WO2010120123A2 - 2-axis sunlight tracking system using photo conductive cell - Google Patents

2-axis sunlight tracking system using photo conductive cell Download PDF

Info

Publication number
WO2010120123A2
WO2010120123A2 PCT/KR2010/002320 KR2010002320W WO2010120123A2 WO 2010120123 A2 WO2010120123 A2 WO 2010120123A2 KR 2010002320 W KR2010002320 W KR 2010002320W WO 2010120123 A2 WO2010120123 A2 WO 2010120123A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
sun
actuator
photovoltaic
control circuit
Prior art date
Application number
PCT/KR2010/002320
Other languages
French (fr)
Korean (ko)
Other versions
WO2010120123A3 (en
Inventor
이찬호
Original Assignee
Lee Chan Ho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Chan Ho filed Critical Lee Chan Ho
Publication of WO2010120123A2 publication Critical patent/WO2010120123A2/en
Publication of WO2010120123A3 publication Critical patent/WO2010120123A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention tracks sunlight by moving the linear actuator with two limit switches forward and backward with the solar sensing device and the solar sensing circuit to track the sunlight so that the sun and the solar energy collection panel are always vertical. It relates to a device to.
  • the efficiency is the highest when the solar collector panel is perpendicular to the sun.
  • the two-axis tracking type is more efficient than the fixed or single axis type.
  • the altitude and azimuth of the sun are sensed, and the signal is processed by a separate device to control the motor or to control the motor by a pre-programmed method.
  • the present invention uses the principle that the two points are converted into rotational motion when the actuator detects light with the solar sensing device and the solar sensing circuit and immediately sends a signal to the motor control circuit so that the actuator makes a linear motion of forward and backward.
  • the actuator's bracket exerts force at a certain distance from the hinge while supporting the weight of the solar collector panel, this force can move the panel with a small force like a lever, and each point consists of a hinge
  • the compression force is a truss structure that interacts with each other.
  • the rotation moment force due to the actuator and the wind pressure is also transmitted to the pipe 6 connected to the hinge 7 as shown in FIG. 6 so as not to rotate in the worm reducer with one round bar.
  • the present invention is to operate the motor control directly to the detected signal without measuring the altitude and azimuth angle of the sun or processing the signal through a separate device in order to minimize the energy required for the device to track sunlight
  • the purpose is to increase the installation cost and operating efficiency by miniaturizing the device by simplifying the design.
  • the present invention converts the linear motion of the actuator into a rotary motion on a mechanical principle.
  • the rods of two actuators installed at right angles on the axis of the fixed hinge 7 and the connecting portions of the hinges 8 and 9 can be rotated.
  • the photoconductive cell arrangement of the solar sensing device is arranged so that the (X, Z) axis of FIG. 5 is parallel to the (X, Z) axis of FIG. 7 and one is forward and the other is backward. Face each other.
  • the light sensed by the photoconductive cell from the solar sensing device is signaled to the motor control circuit of the blackout and the reverse circuit to the Taewang light sensing circuit to perform the corresponding operation.
  • the azimuth angle corresponding to the start time of the seasonal operation on the support column (4) makes a track by making a horizontal groove connecting the lower limbs in the winter sol, and moves the azimuth control motor and the worm reducer one stroke for one year. 6) and the external pipe (3) rotates to adjust the azimuth angle and the corresponding altitude may be operated by controlling the operation start time with a programmed control circuit.
  • the present invention is a structure that can operate immediately if there is sunlight, stops in the weather that can not collect solar energy, do not unnecessary operation, and can operate without applying a lot of power, the energy required to enter the device is small and the value or signal It is possible to operate even if there is no separate device for processing, thereby reducing the installation cost.
  • FIG. 1 is a front view of a solar tracking device.
  • Figure 2 is a side view of the solar tracking device of an example of starting operation.
  • FIG. 3 is a perspective view of a solar sensing device.
  • Figure 4 is a focal circle of the photosensitive device, cross-sectional view of the solar sensing port.
  • Figure 5 is a photoconductive cell, LED bulb arrangement cross-sectional view of the solar sensing device.
  • Figure 6 is an assembly and partial cross-sectional view of the hinge for the support pillar.
  • Figure 7 is a hinge cross section for the support column.
  • FIG. 8 is a perspective view of the solar height azimuth adjustment device assembly.
  • FIG. 9 is a flow chart of the solar tracking device of the present invention.
  • the configuration of the present invention includes an actuator, a solar sensing device 10, a controller 30, an azimuth adjusting device 40, and the like.
  • the structure of the solar sensing device, as shown in Figure 3, to prevent the sunlight is reflected inside the upper cylinder.
  • the focus is formed by the convex lens 17, there is a focal circle 15 of a circle, the lower portion of the focal circle is a cylindrical photoconductive cell case 16 of different diameters surrounding the photoconductive cell 25 have.
  • the structure of the solar sensing device includes solar sensing ports 11, 12, 13, and 14, which are drilled upwards to trap light out of the focus source around the focus source, and each port reflects light well.
  • Each partition has a structure of a thin film.
  • Under each solar sensing port there is a photoconductive cell (21, 22, 23, 24) that installs a filter for adjusting the brightness of the light where it is connected to the photoconductive cell case and detects light thereunder.
  • LED bulbs 26, 27, 28, and 29 are attached to the photoconductive cell case that blocks light.
  • the principle of operation is that when the sun moves while the focus is focused, the focus moves in the opposite direction.
  • the light is emitted from the solar sensing port out of the focusing circle, the light is trapped inside the interior of the sensor. Illumination will increase. The light spreads evenly anywhere in the port, through the filter at the bottom of the port, and the photoconductive cell below it receives light, which lowers the cell's internal resistance and causes current to flow. Then, the solar sensing circuit connected to it sends a signal to the motor control circuit to drive the actuator.
  • the solar cells 51 and 52 turn on the LEDs 27 and 28 with a power charged in a rechargeable battery for a predetermined time.
  • 22, 23 receives the light and sends a signal from the solar sensing circuits 32, 33 to the motor control circuits 36, 37.
  • the actuator 1 retreats to the bottom dead center, and the actuator 2 is superior. Advance to the point and wait. The operation starts by operating the circuit at a time when the altitude of the sun is perpendicular to the panel on which the altitude of the programmed control circuit is waiting.
  • the photoconductive cell 25 lights In response, the solar sensing circuit 35 operates to turn off the LEDs 27 and 28 and start normal operation.
  • the normal operation is started, the light of the focal point out of the focus source in accordance with the movement of the sun enters the solar sensing port 11 and is irradiated to the photoconductive cell 21, and the motor control circuit ( A signal is sent to 36 to cause the actuator 1 to move forward.
  • the focus light again enters the solar sensing port 14 and is irradiated to the photoconductive cell 24 to transmit a signal from the solar sensing circuit 34 to the motor control circuit 37.
  • the actuator 2 is sent backward. Afterwards, the actuators 1 and 2 repeat the above operation, and according to which sensing port is focused according to the movement of the sun, the corresponding movement is eventually tracked.
  • FIG. 3 there is a case 16 of a cylindrical photoconductive cell under the focal circle and a photoconductive cell 25 therein, with illuminance when the focal point is in the focal circle.
  • a filter 15a having a structure that can withstand high temperatures is installed.
  • four holes 16a of a predetermined size are formed in the cylindrical photoconductive cell case to detect the light of the solar sensing port, and when the focus is located in the focus source or the solar sensing port, the photoconductive cell 25 emits light.
  • the solar sensing circuit 35 causes the LED light bulb to always turn off the power charged by the solar cells 51 and 52.
  • the weather is clouded by configuring the solar sensing circuit 35 to turn on the charged power.
  • the photoconductor cell 25 does not receive light to apply the charged power to turn on the LED bulbs (26, 29).
  • the LED bulb 26 is turned on by controlling the time that the LED bulb is turned on in the control circuit programmed based on the time zone of the actuator of the normal operation so as to light the photoconductive cell 21 attached thereto.
  • the LED bulb 29 is also turned on in the same manner to the photoconductive cell 24. It illuminates and transmits a signal to the motor control circuit 37 from the solar sensing circuit 34 to reverse the actuator 2. In this way, when the weather stops for a certain amount of time, the focus moves to the solar sensing port and returns to normal operation.
  • the azimuth angle corresponding to the start time of each season is made in the support column 4 to make a track with horizontal grooves connecting the lower limbs at the same winter, and the azimuth control motor is used as a program control circuit.
  • the worm reducer moves one stroke for one year, the solar energy collecting panel and the actuator connected to the inner pipe (6) and the outer pipe (3) with one round bar on the disc (41) connected to the shaft of the worm reducer (42).

Abstract

The present invention relates to a 2-axis tracking system for tracking sunlight using a photo conductive cell and a linear actuator. The movement of the sun is 3D spatial coordinate translation through changes in altitude and azimuth, wherein a sunlight sensing device is attached to a solar energy collecting panel for tracking the movement of the sun and the sunlight focused by a convex lens on the top of the device becomes perpendicular to the surface. A circuit, which is turned on in bright times and turned off in dark times, is made of photo conductive cells, of which internal resistance value varies according to the brightness of light, and transmits signals to a motor control circuit made of forward and reverse circuits so as to drive an actuator. If one point moves rectilinearly with respect to two points as an axis among three hinged points, the motion of the point is converted into rotational motion. Furthermore, the other one point moves with respect to another one point and a fixed point, both serving as an axis, so as to carry out the same motion. Accordingly, sunlight may be tracked in combination of the motions. As for azimuth corresponding to the operation start time according to season, a supporting column is formed with a horizontal groove to make a track and one stroke is carried out for one year using an azimuth control motor and a worm reduction gear, and as for corresponding altitude, the operation start time is controlled by a programmed control circuit, so as to enable normal operation. Desired time for turning on a LED lamp using solar cells, the LED lamp and a sunlight sensing circuit is controlled by the programmed control circuit so that the sun may be tracked even on a mixed day when the sun is hidden by clouds. Therefore, the photo conductive cell in contact with the LED lamp receives light, and the sunlight sensing circuit sends a signal to the motor control circuit so as to drive the actuator, thereby catching up with the movement of the sun after a break due to cloudy weather.

Description

광도전셀을 이용한 태양광 2축 추적장치Photovoltaic 2-axis Tracking Device Using Photoconductive Cell
본 발명은 태양광을 추적하기 위해 태양광 감지장치와 태양광 감지회로로 2대의 리미트 스위치가 내장된 리니어 엑츄에이터를 전진, 후진하게 하여 항상 태양과 태양에너지 수집판넬이 수직이 되도록 하여 태양광을 추적하는 장치에 관한 것이다.The present invention tracks sunlight by moving the linear actuator with two limit switches forward and backward with the solar sensing device and the solar sensing circuit to track the sunlight so that the sun and the solar energy collection panel are always vertical. It relates to a device to.
태양에너지를 이용하기 위해 태양에너지 수집판넬이 태양과 수직일 때 효율이 최고가 되는데, 고정식이나 1축식보다 2축 추적식이 가장 효율이 높아진다. 종래는 이를 위해 태양의 고도와 방위각을 감지하고, 그 신호를 별도의 장치로 처리하여 모터를 제어하거나 미리 프로그램된 방법 등으로 모터를 제어했다. 그러나 본 발명은 태양광 감지장치와 태양광 감지회로로 빛을 감지하여 바로 모터 제어회로에 신호를 보내어 엑츄에이터가 전진, 후진의 직선운동을 하게 하면 두 점들이 회전운동으로 바뀌는 원리를 이용한다. 태양에너지 수집판넬의 무게를 지탱하는 가운데 힌지를 기점으로, 일정거리에서 엑츄에이터의 브라켓이 힘을 가하기 때문에 이 힘은 지렛대와 같이 적은 힘으로도 판넬을 움직일 수 있고, 각 점들은 힌지로 구성되어 인장, 압축의 힘만 서로 작용하는 트러스 구조가 된다. 엑츄에이터와 풍압에 의한 회전 모멘트힘도 도 6에서와 같이 힌지(7)에 연결되어 있는 파이프(6)에 전달되어 1개의 환봉으로 웜감속기에서 회전하지 못하게 하는 구조이다.In order to use solar energy, the efficiency is the highest when the solar collector panel is perpendicular to the sun. The two-axis tracking type is more efficient than the fixed or single axis type. Conventionally, for this purpose, the altitude and azimuth of the sun are sensed, and the signal is processed by a separate device to control the motor or to control the motor by a pre-programmed method. However, the present invention uses the principle that the two points are converted into rotational motion when the actuator detects light with the solar sensing device and the solar sensing circuit and immediately sends a signal to the motor control circuit so that the actuator makes a linear motion of forward and backward. Since the actuator's bracket exerts force at a certain distance from the hinge while supporting the weight of the solar collector panel, this force can move the panel with a small force like a lever, and each point consists of a hinge In other words, the compression force is a truss structure that interacts with each other. The rotation moment force due to the actuator and the wind pressure is also transmitted to the pipe 6 connected to the hinge 7 as shown in FIG. 6 so as not to rotate in the worm reducer with one round bar.
본 발명은 태양광을 추적하기 위한 장치에 소요되는 에너지를 최소화하기 위해 태양의 고도와 방위각을 측정하거나 그 신호를 별도의 장치를 통해 처리하지 않고 감지된 신호로 직접적으로 모터제어를 할 수 있도록 운전을 단순화하여 장치의 소형화로 설치비용과 운전효율을 높이는데 그 목적이 있다.The present invention is to operate the motor control directly to the detected signal without measuring the altitude and azimuth angle of the sun or processing the signal through a separate device in order to minimize the energy required for the device to track sunlight The purpose is to increase the installation cost and operating efficiency by miniaturizing the device by simplifying the design.
본 발명은 엑츄에이터의 직선운동을 기구적인 원리로 회전운동으로 바꾼다. 이를 위해 고정힌지(7)의 축 선 상에 직각으로 설치된 2대의 엑츄에이터의 로드와 힌지(8, 9)의 연결부분을 회전할 수 있게 만든다. 이를 구동하기 위해 태양광 감지장치의 광도전셀 배치를 도 5의 (X, Z)축이 도 7의 (X, Z)축과 평행하게 하고 한 개는 전진, 나머지 한 개는 후진하도록 서로 대각선으로 마주보게 한다. 그 다음 태양광 감지장치로부터 광도전셀로 감지된 빛을 태앙광 감지회로로 정전, 역전 회로로 된 모터 제어회로에 신호를 보내 그에 해당하는 동작을 하게 한다.The present invention converts the linear motion of the actuator into a rotary motion on a mechanical principle. To this end, the rods of two actuators installed at right angles on the axis of the fixed hinge 7 and the connecting portions of the hinges 8 and 9 can be rotated. In order to drive this, the photoconductive cell arrangement of the solar sensing device is arranged so that the (X, Z) axis of FIG. 5 is parallel to the (X, Z) axis of FIG. 7 and one is forward and the other is backward. Face each other. Then, the light sensed by the photoconductive cell from the solar sensing device is signaled to the motor control circuit of the blackout and the reverse circuit to the Taewang light sensing circuit to perform the corresponding operation.
태양의 고도와 방위각이 계절별 차이가 커 일출 때 처음 태양광 감지장치(10)로 입사되는 각도가 범위를 벗어나 운전이 되지 않는다. 이를 해결하기 위해 지지기둥(4)에 계절별 운전시작시간에 해당하는 방위각은 동지에서 하지를 잇는 수평의 홈을 내어 트랙을 만들고 방위각 제어 모터와 웜감속기를 1년 동안 1행정을 이동시키면 내부파이프(6)과 외부파이프(3)가 회전하여 방위각을 맞추고 그에 해당하는 고도도 운전시작시간을 프로그램된 제어회로로 제어하면 고도가 맞추어져 운전이 가능할 수 있다. Seasonal difference between the altitude and azimuth of the sun is so large that the angle of incidence to the first solar sensing device 10 at sunrise does not drive out of range. To solve this problem, the azimuth angle corresponding to the start time of the seasonal operation on the support column (4) makes a track by making a horizontal groove connecting the lower limbs in the winter sol, and moves the azimuth control motor and the worm reducer one stroke for one year. 6) and the external pipe (3) rotates to adjust the azimuth angle and the corresponding altitude may be operated by controlling the operation start time with a programmed control circuit.
본 발명은 태양광이 있으면 즉각 반응하여 동작하고 태양에너지를 수집할 수 없는 날씨에는 정지하여 불필요한 동작을 하지 않으며 많은 힘을 들이지 않아도 작동할 수 있는 구조이기 때문에 장치에 들어가는 소요에너지가 적고 수치나 신호처리를 위한 별도의 장치가 없어도 운전이 가능하여 설치비용을 줄일 수 있다.The present invention is a structure that can operate immediately if there is sunlight, stops in the weather that can not collect solar energy, do not unnecessary operation, and can operate without applying a lot of power, the energy required to enter the device is small and the value or signal It is possible to operate even if there is no separate device for processing, thereby reducing the installation cost.
도 1은 태양광 추적장치의 정면도.1 is a front view of a solar tracking device.
도 2는 운전시작 일예시의 태양광 추적장치의 측면도.Figure 2 is a side view of the solar tracking device of an example of starting operation.
도 3은 태양광 감지장치의 사시도.3 is a perspective view of a solar sensing device.
도 4는 태양광 감지장치의 초점원, 태양광 감지포트 단면도.Figure 4 is a focal circle of the photosensitive device, cross-sectional view of the solar sensing port.
도 5는 태양광 감지장치의 광도전셀, 엘이디 전구 배치 단면도.Figure 5 is a photoconductive cell, LED bulb arrangement cross-sectional view of the solar sensing device.
도 6은 지지기둥용 힌지의 조립 및 일부 단면도.Figure 6 is an assembly and partial cross-sectional view of the hinge for the support pillar.
도 7은 지지기둥용 힌지 단면도.Figure 7 is a hinge cross section for the support column.
도 8은 태양광 고도 방위각 조절 장치 조립 사시도.8 is a perspective view of the solar height azimuth adjustment device assembly.
도 9는 본 고안의 태양광 추적장치의 운전흐름도.9 is a flow chart of the solar tracking device of the present invention.
본 발명의 구성은, 도 1에 도시된 바와 같이, 엑츄에이터, 태양광 감지장치(10), 제어부(30), 방위각조절장치(40) 등으로 되어 있다. 태양광 감지장치의 구조는, 도 3에 도시된 바와 같이, 상부의 원통내부는 햇빛이 반사되지 않도록 한다. 볼록렌즈(17)로 초점이 형성되는 곳에 원으로 된 초점원(15)이 있고, 초점원의 하부에는 광도전셀(25)을 감싸고 있는 지름이 다른 원통형의 광도전셀 케이스(16)로 되어 있다.As shown in FIG. 1, the configuration of the present invention includes an actuator, a solar sensing device 10, a controller 30, an azimuth adjusting device 40, and the like. The structure of the solar sensing device, as shown in Figure 3, to prevent the sunlight is reflected inside the upper cylinder. Where the focus is formed by the convex lens 17, there is a focal circle 15 of a circle, the lower portion of the focal circle is a cylindrical photoconductive cell case 16 of different diameters surrounding the photoconductive cell 25 have.
태양광 감지장치의 구조는, 초점원 주위로 초점원을 벗어난 빛을 가두기 위해 위가 뚫려 있는 태양광 감지포트(11, 12, 13, 14)가 있으며, 각 포트 내부는 빛을 잘 반사하며, 각각의 칸막이는 박막의 구조로 되어 있다. 각 태양광 감지포트 하부에는 광도전셀 케이스와 연결되는 곳에 빛의 밝기를 조절하기 위한 필터를 설치하고, 그 아래에 빛을 감지하는 광도전셀(21, 22, 23, 24)이 있으며, 그 위에 엘이디 전구(26, 27, 28, 29)가 빛을 차단하는 광도전셀 케이스에 붙어 있다.The structure of the solar sensing device includes solar sensing ports 11, 12, 13, and 14, which are drilled upwards to trap light out of the focus source around the focus source, and each port reflects light well. Each partition has a structure of a thin film. Under each solar sensing port, there is a photoconductive cell (21, 22, 23, 24) that installs a filter for adjusting the brightness of the light where it is connected to the photoconductive cell case and detects light thereunder. LED bulbs 26, 27, 28, and 29 are attached to the photoconductive cell case that blocks light.
동작의 원리는, 초점이 모아진 상태에서 태양이 이동하면 그 반대방향으로 초점이 움직이게 되는데, 초점원을 벗어나서 태양광 감지포트에 빛이 비춰지면 그 내부에 빛이 가둬지게 되어 나머지 감지포트들보다 내부 조도가 커지게 된다. 포트 내부 어디에 비춰도 빛이 고루 퍼져 포트 하부의 필터를 거쳐 그 아래 광도전셀이 빛을 받아 셀 내부저항이 낮아져 전류가 흘러 켜지게 된다. 그 다음 이와 연결된 태양광 감지회로에서 모터 제어회로로 신호를 보내 엑츄에이터를 구동시킨다. The principle of operation is that when the sun moves while the focus is focused, the focus moves in the opposite direction. When the light is emitted from the solar sensing port out of the focusing circle, the light is trapped inside the interior of the sensor. Illumination will increase. The light spreads evenly anywhere in the port, through the filter at the bottom of the port, and the photoconductive cell below it receives light, which lowers the cell's internal resistance and causes current to flow. Then, the solar sensing circuit connected to it sends a signal to the motor control circuit to drive the actuator.
이 엑츄에이터가 동작하면 태양에너지 수집판넬에 붙어 있는 태양광 감지장치 내에 초점원(15)으로 초점이 다시 올라가게 된다. 그 다음 바로 정지신호를 보내게 되는데, 여기서 초점을 초점원 가운데로 올라가게 하기 위해 모터 제어회로 내에 모터가 지연동작을 하도록 1쌍의 콘덴서가 설치되어 있다.When the actuator is operated, the focus is raised back to the focus source 15 in the solar sensing device attached to the solar energy collecting panel. Immediately afterwards, a stop signal is sent, in which a pair of capacitors are installed in the motor control circuit to delay the motor to raise the focus to the center of the focus circle.
일출 때 운전 시작하기 전, 도 2 및 도 9에 도시된 바와 같이 타이머가 작동되면, 솔라셀(51, 52)이 충전지에 충전한 전원으로 엘이디(27, 28)를 일정시간 켜서 광도전셀(22, 23)이 빛을 받아 태양광 감지회로(32, 33)에서 모터제어회로(36, 37)에 신호를 보내며, 그 결과 엑츄에이터(1)는 하사점까지 후진하고, 엑츄에이터(2)는 상사점까지 전진하여 대기한다. 운전의 시작은, 프로그램된 제어회로에서 태양의 고도가 대기하고 있는 판넬과 수직이 되는 시간에 회로를 동작시켜 운전이 시작되는데, 초점이 태양광 감지포트에 들어오면 광도전셀(25)이 빛을 받아 태양광 감지회로(35)가 작동해 엘이디(27, 28)가 꺼지고 정상운전이 시작된다. 정상운전이 시작되면, 태양의 이동에 따라 초점원을 벗어난 초점의 빛이 태양광 감지포트(11)에 들어가서 광도전셀(21)에 조사되고, 태양광 감지회로(31)에서 모터 제어회로(36)로 신호를 보내 엑츄에이터(1)가 전진하게 된다. 이와 같은 동작을 계속하다가 일정시간이 지나면 다시 초점의 빛이 태양광 감지포트(14)로 들어가 광도전셀(24)에 조사되고 태양광 감지회로(34)에서 모터제어회로(37)로 신호를 보내 엑츄에이터(2)가 후진하게 된다. 이후는 엑츄에이터(1, 2)가 위의 동작을 반복하고, 태양의 이동에 따라 어느 감지포트로 초점이 가느냐에 따라서 그에 해당하는 동작을 함으로써 결국 태양의 이동을 추적하게 된다.When the timer is operated as shown in FIGS. 2 and 9 before starting operation at sunrise, the solar cells 51 and 52 turn on the LEDs 27 and 28 with a power charged in a rechargeable battery for a predetermined time. 22, 23 receives the light and sends a signal from the solar sensing circuits 32, 33 to the motor control circuits 36, 37. As a result, the actuator 1 retreats to the bottom dead center, and the actuator 2 is superior. Advance to the point and wait. The operation starts by operating the circuit at a time when the altitude of the sun is perpendicular to the panel on which the altitude of the programmed control circuit is waiting. When the focal point enters the solar sensing port, the photoconductive cell 25 lights In response, the solar sensing circuit 35 operates to turn off the LEDs 27 and 28 and start normal operation. When the normal operation is started, the light of the focal point out of the focus source in accordance with the movement of the sun enters the solar sensing port 11 and is irradiated to the photoconductive cell 21, and the motor control circuit ( A signal is sent to 36 to cause the actuator 1 to move forward. After such a period of time, the focus light again enters the solar sensing port 14 and is irradiated to the photoconductive cell 24 to transmit a signal from the solar sensing circuit 34 to the motor control circuit 37. The actuator 2 is sent backward. Afterwards, the actuators 1 and 2 repeat the above operation, and according to which sensing port is focused according to the movement of the sun, the corresponding movement is eventually tracked.
정상 가동 상태에서 날이 흐려져 운전이 정지되었다가 다시 맑게 되었을 때에는 초점이 태양광 감지 포트 내에 있으면 정상가동 하지만 일정시간이상 흐린 날씨가 지속되면 초점이 태양광 감지포트를 벗어나 감지할 수 없게 되어 운전이 정지된다. When the operation is stopped and cleared again in normal operation, if the focus is in the solar sensing port, it operates normally. If the cloudy weather persists for a certain time, the focus cannot be detected beyond the solar sensing port. Is stopped.
이와 같은 문제를 해결하기 위해, 도 3에 도시된 바와 같이, 초점원 아래 원통형의 광도전셀의 케이스(16)가 있고 그 안에 광도전셀(25)이 있는데, 초점이 초점원 안에 있을 때 조도를 일정 이하로 낮추고 빛이 직접 광도전셀에 비춰지지 않게 하기 위해 고온에도 견디는 구조의 필터(15a)를 설치한다. 그리고 태양광 감지포트의 빛을 감지하기 위해 원통형 광도전셀 케이스에 일정크기의 4개의 구멍(16a)을 만들어 초점원이나 태양광 감지포트 내에 초점이 위치할 때에는 광도전셀(25)에서 빛을 감지하여 태양광 감지회로(35)가 엘이디 전구를 솔라셀(51, 52)로 충전된 전원을 항상 꺼지게 만든다. 반대로, 초점원과 태양광감지포트에서 초점의 빛이 벗어났을 때에는 충전된 전원을 켜지게 태양광감지회로(35)를 구성함으로써 날씨가 흐려졌다 맑아지면 태양광감지포트나 초점원 내에 초점이 있으면 정상운전이 되고 벗어나 있으면 광도전셀(25)은 빛을 받지 못해 충전된 전원을 인가하여 엘이디전구(26, 29)를 켤 수 있게 한다. 이를 맑은 날 정상 운전의 엑츄에이터의 시간대별 운전상태를 기준으로 프로그램된 제어회로에서 엘이디 전구가 켜지는 시간을 제어하여 엘이디 전구(26)가 켜지게 하여 같이 붙어 있는 광도전셀(21)에 빛을 비추게 되고 태양광 감지회로(31)와 모터제어 회로(36)에 신호를 보내 엑츄에이터(1)을 전진시키고 난 후, 엘이디 전구(29)도 마찬가지 방법으로 켜지게 하여 광도전셀(24)에 비추고 태양광 감지회로(34)에서 모터 제어회로(37)에 신호를 보내 엑츄에이터(2)를 후진한다. 이와 같이 날씨가 흐려 정지된 시간만큼의 동작을 하면 태양광 감지포트 내로 초점이 이동하여 다시 정상 가동상태로 돌아간다.To solve this problem, as shown in FIG. 3, there is a case 16 of a cylindrical photoconductive cell under the focal circle and a photoconductive cell 25 therein, with illuminance when the focal point is in the focal circle. In order to lower the temperature below a certain level and prevent light from being directly reflected on the photoconductive cell, a filter 15a having a structure that can withstand high temperatures is installed. In addition, four holes 16a of a predetermined size are formed in the cylindrical photoconductive cell case to detect the light of the solar sensing port, and when the focus is located in the focus source or the solar sensing port, the photoconductive cell 25 emits light. By sensing, the solar sensing circuit 35 causes the LED light bulb to always turn off the power charged by the solar cells 51 and 52. On the contrary, when the light of the focus is out of the focus source and the solar sensing port, the weather is clouded by configuring the solar sensing circuit 35 to turn on the charged power. When the driving is off, the photoconductor cell 25 does not receive light to apply the charged power to turn on the LED bulbs (26, 29). On a clear day, the LED bulb 26 is turned on by controlling the time that the LED bulb is turned on in the control circuit programmed based on the time zone of the actuator of the normal operation so as to light the photoconductive cell 21 attached thereto. After illuminating and sending a signal to the solar sensing circuit 31 and the motor control circuit 36 to advance the actuator 1, the LED bulb 29 is also turned on in the same manner to the photoconductive cell 24. It illuminates and transmits a signal to the motor control circuit 37 from the solar sensing circuit 34 to reverse the actuator 2. In this way, when the weather stops for a certain amount of time, the focus moves to the solar sensing port and returns to normal operation.
여기서 한국과 같은 중위도 국가에서는 일출 때 계절별 고도와 방위각이 하절기와 동절기에 차이가 크게 나 태양광 감지장치로 태양광 입사각을 감지할 수 있는 허용범위를 벗어나게 되어 운전을 할 수 없게 된다. 이 문제를 해결하기 위해, 도 8에 도시된 바와 같이, 지지기둥(4)에 계절별 운전시작시간에 해당하는 방위각을 동지에서 하지를 잇는 수평의 홈을 내어 트랙을 만들고 프로그램제어회로로 방위각제어모터와 웜감속기를 1년 동안 1행정을 이동시키면 웜감속기(42)의 축에 연결된 원판(41)에 1개의 환봉이 내부파이프(6)와 외부파이프(3)와 연결된 태양광에너지수집판넬과 엑츄에이터 브라켓을 회전시킴으로써 방위각을 맞추고 그에 해당하는 고도도 운전시작시간을 프로그램된 제어회로로 제어하면 고도가 맞추어져 운전이 가능할 수 있게 된다. Here, in mid-latitude countries such as Korea, seasonal altitudes and azimuths vary greatly during the summer and winter seasons at sunrise, and they are out of the acceptable range to detect the angle of incidence with the solar sensor. In order to solve this problem, as shown in Fig. 8, the azimuth angle corresponding to the start time of each season is made in the support column 4 to make a track with horizontal grooves connecting the lower limbs at the same winter, and the azimuth control motor is used as a program control circuit. And the worm reducer moves one stroke for one year, the solar energy collecting panel and the actuator connected to the inner pipe (6) and the outer pipe (3) with one round bar on the disc (41) connected to the shaft of the worm reducer (42). By rotating the brackets, the azimuth is adjusted and the corresponding altitude is also controlled by the programmed control circuit.

Claims (4)

  1. 원통 상부 볼록렌즈의 초점이 형성되는 곳에 초점원과 태양의 이동을 감지하기 위한 4개 태양광 감지포트와, 그 하부에 조도조절용 필터가 있고, 그 아래 광도전셀 케이스에 엘이디 전구가 붙어 있는 두 쌍의 광도전셀을 대각선으로 배치하여 엑츄에이터가 전진, 후진하도록 구성되며,Where the focal point of the cylindrical upper convex lens is formed, there are four solar sensing ports for detecting the movement of the focal circle and the sun, and a dimming filter at the bottom, and two LED lamps attached to the photoconductive cell case below. By arranging a pair of photoconductive cells diagonally, the actuator is configured to move forward and backward,
    상기 초점원 안에 조도조절용 필터가 있고, 그 아래 지름이 다른 원통형의 광도전셀 케이스에 감지포트 내의 빛을 감지하기 위해 4개의 구멍이 형성되어 있으며, 그 안에 광도전셀이 있는 태양광 감지장치를 더 포함하는 것을 특징으로 하는 광도전셀을 이용한 태양광 2축 추적장치.In the focal circle, there is a filter for illuminance adjustment, and four holes are formed in a cylindrical photoconductive cell case having a different diameter below to detect light in the sensing port. Photovoltaic biaxial tracking device using a photoconductive cell, characterized in that it further comprises.
  2. 제1항에 있어서,The method of claim 1,
    태양의 이동을 추적하기 위해 직선운동을 하는 두 대의 엑츄에이터는, 지지기둥과 태양에너지 수집판넬에 직각으로 설치하고, 2축 회전가능한 한 개의 고정힌지와 두 개의 움직이는 힌지로 직선운동을 회전운동으로 바꾸며,The two actuators, which move linearly to track the movement of the sun, are installed at right angles to the support column and the solar collector panel, and convert the linear motion into rotational motion with one fixed hinge and two movable hinges. ,
    상기 태양광 감지장치를 이용하여 빛을 감지한 광도전셀로 밝으면 켜지고 어두우면 꺼지는 태양광 감지회로와, 정지 시 지연동작을 하도록 정전, 역전 회로에 한 쌍의 콘덴서가 설치된 모터제어회로로 엑츄에이터를 구동하여 초점원 안으로 초점을 모으는 것을 특징으로 하는 광도전셀을 이용한 태양광 2축 추적장치.Photovoltaic cells that sense light using the photovoltaic sensing device are photovoltaic cells that turn on when light and turn off when dark, and motor control circuits where a pair of capacitors are installed in the blackout and reversing circuits for delayed operation when stopped. Photovoltaic 2-axis tracking device using a photoconductive cell, characterized in that to drive the focus to the focus source.
  3. 제1항에 있어서,The method of claim 1,
    흐렸다 맑았다 하는 날씨에도 운전할 수 있게, 상기 태양광 감지장치에서 엘이디 전구를 켜기 위해 전원으로 솔라셀이 태양에너지 수집판넬 위에 설치되며, 초점원이나 태양광 감지포트 내에 초점이 있으면 꺼지고 벗어나면 켜지게 되는 태양광 감지회로로 일정시간 흐렸다 다시 맑아지면 충전된 솔라셀의 전원을 프로그램된 제어회로로 엘이디전구를 켜서 흐린 시간 정지되었던 만큼의 엑츄에이터를 구동하는 것을 특징으로 하는 광도전셀을 이용한 태양광 2축 추적장치.The solar cell is installed on the solar energy collection panel with the power to turn on the LED bulb in the sunlight sensor, so that it can be driven in cloudy and sunny weather. After a certain period of time with the photovoltaic sensing circuit, when it is cleared again, the photovoltaic cell using the photoconductive cell, characterized in that to drive the actuator as long as the cloudy time by turning on the LED bulb with the programmed control circuit the power of the charged solar cell Axis tracking device.
  4. 제1항에 있어서,The method of claim 1,
    태양에너지수집판넬을 지지하는 기둥에 운전시작시간의 방위각을 동지와 하지를 잇는 수평의 홈을 내고 그 트랙을 따라 방위각제어모터와 웜감속기를 이용하여 1년동안 1행정을 이동시키면 웜감속기 축끝에 원판에 붙어 있는 환봉이 트랙을 따라 움직이고 지지기둥의 내부파이프, 외부파이프와 연결된 태양에너지수집판넬과 엑츄에이터 브라켓이 같이 회전하여 방위각을 맞추고 그에 해당하는 고도도 운전시작시간을 프로그램된 제어회로로 제어하여 고도를 맞추는 조절장치를 더 포함하는 것을 특징으로 하는 광도전셀을 이용한 태양광 2축 추적장치.In the column supporting the solar energy collecting panel, make the azimuth of the operation start time to the horizontal groove connecting the winter and the lower ground, and move one stroke for one year by using the azimuth control motor and the worm reducer along the track. The round bar attached to the disk moves along the track, and the solar collector panel connected to the inner and outer pipes of the support pillar and the actuator bracket rotate together to adjust the azimuth angle and the corresponding altitude operation start time is controlled by the programmed control circuit. Photovoltaic two-axis tracking device using a photoconductive cell, characterized in that it further comprises an adjusting device for adjusting the altitude.
PCT/KR2010/002320 2009-04-14 2010-04-14 2-axis sunlight tracking system using photo conductive cell WO2010120123A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2020090004427U KR20100010394U (en) 2009-04-14 2009-04-14 2 The solar 2 axes tracking system by using cds
KR20-2009-0004427 2009-04-14

Publications (2)

Publication Number Publication Date
WO2010120123A2 true WO2010120123A2 (en) 2010-10-21
WO2010120123A3 WO2010120123A3 (en) 2011-03-31

Family

ID=42983004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002320 WO2010120123A2 (en) 2009-04-14 2010-04-14 2-axis sunlight tracking system using photo conductive cell

Country Status (2)

Country Link
KR (1) KR20100010394U (en)
WO (1) WO2010120123A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039493A (en) * 2010-10-25 2011-05-04 北京印刷学院 Spinning paraboloidal light-condensation sunlight-focusing cutting device
WO2013040715A1 (en) * 2011-09-21 2013-03-28 The University Of Western Ontario Solar tracker
WO2014056049A1 (en) 2012-10-11 2014-04-17 Bilić Josip Device using multiple renewable energy sources (dumres)
US9252307B2 (en) 2011-01-21 2016-02-02 First Solar, Inc. Photovoltaic module support system
CN109099601A (en) * 2018-07-18 2018-12-28 烟台烟大众智知识产权服务有限公司 A kind of small-sized solar water heater of real-time adjustment focal length
CN110333743A (en) * 2019-08-06 2019-10-15 沈阳信元瑞科技有限公司 A kind of double dimension solar tracking solar energy equipment circuits

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017083B1 (en) * 2010-11-26 2011-02-25 주식회사 부시파워 Robot type apparatus for tracking the sunlight

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376058A (en) * 1976-12-17 1978-07-06 Sanyo Electric Co Ltd Direction controller
KR100427690B1 (en) * 2002-01-16 2004-04-28 신병한 Solar tracking device using optical lens
US20080066735A1 (en) * 2006-09-11 2008-03-20 Atomic Energy Council-Institute Of Nuclear Energy Research Hybrid mode sun-tracking apparatus having photo sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376058A (en) * 1976-12-17 1978-07-06 Sanyo Electric Co Ltd Direction controller
KR100427690B1 (en) * 2002-01-16 2004-04-28 신병한 Solar tracking device using optical lens
US20080066735A1 (en) * 2006-09-11 2008-03-20 Atomic Energy Council-Institute Of Nuclear Energy Research Hybrid mode sun-tracking apparatus having photo sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039493A (en) * 2010-10-25 2011-05-04 北京印刷学院 Spinning paraboloidal light-condensation sunlight-focusing cutting device
US9252307B2 (en) 2011-01-21 2016-02-02 First Solar, Inc. Photovoltaic module support system
US9413287B2 (en) 2011-01-21 2016-08-09 First Solar, Inc. Photovoltaic module support system
WO2013040715A1 (en) * 2011-09-21 2013-03-28 The University Of Western Ontario Solar tracker
CN103930735A (en) * 2011-09-21 2014-07-16 西安大略大学 Solar tracker
US20140230804A1 (en) * 2011-09-21 2014-08-21 The University Of Western Ontario Solar tracker
US9945586B2 (en) 2011-09-21 2018-04-17 The University Of Western Ontario Solar tracker
WO2014056049A1 (en) 2012-10-11 2014-04-17 Bilić Josip Device using multiple renewable energy sources (dumres)
CN109099601A (en) * 2018-07-18 2018-12-28 烟台烟大众智知识产权服务有限公司 A kind of small-sized solar water heater of real-time adjustment focal length
CN110333743A (en) * 2019-08-06 2019-10-15 沈阳信元瑞科技有限公司 A kind of double dimension solar tracking solar energy equipment circuits

Also Published As

Publication number Publication date
KR20100010394U (en) 2010-10-22
WO2010120123A3 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2010120123A2 (en) 2-axis sunlight tracking system using photo conductive cell
CN102374477B (en) Sunshine intelligent household-entry system
CN201149660Y (en) Apparatus for tracking disc-shaped solar collector
US8716642B2 (en) Method and device for automatic compensation of solar sunlight tracing panel inclination
CN1447058A (en) Device for illuminating indoors by using sunlight
EP2476305B1 (en) Building, in particular greenhouse having a system for absorbing sunlight
CN201673412U (en) Intelligent waterproof solar energy tracker
CN106247264B (en) A kind of Solar Street Lighting System
US9897271B2 (en) Wall-mounted sun tracking and light guiding apparatus
CN101539760B (en) Control method of sunlight collector
CN103268123B (en) A kind of solar energy collecting conveyer that can automatic sun-tracking
JP2003157707A (en) Daylighting optical element and daylighting device
CN103968322A (en) Energy-saving type warning marker lamp for roofs of high buildings
KR102076366B1 (en) High efficiency solar street light
CN210405187U (en) Solar energy utilization device
CN201867653U (en) Intelligent sunlight entering device
CN2572217Y (en) Device for indoor illumination by sun light
CN203366128U (en) Solar energy collection transmitter capable of automatically tracking the sun
CN2540601Y (en) Automatic tracking device of solar receptor
CN102147096A (en) Natural lighting system of underground sewage treatment plant
CN111021924A (en) Independently adjustable building photovoltaic panel shutter type curtain wall
CN205859886U (en) A kind of Solar Street Lighting System
CN203963774U (en) The very useful energy-saving alarming sign lamp of high-lager building
CN215769489U (en) Intelligent lighting system of underground sewage treatment plant
CN214851104U (en) Rotary folding solar cell device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764662

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764662

Country of ref document: EP

Kind code of ref document: A2