier and multiple secondary carriers, using a primary carrier to send system messages, and/or synchronization signals, and/or Or common pilot; the use of the secondary carrier is dynamically configured by the system.
  • the method further includes: if the paging information is to be sent, sending the paging information by using the primary carrier;
  • the common pilot is sent in each downlink service subframe of the primary carrier; when the secondary carrier subframe resource is used, the common pilot is only transmitted in the subframe carrying the service data .
  • the configuration unit is further configured to use only part of the secondary carrier when the secondary carrier is dynamically configured, or use only part of the secondary carrier, or turn off the signal transmission of the entire secondary carrier.
  • the configuration unit is further configured to use the signaling on the primary carrier to configure the terminal to use the currently closed resource in the secondary carrier or use the resource already enabled in the secondary carrier by using the signaling on the primary carrier.
  • the configuration unit is further configured to configure the primary carrier to be backward compatible or non-backward compatible, and configure the control capability of the primary carrier to the secondary carrier; and configure the terminal to perform random access on the primary carrier.
  • the configuration unit is further configured to configure the secondary carrier to be non-backward compatible, and the secondary carrier wave is attached to the primary carrier, and the idle terminal cannot reside on the secondary carrier independently.
  • the configuration unit is further configured to configure the secondary carrier to not carry control signaling, and the secondary carrier maintains a fixed timing relationship with the primary carrier, where the system frame number of the secondary carrier is the same as the primary carrier or maintains a fixed offset, and the secondary carrier has no Independent cell identification.
  • a cell is configured by one primary carrier and multiple secondary carriers, so that The system message, and/or the synchronization signal, and/or the common pilot are transmitted with the primary carrier; the use of the secondary carrier is dynamically configured by the system.
  • the system users are less, and normally only the primary carrier is turned on and through the main
  • the carrier transmits system messages, synchronization signals, common pilots, and the like, and dynamically configures the use of the secondary carriers according to the requirements of the radio resources when the user data is transmitted. For example, when the number of users is small, or the total user data transmission rate is not high, the use of the secondary carrier is turned off, or part of the secondary carrier is used.
  • the embodiment of the present invention solves the problem in the prior art that all carriers need to be opened even when the number of users is small, or the total user data transmission rate is not high, and system messages and synchronization signals need to be sent.
  • the problem caused by the unnecessary resources of the information caused by the information such as the common pilot can avoid unnecessary power consumption of the base station and interference to the signal of the neighboring cell.
  • FIG. 1 is a schematic structural diagram of a primary carrier and a secondary carrier frame configured in a TDD mode according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a primary carrier and a secondary carrier frame configured in an FDD mode according to Embodiment 2 of the present invention. detailed description
  • the basic idea of the embodiment of the present invention is: configuring a cell to be composed of one primary carrier and multiple secondary carriers, using a primary carrier to send system messages, and/or synchronization signals, and/or common pilots; use.
  • a method for implementing carrier aggregation in a wireless communication system mainly includes the following content: configuring a cell to be composed of one primary carrier and multiple secondary carriers, and only always opening the primary carrier And using the primary carrier to transmit system messages, and/or synchronization signals, and/or common pilots; the use of the secondary carriers is dynamically configured by the system according to the requirements of the wireless resources when the user data is transmitted.
  • a base station supporting multiple carriers one base station may support one or more cells (Cell).
  • Cell cells
  • a plurality of carriers are configured in a cell, where the carrier combination mode is: configuring one of the carriers as the primary carrier of the cell, and the other carriers are the secondary carriers.
  • the system message and the synchronization signal are only sent on the primary carrier; and the paging information is optional.
  • the paging information is to be sent, it is only sent on the primary carrier; when using the primary carrier subframe resource, the common pilot needs to be
  • the downlink is transmitted in each downlink service subframe of the primary carrier, even if the service data is not carried in the subframe (that is, the common pilot is transmitted in each downlink service subframe regardless of whether the subframe carries service data in the subframe. For the terminal to perform measurement); when the secondary carrier subframe resource is used, the common pilot is only transmitted in the subframe carrying the service data.
  • the system dynamically configures the use of the secondary carrier based on the demand for wireless resources when the user transmits data.
  • the use of the dynamic configuration of the secondary carrier specifically includes: opening only a part of resources (resources such as time slots and frequency bands) of the secondary carrier, or turning off signal transmission of the entire secondary carrier.
  • the use of the dynamically configured secondary carrier further includes: when the user data transmission increases the demand for the wireless resource and the primary carrier resource is insufficient, the UE may use the signaling on the primary carrier to configure the UE to use the currently closed resource in the secondary carrier or Use resources that are already open.
  • the primary carrier may be backward compatible with the R8/9/10 UE, or may be non-backward compatible, but needs to increase the control capability of the secondary carrier; the system message, the synchronization signal, and the paging information are only carried on the primary carrier; The user performs random access on the primary carrier.
  • the secondary carrier is a non-backward compatible carrier, the secondary carrier is attached to the primary carrier, and the UE cannot reside on the secondary carrier independently.
  • the secondary carrier does not carry control signaling, such as system message, paging information, and no synchronization channel, and the secondary carrier maintains a fixed timing relationship with the primary carrier.
  • the system frame number is the same as the primary carrier or maintains a fixed offset, and is independent.
  • Cell ID Cell ID
  • Secondary carrier frame structure may optimize the structure of a conventional LTE system, such as to remove a time division duplex (TDD, Time Division Duplexing) in the special time slot, following the uplink pilot time slot (DWPTS, DoWnlink Pilot Time Slot) 0
  • the physical layer parameters of the secondary carrier are notified by the primary carrier to the UE, such as bandwidth, frequency, pilot symbols (which can be configured separately or the same as the primary carrier), and configuration and scheduling of uplink pilot signals (sounding).
  • the secondary carrier retains the downlink pilot and is used for measurement by the UE. If a time slot of the secondary carrier is not used by the user, the downlink pilot may not be sent. If there is a usage requirement, the system schedules a user to use the resources on the secondary carrier, and can process according to the predetermined transmission parameters when using the first time, such as using a relatively conservative modulation mode and coding rate, and the transmission parameters are in the subsequent transmission process. Make adjustments.
  • the secondary carrier supports the user to send sounding, and is used by the base station to measure the uplink signal of the UE.
  • Embodiment 1 (TDD mode)
  • the cell is composed of one primary carrier and one secondary carrier, and the primary carrier may adopt a TDD frame structure or a new frame structure in the existing wireless communication system, for example, the entire subframe includes only the data domain, and no control domain. .
  • the TDD frame structure of the LTE system is adopted, and all configurations conform to the LTE standard, and the UE in the TDD mode of the legacy LTE system can search and reside on the primary carrier.
  • the system message, the synchronization signal, and the paging information are sent on the primary carrier; the random access channel is configured, and the user performs random access on the primary carrier; the primary carrier passes the physical downlink control channel (PDCCH, Physical Downlink) Control CHannel ) Schedule users.
  • the system message of the primary carrier may add some information of the secondary carrier, such as the frequency of the secondary carrier, Wide, reference symbols, etc.
  • the secondary carrier is attached to the primary carrier, and the timing relationship of the secondary carrier is consistent with the primary carrier, for example, the starting time of each radio frame and the system frame number are the same as the primary carrier;
  • the UE maintains timing on the secondary carrier according to the timing relationship of the primary carrier.
  • the secondary carrier does not carry control signaling, such as system messages, paging information, and no synchronization channel, and maintains a fixed timing relationship with the primary carrier.
  • the system frame number is the same as the primary carrier or maintains a fixed offset, and there is no independent Cell ID.
  • the secondary carrier subframe structure may adopt an existing structure or may redesign a new frame structure, such as canceling the control domain, and only the traffic channel (such as PDSCH/PUSCH), and the frame structure may also optimize the structure of the existing LTE system, such as removing TDD. Special time slot in.
  • the physical layer parameters of the secondary carrier are notified to the UE by the primary carrier through broadcast messages or dedicated signaling, such as bandwidth, frequency, pilot symbols (which can be configured separately or identical to the primary carrier), and sounding configuration and scheduling.
  • the downlink common pilot is reserved in the downlink subframe to which the secondary carrier is allocated, and is used for measurement by the UE; if a secondary slot of the secondary carrier is not used by the user, the downlink pilot may not be transmitted.
  • the secondary carrier supports the user to send sounding, which is used by the base station to measure the uplink signal of the UE.
  • the process of the system scheduling user to use the secondary carrier resource includes: for a new type of UE (such as an LTE-LAN terminal, the carrier aggregation mode described in the embodiment of the present invention can be configured and used), the UE resides on the primary carrier, and has a large bandwidth.
  • the system can configure the resources of the UE to use the secondary carrier.
  • the secondary carrier resources used by the UE may be dynamically configured (e.g., changed every subframe) or semi-statically configured (the allocated resources are always valid for a long period of time).
  • the configuration signaling includes: secondary carrier related information such as a frequency band, a bandwidth, a slot number, a subcarrier number, and a reference symbol of the secondary carrier; : Physical layer parameters required for data transmission and reception, such as Modulation and Coding Scheme (MCS), antenna information, modulation scheme, etc.; and related high-level information, such as hybrid automatic repeat request ( HARQ , Hybrid Automatic Repeat Request) Process, measurement command, feedback configuration.
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat Request
  • the feedback configuration refers to: if the UE only configures the downlink time slot of the secondary carrier, the related feedback for the downlink time slot will be configured by the system to be sent on a specific uplink time slot of the primary carrier. If the UE only configures the uplink time slot of the secondary carrier, the relevant feedback for the uplink time slot will be sent to the UE by the base station in a specific downlink time slot preconfigured in the primary carrier.
  • the transmission manner of the configuration signaling includes: notifying the UE by using dedicated signaling on the primary carrier.
  • the dedicated signaling may be an RRC message, a Medium Access Control Message (MAC CE) or a physical layer PDCCH signaling.
  • MAC CE Medium Access Control Message
  • the system schedules users to use resources on the secondary carrier as needed.
  • the first time it is used it can be processed according to the specified transmission parameters, and the transmission parameters are adjusted during the subsequent transmission.
  • the use of the secondary carrier may be limited to one.
  • the resources of multiple secondary carriers may be configured for one UE at the same time, and the resources of the primary carrier may also be included.
  • the secondary carrier transmits the signal only when it is allocated to the user, and the base station does not transmit any signal for the secondary carrier subframe that is not used by the user. Therefore, from the time domain, the downlink time slot signal of the secondary carrier may be discontinuous.
  • the frame structure diagram of the TDD mode in this embodiment is shown in FIG. 1.
  • the primary carrier is in the TDD mode of the LTE system, and the secondary carrier is allocated as a resource to the user.
  • the resources allocated by UE1 have primary carrier slot 0 (downlink), primary carrier slot 2, and secondary carrier slot 2 (upstream); the resource allocation command is sent by the primary carrier to UE1, and UE1 is in the primary carrier time slot.
  • 0 receives data, and transmits data in primary carrier time slot 2 and secondary carrier time slot 2.
  • the resources allocated by UE2 include primary carrier time slot 5 and secondary carrier time slot 5 (downlink) and primary carrier time slot 7 (uplink); the resource allocation command is sent by the primary carrier to UE2, and UE2 is in primary carrier time slot 5 and the secondary carrier.
  • Time slot 5 receives the data and transmits data in the primary carrier time slot 7.
  • each downlink subframe of the primary carrier is to transmit a signal, even if a subframe does not have a scheduling user, the base station still needs to transmit reference symbols in the subframe; for the uplink subframe, if the base station schedules the user Use, then need to receive; for the child configured with random access channel Frame, the base station needs to be monitored.
  • the base station since the resource allocation of the user is uniformly controlled by the base station, which subframe needs to receive or transmit user data, the base station knows. Therefore, the base station can perform signal transmission and reception only on the subframe in which the resource has been allocated.
  • the base station turns off the transmitting device for the carrier; likewise, for other uplink subframes, the base station turns off the receiving device for the carrier.
  • Embodiment 2 (FDD mode)
  • the cell is a Frequency Division Duplexing (FDD) mode, which is composed of two pairs of carriers, a pair of primary carriers and a pair of secondary carriers, and the primary carrier adopts an FDD frame structure in the existing wireless communication system. , or a new frame structure.
  • FDD Frequency Division Duplexing
  • the FDD frame structure of the LTE system is adopted, and all configurations conform to the LTE standard, and the UE in the FDD mode of the legacy LTE system can search and camp on the primary carrier.
  • the FDD mode is the same as the TDD mode in the first embodiment.
  • the method in which the UE uses the resources of the secondary carrier is also the same as in the first embodiment. It is as follows:
  • the process of the system scheduling user to use the secondary carrier resource includes: for a new type of UE (such as an LTE-LAN terminal, the carrier aggregation mode described in the embodiment of the present invention can be configured and used), the UE resides on the primary carrier, and has a large bandwidth.
  • the system can configure the resources of the UE to use the secondary carrier.
  • the secondary carrier resources used by the UE may be dynamically configured (e.g., changed every subframe) or semi-statically configured (the allocated resources are always valid for a long period of time).
  • the configuration signaling includes: secondary carrier related information such as a frequency band, a bandwidth, a slot number, a subcarrier number, and a reference symbol of the secondary carrier; : Physical layer parameters required for data transmission and reception, such as modulation and coding scheme (MCS) level, antenna information, modulation scheme, etc.; and related high-level information, such as hybrid automatic repeat request (HARQ) process, measurement command, feedback Configuration.
  • secondary carrier related information such as a frequency band, a bandwidth, a slot number, a subcarrier number, and a reference symbol of the secondary carrier
  • MCS modulation and coding scheme
  • HARQ hybrid automatic repeat request
  • the UE may only configure the downlink time slot or the uplink time slot of the secondary carrier, and the corresponding feedback is configured by the system to transmit or receive on the primary carrier. It is also possible to configure a pair of secondary carriers, at this time, corresponding Feedback can be carried on pairs of secondary carriers.
  • the frame structure diagram of the FDD mode in this embodiment is shown in FIG. 2.
  • the resources allocated by the UE1 include a primary carrier downlink time slot 2 and a secondary carrier downlink time slot 2, and a primary carrier uplink time slot 3; the resource allocation command is sent by the primary carrier.
  • UE1 receives data in primary carrier downlink time slot 2 and secondary carrier downlink time slot 2, and transmits data in primary carrier uplink time slot 3.
  • the secondary carrier downlink time slot 2 such as ACK, Channel Quality Indicator (CQI, Channel Quality Indicator), etc.
  • the base station feeds back the configurator on the uplink time slot of the primary carrier.
  • the resources allocated by UE2 include a primary carrier downlink time slot 5, a primary carrier uplink time slot 5, and a secondary carrier uplink time slot 5; the resource allocation command is sent by the primary carrier to UE2, and UE2 receives data in the primary carrier downlink time slot 5, in the primary Carrier uplink time slot 5 and secondary carrier uplink time slot 5 transmit data.
  • the base station sends a signal in each subframe of the downlink primary carrier, even if a subframe does not have a scheduling user, the base station still needs to transmit reference symbols in the subframe; for the uplink subframe, if the base station schedules the user For use, it needs to be received; for a subframe configured with a random access channel, the base station needs to listen.
  • the base station since the user's resource allocation is uniformly controlled by the base station, and which subframe needs to receive or transmit user data, the base station knows. Therefore, the base station can perform signal transmission and reception only on the subframe in which the resource has been allocated.
  • the base station turns off the transmitting device for the carrier; likewise, for other uplink subframes, the base station turns off the receiving device for the carrier.
  • a system for implementing carrier aggregation in a wireless communication system comprising: a configuration unit, where the configuration unit is configured to configure one cell to be composed of one primary carrier and multiple secondary carriers, only open the primary carrier and use the primary carrier to send system messages, and/or Synchronization signal, and/or common pilot;
  • the use of the secondary carrier is dynamically configured by the system according to the demand for radio resources during user data transmission.
  • the configuration unit is further configured to dynamically configure the use of the secondary carrier, and if only the number of users is small, or the total user data transmission rate is not high, only part of the secondary carrier is used; or only part of the secondary carrier is used; Or, turn off the signal transmission of the entire secondary carrier.
  • the configuration unit is further configured to dynamically configure the use of the secondary carrier, when the requirement for the wireless resource is increased when the user data is transmitted and the primary carrier resource used is insufficient, the terminal is configured to use the secondary carrier by using signaling on the primary carrier. The currently closed resource, or the resource that has been enabled in the secondary carrier.
  • the configuration unit is further configured to configure the primary carrier to be backward compatible or non-backward compatible, and also to configure the primary carrier to control the secondary carrier; and configure the terminal to perform random access on the primary carrier.
  • the configuration unit is further configured to configure the secondary carrier to be non-backward compatible, and the secondary carrier is attached to the primary carrier, and the terminal cannot reside on the secondary carrier independently.
  • the configuration unit is further configured to configure the secondary carrier to not carry the control signaling, and the secondary carrier maintains a fixed timing relationship with the primary carrier, where the system frame number of the secondary carrier is the same as the primary carrier or maintains a fixed offset, and the secondary carrier has no independent cell. logo.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线通信系统中载波聚合的实现方法及系统,其中方法包括:配置一个小区由一个主载波和多个辅载波组成;使用主载波发送系统消息、和/或同步信号、和/或公共导频;由系统动态配置辅载波的使用。根据本发明实施例提供的方案,由于并不是始终打开所有载波并要求所有载波都发送系统消息、同步信号、公共导频等信息,系统用户较少、正常情况下仅仅打开主载波并通过主载波发送系统消息、同步信号、公共导频等信息,根据用户数据传输时对无线资源的需求,动态配置辅载波的使用。

Description

一种无线通信系统中载波聚合的实现方法及系统 技术领域
本发明涉及无线通信领域, 尤其涉及一种无线通信系统中载波聚合的 实现方法及系统。 背景技术
为向移动用户提供更高的数据速率,高级长期演进(LTE-A, Long Term Evolution Advance ) 系统提出了载波聚合( CA, Carrier Aggregation )技术, 其目的是为具有相应能力的用户设备(UE, User Equipment )提供更大的宽 带, 以提高 UE的峰值速率。 长期演进(LTE, Long Term Evolution ) 系统 中, 系统支持的最大下行传输带宽为 20MHz, 载波聚合是将两个或者更多 的分量载波(CC, Component Carriers )聚合起来支持大于 20MHz、 最大不 超过 100MHz的下行传输带宽。
分量载波可以使用 LTE已经定义的频段, 也可以使用为 LTE-A专门新 增的频段。 基于目前频谱资源紧张, 不可能总有频域上连续的分量载波可 以分配给运营商使用, 因此载波聚合按各分量载波在频域上是否连续, 可 以分连续的载波聚合和非连续的载波聚合。 载波聚合按各分量载波是否在 同一频带内, 可以分为单频带(single band )的载波聚合和跨频带(multiple frequency bands )的载波聚合。 所谓单频带的载波聚合指: 参与载波聚合的 所有分量载波都在同一个频带内, 单频带的载波聚合可以是连续的载波聚 合, 也可以是非连续的载波聚合。 所谓跨频带的载波聚合是指: 参与载波 聚合的分量载波可以源自不同的频带。 具有载波聚合能力的 LTE-A的 UE 可以同时在多个分量载波上收发数据, 而 LTE的 UE只能在一个兼容 LTE 的分量载波上收发数据。 在载波聚合技术中, UE可以使用一个以上的载波资源, 一方面增加了 UE的最大使用资源数, 从而增加 UE的最大速率, 另一方面也可以在更多 的资源内选择更好的资源供 UE使用, 从而提高 UE的频谱使用效率。 同时 为了让 UE支持多载波聚合, UE也要提高自身的接收 /发射机能力, 并且需 要同时在更多的载波以及更宽频带上接收 /发射数据, UE的射频需要支持更 高的带宽, 基带设计需要支持更多的数据处理能力以及有更多元器件耗电 都给 UE带来了很大的挑战。
目前 LTE R10版本的载波技术已经制定完成, 主要包括的技术内容如 下:
1 )一个小区支持多个载波, 这些载波都是时间同步的; 每个载波都配 置有同步信号、 系统消息、 公共导频, 每个载波都能后向兼容 LTE R8 的 UE。
2 )针对 UE, 系统可以为 UE配置其中一个载波作为主载波(PCell, Primary Cell ), 另外还可以配置 0个或者多个辅载波( SCell, Serving Cell ); 注意, 这里说的主载波和辅载波是针对同一个 UE配置的, 针对不同 UE配 置的主载波 /辅载波可以不同。
3 ) UE所配置的主载波、 辅载波集合可以调整。
4 )物理层方面, 不管是否有用户使用下行载波资源, 每个载波的下行 时隙都要发射公共导频, 用于用户的测量。
综上所述, 按照上述目前载波技术的技术要求, 在 LTE系统中, 当用 户数较少时、 或者总的用户数据传输速率不高的情况下, 基站仍然需要始 终打开所有的载波(这里的载波包括主载波和辅载波),包括在各个载波(这 里的载波包括主载波和辅载波)上发送系统消息、 同步信号、 公共导频等, 这势必导致无谓占用资源的问题, 从而造成基站无谓的耗电并且可能对邻 小区的信号造成干扰。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种无线通信系统中载 波聚合的实现方法及系统, 能避免基站无谓的耗电及可能对邻小区的信号 造成的干扰。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种无线通信系统中载波聚合的实现方法, 该方法包括: 配置一个小 区由一个主载波和多个辅载波组成; 使用主载波发送系统消息、 和 /或同步 信号、 和 /或公共导频; 由系统动态配置辅载波的使用。
其中, 该方法还包括: 如果要发送寻呼信息, 则使用主载波发送寻呼 信息;
使用主载波子帧资源时, 在主载波的每个下行业务子帧中发送所述公 共导频; 使用辅载波子帧资源时, 仅在承载有业务数据的子帧中发射所述 公共导频。
其中, 所述动态配置辅载波的使用具体包括: 仅使用部分辅载波; 或 者仅使用辅载波的部分资源; 或者, 关闭整个辅载波的信号发射。
其中, 所述动态配置辅载波的使用具体包括: 通过主载波上的信令配 置终端使用辅载波中当前关闭的资源、 或者使用辅载波中已经开启的资源。
其中, 该方法还包括: 配置主载波为后向兼容或非后向兼容, 配置主 载波对辅载波的控制能力; 配置终端在主载波上进行随机接入。
其中, 该方法还包括: 配置辅载波为非后向兼容, 且辅载波依附于主 载波工作, 空闲终端不能独立驻留在辅载波上。
其中, 该方法还包括: 配置辅载波不承载控制信令, 辅载波与主载波 保持固定的定时关系, 辅载波的系统帧号与主载波相同或者保持固定的偏 移, 辅载波无独立的小区标识。
其中, 该方法还包括: 配置辅载波作为业务资源使用, 辅载波子帧中 无控制域, 仅有业务信道。
其中, 该方法还包括: 配置辅载波的物理层参数由主载波通知终端; 所述物理层参数具体包括: 带宽、 频率或导频符号。
一种无线通信系统中载波聚合的实现系统, 该系统包括: 配置单元, 用于配置一个小区由一个主载波和多个辅载波组成, 使用主载波发送系统 消息、 和 /或同步信号、 和 /或公共导频; 由系统动态配置辅载波的使用。
其中, 该方法还包括: 如果要发送寻呼信息, 则使用主载波发送寻呼 信息;
使用主载波子帧资源时, 在主载波的每个下行业务子帧中发送所述公 共导频; 使用辅载波子帧资源时, 仅在承载有业务数据的子帧中发射所述 公共导频。
其中, 所述配置单元, 进一步用于动态配置辅载波的使用时, 仅使用 部分辅载波; 或者仅使用辅载波的部分资源使用; 或者, 关闭整个辅载波 的信号发射。
其中, 所述配置单元, 进一步用于动态配置辅载波的使用时, 通过主 载波上的信令配置终端使用辅载波中当前关闭的资源、 或者使用辅载波中 已经开启的资源。
其中, 所述配置单元, 进一步用于配置主载波为后向兼容或非后向兼 容, 配置主载波对辅载波的控制能力; 配置终端在主载波上进行随机接入。
其中, 所述配置单元, 进一步用于配置辅载波为非后向兼容, 且辅载 波依附于主载波工作, 空闲终端不能独立驻留在辅载波上。
其中, 所述配置单元, 进一步用于配置辅载波不承载控制信令, 辅载 波与主载波保持固定的定时关系, 辅载波的系统帧号与主载波相同或者保 持固定的偏移, 辅载波无独立的小区标识。
本发明实施例方案配置一个小区由一个主载波和多个辅载波组成, 使 用主载波发送系统消息、 和 /或同步信号、 和 /或公共导频; 由系统动态配置 辅载波的使用。
采用本发明实施例提供的技术方案, 由于并不是始终打开所有载波并 要求所有载波都发送系统消息、 同步信号、 公共导频等信息, 系统用户较 少、 正常情况下仅仅打开主载波并通过主载波发送系统消息、 同步信号、 公共导频等信息, 根据用户数据传输时对无线资源的需求, 动态配置辅载 波的使用。 比如, 可以在用户数较少时、 或者总的用户数据传输速率不高 的情况下, 关闭辅载波的使用, 或者打开部分辅载波使用。 因此, 本发明 实施例解决了现有技术任何情况下, 即便用户数较少时、 或者总的用户数 据传输速率不高的情况下都需要打开所有的载波, 并都需发送系统消息、 同步信号、 公共导频等信息导致的资源无谓占用的问题, 从而能避免基站 无谓的耗电及可能对邻小区的信号造成的干扰。 附图说明
图 1为本发明实施例一的 TDD模式配置的主载波及辅载波帧结构示意 图;
图 2为本发明实施例二的 FDD模式配置的主载波及辅载波帧结构示意 图。 具体实施方式
本发明实施例的基本思想是: 配置一个小区由一个主载波和多个辅载 波组成, 使用主载波发送系统消息、 和 /或同步信号、 和 /或公共导频; 由系 统动态配置辅载波的使用。
下面结合附图对技术方案的实施作进一步的详细描述。
一种无线通信系统中载波聚合的实现方法, 主要包括以下内容: 配置一个小区由一个主载波和多个辅载波组成, 仅仅始终打开主载波 并使用主载波发送系统消息、 和 /或同步信号、 和 /或公共导频; 根据用户数 据传输时对无线资源的需求, 由系统动态配置辅载波的使用。
这里, 也就是说, 本发明实施例无线通信系统中, 支持多载波的基站; 一个基站可以支持一个或者多个小区(Cell )。 一个小区中配置有多个载波, 其中载波组合方式为: 配置其中一个载波为小区的主载波, 其他载波都为 辅载波。 系统消息和同步信号仅在主载波上发送; 而寻呼信息是可选的, 如果要发送寻呼信息, 也仅在主载波上发送; 在使用主载波子帧资源时, 公共导频需要在主载波的每个下行业务子帧中发送, 即使该子帧中没有承 载业务数据 (也就是说, 不考虑该子帧中是否承载有业务数据, 在每个下 行业务子帧中发送公共导频, 用于终端进行测量); 而在使用辅载波子帧资 源时, 仅在承载有业务数据的子帧中发射公共导频。 系统根据用户数据传 输时对无线资源的需求, 系统动态配置辅载波的使用。 动态配置辅载波的 使用具体包括: 可以仅打开辅载波的部分资源 (资源如时隙和频带)使用, 也可以关闭整个辅载波的信号发射。
进一步的, 动态配置辅载波的使用还包括: 当用户数据传输时对无线 资源的需求增大而主载波资源不足时, 可以通过主载波上的信令配置 UE 使用辅载波中当前关闭的资源或使用已经开启的资源。
进一步的, 主载波可以后向兼容 R8/9/10的 UE, 也可以非后向兼容, 但需增加对辅载波的控制能力; 系统消息、 同步信号和寻呼信息仅在主载 波上承载; 用户在主载波上进行随机接入。
进一步的, 辅载波为非后向兼容载波, 辅载波依附于主载波工作, UE 不能独立驻留在辅载波上。
进一步的, 辅载波不承载控制信令, 如系统消息、 寻呼信息, 无同步 信道, 辅载波与主载波保持固定的定时关系, 系统帧号与主载波相同或者 保持固定的偏移, 无独立的小区标识(Cell ID )。 进一步的,辅载波子帧中无控制域,仅有业务信道 (如 PDSCH/PUSCH ), 也就是说, 辅载波作为业务资源使用。 辅载波帧结构可以优化现有 LTE系 统的结构, 如去掉时分双工 (TDD, Time Division Duplexing ) 中的特殊时 隙, 如下行导频时隙 (DWPTS, DoWnlink Pilot Time Slot )0
进一步的, 辅载波的物理层参数由主载波通知 UE, 如带宽、 频率、 导 频符号 (可单独配置或者与主载波相同)、 上行导频信号 (sounding ) 的配 置和调度。
进一步的, 辅载波保留下行导频, 用于 UE的测量; 如果辅载波某个时 隙没有用户使用, 下行导频可以不发送。 如果有使用需求, 则系统调度某 个用户使用辅载波上的资源, 第一次使用时可以按照预定的传输参数进行 处理, 如使用比较保守的调制方式和编码速率, 传输参数在随后的传输过 程中进行调整。
进一步的,辅载波支持用户发送 sounding, 用于基站对 UE的上行信号 进行测量。
以下对本发明具体实施例进行举例阐述。
实施例一: (TDD模式)
本实施例中, 小区由一个主载波和一个辅载波构成, 主载波可以采用 现有的无线通信系统中的 TDD帧结构、 或者新的帧结构, 如整个子帧仅包 含数据域, 没有控制域。
本实施例采用 LTE系统的 TDD帧结构, 所有配置符合 LTE规范, 传 统 LTE 系统 TDD模式的 UE可以搜索并驻留在主载波上。
针对主载波而言, 在主载波上发送系统消息、 同步信号和寻呼信息; 配置有随机接入信道, 用户在主载波上进行随机接入; 主载波通过物理下 行控制信道(PDCCH, Physical Downlink Control CHannel )调度用户。 其 中, 主载波的系统消息可以增加辅载波的一些信息, 如辅载波的频率、 带 宽、 参考符号等。
针对辅载波而言, 辅载波依附于主载波工作, 辅载波的时序关系与主 载波保持一致, 如每个无线帧的起始时刻、 系统帧号都是与主载波相同;
UE根据主载波的时序关系来维护辅载波上的时序。
辅载波上不承载控制信令, 如系统消息、 寻呼信息, 无同步信道, 与 主载波保持固定的定时关系, 系统帧号与主载波相同或者保持固定的偏移, 无独立的 Cell ID。
辅载波子帧结构可以采用现有结构也可以重新设计新的帧结构, 如取 消控制域,仅有业务信道(如 PDSCH/PUSCH ),帧结构也可以优化现有 LTE 系统的结构 , 如去掉 TDD中的特殊时隙。
辅载波的物理层参数由主载波通过广播消息或者专用信令通知 UE,如 带宽、 频率、 导频符号(可单独配置或者与主载波相同)、 及 sounding的配 置和调度。辅载波被分配的下行子帧中保留下行公共导频,用于 UE的测量; 如果辅载波某个时隙没有用户使用, 下行导频可以不发送。 辅载波支持用 户发送 sounding, 用于基站对 UE的上行信号进行测量。
系统调度用户使用辅载波资源的过程包括:对于新型 UE (如 LTE-LAN 终端, 能配置并使用本发明实施例所述的载波聚合方式), 该 UE驻留在主 载波上, 当有大带宽业务传输需求时, 系统可以配置该 UE使用辅载波的资 源。 配置该 UE所使用的辅载波资源可以是动态配置(如每个子帧都发生变 化), 也可以是半静态配置 (在较长一段时间内所分配的资源一直有效)。
针对配置该 UE使用辅载波资源的配置信令而言, 配置信令中包括:辅 载波所在频段、 带宽、 时隙号、 子载波编号、 参考符号等辅载波相关信息; 配置信令中还包括: 用于数据传输和接收所需的物理层参数, 如调制编码 方式(MCS, Modulation and Coding Scheme )等级、 天线信息、 调制方式 等; 以及相关高层信息, 如混合自动重传请求( HARQ , Hybrid Automatic Repeat Request )进程、 测量命令, 反馈配置。
其中, 所述反馈配置指: 如果 UE仅配置了辅载波的下行时隙, 则针对 该下行时隙的相关反馈将由系统配置其在主载波的特定上行时隙上发送。 如果 UE仅配置了辅载波的上行时隙,则针对该上行时隙的相关反馈将由基 站在预先配置在主载波的特定下行时隙发送给 UE。
所述配置信令的传输方式包括: 通过主载波上的专用信令通知 UE。 专 用信令可以是 RRC消息、媒体访问控制报文( MAC CE )或者物理层 PDCCH 信令。
系统根据需要调度用户使用辅载波上的资源, 第一次使用时可以按照 制定的传输参数进行处理, 传输参数在随后的传输过程中进行调整。
调度用户使用辅载波资源时, 上述辅载波的使用可以不限一个, 可以 同时为一个 UE配置多个辅载波的资源, 同时也可以包括主载波的资源。
从基站的信号发射来看, 辅载波只有在分配给用户使用时基站才发射 信号, 对于没有用户使用的辅载波子帧, 基站不发射任何信号。 因此, 从 时域上, 辅载波的下行时隙信号可能是不连续的。
本实施例的 TDD模式的帧结构图如图 1所示,主载波为 LTE系统 TDD 模式的, 辅载波作为资源分配给用户使用。 图 1 中, UE1分配的资源有主 载波时隙 0 (下行)、 主载波时隙 2和辅载波时隙 2 (上行); 该资源分配命 令由主载波发送给 UE1 , UE1在主载波时隙 0接收数据, 在主载波时隙 2 和辅载波时隙 2发送数据。 UE2分配的资源有主载波时隙 5和辅载波时隙 5 (下行)、 主载波时隙 7 (上行); 该资源分配命令由主载波发送给 UE2, UE2在主载波时隙 5和辅载波时隙 5接收数据,在主载波时隙 7发送数据。
由图 1 可知: 主载波的每个下行子帧都是要发送信号的, 即使当某个 子帧没有调度用户, 基站仍旧要在该子帧中发送参考符号; 对于上行子帧, 如果基站调度用户使用, 则需要进行接收; 对于配置有随机接入信道的子 帧, 基站需要监听。 而对于辅载波, 由于用户的资源分配都是由基站统一 控制的, 哪个子帧需要接收或者发送用户数据, 基站都是知道的。 因此, 基站可以仅在已分配资源的子帧上进行信号发射和接收。 对于其他的下行 子帧, 基站则关闭针对该载波的发射设备; 同样的, 对于其他的上行子帧, 基站则关闭针对该载波的接收设备。
实施例二: (FDD模式)
本实施例中, 小区为频分双工 (FDD, Frequency Division Duplexing ) 模式, 由两对载波构成, 一对主载波和一对辅载波, 主载波采用现有的无 线通信系统中的 FDD帧结构、 或者新的帧结构。
本实施例采用 LTE系统的 FDD帧结构, 所有配置符合 LTE规范, 传 统 LTE 系统 FDD模式的 UE可以搜索并驻留的主载波上。
FDD模式与实施例一中的 TDD模式相同。 UE使用辅载波的资源的方 法也与实施例一相同。 即为如下所示:
系统调度用户使用辅载波资源的过程包括:对于新型 UE (如 LTE-LAN 终端, 能配置并使用本发明实施例所述的载波聚合方式), 该 UE驻留在主 载波上, 当有大带宽业务传输需求时, 系统可以配置该 UE使用辅载波的资 源。 配置该 UE所使用的辅载波资源可以是动态配置(如每个子帧都发生变 化), 也可以是半静态配置(在较长一段时间内所分配的资源一直有效)。
针对配置该 UE使用辅载波资源的配置信令而言, 配置信令中包括:辅 载波所在频段、 带宽、 时隙号、 子载波编号、 参考符号等辅载波相关信息; 配置信令中还包括: 用于数据传输和接收所需的物理层参数, 如调制编码 方式(MCS )等级、 天线信息、 调制方式等; 以及相关高层信息, 如混合 自动重传请求(HARQ )进程、 测量命令, 反馈配置。
UE可以仅配置辅载波的下行时隙或者上行时隙,相应的反馈由系统配 置在主载波上进行发送或接收。 也可以配置成对的辅载波, 此时, 相应的 反馈可以在成对的辅载波上承载。
本实施例的 FDD模式的帧结构图如图 2所示, UE1分配的资源有主载 波下行时隙 2和辅载波下行时隙 2、 主载波上行时隙 3; 该资源分配命令由 主载波发送给 UEl , UE1在主载波下行时隙 2和辅载波下行时隙 2接收数 据,在主载波上行时隙 3发送数据。针对辅载波下行时隙 2的反馈,如 ACK、 信道质量指示符(CQI, Channel Quality Indicator )等, 基站将配置器在主 载波的上行时隙反馈。 UE2分配的资源有主载波下行时隙 5、主载波上行时 隙 5和辅载波上行时隙 5; 该资源分配命令由主载波发送给 UE2, UE2在 主载波下行时隙 5接收数据, 在主载波上行时隙 5和辅载波上行时隙 5发 送数据。
由图 2可知: 基站在下行主载波的每个子帧都要发送信号的, 即使当 某个子帧没有调度用户, 基站仍旧要在该子帧中发送参考符号; 对于上行 子帧, 如果基站调度用户使用, 则需要进行接收; 对于配置有随机接入信 道的子帧, 基站需要监听。 而对于辅载波, 由于用户的资源分配都是由基 站统一控制的, 哪个子帧需要接收或者发送用户数据, 基站都是知道的。 因此, 基站可以仅在已分配资源的子帧上进行信号发射和接收。 对于其他 的下行子帧, 基站则关闭针对该载波的发射设备; 同样的, 对于其他的上 行子帧, 基站则关闭针对该载波的接收设备。
一种无线通信系统中载波聚合的实现系统, 包括: 配置单元, 配置单 元用于配置一个小区由一个主载波和多个辅载波组成, 仅打开主载波并使 用主载波发送系统消息、 和 /或同步信号、 和 /或公共导频; 根据用户数据传 输时对无线资源的需求, 由系统动态配置辅载波的使用。
这里, 配置单元进一步用于动态配置辅载波的使用时, 在用户数量少、 或者总的用户数据传输速率不高的情况下, 仅打开部分辅载波使用; 或者 仅打开辅载波的部分资源使用; 或者, 关闭整个辅载波的信号发射。 这里, 配置单元进一步用于动态配置辅载波的使用时, 在用户数据传 输时对无线资源的需求增大而使用的主载波资源不足情况下, 通过主载波 上的信令配置终端使用辅载波中当前关闭的资源、 或者使用辅载波中已经 开启的资源。
这里, 配置单元进一步用于配置主载波为后向兼容或非后向兼容, 还 需配置主载波对辅载波的控制能力; 配置终端在主载波上进行随机接入。
这里, 配置单元进一步用于配置辅载波为非后向兼容, 且辅载波依附 于主载波工作, 终端不能独立驻留在辅载波上。
这里, 配置单元进一步用于配置辅载波不承载控制信令, 辅载波与主 载波保持固定的定时关系, 辅载波的系统帧号与主载波相同或者保持固定 的偏移, 辅载波无独立的小区标识。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种无线通信系统中载波聚合的实现方法, 包括: 配置一个小区由 一个主载波和多个辅载波组成;使用主载波发送系统消息、和 /或同步信号、 和 /或公共导频; 由系统动态配置辅载波的使用。
2、 根据权利要求 1所述的方法, 还包括:
如果要发送寻呼信息, 则使用主载波发送寻呼信息;
使用主载波子帧资源时, 在主载波的每个下行业务子帧中发送所述公 共导频; 使用辅载波子帧资源时, 仅在承载有业务数据的子帧中发射所述 公共导频。
3、 根据权利要求 1所述的方法, 其中, 所述动态配置辅载波的使用具 体包括: 仅使用部分辅载波; 或者仅使用辅载波的部分资源; 或者, 关闭 整个辅载波的信号发射。
4、 根据权利要求 1或 3所述的方法, 其中, 所述动态配置辅载波的使 用具体包括: 通过主载波上的信令配置终端使用辅载波中当前关闭的资源、 或者使用辅载波中已经开启的资源。
5、 根据权利要求 1所述的方法, 还包括: 配置主载波为后向兼容或非 后向兼容, 配置主载波对辅载波的控制能力; 配置终端在主载波上进行随 机接入。
6、 根据权利要求 1所述的方法, 还包括: 配置辅载波为非后向兼容, 且辅载波依附于主载波工作, 空闲终端不能独立驻留在辅载波上。
7、根据权利要求 1所述的方法,还包括: 配置辅载波不承载控制信令, 辅载波与主载波保持固定的定时关系, 辅载波的系统帧号与主载波相同或 者保持固定的偏移, 辅载波无独立的小区标识。
8、 根据权利要求 1所述的方法, 还包括: 配置辅载波作为业务资源使 用, 辅载波子帧中无控制域, 仅有业务信道。
9、 根据权利要求 1所述的方法, 还包括: 配置辅载波的物理层参数由主载波通知终端;
所述物理层参数具体包括: 带宽、 频率或导频符号。
10、 一种无线通信系统中载波聚合的实现系统, 包括: 配置单元, 用 于配置一个小区由一个主载波和多个辅载波组成, 使用主载波发送系统消 息、 和 /或同步信号、 和 /或公共导频; 由系统动态配置辅载波的使用。
11、 根据权利要求 10所述的系统, 其中,
如果要发送寻呼信息, 则使用主载波发送寻呼信息;
使用主载波子帧资源时, 在主载波的每个下行业务子帧中发送所述公 共导频; 使用辅载波子帧资源时, 仅在承载有业务数据的子帧中发射所述 公共导频。
12、 根据权利要求 10所述的系统, 其中, 所述配置单元, 进一步用于 动态配置辅载波的使用时, 仅使用部分辅载波; 或者仅使用辅载波的部分 资源使用; 或者, 关闭整个辅载波的信号发射。
13、 根据权利要求 10或 11所述的系统, 其中, 所述配置单元, 进一 步用于动态配置辅载波的使用时, 通过主载波上的信令配置终端使用辅载 波中当前关闭的资源、 或者使用辅载波中已经开启的资源。
14、 根据权利要求 10所述的系统, 其中, 所述配置单元, 进一步用于 配置主载波为后向兼容或非后向兼容, 配置主载波对辅载波的控制能力; 配置终端在主载波上进行随机接入。
15、 根据权利要求 10所述的系统, 其中, 所述配置单元, 进一步用于 配置辅载波为非后向兼容, 且辅载波依附于主载波工作, 空闲终端不能独 立驻留在辅载波上。
16、 根据权利要求 10所述的系统, 其中, 所述配置单元, 进一步用于 配置辅载波不承载控制信令, 辅载波与主载波保持固定的定时关系, 辅载 波的系统帧号与主载波相同或者保持固定的偏移, 辅载波无独立的小区标 识。
PCT/CN2012/072119 2011-03-09 2012-03-09 一种无线通信系统中载波聚合的实现方法及系统 WO2012119563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110056842.5A CN102685891B (zh) 2011-03-09 2011-03-09 一种无线通信系统中载波聚合的实现方法及系统
CN201110056842.5 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012119563A1 true WO2012119563A1 (zh) 2012-09-13

Family

ID=46797507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072119 WO2012119563A1 (zh) 2011-03-09 2012-03-09 一种无线通信系统中载波聚合的实现方法及系统

Country Status (2)

Country Link
CN (1) CN102685891B (zh)
WO (1) WO2012119563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611553A (zh) * 2015-08-26 2016-05-25 宇龙计算机通信科技(深圳)有限公司 载波数量的控制方法、载波数量的控制装置、终端和基站

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104782211B (zh) * 2012-10-12 2019-06-07 英派尔科技开发有限公司 用于载波聚合的激活和释放的方法和设备、可读介质
CN103906243B (zh) * 2012-12-28 2018-09-07 中国移动通信集团公司 一种辅载波的配置和资源调度的方法及系统
CN103974425B (zh) * 2013-01-29 2018-10-26 中国移动通信集团公司 一种传输方法、资源配置方法、传输装置和资源配置装置
CN104348600B (zh) * 2013-08-02 2017-11-21 中国移动通信集团公司 一种动态空闲频率的指示方法、系统及装置
WO2015027520A1 (zh) * 2013-09-02 2015-03-05 华为技术有限公司 载波聚合方法、设备及系统
CN104901785B (zh) * 2014-03-04 2019-02-22 北京信威通信技术股份有限公司 无中心网络的节点通信方法和节点设备
CN105813205A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种辅载波配置方法及装置
CN107409383B (zh) 2015-03-20 2020-04-14 华为技术有限公司 一种载波配置方法及设备
CN106301730B (zh) * 2015-06-11 2019-09-20 华为技术有限公司 基于子帧偏移的载波聚合方法和基站
CN106452698B (zh) * 2015-08-06 2019-04-12 中国电信股份有限公司 用于提升上行速率的方法、装置和系统
CN106559793B (zh) * 2015-09-25 2019-12-06 中国电信股份有限公司 一种同构网中跨载波调度规避干扰的方法和系统
CN107222935A (zh) * 2016-03-22 2017-09-29 夏普株式会社 数据传输方法、用户设备和基站
US11777684B2 (en) * 2016-12-23 2023-10-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, network device and terminal device
CN106900054B (zh) * 2017-04-01 2020-08-14 宇龙计算机通信科技(深圳)有限公司 一种多载波传输方法、用户设备以及基站
CN109474991B (zh) * 2017-09-08 2023-01-03 中国移动通信有限公司研究院 一种系统信息的发送方法、设备和计算机可读存储介质
CN109963338B (zh) * 2017-12-25 2023-07-21 成都鼎桥通信技术有限公司 一种特殊的lte-fdd小区中上行载波的调度方法和系统
WO2023272583A1 (zh) * 2021-06-30 2023-01-05 北京小米移动软件有限公司 一种数据传输方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101129038A (zh) * 2005-02-28 2008-02-20 斯比德航海有限公司 提供动态载波选择的方法和设备
CN101325437A (zh) * 2007-06-15 2008-12-17 鼎桥通信技术有限公司 一种多载波小区的实现方法、系统及基站
CN101682600A (zh) * 2007-05-14 2010-03-24 英特尔公司 用于无线系统的多载波技术
CN101873702A (zh) * 2009-04-24 2010-10-27 中国移动通信集团公司 一种主载波的选择方法及基站设备
CN101925130A (zh) * 2009-06-16 2010-12-22 中兴通讯股份有限公司 多载波配置信息的发送方法及辅载波分配方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813433B2 (en) * 2006-08-16 2010-10-12 Harris Corporation System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (OFDM) with selected subcarriers turned on or off
WO2010013942A2 (en) * 2008-07-29 2010-02-04 Lg Electronics Inc. Method for saving power in a multi-carrier wireless access system
CN101772087B (zh) * 2008-12-31 2014-08-13 中兴通讯股份有限公司 多载波管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101129038A (zh) * 2005-02-28 2008-02-20 斯比德航海有限公司 提供动态载波选择的方法和设备
CN101682600A (zh) * 2007-05-14 2010-03-24 英特尔公司 用于无线系统的多载波技术
CN101325437A (zh) * 2007-06-15 2008-12-17 鼎桥通信技术有限公司 一种多载波小区的实现方法、系统及基站
CN101873702A (zh) * 2009-04-24 2010-10-27 中国移动通信集团公司 一种主载波的选择方法及基站设备
CN101925130A (zh) * 2009-06-16 2010-12-22 中兴通讯股份有限公司 多载波配置信息的发送方法及辅载波分配方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611553A (zh) * 2015-08-26 2016-05-25 宇龙计算机通信科技(深圳)有限公司 载波数量的控制方法、载波数量的控制装置、终端和基站

Also Published As

Publication number Publication date
CN102685891B (zh) 2017-04-26
CN102685891A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
US11064434B2 (en) Methods for performing communication for a cell
WO2012119563A1 (zh) 一种无线通信系统中载波聚合的实现方法及系统
US10432378B2 (en) Use of reference signals to improve user equipment (UE) warm-up before transitioning from an OFF duration of the UE to an on duration of the UE with respect to a radio frequency spectrum band
CN115021881B (zh) 对无线通信设备能力的临时处理
US10873927B2 (en) Decoupled mode for a common uplink burst transmission in a time division duplex subframe structure
EP2584715B1 (en) Method for allowing terminal to transmit power headroom information in wireless communication system and device therefor
US9736880B2 (en) Method and apparatus for performing power control by terminal in wireless communication system using multiple carriers
TW202002691A (zh) 使用者設備之無線通訊方法及装置、電腦可讀介質
TWI664866B (zh) 行動通訊之傳輸資源配置方法和裝置
TW202031077A (zh) 用於具有不同頻寬能力的ue的控制資源集合
US20150098414A1 (en) Method and apparatus for supporting device-to-device (d2d) discovery in a wireless communication system
WO2012029873A1 (ja) 無線通信システム、無線基地局装置及び移動端末装置
US11616633B2 (en) Half-duplex operation in new radio frequency division duplexing bands
CN110100493B (zh) 用于指示或使用关于后续物理下行链路控制信道传输的信息的技术
US20150189690A1 (en) Drx operation in a wireless communication system
US11923918B2 (en) System and method for multi-antenna communications
WO2022115170A1 (en) Long physical sidelink shared channel format for sidelink communication
US20220124621A1 (en) Configuration for ungrouped wake up signal and group wake up signal
TW202123741A (zh) 喚醒信號配置的取決於時間的適配
EP2936850B1 (en) Resource allocation for the coexistence of peer discovery and legacy lte traffic
US11856557B2 (en) On-demand sensing based on sidelink resource reevaluation
TW202127943A (zh) 用於配置用於補充上行鏈路載波的上行鏈路取消指示的方法
WO2014008814A1 (zh) 上行授权信息发送方法、授权信息指示方法及基站
TW202218467A (zh) 在不同載波上的上行鏈路傳輸和srs傳輸的管理
EP4278711A1 (en) Congestion control for power savings in user equipment for direct link communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754777

Country of ref document: EP

Kind code of ref document: A1