WO2010119684A1 - Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device - Google Patents

Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device Download PDF

Info

Publication number
WO2010119684A1
WO2010119684A1 PCT/JP2010/002723 JP2010002723W WO2010119684A1 WO 2010119684 A1 WO2010119684 A1 WO 2010119684A1 JP 2010002723 W JP2010002723 W JP 2010002723W WO 2010119684 A1 WO2010119684 A1 WO 2010119684A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
electrode
electrode structure
sealing wire
glass tube
Prior art date
Application number
PCT/JP2010/002723
Other languages
French (fr)
Japanese (ja)
Inventor
松浦友和
中西暁子
北田昭雄
畑岡真一郎
雀部啓太
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009098687A external-priority patent/JP2010251092A/en
Priority claimed from JP2009133665A external-priority patent/JP2010282770A/en
Priority claimed from JP2009138891A external-priority patent/JP2010287363A/en
Priority claimed from JP2009206640A external-priority patent/JP2011060475A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010119684A1 publication Critical patent/WO2010119684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the present invention relates to an electrode structure, a method for manufacturing the electrode structure, a low-pressure discharge lamp, an illumination device, and an image display device.
  • FIG. 13 shows a cross-sectional view including the tube axis of a conventional cold cathode discharge lamp.
  • a conventional electrode structure (hereinafter referred to as “electrode structure 1”) includes a cup-shaped electrode 2, a lead wire 3 bonded to the bottom end surface of the electrode 2, and a glass bonded to the outer periphery of the lead wire 3. And a member 4.
  • the lead wire 3 includes an internal lead wire (sealing wire) 3 a bonded to the glass member 4 and an external lead wire 3 b that is exposed and arranged outside the glass member 4.
  • the internal lead wire 3a includes an oxide film 5 at a portion covered with the glass member 4 on the surface (see, for example, Patent Document 1).
  • the thickness of the oxide film is 2.8 [ ⁇ m] to 3.7 [ ⁇ m]
  • the internal lead wire 3a is made of a glass member. After covering with the glass member, the thickness of the oxide film 5 covered with the glass member becomes as thin as 1.4 [ ⁇ m] to 2.5 [ ⁇ m], but still covered with the glass member 4 of the sealing wire 3a. The oxide film 5 remains on the entire portion that can be confirmed.
  • an object of the present invention is to provide an electrode structure capable of preventing air from flowing into the internal space of the low-pressure discharge lamp as much as possible when used for sealing a low-pressure discharge lamp. To do.
  • Another object of the present invention is to provide a low-pressure discharge lamp in which the electrode structure as described above is provided at the end of a glass bulb.
  • an object of the present invention is to provide an illumination device having such a low-pressure discharge lamp as a light source, and an image display device including the illumination device.
  • an electrode structure according to the present invention is formed to cover an electrode, a sealing wire having one end connected to the electrode, and at least a part of the sealing wire.
  • An electrode structure having a glass member, and an oxide film is not formed in a substantially middle portion in a longitudinal direction in a portion of the surface of the sealing wire covered with the glass member, or An oxide film having a maximum thickness of 0.1 [ ⁇ m] or less is formed, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  • the electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire.
  • An oxide film having a maximum thickness of 0.1 [ ⁇ m] or less is not formed on a portion of the surface of the sealing wire that is covered with the glass member.
  • a diffusion layer of a material of the sealing wire is formed on the sealing wire side of the glass member.
  • the electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire.
  • An oxide film having a maximum thickness of 0.1 [ ⁇ m] or less is formed in a substantially intermediate portion in a longitudinal direction in a portion of the surface of the sealing wire that is covered with the glass member.
  • the oxide film includes one or both of Fe 3 O 4 and FeO, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member. It is characterized by that.
  • the electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire.
  • An oxide film having a maximum thickness of 0.1 [ ⁇ m] or less is formed on a portion of the surface of the sealing wire that is covered with the glass member. Any one or both of Fe 3 O 4 and FeO are included, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  • the minimum thickness of the diffusion layer is preferably 8 [ ⁇ m] or more, and the maximum thickness of the diffusion layer is preferably 30 [ ⁇ m] or less.
  • the electrode structure according to the present invention includes an iron in the range of 48 [wt%] to 54 [wt%] and nickel in a range of 46 [wt%] to 52 [wt%]. Are preferably included.
  • the glass member has an oxide conversion of SiO 2 of 60 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 5 [wt].
  • % Li 2 O is 0 wt% to 5 wt%
  • K 2 O is 3 wt% to 11 wt%
  • Na 2 O is 3 wt% to 12 wt%.
  • BaO 0 [wt%] It is preferable to have a composition of ⁇ 12 [wt%].
  • An electrode structure according to the present invention comprises an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire.
  • the oxide film formed in the substantially intermediate portion in the longitudinal direction in the portion covered with the glass member is all diffused, or the maximum thickness is 0.1 [ ⁇ m].
  • the method for manufacturing an electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire.
  • a method for manufacturing an electrode structure the step of connecting the electrode and one end of the sealing wire, the step of forming an oxide film on the surface of the sealing wire, and at least one of the sealing wires
  • the glass member is coated on the surface, and all of the oxide film formed in the substantially middle portion in the longitudinal direction of the surface of the sealing wire covered with the glass member is diffused, or the maximum thickness is 0
  • a step of diffusing so as to leave an oxide film of 1 [ ⁇ m] or less.
  • the low-pressure discharge lamp according to the present invention has a glass bulb and an electrode structure provided at at least one end of the glass bulb.
  • An illumination device includes the low-pressure discharge lamp.
  • An image display device includes the illumination device.
  • the oxide film is not formed on the surface of the sealing wire covered with the glass member, or the maximum thickness is 0.1 [mm] or less. There is a portion where an oxide film is formed, and since a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member, airtightness between the glass member and the sealing wire As a result, in the low-pressure discharge lamp using this, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp as much as possible.
  • the oxide film formed in the substantially intermediate portion in the longitudinal direction of the surface of the sealing wire covered with the glass member is all diffused.
  • the above-described electrode structure can be manufactured because it includes a step of diffusing so that an oxide film having a maximum thickness of 0.1 [ ⁇ m] or less remains.
  • FIG. 1 shows an enlarged cross-sectional view of the main part of the portion A in FIG. 1 (a) when the oxide film is completely diffused, and (c) the maximum thickness at the substantially middle portion of the surface covered with the glass member. Is an enlarged cross-sectional view of a main part of portion A in FIG. 1A when an oxide film having a thickness of 0.1 [ ⁇ m] or less is formed.
  • FIG. 2B is an enlarged cross-sectional view of the main part of the portion B in FIG. 2A when the intermediate oxide film is all diffused, and FIG. 2B is an enlarged cross-sectional view of the main part of the portion B in FIG.
  • FIG. 10 Partially cutaway perspective view of a lighting apparatus according to a seventh embodiment of the present invention
  • A Front view of illumination apparatus according to eighth embodiment of present invention,
  • (b) Cross-sectional view taken along line CC ′ of FIG. 10
  • A The perspective view of the image display apparatus which concerns on the 9th Embodiment of this invention.
  • A The principal part enlarged front view of the modification of the low pressure discharge lamp which concerns on the 2nd Embodiment of this invention,
  • Sectional drawing including the central axis of the longitudinal direction of the conventional electrode structure Sectional drawing containing the central axis of the longitudinal direction of the electrode structure which concerns on the 10th Embodiment of this invention
  • shaft of the low pressure discharge lamp which concerns on the 11th Embodiment of this invention Sectional drawing including the tube axis
  • Sectional view including the tube axis of a conventional low-pressure discharge lamp Sectional drawing containing the central axis of the longitudinal direction of the electrode structure which concerns on 15th Embodiment of this invention (A) The conceptual diagram of the connection process of an electrode structure similarly, (b) The conceptual diagram of the insertion process of an electrode structure, (c) The conceptual diagram of the heating process of an electrode structure Sectional drawing containing the tube axis
  • Sectional drawing including the central axis of the longitudinal direction of the electrode structure which concerns on 19th Embodiment of this invention (A) The conceptual diagram of the connection process of an electrode structure similarly, (b) The conceptual diagram of the insertion process of an electrode structure, (c) The conceptual diagram of the heating process of an electrode structure Sectional drawing containing the tube axis
  • A Sectional drawing including the central axis of the longitudinal direction of the modification 1 of the electrode structure which concerns on 15th Embodiment of this invention, (b) Similarly including the central axis of the longitudinal direction of the modification 2 of an electrode structure Cross section (A) Sectional view including tube axis of conventional low-pressure discharge lamp, (b) Conceptual diagram of manufacturing process of conventional electrode structure (A) Conceptual diagram of the electrode structure insertion step of the low pressure discharge lamp manufacturing method according to the twenty-first embodiment of the present invention, (b) Conceptual diagram of the electrode structure fixing step, (c) Mercury emitter insertion Conceptual diagram of the process (A) The conceptual diagram of a convex part formation process, (b) The conceptual diagram of a temporary sealing process, (c) The conceptual diagram of a mercury discharge process, (d) The conceptual diagram of a second sealing process (A) The conceptual diagram of the temporary sealing process of the manufacturing method of the low pressure discharge lamp concerning the 22nd Embodiment of this invention, (b) The conceptual diagram of a convex-part
  • Electrode structure 100 includes an electrode 101, a sealing wire 102 having one end connected to the electrode 101, and a sealing wire. And a glass member 103 formed so as to cover at least a part of 102.
  • the electrode 101 has, for example, a bottomed cylindrical shape, and has an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni). Note that the material of the electrode 101 is not limited to nickel, and any one or any two or more alloys of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W) may be used.
  • the electrode 101 is connected to one end surface of the sealing wire 102 at a substantially central portion of the outer bottom surface.
  • the electrode 101 and the sealing wire 102 may be directly connected or may be connected via a brazing material (not shown) made of, for example, nickel foil or Kovar foil.
  • a brazing material made of, for example, nickel foil or Kovar foil.
  • laser welding, resistance welding, or the like can be used as a method for connecting the electrode 101 and the sealing wire 102.
  • the sealing wire 102 has a wire diameter of 0.8 [mm] and is made of an alloy of iron and nickel.
  • the sealing wire 102 is preferably made of a material that matches the thermal expansion coefficient of glass used as the material of the glass member 103.
  • the sealing wire 102 preferably contains iron in the range of 48 [wt%] to 54 [wt%] and nickel in the range of 46 [wt%] to 52 [wt%].
  • the glass member 103 is soft glass having a coefficient of thermal expansion of 90 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or more and 100 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or less, the sealing wire 102 and the glass member 103 are used. The sealing property can be improved.
  • An external lead wire 104 is preferably connected to the other end of the sealing wire 102.
  • the external lead wire 104 has a wire diameter of, for example, 0.6 [mm] and is made of nickel.
  • the material of the external lead wire 104 is not limited to nickel, and for example, an alloy of nickel and manganese, a dumet wire, or the like may be used. Further, the surface of the external lead wire 104 may be covered with solder in order to prevent the external lead wire 104 from being oxidized.
  • the glass member 103 has a substantially spherical shape and covers at least a part of the sealing wire 102 along its substantially central axis, and is made of soft glass such as lead-free glass or soda glass.
  • the glass member 103 is preferably made of the same material as the glass bulb to be sealed or a material having the same or similar thermal expansion coefficient as the glass bulb 101 from the viewpoint of sealing properties.
  • the oxide film 105 is not formed on the substantially intermediate portion in the longitudinal direction of the portion covered with the glass member 103, or the maximum thickness is 0.1 [ ⁇ m] or less. 105 is formed, and a diffusion layer 106 made of the material of the sealing wire 102 is formed on the side of the sealing wire 102 of the glass member 103.
  • FIG. 1B shows an enlarged cross-sectional view of the main part of the A part.
  • FIG. 1C shows an enlarged cross-sectional view of the main part of the portion A in FIG. 1A when the oxide film 105 of 0.1 [ ⁇ m] or less is formed.
  • the structure of the substantially intermediate portion of the surface of the sealing wire 102 covered with the glass member 103 is as shown in FIGS. 1B and 1C, which is formed on the surface of the sealing wire 102 in advance.
  • the components (materials) to be described later of the formed oxide film 105 diffuse into the inside of the glass member 103, so that the oxide film at a substantially intermediate portion of the surface covered with the glass member 103 on the surface of the sealing wire 102. This is because the thickness 105 becomes so thin that it can hardly be visually confirmed.
  • an oxide film of a sealing wire material is formed on the surface of the sealing wire 102 in advance, and the material of the sealing wire 102 in the oxide film (when the sealing wire is an alloy of iron and nickel).
  • iron is diffused into the glass member 103, so that the material of the sealing wire on the sealing wire 102 side of the glass member 103 (in the case where the sealing wire is an alloy of iron and nickel, iron)
  • the diffusion layer is formed, and the oxide film 105 at a substantially intermediate portion of the portion covered with the glass member 103 is thinned to such an extent that it can hardly be visually confirmed.
  • an oxide film 105 having a maximum thickness of 0.1 [ ⁇ m] or less is formed in a substantially middle portion of the surface of the sealing wire 102 covered with the glass member 103. It is preferable that either or both of Fe 3 O 4 and FeO are contained. In this case, the bonding strength between the sealing wire 102 and the glass member 103 can be improved. Furthermore, it is more preferable that the oxide film 105 contains Fe 3 O 4 . In this case, the tensile strength between the sealing wire 102 and the glass member 103 can be further improved.
  • an oxide film (hereinafter referred to as “thick oxide film 105a”) that can be visually confirmed is formed on both ends of the surface of the sealing wire 102 covered with the glass member. ”) May be formed.
  • the area of the region where the thick oxide film 105a is formed is in the range of 5% to 40% of the surface area of the portion covered by the glass member 103 out of the surface area of the sealing wire 102. It is preferable that In this case, when a load is applied to the external lead wire 104, the stress is absorbed by the peeling of the thick oxide film 105a at the end, so that leakage due to a sudden impact on the external lead wire 104 can be prevented.
  • the thick oxide film 105a is annular, and the length in the longitudinal direction of the region where the thick oxide film 105a is formed is covered by the glass member 103 of the surface of the sealing wire 102. It is preferable that it is in the range of 0 [%] to 40 [%] of the length of the portion. In this case, by reducing the area where the thick oxide film 105a is formed, air can be easily prevented from flowing into the internal space of the low-pressure discharge lamp.
  • FIG. 2A shows a cross-sectional view including a longitudinal center axis X 107 of a modification of the electrode structure according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the main part of the portion B in FIG. 2A in the case where the oxide film at the substantially intermediate portion covered by the glass member 103 is diffused on the surface of the sealing wire 102.
  • the principal part expanded sectional view of B part of 2 (a) is shown in FIG.2 (c).
  • electrode structure 107 a modification of the electrode structure according to the first embodiment of the present invention includes an electrode 101 and one end portion. Is an electrode structure 107 having a sealing wire 102 connected to the electrode 101 and a glass member 103 formed so as to cover at least a part of the sealing wire 102, Of these, the oxide film 105 is not formed on the portion covered with the glass member 103, or the oxide film 105 having a maximum thickness of 0.1 [ ⁇ m] or less is formed. A diffusion layer 106 made of the material of the sealing wire 102 is formed on the wire 102 side.
  • the sealing wire 102 and the glass member 103 can be firmly adhered to each other, so that air flows into the internal space of the low-pressure discharge lamp. Can be sufficiently prevented.
  • the oxide film 105 is not formed in a substantially intermediate portion in the longitudinal direction of the surface covered with the glass member 103 on the surface of the sealing wire 102, or the maximum thickness is 0.1 [ ⁇ m.
  • the following oxide film 105 is formed, and the diffusion layer 106 of the material of the sealing wire 102 is formed on the sealing wire 102 side of the glass member.
  • a leak test was performed.
  • Example 1 was a low-pressure discharge lamp produced using a material having substantially the same configuration as that of the electrode structure 100.
  • Example 2 was made substantially the same as Example 1 except that the one having substantially the same configuration as that of the electrode structure 107 was used.
  • an electrode in which an oxide film (maximum thickness is thicker than 0.1 [ ⁇ m]) that can be visually confirmed is formed in a substantially middle portion of the portion covered with the glass member Except for the use of the structural body, a structure having substantially the same configuration as that of Example 100 was used as Comparative Example 1.
  • Example 1 Prior to the experiment, the starting voltages of the lamps of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were measured, and the measured starting voltage was used as a reference voltage.
  • the criterion for determining whether or not there is a leak is “ ⁇ ” when the lamp is lit within 100 [V] of the reference voltage (starting voltage before the test), and when the lamp is lit above 100 [V] or not lit. “ ⁇ ” was assigned to the case. That is, the starting voltage is measured for each lamp after the load is applied to the external lead wire. If the starting voltage falls within a range that does not exceed 100 [V] from the reference voltage, a pass (“ ⁇ ”) is accepted. The case where the starting voltage exceeded 100 [V] from the reference voltage and the case where the discharge was not started in the experimental range was regarded as a failure (“x”).
  • Example 2 an oxide film is not formed in a substantially intermediate portion in the longitudinal direction of the surface of the sealing wire covered with the glass member, and Example 1 has a maximum thickness of 0. .1 [ ⁇ m] or less of the oxide film is formed, and in both Examples 1 and 2, a diffusion layer of the sealing wire material is formed on the sealing wire side of the glass member. It is considered that air does not flow into the internal space of the lamp because the member is more closely contacted than Comparative Examples 1 and 2.
  • Example 2 when a weight of 2800 [g] is suspended, inflow of air into the internal space of the lamp is less likely to occur than in Example 1. This is because the contact distance between the sealing wire 102 and the glass member 103 can be secured long, so that the sealing wire 102 and the glass member 103 can be more firmly attached.
  • a method for manufacturing the electrode structure 100 will be described below with reference to FIG.
  • the manufacturing method of the electrode structure 100 includes an electrode, an electrode structure including a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire.
  • a method of connecting the electrode and one end of the sealing wire (connecting step), a step of forming an oxide film on the surface of the sealing wire (oxide film forming step), and sealing
  • the glass member is coated on at least a part of the wire, and the oxide film formed in the substantially intermediate portion of the surface of the sealing wire covered by the glass member is all diffused into the glass member, or the maximum thickness is 0
  • a step of diffusing so as to leave an oxide film of 1 [ ⁇ m] or less (sealing step).
  • the electrode 101 and one end of the sealing wire 102 are connected. Specifically, for example, one end surface of the sealing wire 102 is brought into contact with the outer bottom surface of the electrode 101 and is connected by resistance welding.
  • the method for connecting the electrode 101 and the sealing wire 102 is not limited to resistance welding, and laser welding or the like may be used.
  • an oxide film 105 is formed on the surface of the sealing wire 102.
  • the surface of the sealing wire 102 is oxidized by heating the surface of the sealing wire 102 with a gas burner 108 or the like.
  • the oxidation method is not limited to the gas burner 108, and for example, a heating furnace or the like may be used. 3.
  • the external lead wire 104 is inserted into the hollow portion of the cylindrical glass tube 109 from the end opposite to the side to which the sealing wire 102 is connected. . Then, the external lead wire 104 is inserted into a fixing hole 110a provided on one end surface of the jig 110 and fixed.
  • the sealing wire 102 inserted and fixed in the fixing hole 110a of the jig 110, as shown in FIG. 3 (d), it is placed in the electric furnace 111, for example, about 750 [° C.] to 800 Heat at [° C.] for about 20 minutes. Thereby, the glass tube 109 is melted, and the glass member 103 formed so as to cover at least a part of the sealing wire 102 is formed.
  • the oxide film 105 formed in the substantially middle part of the surface of the sealing wire 102 covered with the glass member 103 is all diffused into the glass member 103, or the maximum thickness is 0.1 [ ⁇ m].
  • the following oxide film is diffused so as to remain, and a diffusion layer 106 made of the material of the sealing wire 102 is formed on the sealing wire 102 side of the glass member 103.
  • the electrode structure 100 is completed through the above steps.
  • the electrode structure 107 can be manufactured by heating at 800 [° C.] to 950 [° C.] for about 30 minutes. As a result, the oxide film 105 formed on the portion of the surface of the sealing wire 102 covered with the glass member 103 is all diffused into the glass member 103 or the maximum thickness is 0.1 [ ⁇ m] or less. A diffusion layer 106 made of the material of the sealing wire 102 is formed on the side of the sealing wire 102 of the glass member 103. 4). Reduction process
  • the surface of the electrode 101 or the external lead wire may be oxidized in the oxide film forming process or the sealing process. In particular, when the electrode 101 is oxidized, it is difficult for electrons to jump out of the electrode 101 and the electrode 101 is easily sputtered. Therefore, it is preferable to provide a reduction step after the sealing step.
  • the electrode structure 100 is placed in a reduction furnace 112 and heated in a hydrogen atmosphere at 650 [° C.] to 750 [° C.] for about 15 minutes, whereby the sealing wire 102 The portions not covered with the glass member 103 and the surfaces of the electrodes 101 and the external lead wires 104 are reduced.
  • the glass bulb is sealed using this to produce a low-pressure discharge lamp. Air can be prevented from flowing into the internal space.
  • the minimum thickness of the diffusion layer 106 is preferably 8 [ ⁇ m] or more, and the maximum thickness of the diffusion layer 106 is preferably 30 [ ⁇ m] or less. In this case, it is possible to prevent the occurrence of cracks in the diffusion layer 106 and further prevent air from flowing into the internal space of the low-pressure discharge lamp.
  • the minimum thickness of the diffusion layer 106 is 16 [ ⁇ m] or more, and the maximum thickness of the diffusion layer 106 is 30 [ ⁇ m] or less.
  • the minimum thickness and the maximum thickness of the diffusion layer 106 can be obtained by, for example, the element diffusion distance by line element analysis using SEM-EDS.
  • the low-pressure discharge lamp (hereinafter referred to as “lamp 200”) according to the second embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at at least one end of the glass bulb 201 and the glass bulb 201. Electrode structure 100.
  • the glass bulb 201 is made of soft glass such as lead-free glass or soda glass, for example, has a straight tubular shape, and has a substantially annular cross section cut perpendicular to the tube axis. Specifically, for example, the outer diameter is 4 [mm], the inner diameter is 3 [mm], and the total length is 1000 [mm].
  • the soft glass is, for example, a glass having a thermal expansion coefficient of 90 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or more and 100 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or less.
  • the inside of the glass bulb 201 is filled with, for example, 3 [mg] mercury and a rare gas such as argon or neon is sealed at a predetermined sealing pressure, for example, 40 [Torr].
  • a rare gas such as argon or neon
  • a phosphor layer 202 is formed on the inner surface of the glass bulb 201.
  • the phosphor layer 202 includes, for example, a red phosphor (Y 2 O 3 : Eu 2+ ), a green phosphor (LaPO 4 : Ce 3+ , Tb 3+ ), and a blue phosphor (BaMg 2 Al 16 O 27 : Eu 2). + ) And a rare earth phosphor.
  • yttrium oxide Y 2 O 3
  • silicon oxide SiO 2
  • aluminum oxide Al 2 O 3
  • zinc oxide ZnO
  • oxide A protective film (not shown) of a metal oxide such as titanium (TiO 2 ) may be provided.
  • the structure of the low-pressure discharge lamp 200 according to the second embodiment of the present invention it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 200.
  • the electrode structure 107 may be used instead of the electrode structure 100.
  • the sealing wire 102 and the glass member 103 can be firmly adhered, air can be sufficiently prevented from flowing into the internal space of the low-pressure discharge lamp.
  • a cesium compound may adhere to the inner surface of the electrode 101.
  • the lamp voltage of the lamp 200 can be reduced, and the dark start characteristics can be improved.
  • FIG. 5 shows a cross-sectional view including the tube axis X 300 of the cold cathode discharge lamp according to the third embodiment of the present invention.
  • a cold cathode discharge lamp (hereinafter referred to as “lamp 300”) according to the third embodiment of the present invention is an internal / external electrode type cold cathode fluorescent lamp.
  • the lamp 300 has an external electrode 301 on the outer surface of one end thereof, and has substantially the same configuration as the lamp 200 except for the configuration associated therewith. Therefore, the external electrode 301 and the configuration associated therewith will be described in detail, and description of other points will be omitted.
  • the external electrode 301 is made of, for example, solder and is formed so as to cover the outer surface of one end portion of the glass bulb 201.
  • the external electrode 301 may be formed by applying silver paste to the entire circumference of the electrode forming portion of the glass bulb 201, or may be formed by covering a metal cap on one end of the glass bulb 201. Good.
  • an aluminum metal foil may be attached so as to cover the outer peripheral surface of one end of the glass bulb 201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin.
  • a conductive adhesive you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
  • a protective film (not shown) of, for example, yttrium oxide (Y 2 O 3 ) may be provided on the inner surface of the glass bulb 201 and in the region where the external electrode 301 is formed.
  • Y 2 O 3 yttrium oxide
  • the protective film instead of the yttrium oxide, for example, silica (SiO 2), alumina (Al 2 O 3), zinc oxide (ZnO), titania may be used (TiO 2) metal oxides and the like.
  • silica SiO 2
  • alumina Al 2 O 3
  • zinc oxide ZnO
  • titania TiO 2 metal oxides and the like.
  • the protective film is formed of yttrium oxide or silica, mercury hardly adheres to the protective film, and mercury consumption is low.
  • the protective film is not an essential component in the present invention and may not be formed at all, or may be formed over the entire inner surface of the glass bulb 201.
  • one end of the glass bulb 201 (end on the external electrode 301 side) may be sealed by heating and melting one end of the glass bulb 201 without using a glass member.
  • the low-pressure discharge lamp 300 As described above, according to the configuration of the low-pressure discharge lamp 300 according to the third embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 300.
  • the electrode structure 107 may be used instead of the electrode structure 100.
  • the sealing wire 102 and the glass member 103 can be firmly adhered, air can be sufficiently prevented from flowing into the internal space of the low-pressure discharge lamp.
  • FIG. 6A shows a cross-sectional view including the longitudinal central axis X 400 of the electrode structure according to the fourth embodiment of the present invention.
  • An electrode structure according to a fourth embodiment of the present invention (hereinafter referred to as “electrode structure 400”) includes an electrode 401, a sealing wire 402 having one end connected to the electrode 401, and a sealing wire 402. And a glass member 403 formed so as to cover at least a part thereof.
  • the electrode 401 is a filament coil made of tungsten, for example.
  • the electrode 401 has an emitter (not shown) attached to its winding portion.
  • the emitter for example, (Ba, Sr, Ca) O or the like can be used.
  • the electrode 401 is not limited to a filament coil made of tungsten, but may be a filament coil made of rhenium tungsten. In this case, the strength when the electrode 401 is heated by lighting a lamp or the like can be improved.
  • the electrode 401 is supported by a pair of sealing wires 402 at both ends.
  • the sealing wire 402 is a pair and has substantially the same configuration as the sealing wire 102 except that both ends of the electrode 401 are supported.
  • the glass member 403 has substantially the same configuration as the glass member 103 except that the glass member 403 covers the sealing wire 402.
  • the electrode structure 400 according to the fourth embodiment of the present invention when used for sealing a low-pressure discharge lamp, air is prevented from flowing into the internal space of the low-pressure discharge lamp. can do.
  • electrode structure 404 the electrode structure shown in FIG. 6B (hereinafter referred to as “electrode structure 404”) may be used.
  • the electrode 405 has a double spiral structure with the central axis X404 in the longitudinal direction of the electrode structure as a turning axis. In this case, the diameter of the lamp can be easily reduced as compared with the electrode structure 400.
  • the sealing wire 406 is linear and has substantially the same configuration as the lead wire 402 except for the shape.
  • the electrode 405 and the sealing wire 406 are preferably connected via a connecting member 407.
  • the electrode 405 and the sealing wire 406 can be more reliably connected.
  • the connection member 407 is made of nickel, for example.
  • the sleeve 408 is made of nickel, for example, and is connected to one connection member by welding. Note that the material of the sleeve 408 is not limited to nickel, and, for example, molybdenum, tantalum, niobium, tungsten, or the like can be used.
  • a thick oxide film 105a is formed at the end of the surface of the sealing wires 402 and 406 covered with the glass member.
  • the electrode structure 107 may not be formed with the thick oxide film 105a.
  • the sealing wires 402 and 406 and the glass member 403 can be firmly adhered, so that when used for sealing the low-pressure discharge lamp, the internal space of the low-pressure discharge lamp It is possible to sufficiently prevent the air from flowing in.
  • the low-pressure discharge lamp (hereinafter referred to as “lamp 500”) according to the fifth embodiment of the present invention is a hot cathode fluorescent lamp, and includes the electrode structure 400 according to the fourth embodiment of the present invention. Except for this point, it has substantially the same configuration as the lamp 200.
  • the low-pressure discharge lamp 500 As described above, according to the configuration of the low-pressure discharge lamp 500 according to the fifth embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 500.
  • a low-pressure discharge lamp 501 (hereinafter referred to as “lamp 501”) provided with an electrode structure 404 may be used.
  • the glass bulb 201 can be reduced in diameter.
  • FIG. 8 shows an exploded perspective view of a lighting apparatus according to the sixth embodiment of the present invention.
  • An illuminating device (hereinafter referred to as “illuminating device 600”) according to a sixth embodiment of the present invention is a direct-type backlight unit, and has a rectangular parallelepiped casing 601 having one surface opened, and the casing.
  • the lamp 200 is a low-pressure discharge lamp 200 according to the second embodiment of the present invention. Note that not only the lamp 200 but also the lamp 300, the lamp 500, or the lamp 501 can be used.
  • the housing 601 is made of, for example, polyethylene terephthalate (PET) resin, and a reflective surface 604 is formed by depositing a metal such as silver on the inner surface thereof.
  • casing 601 you may comprise by metal materials, such as materials other than resin, for example, aluminum, a cold rolled material (for example, SPCC).
  • the reflection surface 604 on the inner surface other than the metal vapor-deposited film, for example, a reflection sheet whose reflectance is increased by adding calcium carbonate, titanium dioxide or the like to polyethylene terephthalate (PET) resin is used. May be.
  • a socket 602, an insulator 605, and a cover 606 are disposed inside the housing 601.
  • the sockets 602 are provided at predetermined intervals in the lateral direction (vertical direction) of the housing 601 corresponding to the arrangement of the lamps 200.
  • the socket 602 is obtained by processing a plate material made of stainless steel or phosphor bronze, for example, and has a fitting portion 602a into which the external lead wire 104a is fitted. Then, the external lead wire 104a is fitted by being elastically deformed so as to expand the fitting portion 602a. As a result, the external lead wire 104a fitted in the fitting part 602a is pressed by the restoring force of the fitting part 602a and is difficult to come off. Thereby, the external lead wire 104a can be easily fitted into the fitting portion 602a, but can be made difficult to come off.
  • the socket 602 is covered with an insulator 605 so that the sockets 602 adjacent to each other are not short-circuited.
  • the insulator 605 is made of, for example, polyethylene terephthalate (PET) resin. Note that the insulator 605 is not limited to the above structure. Since the socket 602 is in the vicinity of an electrode that becomes relatively hot during operation of the lamp 200, the insulator 605 is preferably made of a heat resistant material. As a material for the heat-resistant insulator 605, for example, polycarbonate (PC) resin, silicon rubber, or the like can be used.
  • PC polycarbonate
  • a lamp holder 607 may be provided inside the housing 601 at a place as necessary.
  • the lamp holder 607 that fixes the position of the lamp 200 inside the housing 601 is, for example, polycarbonate (PC) resin, and has a shape that follows the outer shape of the lamp 200.
  • the “location as necessary” means that the deflection of the lamp 200 is caused when the lamp 200 has a long length exceeding, for example, 600 [mm], as in the vicinity of the central portion of the lamp 200 in the longitudinal direction. It is a place necessary to eliminate.
  • the cover 606 divides the socket 602 and the space inside the housing 601 and is made of, for example, polycarbonate (PC) resin, keeps the periphery of the socket 602 warm, and highly reflects at least the surface on the housing 601 side. By reducing the brightness, a decrease in luminance at the end of the lamp 200 can be reduced.
  • PC polycarbonate
  • the opening of the housing 601 is covered with a light-transmitting optical sheet 603 and is sealed so that foreign matters such as dust and dust do not enter inside.
  • the optical sheet 603 is formed by laminating a diffusion plate 608, a diffusion sheet 609, and a lens sheet 610.
  • the diffusion plate 608 is a plate-like body made of, for example, polymethyl methacrylate (PMMA) resin, and is disposed so as to close the opening of the housing 601.
  • the diffusion sheet 609 is made of, for example, a polyester resin.
  • the lens sheet 610 is, for example, a laminate of an acrylic resin and a polyester resin. These optical sheets 603 are arranged so as to be sequentially superimposed on the diffusion plate 608.
  • the illumination device 600 According to the configuration of the illumination device 600 according to the sixth embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamps 200, 300, 500, 501 provided therein. it can.
  • FIG. 9 shows a partially cutaway perspective view of a lighting apparatus according to a seventh embodiment of the present invention.
  • An illuminating device according to the seventh embodiment of the present invention (hereinafter referred to as “illuminating device 700”) is an edge light type backlight unit, which includes a reflector 701, a lamp 200, a socket (not shown), A light guide plate 702, a diffusion sheet 703, and a prism sheet 704 are provided.
  • the reflection plate 701 is disposed so as to surround the periphery of the light guide plate 702 except for the liquid crystal panel side (arrow Q), and the side surface covering the bottom surface portion 701a covering the bottom surface and the side surface excluding the side where the lamp 200 is disposed.
  • the reflection plate 701 is made of, for example, a film-like PET deposited with silver or a metal foil such as aluminum laminated.
  • the lamp 200 is the low-pressure discharge lamp 200 according to the second embodiment of the present invention. Note that not only the lamp 200 but also the lamp 300, the lamp 500, or the lamp 501 can be used.
  • the socket has substantially the same configuration as the socket 602 used in the lighting device 600 according to the sixth embodiment of the present invention.
  • the end of the lamp 200 is omitted for convenience of illustration.
  • the light guide plate 702 is for guiding the light reflected by the reflection plate 701 to the liquid crystal panel side. It is weighted. Note that a polycarbonate (PC) resin or a cycloolefin-based resin (COP) can be used as the material of the light guide plate 702.
  • PC polycarbonate
  • COP cycloolefin-based resin
  • the diffusion sheet 703 is for expanding the visual field and is made of a film having a diffusion transmission function made of, for example, polyethylene terephthalate resin or polyester resin, and is stacked on the light guide plate 702.
  • the prism sheet 704 is for improving luminance, and is made of, for example, a sheet obtained by bonding an acrylic resin and a polyester resin, and is laminated on the diffusion sheet 703. Note that a diffusion plate (not shown) may be further stacked on the prism sheet 704.
  • an aperture provided with a reflection sheet (not shown) on the outer surface of the glass bulb except for a part in the circumferential direction of the lamp 200 (on the light guide plate 702 side when inserted into the lighting device 700). It may be a type of lamp.
  • the lighting apparatus 700 According to the configuration of the lighting apparatus 700 according to the seventh embodiment of the present invention, it is possible to prevent air from flowing into the internal spaces of the low-pressure discharge lamps 200, 300, 500, and 501 provided therein. it can.
  • FIG. 10A shows a front view of a lighting apparatus according to the eighth embodiment of the present invention
  • FIG. 10B shows a cross-sectional view taken along the line CC ′ of FIG. 10A.
  • An illuminating device 800 according to an eighth embodiment of the present invention (hereinafter referred to as “illuminating device 800”) is a luminaire using an annular fluorescent lamp for general illumination.
  • the lighting device 800 includes a main body portion 801, a plate-like portion 802, a lamp holder 803, a socket 804, and a lamp 805.
  • the main body portion 801 houses a lighting circuit (not shown) and the like, and an electrical connection portion (not shown) is led out from the upper portion of the main body portion 801, for example.
  • a socket 804 for connection is provided.
  • the disk-shaped part 802 is a member that supports the main body 801 and the lamp holder 803 and has, for example, a disk-shaped shape.
  • the lamp holder 803 is attached to the lower surface of the disk-shaped portion 802, and the lamp 805 can be held by, for example, a C-shaped sandwiching piece provided at the lower end thereof to prevent the lamp 805 from falling.
  • the lamp 805 is an annular hot cathode fluorescent lamp, and the low-pressure discharge lamp 500 according to the fifth embodiment, except that the shape is annular and the base 806 is located in the middle of the lamp 805. It has substantially the same configuration.
  • the lamp 805 may have substantially the same configuration as the lamp 501 except that the lamp 805 has an annular shape and the base 806 is positioned in the middle of the lamp 805.
  • air can be prevented from flowing into the internal space of the low-pressure discharge lamp 805 provided therein.
  • FIG. 11 An outline of an image display apparatus according to the ninth embodiment of the present invention is shown in FIG.
  • the image display device 900 is, for example, a 32 [inch] liquid crystal television (liquid crystal display device), a liquid crystal screen unit 901 including a liquid crystal panel and the like, and an illumination device 600 according to the sixth embodiment of the present invention.
  • the liquid crystal screen unit 901 is a publicly known one and includes a liquid crystal panel (color filter substrate, liquid crystal, TFT substrate, etc.) (not shown), a drive module, etc. (not shown), and is based on an image signal from the outside. To form a color image.
  • a liquid crystal panel color filter substrate, liquid crystal, TFT substrate, etc.
  • a drive module etc.
  • the lighting circuit 902 lights the lamp 200 in the lighting device 600.
  • the lamp 200 is operated at a lighting frequency of 40 [kHz] to 100 [kHz] and a lamp current of 3.0 [mA] to 25 [mA].
  • FIG. 11 demonstrated the case where the low voltage
  • air can be prevented from flowing into the internal space of the low-pressure discharge lamps 200, 300, 500, and 501 provided therein. Can do.
  • Electron Emissive Material An electron emissive material layer (not shown) may be formed on the surface of the electrode 101. In this case, the lamp voltage can be lowered compared to a lamp not provided with an electron emissive material layer. Specifically, the electron-emitting material layer is formed on the inner surface of the electrode 101, for example.
  • the electron emissive material layer includes, for example, a rare earth element. This is because the cold cathode fluorescent lamp is effective in reducing the lamp voltage. Furthermore, the rare earth element is more preferably one or more of lanthanum (La) and yttrium (Y).
  • the electron-emitting material layer may be any one of silicon (Si), aluminum (Al), zirconium (Zr), boron (B), zinc (Zn), bismuth (Bi), phosphorus (P), and tin (Sn). It is preferable that 1 or more types are included. In this case, the lamp voltage reduction effect can be further sustained.
  • a cesium (Cs) compound may be included in the electron-emitting material layer.
  • the dark start characteristics of the lamp can be further improved.
  • a cesium compound may be attached to the inner surface or outer surface of the electrode 101.
  • the cesium compound for example, it is preferable to use at least one of cesium sulfate, cesium aluminate, cesium niobate, cesium tungstate, cesium molybdate, and cesium chloride.
  • the cesium compound is more preferably attached to the outer side surface of the electrode 101. In this case, the cesium compound can be moderately activated easily in the manufacturing process of the cold cathode fluorescent lamp.
  • the electrode 101 is attached to the tip of the lamp central portion side on the outer side surface.
  • the cesium compound can be more easily activated in the manufacturing process of the cold cathode fluorescent lamp.
  • the base 204 is electrically and mechanically connected to the external lead wire 104.
  • the base 204 includes a body portion 204 a that covers the end portion of the glass bulb 201, and an extension portion 204 b that extends from one end of the body portion 204 a and is electrically and mechanically connected to the external lead wire 104. It consists of Such a lamp 203 can be electrically and mechanically connected by simply inserting the base 204 into a fuse socket (not shown) or the like when incorporated in the lighting device.
  • a holding portion 204c for holding the glass bulb 201 is provided on the side surface of the body portion 204a.
  • the holding part 204c is formed, for example, by cutting out a part of the side surface of the body part 204a and bending it to the glass bulb 201 side. Further, the tip end portion 204d of the holding portion 204c is bent to the side opposite to the glass bulb 201 so as not to damage the glass bulb 201.
  • the contact portion between the holding portion 204 c and the glass bulb 201 is in a portion facing the electrode 101. In this case, heat dissipation generated near the electrode 101 can be promoted via the holding portion 204c.
  • UV rays can be absorbed.
  • TiO 2 titanium oxide
  • the composition ratio of 0.05 [mol%] or more is doped to absorb ultraviolet rays of 254 [nm]
  • the composition ratio is 2 [mol%] or more.
  • the composition ratio is 0.05 [mol%] or more and 5.0 [mol%] or less. It is preferable to dope in the range.
  • cerium oxide In the case of cerium oxide (CeO 2 ), 254 [nm] ultraviolet rays can be absorbed by doping at a composition ratio of 0.05 [mol%] or more. However, when cerium oxide is doped more than 0.5 [mol%], the glass is colored, so cerium oxide has a composition ratio of 0.05 [mol%] to 0.5 [mol%]. It is preferable to dope in the following range. In addition, since coloring of glass by cerium oxide can be suppressed by doping tin oxide (SnO) in addition to cerium oxide, cerium oxide can be doped to a composition ratio of 5.0 [mol%] or less. .
  • cerium oxide is doped with a composition ratio of 0.5 [mol%] or more, ultraviolet rays of 313 [nm] can be absorbed.
  • the composition ratio of cerium oxide is more than 5.0 [mol%]
  • the glass is devitrified.
  • zinc oxide ZnO
  • ultraviolet rays of 254 [nm] can be absorbed by doping at a composition ratio of 2.0 [mol%] or more.
  • zinc oxide is doped more than 20 [mol%]
  • the glass may be devitrified, so zinc oxide is in the range of 2.0 [mol%] to 20 [mol%]. It is preferable to dope.
  • Infrared transmission coefficient The infrared transmission coefficient indicating the water content in the glass that is the material of the glass members 103 and 403 and the glass bulb 201 is in the range of 0.3 to 1.2, particularly 0.4 or more. It is preferable to adjust so that it may become the range of 0.8 or less.
  • the infrared transmittance coefficient is 1.2 or less, it is easy to obtain a low dielectric loss tangent applicable to a high voltage application lamp such as a long cold cathode discharge lamp, and if it is 0.8 or less, the dielectric loss tangent is sufficient. It becomes small and becomes applicable to a high voltage application lamp.
  • the infrared transmittance coefficient (X) can be expressed by the following formula.
  • Li 2 O is 0 [wt%] to 5 [wt%]
  • K 2 O is 3 [wt%] to 11 [wt%]
  • Na 2 O is 3 [Wt%] to 12 [wt%]
  • BaO may have a composition of 0 [wt%] to 12 [wt%].
  • an environment-friendly cold cathode discharge lamp that does not contain a lead component can be provided.
  • the glass used for the glass members 103 and 403 and the glass bulb 201 has an oxide conversion of SiO 2 of 60 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 5 [5%].
  • wt%] B 2 O 3 is 0 [wt%] to 3 [wt%]
  • Li 2 O is 0 [wt%] to 5 [wt%]
  • K 2 O is 3 [wt%] to 11 [wt].
  • [wt%] to 12 [wt%] and BaO have a composition of 0 [wt%] to 12 [wt%].
  • the glass used in the glass member 103,403 and the glass bulb 201 in terms of oxide, SiO 2 is 60 [wt%] ⁇ 75 [ wt]%, Al 2 O 3 is 1 [wt%] ⁇ 5 [ wt %], Li 2 O is 0.5 [wt%] to 5 [wt%], K 2 O is 3 [wt%] to 7 [wt%], and Na 2 O is 5 [wt%] to 12 [wt]. %], CaO 1 [wt%] to 7 [wt%], MgO 1 [wt%] to 7 [wt%], SrO 0 [wt%] to 5 [wt%], BaO 7 [wt] %] To 12 [wt%]. In this case, it is possible to provide an environment-friendly cold cathode fluorescent lamp that is easy to process into a lamp and does not contain a lead component.
  • the glass used for the glass members 103 and 403 and the glass bulb 201 has a SiO 2 of 65 [wt%] to 75 [wt]% and an Al 2 O 3 of 1 [wt%] to 5 [wt] in terms of oxides. %], B 2 O 3 is 0 [wt%] to 3 [wt%], Li 2 O is 0.5 [wt%] to 5 [wt%], and K 2 O is 3 [wt%] to 7 [wt%].
  • the glass used for the glass members 103 and 403 and the glass bulb 201 has an oxide conversion of SiO 2 of 65 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 3 [3].
  • B 2 O 3 is 0 [wt%] to 3 [wt%]
  • Li 2 O is 1 [wt%] to 3 [wt%]
  • K 2 O is 3 [wt%] to 6 [wt].
  • %] Na 2 O is 7 wt% to 10 wt%
  • CaO is 3 wt% to 6 wt%
  • MgO is 3 wt% to 6 wt%
  • SrO is 0 It is more preferable that [wt%] to 0.9 [wt%] and BaO have a composition of 7.1 to 10 [wt%].
  • the shape of the glass bulb 201 is not limited to a straight tube shape, and may be, for example, an L shape, a U shape, a U shape, a spiral shape, or the like. Further, the cross section cut substantially perpendicular to the tube axis is not limited to a substantially circular shape, and may be a flat shape such as a track shape or a rounded round shape, an elliptical shape, or the like. 4).
  • phosphors in the phosphor layer (1) UV absorption
  • polycarbonate with good dimensional stability has been used for the diffusion plate that closes the opening of the backlight unit. ing.
  • This polycarbonate is easily deteriorated by ultraviolet rays having a wavelength of 313 [nm] emitted from mercury.
  • a phosphor that absorbs ultraviolet light having a wavelength of 313 [nm] may be used.
  • the following phosphors absorb 313 [nm] ultraviolet rays.
  • Examples of such phosphors include europium activated barium magnesium aluminate [BaMg 2 Al 16 O 27 : Eu 2+ ], [BaMgAl 10 O 17 : Eu 2+ ] (abbreviation: BAM-B), Europium activated barium aluminate / strontium / magnesium [(Ba, Sr) Mg 2 Al 16 O 27 : Eu 2+ ], [(Ba, Sr) MgAl 10 O 17 : Eu 2+ ] (abbreviation: SBAM-B) Etc.
  • Examples of such phosphors include europium / manganese co-activated barium aluminate / magnesium [BaMg 2 Al 16 O 27 : Eu 2+ , Mn 2+ ], [BaMgAl 10 O 17 : Eu 2+ , Mn 2]. + ] (Abbreviation: BAM-G), europium / manganese co-activated barium aluminate / strontium / magnesium [(Ba, Sr) Mg 2 Al 16 O 27 : Eu 2+ , Mn 2+ ], [(Ba, Sr) MgAl 10 O 17 : Eu 2+ , Mn 2+ ] (abbreviation: SBAM-G).
  • BAM-B (absorbs 313 [nm]) only in blue
  • LAP (does not absorb 313 [nm]) in green
  • BAM-G (absorbs 313 [nm]) in green
  • YOX in red
  • a phosphor of YVO (absorbs 313 [nm]) may be used.
  • the phosphor that absorbs the wavelength 313 [nm] is adjusted so that the total weight composition ratio is larger than 50%, so that the ultraviolet rays almost leak out of the glass bulb. Can be prevented.
  • the phosphor layer 202 includes a phosphor that absorbs ultraviolet rays of 313 [nm], deterioration due to ultraviolet rays such as a diffusion plate made of polycarbonate (PC) that closes the opening of the backlight unit is suppressed, The characteristics as a backlight unit can be maintained for a long time.
  • absorbing ultraviolet rays of 313 [nm] means an excitation wavelength spectrum near 254 [nm]
  • excitation wavelength spectrum means excitation light emission while changing the wavelength of the phosphor, and the excitation wavelength and emission intensity are changed.
  • the intensity of the excitation wavelength spectrum at 313 [nm] is defined as 80 [%] or more. That is, the phosphor that absorbs ultraviolet rays of 313 [nm] is a phosphor that can absorb ultraviolet rays of 313 [nm] and convert it into visible light.
  • High color reproduction Liquid crystal display devices typified by liquid crystal color televisions have been used as a light source for a backlight unit of the liquid crystal display device in accordance with the recent high color reproduction that has been made as part of higher image quality. There is a need to expand the reproducible chromaticity range in cathode discharge lamps and external electrode discharge lamps.
  • the chromaticity range can be expanded as compared with the case of using the phosphor in the embodiment.
  • the chromaticity coordinate value of the phosphor for high color reproduction includes a triangle formed by connecting the chromaticity coordinate values of the three phosphors used in the embodiment. Located at the coordinates that expand the reproduction range.
  • the chromaticity coordinate values shown above are representative values measured only with each phosphor powder, and due to the measurement method (measurement principle), etc., the chromaticity coordinates indicated by each phosphor powder The value may be slightly different from the value listed above.
  • the phosphor used for emitting each color of red, green, and blue is not limited to one type for each wavelength, and a plurality of types may be used in combination.
  • NTSC ratio 92%
  • SCA is used as blue
  • BAM-G green
  • YVO red
  • NTSC ratio 100%
  • SCA is used as blue
  • YOX red
  • NTSC ratio is 95 [%].
  • the luminance can be improved by 10 [%] as compared with the above.
  • the chromaticity coordinate values used for the evaluation here are measured in the state of a liquid crystal display device in which a lamp or the like is incorporated, so that the color reproduction range is around the above value depending on the combination with the color filter. there is a possibility. 5).
  • About filled gas Krypton may be contained in the rare gas. In this case, infrared radiation of the cold cathode fluorescent lamp can be suppressed. Furthermore, it is preferable that krypton is contained in the rare gas within a range of 0.5 [mol%] to 5 [mol%]. In this case, infrared radiation of the cold cathode fluorescent lamp can be suppressed without greatly changing the lamp voltage.
  • argon is in the range of 0 [mol%] to 9.5 [mol%]
  • neon is in the range of 90 [mol%] to 95.5 [mol%]
  • krypton is 0.5 [mol%].
  • krypton is contained in the rare gas within a range of 0.5 [mol%] to 3 [mol%].
  • krypton is contained in the rare gas in the range of 1 [mol%] to 3 [mol%]. 6).
  • the cold cathode fluorescent lamp, the internal / external electrode fluorescent lamp, and the hot cathode fluorescent lamp have been mainly described as the low-pressure discharge lamps.
  • a conventional low-pressure discharge lamp (hereinafter referred to as “lamp 2001”) shown in FIG. 20 is a cold cathode fluorescent lamp including a glass bulb 2002 made of hard glass in its configuration.
  • the phosphor layer 2003 is attached to the inner surface of the glass bulb 2002.
  • a glass bulb 2002 couples an enclosed gas component that emits ultraviolet light, two or more hollow electrodes 2004, two or more sealing wires 2005, and a sealing wire 2005 to the bulb with a hermetic seal that can withstand vacuum.
  • One or more glass beads 2006 are included.
  • the sealing wire 2005 is made of molybdenum or a molybdenum alloy at least over the entire length of the glass bead 2006.
  • the hollow electrode 2004 is at least partially made of a material from the group of molybdenum, molybdenum alloy, niobium, and niobium alloy.
  • the glass bead 2006 includes SiO 2 55 to 75 [wt%], B 2 O 3 13 to 25 [wt%], Al 2 O 3 0 to 10 [wt%], and alkali oxide 5 to 12 [wt%].
  • % By weight] alkaline earth oxides from 0 to 3 [wt%], ZrO 2 from 0 to 5 wt%, TiO 2 from 0 to 10 [wt%], and the remaining oxide from 0 to 5 [wt%]
  • the coefficient of thermal expansion (20 [° C.] to 300 [° C.]) is in the range of 4.0 to 5.3 ⁇ 10 ⁇ 6 [K ⁇ 1 ].
  • the thermal expansion coefficient ⁇ 2 of the glass bead 2006 and the thermal expansion coefficient ⁇ 3 of the sealing wire are 1 ⁇ 10 ⁇ 7 [K ⁇ 1 ] ⁇ ( ⁇ 3 ⁇ 2) ⁇ 1.3 ⁇ 10 ⁇ 6 [K ⁇ 1. ] (See, for example, Japanese Patent Application Laid-Open No. 2004-356098). That is, ⁇ 2 and ⁇ 3 are approximated as much as possible. (Problems to be solved by the invention) However, according to the inventors' investigation, in the electrode structure used for sealing the glass bulb, the glass member has a thermal expansion coefficient of 90 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or more and 100 ⁇ 10 ⁇ 7 [K ⁇ 1 ].
  • the glass member of the electrode structure may be distorted. all right.
  • a sealing portion is formed in a process involving thermal shock such as sealing because the strain remains in the glass member. May be damaged, and the airtightness between the glass member and the sealing wire may be impaired.
  • the electrode structure according to the present invention prevents the sealing portion of the glass member from being damaged when the glass bulb is sealed using the electrode structure by reducing the distortion of the glass member. With the goal.
  • the low-pressure discharge lamp according to the present invention aims to prevent the sealing portion of the electrode structure from being damaged.
  • an electrode structure according to the present invention is formed so as to cover an electrode, a sealing wire having one end connected to the electrode, and at least a part of the sealing wire.
  • an oxide film is formed on the surface of at least a portion of the sealing wire covered with the glass member.
  • the oxide film preferably contains FeO or Fe 3 O 4 .
  • the sealing wire is preferably made of an alloy of iron and nickel.
  • the low-pressure discharge lamp according to the present invention has a glass bulb and the electrode structure provided at at least one end of the glass bulb.
  • An illumination device includes the low-pressure discharge lamp.
  • the image display device includes the illumination device. (The invention's effect)
  • the electrode structure according to the present invention reduces the distortion of the glass member of the electrode structure, so that when the glass bulb is sealed using the electrode structure, the sealed portion of the electrode structure is damaged. Can be prevented.
  • the low-pressure discharge lamp according to the present invention can prevent the sealed portion of the electrode structure from being damaged.
  • the illumination device and the image display device according to the present invention can prevent the low-pressure discharge lamp provided therein from being damaged by stress accompanying impact or the like.
  • FIG. 14 shows a cross-sectional view including the central axis X 2100 in the longitudinal direction of the electrode structure according to the tenth embodiment of the present invention.
  • An electrode structure 2100 according to the tenth embodiment of the present invention (hereinafter referred to as “electrode structure 2100”) includes an electrode 2101, a sealing wire 2102 having one end connected to the electrode 2101, and a sealing wire. 2102 and a glass member 2103 formed so as to cover at least a part of 2102.
  • the electrode 2101 has a bottomed cylindrical shape, for example, and has an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 10 [mm]. And made of nickel (Ni).
  • the material of the electrode 2101 is not limited to nickel, and any one of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W), or any two or more alloys thereof can be used.
  • the electrode 2101 is connected to one end surface of the sealing wire 2102 at a substantially central portion of the outer bottom surface.
  • the electrode 2101 and the sealing wire 2102 may be directly connected or may be connected via a brazing material made of nickel foil or Kovar foil, for example.
  • As a method for connecting the electrode 2101 and the sealing wire 2102 laser welding, resistance welding, or the like can be used.
  • the sealing wire 2102 is, for example, connected to the outer bottom surface and one end surface of the electrode 2101 and covered with a glass member 2103 at a part of the side surface.
  • the sealing wire 2102 has a wire diameter of 0.8 [mm], for example, and is made of an alloy of iron and nickel.
  • an oxide film (not shown) is not formed on the surface of the portion covered with the glass member 103, or the maximum even if it is formed.
  • An oxide film having a thickness of 0.1 [ ⁇ m] or less is preferable.
  • the oxide film preferably contains one or both of FeO and Fe 3 O 4 .
  • the sealing wire 2102 contains iron, the tensile strength between the sealing wire 2102 and the glass member 2103 can be improved.
  • the oxide film contains at least Fe 3 O 4 .
  • the sealing wire 2102 contains iron, the tensile strength between the sealing wire 2102 and the glass member 2103 can be further improved.
  • the sealing wire 2102 can adjust its thermal expansion coefficient K l [K ⁇ 1 ] by adjusting the ratio of iron and nickel.
  • the thermal expansion coefficient K l [K ⁇ 1 ] of the sealing wire 2102 is 100 ⁇ 10 ⁇ . 7 [K -1 ].
  • Specific examples of alloys of iron and nickel used for the sealing wire 2102 are shown in Table 2.
  • the thermal expansion coefficient K l of the sealing wire 2102 is obtained by melting the sealing wire 2102 to prepare a sample, and measuring the elongation of the sample from 30 [° C.] to 300 [° C.] with a thermomechanical analyzer. be able to. If it is difficult to melt the sealing wire 2102 and measure it with a thermomechanical analyzer, such as when the sealing wire 2102 is small, the composition of the sealing wire 2102 is analyzed and the composition is substantially the same. After producing a large sample, the thermal expansion coefficient of the sealing wire 2102 can be obtained by measuring with a thermomechanical analyzer.
  • an external lead wire 2104 may be connected to the other end of the sealing wire 2102.
  • the external force applied to the external lead wire 2104 is absorbed by the connection portion between the sealing wire 2102 and the external lead wire 2104. Can be relaxed.
  • the external lead wire 2104 has, for example, a wire diameter of 0.6 [mm] and is made of nickel.
  • the external lead 2104 is not limited to nickel, and may be an alloy of nickel and manganese or a dumet wire. Note that the surface of the external lead wire 2104 may be covered with solder in order to prevent oxidation of the external lead wire 2104.
  • the glass member 2103 has a substantially spherical shape and seals the sealing wire 2102 along its substantially central axis.
  • the thermal expansion coefficient of the glass member 2103 can be adjusted, for example, by adjusting the composition of the glass that is the material. Specific examples of the glass composition used for the glass member 2103 are shown in Table 3.
  • the thermal expansion coefficient K g of the glass member 2103 can be obtained by melting the glass member 2103 to prepare a sample, and measuring the elongation of the sample at 30 [° C.] to 300 [° C.] using a thermomechanical analyzer. it can.
  • a thermomechanical analyzer such as when the glass member 2103 is small, the composition of the glass member 2103 is analyzed, and a large sample having substantially the same composition is analyzed.
  • the thermal expansion coefficient of the glass member 2103 can be obtained by measuring with a thermomechanical analyzer.
  • the thermal expansion coefficient of the sealing wire 2102 is K l [K ⁇ 1 ] and the thermal expansion coefficient of the glass member is K g [K ⁇ 1 ], 7.5 ⁇ 10 ⁇ 7 ⁇ (K l ⁇ K g ) ⁇ 12 ⁇ 10 ⁇ 7 and 90 ⁇ 10 ⁇ 7 ⁇ K g ⁇ 100 ⁇ 10 ⁇ 7 , strain generated in the glass member in the electrode structure can be reduced.
  • Residual stress was measured with a residual stress measuring device (Polarimeter SFII-C type, manufactured by Shinko Seiki Co., Ltd.) with the middle portion in the longitudinal direction of the sealed portion as a measuring point. This measurement point is because when the glass member is formed, the temperature difference at the time of cooling is larger than that of the outer surface of the glass member, so that the residual stress is the largest among the glass members.
  • FIG. 15 shows the correlation between (K l -K g ) and the residual stress, where the horizontal axis represents the magnitude of (K l -K g ) and the vertical axis represents the magnitude of the residual stress at the sealed portion.
  • the K l -K If g is the 7.5 ⁇ 10 -7 [K -1] or 12 ⁇ 10 -7 [K -1] within the range, residual stress in the glass member It can be 0 or more and 60 [kgf / cm 2 ] or less. In other words, the magnitude of strain generated in the glass member can be reduced.
  • the residual stress is larger than 60 [kgf / cm 2 ]
  • the portion where the residual stress of the glass member is large On the other hand, it has been confirmed that further stress is generated, and the glass member is not able to withstand the stress and is damaged. That is, if the residual stress in the portion having the largest residual stress is reduced, the glass member can be prevented from being damaged.
  • K 1 -K g is in the range of 7.5 ⁇ 10 ⁇ 7 [K ⁇ 1 ] to 12 ⁇ 10 ⁇ 7 [K ⁇ 1 ], the distortion of the glass member is reduced, and the sealing line And the glass member can be improved in sealing property (airtightness).
  • K 1 -K g is more preferably in the range of 9 ⁇ 10 ⁇ 7 [K ⁇ 1 ] to 12 ⁇ 10 ⁇ 7 [K ⁇ 1 ].
  • the residual stress of the glass member can be 0 or more and 40 [kgf / cm 2 ] or less.
  • K 1 ⁇ K g is preferably 11 ⁇ 10 ⁇ 7 [K ⁇ 1 ] or less. In this case, generation of negative residual stress can be steadily prevented.
  • the low-pressure discharge lamp using the electrode structure 2100 is reduced by reducing the distortion of the glass member 2103 of the electrode structure 2100.
  • the glass member can be prevented from being damaged at the sealing portion.
  • FIG. 16 shows a cross-sectional view including the tube axis X 2200 of the low-pressure discharge lamp according to the eleventh embodiment of the present invention.
  • a low-pressure discharge lamp 2200 (hereinafter referred to as “lamp 2200”) according to an eleventh embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at at least one end of a glass bulb 2201 and a glass bulb 2201. An electrode structure 2100.
  • the glass bulb 2201 has a straight tube shape, and a cross section cut substantially perpendicular to the tube axis has a substantially annular shape.
  • the glass bulb 2201 has, for example, an outer diameter of 4 [mm], an inner diameter of 3 [mm], and an overall length of 1000 [mm], and the material thereof is soft glass such as lead-free glass or soda glass.
  • the dimensions of the lamp 2200 shown below are values corresponding to the dimensions of the glass bulb 2201 having an outer diameter of 4 [mm] and an inner diameter of 3 [mm].
  • Mercury and rare gas are sealed inside the glass bulb 2201. Mercury is sealed in an amount of 3 mg, for example.
  • the rare gas is, for example, a mixed gas of argon (Ar) and neon (Ne), and a gas having a molar ratio of Ar: 10 [mol%] and Ne: 90 [mol%] is sealed at a pressure of 40 [Torr]. Has been.
  • a phosphor layer 2202 is formed on the inner surface of the glass bulb 2201.
  • the phosphor layer 2202 includes, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ), and blue phosphor particles (BaMg 2 Al 16 O). 27 : Eu 2+ ).
  • yttrium oxide Y 2 O 3
  • silicon oxide SiO 2
  • aluminum oxide Al 2 O 3
  • zinc oxide ZnO
  • TiO 2 titanium oxide.
  • a protective film (not shown) of a metal oxide such as (TiO 2 ) may be provided.
  • the electrode structure 2100 is substantially the same as the electrode structure 2100 according to the tenth embodiment of the present invention, and is provided at both ends of the glass bulb 2201.
  • the coefficient of thermal expansion K g [K ⁇ 1 ] of the glass member 2103 of the electrode structure 2100 in a state sealed to the glass bulb 2201 is the tube axis direction center portion side of the glass member 2103 (from the broken line arrow in FIG. 16).
  • the glass bulb is cut, the glass member 2103 is melted together with the glass bulb 2201 to prepare a sample, and the elongation amount of the sample from 30 [° C.] to 300 [° C.] by a thermomechanical analyzer It can be obtained by measuring.
  • a part of the glass bulb 2201 is mixed with the glass member, but since the amount thereof is smaller than the amount of the glass member 2103, the influence is considered to be small.
  • thermomechanical analyzer If it is difficult to melt the glass member 2103 and measure it with a thermomechanical analyzer, such as when the glass member 2103 is small, the composition of the glass member 2103 is analyzed, and a large sample with substantially the same composition is analyzed. after having produced, it is possible to obtain a coefficient of thermal expansion K g of the glass member 2103 by measuring by thermomechanical analyzer.
  • the sealing portion of the electrode structure 2100 As described above, according to the configuration of the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention, it is possible to prevent the sealing portion of the electrode structure 2100 from being damaged.
  • the thermal expansion coefficient K b of the glass bulb 2201 is preferably in the range of 90 ⁇ 10 ⁇ 7 [K ⁇ 1 ] to 100 ⁇ 10 ⁇ 7 [K ⁇ 1 ]. In this case, the sealing property with the electrode structure 2100 can be improved.
  • a cesium compound may adhere to the inner surface of the electrode 2101.
  • the lamp voltage of the lamp 2200 can be reduced, and the dark start characteristics can be improved.
  • FIG. 17 is a sectional view including the tube axis X 2300 of the low-pressure discharge lamp according to the twelfth embodiment of the present invention.
  • a discharge tube (hereinafter referred to as “lamp 2300”) according to a twelfth embodiment of the present invention is an internal / external electrode fluorescent lamp.
  • the lamp 2300 has an external electrode 2301 on the outer surface of one end thereof, and has substantially the same configuration as that of the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention except for the configuration associated therewith. . Therefore, the external electrode 2301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
  • the external electrode 2301 is made of, for example, solder and is formed so as to cover the outer surface of one end of the glass bulb 2201.
  • the external electrode 2301 may be formed by applying a silver paste to the entire circumference of the electrode forming portion of the glass bulb 2201, or a metal cap may be put on one end of the glass bulb 2201. Further, an aluminum metal foil may be attached so as to cover the entire outer peripheral surface of one end of the glass bulb 2201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin. .
  • a conductive adhesive you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
  • a protective film of yttrium oxide may be provided on the inner surface of the glass bulb 2201 and in the region where the external electrode 2301 is formed.
  • Y 2 O 3 yttrium oxide
  • the protective film may be made of metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide.
  • metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide.
  • silica SiO 2
  • Al 2 O 3 alumina
  • ZnO zinc oxide
  • TiO 2 titania
  • the other end of the glass bulb 2201 may be sealed by heating and melting one end of the glass bulb 2201 without using the glass member 2103.
  • FIG. 18A is a cross-sectional view including the central axis X 2400 in the longitudinal direction of the electrode structure according to the thirteenth embodiment of the present invention.
  • An electrode structure according to a thirteenth embodiment of the present invention (hereinafter referred to as “electrode structure 2400”) includes an electrode 2401, a sealing wire 2402 having one end connected to the electrode 2401, and a sealing wire 2402. And a glass member 2403 formed so as to cover at least a part thereof.
  • the electrode 2401 is, for example, a filament coil made of tungsten.
  • the electrode 2401 has an emitter (not shown) attached to its winding portion.
  • the emitter for example, (Ba, Sr, Ca) O or the like can be used.
  • the electrode 2401 is not limited to a filament coil made of tungsten, but may be a filament coil made of rhenium tungsten. In this case, the strength when the electrode 2401 is heated by lighting a lamp or the like can be improved.
  • the electrode 2401 is supported by a pair of sealing wires 2402 at both ends.
  • the sealing wire 2402 is made of an alloy of iron (Fe) and nickel (Ni), for example. Specifically, it is preferably made of an alloy of nickel in the range of 50 [wt%] to 52 [wt%] and the remaining iron.
  • At least a part of the pair of sealing wires 2402 is covered with a glass member 2403.
  • the glass member 2403 has a substantially egg shape, a cross section cut perpendicularly to the line axis of the sealing line 2402 has a substantially elliptical shape, and the midpoint of the pair of sealing lines 2402 is substantially the midpoint of the glass member 2403.
  • the glass member 2103 has substantially the same configuration except that the sealing wire 2402 is sealed so as to pass therethrough.
  • the number of glass members 2403 is not limited to 1 [piece], and a plurality of glass members 2403 may be provided in the longitudinal direction of the sealing wire 2402.
  • a plurality of glass members 2403 may be provided in the longitudinal direction of the sealing wire 2402.
  • the low-pressure discharge lamp is reduced using the electrode structure 2400 by reducing the distortion of the glass member 2403 of the electrode structure 2400. Can be prevented from being damaged when the electrode structure 2400 is sealed.
  • Electrode structure 2404 The electrode structure shown in FIG. 18B (hereinafter referred to as “electrode structure 2404”) may be used.
  • the electrode 2405 has a double spiral structure with the central axis X 2404 in the longitudinal direction of the electrode structure 2404 as a turning axis. In this case, the diameter of the lamp can be easily reduced as compared with the electrode structure 2400.
  • the sealing wire 2406 has a linear shape and has substantially the same configuration as the sealing wire 2402 except for the shape.
  • the electrode 2405 and the sealing wire 2406 are preferably connected via a connecting member 2407.
  • the connecting member 2407 is made of nickel, for example.
  • the sleeve 2408 is made of nickel, for example, and is connected to one connection member by welding. Note that the material of the sleeve 2408 is not limited to nickel, and, for example, molybdenum, tantalum, niobium, tungsten, or the like can be used.
  • FIG. 19A shows a cross-sectional view including the central axis X 2500 in the longitudinal direction of the low-pressure discharge lamp according to the fourteenth embodiment of the present invention.
  • the low-pressure discharge lamp (hereinafter referred to as “lamp 2500”) according to the fourteenth embodiment of the present invention is a hot cathode fluorescent lamp, and includes the electrode structure 2400 according to the thirteenth embodiment of the present invention. Except for this point, it has substantially the same configuration as the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention.
  • the sealed portion of the electrode structure 2400 can be prevented from being damaged.
  • a low-pressure discharge lamp (hereinafter referred to as “lamp 2501”) including an electrode structure 2404 may be used.
  • the glass bulb 2201 in addition to preventing the sealed portion of the electrode structure 2404 from being damaged, the glass bulb 2201 can be reduced in diameter.
  • a conventional low-pressure discharge lamp 3001 (hereinafter referred to as “lamp 3001”) is, for example, a cold cathode discharge lamp, and includes a glass tube 3002 and electrode structures 3003 sealed at both ends of the glass tube 3002. .
  • the electrode structure 3003 includes an electrode 3004, a lead wire 3005 connected to the electrode 3004, and a glass bead 3006 attached to the lead wire 3005.
  • the electrode 3004 and the lead wire 3005 are resistance-welded, and then a cylindrical glass bead 3006 is fitted to the lead wire 3005, and the glass bead 3006 is used by the gas burner 3007. Is heated and melted (see, for example, JP-A-8-236023). (Issue to solve)
  • the tube diameter of the glass tube 3002 is large, it is necessary to increase the thickness of the glass bead 3006. Since the glass bead 3006 is produced by melting a glass tube (not shown), a thick glass tube is required to produce a thick glass bead.
  • the speed at which the glass tube is stretched must be slowed.
  • the glass tube may sag and the shape may become unstable.
  • the thick glass bead 3006 is difficult to cover the lead wire 3005 because heat is not easily transmitted to the inside of the glass tube when the glass tube is melted by heating to be processed into a glass bead. Since the portion covered with the glass bead 3006 serves as a sealing portion of the lamp 3001, when the glass bead 3006 is not covered with the lead wire 3005, air enters the internal space of the glass tube 3002, There is a possibility that the lamp 3001 may not light up.
  • the electrode structure according to the present embodiment is intended to be sealed on a glass tube having a large tube diameter and to improve its sealing property.
  • the low-pressure discharge lamp according to this embodiment aims to improve the sealing property when the diameter of the glass tube is increased.
  • FIG. 21 shows a cross-sectional view including the central axis X 3100 in the longitudinal direction of the electrode structure according to the fifteenth embodiment of the present invention.
  • An electrode structure 3100 according to the fifteenth embodiment of the present invention (hereinafter referred to as “electrode structure 3100”) includes an electrode 3101, a lead wire 3102 having one end connected to the electrode 3101, and at least a lead wire 3102. And a glass bead 3103 formed so as to cover a part.
  • the electrode 3101 has, for example, a cylindrical shape with a bottom, an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni).
  • the material of the electrode 3101 is not limited to nickel, and an alloy containing one or more of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W) can be used.
  • the electrode 3101 is connected to one end surface of the lead wire 3102 at a substantially central portion of the outer bottom surface thereof.
  • the electrode 3101 and the lead wire 3102 may be directly connected, or may be connected via a brazing material made of nickel foil or Kovar foil, for example. As a connection method, laser welding, resistance welding, or the like can be used.
  • the outer bottom surface and one end surface of the electrode 3101 are connected, and the inner lead 3102 a line covered with the glass bead 3103 is partly connected to the other end surface and one end surface of the inner lead wire 3102 a. It consists of a connection with an external lead wire 3102b.
  • the internal lead wire 3102a has a wire diameter of 0.8 [mm] and is made of tungsten.
  • the internal lead wire 3102a is preferably made of a material that matches the thermal expansion coefficient of glass used as the material of the glass bead 3103.
  • the glass bead is borosilicate glass for sealing Kovar wire, it is preferable to use an alloy of iron, nickel, and cobalt (Kovar).
  • the glass beads 3103 are soft glass such as lead-free glass or soda glass, it is preferable to use an alloy of iron and nickel.
  • an oxide film (not shown) is preferably formed on the surface of at least a portion of the internal lead wire 3102a covered with the glass bead 3103. In this case, the sealing property between the internal lead wire 3102a and the glass bead 3103 can be improved. Further, the oxide film preferably contains FeO. In this case, the sealing property between the internal lead wire 3102a and the glass bead 3103 can be further improved.
  • the external lead wire 3102b has a wire diameter of 0.6 [mm] and is made of nickel.
  • the external lead wire 3102b is not limited to nickel, and an alloy of nickel and manganese, jumet, or the like may be used.
  • the surface of the external lead wire 3102b may be covered with solder in order to prevent oxidation of the external lead wire 3102b.
  • the glass bead 3103 has a substantially spherical shape, covers (seals) the internal lead wire 3102a along its substantially central axis, and is made of borosilicate glass for sealing tungsten wires.
  • the glass bead 3103 has a two-layer structure, and includes an inner layer 3103a covering the inner lead 3102a and an outer layer 3103b covering the inner layer. Thereby, it is easy to form a glass tube as a material of the glass bead 3103, and when processing from the glass tube to the glass bead, it can be sufficiently heated and melted for one layer of the glass bead, The outer diameter of the glass bead can be increased and sealed to a glass tube having a large tube diameter, and the sealing property can be improved.
  • the glass bead 3103 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube to be sealed using the electrode structure 3100. Further, from the viewpoint of sealing properties, the glass bead 3103 is preferably made of a material having the same or similar thermal expansion coefficient as the material of the sealing partner (in the case of a discharge lamp, the glass tube 3201).
  • the manufacturing method of the electrode structure 3100 will be described in detail below.
  • the manufacturing method of the electrode structure 3100 includes a connecting step of connecting the electrode 3101 and the lead wire 3102, an inserting step of inserting the lead wire 3102 into the cavity of the multiple glass tube 3104 that is a material of the glass bead 3103, and a glass tube And a heating step of heating and melting 3104.
  • a connecting step of connecting the electrode 3101 and the lead wire 3102 includes a connecting step of connecting the electrode 3101 and the lead wire 3102, an inserting step of inserting the lead wire 3102 into the cavity of the multiple glass tube 3104 that is a material of the glass bead 3103, and a glass tube And a heating step of heating and melting 3104.
  • connection step one end surface of the lead wire 3102 is brought into contact with the outer bottom surface of the electrode 3101 and connected by, for example, resistance welding.
  • the connection method is not limited to resistance welding, and laser welding or the like may be used.
  • the lead wire is inserted into the hollow portion of the cylindrical glass tube 3104 from the end opposite to the side to which the electrode is connected. Since the glass tubes 3104 are multiple, first, the lead wire 3102 may be inserted into the hollow portion of the glass tube 3104a with a small diameter, and then the glass tube 3104a with a small diameter may be inserted into the glass tube 3104b with a large diameter. Then, the lead wire 3102 may be inserted into the hollow portion of the small diameter glass tube 3104a in a state where the small diameter glass tube 3104a is inserted into the hollow portion of the large diameter glass tube 3104b.
  • the lead wire 3102 is inserted into the fixing hole 3105a provided on one end face of the jig 3105 and fixed.
  • the glass tube 3104 is heated by, for example, a gas burner 3106 in a state where the lead wire 3102 is inserted and fixed in the fixing hole 3105 a of the jig 3105.
  • the glass bead 3103 covered with the lead wire 3102 is formed by melting the glass tube 3104a having a small diameter and the glass tube 3104b having a large diameter together.
  • the electrode structure 3100 according to the fifteenth embodiment of the present invention can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved.
  • the glass bead 3103 has a two-layer structure, and the ratio of the thickness m of the inner layer 3103a to the thickness n of the outer layer 3103b at the middle portion of the glass bead 3103 in the longitudinal direction is 1: It is preferably within the range of 0.5 or more and 1: 2 or less. In this case, the glass tube used as the material of the inner layer 3103a and the outer layer 3103b can be sufficiently melted to form a glass bead having a stable shape. Further, the ratio of m: n is more preferably in the range of 1: 0.8 or more and 1: 1.5 or less.
  • the ratio of the length r in the longitudinal direction of the electrode structure to the length s in the direction substantially perpendicular to the longitudinal direction of the electrode structure is in the range of 1: 1 to 1: 4. It is preferable to be within. In this case, when the glass tube is melted to form a glass bead, the inside of the glass tube can be sufficiently melted to improve the sealing property. Furthermore, the ratio of r: s is more preferably in the range of 1: 1 or more and 1: 2 or less.
  • FIG. 23 is a sectional view including the tube axis X 3200 of the low-pressure discharge lamp according to the sixteenth embodiment of the present invention.
  • a low-pressure discharge lamp 3200 (hereinafter referred to as “lamp 3200”) according to a sixteenth embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at a glass tube 3201 and at least one end of the glass tube 3201. An electrode structure 3100.
  • the glass tube 3201 is a straight tube, and a cross section cut perpendicularly to the tube axis has a substantially annular shape.
  • the glass tube 3201 has, for example, an outer diameter of 6 [mm], an inner diameter of 5 [mm], and an overall length of 1026 [mm], and the material thereof is, for example, borosilicate glass.
  • the dimensions of the lamp 3200 shown below are values corresponding to the dimensions of the glass tube 3201 having an outer diameter of 6 [mm] and an inner diameter of 5 [mm].
  • Mercury and a rare gas are sealed inside the glass tube 3201. For example, 3.5 [mg] mercury is enclosed in the mercury.
  • the rare gas for example, neon and argon are sealed at a pressure of 60 [Torr] with a mixed gas having a molar ratio of Ar: 5 [mol%] and Ne: 95 [mol%].
  • a phosphor layer 3202 is formed on the inner surface of the glass tube 3201.
  • the phosphor particles used for the phosphor layer 3202 are, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ), and blue phosphor particles ( BaMg 2 Al 16 O 27 : Eu 2+ ).
  • yttrium oxide Y 2 O 3
  • silicon oxide SiO 2
  • aluminum oxide Al 2 O 3
  • zinc oxide ZnO
  • oxide A protective film (not shown) of a metal oxide such as titanium (TiO 2 ) may be provided.
  • luminance maintenance factor can be improved by suppressing reaction with the sodium component of a glass tube, and mercury.
  • the internal diameter of the glass tube 3201 exists in the range of 3 [mm] or more and 9 [mm] or less. In this case, it is difficult to seal the glass tube 3201 with a single glass bead, and it is possible to seal with a multi-layer glass bead. Further, the inner diameter of the glass tube 3201 is more preferably in the range of 4 [mm] to 9 [mm]. In this case, it is particularly difficult to seal the glass tube 3201 with a single glass bead, and the glass tube 3201 can be sealed with a multilayer glass bead.
  • the wall thickness of the glass tube is preferably in the range of 0.3 [mm] to 1.2 [mm]. In this case, heat necessary for sealing the glass beads can be easily transmitted when sealing to the glass tube. Furthermore, the thickness of the glass tube is more preferably within a range of 0.4 [mm] to 0.8 [mm].
  • the electrode structure 3100 is substantially the same as the electrode structure 3100 according to the fifteenth embodiment of the present invention, and is sealed at both ends of the glass tube 3201.
  • the sealing property can be improved.
  • FIG. 24 is a cross-sectional view including the tube axis X 3300 of the low-pressure discharge lamp according to the seventeenth embodiment of the present invention.
  • a low-pressure discharge lamp 3300 (hereinafter referred to as “lamp 3300”) according to a fifteenth embodiment of the present invention is an internal / external electrode fluorescent lamp.
  • the lamp 3300 has an external electrode 3301 on the outer surface of one end thereof, and has substantially the same configuration as the low-pressure discharge lamp 3200 according to the sixteenth embodiment of the present invention, except for the configuration associated therewith. . Therefore, the external electrode 3301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
  • the external electrode 3301 is made of, for example, solder and is formed so as to cover the outer surface of one end portion of the glass tube 3201.
  • the external electrode 3301 may be formed by applying a silver paste to the entire circumference of the electrode forming portion of the glass tube 3201, or a metal cap may be put on one end of the glass tube 3201. Further, an aluminum metal foil may be attached so as to cover the entire outer peripheral surface of one end of the glass tube 3201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin. .
  • a conductive adhesive you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
  • a protective film of, for example, yttrium oxide (Y 2 O 3 ) may be provided on the inner surface of the glass tube 3201 and the region where the external electrode 3301 is formed.
  • Y 2 O 3 yttrium oxide
  • the protective film may be made of metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide.
  • metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide.
  • silica SiO 2
  • Al 2 O 3 alumina
  • ZnO zinc oxide
  • TiO 2 titania
  • the protective film is not an essential component in the present invention and may not be formed at all, or may be formed over the entire inner surface of the glass tube 3201.
  • One end of the glass tube may be sealed by heating and melting one end of the glass tube 3201 without using a glass bead, or the electrode according to the fifteenth embodiment of the present invention.
  • the glass beads 3103 similar to the structure 3100 may be used for sealing.
  • the sealing property can be improved.
  • FIG. 25 is a sectional view including the tube axis X 3400 of the low-pressure discharge lamp according to the eighteenth embodiment of the present invention.
  • a low-pressure discharge lamp 3400 (hereinafter referred to as “lamp 3400”) according to an eighteenth embodiment of the present invention is an external electrode fluorescent lamp.
  • the lamp 3400 has external electrodes 3301 on the outer surfaces of both end portions thereof, and has substantially the same configuration as the low-pressure discharge lamp 3300 according to the sixteenth embodiment of the present invention except for the configuration associated therewith. . Therefore, the external electrode 3301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
  • the lamp 3400 includes a glass tube 3201 and a multi-layered glass bead 3103 sealed at at least one end of the glass tube 3201. Specifically, in the lamp 3400, one end of a glass tube 3201 is sealed with a glass bead 3103 having a multilayer structure, and the other end is sealed without using a glass bead.
  • the multilayer glass bead 3103 is substantially the same as the glass bead 3103 according to the fifteenth embodiment of the present invention. Note that both ends of the glass tube 3201 may be sealed with a multilayer glass bead 3103.
  • the sealing performance can be improved when the diameter of the glass tube 3201 is increased.
  • FIG. 26 is a cross-sectional view including the central axis in the longitudinal direction of the electrode structure according to the nineteenth embodiment of the present invention.
  • An electrode structure 3500 (hereinafter referred to as “electrode structure 3500”) according to a nineteenth embodiment of the present invention includes an electrode 3501, a lead wire 3502 having one end connected to the electrode 3501, and at least a lead wire 3502. A glass bead 3503 formed so as to cover a part thereof.
  • the electrode structure 3500 includes an electrode 3501, a pair of lead wires 3502 that respectively support both ends of the electrode 3501, and a glass bead 3503.
  • the electrode 3501 is a filament coil made of tungsten, for example.
  • the electrode 3501 has an emitter (not shown) attached to its winding portion.
  • the emitter for example, (Ba, Sr, Ca) O or the like can be used.
  • the electrode 3501 is not limited to a filament coil made of tungsten, and a filament coil made of rhenium tungsten can also be used. In this case, the strength when the electrode 3501 is heated by lamp lighting or the like can be improved.
  • the electrode 3501 may have a double spiral structure with the central axis of the electrode structure as a turning axis.
  • the lead wire 3502 is made of, for example, an alloy of iron (Fe) and nickel (Ni). Specifically, it is preferably made of an alloy of nickel in the range of 50 [wt%] to 52 [wt%] and the remaining iron.
  • the glass bead 3503 has a substantially egg shape, and a cross section perpendicular to the line axis of the lead wire 3502 has a substantially elliptical shape, and the midpoint of the two lead wires 3502 passes through the substantially midpoint of the glass bead 3503. In this way, the lead wire 3502 is sealed, for example, made of lead-free glass.
  • the glass bead 3503 has a two-layer structure, and includes an inner layer 3503a covering a pair of lead wires 3502 and an outer layer 3503b covering each inner layer. Thereby, it is easy to form a glass tube as a material of the glass bead, and when processing from the glass tube to the glass bead, it can be sufficiently heated and melted for one layer of the glass bead. By increasing the outer diameter of the bead, it can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved.
  • the inner layer 3503a is formed so as to cover the pair of lead wires 3502, and the inner layer 3503a is formed so as to cover the inner layer 3503a together.
  • the glass bead 3503 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube sealed using the electrode structure 3500. Further, from the viewpoint of sealing properties, the glass bead 3503 is preferably made of the same material as the sealing partner material (in the case of a discharge lamp, the glass tube 3201) or a similar material.
  • the manufacturing method of the electrode structure 3500 will be described in detail below.
  • the manufacturing method of the electrode structure 3500 includes a connection step of connecting the electrode 3501 and the lead wire 3502, an insertion step of inserting the lead wire 3502 into the cavity of the multiple glass tube 3504 that is a material of the glass bead 3503, and a glass tube. And a heating step of heating and melting 3504.
  • each process is demonstrated in detail using FIG.
  • both ends of the electrode 3501 are supported by two lead wires 3502, respectively. Specifically, one end of each of the pair of lead wires 3502 is bent, and both ends of the electrode 3501 are sandwiched and caulked to be carried.
  • the lead wire 3502 is inserted into the hollow portion of the cylindrical glass tube 3504 from the end opposite to the side where the electrode 3501 is connected. Since the glass tubes 3504 are multiple, first, two lead wires 3502 are respectively inserted into the hollow portions of the glass tubes 3504a having small diameters, and then the glass tubes 3504a having small diameters are joined to the glass tubes 3504b having large diameters.
  • the two lead wires 3502 may be inserted into the hollow portions of the small-diameter glass tubes 3504a in a state where two small-diameter glass tubes 3504a are inserted into the hollow portions of the large-diameter glass tubes 3504b. May be.
  • a lead wire 3502 is inserted into a fixing hole 3505a provided on one end surface of the jig 3505 and fixed.
  • connection step may be performed after the insertion step.
  • the distance between the two lead wires can be regulated by the jig, and variations in the shape and pitch of the filament coil as an electrode can be suppressed.
  • the glass tube 3504 is heated by, for example, a gas burner 3506 in a state where the lead wire 3502 is inserted and fixed in the fixing hole 3505a of the jig 3505.
  • the glass bead 3503 attached to the lead wire 3502 is formed by melting the glass tube 3504a having a small diameter and the glass tube 3504b having a large diameter together.
  • the electrode structure 3500 according to the nineteenth embodiment of the present invention can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved.
  • FIG. 28 is a sectional view including the tube axis X 3600 of the low-pressure discharge lamp according to the twentieth embodiment of the present invention.
  • a low-pressure discharge lamp 3600 (hereinafter referred to as “lamp 3600”) according to the twentieth embodiment of the present invention is a hot cathode fluorescent lamp, and includes an electrode structure 3500 according to the nineteenth embodiment of the present invention. Is substantially the same as the low-pressure discharge lamp 3200 according to the sixteenth embodiment of the present invention.
  • the sealing property can be improved when the diameter of the glass tube is increased.
  • FIG. 29A shows a cross-sectional view including the longitudinal central axis X 3107 of Modification 1 of the electrode structure according to the fifteenth embodiment of the present invention.
  • electrode structure 3107 the glass bead 3108 has an inner layer 3108a as an outer layer in the direction of the axis of the lead wire 3102.
  • the point shorter than 3108b has the structure substantially the same as the electrode structure 3100 which concerns on the 15th Embodiment of this invention.
  • the end on the electrode 3101 side in the inner layer 3108 a of the glass bead 3108 is on the side opposite to the electrode 3101 than the end on the electrode 3101 side of the outer layer 3108 b. It is getting shorter. In this case, the contact area between the glass tube and the glass bead 3108 can be increased without increasing the contact area between the lead wire 3102 and the glass bead 3108.
  • the electrode structure 3107 is sealed to the glass tube, the glass tube Can be easily sealed without greatly deforming.
  • the glass bead 3503 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure in accordance with the inner diameter of a glass tube sealed using the electrode structure 3100.
  • the innermost layer can be made shorter than the outermost layer in the direction of the axis of the lead wire 3102.
  • the length of the lead wire 3102 is shortened from the innermost layer toward the outermost layer. In this case, the glass tube can be further easily sealed.
  • FIG. 29B is a cross-sectional view including the central axis X 3109 in the longitudinal direction of Modification 2 of the electrode structure according to the fifteenth embodiment of the present invention.
  • the glass bead 3110 has an inner layer 3110a as an outer layer in the direction of the axis of the lead wire 3102. Except for the point longer than 3110b, it has the structure substantially the same as the electrode structure 3100 which concerns on the 15th Embodiment of this invention. Specifically, in the direction of the axis of the lead wire 3102, the end portion on the electrode 3101 side of the inner layer 3110 a of the glass bead 3110 is longer on the electrode 3101 side than the end portion of the outer layer 3110 b. In this case, when the electrode structure 3109 is sealed to the glass tube while increasing the contact area between the lead wire 3102 and the glass bead 3110 to further improve the sealing property, the molten glass tube contacts the electrode 3101. Can be prevented.
  • the glass bead 3110 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube sealed using the electrode structure 3100.
  • the innermost layer can be made longer than the outermost layer in the direction of the axis of the lead wire 3102.
  • the length of the lead wire 3102 is shortened from the innermost layer toward the outermost layer. In this case, heating from the glass tube to the glass bead 3110 can be facilitated. 2.
  • the thermal expansion coefficient of the glass bead 3103 and the glass tube glass tube 3201 is in the range of 3.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more and 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or less. Can be used.
  • the thermal expansion coefficient of the glass tube 3201 is preferably in the range of 8.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] to 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ]. In this case, since the intensity
  • the lighting device may be configured similarly to the lighting device according to the embodiment (FIG. 10). Moreover, you may comprise an image display apparatus similarly to the image display apparatus which concerns on 9th Embodiment (FIG. 11) using the said illuminating device.
  • a conventional low-pressure discharge lamp manufacturing method is a fluorescent lamp manufacturing method in which one electrode 4003A is sealed at one end 4001a of a glass tube 4001, and a predetermined inner portion of the other end 4001c of the glass tube 4001 is provided.
  • the step of heating the glass tube 4001 in which the mercury emitter 4005 is accommodated, and the other electrode 4003B are connected to the glass tube 400 Sealed in with to form a fluorescent lamp, and a step of removing the other end 4001c moiety e.g., see Japanese Patent No. 3436283.
  • one electrode 4003A is sealed at one end 4001a of a glass tube 4001 having a phosphor layer 4002 on the inner surface, and the other electrode 4003B is attached to the glass tube 4001.
  • the other end 4001c is inserted into the predetermined portion 4001b.
  • the other electrode 4003B is temporarily fixed to the glass tube 4001 by partially heating and deforming 4004b of the glass tube 4001 (temporary fixing step).
  • a mercury emitter 4005 is inserted and arranged in the glass tube 4001. Then, the glass tube 4001 is set on the head of the exhaust device 4006 and the exhaust device 4006 is driven. Then, air, impure gas, etc. inside the glass tube 4001 are discharged through a communication portion between the inner surface of the glass tube 4001 and the electrode 4003B. Next, an inert gas, for example, neon-argon gas mainly composed of neon gas is filled into the glass tube 4001 from the exhaust device 4006 so as to have a pressure of 60 [Torr] to 70 [Torr] (exhaust / enclose process). Then, the other end of the glass tube 4001 is temporarily sealed.
  • an inert gas for example, neon-argon gas mainly composed of neon gas is filled into the glass tube 4001 from the exhaust device 4006 so as to have a pressure of 60 [Torr] to 70 [Torr] (exhaust / enclose process).
  • the high-frequency heating device 4007 and the heater device 4008 are set and driven at the portion where the mercury emitter 4005 is located.
  • the mercury emitter 4005 is heated to, for example, 800 [° C.] to 900 [° C.], the mercury alloy is decomposed, and mercury is instantaneously released in the state of vapor, and between the inner surface of the glass tube 4001 and the electrode 4003B. Is supplied to the space in the glass tube 4001 through the communication portion.
  • an impurity gas is also released from the metal member constituting the mercury emitter 4005, but is adsorbed by the getter material of the mercury emitter 4005 (mercury releasing step).
  • the mercury emitted from the mercury emitter 4005 corresponds to the glass between the electrodes 4003A and 4003B. It is reliably supplied to the space in the pipe. In particular, if the glass tube portion between the electrodes 4003A and 4003B is cooled, mercury condensation on the glass tube 4001 portion in which the mercury emitter 4005 is accommodated can be substantially eliminated.
  • the deformed portion 4004 of the glass tube 4001 is heated again with a burner or the like, and the sealing portion 4033 of the electrode 4003B and the glass tube 4001 opposed thereto are sealed over the entire circumference.
  • the other end portion of the glass tube 4001 (the glass tube portion where the mercury emitter 5 is located) is removed (separated) to complete the manufacture of the fluorescent lamp.
  • the mercury emitter 4005 is heated in the process of heating the mercury emitter 4005, when mercury vapor is released from the mercury emitter 4005, the mercury emission is caused by the force with which the mercury vapor is released to the outside of the mercury emitter 4005.
  • the body 4005 may bounce off.
  • the splashed mercury emitter 4005 collides with a sealing end formed by temporary sealing of the glass tube 4001 and the sealing end of the glass tube 4001 is damaged. There was a case.
  • the sealing end formed by the temporary sealing of the glass tube 4001 is processed in a state in which the inside of the glass tube is exhausted and under a negative pressure with respect to the atmosphere. Turned out to be thin and easy to break.
  • the manufacturing method of the low-pressure discharge lamp according to this embodiment aims to prevent the sealed end of the glass tube from being damaged when the mercury emitter is heated.
  • a manufacturing method of a low-pressure discharge lamp according to a twenty-first embodiment of the present invention is, for example, a manufacturing method of a cold cathode fluorescent lamp, and includes a low-pressure discharge lamp in which an electrode structure is provided on at least one end of a glass tube.
  • a manufacturing method the step of inserting the electrode structure into the glass tube from an opening at one end of the glass tube (electrode structure insertion step), and fixing the electrode structure to the inside of the glass tube
  • a step of fixing (electrode structure fixing step)
  • a step of inserting a mercury emitter into the glass tube from the opening at one end of the glass tube (mercury emitter inserting step), one end of the glass tube and the electrode
  • a step of forming a convex portion projecting toward the inner surface side of the glass tube between the structure and the mercury emitter (a convex portion forming step); and one end side of the glass tube from the convex portion.
  • Sealed tube That has a step (temporary sealing step), a step (mercury releasing material heating step) of heating the mercury releasing material.
  • Electrode structure insertion process First, as shown in FIG. 31A, the electrode structure 4101 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100.
  • the glass tube 4100 is, for example, a straight tube shape having an inner diameter of 3 [mm], an outer diameter of 4 [mm], a wall thickness of 0.5 [mm], and a length of 1026 [mm]. Made of free glass.
  • a phosphor layer 4102 is formed on the inner surface (excluding both ends) of the glass tube 4100.
  • Phosphor layer 4102 for example BaMg 2 Al 16 O 27; Eu 2+ blue phosphor particles consisting of a Y 2 O 3; Eu red phosphor particles consisting of 3+ and LaPO 4; Ce 3+, from Tb 3+ Green phosphor particles and a binder composed of CBBP, CBB, or the like.
  • yttrium oxide Y 2 O 3
  • silicon oxide SiO 2
  • aluminum oxide Al 2 O 3
  • zinc oxide ZnO
  • a protective film including any one or more of titanium oxide (TiO 2 ) may be provided.
  • the electrode structure 4101 includes, for example, an electrode 4103, a lead wire 4104 connected to the electrode 4103, and a glass bead 4105 formed so as to cover at least a part of the lead wire 4104.
  • the electrode 4103 has, for example, a cylindrical shape with a bottom, an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni).
  • the material of the electrode is not limited to nickel, and niobium (Nb), molybdenum (Mo), tantalum (Ta), tungsten (W), and the like can be used.
  • the electrode 4103 is connected to one end portion of the lead wire 4104 at a substantially central portion of the outer bottom surface thereof.
  • the outer bottom surface and one end portion of the electrode 4103 are connected, and at least a part of the lead wire 4104 is covered with the glass bead 4105, and the other end portion and one end portion of the internal lead wire 4104a are connected.
  • the external lead wire 4104b is connected.
  • the internal lead wire 4104a has a wire diameter of 0.8 [mm], for example, and is made of an alloy of iron and nickel.
  • the internal lead wire 4104a is preferably made of a material that matches the thermal expansion coefficient of the glass used as the material of the glass tube 4100 or the glass bead 4105.
  • the glass tube 4100 is borosilicate glass for sealing Kovar wire, it is preferable to use an alloy of iron, nickel, and cobalt (Kovar).
  • the glass tube 4100 is borosilicate glass for sealing tungsten wires, it is preferable to use tungsten.
  • the external lead wire 4104b has a wire diameter of, for example, 0.6 [mm] and is made of nickel. Note that the external lead wire 4104b is not limited to nickel, and an alloy of nickel and manganese, a jumet wire, or the like may be used.
  • the lead wire 4104 is not limited to the connection between the internal lead wire 4104a and the external lead wire 4104b, but may be a single wire.
  • the glass bead 4105 has, for example, a substantially spherical shape, and seals the internal lead wire 4104a along its substantially central axis, and is made of lead-free glass. Note that the glass bead 4105 is preferably made of the same material as the glass tube 4100 or a material having the same or similar thermal expansion coefficient as the glass tube 4100 from the viewpoint of sealing properties.
  • Another electrode structure 4106 is sealed to the other end of the glass tube 4100.
  • Another electrode structure 4106 has substantially the same configuration as the electrode structure 4101, and includes an electrode 4107, a lead wire 4108 formed by connecting the internal lead wire 4108 a and the external lead wire 4108 b, and a glass bead 4109.
  • the electrode structure 4101 is fixed inside the glass tube 4100.
  • the outer surface of the glass tube 4100 where the glass bead 4105 is located is heated by the burner 4110, and a part of the outer surface of the glass bead 4105 is fixed to the inner surface of the glass tube 4100. Therefore, what is fixed to the inner surface of the glass tube is a part of the outer surface of the glass bead 4105, so that the air permeability of the glass tube 4100 in the tube axis direction is maintained.
  • the heating temperature is about 800 [° C.] on the outer surface of the heated portion of the glass tube 4100.
  • a mercury emitter 4111 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100.
  • the mercury emitter 4111 is obtained by, for example, reacting mercury with a sintered body of iron and titanium.
  • the mercury emitter 4111 is not limited to this, and may be one in which a powdery amalgam of titanium and mercury is packed in a cylinder made of iron or nickel.
  • a convex portion 4112 protruding toward the inner surface side of the glass tube 4100 is formed between one end of the glass tube 4100 and the electrode structure 4101 and the mercury emitter 4111.
  • the convex portion 4112 can be formed, for example, by heating the outer surface of the glass tube 4100 with a burner 4113 or the like.
  • the inside of the glass tube 4100 is not under negative pressure with respect to the atmosphere, and is thicker than the sealing end portion described later. can do.
  • the minimum thickness of the convex portion 4112 is 0.5 [times] or more of the thickness of the glass tube 4100 substantially in the center in the tube axis direction, and the maximum thickness of the convex portion 4112 is the glass tube. It is preferable that it is 1.5 [times] or less of the wall thickness of 4100 in the substantially central portion in the tube axis direction. In this case, the strength of the convex portion 4112 can be easily maintained appropriately. Further, the minimum thickness of the convex portion 4112 is 0.7 [times] or more of the thickness of the glass tube 4100 substantially in the center of the tube axis direction, and the maximum thickness of the convex portion 4112 is glass. It is more preferable that it is 1.5 [times] or less of the wall thickness of the tube 4100 in the substantially central portion in the tube axis direction. In this case, the strength of the convex portion 4112 can be more easily maintained.
  • the rare gas is, for example, a mixed gas of neon 95 [mol%] and argon 5 [mol%].
  • the exhaust in the glass tube 4100 and the rare gas sealing are performed through a ventilation space formed between the glass bead 4105 and the inner surface of the glass tube 4100.
  • the glass tube 4100 When the rare gas is filled, the glass tube 4100 is heated and sealed on one end side of the glass tube 4100 with respect to the convex portion 4112 as shown in FIG. And the sealing end part 4100b of the glass tube 4100 is formed by this sealing. At this time, since the inside of the glass tube 4100 is under a negative pressure, the thickness of the sealing end 4100b is reduced. Specifically, the thickness of the sealing end 4100a of the glass tube 4100 tends to be less than 0.2 [times] the thickness of the glass tube 4100 in the substantially central portion in the tube axis direction.
  • the heating is performed by, for example, a burner 4114.
  • the rare gas is not limited to a mixed gas of neon and argon, and may include, for example, one or more of neon, argon, and krypton.
  • the gas pressure in the glass tube after sealing under a negative pressure is preferably in the range of 5 [Torr] to 600 [Torr]. In this case, it is suitable for producing a low-pressure discharge lamp. Furthermore, the gas pressure in the glass tube after sealing is more preferably in the range of 20 [Torr] to 40 [Torr]. In this case, it is more preferable to produce a cold cathode discharge lamp among the low pressure discharge lamps.
  • the mercury emitter 4111 is heated. Specifically, the mercury emitter 4111 is induction-heated by the high frequency oscillation coil 4115 disposed around the glass tube 4100 to release mercury vapor from the mercury emitter 4111.
  • the convex portion 4112 when the convex portion 4112 is formed, the convex portion 4112 can prevent the mercury emitter 4111 from moving to the sealing end 4100b of the glass tube 4100, and the mercury emitter 4111 can be prevented from moving to the glass tube 4100. It is possible to prevent collision with the sealing end 4100b. And since the convex part 4112 is formed before the glass tube 4100 is sealed, the sealing end part 4100b of the glass tube 4100 formed by the inside of the glass tube 4100 being under a negative pressure with respect to the atmosphere. In contrast, the wall thickness is thicker. Therefore, even if the mercury emitter 4111 collides with the convex portion 4112, the convex portion 112 can be prevented from being damaged. Thereby, it is possible to prevent the sealed end 4100b of the glass tube 4100 from being damaged by the mercury emitter 4111 colliding with the sealed end 4100b of the thin glass tube 4100.
  • the heated mercury emitter 4111 can prevent the glass tube 4100 from being locally heated and broken.
  • the heating of the mercury emitter 4111 is not limited to the high frequency oscillation coil, and an infrared heater such as a near infrared heater may be used.
  • the glass tube 4100 before heating the mercury emitter 4111 with a high-frequency oscillation coil or an infrared heater.
  • a high-frequency oscillation coil or an infrared heater when the mercury emitter 4111 is heated, the difference between the temperature of the mercury emitter 4111 and the temperature of the glass tube 4100 is reduced, thereby making it easy to prevent the glass tube 4100 from being damaged due to sudden thermal expansion. wear.
  • Preheating is preferably performed so that, for example, the outer surface degree of the heated portion of the glass tube 4100 is in the range of 200 [° C.] to 500 [° C.].
  • the glass tube 4100 is heated. More preferably, the outer surface temperature of the portion is in the range of 200 [° C.] to 400 [° C.] or less.
  • the portion of the glass tube 4100 where the mercury emitter 4111 exists with a heating furnace (not shown) or the like.
  • mercury vapor released from the mercury emitter 4111 can be easily moved toward the electrode structure 4101 in the glass tube 4100.
  • the sealing end 4100b of the glass tube 4100 is prevented from being damaged. Can do.
  • the manufacturing method of the low-pressure discharge lamp according to the twenty-second embodiment of the present invention is the same as that of the twenty-first embodiment of the present invention, except that the convex portion forming step is performed after the temporary sealing step and the accompanying differences. It has substantially the same configuration as the manufacturing method of such a low-pressure discharge lamp.
  • the low-pressure discharge lamp manufacturing method is a low-pressure discharge lamp manufacturing method in which an electrode structure is provided on at least one end of a glass tube, and one end of the glass tube Inserting the electrode structure into the glass tube through the opening, fixing the electrode structure into the glass tube, and opening the glass tube from one end of the glass tube.
  • the electrode structure 4101 is temporarily fixed from one end of the glass tube 4100 to the center side in the tube axis direction of the glass tube, the electrode structure 4106 is sealed to the other end of the glass tube 4100, and the electrode A state in which the mercury emitter 4111 is inserted between the structure 4101 and one end of the glass tube (that is, the mercury from the electrode structure insertion step in the manufacturing method of the low-pressure discharge lamp according to the twenty-first embodiment of the present invention)
  • the glass tube 4100 is exhausted and the glass tube 4100 is filled with a rare gas.
  • the head (not shown) of the air supply / exhaust device is attached to the end of the glass tube 4100 on the mercury emitter 4111 side, the inside of the glass tube 4100 is evacuated and evacuated, and the glass is heated by a heating device (not shown).
  • the entire tube 4100 is heated from the outside.
  • the heating temperature in this case is about 400 [° C.] on the outer surface of the glass tube 4100.
  • the impure gas in the glass tube 4100 including the impure gas that has entered the phosphor layer 4102 is discharged.
  • a predetermined amount of rare gas is filled.
  • the rare gas is, for example, a mixed gas of neon 95 [mol%] and argon 5 [mol%].
  • the exhaust in the glass tube 4100 and the rare gas sealing are performed through a ventilation space formed between the glass bead 4105 and the inner surface of the glass tube 4100.
  • the glass tube 4100 is heated and sealed on one end side of the glass tube 4100 with respect to the electrode structure 4101 and the mercury emitter 4111. And the sealing end part 4100b of the glass tube 4100 is formed by this sealing. Heating is performed, for example, by a burner 4114 or the like.
  • the conditions, such as a noble gas enclosed in the glass tube 4100 can apply the conditions similar to the temporary sealing process in the manufacturing method of the low pressure discharge lamp which concerns on the 21st Embodiment of this invention.
  • a convex portion 4112 is formed between one end of the glass tube 4100 and the electrode structure 4101 and the mercury emitter 4111.
  • the convex part 4112 can be formed by, for example, applying heated air to the outer surface of the glass tube.
  • the heated air blows out air heated by a heating element (not shown) such as a heater from the duct 4117, for example.
  • the temperature of the heated air blown out from the duct 4117 (the temperature at the inner tip of the duct 4117) is about 920 [° C.].
  • the temperature of the heated air is not limited to about 920 [° C.], but is preferably in the range of 800 [° C.] to 1050 [° C.].
  • the air volume at this time is preferably in the range of 8 [L / min] to 30 [L / min].
  • the air volume is more preferably in the range of 15 [L / min] to 20 [L / min].
  • the convex portion 4112 when the convex portion 4112 is formed, the heated portion is less likely to be shaken, and a constant amount of heat can be stably maintained even without abrupt heating as in a gas burner.
  • the thickness of the convex portion 4112 can be increased with respect to the sealing short portion 4100b of the glass tube 4100. Therefore, when mercury vapor is released from the mercury emitter 4111 in the mercury emitter heating step, the mercury emitter 4111 jumps out by the force with which the mercury vapor is released to the outside of the mercury emitter 4111, and the mercury emitter 4111. Even if it collides with the convex portion 4112, the glass tube 4100 can be prevented from being damaged at the convex portion 4112 because the convex portion 4112 is thick.
  • FIG. 33 (b) air heated from one side is applied to the outer surface of the glass tube 4100. However, even if heated air is applied to a plurality of locations in the circulation direction of the glass tube 4100. Good. In this case, by forming the convex portions 4112 at a plurality of locations, it is possible to easily prevent the mercury emitter 4111 from slipping from the convex portions 4112 to one end side of the glass tube 4100.
  • each convex portion 4112 formed at a plurality of locations can be reduced to prevent the occurrence of distortion near the convex portion 4112.
  • the glass tube is heated when the mercury emitter 4111 is heated even if the protrusion forming step is performed after the temporary sealing step. It is possible to prevent the sealing end portion 4100b and the convex portion 4112 of 4100 from being damaged.
  • the low pressure discharge lamp manufacturing method is a low pressure discharge lamp manufacturing method in which an electrode structure is provided on at least one end of a glass tube. Inserting the electrode structure into the glass tube through the opening, fixing the electrode structure into the glass tube, and between one end of the glass tube and the electrode structure A step of forming a first protrusion protruding toward the inner surface of the glass tube, a step of inserting a mercury emitter into the glass tube from an opening at one end of the glass tube, and one end of the glass tube Forming a second protrusion projecting toward the inner surface of the glass tube between the first protrusion and the mercury emitter, and one end of the glass tube from the second protrusion On the side, the glass tube And a step of sealing and the step of heating the mercury releasing material.
  • a manufacturing method of a low pressure discharge lamp in which an electrode structure is provided in at least one end of a glass tube, and the electrode structure is inserted into the inside of the glass tube from an opening at one end of the glass tube A step of fixing the electrode structure to the inside of the glass tube, and a first convex portion protruding toward the inner surface of the glass tube between one end of the glass tube and the electrode structure;
  • the electrode structure 4101 is temporarily fixed at one end of the glass tube 4100 from the one end of the glass tube to the center side in the tube axis direction of the glass tube.
  • a state in which the electrode structure 4106 is sealed that is, a state after performing the steps from the electrode structure insertion step to the electrode structure fixing step in the low-pressure discharge lamp manufacturing method according to the twenty-first embodiment of the present invention.
  • a first convex portion 4118 that protrudes to the inner surface side of the glass tube is formed.
  • the first convex portion 4118 is formed between the one end of the glass tube 4100 and the electrode structure 4101 by heating the outer surface of the glass tube 4100 with a burner 4119 or the like.
  • the first convex portion 4118 is not limited to the burner 4119, and may be formed by applying heated air or pressing a jig after heating the glass tube 4100 by applying a burner or heated air. it can.
  • a mercury emitter 4111 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100.
  • the mercury emitter 4111 is caught by the first protrusion 4118, thereby preventing the mercury emitter 4111 from moving to the center side in the tube axis direction of the glass tube 4100 from the first protrusion 4118. It is possible to prevent the emitter 4111 from entering between the inner surface of the glass tube 4100 and the lead wire 4104 of the electrode structure 4101 and making it difficult to take out the mercury emitter 4111 finally.
  • the sealing end 4100b of the glass tube 4100 is prevented from being damaged.
  • the mercury emitter 4111 is taken out from the glass tube 4100, it can be made easy to take out.
  • Mercury emitter The mercury emitter is not limited to the mercury emitter 4111. For example, the following can be used.
  • Modification 1 of mercury emitter A perspective view of Modification 1 of the mercury emitter (hereinafter referred to as “mercury emitter 4120”) is shown in FIG.
  • the mercury emitter 4120 has a mercury emitting portion 4121 containing an intermetallic compound of titanium (Ti) and mercury (Hg), and the intermetallic compound is any one of TiHg, Ti 1.73 Hg, and Ti 3 Hg. Preferably it contains more than one species. In this case, by applying the present invention, it is possible to easily prevent breakage of the sealed end portion of the glass tube.
  • the mercury discharge part 4121 contains at least 1 or more types among iron and nickel. In this case, the heating efficiency of the mercury emitter 4120 can be improved.
  • the mercury releasing part 4121 may include a promoter (not shown) that improves mercury releasing efficiency.
  • the promoter is, for example, a copper-based alloy, and examples thereof include an alloy of Cu and Sn, an alloy of Cu and Ag, an alloy of Cu and Si, and an alloy of Cu, Sn, and MM.
  • MM is a blend of metallic elements called mush metal, which mainly contains cerium, lanthanum and neodymium, and small amounts of other rare earth metals.
  • Modification 2 of mercury emitter A perspective view of Modification 2 of the mercury emitter (hereinafter referred to as “mercury emitter 4122”) is shown in FIG.
  • the mercury emitter 4122 stores the mercury emitter 4121 inside a container 4123 having an opening 4123a at least in part. In this case, the regularity of the mercury emission part 4121 can be improved.
  • the container 4123 is preferably formed of at least one of iron and nickel. In this case, the heating efficiency of the mercury discharge part 4121 can be improved.
  • the container 4123 is provided with a slit 4123b along the longitudinal direction thereof. In this case, since mercury can be released through the slit 4123b in the mercury releasing step, the mercury releasing efficiency can be improved.
  • the mercury emitter 4124 includes a mercury emitter 4121 and a sintered body 4125 made of a sintered metal that covers the mercury emitter 4121. In this case, mercury can be released also from the sintered body portion 4125 in the mercury releasing step, so that the mercury releasing efficiency can be improved.
  • the sintered body portion 4124 is preferably formed of at least one of iron and nickel. In this case, the heating efficiency of the mercury discharge part 4121 can be improved.
  • the thermal expansion coefficient of the glass tube 4100 may be within the range of 3.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more and 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or less. .
  • the thermal expansion coefficient of the glass tube 4100 is preferably in the range of 8.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] to 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ]. In this case, since the intensity
  • the thermal expansion coefficient of the glass tube 4100 is within a range of 8.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more and 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or less, both end portions of the glass tube After sealing, it is preferable to provide a strain removing step.
  • the distortion removing step is not limited to the above-described method for manufacturing a low-pressure discharge lamp according to the present invention, and the thermal expansion coefficient is 8.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more and 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ].
  • the present invention can be applied to a low-pressure discharge lamp (particularly a cold cathode discharge lamp) using glass within the following range.
  • a method for producing a low-pressure discharge lamp having a glass tube having a thermal expansion coefficient of 8.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or more and 10.0 ⁇ 10 ⁇ 6 [K ⁇ 1 ] or less, the glass A step of sealing both ends of the tube (sealing step), and a step of heating both ends of the glass tube at a temperature at which the glass tube does not melt (strain removal step).
  • the sealing step can be performed by a known step or the method described above in the twenty-first embodiment of the present invention.
  • Fig. 36 shows a conceptual diagram of the distortion removal process. As shown in FIG. 36, both ends of the glass tube 4100 sealed at both ends are heated at a temperature at which the glass tube 4100 does not melt.
  • the heating is performed by passing both ends of the glass tube 4100 between the heating furnaces 4126, respectively.
  • the heating furnace 4126 is a heater having a substantially U-shaped cross section cut in the longitudinal direction of the glass tube 4100, and is arranged in a pair so that the substantially U-shaped openings 4126a face each other.
  • At least the tip of the electrode in the tube axial direction center side is within the range of the depth M of the opening 4126a of the heating furnace. In this case, it is possible to easily remove the strain remaining at both ends of the glass tube 4100.
  • the end of the glass tube 4100 can be heated by passing the end of the glass tube 4100 through the substantially U-shaped opening 4126a of the heating furnace 4126 in the direction of the broken line arrow.
  • the temperature of the end surface of the glass tube in the heating furnace is, for example, 480 [° C.] to 600 [° C.].
  • the ambient temperature near both ends of the glass tube 4100 is more likely to rise more stably. Since the periphery of the part can be heated firmly, the strain remaining at the end of the glass tube 4100 can be removed firmly.
  • the heating furnace 4126 is not limited to the heating furnace 4126 shown in FIG. 36, and may be, for example, a sheathed heater or a furnace equipped with a burner inside. Moreover, it is preferable that the circumference
  • the glass tube 4100 is rotated in the direction of a one-dot chain line arrow with the tube axis as a rotation axis.
  • heating can be performed more uniformly in the circumferential direction of the end portion of the glass tube 4100, and distortion can be easily removed.
  • the method for manufacturing a low-pressure discharge lamp has been described focusing on a method for manufacturing a cold cathode fluorescent lamp in which electrode structures are provided at both ends of a glass tube.
  • the present invention is not limited to this.
  • the electrode structure only needs to be provided on at least one end of the glass tube.
  • the present invention can be applied to an internal / external electrode fluorescent lamp or an ultraviolet lamp in which a phosphor layer is not formed on the inner surface of a glass tube.
  • the present invention can be widely applied to electrode structures, electrode structure manufacturing methods, low-pressure discharge lamps, lighting devices, and image display devices.
  • Electrode structure 101, 401, 405 Electrode 102, 402, 406 Sealing wire 103, 403 Glass member 105 Oxide film 106 Diffusion layer 200, 300, 500, 501 Low pressure discharge lamp 201 Glass bulb 600, 700, 800 Illumination device 900 Image display device

Abstract

An electrode structure prevents air from entering the inner space of a low-pressure discharge lamp when used for sealing the low-pressure discharge lamp. Disclosed is an electrode structure (100) comprised of an electrode (101); a sealing line (102), one end of which is connected to the electrode (101); and a glass member (103) formed to cover at least a part of the sealing line (102), wherein an oxidized film (105) is not formed or the oxidized film (105) having a maximum thickness of not more than 0.1 µm is formed on the intermediate part of the surface of the sealing line (102) in the longitudinal direction thereof in the portion of the sealing line (102), which is coated with the glass member (103); and a diffusion layer (106) composed of a material of the sealing line (102) is formed on the sealing line (102)-side of the glass member (103).

Description

電極構造体、電極構造体の製造方法、低圧放電ランプ、照明装置および画像表示装置Electrode structure, electrode structure manufacturing method, low-pressure discharge lamp, illumination device, and image display device
 本発明は、電極構造体、電極構造体の製造方法、低圧放電ランプ、照明装置および画像表示装置に関する。 The present invention relates to an electrode structure, a method for manufacturing the electrode structure, a low-pressure discharge lamp, an illumination device, and an image display device.
 従来の冷陰極放電ランプの管軸を含む断面図を図13に示す。従来の電極構造体(以下、「電極構造体1」という。)は、カップ状の電極2と、電極2の底端面に接合されたリード線3と、リード線3の外周に接合されたガラス部材4とを備える。リード線3は、ガラス部材4に接合された内部リード線(封着線)3aと、ガラス部材4の外部に露出して配される外部リード線3bとからなる。内部リード線3aは、その表面においてガラス部材4で覆われる箇所に酸化膜5を備える(例えば特許文献1参照)。 FIG. 13 shows a cross-sectional view including the tube axis of a conventional cold cathode discharge lamp. A conventional electrode structure (hereinafter referred to as “electrode structure 1”) includes a cup-shaped electrode 2, a lead wire 3 bonded to the bottom end surface of the electrode 2, and a glass bonded to the outer periphery of the lead wire 3. And a member 4. The lead wire 3 includes an internal lead wire (sealing wire) 3 a bonded to the glass member 4 and an external lead wire 3 b that is exposed and arranged outside the glass member 4. The internal lead wire 3a includes an oxide film 5 at a portion covered with the glass member 4 on the surface (see, for example, Patent Document 1).
特開2008-130396号公報JP 2008-130396 A
 電極構造体1の場合、封着線3aの表面に酸化膜を形成したときの酸化膜の厚みは、2.8[μm]~3.7[μm]であり、内部リード線3aをガラス部材で覆った後には、ガラス部材に覆われている部分の酸化膜5の厚みが1.4[μm]~2.5[μm]と薄くなるが、依然として封着線3aのガラス部材4で覆われている部分全体に酸化膜5が確認できる程度に残存しているものである。 In the case of the electrode structure 1, when the oxide film is formed on the surface of the sealing wire 3a, the thickness of the oxide film is 2.8 [μm] to 3.7 [μm], and the internal lead wire 3a is made of a glass member. After covering with the glass member, the thickness of the oxide film 5 covered with the glass member becomes as thin as 1.4 [μm] to 2.5 [μm], but still covered with the glass member 4 of the sealing wire 3a. The oxide film 5 remains on the entire portion that can be confirmed.
 しかしながら、発明者らの検討により、電極構造体1を用いて低圧放電ランプの封止を行った場合には、封着線3aとガラス部材4との間から低圧放電ランプの内部空間に、外部空間から空気が流入しやすいことがわかった。 However, when the low pressure discharge lamp is sealed using the electrode structure 1 as a result of examination by the inventors, an external space is formed between the sealing wire 3a and the glass member 4 into the internal space of the low pressure discharge lamp. It was found that air can easily enter from the space.
 そこで、本発明は、低圧放電ランプの封止に用いた場合に、当該低圧放電ランプの内部空間に空気が流入するのを可能な限り防止することができる電極構造体を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrode structure capable of preventing air from flowing into the internal space of the low-pressure discharge lamp as much as possible when used for sealing a low-pressure discharge lamp. To do.
 また、そのような電極構造体の製造方法を提供することを目的とする。 It is another object of the present invention to provide a method for manufacturing such an electrode structure.
 また、本発明は、上記のような電極構造体がガラスバルブ端部に設けられた低圧放電ランプを提供することを目的とする。 Another object of the present invention is to provide a low-pressure discharge lamp in which the electrode structure as described above is provided at the end of a glass bulb.
 さらに、本発明は、そのような低圧放電ランプを光源に有する照明装置、および当該照明装置を備える画像表示装置を提供することを目的とする。 Furthermore, an object of the present invention is to provide an illumination device having such a low-pressure discharge lamp as a light source, and an image display device including the illumination device.
 上記の課題を解決するために、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。 In order to solve the above problems, an electrode structure according to the present invention is formed to cover an electrode, a sealing wire having one end connected to the electrode, and at least a part of the sealing wire. An electrode structure having a glass member, and an oxide film is not formed in a substantially middle portion in a longitudinal direction in a portion of the surface of the sealing wire covered with the glass member, or An oxide film having a maximum thickness of 0.1 [μm] or less is formed, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
 また、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。 The electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire. An oxide film having a maximum thickness of 0.1 [μm] or less is not formed on a portion of the surface of the sealing wire that is covered with the glass member. And a diffusion layer of a material of the sealing wire is formed on the sealing wire side of the glass member.
 また、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部は、最大厚みが0.1[μm]以下の酸化膜が形成されており、前記酸化膜には、Fe34およびFeOのいずれか一方または両方が含まれており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。 The electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire. An oxide film having a maximum thickness of 0.1 [μm] or less is formed in a substantially intermediate portion in a longitudinal direction in a portion of the surface of the sealing wire that is covered with the glass member. The oxide film includes one or both of Fe 3 O 4 and FeO, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member. It is characterized by that.
 さらに、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分には、最大厚みが0.1[μm]以下の酸化膜が形成されており、前記酸化膜には、Fe34およびFeOのいずれか一方または両方が含まれており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。 Furthermore, the electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire. An oxide film having a maximum thickness of 0.1 [μm] or less is formed on a portion of the surface of the sealing wire that is covered with the glass member. Any one or both of Fe 3 O 4 and FeO are included, and a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
 また、本発明に係る電極構造体は、前記拡散層の最小厚みは8[μm]以上であり、前記拡散層の最大厚みは30[μm]以下であることが好ましい。 In the electrode structure according to the present invention, the minimum thickness of the diffusion layer is preferably 8 [μm] or more, and the maximum thickness of the diffusion layer is preferably 30 [μm] or less.
 また、本発明に係る電極構造体は、前記封着線48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことが好ましい。 Moreover, the electrode structure according to the present invention includes an iron in the range of 48 [wt%] to 54 [wt%] and nickel in a range of 46 [wt%] to 52 [wt%]. Are preferably included.
 また、本発明に係る電極構造体は、前記ガラス部材は、酸化物換算で、SiO2が60[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、Li2Oが0[wt%]~5[wt%]、K2Oが3[wt%]~11[wt%]、Na2Oが3[wt%]~12[wt%]、CaOが0[wt%]~9[wt%]、MgOが0[wt%]~9[wt%]、SrOが0[wt%]~12[wt%]、BaOが0[wt%]~12[wt%]の組成を有することが好ましい。 In the electrode structure according to the present invention, the glass member has an oxide conversion of SiO 2 of 60 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 5 [wt]. %], Li 2 O is 0 wt% to 5 wt%, K 2 O is 3 wt% to 11 wt%, and Na 2 O is 3 wt% to 12 wt%. , CaO 0 [wt%] to 9 [wt%], MgO 0 [wt%] to 9 [wt%], SrO 0 [wt%] to 12 [wt%], BaO 0 [wt%] It is preferable to have a composition of ˜12 [wt%].
 本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させることで、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。 An electrode structure according to the present invention comprises an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire. In the surface of the sealing wire, the oxide film formed in the substantially intermediate portion in the longitudinal direction in the portion covered with the glass member is all diffused, or the maximum thickness is 0.1 [μm]. By diffusing so that the following oxide film remains, a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
 本発明に係る電極構造体の製造方法は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、前記電極と、前記封着線の一端部とを接続する工程と、前記封着線の表面に酸化膜を形成する工程と、前記封着線の少なくとも一部に前記ガラス部材を被覆させ、前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程とを有することを特徴とする。 The method for manufacturing an electrode structure according to the present invention includes an electrode, a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire. A method for manufacturing an electrode structure, the step of connecting the electrode and one end of the sealing wire, the step of forming an oxide film on the surface of the sealing wire, and at least one of the sealing wires The glass member is coated on the surface, and all of the oxide film formed in the substantially middle portion in the longitudinal direction of the surface of the sealing wire covered with the glass member is diffused, or the maximum thickness is 0 And a step of diffusing so as to leave an oxide film of 1 [μm] or less.
 本発明に係る低圧放電ランプは、ガラスバルブと、前記ガラスバルブの少なくとも一方の端部に設けられた電極構造体とを有することを特徴とする。 The low-pressure discharge lamp according to the present invention has a glass bulb and an electrode structure provided at at least one end of the glass bulb.
 本発明に係る照明装置は、前記低圧放電ランプを備えることを特徴とする。 An illumination device according to the present invention includes the low-pressure discharge lamp.
 本発明に係る画像表示装置は、前記照明装置を備えることを特徴とする。 An image display device according to the present invention includes the illumination device.
 上記構成からなる電極構造体によれば、封着線の表面のうち、ガラス部材に被覆された部分には、酸化膜が形成されておらず、または最大厚みが0.1[mm]以下の酸化膜が形成されている部分があり、当該ガラス部材の前記封着線側には当該封着線の材料の拡散層が形成されているため、ガラス部材と封着線との間の気密性が向上することとなる結果、これを用いた低圧放電ランプにおいては、当該低圧放電ランプの内部空間に空気が流入するのを可能な限り防止することができる。 According to the electrode structure having the above-described configuration, the oxide film is not formed on the surface of the sealing wire covered with the glass member, or the maximum thickness is 0.1 [mm] or less. There is a portion where an oxide film is formed, and since a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member, airtightness between the glass member and the sealing wire As a result, in the low-pressure discharge lamp using this, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp as much as possible.
 また、本発明にかかる電極構造体の製造方法によれば、封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程を有するため、上記した電極構造体を製造することが可能となる。 In addition, according to the method for manufacturing an electrode structure according to the present invention, the oxide film formed in the substantially intermediate portion in the longitudinal direction of the surface of the sealing wire covered with the glass member is all diffused. Alternatively, the above-described electrode structure can be manufactured because it includes a step of diffusing so that an oxide film having a maximum thickness of 0.1 [μm] or less remains.
(a)本発明の第1の実施形態に係る電極構造体の長手方向の中心軸を含む断面図、(b)封着線の表面のうち、ガラス部材に被覆された部分の略中間部の酸化膜が全て拡散している場合の図1(a)のA部分の要部拡大断面図、(c)封着線の表面のうち、ガラス部材に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜が形成されている場合の図1(a)のA部分の要部拡大断面図(A) Sectional drawing containing the central axis of the longitudinal direction of the electrode structure which concerns on the 1st Embodiment of this invention, (b) Of the surface of the sealing line, the substantially intermediate part of the part coat | covered with the glass member FIG. 1 (a) shows an enlarged cross-sectional view of the main part of the portion A in FIG. 1 (a) when the oxide film is completely diffused, and (c) the maximum thickness at the substantially middle portion of the surface covered with the glass member. Is an enlarged cross-sectional view of a main part of portion A in FIG. 1A when an oxide film having a thickness of 0.1 [μm] or less is formed. (a)本発明の第1の実施形態に係る電極構造体の変形例の長手方向の中心軸を含む断面図、(b)封着線の表面のうち、ガラス部材に被覆された部分の略中間部の酸化膜が全て拡散している場合の図2(a)のB部分の要部拡大断面図、(c)封着線の表面のうち、ガラス部材に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜が形成されている場合の図2(a)のB部分の要部拡大断面図(A) Sectional drawing including the central axis of the longitudinal direction of the modification of the electrode structure which concerns on the 1st Embodiment of this invention, (b) Abbreviation of the part coat | covered with the glass member among the surfaces of the sealing wire. 2B is an enlarged cross-sectional view of the main part of the portion B in FIG. 2A when the intermediate oxide film is all diffused, and FIG. 2B is an enlarged cross-sectional view of the main part of the portion B in FIG. (a)本発明の第1の実施形態に係る電極構造体の製造工程における接続工程の概念図、(b)同じく酸化工程の概念図、(c)同じく挿入工程の概念図、(d)同じく封着工程の概念図、(e)同じく還元工程の概念図(A) The conceptual diagram of the connection process in the manufacturing process of the electrode structure which concerns on the 1st Embodiment of this invention, (b) The conceptual diagram of an oxidation process, (c) The conceptual diagram of an insertion process, (d) Similarly Conceptual diagram of sealing process, (e) Conceptual diagram of reduction process 本発明の第2の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing containing the tube axis | shaft of the low voltage | pressure discharge lamp which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing containing the tube axis | shaft of the low voltage | pressure discharge lamp which concerns on the 3rd Embodiment of this invention. (a)本発明の第4の実施形態に係る電極構造体の長手方向の中心軸を含む断面図、(b)同じく電極構造体の変形例の長手方向の中心軸を含む断面図(A) Sectional drawing including the central axis of the longitudinal direction of the electrode structure which concerns on the 4th Embodiment of this invention, (b) Sectional drawing including the central axis of the longitudinal direction of the modification of an electrode structure similarly (a)本発明の第5の実施形態に係る低圧放電ランプの管軸を含む断面図、(b)同じく低圧放電ランプの変形例の管軸を含む断面図(A) Cross-sectional view including the tube axis of the low-pressure discharge lamp according to the fifth embodiment of the present invention, (b) Cross-sectional view including the tube axis of the modified example of the low-pressure discharge lamp. 本発明の第6の実施形態に係る照明装置の分解斜視図The exploded perspective view of the illuminating device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の一部切欠斜視図Partially cutaway perspective view of a lighting apparatus according to a seventh embodiment of the present invention (a)本発明の第8の実施形態に係る照明装置の正面図、(b)図10(a)のC-C´線で切った断面図(A) Front view of illumination apparatus according to eighth embodiment of present invention, (b) Cross-sectional view taken along line CC ′ of FIG. 10 (a) 本発明の第9の実施形態に係る画像表示装置の斜視図The perspective view of the image display apparatus which concerns on the 9th Embodiment of this invention. (a)本発明の第2の実施形態に係る低圧放電ランプの変形例の要部拡大正面図、(b)同じく管軸を含む要部拡大断面図(A) The principal part enlarged front view of the modification of the low pressure discharge lamp which concerns on the 2nd Embodiment of this invention, (b) The principal part expanded sectional view which also contains a pipe axis. 従来の電極構造体の長手方向の中心軸を含む断面図Sectional drawing including the central axis of the longitudinal direction of the conventional electrode structure 本発明の第10の実施形態に係る電極構造体の長手方向の中心軸を含む断面図Sectional drawing containing the central axis of the longitudinal direction of the electrode structure which concerns on the 10th Embodiment of this invention ガラス部材の熱膨張係数と封着線の熱膨張係数との差によるガラス部材の歪の変化を示す図The figure which shows the change of the distortion of a glass member by the difference of the thermal expansion coefficient of a glass member, and the thermal expansion coefficient of a sealing wire. 本発明の第11の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing containing the tube axis | shaft of the low pressure discharge lamp which concerns on the 11th Embodiment of this invention 本発明の第12の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing including the tube axis | shaft of the low pressure discharge lamp which concerns on the 12th Embodiment of this invention. (a)本発明の第13の実施形態に係る電極構造体の長手方向の中心軸を含む断面図、(b)同じく電極構造体の変形例の長手方向の中心軸を含む断面図(A) Sectional drawing including the central axis of the longitudinal direction of the electrode structure which concerns on 13th Embodiment of this invention, (b) Sectional drawing including the central axis of the longitudinal direction of the modification of an electrode structure similarly (a)本発明の第14の実施形態に係る低圧放電ランプの管軸を含む断面図、(b)同じく低圧放電ランプの変形例の管軸を含む断面図(A) Cross-sectional view including the tube axis of the low-pressure discharge lamp according to the fourteenth embodiment of the present invention, (b) Cross-sectional view including the tube axis of the modified example of the low-pressure discharge lamp. 従来の低圧放電ランプの管軸を含む断面図Sectional view including the tube axis of a conventional low-pressure discharge lamp 本発明の第15の実施形態に係る電極構造体の長手方向の中心軸を含む断面図Sectional drawing containing the central axis of the longitudinal direction of the electrode structure which concerns on 15th Embodiment of this invention (a)同じく電極構造体の接続工程の概念図、(b)同じく電極構造体の挿入工程の概念図、(c)同じく電極構造体の加熱工程の概念図(A) The conceptual diagram of the connection process of an electrode structure similarly, (b) The conceptual diagram of the insertion process of an electrode structure, (c) The conceptual diagram of the heating process of an electrode structure 本発明の第16の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing containing the tube axis | shaft of the low pressure discharge lamp which concerns on the 16th Embodiment of this invention. 本発明の第17の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing including the tube axis | shaft of the low pressure discharge lamp which concerns on the 17th Embodiment of this invention 本発明の第18の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing including the tube axis | shaft of the low voltage | pressure discharge lamp which concerns on the 18th Embodiment of this invention. 本発明の第19の実施形態に係る電極構造体の長手方向の中心軸を含む断面図Sectional drawing including the central axis of the longitudinal direction of the electrode structure which concerns on 19th Embodiment of this invention (a)同じく電極構造体の接続工程の概念図、(b)同じく電極構造体の挿入工程の概念図、(c)同じく電極構造体の加熱工程の概念図(A) The conceptual diagram of the connection process of an electrode structure similarly, (b) The conceptual diagram of the insertion process of an electrode structure, (c) The conceptual diagram of the heating process of an electrode structure 本発明の第20の実施形態に係る低圧放電ランプの管軸を含む断面図Sectional drawing containing the tube axis | shaft of the low pressure discharge lamp which concerns on the 20th Embodiment of this invention. (a)本発明の第15の実施形態に係る電極構造体の変形例1の長手方向の中心軸を含む断面図、(b)同じく電極構造体の変形例2の長手方向の中心軸を含む断面図(A) Sectional drawing including the central axis of the longitudinal direction of the modification 1 of the electrode structure which concerns on 15th Embodiment of this invention, (b) Similarly including the central axis of the longitudinal direction of the modification 2 of an electrode structure Cross section (a)従来の低圧放電ランプの管軸を含む断面図、(b)従来の電極構造体の製造工程の概念図(A) Sectional view including tube axis of conventional low-pressure discharge lamp, (b) Conceptual diagram of manufacturing process of conventional electrode structure (a)本発明の第21の実施形態に係る低圧放電ランプの製造方法の電極構造体挿入工程の概念図、(b)同じく電極構造体固定工程の概念図、(c)同じく水銀放出体挿入工程の概念図(A) Conceptual diagram of the electrode structure insertion step of the low pressure discharge lamp manufacturing method according to the twenty-first embodiment of the present invention, (b) Conceptual diagram of the electrode structure fixing step, (c) Mercury emitter insertion Conceptual diagram of the process (a)同じく凸部形成工程の概念図、(b)同じく仮封止工程の概念図、(c)同じく水銀放出工程の概念図、(d)同じく第2封止工程の概念図(A) The conceptual diagram of a convex part formation process, (b) The conceptual diagram of a temporary sealing process, (c) The conceptual diagram of a mercury discharge process, (d) The conceptual diagram of a second sealing process (a)本発明の第22の実施形態に係る低圧放電ランプの製造方法の仮封止工程の概念図、(b)同じく凸部形成工程の概念図(A) The conceptual diagram of the temporary sealing process of the manufacturing method of the low pressure discharge lamp concerning the 22nd Embodiment of this invention, (b) The conceptual diagram of a convex-part formation process similarly (a)本発明の第23の実施形態に係る低圧放電ランプの製造方法の第1の凸部形成工程の概念図、(b)同じく水銀放出体挿入工程の概念図(A) The conceptual diagram of the 1st convex part formation process of the manufacturing method of the low-pressure discharge lamp concerning the 23rd Embodiment of this invention, (b) The conceptual diagram of a mercury discharge body insertion process similarly (a)水銀放出体の変形例1の斜視図、(b)水銀放出体の変形例2の斜視図、(c)水銀放出体の変形例3の斜視図(A) Perspective view of Modification 1 of the mercury emitter, (b) Perspective view of Modification 2 of the mercury emitter, (c) Perspective view of Modification 3 of the mercury emitter 歪除去工程の概念図Conceptual diagram of the distortion removal process (a)従来の低圧放電ランプ製造方法の仮止め工程の概念図、(b)同じく排気・封止工程の概念図、(c)同じく水銀放出工程の概念図(A) The conceptual diagram of the temporary fixing process of the conventional low-pressure discharge lamp manufacturing method, (b) The conceptual diagram of the exhaust / sealing process, (c) The conceptual diagram of the mercury releasing process
<第1の実施形態~第10の実施形態>
 (第1の実施形態)
 本発明の第1の実施形態に係る電極構造体の長手方向の中心軸X100を含む断面図を図1(a)に示す。本発明の第1の実施形態に係る電極構造体100(以下、「電極構造体100」という。)は、電極101と、一端部が電極101に接続された封着線102と、封着線102の少なくとも一部を被覆するように形成されたガラス部材103とを有する。
<First to Tenth Embodiments>
(First embodiment)
The cross-sectional view including a longitudinal central axis X 100 of the electrode structure according to a first embodiment of the present invention shown in FIG. 1 (a). An electrode structure 100 according to the first embodiment of the present invention (hereinafter referred to as “electrode structure 100”) includes an electrode 101, a sealing wire 102 having one end connected to the electrode 101, and a sealing wire. And a glass member 103 formed so as to cover at least a part of 102.
 電極101は、例えば有底筒状であって、内径が2.4[mm]、外径が2.7[mm]、底部の肉厚が0.2[mm]、全長が8.2[mm]であって、ニッケル(Ni)製である。なお、電極101の材料は、ニッケルに限らず、ニオビウム(Nb)、モリブデン(Mo)、タンタル(Ta)およびタングステン(W)のいずれか一種またはいずれか二種以上の合金を用いてもよい。電極101は、その外側底面の略中央部において封着線102の一端面と接続されている。なお、電極101と封着線102とは、直接接続されていてもよいし、例えばニッケル箔やコバール箔からなるろう材(図示せず)を介して接続されていてもよい。また、電極101と封着線102との接続方法としては、レーザー溶接や抵抗溶接等を用いることができる。 The electrode 101 has, for example, a bottomed cylindrical shape, and has an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni). Note that the material of the electrode 101 is not limited to nickel, and any one or any two or more alloys of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W) may be used. The electrode 101 is connected to one end surface of the sealing wire 102 at a substantially central portion of the outer bottom surface. The electrode 101 and the sealing wire 102 may be directly connected or may be connected via a brazing material (not shown) made of, for example, nickel foil or Kovar foil. As a method for connecting the electrode 101 and the sealing wire 102, laser welding, resistance welding, or the like can be used.
 封着線102は、線径が0.8[mm]であって、鉄とニッケルとの合金製である。封着線102は、ガラス部材103の材料として用いるガラスの熱膨張係数に合わせた材料を用いることが好ましい。 The sealing wire 102 has a wire diameter of 0.8 [mm] and is made of an alloy of iron and nickel. The sealing wire 102 is preferably made of a material that matches the thermal expansion coefficient of glass used as the material of the glass member 103.
 なお、封着線102は、48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことが好ましい。この場合、ガラス部材103が熱膨張係数90×10-7[K-1]以上100×10-7[K-1]以下範囲内の軟質ガラスである場合に、封着線102とガラス部材103との封着性を向上させることができる。 Note that the sealing wire 102 preferably contains iron in the range of 48 [wt%] to 54 [wt%] and nickel in the range of 46 [wt%] to 52 [wt%]. In this case, when the glass member 103 is soft glass having a coefficient of thermal expansion of 90 × 10 −7 [K −1 ] or more and 100 × 10 −7 [K −1 ] or less, the sealing wire 102 and the glass member 103 are used. The sealing property can be improved.
 封着線102の他端部には、外部リード線104が接続されていることが好ましい。この場合、電極構造体100を低圧放電ランプに用いた場合に、外部リード線104にかかる外力が封着線102と外部リードの接続部で吸収されるため、ガラス部材103で発生する応力を緩和することができる。外部リード線104は、例えば線径が0.6[mm]であって、ニッケル製である。なお、外部リード線104の材料は、ニッケルに限らず、例えばニッケルとマンガンとの合金やジュメット線等を用いてもよい。さらに、外部リード線104の表面は、外部リード線104の酸化防止のために、半田で覆われていてもよい。 An external lead wire 104 is preferably connected to the other end of the sealing wire 102. In this case, when the electrode structure 100 is used in a low-pressure discharge lamp, the external force applied to the external lead wire 104 is absorbed by the connecting portion between the sealing wire 102 and the external lead, so that the stress generated in the glass member 103 is relieved. can do. The external lead wire 104 has a wire diameter of, for example, 0.6 [mm] and is made of nickel. Note that the material of the external lead wire 104 is not limited to nickel, and for example, an alloy of nickel and manganese, a dumet wire, or the like may be used. Further, the surface of the external lead wire 104 may be covered with solder in order to prevent the external lead wire 104 from being oxidized.
 ガラス部材103は、略球形状であって、その略中心軸に沿って封着線102の少なくとも一部を被覆しており、鉛フリーガラスやソーダガラス等の軟質ガラス製である。なお、ガラス部材103は、封着性の観点から、封着させるガラスバルブと同一の材料、またはガラスバルブ101と熱膨張係数が同一または近似する材料からなることが好ましい。 The glass member 103 has a substantially spherical shape and covers at least a part of the sealing wire 102 along its substantially central axis, and is made of soft glass such as lead-free glass or soda glass. The glass member 103 is preferably made of the same material as the glass bulb to be sealed or a material having the same or similar thermal expansion coefficient as the glass bulb 101 from the viewpoint of sealing properties.
 封着線102の表面のうち、ガラス部材103に被覆された部分における長手方向の略中間部は、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成されている。 Of the surface of the sealing wire 102, the oxide film 105 is not formed on the substantially intermediate portion in the longitudinal direction of the portion covered with the glass member 103, or the maximum thickness is 0.1 [μm] or less. 105 is formed, and a diffusion layer 106 made of the material of the sealing wire 102 is formed on the side of the sealing wire 102 of the glass member 103.
 ここで、前者の場合、すなわち封着線102の表面のうち、ガラス部材103に被覆された部分における長手方向の略中間部の酸化膜105が全て拡散している場合における図1(a)のA部分の要部拡大断面図を図1(b)に示し、後者の場合、すなわち封着線102の表面のうち、ガラス部材103に被覆された部分における長手方向の略中間部に最大厚みが0.1[μm]以下の酸化膜105が形成されている場合における図1(a)のA部分の要部拡大断面図を図1(c)に示す。 Here, in the former case, that is, in the case where all of the oxide film 105 in the substantially middle portion in the longitudinal direction in the portion covered with the glass member 103 is diffused in the surface of the sealing wire 102, FIG. FIG. 1B shows an enlarged cross-sectional view of the main part of the A part. In the latter case, that is, the maximum thickness at the substantially intermediate part in the longitudinal direction in the part of the surface of the sealing wire 102 covered with the glass member 103. FIG. 1C shows an enlarged cross-sectional view of the main part of the portion A in FIG. 1A when the oxide film 105 of 0.1 [μm] or less is formed.
 封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の構造が図1(b)および(c)に示すようになるのは、あらかじめ封着線102の表面に形成された酸化膜105の後述する成分(材料)がガラス部材103の内部に拡散していくことにより、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の酸化膜105が目視ではほとんど確認できない程度に薄くなるためである。 The structure of the substantially intermediate portion of the surface of the sealing wire 102 covered with the glass member 103 is as shown in FIGS. 1B and 1C, which is formed on the surface of the sealing wire 102 in advance. The components (materials) to be described later of the formed oxide film 105 diffuse into the inside of the glass member 103, so that the oxide film at a substantially intermediate portion of the surface covered with the glass member 103 on the surface of the sealing wire 102. This is because the thickness 105 becomes so thin that it can hardly be visually confirmed.
 言い換えれば、封着線102の表面には、あらかじめ封着線の材料の酸化膜が形成されており、酸化膜中の封着線102の材料(封着線が鉄とニッケルとの合金の場合には、鉄)がガラス部材103に拡散していくことにより、ガラス部材103の封着線102側に封着線の材料(封着線が鉄とニッケルとの合金の場合には、鉄)の拡散層が形成され、ガラス部材103に被覆された部分の略中間部の酸化膜105が目視ではほとんど確認できない程度に薄くなる。 In other words, an oxide film of a sealing wire material is formed on the surface of the sealing wire 102 in advance, and the material of the sealing wire 102 in the oxide film (when the sealing wire is an alloy of iron and nickel). In this case, iron is diffused into the glass member 103, so that the material of the sealing wire on the sealing wire 102 side of the glass member 103 (in the case where the sealing wire is an alloy of iron and nickel, iron) The diffusion layer is formed, and the oxide film 105 at a substantially intermediate portion of the portion covered with the glass member 103 is thinned to such an extent that it can hardly be visually confirmed.
 これにより、封着線102とガラス部材103とが密着することで、電極構造体100を用いてガラスバルブの封止を行って低圧放電ランプを作製した場合に、低圧放電ランプの内部空間に空気が流入しやすくなるのを防止することができる。 Thus, when the sealing wire 102 and the glass member 103 are in close contact with each other, when the glass bulb is sealed using the electrode structure 100 to produce a low pressure discharge lamp, air is introduced into the internal space of the low pressure discharge lamp. Can be prevented from flowing in easily.
 一方、酸化膜が目視で確認できる程度に残存している場合、酸化膜中に空隙ができやすく、その空隙を通じてランプの内部空間と外部空間とがつながりやすくなるため、ランプの内部空間に空気が流入しやすくなる。 On the other hand, when the oxide film remains to the extent that it can be visually confirmed, a void is easily formed in the oxide film, and the internal space of the lamp and the external space are easily connected through the void. It becomes easy to flow in.
 なお、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部において、最大厚みが0.1[μm]以下の酸化膜105が形成されている場合、酸化膜105には、Fe34およびFeOのいずれか、または両方が含まれていることが好ましい。この場合、封着線102とガラス部材103との間の接合強度を向上させることができる。さらには、酸化膜105には、Fe34が含まれていることがより好ましい。この場合、封着線102とガラス部材103との間の引っ張り強度をさらに向上させることができる。 When an oxide film 105 having a maximum thickness of 0.1 [μm] or less is formed in a substantially middle portion of the surface of the sealing wire 102 covered with the glass member 103, It is preferable that either or both of Fe 3 O 4 and FeO are contained. In this case, the bonding strength between the sealing wire 102 and the glass member 103 can be improved. Furthermore, it is more preferable that the oxide film 105 contains Fe 3 O 4 . In this case, the tensile strength between the sealing wire 102 and the glass member 103 can be further improved.
 なお、図1(a)に示すように、封着線102の表面のうち、ガラス部材に被覆された部分の両端部には、目視で確認できる程度の酸化膜(以下、「厚い酸化膜105a」という。)が形成されていてもよい。 As shown in FIG. 1 (a), an oxide film (hereinafter referred to as “thick oxide film 105a”) that can be visually confirmed is formed on both ends of the surface of the sealing wire 102 covered with the glass member. ") May be formed.
 なお、厚い酸化膜105aの形成されている領域の面積は、封着線102の表面積のうち、ガラス部材103に被覆されている部分の表面積の5[%]以上40[%]以下の範囲内であることが好ましい。この場合、外部リード線104に負荷がかかった場合、その応力が端部の厚い酸化膜105aの剥離で吸収されるので外部リード線104への急な衝撃に伴うリークを防止できる。 The area of the region where the thick oxide film 105a is formed is in the range of 5% to 40% of the surface area of the portion covered by the glass member 103 out of the surface area of the sealing wire 102. It is preferable that In this case, when a load is applied to the external lead wire 104, the stress is absorbed by the peeling of the thick oxide film 105a at the end, so that leakage due to a sudden impact on the external lead wire 104 can be prevented.
 さらに、より好ましくは、厚い酸化膜105aは環状であって、厚い酸化膜105aの形成されている領域の長手方向の長さは、封着線102の表面のうち、ガラス部材103に被覆されている部分の長さの0[%]以上40[%]以下の範囲内であることが好ましい。この場合、厚い酸化膜105aの形成されている領域を減らすことで、低圧放電ランプの内部空間に空気が流入するのを防止しやすくすることができる。 More preferably, the thick oxide film 105a is annular, and the length in the longitudinal direction of the region where the thick oxide film 105a is formed is covered by the glass member 103 of the surface of the sealing wire 102. It is preferable that it is in the range of 0 [%] to 40 [%] of the length of the portion. In this case, by reducing the area where the thick oxide film 105a is formed, air can be easily prevented from flowing into the internal space of the low-pressure discharge lamp.
 本発明の第1の実施形態に係る電極構造体の変形例の長手方向の中心軸X107を含む断面図を図2(a)に示す。また、封着線102の表面のうち、ガラス部材103に被覆された部分略中間部の酸化膜が全て拡散している場合における図2(a)のB部分の要部拡大断面図を図2(b)に示し、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜105が形成されている場合における図2(a)のB部分の要部拡大断面図を図2(c)に示す。 FIG. 2A shows a cross-sectional view including a longitudinal center axis X 107 of a modification of the electrode structure according to the first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the main part of the portion B in FIG. 2A in the case where the oxide film at the substantially intermediate portion covered by the glass member 103 is diffused on the surface of the sealing wire 102. The figure in the case where an oxide film 105 having a maximum thickness of 0.1 [μm] or less is formed in a substantially middle portion of the surface of the sealing wire 102 shown in FIG. The principal part expanded sectional view of B part of 2 (a) is shown in FIG.2 (c).
 図2(a)~(c)に示すように、本発明の第1の実施形態に係る電極構造体の変形例(以下、「電極構造体107」という。)は、電極101と、一端部が電極101に接続された封着線102と、封着線102の少なくとも一部を被覆するように形成されたガラス部材103とを有する電極構造体107であって、封着線102の表面のうち、ガラス部材103に被覆された部分には、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成されている。この場合、酸化工程で形成された酸化膜がガラス内部へ十分に拡散できるために、封着線102とガラス部材103とが強固に密着できるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。 As shown in FIGS. 2A to 2C, a modification of the electrode structure according to the first embodiment of the present invention (hereinafter referred to as “electrode structure 107”) includes an electrode 101 and one end portion. Is an electrode structure 107 having a sealing wire 102 connected to the electrode 101 and a glass member 103 formed so as to cover at least a part of the sealing wire 102, Of these, the oxide film 105 is not formed on the portion covered with the glass member 103, or the oxide film 105 having a maximum thickness of 0.1 [μm] or less is formed. A diffusion layer 106 made of the material of the sealing wire 102 is formed on the wire 102 side. In this case, since the oxide film formed in the oxidation process can sufficiently diffuse into the glass, the sealing wire 102 and the glass member 103 can be firmly adhered to each other, so that air flows into the internal space of the low-pressure discharge lamp. Can be sufficiently prevented.
 (実験)
 発明者らは、封着線102の表面において、ガラス部材103に被覆された部分における長手方向の略中間部には、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材の封着線102側には封着線102の材料の拡散層106が形成されていることで、電極構造体100を用いてガラスバルブの封止を行って低圧放電ランプを作製した場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができることを確認するために、リーク試験を行った。
(Experiment)
The inventors have found that the oxide film 105 is not formed in a substantially intermediate portion in the longitudinal direction of the surface covered with the glass member 103 on the surface of the sealing wire 102, or the maximum thickness is 0.1 [μm. The following oxide film 105 is formed, and the diffusion layer 106 of the material of the sealing wire 102 is formed on the sealing wire 102 side of the glass member. In order to confirm that air can be prevented from flowing into the internal space of the low-pressure discharge lamp when the low-pressure discharge lamp is manufactured by sealing, a leak test was performed.
 実験には、以下の4種類の試料を用いた。 In the experiment, the following four types of samples were used.
 電極構造体100と実質的に同じ構成のものを用いて作製した低圧放電ランプを実施例1とした。 Example 1 was a low-pressure discharge lamp produced using a material having substantially the same configuration as that of the electrode structure 100.
 また、電極構造体107と実質的に同じ構成のものを用いた点を除いては、実施例1と実質的に同じ構成のものを実施例2とした。 Also, Example 2 was made substantially the same as Example 1 except that the one having substantially the same configuration as that of the electrode structure 107 was used.
 さらに、封着線の表面において、ガラス部材に被覆された部分の略中間部に、目視で確認できる程度の(最大厚みが0.1[μm]よりも厚い)酸化膜が形成されている電極構造体を用いた点を除いては、実施例100と実質的に同じ構成のものを比較例1とした。 Furthermore, on the surface of the sealing wire, an electrode in which an oxide film (maximum thickness is thicker than 0.1 [μm]) that can be visually confirmed is formed in a substantially middle portion of the portion covered with the glass member Except for the use of the structural body, a structure having substantially the same configuration as that of Example 100 was used as Comparative Example 1.
 さらにまた、封着線の表面において、ガラス部材に被覆された部分に、酸化膜が形成されておらず、ガラス部材の封着線側には封着線の材料の拡散層が形成されていない電極構造体を用いた点を除いては、実施例1と実質的に同じ構成のものを比較例2とした。 Furthermore, on the surface of the sealing wire, no oxide film is formed on the portion covered with the glass member, and no diffusion layer of the sealing wire material is formed on the sealing wire side of the glass member. Except for the point of using the electrode structure, the one having substantially the same configuration as that of Example 1 was used as Comparative Example 2.
 実験は、水平な台の上に試料であるランプを水平に保持して外部リード線を台の外に出し、外部リード線に1800[g]の分銅を10秒間吊るすことを5回繰り返すといった負荷を掛けた後に、ランプの始動試験でリークの有無の確認を間接的に行うものである。 In the experiment, a sample lamp was held horizontally on a horizontal table, the external lead wire was taken out of the table, and a weight of 1800 [g] was suspended on the external lead wire for 10 seconds, and the load was repeated five times. In this case, the presence or absence of leakage is indirectly confirmed in the lamp start test.
 実験に先立ち、実施例1、実施例2、比較例1、および比較例2のランプの始動電圧を測定し、測定された始動電圧を基準電圧とした。 Prior to the experiment, the starting voltages of the lamps of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were measured, and the measured starting voltage was used as a reference voltage.
 そして、リークの有無の判断基準は、基準電圧(試験前の始動電圧)の100[V]以内で点灯した場合に、「○」とし、100[V]を越えて点灯した場合や点灯しなかった場合を「×」とした。すなわち、外部リード線に上記負荷をかけた後の各ランプについて始動電圧を測定し、当該始動電圧が基準電圧よりも100[V]を超えない範囲に収まった場合に合格(「○」)とし、始動電圧が基準電圧よりも100[V]を超えた場合、および実験範囲で放電が開始されなかった場合を不合格(「×」)とした。 The criterion for determining whether or not there is a leak is “○” when the lamp is lit within 100 [V] of the reference voltage (starting voltage before the test), and when the lamp is lit above 100 [V] or not lit. “×” was assigned to the case. That is, the starting voltage is measured for each lamp after the load is applied to the external lead wire. If the starting voltage falls within a range that does not exceed 100 [V] from the reference voltage, a pass (“◯”) is accepted. The case where the starting voltage exceeded 100 [V] from the reference voltage and the case where the discharge was not started in the experimental range was regarded as a failure (“x”).
 これは、ランプ内に空気が流入すると(窒素や酸素等の不純ガスが流入すると)、ランプ内部の気圧が上昇し、ランプの始動電圧が上昇するためである。 This is because, when air flows into the lamp (impurity gas such as nitrogen or oxygen flows), the pressure inside the lamp increases and the starting voltage of the lamp increases.
 また、さらに、実施例1および2については、2800[g]の分銅を用いて上記と同様の負荷を掛け、上記と同様の基準に照らした合否判定、すなわち、ランプの内部空間への空気の流入の有無を確認した。 Furthermore, for Examples 1 and 2, a load similar to that described above was applied using a weight of 2800 [g], and a pass / fail judgment based on the same criteria as described above, that is, air flow into the interior space of the lamp. The presence or absence of inflow was confirmed.
 各実験試料において、10本中の「×」の判定となった本数(すなわち、ランプの内部空間に空気の流入があった本数)を調査した。 In each experimental sample, the number of “x” judgments out of 10 (that is, the number of inflows of air in the internal space of the lamp) was investigated.
 実験結果を表1に示す。 The experimental results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1および2では、1800[g]の分銅を吊るしたときに、ランプの内部空間に空気が流入していない。これに対して、比較例1および2では、数本のランプの内部空間に空気が流入している。 As shown in Table 1, in Examples 1 and 2, when a weight of 1800 [g] was suspended, air did not flow into the internal space of the lamp. On the other hand, in Comparative Examples 1 and 2, air flows into the internal spaces of several lamps.
 比較例1の場合、封着線の表面のうち、ガラス部材に被覆された部分の全長に渡り目視で確認できる程度の酸化膜が形成されているため、その酸化膜の部分を通じて、ランプの内部空間に空気が流入しているものと考えられる。 In the case of the comparative example 1, since the oxide film of the degree which can be visually confirmed is formed over the full length of the part covered with the glass member among the surfaces of the sealing wire, the inside of the lamp is passed through the oxide film part. It is thought that air is flowing into the space.
 また、比較例2の場合、封着線の表面において、ガラス部材に被覆された部分に、酸化膜が形成されておらず、ガラス部材の封着線側には封着線の材料の拡散層が形成されていないため、封着線とガラス部材との密着度が弱く、ガラス部材が封着線から剥離している部分が存在しているためと思われる。 In the case of Comparative Example 2, an oxide film is not formed on the surface of the sealing wire covered with the glass member, and the diffusion layer of the sealing wire material is formed on the sealing wire side of the glass member. This is probably because the adhesion between the sealing wire and the glass member is weak, and there is a portion where the glass member is peeled off from the sealing wire.
 一方、実施例2は、封着線の表面のうち、ガラス部材に被覆された部分における長手方向の略中間部には、酸化膜が形成されておらず、実施例1は、最大厚みが0.1[μm]以下の酸化膜が形成されており、実施例1,2共にガラス部材の封着線側には封着線の材料の拡散層が形成されているため、封着線とガラス部材との間が比較例1および2と比べてより密着しているので、ランプの内部空間に空気が流入していないものと考えられる。 On the other hand, in Example 2, an oxide film is not formed in a substantially intermediate portion in the longitudinal direction of the surface of the sealing wire covered with the glass member, and Example 1 has a maximum thickness of 0. .1 [μm] or less of the oxide film is formed, and in both Examples 1 and 2, a diffusion layer of the sealing wire material is formed on the sealing wire side of the glass member. It is considered that air does not flow into the internal space of the lamp because the member is more closely contacted than Comparative Examples 1 and 2.
 さらに、実施例2は、2800[g]の分銅を吊るしたときに、実施例1よりもランプの内部空間への空気の流入が発生し難い。封着線102とガラス部材103との密着距離が長く確保できているため、封着線102とガラス部材103とをより強固に密着することができるからである。 Furthermore, in Example 2, when a weight of 2800 [g] is suspended, inflow of air into the internal space of the lamp is less likely to occur than in Example 1. This is because the contact distance between the sealing wire 102 and the glass member 103 can be secured long, so that the sealing wire 102 and the glass member 103 can be more firmly attached.
 電極構造体100の製造方法について、図3を用いて以下に説明する。 A method for manufacturing the electrode structure 100 will be described below with reference to FIG.
 電極構造体100の製造方法は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、電極と、前記封着線の一端部とを接続させる工程(接続工程)と、封着線の表面に酸化膜を形成させる工程(酸化膜形成工程)と、封着線の少なくとも一部にガラス部材を被覆させ、封着線の表面のうち、ガラス部材に被覆された部分の略中間部に形成された酸化膜をガラス部材に全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程(封着工程)とを有する。
1.接続工程
 まず、図3(a)に示すように、電極101と、封着線102の一端部とを接続させる。具体的には、例えば、電極101の外側底面に封着線102の一端面を接触させて、抵抗溶接により接続させる。なお、電極101と封着線102との接続方法は、抵抗溶接に限らずレーザー溶接等を用いてもよい。
2.酸化膜形成工程
 続いて、図3(b)に示すように、封着線102の表面に酸化膜105を形成させる。具体的には、例えば、封着線102の表面をガスバーナー108等により、加熱して封着線102の表面を酸化させる。なお、酸化方法は、ガスバーナー108に限らず、例えば加熱炉等を用いてもよい。
3.封着工程
 次に、図3(c)に示すように、外部リード線104の封着線102が接続されている側と反対側の端部より円筒状のガラスチューブ109の空洞部に挿入する。そして、治具110の一端面に設けられた固定穴110aに外部リード線104を挿入して固定する。
The manufacturing method of the electrode structure 100 includes an electrode, an electrode structure including a sealing wire having one end connected to the electrode, and a glass member formed so as to cover at least a part of the sealing wire. A method of connecting the electrode and one end of the sealing wire (connecting step), a step of forming an oxide film on the surface of the sealing wire (oxide film forming step), and sealing The glass member is coated on at least a part of the wire, and the oxide film formed in the substantially intermediate portion of the surface of the sealing wire covered by the glass member is all diffused into the glass member, or the maximum thickness is 0 And a step of diffusing so as to leave an oxide film of 1 [μm] or less (sealing step).
1. Connection Step First, as shown in FIG. 3A, the electrode 101 and one end of the sealing wire 102 are connected. Specifically, for example, one end surface of the sealing wire 102 is brought into contact with the outer bottom surface of the electrode 101 and is connected by resistance welding. The method for connecting the electrode 101 and the sealing wire 102 is not limited to resistance welding, and laser welding or the like may be used.
2. Oxide Film Formation Step Subsequently, as shown in FIG. 3B, an oxide film 105 is formed on the surface of the sealing wire 102. Specifically, for example, the surface of the sealing wire 102 is oxidized by heating the surface of the sealing wire 102 with a gas burner 108 or the like. The oxidation method is not limited to the gas burner 108, and for example, a heating furnace or the like may be used.
3. Sealing Step Next, as shown in FIG. 3C, the external lead wire 104 is inserted into the hollow portion of the cylindrical glass tube 109 from the end opposite to the side to which the sealing wire 102 is connected. . Then, the external lead wire 104 is inserted into a fixing hole 110a provided on one end surface of the jig 110 and fixed.
 続いて、治具110の固定穴110aに封着線102を挿入して固定した状態で、図3(d)に示すように、電気炉111の中に入れ、例えば約750[℃]~800[℃]で約20分間加熱する。これにより、ガラスチューブ109が溶融され、封着線102の少なくとも一部を覆うように形成されたガラス部材103が形成される。 Subsequently, with the sealing wire 102 inserted and fixed in the fixing hole 110a of the jig 110, as shown in FIG. 3 (d), it is placed in the electric furnace 111, for example, about 750 [° C.] to 800 Heat at [° C.] for about 20 minutes. Thereby, the glass tube 109 is melted, and the glass member 103 formed so as to cover at least a part of the sealing wire 102 is formed.
 この際、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部に形成された酸化膜105がガラス部材103に全て拡散され、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散され、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成される。 At this time, the oxide film 105 formed in the substantially middle part of the surface of the sealing wire 102 covered with the glass member 103 is all diffused into the glass member 103, or the maximum thickness is 0.1 [μm]. The following oxide film is diffused so as to remain, and a diffusion layer 106 made of the material of the sealing wire 102 is formed on the sealing wire 102 side of the glass member 103.
 以上の工程を経ることにより、電極構造体100が完成される。 The electrode structure 100 is completed through the above steps.
 なお、電極構造体107を製造する場合には、800[℃]~950[℃]で約30分加熱することにより製造することができる。これにより、封着線102の表面のうち、ガラス部材103に被覆された部分に形成された酸化膜105がガラス部材103に全て拡散され、または最大厚みが0.1[μm]以下の酸化膜105が残るように拡散され、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成される。4.還元工程
 なお、酸化膜形成工程や封着工程において、電極101や外部リード線の表面が酸化してしまう場合がある。特に電極101が酸化していると、電極101から電子が飛び出し難くなり、電極101がスパッタしやすくなるため、封着工程の後に還元工程を設けることが好ましい。
The electrode structure 107 can be manufactured by heating at 800 [° C.] to 950 [° C.] for about 30 minutes. As a result, the oxide film 105 formed on the portion of the surface of the sealing wire 102 covered with the glass member 103 is all diffused into the glass member 103 or the maximum thickness is 0.1 [μm] or less. A diffusion layer 106 made of the material of the sealing wire 102 is formed on the side of the sealing wire 102 of the glass member 103. 4). Reduction process In addition, the surface of the electrode 101 or the external lead wire may be oxidized in the oxide film forming process or the sealing process. In particular, when the electrode 101 is oxidized, it is difficult for electrons to jump out of the electrode 101 and the electrode 101 is easily sputtered. Therefore, it is preferable to provide a reduction step after the sealing step.
 図3(e)に示すように、電極構造体100を還元炉112の中に入れ、水素雰囲気中で650[℃]~750[℃]で約15分間加熱することで、封着線102のガラス部材103に被覆されていない部分や電極101や外部リード線104の表面が還元される。 As shown in FIG. 3 (e), the electrode structure 100 is placed in a reduction furnace 112 and heated in a hydrogen atmosphere at 650 [° C.] to 750 [° C.] for about 15 minutes, whereby the sealing wire 102 The portions not covered with the glass member 103 and the surfaces of the electrodes 101 and the external lead wires 104 are reduced.
 上記のとおり、本発明の第1の実施形態に係る電極構造体100、107の構成によれば、これを用いてガラスバルブを封止して低圧放電ランプを作製することで、低圧放電ランプの内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the electrode structures 100 and 107 according to the first embodiment of the present invention, the glass bulb is sealed using this to produce a low-pressure discharge lamp. Air can be prevented from flowing into the internal space.
 なお、拡散層106の最小厚みは8[μm]以上であり、拡散層106の最大厚みは30[μm]以下であることが好ましい。この場合、拡散層106でのクラックの発生を防止して低圧放電ランプの内部空間に空気が流入するのをさらに防止することができる。 The minimum thickness of the diffusion layer 106 is preferably 8 [μm] or more, and the maximum thickness of the diffusion layer 106 is preferably 30 [μm] or less. In this case, it is possible to prevent the occurrence of cracks in the diffusion layer 106 and further prevent air from flowing into the internal space of the low-pressure discharge lamp.
 さらに、拡散層106の最小厚みは16[μm]以上であり、拡散層106の最大厚みは30[μm]以下であることがより好ましい。 Furthermore, it is more preferable that the minimum thickness of the diffusion layer 106 is 16 [μm] or more, and the maximum thickness of the diffusion layer 106 is 30 [μm] or less.
 拡散層106の最小厚みおよび最大厚みは、例えばSEM-EDSによるライン元素分析による元素の拡散距離により求めることができる。 The minimum thickness and the maximum thickness of the diffusion layer 106 can be obtained by, for example, the element diffusion distance by line element analysis using SEM-EDS.
 (第2の実施形態)
 本発明の第2の実施形態に係る低圧放電ランプの管軸X200を含む断面図を図4に示す。本発明の第2の実施形態に係る低圧放電ランプ(以下、「ランプ200」という。)は、冷陰極蛍光ランプであって、ガラスバルブ201と、ガラスバルブ201の少なくとも一方の端部に設けられた電極構造体100とを有する。
(Second Embodiment)
The cross-sectional view including the tube axis X 200 of the low-pressure discharge lamp according to a second embodiment of the present invention shown in FIG. The low-pressure discharge lamp (hereinafter referred to as “lamp 200”) according to the second embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at at least one end of the glass bulb 201 and the glass bulb 201. Electrode structure 100.
 ガラスバルブ201は、例えば鉛フリーガラスやソーダガラス等の軟質ガラス製で、直管状であって、その管軸に対して垂直に切った断面が略円環状である。具体的には、例えば外径が4[mm]、内径が3[mm]、全長が1000[mm]である。なお、軟質ガラスは、例えば熱膨張係数90×10-7[K-1]以上100×10-7[K-1]以下の範囲内のガラスである。 The glass bulb 201 is made of soft glass such as lead-free glass or soda glass, for example, has a straight tubular shape, and has a substantially annular cross section cut perpendicular to the tube axis. Specifically, for example, the outer diameter is 4 [mm], the inner diameter is 3 [mm], and the total length is 1000 [mm]. The soft glass is, for example, a glass having a thermal expansion coefficient of 90 × 10 −7 [K −1 ] or more and 100 × 10 −7 [K −1 ] or less.
 ガラスバルブ201の内部には、例えば3[mg]の水銀が封入され、またアルゴンやネオン等の希ガスが所定の封入圧、例えば40[Torr]で封入されている。なお、上記希ガスとしては、例えばネオンとアルゴンとの混合ガスがAr=10[mol%]、Ne=90[mol%]の比率で用いられる。 The inside of the glass bulb 201 is filled with, for example, 3 [mg] mercury and a rare gas such as argon or neon is sealed at a predetermined sealing pressure, for example, 40 [Torr]. In addition, as said noble gas, the mixed gas of neon and argon is used by the ratio of Ar = 10 [mol%] and Ne = 90 [mol%], for example.
 また、ガラスバルブ201の内面には蛍光体層202が形成されている。蛍光体層202は、例えば赤色蛍光体(Y23:Eu2+)、緑色蛍光体(LaPO4:Ce3+,Tb3+)および青色蛍光体(BaMg2Al1627:Eu2+)からなる希土類蛍光体で形成されている。 A phosphor layer 202 is formed on the inner surface of the glass bulb 201. The phosphor layer 202 includes, for example, a red phosphor (Y 2 O 3 : Eu 2+ ), a green phosphor (LaPO 4 : Ce 3+ , Tb 3+ ), and a blue phosphor (BaMg 2 Al 16 O 27 : Eu 2). + ) And a rare earth phosphor.
 また、ガラスバルブ201の内面と蛍光体層202との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)、酸化チタン(TiO2)等の金属酸化物の保護膜(図示せず)を設けてもよい。 Further, between the inner surface of the glass bulb 201 and the phosphor layer 202, for example, yttrium oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), oxide A protective film (not shown) of a metal oxide such as titanium (TiO 2 ) may be provided.
 上記のとおり、本発明の第2の実施形態に係る低圧放電ランプ200の構造によれば、低圧放電ランプ200の内部空間に空気が流入するのを防止することができる。 As described above, according to the structure of the low-pressure discharge lamp 200 according to the second embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 200.
 なお、電極構造体100に限らず、電極構造体107を用いてもよい。この場合、封着線102とガラス部材103とを強固に密着することができるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。 Note that the electrode structure 107 may be used instead of the electrode structure 100. In this case, since the sealing wire 102 and the glass member 103 can be firmly adhered, air can be sufficiently prevented from flowing into the internal space of the low-pressure discharge lamp.
 さらに、電極101の内面には、セシウム化合物が付着していてもよい。この場合、ランプ200のランプ電圧を低下させることができるとともに、暗黒始動特性を向上させることができる。 Furthermore, a cesium compound may adhere to the inner surface of the electrode 101. In this case, the lamp voltage of the lamp 200 can be reduced, and the dark start characteristics can be improved.
 (第3の実施形態)
 本発明の第3の実施形態に係る冷陰極放電ランプの管軸X300を含む断面図を図5に示す。本発明の第3の実施形態に係る冷陰極放電ランプ(以下、「ランプ300」という。)は、内外部電極型冷陰極蛍光ランプである。
(Third embodiment)
FIG. 5 shows a cross-sectional view including the tube axis X 300 of the cold cathode discharge lamp according to the third embodiment of the present invention. A cold cathode discharge lamp (hereinafter referred to as “lamp 300”) according to the third embodiment of the present invention is an internal / external electrode type cold cathode fluorescent lamp.
 ランプ300は、その一端部の外表面に外部電極301を有し、これに伴う構成を除いてはランプ200と実質的に同じ構成を有している。よって、外部電極301とこれに伴う構成について詳細に説明し、その他の点については説明を省略する。 The lamp 300 has an external electrode 301 on the outer surface of one end thereof, and has substantially the same configuration as the lamp 200 except for the configuration associated therewith. Therefore, the external electrode 301 and the configuration associated therewith will be described in detail, and description of other points will be omitted.
 外部電極301は、例えば、半田からなり、ガラスバルブ201の一端部の外表面を覆うように形成されている。 The external electrode 301 is made of, for example, solder and is formed so as to cover the outer surface of one end portion of the glass bulb 201.
 あるいは、外部電極301は、銀ペーストをガラスバルブ201の電極形成部分の全周に塗布することによって形成してもよいし、金属製のキャップをガラスバルブ201の一端部に被せて形成してもよい。 Alternatively, the external electrode 301 may be formed by applying silver paste to the entire circumference of the electrode forming portion of the glass bulb 201, or may be formed by covering a metal cap on one end of the glass bulb 201. Good.
 さらに、アルミニウムの金属箔を、シリコーン樹脂に金属粉体を混合した導電性粘着剤(図示せず)によってガラスバルブ201の一端部の外周面を覆うように貼着したものであってもよい。なお、導電性粘着剤において、シリコーン樹脂の代わりにフッ素樹脂、ポリイミド樹脂又はエポキシ樹脂等を用いてもよい。 Furthermore, an aluminum metal foil may be attached so as to cover the outer peripheral surface of one end of the glass bulb 201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin. In addition, in a conductive adhesive, you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
 また、ガラスバルブ201の内面であって、外部電極301が形成された領域に例えば酸化イットリウム(Y23)の保護膜(図示せず)を設けてもよい。保護膜を設けることにより、ガラスバルブ201のその部分に水銀イオンが衝撃することによって起こるガラス削れやピンホールを防止することができる。 Further, a protective film (not shown) of, for example, yttrium oxide (Y 2 O 3 ) may be provided on the inner surface of the glass bulb 201 and in the region where the external electrode 301 is formed. By providing the protective film, it is possible to prevent glass scraping and pinholes caused by mercury ions bombarding that portion of the glass bulb 201.
 なお、保護膜は、酸化イットリウムに代えて、例えばシリカ(SiO2)、アルミナ(Al23)、酸化亜鉛(ZnO)、チタニア(TiO2)等の金属酸化物を用いてもよい。特に、保護膜が酸化イットリウムやシリカで形成されている場合には、保護膜に水銀が付着し難く、水銀消費が少ない。 They note that the protective film, instead of the yttrium oxide, for example, silica (SiO 2), alumina (Al 2 O 3), zinc oxide (ZnO), titania may be used (TiO 2) metal oxides and the like. In particular, when the protective film is formed of yttrium oxide or silica, mercury hardly adheres to the protective film, and mercury consumption is low.
 もっとも、保護膜は、本発明において必須の構成要素ではなく、全く形成されていなくてもよいし、その一方で、ガラスバルブ201の内面の全体に亘って形成されていてもよい。 However, the protective film is not an essential component in the present invention and may not be formed at all, or may be formed over the entire inner surface of the glass bulb 201.
 なお、ガラスバルブ201の一端部(外部電極301側端部)は、ガラス部材を用いずに、ガラスバルブ201の一端部を加熱して溶融させることにより封着されていてもよい。 Note that one end of the glass bulb 201 (end on the external electrode 301 side) may be sealed by heating and melting one end of the glass bulb 201 without using a glass member.
 上記のとおり、本発明の第3の実施形態に係る低圧放電ランプ300に係る構成によれば、低圧放電ランプ300の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp 300 according to the third embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 300.
 なお、電極構造体100に限らず、電極構造体107を用いてもよい。この場合、封着線102とガラス部材103とを強固に密着することができるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。 Note that the electrode structure 107 may be used instead of the electrode structure 100. In this case, since the sealing wire 102 and the glass member 103 can be firmly adhered, air can be sufficiently prevented from flowing into the internal space of the low-pressure discharge lamp.
 (第4の実施形態)
 本発明の第4の実施形態に係る電極構造体の長手方向の中心軸X400を含む断面図を図6(a)に示す。本発明の第4の実施形態に係る電極構造体(以下、「電極構造体400」という。)は、電極401と、一端部が電極401に接続された封着線402と、封着線402の少なくとも一部を覆うように形成されたガラス部材403とを有する。
(Fourth embodiment)
FIG. 6A shows a cross-sectional view including the longitudinal central axis X 400 of the electrode structure according to the fourth embodiment of the present invention. An electrode structure according to a fourth embodiment of the present invention (hereinafter referred to as “electrode structure 400”) includes an electrode 401, a sealing wire 402 having one end connected to the electrode 401, and a sealing wire 402. And a glass member 403 formed so as to cover at least a part thereof.
 電極401は、例えばタングステン製のフィラメントコイルである。電極401には、その巻線部にエミッタ(図示せず)が付着している。エミッタには、例えば(Ba,Sr,Ca)O等を用いることができる。なお、電極401は、タングステン製のフィラメントコイルに限らず、レニウムタングステン製のフィラメントコイルであってもよい。この場合、電極401がランプの点灯等により加熱されたときの強度を向上させることができる。 The electrode 401 is a filament coil made of tungsten, for example. The electrode 401 has an emitter (not shown) attached to its winding portion. For the emitter, for example, (Ba, Sr, Ca) O or the like can be used. The electrode 401 is not limited to a filament coil made of tungsten, but may be a filament coil made of rhenium tungsten. In this case, the strength when the electrode 401 is heated by lighting a lamp or the like can be improved.
 電極401は、その両端部を一対の封着線402に担持されている。 The electrode 401 is supported by a pair of sealing wires 402 at both ends.
 封着線402は、一対であって、電極401の両端部を担持している点を除いては、封着線102と実質的に同じ構成のものである。 The sealing wire 402 is a pair and has substantially the same configuration as the sealing wire 102 except that both ends of the electrode 401 are supported.
 一対の封着線402は、少なくとも一部がガラス部材403により覆われている。ガラス部材403は、封着線402を覆っている点を除いては、ガラス部材103と実質的に同じ構成のものである。 At least a part of the pair of sealing wires 402 is covered with a glass member 403. The glass member 403 has substantially the same configuration as the glass member 103 except that the glass member 403 covers the sealing wire 402.
 上記のとおり、本発明の第4の実施形態に係る電極構造体400の構成によれば、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the electrode structure 400 according to the fourth embodiment of the present invention, when used for sealing a low-pressure discharge lamp, air is prevented from flowing into the internal space of the low-pressure discharge lamp. can do.
 なお、図6(b)に示す電極構造体(以下、「電極構造体404」という。)であってもよい。電極構造体404は、電極405が電極構造体の長手方向の中心軸X404を旋回軸とした二重螺旋構造をしている。この場合、電極構造体400に比べてランプを細径化しやすくすることができる。封着線406は、直線形状であって、形状を除いてはリード線402と実質的に同じ構成を有する。 Note that the electrode structure shown in FIG. 6B (hereinafter referred to as “electrode structure 404”) may be used. In the electrode structure 404, the electrode 405 has a double spiral structure with the central axis X404 in the longitudinal direction of the electrode structure as a turning axis. In this case, the diameter of the lamp can be easily reduced as compared with the electrode structure 400. The sealing wire 406 is linear and has substantially the same configuration as the lead wire 402 except for the shape.
 また、図6(b)に示すように、電極405と封着線406とは、接続部材407を介して接続されていることが好ましい。この場合、電極405と封着線406との接続をより確実に行うことができる。接続部材407は、例えばニッケル製である。 Further, as shown in FIG. 6B, the electrode 405 and the sealing wire 406 are preferably connected via a connecting member 407. In this case, the electrode 405 and the sealing wire 406 can be more reliably connected. The connection member 407 is made of nickel, for example.
 さらに、電極405の周囲をスリーブ408で覆うことが好ましい。この場合、電極405からエミッタが飛散するのを抑制することができる。スリーブ408は、例えばニッケル製であって、一方の接続部材に溶接により接続されている。なお、スリーブ408の材料は、ニッケルに限らず、例えばモリブデン、タンタル、ニオブ、タングステン等を用いることができる。 Furthermore, it is preferable to cover the periphery of the electrode 405 with a sleeve 408. In this case, scattering of the emitter from the electrode 405 can be suppressed. The sleeve 408 is made of nickel, for example, and is connected to one connection member by welding. Note that the material of the sleeve 408 is not limited to nickel, and, for example, molybdenum, tantalum, niobium, tungsten, or the like can be used.
 なお、図6(a)および(b)に示す電極構造体400、404は、封着線402、406の表面のうち、ガラス部材に被覆された部分の端部に、厚い酸化膜105aが形成されてるが、電極構造体107のように厚い酸化膜105aが形成されていないものであってもよい。この場合、電極構造体107と同様に、封着線402、406とガラス部材403とを強固に密着することができるので、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。 In the electrode structures 400 and 404 shown in FIGS. 6A and 6B, a thick oxide film 105a is formed at the end of the surface of the sealing wires 402 and 406 covered with the glass member. However, the electrode structure 107 may not be formed with the thick oxide film 105a. In this case, as with the electrode structure 107, the sealing wires 402 and 406 and the glass member 403 can be firmly adhered, so that when used for sealing the low-pressure discharge lamp, the internal space of the low-pressure discharge lamp It is possible to sufficiently prevent the air from flowing in.
 (第5の実施形態)
 本発明の第5の実施形態に係る低圧放電ランプの管軸X500を含む断面図を図7(a)に示す。本発明の第5の実施形態に係る低圧放電ランプ(以下、「ランプ500」という。)は、熱陰極蛍光ランプであって、本発明の第4の実施形態に係る電極構造体400を備えている点を除いては、ランプ200と実質的に同じ構成を有する。
(Fifth embodiment)
The cross-sectional view including the tube axis X 500 of the low-pressure discharge lamp according to a fifth embodiment of the present invention shown in Figure 7 (a). The low-pressure discharge lamp (hereinafter referred to as “lamp 500”) according to the fifth embodiment of the present invention is a hot cathode fluorescent lamp, and includes the electrode structure 400 according to the fourth embodiment of the present invention. Except for this point, it has substantially the same configuration as the lamp 200.
 上記のとおり、本発明の第5の実施形態に係る低圧放電ランプ500の構成によれば、低圧放電ランプ500の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp 500 according to the fifth embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low-pressure discharge lamp 500.
 なお、図7(b)に示すように、電極構造体404を備えた低圧放電ランプ501(以下、「ランプ501」という。)であってもよい。この場合、ガラスバルブ201を細径化することができる。 As shown in FIG. 7B, a low-pressure discharge lamp 501 (hereinafter referred to as “lamp 501”) provided with an electrode structure 404 may be used. In this case, the glass bulb 201 can be reduced in diameter.
 (第6の実施形態)
 本発明の第6の実施形態に係る照明装置の分解斜視図を図8に示す。本発明の第6の実施形態に係る照明装置(以下、「照明装置600」という。)は直下方式のバックライトユニットであって、一つの面が開口した直方体状の筐体601と、この筐体601の内部に収納された複数のランプ200と、ランプ200を点灯回路(図示せず)に電気的に接続するための一対のソケット602と、筐体601の開口部を覆う光学シート類603とを備える。ランプ200は、本発明の第2の実施形態に係る低圧放電ランプ200である。なお、ランプ200に限らず、ランプ300、ランプ500またはランプ501も用いることができる。
(Sixth embodiment)
FIG. 8 shows an exploded perspective view of a lighting apparatus according to the sixth embodiment of the present invention. An illuminating device (hereinafter referred to as “illuminating device 600”) according to a sixth embodiment of the present invention is a direct-type backlight unit, and has a rectangular parallelepiped casing 601 having one surface opened, and the casing. A plurality of lamps 200 housed in the body 601, a pair of sockets 602 for electrically connecting the lamps 200 to a lighting circuit (not shown), and an optical sheet 603 covering an opening of the housing 601. With. The lamp 200 is a low-pressure discharge lamp 200 according to the second embodiment of the present invention. Note that not only the lamp 200 but also the lamp 300, the lamp 500, or the lamp 501 can be used.
 筐体601は、例えばポリエチレンテレフタレート(PET)樹脂製であって、その内面に銀などの金属が蒸着されて反射面604が形成されている。なお、筐体601の材料としては、樹脂以外の材料、例えば、アルミニウムや冷間圧延材(例えばSPCC)等の金属材料により構成してもよい。また、内面の反射面604として金属蒸着膜以外、例えば、ポリエチレンテレフタレート(PET)樹脂に炭酸カルシウム、二酸化チタン等を添加することにより反射率を高めた反射シートを筐体601に貼付したものを用いてもよい。 The housing 601 is made of, for example, polyethylene terephthalate (PET) resin, and a reflective surface 604 is formed by depositing a metal such as silver on the inner surface thereof. In addition, as a material of the housing | casing 601, you may comprise by metal materials, such as materials other than resin, for example, aluminum, a cold rolled material (for example, SPCC). Further, as the reflection surface 604 on the inner surface, other than the metal vapor-deposited film, for example, a reflection sheet whose reflectance is increased by adding calcium carbonate, titanium dioxide or the like to polyethylene terephthalate (PET) resin is used. May be.
 筐体601の内部には、ソケット602、絶縁体605およびカバー606が配置されている。具体的に、ソケット602は、ランプ200の配置に対応して筐体601の短手方向(縦方向)に各々所定間隔を空けて設けられている。ソケット602は、例えばステンレスやりん青銅からなる板材を加工したものであって、外部リード線104aが嵌め込まれる嵌込部602aを有している。そして、外部リード線104aを嵌込部602aを押し拡げるように弾性変形させて嵌め込む。その結果、嵌込部602aに嵌め込まれた外部リード線104aは、嵌込部602aの復元力によって押圧され、外れにくくなる。これにより、外部リード線104aを嵌込部602aへ容易に嵌め込むことができつつ、外れにくくすることができる。 A socket 602, an insulator 605, and a cover 606 are disposed inside the housing 601. Specifically, the sockets 602 are provided at predetermined intervals in the lateral direction (vertical direction) of the housing 601 corresponding to the arrangement of the lamps 200. The socket 602 is obtained by processing a plate material made of stainless steel or phosphor bronze, for example, and has a fitting portion 602a into which the external lead wire 104a is fitted. Then, the external lead wire 104a is fitted by being elastically deformed so as to expand the fitting portion 602a. As a result, the external lead wire 104a fitted in the fitting part 602a is pressed by the restoring force of the fitting part 602a and is difficult to come off. Thereby, the external lead wire 104a can be easily fitted into the fitting portion 602a, but can be made difficult to come off.
 ソケット602は、互いに隣り合うソケット602同士で短絡しないように絶縁体605で覆われている。絶縁体605は、例えば、ポリエチレンテレフタレート(PET)樹脂で構成されている。なお、絶縁体605は、上記の構成に限定されない。ソケット602はランプ200の動作中に比較的高温となる電極の近傍にあることから絶縁体605は耐熱性のある材料で構成することが好ましい。耐熱性のある絶縁体605の材料としては、例えば、ポリカーボネート(PC)樹脂やシリコンゴム等を適用することができる。 The socket 602 is covered with an insulator 605 so that the sockets 602 adjacent to each other are not short-circuited. The insulator 605 is made of, for example, polyethylene terephthalate (PET) resin. Note that the insulator 605 is not limited to the above structure. Since the socket 602 is in the vicinity of an electrode that becomes relatively hot during operation of the lamp 200, the insulator 605 is preferably made of a heat resistant material. As a material for the heat-resistant insulator 605, for example, polycarbonate (PC) resin, silicon rubber, or the like can be used.
 筐体601の内部には、必要に応じた場所にランプホルダ607を設けてもよい。筐体601内側でのランプ200の位置を固定するランプホルダ607は、例えば、ポリカーボネート(PC)樹脂であり、ランプ200の外面形状に沿うような形状を有している。「必要に応じた場所」とは、ランプ200の長手方向の中央部付近のように、ランプ200が例えば全長600[mm]を越えるような長尺のものである場合に、ランプ200のたわみを解消するために必要な場所である。 A lamp holder 607 may be provided inside the housing 601 at a place as necessary. The lamp holder 607 that fixes the position of the lamp 200 inside the housing 601 is, for example, polycarbonate (PC) resin, and has a shape that follows the outer shape of the lamp 200. The “location as necessary” means that the deflection of the lamp 200 is caused when the lamp 200 has a long length exceeding, for example, 600 [mm], as in the vicinity of the central portion of the lamp 200 in the longitudinal direction. It is a place necessary to eliminate.
 カバー606は、ソケット602と筐体601の内側の空間とを仕切るものであり、例えばポリカーボネート(PC)樹脂で構成し、ソケット602の周辺を保温するとともに、少なくとも筐体601側の表面を高反射性とすることにより、ランプ200の端部の輝度低下を軽減することができる。 The cover 606 divides the socket 602 and the space inside the housing 601 and is made of, for example, polycarbonate (PC) resin, keeps the periphery of the socket 602 warm, and highly reflects at least the surface on the housing 601 side. By reducing the brightness, a decrease in luminance at the end of the lamp 200 can be reduced.
 筐体601の開口部は、透光性の光学シート類603で覆われており、内部にちりや埃などの異物が入り込まないように密閉されている。光学シート類603は、拡散板608、拡散シート609およびレンズシート610を積層してなる。 The opening of the housing 601 is covered with a light-transmitting optical sheet 603 and is sealed so that foreign matters such as dust and dust do not enter inside. The optical sheet 603 is formed by laminating a diffusion plate 608, a diffusion sheet 609, and a lens sheet 610.
 拡散板608は、例えばポリメタクリル酸メチル(PMMA)樹脂製の板状体であって、筐体601の開口部を塞ぐように配置されている。拡散シート609は、例えばポリエステル樹脂製である。レンズシート610は、例えばアクリル系樹脂とポリエステル樹脂の貼り合せである。これらの光学シート類603は、それぞれ拡散板608に順次重ね合わせるようにして配置されている。 The diffusion plate 608 is a plate-like body made of, for example, polymethyl methacrylate (PMMA) resin, and is disposed so as to close the opening of the housing 601. The diffusion sheet 609 is made of, for example, a polyester resin. The lens sheet 610 is, for example, a laminate of an acrylic resin and a polyester resin. These optical sheets 603 are arranged so as to be sequentially superimposed on the diffusion plate 608.
 上記のとおり、本発明の第6の実施形態に係る照明装置600の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the illumination device 600 according to the sixth embodiment of the present invention, it is possible to prevent air from flowing into the internal space of the low- pressure discharge lamps 200, 300, 500, 501 provided therein. it can.
 (第7の実施形態)
 本発明の第7の実施形態に係る照明装置の一部切欠斜視図を図9に示す。本発明の第7の実施形態に係る照明装置(以下、「照明装置700」という。)は、エッジライト方式のバックライトユニットであって、反射板701、ランプ200、ソケット(図示せず)、導光板702、拡散シート703およびプリズムシート704を備える。
(Seventh embodiment)
FIG. 9 shows a partially cutaway perspective view of a lighting apparatus according to a seventh embodiment of the present invention. An illuminating device according to the seventh embodiment of the present invention (hereinafter referred to as “illuminating device 700”) is an edge light type backlight unit, which includes a reflector 701, a lamp 200, a socket (not shown), A light guide plate 702, a diffusion sheet 703, and a prism sheet 704 are provided.
 反射板701は、液晶パネル側(矢印Q)を除く導光板702の周囲を囲むように配置されており、底面を覆う底面部701aと、ランプ200の配置されている側を除く側面を覆う側面部701bと、ランプ200の周囲を覆う曲面状のランプ側面部701cとで構成されており、ランプ200から照射される光を導光板702から液晶パネル(図示せず)側(矢印Q)に反射させる。また、反射板701は、例えばフィルム状のPETに銀を蒸着したものやアルミ等の金属箔を積層したもの等からなる。 The reflection plate 701 is disposed so as to surround the periphery of the light guide plate 702 except for the liquid crystal panel side (arrow Q), and the side surface covering the bottom surface portion 701a covering the bottom surface and the side surface excluding the side where the lamp 200 is disposed. Part 701b and a curved lamp side surface part 701c covering the periphery of the lamp 200, and the light emitted from the lamp 200 is reflected from the light guide plate 702 to the liquid crystal panel (not shown) side (arrow Q). Let Further, the reflection plate 701 is made of, for example, a film-like PET deposited with silver or a metal foil such as aluminum laminated.
 ランプ200は、本発明の第2の実施形態に係る低圧放電ランプ200である。なお、ランプ200に限らず、ランプ300、ランプ500またはランプ501も用いることができる。 The lamp 200 is the low-pressure discharge lamp 200 according to the second embodiment of the present invention. Note that not only the lamp 200 but also the lamp 300, the lamp 500, or the lamp 501 can be used.
 ソケットは、本発明の第6の実施形態に係る照明装置600に用いられるソケット602と実質的に同じ構成を有している。なお、図9において、図示の便宜上により、ランプ200の端部については省略している。 The socket has substantially the same configuration as the socket 602 used in the lighting device 600 according to the sixth embodiment of the present invention. In FIG. 9, the end of the lamp 200 is omitted for convenience of illustration.
 導光板702は、反射板701により反射された光を液晶パネル側に導くためのものであって、例えば透光性プラスチックからなり、照明装置700の底面に設けられた反射板701の上に積重されている。なお、導光板702の材料としては、ポリカーボネート(PC)樹脂やシクロオレフィン系樹脂(COP)を適用することができる。 The light guide plate 702 is for guiding the light reflected by the reflection plate 701 to the liquid crystal panel side. It is weighted. Note that a polycarbonate (PC) resin or a cycloolefin-based resin (COP) can be used as the material of the light guide plate 702.
 拡散シート703は、視野拡大のためのものであって、例えばポリエチレンテレフタレート樹脂やポリエステル樹脂製の拡散透過機能を有するフィルムからなり、導光板702の上に積重されている。 The diffusion sheet 703 is for expanding the visual field and is made of a film having a diffusion transmission function made of, for example, polyethylene terephthalate resin or polyester resin, and is stacked on the light guide plate 702.
 プリズムシート704は、輝度を向上させるためのものであって、例えばアクリル系樹脂とポリエステル樹脂とを貼り合せたシートからなり、拡散シート703の上に積層されている。なお、プリズムシート704の上にさらに拡散板(図示せず)が積層されていてもよい。 The prism sheet 704 is for improving luminance, and is made of, for example, a sheet obtained by bonding an acrylic resin and a polyester resin, and is laminated on the diffusion sheet 703. Note that a diffusion plate (not shown) may be further stacked on the prism sheet 704.
 なお、本実施形態の場合には、ランプ200の周方向における一部分(照明装置700に挿入した場合における導光板702側)を除き、ガラスバルブの外面に反射シート(図示せず)を設けたアパーチャ型のランプであってもよい。 In the case of the present embodiment, an aperture provided with a reflection sheet (not shown) on the outer surface of the glass bulb except for a part in the circumferential direction of the lamp 200 (on the light guide plate 702 side when inserted into the lighting device 700). It may be a type of lamp.
 上記のとおり、本発明の第7の実施形態に係る照明装置700の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the lighting apparatus 700 according to the seventh embodiment of the present invention, it is possible to prevent air from flowing into the internal spaces of the low- pressure discharge lamps 200, 300, 500, and 501 provided therein. it can.
 (第8の実施形態)
 本発明の第8の実施形態に係る照明装置の正面図を図10(a)に、図10(a)のC-C´線で切った断面図を図10(b)にそれぞれ示す。本発明の第8の実施形態に係る照明装置800(以下、「照明装置800」という。)は、一般照明用の環状蛍光ランプを使用した照明器具である。
(Eighth embodiment)
FIG. 10A shows a front view of a lighting apparatus according to the eighth embodiment of the present invention, and FIG. 10B shows a cross-sectional view taken along the line CC ′ of FIG. 10A. An illuminating device 800 according to an eighth embodiment of the present invention (hereinafter referred to as “illuminating device 800”) is a luminaire using an annular fluorescent lamp for general illumination.
 照明装置800は、本体部801、盤状部802、ランプホルダ803、ソケット804およびランプ805を備える。 The lighting device 800 includes a main body portion 801, a plate-like portion 802, a lamp holder 803, a socket 804, and a lamp 805.
 本体部801は、その内部に点灯回路(図示せず)等を収納し、例えばその上部から電気接続部(図示せず)が導出しており、例えばその側面部からランプ805の口金806と電気的に接続するためのソケット804が導出している。 The main body portion 801 houses a lighting circuit (not shown) and the like, and an electrical connection portion (not shown) is led out from the upper portion of the main body portion 801, for example. A socket 804 for connection is provided.
 盤状部802は、本体部801、ランプホルダ803を支持する部材であり、例えば円盤状の形状を有している。 The disk-shaped part 802 is a member that supports the main body 801 and the lamp holder 803 and has, for example, a disk-shaped shape.
 ランプホルダ803は、盤状部802の下面に取付けられており、その下端に設けられた例えばC字状の挟持片によりランプ805を保持し、ランプ805の落下を防止することができる。 The lamp holder 803 is attached to the lower surface of the disk-shaped portion 802, and the lamp 805 can be held by, for example, a C-shaped sandwiching piece provided at the lower end thereof to prevent the lamp 805 from falling.
 ランプ805は、環状の熱陰極蛍光ランプであり、形状が環状であることと口金806がランプ805の中間部に位置していることを除いては第5の実施形態に係る低圧放電ランプ500と実質的に同じ構成を有している。なお、ランプ805は、形状が環状であることと口金806がランプ805の中間部に位置していることを除いてはランプ501と実質的に同じ構成のものを用いてもよい。 The lamp 805 is an annular hot cathode fluorescent lamp, and the low-pressure discharge lamp 500 according to the fifth embodiment, except that the shape is annular and the base 806 is located in the middle of the lamp 805. It has substantially the same configuration. The lamp 805 may have substantially the same configuration as the lamp 501 except that the lamp 805 has an annular shape and the base 806 is positioned in the middle of the lamp 805.
 上記のとおり、本発明の第8の実施形態に係る照明装置800の構成によれば、内部に備える低圧放電ランプ805の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the lighting apparatus 800 according to the eighth embodiment of the present invention, air can be prevented from flowing into the internal space of the low-pressure discharge lamp 805 provided therein.
 (第9の実施形態)
 本発明の第9の実施形態に係る画像表示装置の概要を図11に示す。図11に示すように画像表示装置900は、例えば32[inch]液晶テレビ(液晶表示装置)であり、液晶パネル等を含む液晶画面ユニット901と本発明の第6の実施形態に係る照明装置600と点灯回路902とを備える。
(Ninth embodiment)
An outline of an image display apparatus according to the ninth embodiment of the present invention is shown in FIG. As shown in FIG. 11, the image display device 900 is, for example, a 32 [inch] liquid crystal television (liquid crystal display device), a liquid crystal screen unit 901 including a liquid crystal panel and the like, and an illumination device 600 according to the sixth embodiment of the present invention. And a lighting circuit 902.
 液晶画面ユニット901は、公知のものであって、液晶パネル(カラーフィルター基板、液晶、TFT基板等)(図示せず)、駆動モジュール等(図示せず)を備え、外部からの画像信号に基づいてカラー画像を形成する。 The liquid crystal screen unit 901 is a publicly known one and includes a liquid crystal panel (color filter substrate, liquid crystal, TFT substrate, etc.) (not shown), a drive module, etc. (not shown), and is based on an image signal from the outside. To form a color image.
 点灯回路902は、照明装置600内部のランプ200を点灯させる。そして、ランプ200は、点灯周波数40[kHz]~100[kHz]、ランプ電流3.0[mA]~25[mA]で動作される。 The lighting circuit 902 lights the lamp 200 in the lighting device 600. The lamp 200 is operated at a lighting frequency of 40 [kHz] to 100 [kHz] and a lamp current of 3.0 [mA] to 25 [mA].
 なお、図11では、画像表示装置900の光源装置として本発明の第6の実施形態に係る照明装置600に第2の実施形態に係る低圧放電ランプ200を挿入した場合について説明したが、これに限らず、ランプ300、ランプ500またはランプ501も用いることができる。また、照明装置についても、照明装置700も用いることができる。 In addition, although FIG. 11 demonstrated the case where the low voltage | pressure discharge lamp 200 which concerns on 2nd Embodiment was inserted in the illuminating device 600 which concerns on the 6th Embodiment of this invention as a light source device of the image display apparatus 900, in this, Not limited to this, the lamp 300, the lamp 500, or the lamp 501 can also be used. In addition, the lighting device 700 can be used as the lighting device.
 上記のとおり、本発明の第9の実施形態に係る画像表示装置900の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。 As described above, according to the configuration of the image display apparatus 900 according to the ninth embodiment of the present invention, air can be prevented from flowing into the internal space of the low- pressure discharge lamps 200, 300, 500, and 501 provided therein. Can do.
 (変形例)
 以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
1.電子放射性物質について
 電極101の表面には、電子放射性物質層(図示せず)が形成されていてもよい。この場合、電子放射性物質層が設けられていないランプに比べてランプ電圧を下げることができる。具体的には、電子放射性物質層は、例えば電極101の内面に形成されている。電子放射性物質層は、例えば希土類元素を含む。冷陰極蛍光ランプにおいて、ランプ電圧を下げるのに効果的なためである。さらに、希土類元素は、ランタン(La)およびイットリウム(Y)のうちいずれか1種以上であることがより好ましい。
(Modification)
As described above, the present invention has been described based on the specific examples shown in the above embodiments. However, the content of the present invention is not limited to the specific examples shown in the respective embodiments. Variations can be used.
1. Electron Emissive Material An electron emissive material layer (not shown) may be formed on the surface of the electrode 101. In this case, the lamp voltage can be lowered compared to a lamp not provided with an electron emissive material layer. Specifically, the electron-emitting material layer is formed on the inner surface of the electrode 101, for example. The electron emissive material layer includes, for example, a rare earth element. This is because the cold cathode fluorescent lamp is effective in reducing the lamp voltage. Furthermore, the rare earth element is more preferably one or more of lanthanum (La) and yttrium (Y).
 電子放射性物質層は、さらに珪素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、硼素(B)、亜鉛(Zn)、ビスマス(Bi)、リン(P)および錫(Sn)のうちいずれか1種以上を含むことが好ましい。この場合、ランプ電圧の低減効果をより持続させることができる。 The electron-emitting material layer may be any one of silicon (Si), aluminum (Al), zirconium (Zr), boron (B), zinc (Zn), bismuth (Bi), phosphorus (P), and tin (Sn). It is preferable that 1 or more types are included. In this case, the lamp voltage reduction effect can be further sustained.
 さらに、電子放射性物質層に、セシウム(Cs)化合物が含まれていてもよい。この場合、ランプの暗黒始動特性をさらに向上させることができる。また、電子放射性物質層とは別に、電極101の内面や外面にセシウム化合物を付着させてもよい。なお、セシウム化合物は、例えば、硫酸セシウム、アルミン酸セシウム、ニオブ酸セシウム、タングステン酸セシウム、モリブデン酸セシウムおよび塩化セシウムのうちいずれか1種以上を用いることが好ましい。また、セシウム化合物は、電極101の外側側面に付着されていることがより好ましい。この場合、冷陰極蛍光ランプの製造工程において、セシウム化合物を適度に活性化させやすくすることができる。さらには、電極101の外側側面におけるランプ中央部側の先端部に付着されていることがさらにより好ましい。この場合、冷陰極蛍光ランプの製造工程において、セシウム化合物をさらに活性化させやすくすることができる。
2.口金について
 本発明の第2の実施形態に係る低圧放電ランプの変形例の要部拡大正面図を図12(a)に、その管軸を含む要部拡大断面図を図12(b)にそれぞれ示す。本発明の第2の実施形態に係る低圧放電ランプの変形例(以下、「ランプ203」という。)は、口金204を備える点を除いては、ランプ200と実質的に同じ構成を有する。よって、以下、口金204について詳細に説明し、その他の点については説明を省略する。
Furthermore, a cesium (Cs) compound may be included in the electron-emitting material layer. In this case, the dark start characteristics of the lamp can be further improved. In addition to the electron-emitting material layer, a cesium compound may be attached to the inner surface or outer surface of the electrode 101. As the cesium compound, for example, it is preferable to use at least one of cesium sulfate, cesium aluminate, cesium niobate, cesium tungstate, cesium molybdate, and cesium chloride. The cesium compound is more preferably attached to the outer side surface of the electrode 101. In this case, the cesium compound can be moderately activated easily in the manufacturing process of the cold cathode fluorescent lamp. Furthermore, it is even more preferable that the electrode 101 is attached to the tip of the lamp central portion side on the outer side surface. In this case, the cesium compound can be more easily activated in the manufacturing process of the cold cathode fluorescent lamp.
2. About a base The principal part expanded front view of the modification of the low voltage | pressure discharge lamp which concerns on the 2nd Embodiment of this invention is shown to Fig.12 (a), and the principal part expanded sectional view containing the pipe axis is shown in FIG.12 (b), respectively. Show. A modification of the low-pressure discharge lamp according to the second embodiment of the present invention (hereinafter referred to as “lamp 203”) has substantially the same configuration as the lamp 200 except that a base 204 is provided. Therefore, hereinafter, the base 204 will be described in detail, and description of other points will be omitted.
 口金204は、外部リード線104と電気的かつ機械的に接続されている。具体的には、口金204は、ガラスバルブ201の端部を覆う胴体部204aと、胴体部204aの一端より延出し、外部リード線104と電気的かつ機械的に接続される延出部204bとで構成されている。このようなランプ203は、照明装置に組み込む際、口金204をヒューズソケット(図示せず)等に挿入するだけで電気的かつ機械的に接続できる。 The base 204 is electrically and mechanically connected to the external lead wire 104. Specifically, the base 204 includes a body portion 204 a that covers the end portion of the glass bulb 201, and an extension portion 204 b that extends from one end of the body portion 204 a and is electrically and mechanically connected to the external lead wire 104. It consists of Such a lamp 203 can be electrically and mechanically connected by simply inserting the base 204 into a fuse socket (not shown) or the like when incorporated in the lighting device.
 胴体部204aの側面には、ガラスバルブ201を保持するための保持部204cが設けられている。保持部204cは、例えば、胴体部204aの側面の一部を切り抜き、ガラスバルブ201側に折り曲げて形成されている。また、保持部204cの先端部204dは、ガラスバルブ201を傷付けないようにガラスバルブ201とは反対側に折り曲げられている。なお、保持部204cは、胴体部204aの周方向に略等間隔に3[箇所]以上設けられていることが好ましい。この場合、ガラスバルブ201をより安定して保持できるためである。さらに、保持部204cとガラスバルブ201との接触部は、電極101の対向部にあることが好ましい。この場合、電極101付近で発生する熱の放熱を、保持部204cを介して促進させることができる。 A holding portion 204c for holding the glass bulb 201 is provided on the side surface of the body portion 204a. The holding part 204c is formed, for example, by cutting out a part of the side surface of the body part 204a and bending it to the glass bulb 201 side. Further, the tip end portion 204d of the holding portion 204c is bent to the side opposite to the glass bulb 201 so as not to damage the glass bulb 201. In addition, it is preferable that 3 [locations] or more of the holding portions 204c are provided at substantially equal intervals in the circumferential direction of the body portion 204a. In this case, the glass bulb 201 can be held more stably. Furthermore, it is preferable that the contact portion between the holding portion 204 c and the glass bulb 201 is in a portion facing the electrode 101. In this case, heat dissipation generated near the electrode 101 can be promoted via the holding portion 204c.
 なお、口金204を通じて電極101で発生する熱を放熱させやすくすることができるため、電極の表面に電子放射性物質層が設けられている場合においては、電極101周辺の温度の過度の上昇を抑制し、電極101周辺において水銀が少なくなることを抑制することで、電子放射性物質層のスパッタリングを抑制し、口金204が設けられていないランプに比べてランプ電圧の低減効果を持続させることができる。
3.ガラス部材103、403およびガラスバルブ201について
(1)紫外線吸収について
 ガラス部材103、403およびガラスバルブ201の材料であるガラスに遷移金属の酸化物をその種類によって所定量をドープすることにより254[nm]や313[nm]の紫外線を吸収することができる。具体的には、例えば酸化チタン(TiO2)の場合は、組成比率0.05[mol%]以上ドープすることにより254[nm]の紫外線を吸収し、組成比率2[mol%]以上ドープすることにより313[nm]の紫外線を吸収することができる。ただし、酸化チタンを組成比率5.0[mol%]より多くドープした場合には、ガラスが失透してしまうため、組成比率0.05[mol%]以上5.0[mol%]以下の範囲でドープすることが好ましい。
In addition, since heat generated in the electrode 101 can be easily radiated through the base 204, an excessive increase in the temperature around the electrode 101 is suppressed in the case where an electron-emitting material layer is provided on the surface of the electrode. By suppressing the decrease of mercury in the vicinity of the electrode 101, sputtering of the electron-emitting material layer can be suppressed, and the effect of reducing the lamp voltage can be maintained as compared with a lamp in which the base 204 is not provided.
3. Regarding Glass Members 103 and 403 and Glass Bulb 201 (1) About UV Absorption 254 [nm] by doping a glass, which is a material of glass members 103 and 403 and glass bulb 201, with a transition metal oxide in a predetermined amount depending on its type. ] And 313 [nm] ultraviolet rays can be absorbed. Specifically, for example, in the case of titanium oxide (TiO 2 ), the composition ratio of 0.05 [mol%] or more is doped to absorb ultraviolet rays of 254 [nm], and the composition ratio is 2 [mol%] or more. Thus, it is possible to absorb ultraviolet rays of 313 [nm]. However, when titanium oxide is doped more than the composition ratio of 5.0 [mol%], the glass is devitrified, so the composition ratio is 0.05 [mol%] or more and 5.0 [mol%] or less. It is preferable to dope in the range.
 また、酸化セリウム(CeO2)の場合は、組成比率0.05[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化セリウムを組成比率0.5[mol%]より多くドープした場合には、ガラスが着色してしまうため、酸化セリウムを組成比率0.05[mol%]以上0.5[mol%]以下の範囲でドープすることが好ましい。なお、酸化セリウムに加えて酸化スズ(SnO)をドープすることにより、酸化セリウムによるガラスの着色を抑えることができるため、酸化セリウムを組成比率5.0[mol%]以下までドープすることができる。この場合、酸化セリウムを組成比率0.5[mol%]以上ドープすれば313[nm]の紫外線を吸収することができる。ただし、この場合においても酸化セリウムを組成比率が5.0[mol%]より多くドープした場合には、ガラスが失透してしまう。 In the case of cerium oxide (CeO 2 ), 254 [nm] ultraviolet rays can be absorbed by doping at a composition ratio of 0.05 [mol%] or more. However, when cerium oxide is doped more than 0.5 [mol%], the glass is colored, so cerium oxide has a composition ratio of 0.05 [mol%] to 0.5 [mol%]. It is preferable to dope in the following range. In addition, since coloring of glass by cerium oxide can be suppressed by doping tin oxide (SnO) in addition to cerium oxide, cerium oxide can be doped to a composition ratio of 5.0 [mol%] or less. . In this case, if cerium oxide is doped with a composition ratio of 0.5 [mol%] or more, ultraviolet rays of 313 [nm] can be absorbed. However, even in this case, when the composition ratio of cerium oxide is more than 5.0 [mol%], the glass is devitrified.
 また、酸化亜鉛(ZnO)の場合は、組成比率2.0[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化亜鉛を組成比率20[mol%]より多くドープした場合、ガラスが失透してしまうおそれがあるため、酸化亜鉛を2.0[mol%]以上20[mol%]以下の範囲でドープすることが好ましい。 Further, in the case of zinc oxide (ZnO), ultraviolet rays of 254 [nm] can be absorbed by doping at a composition ratio of 2.0 [mol%] or more. However, when zinc oxide is doped more than 20 [mol%], the glass may be devitrified, so zinc oxide is in the range of 2.0 [mol%] to 20 [mol%]. It is preferable to dope.
 また、酸化鉄(Fe23)の場合は、組成比率0.01[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化鉄を組成比率2.0[mol%]より多くドープした場合には、ガラスが着色してしまうため、酸化鉄を組成比率0.01[mol%]以上2.0[mol%]以下の範囲でドープすることが好ましい。
(2)赤外線透過係数について
 ガラス部材103、403およびガラスバルブ201の材料であるガラス中の水分含有量を示す赤外線透過率係数は、0.3以上1.2以下の範囲、特に0.4以上0.8以下の範囲となるように調整することが好ましい。赤外線透過率係数が1.2以下であれば、長尺の冷陰極放電ランプ等の高電圧印加ランプに適用可能な低い誘電正接を得やすくなり、0.8以下であれば誘電正接が十分に小さくなって、さらに高電圧印加ランプに適用可能となる。
Further, in the case of iron oxide (Fe 2 O 3 ), 254 [nm] ultraviolet rays can be absorbed by doping at a composition ratio of 0.01 [mol%] or more. However, when iron oxide is doped more than the composition ratio of 2.0 [mol%], the glass is colored, so the iron oxide is contained in the composition ratio of 0.01 [mol%] to 2.0 [mol%]. It is preferable to dope in the following range.
(2) Infrared transmission coefficient The infrared transmission coefficient indicating the water content in the glass that is the material of the glass members 103 and 403 and the glass bulb 201 is in the range of 0.3 to 1.2, particularly 0.4 or more. It is preferable to adjust so that it may become the range of 0.8 or less. If the infrared transmittance coefficient is 1.2 or less, it is easy to obtain a low dielectric loss tangent applicable to a high voltage application lamp such as a long cold cathode discharge lamp, and if it is 0.8 or less, the dielectric loss tangent is sufficient. It becomes small and becomes applicable to a high voltage application lamp.
 なお、赤外線透過率係数(X)は下式で表すことができる。 The infrared transmittance coefficient (X) can be expressed by the following formula.
  [数1]
X=(log(a/b))/t
a:3840[cm-1]付近の極小点の透過率[%]
b:3560[cm-1]付近の極小点の透過率[%]
t:ガラスの厚み
(3)鉛フリーガラスについて
 ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、Li2Oが0[wt%]~5[wt%]、K2Oが3[wt%]~11[wt%]、Na2Oが3[wt%]~12[wt%]、CaOが0[wt%]~9[wt%]、MgOが0[wt%]~9[wt%]、SrOが0[wt%]~12[wt%]、BaOが0[wt%]~12[wt%]の組成を有していてもよい。この場合、鉛成分を含有せず、環境に優しい冷陰極放電ランプを提供することができる。さらには、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、B23が0[wt%]~3[wt%]、Li2Oが0[wt%]~5[wt%]、K2Oが3[wt%]~11[wt%]、Na2Oが3[wt%]~12[wt%]、CaOが0[wt%]~9[wt%]、MgOが0[wt%]~9[wt%]、SrOが0[wt%]~12[wt%]、BaOが0[wt%]~12[wt%]の組成を有していることがより好ましい。
[Equation 1]
X = (log (a / b)) / t
a: Transmittance [%] of a minimum point in the vicinity of 3840 [cm −1 ]
b: Transmittance [%] of a minimum point in the vicinity of 3560 [cm −1 ].
t: Thickness of glass (3) Lead-free glass The glass used for the glass members 103 and 403 and the glass bulb 201 has a SiO 2 of 60 [wt%] to 75 [wt]%, Al 2 O 3 in terms of oxide. Is 1 [wt%] to 5 [wt%], Li 2 O is 0 [wt%] to 5 [wt%], K 2 O is 3 [wt%] to 11 [wt%], and Na 2 O is 3 [Wt%] to 12 [wt%], CaO from 0 [wt%] to 9 [wt%], MgO from 0 [wt%] to 9 [wt%], SrO from 0 [wt%] to 12 [wt] %] And BaO may have a composition of 0 [wt%] to 12 [wt%]. In this case, an environment-friendly cold cathode discharge lamp that does not contain a lead component can be provided. Furthermore, the glass used for the glass members 103 and 403 and the glass bulb 201 has an oxide conversion of SiO 2 of 60 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 5 [5%]. wt%], B 2 O 3 is 0 [wt%] to 3 [wt%], Li 2 O is 0 [wt%] to 5 [wt%], and K 2 O is 3 [wt%] to 11 [wt]. %], Na 2 O 3 [wt%] to 12 [wt%], CaO 0 [wt%] to 9 [wt%], MgO 0 [wt%] to 9 [wt%], SrO 0 It is more preferable that [wt%] to 12 [wt%] and BaO have a composition of 0 [wt%] to 12 [wt%].
 また、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、Li2Oが0.5[wt%]~5[wt%]、K2Oが3[wt%]~7[wt%]、Na2Oが5[wt%]~12[wt%]、CaOが1[wt%]~7[wt%]、MgOが1[wt%]~7[wt%]、SrOが0[wt%]~5[wt%]、BaOが7[wt%]~12[wt%]の組成を有していてもよい。この場合、ランプへの加工を行いやすく、かつ鉛成分を含有せず、環境に優しい冷陰極蛍光ランプを提供することができる。 The glass used in the glass member 103,403 and the glass bulb 201, in terms of oxide, SiO 2 is 60 [wt%] ~ 75 [ wt]%, Al 2 O 3 is 1 [wt%] ~ 5 [ wt %], Li 2 O is 0.5 [wt%] to 5 [wt%], K 2 O is 3 [wt%] to 7 [wt%], and Na 2 O is 5 [wt%] to 12 [wt]. %], CaO 1 [wt%] to 7 [wt%], MgO 1 [wt%] to 7 [wt%], SrO 0 [wt%] to 5 [wt%], BaO 7 [wt] %] To 12 [wt%]. In this case, it is possible to provide an environment-friendly cold cathode fluorescent lamp that is easy to process into a lamp and does not contain a lead component.
 さらに、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が65[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、B23が0[wt%]~3[wt%]、Li2Oが0.5[wt%]~5[wt%]、 K2Oが3[wt%]~7[wt%]、Na2Oが5[wt%]~12[wt%]、 CaOが2[wt%]~7[wt%]、MgOが2.1[wt%]~7[wt%]、SrOが0[wt%]~0.9[wt%]、BaOが7.1[wt%]~12[wt%]の組成を有していてもよい。この場合、鉛成分を含有せず、照明用途に適した電気絶縁性を有し、かつ、失透を起こりにくくすることができる。さらには、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が65[wt%]~75[wt]%、Al23が1[wt%]~3[wt%]、B23が0[wt%]~3[wt%]、Li2Oが1[wt%]~3[wt%]、 K2Oが3[wt%]~6[wt%]、Na2Oが7[wt%]~10[wt%]、 CaOが3[wt%]~6[wt%]、MgOが3[wt%]~6[wt%]、SrOが0[wt%]~0.9[wt%]、BaOが7.1~10[wt%]の組成を有していることがより好ましい。
(4)ガラスバルブ201の形状について
 ガラスバルブ201の形状は、直管形状のものに限られず、例えばL字形状、U字形状、コの字形状、渦巻き形状等であってもよい。また、その管軸に対して略垂直に切った断面は、略円形状のものに限られず、例えばトラック形状や角丸形状のような扁平形状や楕円形状等であってもよい。
4.蛍光体層の蛍光体について
(1)紫外線吸収について
 例えば、近年、液晶カラーテレビの大型化に伴って、バックライトユニットの開口を塞ぐ拡散板に寸法安定性の良いポリカーボネートが使用されるようになっている。このポリカーボネートは、水銀が発する313[nm]の波長の紫外線により劣化しやすい。このような場合には、波長313[nm]の紫外線を吸収する蛍光体を利用すると良い。なお、313[nm]の紫外線を吸収する蛍光体としては、以下のものがある。
(a)青色
 ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
 ここで、x,y,zはそれぞれ0≦x≦0.4、 0.07≦y≦0.25、 0≦z<0.1なる条件を満たす数であることが好ましい。
Furthermore, the glass used for the glass members 103 and 403 and the glass bulb 201 has a SiO 2 of 65 [wt%] to 75 [wt]% and an Al 2 O 3 of 1 [wt%] to 5 [wt] in terms of oxides. %], B 2 O 3 is 0 [wt%] to 3 [wt%], Li 2 O is 0.5 [wt%] to 5 [wt%], and K 2 O is 3 [wt%] to 7 [wt%]. wt%], Na 2 O 5 [wt%] to 12 [wt%], CaO 2 [wt%] to 7 [wt%], MgO 2.1 [wt%] to 7 [wt%], SrO may have a composition of 0 [wt%] to 0.9 [wt%], and BaO may have a composition of 7.1 [wt%] to 12 [wt%]. In this case, it does not contain a lead component, has an electrical insulating property suitable for lighting applications, and can prevent devitrification. Furthermore, the glass used for the glass members 103 and 403 and the glass bulb 201 has an oxide conversion of SiO 2 of 65 [wt%] to 75 [wt]% and Al 2 O 3 of 1 [wt%] to 3 [3]. wt%], B 2 O 3 is 0 [wt%] to 3 [wt%], Li 2 O is 1 [wt%] to 3 [wt%], and K 2 O is 3 [wt%] to 6 [wt]. %], Na 2 O is 7 wt% to 10 wt%, CaO is 3 wt% to 6 wt%, MgO is 3 wt% to 6 wt%, and SrO is 0 It is more preferable that [wt%] to 0.9 [wt%] and BaO have a composition of 7.1 to 10 [wt%].
(4) Shape of Glass Bulb 201 The shape of the glass bulb 201 is not limited to a straight tube shape, and may be, for example, an L shape, a U shape, a U shape, a spiral shape, or the like. Further, the cross section cut substantially perpendicular to the tube axis is not limited to a substantially circular shape, and may be a flat shape such as a track shape or a rounded round shape, an elliptical shape, or the like.
4). Regarding phosphors in the phosphor layer (1) UV absorption For example, in recent years, with the increase in size of liquid crystal color televisions, polycarbonate with good dimensional stability has been used for the diffusion plate that closes the opening of the backlight unit. ing. This polycarbonate is easily deteriorated by ultraviolet rays having a wavelength of 313 [nm] emitted from mercury. In such a case, a phosphor that absorbs ultraviolet light having a wavelength of 313 [nm] may be used. The following phosphors absorb 313 [nm] ultraviolet rays.
(A) Blue Europium / manganese co-activated barium aluminate / strontium / magnesium [Ba 1-xy Sr x Eu y Mg 1-z Mn z Al 10 O 17 ] or [Ba 1-xy Sr x Eu y Mg 2− z Mn z Al 16 O 27 ]
Here, x, y, and z are preferably numbers satisfying the conditions of 0 ≦ x ≦ 0.4, 0.07 ≦ y ≦ 0.25, and 0 ≦ z <0.1, respectively.
 このような蛍光体としては、例えば、ユーロピウム付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+]、[BaMgAl1017:Eu2+] (略号:BAM-B)や、ユーロピウム付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+]、[(Ba,Sr)MgAl1017:Eu2+](略号:SBAM-B)等がある。
(b)緑色
 ・マンガン不活マグネシウムガレート[MgGa24:Mn2+](略号:MGM)
 ・マンガン付活アルミン酸セリウム・マグネシウム・亜鉛[Ce(Mg,Zn)Al1119:Mn2+](略号:CMZ)
 ・テルビウム付活アルミン酸セリウム・マグネシウム[CeMgAl1119:Tb3+](略号:CAT)
 ・ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
 ここで、x,y,zはそれぞれ0≦x≦0.4、 0.07≦y≦0.25、 0.1≦z≦0.6なる条件を満たす数であり、zは0.4≦x≦0.5であることが好ましい。
Examples of such phosphors include europium activated barium magnesium aluminate [BaMg 2 Al 16 O 27 : Eu 2+ ], [BaMgAl 10 O 17 : Eu 2+ ] (abbreviation: BAM-B), Europium activated barium aluminate / strontium / magnesium [(Ba, Sr) Mg 2 Al 16 O 27 : Eu 2+ ], [(Ba, Sr) MgAl 10 O 17 : Eu 2+ ] (abbreviation: SBAM-B) Etc.
(B) Green • Manganese inactive magnesium gallate [MgGa 2 O 4 : Mn 2+ ] (abbreviation: MGM)
Manganese activated cerium aluminate, magnesium, zinc [Ce (Mg, Zn) Al 11 O 19 : Mn 2+ ] (abbreviation: CMZ)
· Active aluminate, cerium-magnesium with terbium [CeMgAl 11 O 19: Tb 3+ ] ( abbreviation: CAT)
• Europium • Manganese co-activated barium aluminate • Strontium • Magnesium [Ba 1 -xy Sr x Eu y Mg 1 -z Mn z Al 10 O 17 ] or [Ba 1 -xy Sr x Eu y Mg 2 -z Mn z Al 16 O 27 ]
Here, x, y and z are numbers satisfying the conditions of 0 ≦ x ≦ 0.4, 0.07 ≦ y ≦ 0.25, and 0.1 ≦ z ≦ 0.6, respectively, and z is 0.4 It is preferable that ≦ x ≦ 0.5.
 このような蛍光体としては、例えば、ユーロピウム・マンガン共付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+,Mn2+]、[BaMgAl1017:Eu2+,Mn2+](略号:BAM-G)や、ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+,Mn2+]、[(Ba,Sr)MgAl1017:Eu2+,Mn2+](略号:SBAM-G)等がある。
(c)赤色
 ・ユーロピウム付活リン・バナジン酸イットリウム[Y(P,V)O4:Eu3+](略号
:YPV)
 ・ユーロピウム付活バナジン酸イットリウム[YVO4:Eu3+](略号:YVO)
 ・ユーロピウム付活イットリウムオキシサルファイド[Y22S:Eu3+](略号:YOS)
 ・マンガン付活フッ化ゲルマン酸マグネシウム[3.5MgO・0.5M  gF2・GeO2:Mn4+](略号:MFG)
 ・ジスプロシウム付活バナジン酸イットリウム[YVO4:Dy3+](赤と緑の2成分発光蛍光体であり、略号:YDS)
 なお、一種類の発光色に対して、異なる化合物の蛍光体を混合して用いても良い。例えば、青色にBAM-B(313[nm]を吸収する。)のみ、緑色にLAP(313[nm]を吸収しない。)とBAM-G(313[nm]を吸収する。)、赤色にYOX(313nmを吸収しない。)とYVO(313[nm]を吸収する。)の蛍光体を用いても良い。このような場合は、前述のように波長313[nm]を吸収する蛍光体が、総重量組成比率で50%より大きくなるように調整することで、紫外線がガラスバルブ外に漏れ出ることをほとんど防止できる。したがって、313[nm]の紫外線を吸収する蛍光体を蛍光体層202に含む場合には、上記のバックライトユニットの開口を塞ぐポリカーボネート(PC)からなる拡散板等の紫外線による劣化が抑制され、バックライトユニットとしての特性を長時間維持することができる。
Examples of such phosphors include europium / manganese co-activated barium aluminate / magnesium [BaMg 2 Al 16 O 27 : Eu 2+ , Mn 2+ ], [BaMgAl 10 O 17 : Eu 2+ , Mn 2]. + ] (Abbreviation: BAM-G), europium / manganese co-activated barium aluminate / strontium / magnesium [(Ba, Sr) Mg 2 Al 16 O 27 : Eu 2+ , Mn 2+ ], [(Ba, Sr) MgAl 10 O 17 : Eu 2+ , Mn 2+ ] (abbreviation: SBAM-G).
(C) Red • Europium activated phosphorus • Yttrium vanadate [Y (P, V) O 4 : Eu 3+ ] (abbreviation: YPV)
Europium activated yttrium vanadate [YVO 4 : Eu 3+ ] (abbreviation: YVO)
・ Europium-activated yttrium oxysulfide [Y 2 O 2 S: Eu 3+ ] (abbreviation: YOS)
Manganese-activated magnesium fluoride germanate [3.5MgO.0.5M gF 2 .GeO 2 : Mn 4+ ] (abbreviation: MFG)
Dysprosium-activated yttrium vanadate [YVO 4 : Dy 3+ ] (red and green two-component phosphor, abbreviation: YDS)
In addition, you may mix and use the fluorescent substance of a different compound with respect to one type of luminescent color. For example, BAM-B (absorbs 313 [nm]) only in blue, LAP (does not absorb 313 [nm]) in green, BAM-G (absorbs 313 [nm]) in green, and YOX in red Alternatively, a phosphor of YVO (absorbs 313 [nm]) may be used. In such a case, as described above, the phosphor that absorbs the wavelength 313 [nm] is adjusted so that the total weight composition ratio is larger than 50%, so that the ultraviolet rays almost leak out of the glass bulb. Can be prevented. Therefore, when the phosphor layer 202 includes a phosphor that absorbs ultraviolet rays of 313 [nm], deterioration due to ultraviolet rays such as a diffusion plate made of polycarbonate (PC) that closes the opening of the backlight unit is suppressed, The characteristics as a backlight unit can be maintained for a long time.
 ここで、「313[nm]の紫外線を吸収する」とは、254[nm]付近の励起波長スペクトル(励起波長スペクトルとは、蛍光体を波長変化させながら励起発光させ、励起波長と発光強度をプロットしたものである。)の強度を100[%]としたときに、313[nm]の励起波長スペクトルの強度が80[%]以上のものと定義する。すなわち、313[nm]の紫外線を吸収する蛍光体とは、313[nm]の紫外線を吸収して可視光に変換できる蛍光体である。
(2)高色再現について
 液晶カラーテレビで代表される液晶表示装置では、近年における高画質化の一環としてなされる高色再現化に伴い、当該液晶表示装置のバックライトユニットの光源として用いられる冷陰極放電ランプや外部電極放電ランプにおいて、再現可能な色度範囲の拡大化の要請がある。
Here, “absorbing ultraviolet rays of 313 [nm]” means an excitation wavelength spectrum near 254 [nm] (excitation wavelength spectrum means excitation light emission while changing the wavelength of the phosphor, and the excitation wavelength and emission intensity are changed. The intensity of the excitation wavelength spectrum at 313 [nm] is defined as 80 [%] or more. That is, the phosphor that absorbs ultraviolet rays of 313 [nm] is a phosphor that can absorb ultraviolet rays of 313 [nm] and convert it into visible light.
(2) High color reproduction Liquid crystal display devices typified by liquid crystal color televisions have been used as a light source for a backlight unit of the liquid crystal display device in accordance with the recent high color reproduction that has been made as part of higher image quality. There is a need to expand the reproducible chromaticity range in cathode discharge lamps and external electrode discharge lamps.
 このような要請に対して、例えば、以下の蛍光体を用いることで、実施の形態での蛍光体を用いる場合よりも、色度範囲の拡大を図ることができる。具体的には、CIE1931色度図において、高色再現用の当該蛍光体の色度座標値が、実施の形態で使用した3つの蛍光体の色度座標値を結んでできる三角形を含んで色再現範囲を広げる座標に位置する。 In response to such a request, for example, by using the following phosphor, the chromaticity range can be expanded as compared with the case of using the phosphor in the embodiment. Specifically, in the CIE1931 chromaticity diagram, the chromaticity coordinate value of the phosphor for high color reproduction includes a triangle formed by connecting the chromaticity coordinate values of the three phosphors used in the embodiment. Located at the coordinates that expand the reproduction range.
  (a)青色
 ・ユーロピウム付活ストロンチウム・クロロアパタイト[Sr10(PO46Cl2:Eu2+](略号:SCA)、色度座標:x=0.151、y=0.065
 上記以外に、ユーロピウム付活ストロンチウム・カルシウム・バリウム・クロロアパタイト[(Sr,Ca,Ba)10(PO46Cl2:Eu2+](略号:SBCA)も使用でき、上記波長313(nm)の紫外線も吸収できるSBAM-Bも高色再現用に使用できる。
(A) Blue • Europium-activated strontium chloroapatite [Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ ] (abbreviation: SCA), chromaticity coordinates: x = 0.151, y = 0.065
In addition to the above, europium activated strontium, calcium, barium, chloroapatite [(Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu 2+ ] (abbreviation: SBCA) can also be used, and the wavelength 313 (nm) SBAM-B, which can absorb ultraviolet rays), can also be used for high color reproduction.
  (b)緑色
 ・BAM-G、色度座標:x=0.139、y=0.574
 ・CMZ、色度座標:x=0.164、y=0.722
 ・CAT、色度座標:x=0.267、y=0.663
 なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、MGMも高色再現用に使用することもできる。
(B) Green BAM-G, chromaticity coordinates: x = 0.139, y = 0.574
CMZ, chromaticity coordinates: x = 0.164, y = 0.722
CAT, chromaticity coordinates: x = 0.267, y = 0.663
As described above, these can also absorb ultraviolet rays having a wavelength of 313 [nm], and in addition to the three phosphor particles described here, MGM can also be used for high color reproduction.
 (c)赤色
 ・YOS、色度座標:x=0.651、y=0.344
 ・YPV、色度座標:x=0.658、y=0.333
 ・MFG、色度座標:x=0.711、y=0.287
 なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、YVO、YDSも高色再現用に使用することもできる。
(C) Red • YOS, chromaticity coordinates: x = 0.651, y = 0.344
YPV, chromaticity coordinates: x = 0.658, y = 0.333
MFG, chromaticity coordinates: x = 0.711, y = 0.287
As described above, these can also absorb ultraviolet rays having a wavelength of 313 [nm], and besides the three phosphor particles described here, YVO and YDS can also be used for high color reproduction.
 また、上記で示した色度座標値は各々の蛍光体の粉体のみで測定した代表値であり、測定方法(測定原理)等に起因して、各蛍光体の粉体が示す色度座標値は、上掲した値と若干異なる場合があり得る。参考として上記実施の形態1の各蛍光体の粉体の色度座標値は、YOX(x=0.644、y=0.353)、LAP(x=0.351、y=0.585)、BAM-B(x=0.148、y=0,056)で構成されている。 In addition, the chromaticity coordinate values shown above are representative values measured only with each phosphor powder, and due to the measurement method (measurement principle), etc., the chromaticity coordinates indicated by each phosphor powder The value may be slightly different from the value listed above. For reference, the chromaticity coordinate values of the phosphor powders of the first embodiment are YOX (x = 0.644, y = 0.353), LAP (x = 0.351, y = 0.585). , BAM-B (x = 0.148, y = 0,056).
 さらに、赤、緑、青の各色を発光させるために用いる蛍光体は各波長につき1種類に限らず、複数種類を組み合わせて用いることとしても良い。 Furthermore, the phosphor used for emitting each color of red, green, and blue is not limited to one type for each wavelength, and a plurality of types may be used in combination.
 ここで、上記の高色再現用の蛍光体粒子を用いて蛍光体層を形成した場合について説明する。ここでの評価は、CIE1931色度図内においてNTSC規格の3原色の色度座標値を結ぶNTSC三角形(NTSCtriangle)の面積を基準とした、高色再現用の蛍光体を用いた場合の3つの色度座標値を結んでできる三角形の面積の比(以下、NTSC比という。)で行なう。 Here, a case where a phosphor layer is formed using the above-described phosphor particles for high color reproduction will be described. In this evaluation, there are three evaluations in the case of using a phosphor for high color reproduction based on the area of the NTSC triangle (NTSC triangle) connecting the chromaticity coordinate values of the three primary colors of the NTSC standard in the CIE1931 chromaticity diagram. A triangular area ratio formed by connecting chromaticity coordinate values (hereinafter referred to as NTSC ratio) is used.
 例えば、青色としてBAM-B、緑色としてBAM-G、赤色としてYVOを用いると(例1)NTSC比が92[%]となり、また、青色としてSCA、緑色としてBAM-G、赤色としてYVOを用いると(例2)NTSC比が100[%]となり、また、青色としてSCA、緑色としてBAM-G、赤色としてYOXを用いると(例3)、NTSC比が95[%]となり、例1及び2に比べて輝度を10[%]向上させることができる。 For example, when BAM-B is used as blue, BAM-G as green, and YVO as red (Example 1), the NTSC ratio is 92%, and SCA is used as blue, BAM-G as green, and YVO as red. (Example 2) NTSC ratio is 100%, and when SCA is used as blue, BAM-G as green, and YOX as red (Example 3), NTSC ratio is 95 [%]. The luminance can be improved by 10 [%] as compared with the above.
 なお、ここでの評価に用いた色度座標値は、ランプ等が組み込まれた液晶表示装置とした状態で測定したものである為、カラーフィルターとの組み合わせにより色再現範囲が上記値より前後する可能性がある。
5.封入ガスについて
 希ガスにクリプトンが含まれていてもよい。この場合、冷陰極蛍光ランプの赤外線放射を抑制することができる。さらには、希ガスにクリプトンが0.5[mol%]以上5[mol%]以下の範囲内で含まれていることが好ましい。この場合、ランプ電圧を大きく変化させることなく、冷陰極蛍光ランプの赤外線放射を抑制することができる。例えば、アルゴンが0[mol%]以上9.5[mol%]以下の範囲内、ネオンが90[mol%]以上95.5[mol%]以下の範囲内、クリプトンが0.5[mol%]以上5[mol%]以下の範囲内である。さらには、希ガスにクリプトンが0.5[mol%]以上3[mol%]以下の範囲内で含まれていることがより好ましい。さらには、希ガスにクリプトンが1[mol%]以上3[mol%]以下の範囲内で含まれていることがさらにより好ましい。
6.ランプの種類について
 上記の各実施形態においては、低圧放電ランプとして、冷陰極蛍光ランプ、内部外部電極蛍光ランプおよび熱陰極蛍光ランプを中心に説明したが、これに限られず、ガラスバルブの内面に蛍光体層の形成されていない紫外線ランプであってもよい。
<第10の実施形態~第14の実施形態>
 ここで述べる発明に係る第10~第14の実施形態は、以下の背景技術・課題に鑑みてなされたものである。
(背景技術)
 従来の低圧放電ランプを図20に示す。
Note that the chromaticity coordinate values used for the evaluation here are measured in the state of a liquid crystal display device in which a lamp or the like is incorporated, so that the color reproduction range is around the above value depending on the combination with the color filter. there is a possibility.
5). About filled gas Krypton may be contained in the rare gas. In this case, infrared radiation of the cold cathode fluorescent lamp can be suppressed. Furthermore, it is preferable that krypton is contained in the rare gas within a range of 0.5 [mol%] to 5 [mol%]. In this case, infrared radiation of the cold cathode fluorescent lamp can be suppressed without greatly changing the lamp voltage. For example, argon is in the range of 0 [mol%] to 9.5 [mol%], neon is in the range of 90 [mol%] to 95.5 [mol%], and krypton is 0.5 [mol%]. ] In the range of 5 [mol%] or less. Furthermore, it is more preferable that krypton is contained in the rare gas within a range of 0.5 [mol%] to 3 [mol%]. Furthermore, it is even more preferable that krypton is contained in the rare gas in the range of 1 [mol%] to 3 [mol%].
6). Regarding the types of lamps In the above embodiments, the cold cathode fluorescent lamp, the internal / external electrode fluorescent lamp, and the hot cathode fluorescent lamp have been mainly described as the low-pressure discharge lamps. It may be an ultraviolet lamp in which no body layer is formed.
<Tenth to Fourteenth Embodiments>
The tenth to fourteenth embodiments according to the invention described here have been made in view of the following background art and problems.
(Background technology)
A conventional low-pressure discharge lamp is shown in FIG.
 図20に示す従来の低圧放電ランプ(以下、「ランプ2001」という。)は、硬質ガラスからなるガラスバルブ2002をその構成に含む冷陰極蛍光ランプである。 A conventional low-pressure discharge lamp (hereinafter referred to as “lamp 2001”) shown in FIG. 20 is a cold cathode fluorescent lamp including a glass bulb 2002 made of hard glass in its configuration.
 ガラスバルブ2002の内面には、蛍光体層2003が被着されている。ガラスバルブ2002は、紫外光を放出する封入ガス成分、2つ以上のホロー電極2004、2つ以上の封着線2005および封着線2005を真空に耐える気密性を持つシールでバルブに結合する2つ以上のガラスビード(ガラス部材)2006を含んでいる。 The phosphor layer 2003 is attached to the inner surface of the glass bulb 2002. A glass bulb 2002 couples an enclosed gas component that emits ultraviolet light, two or more hollow electrodes 2004, two or more sealing wires 2005, and a sealing wire 2005 to the bulb with a hermetic seal that can withstand vacuum. One or more glass beads 2006 are included.
 封着線2005は、少なくともガラスビード2006の全長にわたる部分がモリブデン又はモリブデン合金で作られている。 The sealing wire 2005 is made of molybdenum or a molybdenum alloy at least over the entire length of the glass bead 2006.
 ホロー電極2004は、モリブデン、モリブデン合金、ニオブ、ニオブ合金の群のうちの材料で少なくとも部分的に作られている。 The hollow electrode 2004 is at least partially made of a material from the group of molybdenum, molybdenum alloy, niobium, and niobium alloy.
 ガラスビード2006は、SiO2を55~75[重量%]、B23を13~25[重量%] 、Al23を0~10[重量%] 、アルカリ酸化物を5~12[重量%] 、アルカリ土類酸化物を0~3[重量%]、ZrO2を0~5重量%、TiO2を0~10[重量%]、および残余の酸化物が0~5[重量%]の成分からなり、その熱膨張係数(20[℃]~300[℃])は、4.0~5.3×10-6[K-1]の範囲である。 The glass bead 2006 includes SiO 2 55 to 75 [wt%], B 2 O 3 13 to 25 [wt%], Al 2 O 3 0 to 10 [wt%], and alkali oxide 5 to 12 [wt%]. % By weight], alkaline earth oxides from 0 to 3 [wt%], ZrO 2 from 0 to 5 wt%, TiO 2 from 0 to 10 [wt%], and the remaining oxide from 0 to 5 [wt%] The coefficient of thermal expansion (20 [° C.] to 300 [° C.]) is in the range of 4.0 to 5.3 × 10 −6 [K −1 ].
 そして、ガラスビード2006の熱膨張係数α2と封着線の熱膨張係数α3とは、1×10-7[K-1]≦(α3-α2)≦1.3×10-6[K-1]を満たす関係とされている(例えば、特開2004-356098号公報参照。)。すなわち、α2とα3とをできるだけ近似させた関係としている。
(発明が解決しようとする課題)
 しかしながら、発明者らの検討により、ガラスバルブの封止に用いる電極構造体においては、ガラス部材に熱膨張係数が90×10-7[K-1]以上100×10-7[K-1]以下の範囲内の軟質ガラスを用いる場合、電極構造体の封着線とガラス部材との熱膨張係数を近似させたとしても、電極構造体のガラス部材には歪が生じてしてしまうことがわかった。電極構造体のガラス部材に歪が存在する状態で、当該電極構造体によりガラスバルブを封止すると、ガラス部材に歪が残存する関係上、封止等の熱衝撃を伴う工程において、封着部分が破損し、ガラス部材と封着線との間の気密性が損なわれるおそれがある。
The thermal expansion coefficient α2 of the glass bead 2006 and the thermal expansion coefficient α3 of the sealing wire are 1 × 10 −7 [K −1 ] ≦ (α3−α2) ≦ 1.3 × 10 −6 [K −1. ] (See, for example, Japanese Patent Application Laid-Open No. 2004-356098). That is, α2 and α3 are approximated as much as possible.
(Problems to be solved by the invention)
However, according to the inventors' investigation, in the electrode structure used for sealing the glass bulb, the glass member has a thermal expansion coefficient of 90 × 10 −7 [K −1 ] or more and 100 × 10 −7 [K −1 ]. When soft glass within the following range is used, even if the thermal expansion coefficient between the sealing wire of the electrode structure and the glass member is approximated, the glass member of the electrode structure may be distorted. all right. When a glass bulb is sealed with the electrode structure in a state where the glass member of the electrode structure is distorted, a sealing portion is formed in a process involving thermal shock such as sealing because the strain remains in the glass member. May be damaged, and the airtightness between the glass member and the sealing wire may be impaired.
 そこで、本発明に係る電極構造体は、ガラス部材の歪を低減することで、電極構造体を用いてガラスバルブを封止した場合に、ガラス部材の封着部分が破損するのを防止することを目的とする。 Therefore, the electrode structure according to the present invention prevents the sealing portion of the glass member from being damaged when the glass bulb is sealed using the electrode structure by reducing the distortion of the glass member. With the goal.
 また、本発明に係る低圧放電ランプは、電極構造体の封着部分が破損するのを防止することを目的とする。 Also, the low-pressure discharge lamp according to the present invention aims to prevent the sealing portion of the electrode structure from being damaged.
 さらに、本発明に係る照明装置および画像表示装置は、内部に備える低圧放電ランプが衝撃等に伴う応力により破損するのを防止することを目的とする。
(課題を解決するための手段)
 上記の課題を解決するために、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を覆うように形成されたガラス部材とを有する電極構造体であって、前記封着線の熱膨張係数をKl[K-1]とし、前記ガラス部材の熱膨張係数をKg[K-1]としたときに、7.5×10-7≦(Kl-Kg)≦12×10-7かつ90×10-7≦Kg≦100×10-7の関係が成り立つことを特徴とする。
Furthermore, it is an object of the illumination device and the image display device according to the present invention to prevent a low-pressure discharge lamp provided therein from being damaged by a stress accompanying an impact or the like.
(Means for solving the problem)
In order to solve the above problems, an electrode structure according to the present invention is formed so as to cover an electrode, a sealing wire having one end connected to the electrode, and at least a part of the sealing wire. An electrode structure having a glass member, wherein a thermal expansion coefficient of the sealing wire is K l [K −1 ], and a thermal expansion coefficient of the glass member is K g [K −1 ], 7.5 × 10 −7 ≦ (K 1 −K g ) ≦ 12 × 10 −7 and 90 × 10 −7 ≦ K g ≦ 100 × 10 −7 is satisfied.
 また、本発明に係る電極構造体は、さらに、9×10-7≦(Kl-Kg)≦12×10-7の関係が成り立つことが好ましい。 In the electrode structure according to the present invention, it is preferable that a relationship of 9 × 10 −7 ≦ (K 1 −K g ) ≦ 12 × 10 −7 is satisfied.
 また、本発明に係る電極構造体は、前記封着線における少なくとも前記ガラス部材に覆われている部分の表面には、酸化膜が形成されていることが好ましい。 In the electrode structure according to the present invention, it is preferable that an oxide film is formed on the surface of at least a portion of the sealing wire covered with the glass member.
 さらに、本発明に係る電極構造体は、前記酸化膜には、FeOまたはFe34が含まれていることが好ましい。 Furthermore, in the electrode structure according to the present invention, the oxide film preferably contains FeO or Fe 3 O 4 .
 また、本発明に係る電極構造体は、前記封着線は、鉄とニッケルとの合金からなることが好ましい。 In the electrode structure according to the present invention, the sealing wire is preferably made of an alloy of iron and nickel.
 本発明に係る低圧放電ランプは、ガラスバルブと、前記ガラスバルブの少なくとも一方の端部に設けられた前記電極構造体とを有することを特徴とする。 The low-pressure discharge lamp according to the present invention has a glass bulb and the electrode structure provided at at least one end of the glass bulb.
 本発明に係る照明装置は、前記低圧放電ランプを備えることを特徴とする。 An illumination device according to the present invention includes the low-pressure discharge lamp.
 本発明に係る画像表示装置は、前記照明装置を備えることを特徴とする。
(発明の効果)
 本発明に係る電極構造体は、電極構造体のガラス部材の歪を低減することで、電極構造体を用いてガラスバルブを封止した場合に、電極構造体の封着部分が破損するのを防止することができる。
The image display device according to the present invention includes the illumination device.
(The invention's effect)
The electrode structure according to the present invention reduces the distortion of the glass member of the electrode structure, so that when the glass bulb is sealed using the electrode structure, the sealed portion of the electrode structure is damaged. Can be prevented.
 また、本発明に係る低圧放電ランプは、電極構造体の封着部分が破損するのを防止することができる。 Moreover, the low-pressure discharge lamp according to the present invention can prevent the sealed portion of the electrode structure from being damaged.
 さらに、本発明に係る照明装置および画像表示装置は、内部に備える低圧放電ランプが衝撃等に伴う応力により破損するのを防止することができる。 Furthermore, the illumination device and the image display device according to the present invention can prevent the low-pressure discharge lamp provided therein from being damaged by stress accompanying impact or the like.
 (第10の実施形態)
 本発明の第10の実施形態に係る電極構造体の長手方向の中心軸X2100を含む断面図を図14に示す。本発明の第10の実施形態に係る電極構造体2100(以下、「電極構造体2100」という。)は、電極2101と、一端部が電極2101に接続された封着線2102と、封着線2102の少なくとも一部を覆うように形成されたガラス部材2103とを有する。
(Tenth embodiment)
FIG. 14 shows a cross-sectional view including the central axis X 2100 in the longitudinal direction of the electrode structure according to the tenth embodiment of the present invention. An electrode structure 2100 according to the tenth embodiment of the present invention (hereinafter referred to as “electrode structure 2100”) includes an electrode 2101, a sealing wire 2102 having one end connected to the electrode 2101, and a sealing wire. 2102 and a glass member 2103 formed so as to cover at least a part of 2102.
 電極2101は、例えば有底筒状であって、内径が2.4[mm]、外径が2.7[mm]、底部の肉厚が0.2[mm]、全長が10[mm]であって、ニッケル(Ni)製である。電極2101の材料は、ニッケルに限らず、ニオビウム(Nb)、モリブデン(Mo)、タンタル(Ta)およびタングステン(W)のいずれか一種またはいずれか二種以上の合金を用いることができる。電極2101は、その外側底面の略中央部において封着線2102の一端面と接続されている。なお、電極2101と封着線2102とは、直接接続されていてもよいし、例えばニッケル箔やコバール箔からなるろう材等を介して接続されていてもよい。また、電極2101と封着線2102との接続方法としては、レーザー溶接や抵抗溶接等を用いることができる。 The electrode 2101 has a bottomed cylindrical shape, for example, and has an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 10 [mm]. And made of nickel (Ni). The material of the electrode 2101 is not limited to nickel, and any one of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W), or any two or more alloys thereof can be used. The electrode 2101 is connected to one end surface of the sealing wire 2102 at a substantially central portion of the outer bottom surface. The electrode 2101 and the sealing wire 2102 may be directly connected or may be connected via a brazing material made of nickel foil or Kovar foil, for example. As a method for connecting the electrode 2101 and the sealing wire 2102, laser welding, resistance welding, or the like can be used.
 封着線2102は、例えば、電極2101の外側底面と一端面が接続され、側面の一部においてガラス部材2103に覆われている。封着線2102は、例えば線径が0.8[mm]であって、鉄とニッケルとの合金製である。 The sealing wire 2102 is, for example, connected to the outer bottom surface and one end surface of the electrode 2101 and covered with a glass member 2103 at a part of the side surface. The sealing wire 2102 has a wire diameter of 0.8 [mm], for example, and is made of an alloy of iron and nickel.
 なお、既述したとおり、封着線2102において、ガラス部材103に覆われている部分の表面には、酸化膜(図示せず)が形成されていないか、または、形成されていたとしても最大厚みが0.1[μm]以下の酸化膜であることが好ましい。後者の場合、酸化膜には、FeOおよびFe34のいずれか一方または両方が含まれていることが好ましい。さらに、封着線2102に鉄が含まれている場合に、封着線2102とガラス部材2103との間の引っ張り強度を向上させることができる。 Note that, as described above, in the sealing wire 2102, an oxide film (not shown) is not formed on the surface of the portion covered with the glass member 103, or the maximum even if it is formed. An oxide film having a thickness of 0.1 [μm] or less is preferable. In the latter case, the oxide film preferably contains one or both of FeO and Fe 3 O 4 . Furthermore, when the sealing wire 2102 contains iron, the tensile strength between the sealing wire 2102 and the glass member 2103 can be improved.
 また、さらには、酸化膜には、少なくともFe34が含まれていることがより好ましい。この場合、封着線2102に鉄が含まれている場合に、封着線2102とガラス部材2103との間の引っ張り強度をさらに向上させることができる。 Furthermore, it is more preferable that the oxide film contains at least Fe 3 O 4 . In this case, when the sealing wire 2102 contains iron, the tensile strength between the sealing wire 2102 and the glass member 2103 can be further improved.
 封着線2102は、例えば鉄とニッケルとの合金の場合、鉄とニッケルとの比率を調節することで、その熱膨張係数Kl[K-1]を調節することができる。例えば、封着線2102が49[wt%]の鉄と51[wt%]のニッケルとの合金である場合、封着線2102の熱膨張係数Kl[K-1]は、100×10-7[K-1]となる。封着線2102に用いる鉄とニッケルとの合金の具体例を表2に示す。 For example, in the case of an alloy of iron and nickel, the sealing wire 2102 can adjust its thermal expansion coefficient K l [K −1 ] by adjusting the ratio of iron and nickel. For example, when the sealing wire 2102 is an alloy of 49 [wt%] iron and 51 [wt%] nickel, the thermal expansion coefficient K l [K −1 ] of the sealing wire 2102 is 100 × 10 −. 7 [K -1 ]. Specific examples of alloys of iron and nickel used for the sealing wire 2102 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 封着線2102の熱膨張係数Klは、封着線2102を溶融して試料を作製し、熱機械分析装置により30[℃]~300[℃]の試料の伸び量を測定することで求めることができる。なお、封着線2102が小さい場合等、封着線2102を溶融して熱機械分析装置により測定することが難しい場合には、封着線2102の組成を分析し、組成が実質的に同一な大きい試料を作製したうえで、熱機械分析装置により測定することで封着線2102の熱膨張係数を求めることができる。 The thermal expansion coefficient K l of the sealing wire 2102 is obtained by melting the sealing wire 2102 to prepare a sample, and measuring the elongation of the sample from 30 [° C.] to 300 [° C.] with a thermomechanical analyzer. be able to. If it is difficult to melt the sealing wire 2102 and measure it with a thermomechanical analyzer, such as when the sealing wire 2102 is small, the composition of the sealing wire 2102 is analyzed and the composition is substantially the same. After producing a large sample, the thermal expansion coefficient of the sealing wire 2102 can be obtained by measuring with a thermomechanical analyzer.
 なお、図14に示すように、封着線2102の他端部には、外部リード線2104が接続されていてもよい。この場合、電極構造体2100を低圧放電ランプに用いた場合に、外部リード線2104にかかる外力が封着線2102と外部リード線2104の接続部で吸収されるため、ガラス部材2103で発生する応力を緩和することができる。外部リード線2104は、例えば線径が0.6[mm]であって、ニッケル製である。外部リード線2104は、ニッケルに限られず、ニッケルとマンガンとの合金またはジュメット線であってもよい。なお、外部リード線2104の表面は、外部リード線2104の酸化防止のために、半田で覆われていてもよい。 As shown in FIG. 14, an external lead wire 2104 may be connected to the other end of the sealing wire 2102. In this case, when the electrode structure 2100 is used for a low pressure discharge lamp, the external force applied to the external lead wire 2104 is absorbed by the connection portion between the sealing wire 2102 and the external lead wire 2104. Can be relaxed. The external lead wire 2104 has, for example, a wire diameter of 0.6 [mm] and is made of nickel. The external lead 2104 is not limited to nickel, and may be an alloy of nickel and manganese or a dumet wire. Note that the surface of the external lead wire 2104 may be covered with solder in order to prevent oxidation of the external lead wire 2104.
 ガラス部材2103は、略球形状であって、その略中心軸に沿って封着線2102を封着している。ガラス部材2103の熱膨張係数は、例えば、材料となるガラスの組成を調整することにより調整することができる。ガラス部材2103に用いるガラス組成の具体例を表3に示す。 The glass member 2103 has a substantially spherical shape and seals the sealing wire 2102 along its substantially central axis. The thermal expansion coefficient of the glass member 2103 can be adjusted, for example, by adjusting the composition of the glass that is the material. Specific examples of the glass composition used for the glass member 2103 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、例えばガラスAの場合、その熱膨張係数Kg[K-1]は、92.5×10-7[K-1]となり、ガラスBの場合、その熱膨張係数Kg[K-1]は、93.6×10-7[K-1]となり、ガラスCの場合、その熱膨張係数Kg[K-1]は、94.5×10-7[K-1]となり、ガラスDの場合、その熱膨張係数Kg[K-1]は、100×10-7[K-1]となる。 As shown in Table 3, for example, in the case of glass A, its thermal expansion coefficient K g [K −1 ] is 92.5 × 10 −7 [K −1 ], and in the case of glass B, its thermal expansion coefficient K g [K −1 ] is 93.6 × 10 −7 [K −1 ], and in the case of glass C, the thermal expansion coefficient K g [K −1 ] is 94.5 × 10 −7 [K −]. 1 ], and in the case of glass D, the thermal expansion coefficient K g [K −1 ] is 100 × 10 −7 [K −1 ].
 ガラス部材2103の熱膨張係数Kgは、ガラス部材2103を溶融して試料を作製し、熱機械分析装置により30[℃]~300[℃]の試料の伸び量を測定することで求めることができる。なお、ガラス部材2103が小さい場合等、ガラス部材2103を溶融して熱機械分析装置により測定することが難しい場合には、ガラス部材2103の組成を分析し、組成が実質的に同一な大きい試料を作製したうえで、熱機械分析装置により測定することでガラス部材2103の熱膨張係数を求めることができる。 The thermal expansion coefficient K g of the glass member 2103 can be obtained by melting the glass member 2103 to prepare a sample, and measuring the elongation of the sample at 30 [° C.] to 300 [° C.] using a thermomechanical analyzer. it can. When it is difficult to melt the glass member 2103 and measure with a thermomechanical analyzer, such as when the glass member 2103 is small, the composition of the glass member 2103 is analyzed, and a large sample having substantially the same composition is analyzed. After the production, the thermal expansion coefficient of the glass member 2103 can be obtained by measuring with a thermomechanical analyzer.
 封着線2102の熱膨張係数をKl[K-1]とし、前記ガラス部材の熱膨張係数をKg[K-1]としたときに、7.5×10-7≦(Kl-Kg)≦12×10-7かつ90×10-7≦Kg≦100×10-7の関係が成り立つ場合、電極構造体におけるガラス部材に生じる歪を低減することができる。 When the thermal expansion coefficient of the sealing wire 2102 is K l [K −1 ] and the thermal expansion coefficient of the glass member is K g [K −1 ], 7.5 × 10 −7 ≦ (K l − K g ) ≦ 12 × 10 −7 and 90 × 10 −7 ≦ K g ≦ 100 × 10 −7 , strain generated in the glass member in the electrode structure can be reduced.
 (実験)
 発明者らは、電極構造体2100におけるガラス部材に生じる歪を低減することができるかどうかを確認するために、ガラス部材の封着線表面と接触している部分およびその近傍(以下、「封着部分」と言う。)における歪の程度を調査するための実験を行った。
(Experiment)
In order to confirm whether the distortion generated in the glass member in the electrode structure 2100 can be reduced, the inventors have made contact with the surface of the sealing line of the glass member and its vicinity (hereinafter referred to as “sealing”). An experiment was conducted to investigate the degree of distortion in the “wearing part”.
 すなわち、封着線とガラス部材の材料をそれぞれ調節して、Kl-Kgを変化させ、ガラス部材(封着部分)に発生する歪の程度を残留応力の大きさで評価する実験を行った。 That is, carried out by adjusting the material of the sealing wire and the glass member, respectively, by changing the K l -K g, an experiment to evaluate the magnitude of the degree of residual stress distortion generated on the glass member (sealing portion) It was.
 残留応力は、残留応力測定装置(神港精機株式会社製ポーラリメーターSFII-C型)により、封着部分のうち長手方向の中間部を測定点として測定した。この測定点は、ガラス部材を形成する際、ガラス部材の外表面に比べて冷えるときの温度差が大きいため、ガラス部材のうち、最も残留応力が大きくなるためである。 Residual stress was measured with a residual stress measuring device (Polarimeter SFII-C type, manufactured by Shinko Seiki Co., Ltd.) with the middle portion in the longitudinal direction of the sealed portion as a measuring point. This measurement point is because when the glass member is formed, the temperature difference at the time of cooling is larger than that of the outer surface of the glass member, so that the residual stress is the largest among the glass members.
 実験結果を図15に示す。 The experimental results are shown in FIG.
 図15は、横軸に(Kl-Kg)の大きさを採り、縦軸に封着部分における残留応力の大きさを採った、(Kl-Kg)と残留応力との相関関係を示す図である。なお、縦軸の残留応力は、ガラス部材が封着線2102を径方向にしめつける向きの応力が残留している場合を正としている。 FIG. 15 shows the correlation between (K l -K g ) and the residual stress, where the horizontal axis represents the magnitude of (K l -K g ) and the vertical axis represents the magnitude of the residual stress at the sealed portion. FIG. Note that the residual stress on the vertical axis is positive when the stress in the direction in which the glass member holds the sealing wire 2102 in the radial direction remains.
 図15に示すように、Kl-Kgが7.5×10-7[K-1]以上12×10-7[K-1]以下の範囲内である場合、ガラス部材の残留応力を0以上60[kgf/cm2]以下にすることができる。換言すれば、ガラス部材に生じる歪の大きさを低減することができる。 As shown in FIG. 15, the K l -K If g is the 7.5 × 10 -7 [K -1] or 12 × 10 -7 [K -1] within the range, residual stress in the glass member It can be 0 or more and 60 [kgf / cm 2 ] or less. In other words, the magnitude of strain generated in the glass member can be reduced.
 一方、Kl-Kgが7.5×10-7[K-1]より小さい場合、ガラス部材の残留応力が60[kgf/cm2]よりも大きくなる。換言すると、ガラス部材に生じる歪が大きくなる。 On the other hand, when K 1 -K g is smaller than 7.5 × 10 −7 [K −1 ], the residual stress of the glass member becomes larger than 60 [kgf / cm 2 ]. In other words, the distortion generated in the glass member increases.
 残留応力が60[kgf/cm2]よりも大きな歪が存在すると、ガラス部材でガラスバルブを封止する際、ガスバーナー等でガラス部材に熱衝撃が加わると、ガラス部材の残留応力が大きい部分に対して、さらに応力が発生し、ガラス部材がその応力に耐え切れずに、破損してしまうことが確認されている。すなわち、残留応力が最も大きい部分の残留応力を低減すれば、ガラス部材の破損を防止することができる。 When the residual stress is larger than 60 [kgf / cm 2 ], when the glass bulb is sealed with the glass member, if a thermal shock is applied to the glass member with a gas burner or the like, the portion where the residual stress of the glass member is large On the other hand, it has been confirmed that further stress is generated, and the glass member is not able to withstand the stress and is damaged. That is, if the residual stress in the portion having the largest residual stress is reduced, the glass member can be prevented from being damaged.
 また、Kl-Kgが12×10-7[K-1]より大きい場合、ガラス部材には負の残留応力が存在するため、ガラス部材による封着性(ガラス部材と封着線との間の気密性)が低下してしまう。 Further, when K 1 -K g is larger than 12 × 10 −7 [K −1 ], since the negative residual stress exists in the glass member, the sealing property by the glass member (between the glass member and the sealing wire) The airtightness between them is reduced.
 すなわち、Kl-Kgが7.5×10-7[K-1]以上12×10-7[K-1]以下の範囲内である場合、ガラス部材の歪を低減し、封着線とガラス部材との封着性(気密性)を向上させることができる。 That is, when K 1 -K g is in the range of 7.5 × 10 −7 [K −1 ] to 12 × 10 −7 [K −1 ], the distortion of the glass member is reduced, and the sealing line And the glass member can be improved in sealing property (airtightness).
 さらに、Kl-Kgが9×10-7[K-1]以上12×10-7[K-1]以下の範囲内であることがより好ましい。この場合、ガラス部材の残留応力を0以上40[kgf/cm2]以下にすることができる。 Furthermore, K 1 -K g is more preferably in the range of 9 × 10 −7 [K −1 ] to 12 × 10 −7 [K −1 ]. In this case, the residual stress of the glass member can be 0 or more and 40 [kgf / cm 2 ] or less.
 さらにまた、ガラス部材の製造時のばらつきを考慮すると、Kl-Kgは、11×10-7[K-1]以下であることが好ましい。この場合、負の残留応力が発生することを着実に防止することができる。 Furthermore, in consideration of variations during the production of the glass member, K 1 −K g is preferably 11 × 10 −7 [K −1 ] or less. In this case, generation of negative residual stress can be steadily prevented.
 上記のとおり、本発明の第10の実施形態に係る電極構造体2100の構成によれば、電極構造体2100のガラス部材2103の歪を低減することで、電極構造体2100を用いて低圧放電ランプを封止した場合に、電極構造体2100においてガラス部材がその封着部分で破損するのを防止することができる。 As described above, according to the configuration of the electrode structure 2100 according to the tenth embodiment of the present invention, the low-pressure discharge lamp using the electrode structure 2100 is reduced by reducing the distortion of the glass member 2103 of the electrode structure 2100. In the electrode structure 2100, the glass member can be prevented from being damaged at the sealing portion.
 (第11の実施形態)
 本発明の第11の実施形態に係る低圧放電ランプの管軸X2200を含む断面図を図16に示す。本発明の第11の実施形態に係る低圧放電ランプ2200(以下、「ランプ2200」)は、冷陰極蛍光ランプであって、ガラスバルブ2201と、ガラスバルブ2201の少なくとも一方の端部に設けられた電極構造体2100とを有する。
(Eleventh embodiment)
FIG. 16 shows a cross-sectional view including the tube axis X 2200 of the low-pressure discharge lamp according to the eleventh embodiment of the present invention. A low-pressure discharge lamp 2200 (hereinafter referred to as “lamp 2200”) according to an eleventh embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at at least one end of a glass bulb 2201 and a glass bulb 2201. An electrode structure 2100.
 ガラスバルブ2201は、直管状であり、その管軸に対して略垂直に切った断面が略円環形状である。このガラスバルブ2201は、例えば外径が4[mm]、内径が3[mm]、全長が1000[mm]であって、その材料は例えば鉛フリーガラスやソーダガラス等の軟質ガラスである。以下に示すランプ2200の寸法は、外径が4[mm]、内径が3[mm]のガラスバルブ2201の寸法に対応する値である。 The glass bulb 2201 has a straight tube shape, and a cross section cut substantially perpendicular to the tube axis has a substantially annular shape. The glass bulb 2201 has, for example, an outer diameter of 4 [mm], an inner diameter of 3 [mm], and an overall length of 1000 [mm], and the material thereof is soft glass such as lead-free glass or soda glass. The dimensions of the lamp 2200 shown below are values corresponding to the dimensions of the glass bulb 2201 having an outer diameter of 4 [mm] and an inner diameter of 3 [mm].
 ガラスバルブ2201の内部には、水銀と希ガスが封入されている。水銀は、例えば3[mg]の量が封入されている。希ガスは、例えばアルゴン(Ar)とネオン(Ne)の混合ガスであり、Ar:10[mol%]、Ne:90[mol%]のモル比からなるものが40[Torr]の圧力で封入されている。 Mercury and rare gas are sealed inside the glass bulb 2201. Mercury is sealed in an amount of 3 mg, for example. The rare gas is, for example, a mixed gas of argon (Ar) and neon (Ne), and a gas having a molar ratio of Ar: 10 [mol%] and Ne: 90 [mol%] is sealed at a pressure of 40 [Torr]. Has been.
 また、ガラスバルブ2201の内面には蛍光体層2202が形成されている。蛍光体層2202は、例えば、赤色蛍光体粒子(Y23:Eu3+)、緑色蛍光体粒子(LaPO4:Ce3+,Tb3+)および青色蛍光体粒子(BaMg2Al1627:Eu2+)で構成されている。 A phosphor layer 2202 is formed on the inner surface of the glass bulb 2201. The phosphor layer 2202 includes, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ), and blue phosphor particles (BaMg 2 Al 16 O). 27 : Eu 2+ ).
 また、ガラスバルブ2201の内面と蛍光体層2202との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)酸化チタン(TiO2)等の金属酸化物の保護膜(図示せず)を設けてもよい。これにより、ガラスバルブのナトリウム成分と水銀との反応を抑制することで、輝度維持率を向上させることができる。 Further, between the inner surface of the glass bulb 2201 and the phosphor layer 2202, for example, yttrium oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO) titanium oxide. A protective film (not shown) of a metal oxide such as (TiO 2 ) may be provided. Thereby, a brightness | luminance maintenance factor can be improved by suppressing reaction with the sodium component of a glass bulb | bulb, and mercury.
 電極構造体2100は、本発明の第10の実施形態に係る電極構造体2100と実質的に同じものであり、ガラスバルブ2201の両端部に設けられている。 The electrode structure 2100 is substantially the same as the electrode structure 2100 according to the tenth embodiment of the present invention, and is provided at both ends of the glass bulb 2201.
 ガラスバルブ2201に封着された状態での電極構造体2100のガラス部材2103の熱膨張係数Kg[K-1]は、ガラス部材2103の管軸方向中央部側(図16中、破線矢印より管軸方向端部側)において、ガラスバルブを切断し、ガラス部材2103をガラスバルブ2201ごと溶融して試料を作製し、熱機械分析装置により30[℃]~300[℃]の試料の伸び量を測定することで求めることができる。この場合、ガラスバルブ2201の一部がガラス部材に混じってしまうこととなるが、その量がガラス部材2103の量と比較して少ないため、影響は小さいものと考えられる。 The coefficient of thermal expansion K g [K −1 ] of the glass member 2103 of the electrode structure 2100 in a state sealed to the glass bulb 2201 is the tube axis direction center portion side of the glass member 2103 (from the broken line arrow in FIG. 16). At the end of the tube axis direction), the glass bulb is cut, the glass member 2103 is melted together with the glass bulb 2201 to prepare a sample, and the elongation amount of the sample from 30 [° C.] to 300 [° C.] by a thermomechanical analyzer It can be obtained by measuring. In this case, a part of the glass bulb 2201 is mixed with the glass member, but since the amount thereof is smaller than the amount of the glass member 2103, the influence is considered to be small.
 なお、ガラス部材2103が小さい場合等、ガラス部材2103を溶融して熱機械分析装置により測定することが難しい場合には、ガラス部材2103の組成を分析し、組成が実質的に同一な大きな試料を作製したうえで、熱機械分析装置により測定することでガラス部材2103の熱膨張係数Kgを求めることができる。 If it is difficult to melt the glass member 2103 and measure it with a thermomechanical analyzer, such as when the glass member 2103 is small, the composition of the glass member 2103 is analyzed, and a large sample with substantially the same composition is analyzed. after having produced, it is possible to obtain a coefficient of thermal expansion K g of the glass member 2103 by measuring by thermomechanical analyzer.
 上記のとおり、本発明の第11の実施形態に係る低圧放電ランプ2200の構成によれば、電極構造体2100の封着部分が破損するのを防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention, it is possible to prevent the sealing portion of the electrode structure 2100 from being damaged.
 なお、ガラスバルブ2201の熱膨張係数Kbは、90×10-7[K-1]以上100×10-7[K-1]以下の範囲内であることが好ましい。この場合、電極構造体2100との封着性を向上することができる。 The thermal expansion coefficient K b of the glass bulb 2201 is preferably in the range of 90 × 10 −7 [K −1 ] to 100 × 10 −7 [K −1 ]. In this case, the sealing property with the electrode structure 2100 can be improved.
 さらに、電極2101の内面には、セシウム化合物が付着していてもよい。この場合、ランプ2200のランプ電圧を低下させることができるとともに、暗黒始動特性を向上させることができる。 Furthermore, a cesium compound may adhere to the inner surface of the electrode 2101. In this case, the lamp voltage of the lamp 2200 can be reduced, and the dark start characteristics can be improved.
 (第12の実施形態)
 本発明の第12の実施形態に係る低圧放電ランプの管軸X2300を含む断面図を図17に示す。本発明の第12の実施形態に係る放電管(以下、「ランプ2300」という)は、内部外部電極蛍光ランプである。
(Twelfth embodiment)
FIG. 17 is a sectional view including the tube axis X 2300 of the low-pressure discharge lamp according to the twelfth embodiment of the present invention. A discharge tube (hereinafter referred to as “lamp 2300”) according to a twelfth embodiment of the present invention is an internal / external electrode fluorescent lamp.
 ランプ2300は、その一端部の外表面に外部電極2301を有し、それに伴う構成を除いては本発明の第11の実施形態に係る低圧放電ランプ2200と実質的に同じ構成を有している。よって、外部電極2301とそれに伴う構成については詳細に説明し、それ以外の点については省略する。 The lamp 2300 has an external electrode 2301 on the outer surface of one end thereof, and has substantially the same configuration as that of the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention except for the configuration associated therewith. . Therefore, the external electrode 2301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
 外部電極2301は、例えば、半田からなり、ガラスバルブ2201の一端部の外表面を覆うように形成されている。 The external electrode 2301 is made of, for example, solder and is formed so as to cover the outer surface of one end of the glass bulb 2201.
 また、外部電極2301は、銀ペーストをガラスバルブ2201の電極形成部分の全周に塗布することによって形成してもよいし、金属製のキャップをガラスバルブ2201の一端部に被せてもよい。さらに、アルミニウムの金属箔を、シリコーン樹脂に金属粉体を混合した導電性粘着剤(図示せず)によってガラスバルブ2201の一端部全体の外周面を覆うように貼着したものであってもよい。なお、導電性粘着剤において、シリコーン樹脂の代わりにフッ素樹脂、ポリイミド樹脂又はエポキシ樹脂等を用いてもよい。 Further, the external electrode 2301 may be formed by applying a silver paste to the entire circumference of the electrode forming portion of the glass bulb 2201, or a metal cap may be put on one end of the glass bulb 2201. Further, an aluminum metal foil may be attached so as to cover the entire outer peripheral surface of one end of the glass bulb 2201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin. . In addition, in a conductive adhesive, you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
 また、ガラスバルブ2201の内面であって、外部電極2301が形成された領域に例えば酸化イットリウム(Y23)の保護膜を設けてもよい。保護膜(図示せず)を設けることにより、ガラスバルブ2201のその部分に水銀イオンが衝撃することによって起こるガラス削れやピンホールを防止することができる。 Further, for example, a protective film of yttrium oxide (Y 2 O 3 ) may be provided on the inner surface of the glass bulb 2201 and in the region where the external electrode 2301 is formed. By providing a protective film (not shown), it is possible to prevent glass scraping or pinholes caused by mercury ions bombarding that portion of the glass bulb 2201.
 なお、保護膜は、酸化イットリウムに代えて、例えばシリカ(SiO2)、アルミナ(Al23)、酸化亜鉛(ZnO)、チタニア(TiO2)等の金属酸化物を用いてもよい。特に、保護膜が酸化イットリウムやシリカで形成されている場合には、保護膜に水銀が付着し難く、水銀消費が少ない。 The protective film may be made of metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide. In particular, when the protective film is formed of yttrium oxide or silica, mercury hardly adheres to the protective film, and mercury consumption is low.
 なお、ガラスバルブ2201の他端部は、ガラス部材2103を用いずに、ガラスバルブ2201の一端部を加熱して溶融させることにより封着されていてもよい。 Note that the other end of the glass bulb 2201 may be sealed by heating and melting one end of the glass bulb 2201 without using the glass member 2103.
 上記のとおり、本発明の第12の実施形態に係る低圧放電ランプ2300に係る構成によれば、電極構造体2100の封着部分が破損するのを防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp 2300 according to the twelfth embodiment of the present invention, it is possible to prevent the sealing portion of the electrode structure 2100 from being damaged.
 (第13の実施形態)
 本発明の第13の実施形態に係る電極構造体の長手方向の中心軸X2400を含む断面図を図18(a)に示す。本発明の第13の実施形態に係る電極構造体(以下、「電極構造体2400」という)は、電極2401と、一端部が電極2401に接続された封着線2402と、封着線2402の少なくとも一部を覆うように形成されたガラス部材2403とを有する。
(13th Embodiment)
FIG. 18A is a cross-sectional view including the central axis X 2400 in the longitudinal direction of the electrode structure according to the thirteenth embodiment of the present invention. An electrode structure according to a thirteenth embodiment of the present invention (hereinafter referred to as “electrode structure 2400”) includes an electrode 2401, a sealing wire 2402 having one end connected to the electrode 2401, and a sealing wire 2402. And a glass member 2403 formed so as to cover at least a part thereof.
 電極2401は、例えばタングステン製のフィラメントコイルである。電極2401には、その巻線部にエミッタ(図示せず)が付着している。エミッタには、例えば(Ba,Sr,Ca)O等を用いることができる。なお、電極2401は、タングステン製のフィラメントコイルに限らず、レニウムタングステン製のフィラメントコイルであってもよい。この場合、電極2401がランプの点灯等により加熱されたときの強度を向上させることができる。 The electrode 2401 is, for example, a filament coil made of tungsten. The electrode 2401 has an emitter (not shown) attached to its winding portion. For the emitter, for example, (Ba, Sr, Ca) O or the like can be used. The electrode 2401 is not limited to a filament coil made of tungsten, but may be a filament coil made of rhenium tungsten. In this case, the strength when the electrode 2401 is heated by lighting a lamp or the like can be improved.
 電極2401は、その両端部を一対の封着線2402に担持されている。封着線2402は、例えば、鉄(Fe)とニッケル(Ni)との合金製である。具体的には、50[wt%]以上52[wt%]以下の範囲内のニッケルと、残部の鉄との合金製であることが好ましい。 The electrode 2401 is supported by a pair of sealing wires 2402 at both ends. The sealing wire 2402 is made of an alloy of iron (Fe) and nickel (Ni), for example. Specifically, it is preferably made of an alloy of nickel in the range of 50 [wt%] to 52 [wt%] and the remaining iron.
 一対の封着線2402は、少なくとも一部がガラス部材2403により覆われている。ガラス部材2403は、略玉子形状であって、封着線2402の線軸に対して垂直に切った断面が略楕円形状となり、一対の封着線2402の中点がガラス部材2403のほぼ中点を通るように封着線2402を封着している点を除いては、ガラス部材2103と実質的に同じ構成のものである。 At least a part of the pair of sealing wires 2402 is covered with a glass member 2403. The glass member 2403 has a substantially egg shape, a cross section cut perpendicularly to the line axis of the sealing line 2402 has a substantially elliptical shape, and the midpoint of the pair of sealing lines 2402 is substantially the midpoint of the glass member 2403. The glass member 2103 has substantially the same configuration except that the sealing wire 2402 is sealed so as to pass therethrough.
 なお、ガラス部材2403は1[個]に限らず、封着線2402の長手方向に複数個設けられていてもよい。ガラス部材2403が封着線2402の長手方向に2[個]設けられている場合、一方のガラス部材をランプの製造工程における仮封止に使用することができ、ランプを製造しやすくすることができる。 Note that the number of glass members 2403 is not limited to 1 [piece], and a plurality of glass members 2403 may be provided in the longitudinal direction of the sealing wire 2402. When 2 [pieces] of the glass member 2403 are provided in the longitudinal direction of the sealing wire 2402, one glass member can be used for temporary sealing in the manufacturing process of the lamp, which makes it easier to manufacture the lamp. it can.
 上記のとおり、本発明の第13の実施形態に係る電極構造体2400の構成によれば、電極構造体2400のガラス部材2403の歪を低減することで、電極構造体2400を用いて低圧放電ランプを封止した場合に、電極構造体2400の封着部分が破損するのを防止することができる。 As described above, according to the configuration of the electrode structure 2400 according to the thirteenth embodiment of the present invention, the low-pressure discharge lamp is reduced using the electrode structure 2400 by reducing the distortion of the glass member 2403 of the electrode structure 2400. Can be prevented from being damaged when the electrode structure 2400 is sealed.
 なお、図18(b)に示す電極構造体(以下、「電極構造体2404」という)であってもよい。電極構造体2404は、電極2405が電極構造体2404の長手方向の中心軸X2404を旋回軸とした二重螺旋構造をしている。この場合、電極構造体2400に比べてランプを細径化しやすくすることができる。封着線2406は、直線形状であって、形状を除いては封着線2402と実質的に同じ構成を有する。 The electrode structure shown in FIG. 18B (hereinafter referred to as “electrode structure 2404”) may be used. In the electrode structure 2404, the electrode 2405 has a double spiral structure with the central axis X 2404 in the longitudinal direction of the electrode structure 2404 as a turning axis. In this case, the diameter of the lamp can be easily reduced as compared with the electrode structure 2400. The sealing wire 2406 has a linear shape and has substantially the same configuration as the sealing wire 2402 except for the shape.
 なお、図18(b)に示すように、電極2405と封着線2406とは、接続部材2407を介して接続されていることが好ましい。この場合、電極2405と封着線2406との接続をより確実に行うことができる。接続部材2407は、例えばニッケル製である。 As shown in FIG. 18B, the electrode 2405 and the sealing wire 2406 are preferably connected via a connecting member 2407. In this case, the connection between the electrode 2405 and the sealing wire 2406 can be more reliably performed. The connecting member 2407 is made of nickel, for example.
 さらに、電極2405の周囲をスリーブ2408で覆うことが好ましい。この場合、電極2405からエミッタが飛散するのを抑制することができる。スリーブ2408は、例えばニッケル製であって、一方の接続部材に溶接により接続されている。なお、スリーブ2408の材料は、ニッケルに限らず、例えばモリブデン、タンタル、ニオブ、タングステン等を用いることができる。 Furthermore, it is preferable to cover the periphery of the electrode 2405 with a sleeve 2408. In this case, scattering of the emitter from the electrode 2405 can be suppressed. The sleeve 2408 is made of nickel, for example, and is connected to one connection member by welding. Note that the material of the sleeve 2408 is not limited to nickel, and, for example, molybdenum, tantalum, niobium, tungsten, or the like can be used.
 (第14の実施形態)
 本発明の第14の実施形態に係る低圧放電ランプの長手方向の中心軸X2500を含む断面図を図19(a)に示す。本発明の第14の実施形態に係る低圧放電ランプ(以下、「ランプ2500」という)は、熱陰極蛍光ランプであって、本発明の第13の実施形態に係る電極構造体2400を備えている点を除いては、本発明の第11の実施形態に係る低圧放電ランプ2200と実質的に同じ構成を有する。
(Fourteenth embodiment)
FIG. 19A shows a cross-sectional view including the central axis X 2500 in the longitudinal direction of the low-pressure discharge lamp according to the fourteenth embodiment of the present invention. The low-pressure discharge lamp (hereinafter referred to as “lamp 2500”) according to the fourteenth embodiment of the present invention is a hot cathode fluorescent lamp, and includes the electrode structure 2400 according to the thirteenth embodiment of the present invention. Except for this point, it has substantially the same configuration as the low-pressure discharge lamp 2200 according to the eleventh embodiment of the present invention.
 上記のとおり、本発明の第14の実施形態に係る低圧放電ランプ2500の構成によれば、電極構造体2400の封着部分が破損するのを防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp 2500 according to the fourteenth embodiment of the present invention, the sealed portion of the electrode structure 2400 can be prevented from being damaged.
 なお、図19(b)に示すように、電極構造体2404を備えた低圧放電ランプ(以下、「ランプ2501」)であってもよい。この場合、電極構造体2404の封着部分が破損するのを防止することができることに加えて、ガラスバルブ2201を細径化することができる。 Note that, as shown in FIG. 19B, a low-pressure discharge lamp (hereinafter referred to as “lamp 2501”) including an electrode structure 2404 may be used. In this case, in addition to preventing the sealed portion of the electrode structure 2404 from being damaged, the glass bulb 2201 can be reduced in diameter.
 ここまで、第10~第14の実施形態について説明したが、本実施形態に係るランプを用いて、第6の実施形態(図8)、第7の実施形態(図9)、および第8の実施形態(図10)に係る照明装置と同様に照明装置を構成しても構わない。また、当該照明装置を用いて、第9の実施形態(図11)に係る画像表示装置と同様に画像表示装置を構成しても構わない。
<第15の実施形態~第20の実施形態>
 第15の実施形態~第20の実施形態は、以下の背景技術および課題に鑑みてなされたものである。
(背景技術)
 従来の低圧放電ランプの管軸を含む断面図を図30(a)に示す。従来の低圧放電ランプ3001(以下、「ランプ3001」という)は、例えば冷陰極放電ランプであって、ガラス管3002と、そのガラス管3002の両端部に封着された電極構造体3003とを有する。電極構造体3003は、電極3004と、電極3004に接続されたリード線3005と、リード線3005に被着されたガラスビード3006とを有する。
Up to this point, the tenth to fourteenth embodiments have been described. However, by using the lamp according to the present embodiment, the sixth embodiment (FIG. 8), the seventh embodiment (FIG. 9), and the eighth embodiment You may comprise an illuminating device similarly to the illuminating device which concerns on embodiment (FIG. 10). Moreover, you may comprise an image display apparatus similarly to the image display apparatus which concerns on 9th Embodiment (FIG. 11) using the said illuminating device.
<Fifteenth to twentieth embodiments>
The fifteenth to twentieth embodiments have been made in view of the following background art and problems.
(Background technology)
A cross-sectional view including the tube axis of a conventional low-pressure discharge lamp is shown in FIG. A conventional low-pressure discharge lamp 3001 (hereinafter referred to as “lamp 3001”) is, for example, a cold cathode discharge lamp, and includes a glass tube 3002 and electrode structures 3003 sealed at both ends of the glass tube 3002. . The electrode structure 3003 includes an electrode 3004, a lead wire 3005 connected to the electrode 3004, and a glass bead 3006 attached to the lead wire 3005.
 そして図30(b)に示すように、電極構造体3003は、電極3004とリード線3005とを抵抗溶接した後に、リード線3005に円筒状のガラスビード3006を嵌め、ガスバーナー3007でガラスビード3006を加熱し、溶融することで作製される(例えば、特開平8-236023号公報等参照)。
(解決しようとする課題)
 ガラス管3002の管径が大きい場合には、ガラスビード3006の肉厚を厚くする必要がある。ガラスビード3006は、ガラスチューブ(図示せず)を溶融させて作製されるため、肉厚の厚いガラスビードを作製するためには、肉厚の厚いガラスチューブが必要となる。
30B, in the electrode structure 3003, the electrode 3004 and the lead wire 3005 are resistance-welded, and then a cylindrical glass bead 3006 is fitted to the lead wire 3005, and the glass bead 3006 is used by the gas burner 3007. Is heated and melted (see, for example, JP-A-8-236023).
(Issue to solve)
When the tube diameter of the glass tube 3002 is large, it is necessary to increase the thickness of the glass bead 3006. Since the glass bead 3006 is produced by melting a glass tube (not shown), a thick glass tube is required to produce a thick glass bead.
 しかしながら、肉厚の厚いガラスチューブを引き伸ばして作製しようとすると、ガラスチューブを引き伸ばす速度を遅くしなければならず、その場合、ガラスチューブにたるみができ、その形状が不安定となるおそれがある。 However, if an attempt is made to stretch and make a thick glass tube, the speed at which the glass tube is stretched must be slowed. In this case, the glass tube may sag and the shape may become unstable.
 さらに、肉厚の厚いガラスビード3006は、ガラスチューブを加熱により溶融させてガラスビードに加工する際、ガラスチューブの内部まで熱が伝わり難くリード線3005に被覆させることが難しい。ガラスビード3006が被覆される部分は、ランプ3001の封止部となるため、ガラスビード3006がリード線3005にきれいに被覆されていない場合には、ガラス管3002の内部空間に空気が入り込んでしまい、ランプ3001が不点灯となってしまうおそれがある。 Further, the thick glass bead 3006 is difficult to cover the lead wire 3005 because heat is not easily transmitted to the inside of the glass tube when the glass tube is melted by heating to be processed into a glass bead. Since the portion covered with the glass bead 3006 serves as a sealing portion of the lamp 3001, when the glass bead 3006 is not covered with the lead wire 3005, air enters the internal space of the glass tube 3002, There is a possibility that the lamp 3001 may not light up.
 よって、本実施形態に係る電極構造体は、管径の大きいガラス管に封着させ、その封着性を向上させることを目的とする。 Therefore, the electrode structure according to the present embodiment is intended to be sealed on a glass tube having a large tube diameter and to improve its sealing property.
 また、本実施形態に係る低圧放電ランプは、ガラス管の管径を大きくした場合に、封着性を向上させることを目的とする。 Also, the low-pressure discharge lamp according to this embodiment aims to improve the sealing property when the diameter of the glass tube is increased.
 (第15の実施形態)
 本発明の第15の実施形態に係る電極構造体の長手方向の中心軸X3100を含む断面図を図21に示す。本発明の第15の実施形態に係る電極構造体3100(以下、「電極構造体3100」という)は、電極3101と、一端部が電極3101に接続されたリード線3102と、リード線3102の少なくとも一部を覆うように形成されたガラスビード3103とを有する。
(Fifteenth embodiment)
FIG. 21 shows a cross-sectional view including the central axis X 3100 in the longitudinal direction of the electrode structure according to the fifteenth embodiment of the present invention. An electrode structure 3100 according to the fifteenth embodiment of the present invention (hereinafter referred to as “electrode structure 3100”) includes an electrode 3101, a lead wire 3102 having one end connected to the electrode 3101, and at least a lead wire 3102. And a glass bead 3103 formed so as to cover a part.
 電極3101は、例えば有底筒状であって、内径が2.4[mm]、外径が2.7[mm]、底部の肉厚が0.2[mm]、全長が8.2[mm]であって、ニッケル(Ni)製である。電極3101の材料は、ニッケルに限らず、ニオビウム(Nb)、モリブデン(Mo)、タンタル(Ta)およびタングステン(W)のいずれか一種またはいずれか一種以上を含む合金を用いることができる。電極3101は、その外側底面の略中央部においてリード線3102の一端面と接続されている。なお、電極3101とリード線3102とは、直接接続されていてもよいし、例えばニッケル箔やコバール箔からなるろう材を介して接続されていてもよい。また、接続方法としては、レーザー溶接や抵抗溶接等を用いることができる。 The electrode 3101 has, for example, a cylindrical shape with a bottom, an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni). The material of the electrode 3101 is not limited to nickel, and an alloy containing one or more of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W) can be used. The electrode 3101 is connected to one end surface of the lead wire 3102 at a substantially central portion of the outer bottom surface thereof. The electrode 3101 and the lead wire 3102 may be directly connected, or may be connected via a brazing material made of nickel foil or Kovar foil, for example. As a connection method, laser welding, resistance welding, or the like can be used.
 リード線3102は、例えば、電極3101の外側底面と一端面が接続され、側面の一部においてガラスビード3103に覆われる内部リード3102a線と、内部リード線3102aの他端面と一端面が接続される外部リード線3102bとの継線からなる。 In the lead wire 3102, for example, the outer bottom surface and one end surface of the electrode 3101 are connected, and the inner lead 3102 a line covered with the glass bead 3103 is partly connected to the other end surface and one end surface of the inner lead wire 3102 a. It consists of a connection with an external lead wire 3102b.
 内部リード線3102aは、線径が0.8[mm]であって、タングステン製である。なお、内部リード線3102aは、ガラスビード3103の材料として用いるガラスの熱膨張係数に併せた材料を用いることが好ましい。例えば、ガラスビードがコバール線封着用のホウ珪酸ガラスの場合、鉄とニッケルとコバルトとの合金(コバール)を用いることが好ましい。また、ガラスビード3103が鉛フリーガラスやソーダガラス等の軟質ガラスの場合、鉄とニッケルとの合金等を用いることが好ましい。 The internal lead wire 3102a has a wire diameter of 0.8 [mm] and is made of tungsten. Note that the internal lead wire 3102a is preferably made of a material that matches the thermal expansion coefficient of glass used as the material of the glass bead 3103. For example, when the glass bead is borosilicate glass for sealing Kovar wire, it is preferable to use an alloy of iron, nickel, and cobalt (Kovar). In the case where the glass beads 3103 are soft glass such as lead-free glass or soda glass, it is preferable to use an alloy of iron and nickel.
 なお、内部リード線3102aにおける少なくともガラスビード3103に覆われている部分の表面には、酸化膜(図示せず)が形成されていることが好ましい。この場合、内部リード線3102aとガラスビード3103との封着性を向上させることができる。さらに、酸化膜には、FeOが含まれていることが好ましい。この場合、さらに内部リード線3102aとガラスビード3103との封着性を向上させることができる。 Note that an oxide film (not shown) is preferably formed on the surface of at least a portion of the internal lead wire 3102a covered with the glass bead 3103. In this case, the sealing property between the internal lead wire 3102a and the glass bead 3103 can be improved. Further, the oxide film preferably contains FeO. In this case, the sealing property between the internal lead wire 3102a and the glass bead 3103 can be further improved.
 外部リード線3102bは、線径が0.6[mm]であって、ニッケル製である。外部リード線3102bには、ニッケルに限らず、ニッケルとマンガンの合金、ジュメット等を用いてもよい。なお、外部リード線3102bの表面は、外部リード線3102bの酸化防止のために、半田で覆われていてもよい。 The external lead wire 3102b has a wire diameter of 0.6 [mm] and is made of nickel. The external lead wire 3102b is not limited to nickel, and an alloy of nickel and manganese, jumet, or the like may be used. The surface of the external lead wire 3102b may be covered with solder in order to prevent oxidation of the external lead wire 3102b.
 ガラスビード3103は、略球形状であって、その略中心軸に沿って内部リード線3102aを覆って(封着して)おり、タングステン線封着用のホウ珪酸ガラス製である。ガラスビード3103は、2層構造であり、内部リード線3102aを被覆する内側の層3103aと内側の層を被覆する外側の層3103bからなる。これにより、ガラスビード3103の材料となるガラスチューブの成形が行いやすく、ガラスチューブからガラスビードへの加工の際、1層のガラスビードに対して、十分に加熱して溶融させることができるので、ガラスビードの外径を大きくして、管径の大きいガラス管に封着させることができ、その封着性を向上させることができる。 The glass bead 3103 has a substantially spherical shape, covers (seals) the internal lead wire 3102a along its substantially central axis, and is made of borosilicate glass for sealing tungsten wires. The glass bead 3103 has a two-layer structure, and includes an inner layer 3103a covering the inner lead 3102a and an outer layer 3103b covering the inner layer. Thereby, it is easy to form a glass tube as a material of the glass bead 3103, and when processing from the glass tube to the glass bead, it can be sufficiently heated and melted for one layer of the glass bead, The outer diameter of the glass bead can be increased and sealed to a glass tube having a large tube diameter, and the sealing property can be improved.
 なお、ガラスビード3103は、2層構造に限らず、3層構造や4層構造等、電極構造体3100を用いて封着するガラス管の内径に合わせて多層構造とすればよい。また、ガラスビード3103は、封着性の観点から、封着相手の材料(放電ランプの場合には、ガラス管3201)と熱膨張係数が同一の材料、または近似する材料からなることが好ましい。 Note that the glass bead 3103 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube to be sealed using the electrode structure 3100. Further, from the viewpoint of sealing properties, the glass bead 3103 is preferably made of a material having the same or similar thermal expansion coefficient as the material of the sealing partner (in the case of a discharge lamp, the glass tube 3201).
 電極構造体3100の製造方法について以下に詳細に説明する。電極構造体3100の製造方法は、電極3101とリード線3102とを接続させる接続工程と、リード線3102をガラスビード3103の材料である多重のガラスチューブ3104の空洞に挿入させる挿入工程と、ガラスチューブ3104を加熱して溶融させる加熱工程とを有する。以下、図22を用いて各工程を詳細に説明する。 The manufacturing method of the electrode structure 3100 will be described in detail below. The manufacturing method of the electrode structure 3100 includes a connecting step of connecting the electrode 3101 and the lead wire 3102, an inserting step of inserting the lead wire 3102 into the cavity of the multiple glass tube 3104 that is a material of the glass bead 3103, and a glass tube And a heating step of heating and melting 3104. Hereafter, each process is demonstrated in detail using FIG.
 図22(a)に示すように、接続工程は、電極3101の外側底面にリード線3102の一端面を接触させて、例えば抵抗溶接により接続させる。なお、接続方法は、抵抗溶接に限らずレーザー溶接等を用いてもよい。 As shown in FIG. 22A, in the connection step, one end surface of the lead wire 3102 is brought into contact with the outer bottom surface of the electrode 3101 and connected by, for example, resistance welding. The connection method is not limited to resistance welding, and laser welding or the like may be used.
 次に、図22(b)に示すように、挿入工程は、リード線の電極が接続されている側と反対側の端部より円筒状のガラスチューブ3104の空洞部に挿入する。ガラスチューブ3104は、多重であるため、最初に径の小さいガラスチューブ3104aの空洞部にリード線3102を挿入し、その後に径の大きいガラスチューブ3104bに径の小さいガラスチューブ3104aを挿入してもよいし、径の大きいガラスチューブ3104bの空洞部に径の小さいガラスチューブ3104aを挿入した状態で、径の小さいガラスチューブ3104aの空洞部にリード線3102を挿入してもよい。 Next, as shown in FIG. 22B, in the insertion step, the lead wire is inserted into the hollow portion of the cylindrical glass tube 3104 from the end opposite to the side to which the electrode is connected. Since the glass tubes 3104 are multiple, first, the lead wire 3102 may be inserted into the hollow portion of the glass tube 3104a with a small diameter, and then the glass tube 3104a with a small diameter may be inserted into the glass tube 3104b with a large diameter. Then, the lead wire 3102 may be inserted into the hollow portion of the small diameter glass tube 3104a in a state where the small diameter glass tube 3104a is inserted into the hollow portion of the large diameter glass tube 3104b.
 その後に、図22(b)に示すように、治具3105の一端面に設けられた固定穴3105aにリード線3102を挿入して固定する。 Thereafter, as shown in FIG. 22B, the lead wire 3102 is inserted into the fixing hole 3105a provided on one end face of the jig 3105 and fixed.
 続いて、図22(c)に示すように、加熱工程は、治具3105の固定穴3105aにリード線3102を挿入して固定した状態で、ガラスチューブ3104を例えばガスバーナー3106により加熱する。これにより、径の小さいガラスチューブ3104aおよび径の大きいガラスチューブ3104bが共に溶融されることで、リード線3102に被覆されるガラスビード3103が形成される。 Subsequently, as shown in FIG. 22C, in the heating step, the glass tube 3104 is heated by, for example, a gas burner 3106 in a state where the lead wire 3102 is inserted and fixed in the fixing hole 3105 a of the jig 3105. Thereby, the glass bead 3103 covered with the lead wire 3102 is formed by melting the glass tube 3104a having a small diameter and the glass tube 3104b having a large diameter together.
 上記のとおり、本発明の第15の実施形態に係る電極構造体3100は、管径の大きいガラス管に封着させることができ、その封着性を向上させることができる。 As described above, the electrode structure 3100 according to the fifteenth embodiment of the present invention can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved.
 なお、ガラスビード3103は、2層構造であって、ガラスビード3103における電極構造体の長手方向の中間部での内側の層3103aの厚みmと外側の層3103bの厚みnとの比が1:0.5以上1:2以下の範囲内であることが好ましい。この場合、内側の層3103aと外側の層3103bの材料となるガラスチューブを十分に溶融して、安定した形状のガラスビードを成形することができる。さらには、m:nの比は1:0.8以上1:1.5以下の範囲内であることがより好ましい。 The glass bead 3103 has a two-layer structure, and the ratio of the thickness m of the inner layer 3103a to the thickness n of the outer layer 3103b at the middle portion of the glass bead 3103 in the longitudinal direction is 1: It is preferably within the range of 0.5 or more and 1: 2 or less. In this case, the glass tube used as the material of the inner layer 3103a and the outer layer 3103b can be sufficiently melted to form a glass bead having a stable shape. Further, the ratio of m: n is more preferably in the range of 1: 0.8 or more and 1: 1.5 or less.
 また、ガラスビード3103は、電極構造体の長手方向の長さrと、電極構造体の長手方向に対して略垂直な方向の長さsとの比が1:1以上1:4以下の範囲内であることが好ましい。この場合、ガラスチューブを溶融させてガラスビードを成形する際、ガラスチューブの内部まで十分に溶融して封着性を向上することができる。さらには、r:sの比は1:1以上1:2以下の範囲内であることがより好ましい。 In the glass bead 3103, the ratio of the length r in the longitudinal direction of the electrode structure to the length s in the direction substantially perpendicular to the longitudinal direction of the electrode structure is in the range of 1: 1 to 1: 4. It is preferable to be within. In this case, when the glass tube is melted to form a glass bead, the inside of the glass tube can be sufficiently melted to improve the sealing property. Furthermore, the ratio of r: s is more preferably in the range of 1: 1 or more and 1: 2 or less.
 (第16の実施形態)
 本発明の第16の実施形態に係る低圧放電ランプの管軸X3200を含む断面図を図23に示す。本発明の第16の実施形態に係る低圧放電ランプ3200(以下、「ランプ3200」)は、冷陰極蛍光ランプであって、ガラス管3201と、ガラス管3201の少なくとも一方の端部に設けられた電極構造体3100とを備える。
(Sixteenth embodiment)
FIG. 23 is a sectional view including the tube axis X 3200 of the low-pressure discharge lamp according to the sixteenth embodiment of the present invention. A low-pressure discharge lamp 3200 (hereinafter referred to as “lamp 3200”) according to a sixteenth embodiment of the present invention is a cold cathode fluorescent lamp, and is provided at a glass tube 3201 and at least one end of the glass tube 3201. An electrode structure 3100.
 ガラス管3201は、直管状であり、その管軸に対して垂直に切った断面が略円環形状である。このガラス管3201は、例えば外径が6[mm]、内径が5[mm]、全長が1026[mm]であって、その材料は例えばホウ珪酸ガラスである。以下に示すランプ3200の寸法は、外径が6[mm]、内径が5[mm]のガラス管3201の寸法に対応する値である。ガラス管3201の内部には、水銀と希ガスが封入されている。水銀は、例えば3.5[mg]の水銀が封入されている。希ガスは、例えばネオンとアルゴンがAr:5[mol%]、Ne:95[mol%]のモル比の混合ガスが60[Torr]の圧力で封入されている。 The glass tube 3201 is a straight tube, and a cross section cut perpendicularly to the tube axis has a substantially annular shape. The glass tube 3201 has, for example, an outer diameter of 6 [mm], an inner diameter of 5 [mm], and an overall length of 1026 [mm], and the material thereof is, for example, borosilicate glass. The dimensions of the lamp 3200 shown below are values corresponding to the dimensions of the glass tube 3201 having an outer diameter of 6 [mm] and an inner diameter of 5 [mm]. Mercury and a rare gas are sealed inside the glass tube 3201. For example, 3.5 [mg] mercury is enclosed in the mercury. As for the rare gas, for example, neon and argon are sealed at a pressure of 60 [Torr] with a mixed gas having a molar ratio of Ar: 5 [mol%] and Ne: 95 [mol%].
 また、ガラス管3201の内面には蛍光体層3202が形成されている。蛍光体層3202に用いる蛍光体粒子は、例えば、赤色蛍光体粒子(Y23:Eu3+)、緑色蛍光体粒子(LaPO4:Ce3+,Tb3+)および青色蛍光体粒子(BaMg2Al1627:Eu2+)からなる蛍光体で形成されている。 A phosphor layer 3202 is formed on the inner surface of the glass tube 3201. The phosphor particles used for the phosphor layer 3202 are, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ), and blue phosphor particles ( BaMg 2 Al 16 O 27 : Eu 2+ ).
 また、ガラス管3201の内面と蛍光体層3202との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)、酸化チタン(TiO2)等の金属酸化物の保護膜(図示せず)を設けてもよい。これにより、ガラス管のナトリウム成分と水銀との反応を抑制することで、輝度維持率を向上させることができる。 Further, between the inner surface of the glass tube 3201 and the phosphor layer 3202, for example, yttrium oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), oxide A protective film (not shown) of a metal oxide such as titanium (TiO 2 ) may be provided. Thereby, a brightness | luminance maintenance factor can be improved by suppressing reaction with the sodium component of a glass tube, and mercury.
 なお、ガラス管3201の内径は、3[mm]以上9[mm]以下の範囲内であることが好ましい。この場合、一層のガラスビードでは、ガラス管3201の封着が難しく、多層のガラスビードにより封着することができる。さらには、ガラス管3201の内径は、4[mm]以上9[mm]以下の範囲内であることがより好ましい。この場合、一層のガラスビードでは、ガラス管3201の封着が特に難しく、多層のガラスビードにより封着することができる。 In addition, it is preferable that the internal diameter of the glass tube 3201 exists in the range of 3 [mm] or more and 9 [mm] or less. In this case, it is difficult to seal the glass tube 3201 with a single glass bead, and it is possible to seal with a multi-layer glass bead. Further, the inner diameter of the glass tube 3201 is more preferably in the range of 4 [mm] to 9 [mm]. In this case, it is particularly difficult to seal the glass tube 3201 with a single glass bead, and the glass tube 3201 can be sealed with a multilayer glass bead.
 また、ガラス管の肉厚は、0.3[mm]以上1.2[mm]以下の範囲内であることが好ましい。この場合、ガラス管への封着時にガラスビードの封着に必要な熱を伝えやすくすることができる。さらには、ガラス管の肉厚は、0.4[mm]以上0.8[mm]以下の範囲内であることがより好ましい。 The wall thickness of the glass tube is preferably in the range of 0.3 [mm] to 1.2 [mm]. In this case, heat necessary for sealing the glass beads can be easily transmitted when sealing to the glass tube. Furthermore, the thickness of the glass tube is more preferably within a range of 0.4 [mm] to 0.8 [mm].
 電極構造体3100は、本発明の第15の実施形態に係る電極構造体3100と実質的に同一のものであり、ガラス管3201の両端部に封着されている。 The electrode structure 3100 is substantially the same as the electrode structure 3100 according to the fifteenth embodiment of the present invention, and is sealed at both ends of the glass tube 3201.
 上記のとおり、本発明の第16の実施形態に係る低圧放電ランプ3200の構成によれば、ガラス管3201の管径を大きくした場合に、封着性を向上させることができる。 As described above, according to the configuration of the low-pressure discharge lamp 3200 according to the sixteenth embodiment of the present invention, when the tube diameter of the glass tube 3201 is increased, the sealing property can be improved.
 (第17の実施形態)
 本発明の第17の実施形態に係る低圧放電ランプの管軸X3300を含む断面図を図24に示す。本発明の第15の実施形態に係る低圧放電ランプ3300(以下、「ランプ3300」という)は、内部外部電極蛍光ランプである。
(Seventeenth embodiment)
FIG. 24 is a cross-sectional view including the tube axis X 3300 of the low-pressure discharge lamp according to the seventeenth embodiment of the present invention. A low-pressure discharge lamp 3300 (hereinafter referred to as “lamp 3300”) according to a fifteenth embodiment of the present invention is an internal / external electrode fluorescent lamp.
 ランプ3300は、その一端部の外表面に外部電極3301を有し、それに伴う構成を除いては本発明の第16の実施形態に係る低圧放電ランプ3200と実質的に同じ構成を有している。よって、外部電極3301とそれに伴う構成については詳細に説明し、それ以外の点については省略する。 The lamp 3300 has an external electrode 3301 on the outer surface of one end thereof, and has substantially the same configuration as the low-pressure discharge lamp 3200 according to the sixteenth embodiment of the present invention, except for the configuration associated therewith. . Therefore, the external electrode 3301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
 外部電極3301は、例えば、半田からなり、ガラス管3201の一端部の外表面を覆うように形成されている。 The external electrode 3301 is made of, for example, solder and is formed so as to cover the outer surface of one end portion of the glass tube 3201.
 また、外部電極3301は、銀ペーストをガラス管3201の電極形成部分の全周に塗布することによって形成してもよいし、金属製のキャップをガラス管3201の一端部に被せてもよい。さらに、アルミニウムの金属箔を、シリコーン樹脂に金属粉体を混合した導電性粘着剤(図示せず)によってガラス管3201の一端部全体の外周面を覆うように貼着したものであってもよい。なお、導電性粘着剤において、シリコーン樹脂の代わりにフッ素樹脂、ポリイミド樹脂又はエポキシ樹脂等を用いてもよい。 Further, the external electrode 3301 may be formed by applying a silver paste to the entire circumference of the electrode forming portion of the glass tube 3201, or a metal cap may be put on one end of the glass tube 3201. Further, an aluminum metal foil may be attached so as to cover the entire outer peripheral surface of one end of the glass tube 3201 with a conductive adhesive (not shown) in which metal powder is mixed with silicone resin. . In addition, in a conductive adhesive, you may use a fluororesin, a polyimide resin, or an epoxy resin instead of a silicone resin.
 また、ガラス管3201の内面であって、外部電極3301が形成された領域に例えば酸化イットリウム(Y23)の保護膜を設けてもよい。保護膜(図示せず)を設けることにより、ガラス管3201のその部分に水銀イオンが衝撃することによって起こるガラス削れやピンホールを防止することができる。 Further, a protective film of, for example, yttrium oxide (Y 2 O 3 ) may be provided on the inner surface of the glass tube 3201 and the region where the external electrode 3301 is formed. By providing a protective film (not shown), it is possible to prevent glass scraping or pinholes caused by mercury ions bombarding the portion of the glass tube 3201.
 なお、保護膜は、酸化イットリウムに代えて、例えばシリカ(SiO2)、アルミナ(Al23)、酸化亜鉛(ZnO)、チタニア(TiO2)等の金属酸化物を用いてもよい。特に、保護膜が酸化イットリウムやシリカで形成されている場合には、保護膜に水銀が付着し難く、水銀消費が少ない。 The protective film may be made of metal oxide such as silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), titania (TiO 2 ), for example, instead of yttrium oxide. In particular, when the protective film is formed of yttrium oxide or silica, mercury hardly adheres to the protective film, and mercury consumption is low.
 もっとも、保護膜は、本発明において必須の構成要素ではなく、全く形成されていなくてもよいし、その一方で、ガラス管3201の内面の全体に亘って形成されていてもよい。 However, the protective film is not an essential component in the present invention and may not be formed at all, or may be formed over the entire inner surface of the glass tube 3201.
 なお、ガラス管の一端部は、ガラスビードを用いずに、ガラス管3201の一端部を加熱して溶融させることにより封着されていてもよいし、本発明の第15の実施形態に係る電極構造体3100と同様のガラスビード3103を用いて封着されていてもよい。 One end of the glass tube may be sealed by heating and melting one end of the glass tube 3201 without using a glass bead, or the electrode according to the fifteenth embodiment of the present invention. The glass beads 3103 similar to the structure 3100 may be used for sealing.
 上記のとおり、本発明の第17の実施形態に係る低圧放電ランプ3300に係る構成によれば、ガラス管3201の管径を大きくした場合に、封着性を向上させることができる。 As described above, according to the configuration of the low-pressure discharge lamp 3300 according to the seventeenth embodiment of the present invention, when the tube diameter of the glass tube 3201 is increased, the sealing property can be improved.
 (第18の実施形態)
 本発明の第18の実施形態に係る低圧放電ランプの管軸X3400を含む断面図を図25に示す。本発明の第18の実施形態に係る低圧放電ランプ3400(以下、「ランプ3400」という)は、外部電極蛍光ランプである。
(Eighteenth embodiment)
FIG. 25 is a sectional view including the tube axis X 3400 of the low-pressure discharge lamp according to the eighteenth embodiment of the present invention. A low-pressure discharge lamp 3400 (hereinafter referred to as “lamp 3400”) according to an eighteenth embodiment of the present invention is an external electrode fluorescent lamp.
 ランプ3400は、その両端部の外表面に外部電極3301を有し、それに伴う構成を除いては本発明の第16の実施形態に係る低圧放電ランプ3300と実質的に同じ構成を有している。よって、外部電極3301とそれに伴う構成については詳細に説明し、それ以外の点については省略する。 The lamp 3400 has external electrodes 3301 on the outer surfaces of both end portions thereof, and has substantially the same configuration as the low-pressure discharge lamp 3300 according to the sixteenth embodiment of the present invention except for the configuration associated therewith. . Therefore, the external electrode 3301 and the configuration associated therewith will be described in detail, and the other points will be omitted.
 ランプ3400は、ガラス管3201と、ガラス管3201の少なくとも一方の端部に封着された多層構造のガラスビード3103とを有する。具体的には、ランプ3400は、ガラス管3201の一端部が多層構造のガラスビード3103で封着されており、他端部がガラスビードを用いずに封着されている。多層のガラスビード3103は、本発明の第15の実施形態に係るガラスビード3103と実質的に同一のものである。なお、ガラス管3201の両端部が多層のガラスビード3103により封着されていてもよい。 The lamp 3400 includes a glass tube 3201 and a multi-layered glass bead 3103 sealed at at least one end of the glass tube 3201. Specifically, in the lamp 3400, one end of a glass tube 3201 is sealed with a glass bead 3103 having a multilayer structure, and the other end is sealed without using a glass bead. The multilayer glass bead 3103 is substantially the same as the glass bead 3103 according to the fifteenth embodiment of the present invention. Note that both ends of the glass tube 3201 may be sealed with a multilayer glass bead 3103.
 上記のとおり、本発明の第18の実施形態に係る低圧放電ランプ3400に係る構成によれば、ガラス管3201の管径を大きくした場合に、封着性を向上させることができる。 As described above, according to the configuration of the low-pressure discharge lamp 3400 according to the eighteenth embodiment of the present invention, the sealing performance can be improved when the diameter of the glass tube 3201 is increased.
 (第19の実施形態)
 本発明の第19の実施形態に係る電極構造体の長手方向の中心軸を含む断面図を図26に示す。本発明の第19の実施形態に係る電極構造体3500(以下、「電極構造体3500」という)は、電極3501と、一端部が電極3501に接続されたリード線3502と、リード線3502の少なくとも一部を覆うように形成されたガラスビード3503とを有する。具体的には、図26に示すように、電極構造体3500は、電極3501と、電極3501の両端部をそれぞれ担持する一対のリード線3502と、ガラスビード3503とからなる。
(Nineteenth embodiment)
FIG. 26 is a cross-sectional view including the central axis in the longitudinal direction of the electrode structure according to the nineteenth embodiment of the present invention. An electrode structure 3500 (hereinafter referred to as “electrode structure 3500”) according to a nineteenth embodiment of the present invention includes an electrode 3501, a lead wire 3502 having one end connected to the electrode 3501, and at least a lead wire 3502. A glass bead 3503 formed so as to cover a part thereof. Specifically, as shown in FIG. 26, the electrode structure 3500 includes an electrode 3501, a pair of lead wires 3502 that respectively support both ends of the electrode 3501, and a glass bead 3503.
 電極3501は、例えばタングステン製のフィラメントコイルである。電極3501には、その巻線部にエミッタ(図示せず)が付着している。エミッタには、例えば(Ba,Sr,Ca)O等を用いることができる。なお、電極3501は、タングステン製のフィラメントコイルに限らず、レニウムタングステン製のフィラメントコイルも用いることができる。この場合、電極3501がランプ点灯等により加熱されたときの強度を向上させることができる。また、電極3501は、電極構造体の中心軸を旋回軸とした二重螺旋構造をであってもよい。 The electrode 3501 is a filament coil made of tungsten, for example. The electrode 3501 has an emitter (not shown) attached to its winding portion. For the emitter, for example, (Ba, Sr, Ca) O or the like can be used. Note that the electrode 3501 is not limited to a filament coil made of tungsten, and a filament coil made of rhenium tungsten can also be used. In this case, the strength when the electrode 3501 is heated by lamp lighting or the like can be improved. In addition, the electrode 3501 may have a double spiral structure with the central axis of the electrode structure as a turning axis.
 リード線3502は、例えば、鉄(Fe)とニッケル(Ni)との合金製である。具体的には、50[wt%]以上52[wt%]以下の範囲内のニッケルと、残部の鉄との合金製であることが好ましい。 The lead wire 3502 is made of, for example, an alloy of iron (Fe) and nickel (Ni). Specifically, it is preferably made of an alloy of nickel in the range of 50 [wt%] to 52 [wt%] and the remaining iron.
 ガラスビード3503は、略玉子形状であって、リード線3502の線軸に対して垂直に切った断面が略楕円形状となり、2本のリード線3502の中点がガラスビード3503の略中点を通るようにリード線3502を封着しており、例えば鉛フリーガラス製である。 The glass bead 3503 has a substantially egg shape, and a cross section perpendicular to the line axis of the lead wire 3502 has a substantially elliptical shape, and the midpoint of the two lead wires 3502 passes through the substantially midpoint of the glass bead 3503. In this way, the lead wire 3502 is sealed, for example, made of lead-free glass.
 ガラスビード3503は、2層構造であり、一対のリード線3502を被覆する内側の層3503aとそれぞれの内側の層を被覆する外側の層3503bからなる。これにより、ガラスビードの材料となるガラスチューブの成形が行いやすく、ガラスチューブからガラスビードへの加工の際、1層のガラスビードに対して、十分に加熱して溶融させることができるので、ガラスビードの外径を大きくして、管径の大きいガラス管に封着させることができ、その封着性を向上させることができる。具体的には、内側の層3503aは、一対のリード線3502をそれぞれ覆うように形成され、それぞれの内側の層3503aを外側の層3503bがまとめて覆うように形成されている。 The glass bead 3503 has a two-layer structure, and includes an inner layer 3503a covering a pair of lead wires 3502 and an outer layer 3503b covering each inner layer. Thereby, it is easy to form a glass tube as a material of the glass bead, and when processing from the glass tube to the glass bead, it can be sufficiently heated and melted for one layer of the glass bead. By increasing the outer diameter of the bead, it can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved. Specifically, the inner layer 3503a is formed so as to cover the pair of lead wires 3502, and the inner layer 3503a is formed so as to cover the inner layer 3503a together.
 なお、ガラスビード3503は、2層構造に限らず、3層構造や4層構造等、電極構造体3500を用いて封着するガラス管の内径に合わせて多層構造とすればよい。また、ガラスビード3503は、封着性の観点から、封着相手の材料(放電ランプの場合には、ガラス管3201)と同一の材料、または近似する材料からなることが好ましい。 Note that the glass bead 3503 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube sealed using the electrode structure 3500. Further, from the viewpoint of sealing properties, the glass bead 3503 is preferably made of the same material as the sealing partner material (in the case of a discharge lamp, the glass tube 3201) or a similar material.
 電極構造体3500の製造方法について以下に詳細に説明する。電極構造体3500の製造方法は、電極3501とリード線3502とを接続させる接続工程と、リード線3502をガラスビード3503の材料である多重のガラスチューブ3504の空洞に挿入させる挿入工程と、ガラスチューブ3504を加熱して溶融させる加熱工程とを有する。以下、図27を用いて各工程を詳細に説明する。 The manufacturing method of the electrode structure 3500 will be described in detail below. The manufacturing method of the electrode structure 3500 includes a connection step of connecting the electrode 3501 and the lead wire 3502, an insertion step of inserting the lead wire 3502 into the cavity of the multiple glass tube 3504 that is a material of the glass bead 3503, and a glass tube. And a heating step of heating and melting 3504. Hereafter, each process is demonstrated in detail using FIG.
 図27(a)に示すように、接続工程は、電極3501の両端部をそれぞれ2本のリード線3502により担持させる。具体的には、一対のリード線3502のそれぞれ一端部を折り曲げて電極3501の両端部を挟み込み、かしめることにより担持されている。 As shown in FIG. 27A, in the connection step, both ends of the electrode 3501 are supported by two lead wires 3502, respectively. Specifically, one end of each of the pair of lead wires 3502 is bent, and both ends of the electrode 3501 are sandwiched and caulked to be carried.
 次に、図27(b)に示すように、挿入工程は、リード線3502の電極3501が接続されている側と反対側の端部より円筒状のガラスチューブ3504の空洞部に挿入する。ガラスチューブ3504は、多重であるため、最初に径の小さいガラスチューブ3504aの空洞部に2本のリード線3502をそれぞれ挿入し、その後に径の大きいガラスチューブ3504bに径の小さいガラスチューブ3504aを共に挿入してもよいし、径の大きいガラスチューブ3504bの空洞部に径の小さいガラスチューブ3504aを2つ挿入した状態で、径の小さいガラスチューブ3504aの空洞部にそれぞれ2本のリード線3502を挿入してもよい。 Next, as shown in FIG. 27B, in the insertion step, the lead wire 3502 is inserted into the hollow portion of the cylindrical glass tube 3504 from the end opposite to the side where the electrode 3501 is connected. Since the glass tubes 3504 are multiple, first, two lead wires 3502 are respectively inserted into the hollow portions of the glass tubes 3504a having small diameters, and then the glass tubes 3504a having small diameters are joined to the glass tubes 3504b having large diameters. The two lead wires 3502 may be inserted into the hollow portions of the small-diameter glass tubes 3504a in a state where two small-diameter glass tubes 3504a are inserted into the hollow portions of the large-diameter glass tubes 3504b. May be.
 その後に、図27(b)に示すように、治具3505の一端面に設けられた固定穴3505aにリード線3502を挿入して固定する。 Thereafter, as shown in FIG. 27B, a lead wire 3502 is inserted into a fixing hole 3505a provided on one end surface of the jig 3505 and fixed.
 なお、接続工程は、挿入工程の後に行ってもよい。この場合、治具により、2本のリード線の間の距離を規制することができ、電極であるフィラメントコイルの形状およびピッチのばらつきを抑制することができる。 Note that the connection step may be performed after the insertion step. In this case, the distance between the two lead wires can be regulated by the jig, and variations in the shape and pitch of the filament coil as an electrode can be suppressed.
 続いて、図27(c)に示すように、加熱工程は、治具3505の固定穴3505aにリード線3502を挿入して固定した状態で、ガラスチューブ3504を例えばガスバーナー3506により加熱する。これにより、径の小さいガラスチューブ3504aおよび径の大きいガラスチューブ3504bが共に溶融されることで、リード線3502に被着されるガラスビード3503が形成される。 Subsequently, as shown in FIG. 27C, in the heating step, the glass tube 3504 is heated by, for example, a gas burner 3506 in a state where the lead wire 3502 is inserted and fixed in the fixing hole 3505a of the jig 3505. Thereby, the glass bead 3503 attached to the lead wire 3502 is formed by melting the glass tube 3504a having a small diameter and the glass tube 3504b having a large diameter together.
 なお、接続工程は、加熱工程の後に行ってもよい。この場合、加熱工程において電極が酸化するのを防止することができる。 In addition, you may perform a connection process after a heating process. In this case, it is possible to prevent the electrode from being oxidized in the heating step.
 上記のとおり、本発明の第19の実施形態に係る電極構造体3500は、管径の大きいガラス管に封着させることができ、その封着性を向上させることができる。 As described above, the electrode structure 3500 according to the nineteenth embodiment of the present invention can be sealed to a glass tube having a large tube diameter, and its sealing property can be improved.
 (第20の実施形態)
 本発明の第20の実施形態に係る低圧放電ランプの管軸X3600を含む断面図を図28に示す。本発明の第20の実施形態に係る低圧放電ランプ3600(以下、「ランプ3600」という)は、熱陰極蛍光ランプであって、本発明の第19の実施形態に係る電極構造体3500を備える点を除いては、本発明の第16の実施形態に係る低圧放電ランプ3200と実質的に同一の構成を有する。
(20th embodiment)
FIG. 28 is a sectional view including the tube axis X 3600 of the low-pressure discharge lamp according to the twentieth embodiment of the present invention. A low-pressure discharge lamp 3600 (hereinafter referred to as “lamp 3600”) according to the twentieth embodiment of the present invention is a hot cathode fluorescent lamp, and includes an electrode structure 3500 according to the nineteenth embodiment of the present invention. Is substantially the same as the low-pressure discharge lamp 3200 according to the sixteenth embodiment of the present invention.
 上記のとおり、本発明の第20の実施形態に係る低圧放電ランプ3600に係る構成によれば、ガラス管の管径を大きくした場合に、封着性を向上させることができる。 As described above, according to the configuration of the low-pressure discharge lamp 3600 according to the twentieth embodiment of the present invention, the sealing property can be improved when the diameter of the glass tube is increased.
 (変形例)
 以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
1.電極構造体について
(1)電極構造体の変形例1
 本発明の第15の実施形態に係る電極構造体の変形例1の長手方向の中心軸X3107を含む断面図を図29(a)に示す。本発明の第15の実施形態に係る電極構造の変形例1(以下、「電極構造体3107」という)は、ガラスビード3108が、リード線3102の線軸方向において、内側の層3108aが外側の層3108bよりも短い点を除いては、本発明の第15の実施形態に係る電極構造体3100と実質的に同一の構成を有する。具体的には、リード線3102の線軸方向において、ガラスビード3108の内側の層3108aにおける電極3101側の端部が、外側の層3108bの電極3101側の端部よりも電極3101とは反対側に短くなっている。この場合、リード線3102とガラスビード3108との接触面積を広げることなく、ガラス管とガラスビード3108との接触面積を広げることができ、電極構造体3107をガラス管に封着させる際、ガラス管を大きく変形させることなく容易に封着させることができる。
(Modification)
As described above, the present invention has been described based on the specific examples shown in the above embodiments. However, the content of the present invention is not limited to the specific examples shown in the respective embodiments. Variations can be used.
1. Regarding the electrode structure (1) Modification 1 of the electrode structure
FIG. 29A shows a cross-sectional view including the longitudinal central axis X 3107 of Modification 1 of the electrode structure according to the fifteenth embodiment of the present invention. In Modification 1 (hereinafter referred to as “electrode structure 3107”) of the electrode structure according to the fifteenth embodiment of the present invention, the glass bead 3108 has an inner layer 3108a as an outer layer in the direction of the axis of the lead wire 3102. Except for the point shorter than 3108b, it has the structure substantially the same as the electrode structure 3100 which concerns on the 15th Embodiment of this invention. Specifically, in the linear axis direction of the lead wire 3102, the end on the electrode 3101 side in the inner layer 3108 a of the glass bead 3108 is on the side opposite to the electrode 3101 than the end on the electrode 3101 side of the outer layer 3108 b. It is getting shorter. In this case, the contact area between the glass tube and the glass bead 3108 can be increased without increasing the contact area between the lead wire 3102 and the glass bead 3108. When the electrode structure 3107 is sealed to the glass tube, the glass tube Can be easily sealed without greatly deforming.
 なお、ガラスビード3503は、2層構造に限らず、3層構造や4層構造等、電極構造体3100を用いて封着するガラス管の内径に合わせて多層構造とすればよい。この場合、例えばリード線3102の線軸方向において、最も内側の層を最も外側の層よりも短くすることができる。さらには、リード線3102の線軸方向において、最も内側の層から最も外側の層に向かって短くなっていることが好ましい。この場合さらにガラス管に封着しやすくすることができる。
(2)電極構造体の変形例2
 本発明の第15の実施形態に係る電極構造体の変形例2の長手方向の中心軸X3109を含む断面図を図29(b)に示す。本発明の第15の実施形態に係る電極構造の変形例2(以下、「電極構造体3109」という)は、ガラスビード3110が、リード線3102の線軸方向において、内側の層3110aが外側の層3110bよりも長い点を除いて、本発明の第15の実施形態に係る電極構造体3100と実質的に同一の構成を有する。具体的には、リード線3102の線軸方向において、ガラスビード3110の内側の層3110aの電極3101側の端部が外側の層3110bの端部よりも電極3101側に長くなっている。この場合、リード線3102とガラスビード3110との接触面積を大きくさせて、封着性をさらに向上させつつ、電極構造体3109をガラス管に封着させる際、溶融したガラス管が電極3101に接触することを防止することができる。
Note that the glass bead 3503 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure in accordance with the inner diameter of a glass tube sealed using the electrode structure 3100. In this case, for example, the innermost layer can be made shorter than the outermost layer in the direction of the axis of the lead wire 3102. Furthermore, it is preferable that the length of the lead wire 3102 is shortened from the innermost layer toward the outermost layer. In this case, the glass tube can be further easily sealed.
(2) Modification 2 of electrode structure
FIG. 29B is a cross-sectional view including the central axis X 3109 in the longitudinal direction of Modification 2 of the electrode structure according to the fifteenth embodiment of the present invention. In Modification 2 (hereinafter referred to as “electrode structure 3109”) of the electrode structure according to the fifteenth embodiment of the present invention, the glass bead 3110 has an inner layer 3110a as an outer layer in the direction of the axis of the lead wire 3102. Except for the point longer than 3110b, it has the structure substantially the same as the electrode structure 3100 which concerns on the 15th Embodiment of this invention. Specifically, in the direction of the axis of the lead wire 3102, the end portion on the electrode 3101 side of the inner layer 3110 a of the glass bead 3110 is longer on the electrode 3101 side than the end portion of the outer layer 3110 b. In this case, when the electrode structure 3109 is sealed to the glass tube while increasing the contact area between the lead wire 3102 and the glass bead 3110 to further improve the sealing property, the molten glass tube contacts the electrode 3101. Can be prevented.
 なお、ガラスビード3110は、2層構造に限らず、3層構造や4層構造等、電極構造体3100を用いて封着するガラス管の内径に合わせて多層構造とすればよい。この場合、例えばリード線3102の線軸方向において、最も内側の層を最も外側の層よりも長くすることができる。さらには、リード線3102の線軸方向において、最も内側の層から最も外側の層に向かって短くなっていることが好ましい。この場合ガラスチューブからガラスビード3110への加熱を行いやすくすることができる。
2.ガラス管について
 ガラスビード3103、ガラスチューブガラス管3201の熱膨張係数は、3.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内のものを用いることができる。特に、ガラス管3201の熱膨張係数は、8.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内であることが好ましい。この場合、ガラスの強度が弱くなるため、本発明の作用効果を特に発揮できる。
Note that the glass bead 3110 is not limited to a two-layer structure, and may have a multilayer structure such as a three-layer structure or a four-layer structure according to the inner diameter of a glass tube sealed using the electrode structure 3100. In this case, for example, the innermost layer can be made longer than the outermost layer in the direction of the axis of the lead wire 3102. Furthermore, it is preferable that the length of the lead wire 3102 is shortened from the innermost layer toward the outermost layer. In this case, heating from the glass tube to the glass bead 3110 can be facilitated.
2. About glass tube The thermal expansion coefficient of the glass bead 3103 and the glass tube glass tube 3201 is in the range of 3.0 × 10 −6 [K −1 ] or more and 10.0 × 10 −6 [K −1 ] or less. Can be used. In particular, the thermal expansion coefficient of the glass tube 3201 is preferably in the range of 8.0 × 10 −6 [K −1 ] to 10.0 × 10 −6 [K −1 ]. In this case, since the intensity | strength of glass becomes weak, the effect of this invention can be exhibited especially.
 ここまで、第15~第20の実施形態について説明してきたが、本実施形態に係るランプを用いて、第6の実施形態(図8)、第7の実施形態(図9)、および第8の実施形態(図10)に係る照明装置と同様に照明装置を構成しても構わない。また、当該照明装置を用いて、第9の実施形態(図11)に係る画像表示装置と同様に画像表示装置を構成しても構わない。
<第21の実施形態~第23の実施形態>
 第21の実施形態~第23の実施形態は、以下の背景技術および課題に鑑みてなされたものである。
(背景技術)
 従来の低圧放電ランプの製造方法の工程の概念図を図37(a)~(c)に示す。従来の低圧放電ランプの製造方法は、蛍光ランプの製造方法であって、ガラス管4001の一端4001aに一方の電極4003Aを封止する工程と、ガラス管4001の他端4001c部分より内方の所定部分4001bに他方の電極4003Bを配置する工程と、ガラス管4001の他端4001c部分と他方の電極4003Bとの間に水銀放出体4005を配置する工程と、前記ガラス管4001内を不活性ガスに置換する工程と、水銀放出体4005を高周波加熱しガラス管4001内に所定量の水銀を供給する工程と、水銀放出体4005を加熱する際又は加熱後、蒸気状態の前記水銀が凝縮するのを防ぐため水銀放出体4005が収容されているガラス管4001部分を加熱する工程と、他方の電極4003Bをガラス管4001に封止して蛍光ランプを形成すると共に、他端4001c部分を除去する工程とを有する(例えば、特許第3436283号公報参照)。
Up to this point, the fifteenth to twentieth embodiments have been described. With the lamp according to the present embodiment, the sixth embodiment (FIG. 8), the seventh embodiment (FIG. 9), and the eighth embodiment The lighting device may be configured similarly to the lighting device according to the embodiment (FIG. 10). Moreover, you may comprise an image display apparatus similarly to the image display apparatus which concerns on 9th Embodiment (FIG. 11) using the said illuminating device.
<Twenty-first to twenty-third embodiments>
The twenty-first to twenty-third embodiments have been made in view of the following background art and problems.
(Background technology)
37 (a) to 37 (c) show conceptual diagrams of the steps of a conventional low-pressure discharge lamp manufacturing method. A conventional low-pressure discharge lamp manufacturing method is a fluorescent lamp manufacturing method in which one electrode 4003A is sealed at one end 4001a of a glass tube 4001, and a predetermined inner portion of the other end 4001c of the glass tube 4001 is provided. A step of disposing the other electrode 4003B in the portion 4001b, a step of disposing a mercury emitter 4005 between the other end 4001c portion of the glass tube 4001 and the other electrode 4003B, and the inside of the glass tube 4001 as an inert gas. The step of replacing, the step of supplying a predetermined amount of mercury into the glass tube 4001 by high-frequency heating of the mercury emitter 4005, and the vaporized mercury condensing when or after the mercury emitter 4005 is heated. In order to prevent this, the step of heating the glass tube 4001 in which the mercury emitter 4005 is accommodated, and the other electrode 4003B are connected to the glass tube 400 Sealed in with to form a fluorescent lamp, and a step of removing the other end 4001c moiety (e.g., see Japanese Patent No. 3436283).
 具体的には、まず、図37(a)に示すように、内面に蛍光体層4002を有するガラス管4001の一端4001aに一方の電極4003Aを封止すると共に、他方の電極4003Bをガラス管4001内に、それの他端4001cから所定部分4001bまで挿入する。そして、ガラス管4001の4001b部分を部分的に加熱および変形4004させることにより、他方の電極4003Bをガラス管4001に仮止めする(仮止め工程)。 Specifically, first, as shown in FIG. 37A, one electrode 4003A is sealed at one end 4001a of a glass tube 4001 having a phosphor layer 4002 on the inner surface, and the other electrode 4003B is attached to the glass tube 4001. The other end 4001c is inserted into the predetermined portion 4001b. Then, the other electrode 4003B is temporarily fixed to the glass tube 4001 by partially heating and deforming 4004b of the glass tube 4001 (temporary fixing step).
 次に、図37(b)に示すように、このガラス管4001内に水銀放出体4005を挿入および配置する。そして、このガラス管4001を排気装置4006のヘッドにセットすると共に、排気装置4006を駆動させる。すると、ガラス管4001の内部の空気,不純ガスなどがガラス管4001の内面と電極4003Bとの間の連通部などを介して排出される。次いで、排気装置4006からガラス管4001内に不活性ガス例えばネオンガスを主体とするネオン-アルゴンガスを60[Torr]~70[Torr]の圧力となるように充填する(排気・封入工程)。そして、ガラス管4001の他端部を仮封止する。 Next, as shown in FIG. 37 (b), a mercury emitter 4005 is inserted and arranged in the glass tube 4001. Then, the glass tube 4001 is set on the head of the exhaust device 4006 and the exhaust device 4006 is driven. Then, air, impure gas, etc. inside the glass tube 4001 are discharged through a communication portion between the inner surface of the glass tube 4001 and the electrode 4003B. Next, an inert gas, for example, neon-argon gas mainly composed of neon gas is filled into the glass tube 4001 from the exhaust device 4006 so as to have a pressure of 60 [Torr] to 70 [Torr] (exhaust / enclose process). Then, the other end of the glass tube 4001 is temporarily sealed.
 次に、図37(c)に示すように、水銀放出体4005の位置する部分に高周波加熱装置4007およびヒータ装置4008をセットすると共に、駆動させる。すると、水銀放出体4005は例えば800[℃]~900[℃]に加熱され、水銀合金が分解されて瞬間的に水銀が蒸気の状態で放出され、ガラス管4001の内面と電極4003Bとの間の連通部を介してガラス管4001内の空間に供給される。これと同時に、水銀放出体4005を構成する金属部材から不純ガスも放出されるが、水銀放出体4005のゲッター材にて吸着される(水銀放出工程)。又、この際に、ヒータ装置4008によって水銀放出体4005の収容されているガラス管4001部分も加熱されているために、水銀放出体4005から放出された水銀は電極4003A,4003B間に対応するガラス管内の空間に確実に供給される。特に、電極4003A,4003B間のガラス管部分を冷却すれば、水銀放出体4005の収容されているガラス管4001部分への水銀の凝縮をほぼ皆無にできる。 Next, as shown in FIG. 37 (c), the high-frequency heating device 4007 and the heater device 4008 are set and driven at the portion where the mercury emitter 4005 is located. Then, the mercury emitter 4005 is heated to, for example, 800 [° C.] to 900 [° C.], the mercury alloy is decomposed, and mercury is instantaneously released in the state of vapor, and between the inner surface of the glass tube 4001 and the electrode 4003B. Is supplied to the space in the glass tube 4001 through the communication portion. At the same time, an impurity gas is also released from the metal member constituting the mercury emitter 4005, but is adsorbed by the getter material of the mercury emitter 4005 (mercury releasing step). At this time, since the glass tube 4001 in which the mercury emitter 4005 is accommodated is also heated by the heater device 4008, the mercury emitted from the mercury emitter 4005 corresponds to the glass between the electrodes 4003A and 4003B. It is reliably supplied to the space in the pipe. In particular, if the glass tube portion between the electrodes 4003A and 4003B is cooled, mercury condensation on the glass tube 4001 portion in which the mercury emitter 4005 is accommodated can be substantially eliminated.
 次に、ガラス管4001の変形部4004を再度バーナなどにて加熱し、電極4003Bの封止部4033とこれに対向するガラス管4001とを全周に亘って封止する。と同時に、ガラス管4001の他端部分(水銀放出体5の位置するガラス管部分)を除去(切離)して蛍光ランプの製造を完了する。
(解決しようとする課題)
 水銀放出体を加熱する工程において、水銀放出体4005が加熱されると、水銀放出体4005から水銀蒸気が放出される際、水銀蒸気が水銀放出体4005の外部に放出される力によって、水銀放出体4005が弾け飛ぶことがある。従来の低圧放電ランプの製造方法の場合、弾け飛んだ水銀放出体4005がガラス管4001の仮封止により形成される封止端部に衝突してガラス管4001の封止端部が破損してしまうことがあった。
Next, the deformed portion 4004 of the glass tube 4001 is heated again with a burner or the like, and the sealing portion 4033 of the electrode 4003B and the glass tube 4001 opposed thereto are sealed over the entire circumference. At the same time, the other end portion of the glass tube 4001 (the glass tube portion where the mercury emitter 5 is located) is removed (separated) to complete the manufacture of the fluorescent lamp.
(Issue to solve)
When the mercury emitter 4005 is heated in the process of heating the mercury emitter 4005, when mercury vapor is released from the mercury emitter 4005, the mercury emission is caused by the force with which the mercury vapor is released to the outside of the mercury emitter 4005. The body 4005 may bounce off. In the case of the conventional method of manufacturing a low-pressure discharge lamp, the splashed mercury emitter 4005 collides with a sealing end formed by temporary sealing of the glass tube 4001 and the sealing end of the glass tube 4001 is damaged. There was a case.
 発明者らの検討により、ガラス管4001の仮封止により形成される封止端部は、ガラス管内を排気して、大気に対して負圧下となった状態において加工されるために、肉厚が薄くなり、破損しやすいことがわかった。 According to the study by the inventors, the sealing end formed by the temporary sealing of the glass tube 4001 is processed in a state in which the inside of the glass tube is exhausted and under a negative pressure with respect to the atmosphere. Turned out to be thin and easy to break.
 そこで、本実施形態に係る低圧放電ランプの製造方法は、水銀放出体を加熱する際、ガラス管の封止端部が破損するのを防止することを目的とする。 Therefore, the manufacturing method of the low-pressure discharge lamp according to this embodiment aims to prevent the sealed end of the glass tube from being damaged when the mercury emitter is heated.
 (第21の実施形態)
 本発明の第21の実施形態に係る低圧放電ランプの製造方法は、例えば冷陰極蛍光ランプの製造方法であって、ガラス管の少なくとも一方の端部に電極構造体が設けられた低圧放電ランプの製造方法であって、前記ガラス管の一端の開口部から前記ガラス管の内部に前記電極構造体を挿入する工程(電極構造体挿入工程)と、前記電極構造体を前記ガラス管の内部に固定する工程(電極構造体固定工程)と、前記ガラス管の一端の開口部から前記ガラス管の内部に水銀放出体を挿入する工程(水銀放出体挿入工程)と、前記ガラス管の一端と前記電極構造体および前記水銀放出体との間において、前記ガラス管の内面側に突出する凸部を形成する工程(凸部形成工程)と、前記凸部よりも前記ガラス管の一端側において、前記ガラス管を封止する工程(仮封止工程)と、前記水銀放出体を加熱する工程(水銀放出体加熱工程)とを有する。
(21st Embodiment)
A manufacturing method of a low-pressure discharge lamp according to a twenty-first embodiment of the present invention is, for example, a manufacturing method of a cold cathode fluorescent lamp, and includes a low-pressure discharge lamp in which an electrode structure is provided on at least one end of a glass tube. A manufacturing method, the step of inserting the electrode structure into the glass tube from an opening at one end of the glass tube (electrode structure insertion step), and fixing the electrode structure to the inside of the glass tube A step of fixing (electrode structure fixing step), a step of inserting a mercury emitter into the glass tube from the opening at one end of the glass tube (mercury emitter inserting step), one end of the glass tube and the electrode A step of forming a convex portion projecting toward the inner surface side of the glass tube between the structure and the mercury emitter (a convex portion forming step); and one end side of the glass tube from the convex portion. Sealed tube That has a step (temporary sealing step), a step (mercury releasing material heating step) of heating the mercury releasing material.
 以下、図31および図32を用いて詳細に説明する。 Hereinafter, this will be described in detail with reference to FIGS. 31 and 32.
 <電極構造体挿入工程>
 まず、図31(a)に示すように、ガラス管4100の一端の開口部4100aからガラス管4100の内部に電極構造体4101を挿入する。
<Electrode structure insertion process>
First, as shown in FIG. 31A, the electrode structure 4101 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100.
 ガラス管4100は、例えば、直管形状であって、内径が3[mm]、外径が4[mm]、肉厚が0.5[mm]、長さが1026[mm]であり、鉛フリーガラス製である。ガラス管4100の内面(両端部を除く)には、蛍光体層4102が形成されている。蛍光体層4102は、例えばBaMg2Al1627;Eu2+よりなる青色蛍光体粒子とY23;Eu3+よりなる赤色蛍光体粒子とLaPO4;Ce3+,Tb3+よりなる緑色蛍光体粒子と、CBBPやCBB等よりなる結着剤とを含む。なお、また、ガラス管4100の内面と蛍光体層4102との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)および酸化チタン(TiO2)のうちいずれか1種以上を含む保護膜(図示せず)が設けられていてもよい。 The glass tube 4100 is, for example, a straight tube shape having an inner diameter of 3 [mm], an outer diameter of 4 [mm], a wall thickness of 0.5 [mm], and a length of 1026 [mm]. Made of free glass. A phosphor layer 4102 is formed on the inner surface (excluding both ends) of the glass tube 4100. Phosphor layer 4102, for example BaMg 2 Al 16 O 27; Eu 2+ blue phosphor particles consisting of a Y 2 O 3; Eu red phosphor particles consisting of 3+ and LaPO 4; Ce 3+, from Tb 3+ Green phosphor particles and a binder composed of CBBP, CBB, or the like. Further, between the inner surface of the glass tube 4100 and the phosphor layer 4102, for example, yttrium oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO). And a protective film (not shown) including any one or more of titanium oxide (TiO 2 ) may be provided.
 電極構造体4101は、例えば電極4103と、電極4103に接続されたリード線4104と、リード線4104の少なくとも一部を覆うように形成されたガラスビード4105とを有する。 The electrode structure 4101 includes, for example, an electrode 4103, a lead wire 4104 connected to the electrode 4103, and a glass bead 4105 formed so as to cover at least a part of the lead wire 4104.
 電極4103は、例えば有底筒状であって、内径が2.4[mm]、外径が2.7[mm]、底部の肉厚が0.2[mm]、全長が8.2[mm]であって、ニッケル(Ni)製である。電極の材料は、ニッケルに限らず、ニオビウム(Nb)、モリブデン(Mo)、タンタル(Ta)およびタングステン(W)等を用いることができる。電極4103は、その外側底面の略中央部においてリード線4104の一端部と接続されている。 The electrode 4103 has, for example, a cylindrical shape with a bottom, an inner diameter of 2.4 [mm], an outer diameter of 2.7 [mm], a bottom thickness of 0.2 [mm], and a total length of 8.2 [mm]. mm] and made of nickel (Ni). The material of the electrode is not limited to nickel, and niobium (Nb), molybdenum (Mo), tantalum (Ta), tungsten (W), and the like can be used. The electrode 4103 is connected to one end portion of the lead wire 4104 at a substantially central portion of the outer bottom surface thereof.
 リード線4104は、例えば電極4103の外側底面と一端部が接続され、かつその少なくとも一部においてガラスビード4105に覆われた内部リード線4104aと、内部リード線4104aの他端部と一端部が接続される外部リード線4104bとの継線からなる。 In the lead wire 4104, for example, the outer bottom surface and one end portion of the electrode 4103 are connected, and at least a part of the lead wire 4104 is covered with the glass bead 4105, and the other end portion and one end portion of the internal lead wire 4104a are connected. The external lead wire 4104b is connected.
 内部リード線4104aは、例えば線径が0.8[mm]であって、鉄とニッケルとの合金製である。なお、内部リード線4104aは、ガラス管4100やガラスビード4105の材料として用いるガラスの熱膨張係数に併せた材料を用いることが好ましい。例えば、ガラス管4100がコバール線封止用の硼珪酸ガラスの場合、鉄とニッケルとコバルトとの合金(コバール)を用いることが好ましい。また、ガラス管4100がタングステン線封着用の硼珪酸ガラスの場合、タングステンを用いることが好ましい。 The internal lead wire 4104a has a wire diameter of 0.8 [mm], for example, and is made of an alloy of iron and nickel. The internal lead wire 4104a is preferably made of a material that matches the thermal expansion coefficient of the glass used as the material of the glass tube 4100 or the glass bead 4105. For example, when the glass tube 4100 is borosilicate glass for sealing Kovar wire, it is preferable to use an alloy of iron, nickel, and cobalt (Kovar). In addition, when the glass tube 4100 is borosilicate glass for sealing tungsten wires, it is preferable to use tungsten.
 外部リード線4104bは、例えば線径が0.6[mm]であって、ニッケル製である。なお、外部リード線4104bは、ニッケル製に限らず、ニッケルとマンガンの合金、ジュメット線等を用いてもよい。 The external lead wire 4104b has a wire diameter of, for example, 0.6 [mm] and is made of nickel. Note that the external lead wire 4104b is not limited to nickel, and an alloy of nickel and manganese, a jumet wire, or the like may be used.
 なお、リード線4104は、内部リード線4104aおよび外部リード線4104bの継線に限らず、一本線であってもよい。 The lead wire 4104 is not limited to the connection between the internal lead wire 4104a and the external lead wire 4104b, but may be a single wire.
 ガラスビード4105は、例えば略球形状であって、その略中心軸に沿って内部リード線4104aを封着しており、鉛フリーガラス製である。なお、ガラスビード4105は、封着性の観点から、ガラス管4100と同一の材料、またはガラス管4100と熱膨張係数が同一または近似する材料を用いることが好ましい。 The glass bead 4105 has, for example, a substantially spherical shape, and seals the internal lead wire 4104a along its substantially central axis, and is made of lead-free glass. Note that the glass bead 4105 is preferably made of the same material as the glass tube 4100 or a material having the same or similar thermal expansion coefficient as the glass tube 4100 from the viewpoint of sealing properties.
 なお、ガラス管4100の他端部には、別の電極構造体4106が封着されている。別の電極構造体4106は、電極構造体4101と実質的に同一の構成を有し、電極4107と、内部リード線4108aおよび外部リード線4108bの継線からなるリード線4108と、ガラスビード4109とを有する。 Note that another electrode structure 4106 is sealed to the other end of the glass tube 4100. Another electrode structure 4106 has substantially the same configuration as the electrode structure 4101, and includes an electrode 4107, a lead wire 4108 formed by connecting the internal lead wire 4108 a and the external lead wire 4108 b, and a glass bead 4109. Have
 <電極構造体固定工程>
 次に、図31(b)に示すように、電極構造体4101をガラス管4100の内部に固定する。具体的には、ガラスビード4105が位置するガラス管4100の外表面をバーナー4110で加熱して、ガラスビード4105の外表面の一部をガラス管4100の内面に固着する。よって、ガラス管の内面に固着されているのは、ガラスビード4105の外表面の一部であるので、ガラス管4100の管軸方向の通気性は維持される。なお、この場合の加熱温度は、ガラス管4100の加熱されている部分の外表面において約800[℃]である。
<Electrode structure fixing step>
Next, as shown in FIG. 31 (b), the electrode structure 4101 is fixed inside the glass tube 4100. Specifically, the outer surface of the glass tube 4100 where the glass bead 4105 is located is heated by the burner 4110, and a part of the outer surface of the glass bead 4105 is fixed to the inner surface of the glass tube 4100. Therefore, what is fixed to the inner surface of the glass tube is a part of the outer surface of the glass bead 4105, so that the air permeability of the glass tube 4100 in the tube axis direction is maintained. In this case, the heating temperature is about 800 [° C.] on the outer surface of the heated portion of the glass tube 4100.
 <水銀放出体挿入工程>
 次に、図31(c)に示すように、ガラス管4100の一端の開口部4100aからガラス管4100の内部に水銀放出体4111を挿入する。水銀放出体4111は、例えば鉄とチタンとの焼結体に水銀を反応させたものである。水銀放出体4111は、これに限らず、チタンと水銀との粉体状のアマルガムを鉄やニッケル製の筒体に詰め込んだものでもあってもよい。
<Mercury emitter insertion process>
Next, as shown in FIG. 31C, a mercury emitter 4111 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100. The mercury emitter 4111 is obtained by, for example, reacting mercury with a sintered body of iron and titanium. The mercury emitter 4111 is not limited to this, and may be one in which a powdery amalgam of titanium and mercury is packed in a cylinder made of iron or nickel.
 <凸部形成工程>
 続いて、図32(a)に示すように、ガラス管4100の一端と電極構造体4101および水銀放出体4111との間において、ガラス管4100の内面側に突出する凸部4112を形成する。凸部4112は、例えば、ガラス管4100の外表面をバーナー4113等で加熱することにより形成することができる。なお、ガラス管4100の外表面をバーナー4113等で加熱した後に、治具(図示せず。)等でガラス管の内側方向に押圧して凸部4112を形成してもよい。この場合、凸部4112の形状を整えやすくすることができる。
<Projection forming step>
Subsequently, as shown in FIG. 32A, a convex portion 4112 protruding toward the inner surface side of the glass tube 4100 is formed between one end of the glass tube 4100 and the electrode structure 4101 and the mercury emitter 4111. The convex portion 4112 can be formed, for example, by heating the outer surface of the glass tube 4100 with a burner 4113 or the like. In addition, after heating the outer surface of the glass tube 4100 with the burner 4113 etc., you may press the inner side of a glass tube with a jig | tool (not shown) etc., and may form the convex part 4112. In this case, the shape of the convex portion 4112 can be easily adjusted.
 凸部形成工程は、後述する仮封止工程の前に行われるため、ガラス管4100の内部が大気に対して負圧下とはなっておらず、後述する封止端部よりも肉厚を厚くすることができる。 Since the convex portion forming step is performed before the temporary sealing step described later, the inside of the glass tube 4100 is not under negative pressure with respect to the atmosphere, and is thicker than the sealing end portion described later. can do.
 なお、凸部4112の肉厚の最小厚みが、ガラス管4100の管軸方向略中央部の肉厚の0.5[倍]以上であり、凸部4112の肉厚の最大厚みが、ガラス管4100の管軸方向略中央部の肉厚の1.5[倍]以下であることが好ましい。この場合、凸部4112の強度を適度に保ちやすくすることができる。さらには、凸部4112の肉厚の最小厚みが、ガラス管4100の管軸方向略中央部の肉厚の0.7[倍]以上であり、凸部4112の肉厚の最大厚みが、ガラス管4100の管軸方向略中央部の肉厚の1.5[倍]以下であることがより好ましい。この場合、凸部4112の強度をより適度に保ちやすくすることができる。 It should be noted that the minimum thickness of the convex portion 4112 is 0.5 [times] or more of the thickness of the glass tube 4100 substantially in the center in the tube axis direction, and the maximum thickness of the convex portion 4112 is the glass tube. It is preferable that it is 1.5 [times] or less of the wall thickness of 4100 in the substantially central portion in the tube axis direction. In this case, the strength of the convex portion 4112 can be easily maintained appropriately. Further, the minimum thickness of the convex portion 4112 is 0.7 [times] or more of the thickness of the glass tube 4100 substantially in the center of the tube axis direction, and the maximum thickness of the convex portion 4112 is glass. It is more preferable that it is 1.5 [times] or less of the wall thickness of the tube 4100 in the substantially central portion in the tube axis direction. In this case, the strength of the convex portion 4112 can be more easily maintained.
 <仮封止工程>
 次に、ガラス管4100内の排気とガラス管4100内への希ガスの充填を行う(排気および封入工程)。具体的には、給排気装置のヘッドをガラス管4100の一端部に装着し、先ず、ガラス管4100内を排気して真空にすると共に、図示しない加熱装置によってガラス管4100全体を外部から加熱する。この場合の加熱温度は、ガラス管4100の外表面において約400[℃]である。これによって、蛍光体層4102に潜入している不純ガスを含めガラス管4100内の不純ガスが排出される。加熱を止めた後、所定量の希ガスが充填される。希ガスは、例えばネオン95[mol%]とアルゴン5[mol%]との混合ガスである。このガラス管4100内の排気と希ガスの封入は、ガラスビード4105とガラス管4100の内面との間に形成される通気空間を通じて行われる。
<Temporary sealing process>
Next, exhaust in the glass tube 4100 and filling of the rare gas into the glass tube 4100 are performed (exhaust and sealing step). Specifically, the head of the air supply / exhaust device is attached to one end of the glass tube 4100, and first, the inside of the glass tube 4100 is evacuated to a vacuum, and the entire glass tube 4100 is heated from the outside by a heating device (not shown). . The heating temperature in this case is about 400 [° C.] on the outer surface of the glass tube 4100. Thereby, the impure gas in the glass tube 4100 including the impure gas that has entered the phosphor layer 4102 is discharged. After the heating is stopped, a predetermined amount of rare gas is filled. The rare gas is, for example, a mixed gas of neon 95 [mol%] and argon 5 [mol%]. The exhaust in the glass tube 4100 and the rare gas sealing are performed through a ventilation space formed between the glass bead 4105 and the inner surface of the glass tube 4100.
 そして、希ガスが充填されると、図32(b)に示すように、凸部4112よりもガラス管4100の一端側において、ガラス管4100を加熱して封止する。そして、この封止によりガラス管4100の封止端部4100bが形成される。この際、ガラス管4100内が負圧下であるため、封止端部4100bの肉厚は、薄くなる。具体的には、ガラス管4100の封止端部4100aの肉厚は、ガラス管4100の管軸方向略中央部の肉厚の0.2[倍]未満となりやすい。なお、加熱は、例えばバーナー4114等により行われる。 When the rare gas is filled, the glass tube 4100 is heated and sealed on one end side of the glass tube 4100 with respect to the convex portion 4112 as shown in FIG. And the sealing end part 4100b of the glass tube 4100 is formed by this sealing. At this time, since the inside of the glass tube 4100 is under a negative pressure, the thickness of the sealing end 4100b is reduced. Specifically, the thickness of the sealing end 4100a of the glass tube 4100 tends to be less than 0.2 [times] the thickness of the glass tube 4100 in the substantially central portion in the tube axis direction. The heating is performed by, for example, a burner 4114.
 また、希ガスは、ネオンとアルゴンとの混合ガスに限らず、例えばネオン、アルゴンおよびクリプトンのいずれか1種類以上が含まれていればよい。 Further, the rare gas is not limited to a mixed gas of neon and argon, and may include, for example, one or more of neon, argon, and krypton.
 また、負圧下である封止後のガラス管内のガス圧は、5[Torr]以上600[Torr]以下の範囲内であることが好ましい。この場合、低圧放電ランプを作製するのに好適である。さらには、封止後のガラス管内のガス圧は、20[Torr]以上40[Torr]以下の範囲内であることがより好ましい。この場合、低圧放電ランプのうち、冷陰極放電ランプを作製するのにより好適である。 Further, the gas pressure in the glass tube after sealing under a negative pressure is preferably in the range of 5 [Torr] to 600 [Torr]. In this case, it is suitable for producing a low-pressure discharge lamp. Furthermore, the gas pressure in the glass tube after sealing is more preferably in the range of 20 [Torr] to 40 [Torr]. In this case, it is more preferable to produce a cold cathode discharge lamp among the low pressure discharge lamps.
 <水銀放出体加熱工程>
 次に、図32(c)に示すように、水銀放出体4111を加熱する。具体的には、水銀放出体4111をガラス管4100の周囲に配された高周波発振コイル4115によって誘導加熱して水銀放出体4111から水銀蒸気を放出させる。
<Mercury emitter heating process>
Next, as shown in FIG. 32C, the mercury emitter 4111 is heated. Specifically, the mercury emitter 4111 is induction-heated by the high frequency oscillation coil 4115 disposed around the glass tube 4100 to release mercury vapor from the mercury emitter 4111.
 この水銀放出体加熱工程において、水銀放出体が加熱されると、水銀放出体4111から水銀蒸気が放出される際、水銀蒸気が水銀放出体4111の外部に放出される力によって、水銀放出体4111が弾け飛ぶことがある。この際、水銀放出体4111が肉厚の薄いガラス管4100の封止端部4100bに衝突してしまうと、ガラス管4100の封止端部4100bが破損してしまう。 In this mercury emitter heating process, when the mercury emitter is heated, when mercury vapor is released from the mercury emitter 4111, the mercury emitter 4111 is released by the force with which the mercury vapor is released to the outside of the mercury emitter 4111. May bounce off. At this time, if the mercury emitter 4111 collides with the sealed end 4100b of the thin glass tube 4100, the sealed end 4100b of the glass tube 4100 is damaged.
 これに対して、凸部4112が形成されている場合、凸部4112によって、水銀放出体4111がガラス管4100の封止端部4100bに移動することを防止でき、水銀放出体4111がガラス管4100の封止端部4100bに衝突するのを防止することができる。そして、凸部4112は、ガラス管4100が封止される前に形成されているため、ガラス管4100の内部が大気に対して負圧下になって形成されるガラス管4100の封止端部4100bに対して肉厚が厚くなっている。よって、水銀放出体4111が凸部4112に衝突しても凸部112が破損するのを防止することができる。そして、これにより、水銀放出体4111が肉厚の薄いガラス管4100の封止端部4100bに衝突することによって、ガラス管4100の封止端部4100bが破損するのを防止することができる。 On the other hand, when the convex portion 4112 is formed, the convex portion 4112 can prevent the mercury emitter 4111 from moving to the sealing end 4100b of the glass tube 4100, and the mercury emitter 4111 can be prevented from moving to the glass tube 4100. It is possible to prevent collision with the sealing end 4100b. And since the convex part 4112 is formed before the glass tube 4100 is sealed, the sealing end part 4100b of the glass tube 4100 formed by the inside of the glass tube 4100 being under a negative pressure with respect to the atmosphere. In contrast, the wall thickness is thicker. Therefore, even if the mercury emitter 4111 collides with the convex portion 4112, the convex portion 112 can be prevented from being damaged. Thereby, it is possible to prevent the sealed end 4100b of the glass tube 4100 from being damaged by the mercury emitter 4111 colliding with the sealed end 4100b of the thin glass tube 4100.
 なお、水銀放出体加熱工程の際、ガラス管4100をその管軸を回転軸として回転させることが好ましい。この場合、加熱された水銀放出体4111により、ガラス管4100が局所的に加熱されて、ガラス管4100が破損するのを防止することができる。 In the mercury emitter heating process, it is preferable to rotate the glass tube 4100 with its tube axis as the rotation axis. In this case, the heated mercury emitter 4111 can prevent the glass tube 4100 from being locally heated and broken.
 なお、水銀放出体4111の加熱は、高周波発振コイルに限らず、近赤外線ヒーター等の赤外線ヒーター等を用いてもよい。 The heating of the mercury emitter 4111 is not limited to the high frequency oscillation coil, and an infrared heater such as a near infrared heater may be used.
 さらに、高周波発振コイルや赤外線ヒーターで水銀放出体4111を加熱する前に、ガラス管4100の予熱を行うことが好ましい。この場合、水銀放出体4111を加熱する際、水銀放出体4111の温度とガラス管4100の温度との差異を小さくすることで、ガラス管4100の急な熱膨張による破損を防止しやすくすることがきる。予熱は、例えばガラス管4100の加熱されている部分の外表面度が200[℃]以上500[℃]以下の範囲内となるように行うことが好ましい。特に、熱膨張係数が8×10-7[K-1]以上10×10-7[K-1]以下の範囲内のガラスを用いたガラス管4100の場合、ガラス管4100の加熱されている部分の外表面温度が200[℃]~400[℃]以下の範囲内となるように行うことがより好ましい。 Furthermore, it is preferable to preheat the glass tube 4100 before heating the mercury emitter 4111 with a high-frequency oscillation coil or an infrared heater. In this case, when the mercury emitter 4111 is heated, the difference between the temperature of the mercury emitter 4111 and the temperature of the glass tube 4100 is reduced, thereby making it easy to prevent the glass tube 4100 from being damaged due to sudden thermal expansion. wear. Preheating is preferably performed so that, for example, the outer surface degree of the heated portion of the glass tube 4100 is in the range of 200 [° C.] to 500 [° C.]. In particular, in the case of the glass tube 4100 using glass having a thermal expansion coefficient in the range of 8 × 10 −7 [K −1 ] to 10 × 10 −7 [K −1 ], the glass tube 4100 is heated. More preferably, the outer surface temperature of the portion is in the range of 200 [° C.] to 400 [° C.] or less.
 また、誘導加熱の後に、加熱炉(図示せず)等でガラス管4100の水銀放出体4111が存在する部分を加熱することが好ましい。この場合、水銀放出体4111から放出された水銀蒸気をガラス管4100内の電極構造体4101の方へ移動させやすくすることができる。 Also, after induction heating, it is preferable to heat the portion of the glass tube 4100 where the mercury emitter 4111 exists with a heating furnace (not shown) or the like. In this case, mercury vapor released from the mercury emitter 4111 can be easily moved toward the electrode structure 4101 in the glass tube 4100.
 <水銀放出体加熱工程以降の工程>
 次に、図32(d)に示すように、ガラス管4100における電極構造体4101のガラスビード4105に対応する位置を加熱して、ガラス管4100を封着して気密封止(第2封止)する(第2封止工程)。加熱は、例えばガスバーナー4116等により行う。この場合の加熱温度は、ガラス管4100の加熱されている部分の外表面において約900[℃]である。そして、ガラス管4100の、第2封止部分よりも水銀放出体4111側の端部部分を切離して、冷陰極低圧放電ランプが完成される。
<Process after the mercury emitter heating process>
Next, as shown in FIG. 32 (d), the position corresponding to the glass bead 4105 of the electrode structure 4101 in the glass tube 4100 is heated, and the glass tube 4100 is sealed and hermetically sealed (second sealing). (Second sealing step). Heating is performed by, for example, a gas burner 4116 or the like. The heating temperature in this case is about 900 [° C.] on the outer surface of the heated portion of the glass tube 4100. Then, the cold cathode low-pressure discharge lamp is completed by separating the end portion of the glass tube 4100 closer to the mercury emitter 4111 than the second sealing portion.
 なお、低圧放電ランプが完成した後に、必要に応じてエージング工程や点灯検査等を行う。 In addition, after the low-pressure discharge lamp is completed, an aging process and lighting inspection are performed as necessary.
 上記のとおり、本発明の第21の実施形態に係る低圧放電ランプの製造方法によれば、水銀放出体4111を加熱する際、ガラス管4100の封止端部4100bが破損するのを防止することができる。 As described above, according to the low pressure discharge lamp manufacturing method according to the twenty-first embodiment of the present invention, when the mercury emitter 4111 is heated, the sealing end 4100b of the glass tube 4100 is prevented from being damaged. Can do.
 (第22の実施形態)
 本発明の第22の実施形態に係る低圧放電ランプの製造方法は、仮封止工程の後に凸部形成工程を行うことと、それに伴う相違点を除いて、本発明の第21の実施形態に係る低圧放電ランプの製造方法と実質的に同じ構成を有する。
(Twenty-second embodiment)
The manufacturing method of the low-pressure discharge lamp according to the twenty-second embodiment of the present invention is the same as that of the twenty-first embodiment of the present invention, except that the convex portion forming step is performed after the temporary sealing step and the accompanying differences. It has substantially the same configuration as the manufacturing method of such a low-pressure discharge lamp.
 すなわち、本願の第22の実施形態に係る低圧放電ランプの製造方法は、ガラス管の少なくとも一方の端部に電極構造体が設けられた低圧放電ランプの製造方法であって、前記ガラス管の一端の開口部から前記ガラス管の内部に前記電極構造体を挿入する工程と、前記電極構造体を前記ガラス管の内部に固定する工程と、前記ガラス管の一端の開口部から前記ガラス管の内部に水銀放出体を挿入する工程と、前記電極構造体および前記水銀放出体よりも前記ガラス管の一端側において、前記ガラス管を封止する工程と、前記ガラス管の一端と前記電極構造体および前記水銀放出体との間において、前記ガラス管の内面側に突出する凸部を形成する工程と、前記水銀放出体を加熱する工程とを有する。 That is, the low-pressure discharge lamp manufacturing method according to the twenty-second embodiment of the present application is a low-pressure discharge lamp manufacturing method in which an electrode structure is provided on at least one end of a glass tube, and one end of the glass tube Inserting the electrode structure into the glass tube through the opening, fixing the electrode structure into the glass tube, and opening the glass tube from one end of the glass tube. A step of inserting a mercury emitter into the glass tube, a step of sealing the glass tube closer to one end of the glass tube than the electrode structure and the mercury emitter, one end of the glass tube, the electrode structure, and A step of forming a protrusion protruding toward the inner surface of the glass tube between the mercury emitter and a step of heating the mercury emitter;
 よって、凸部形成工程について図33を用いて詳細に説明し、その他の点については、説明を省略する。 Therefore, the convex portion forming step will be described in detail with reference to FIG. 33, and description of other points will be omitted.
 <仮封止工程>
 まず、ガラス管4100の一端からガラス管の管軸方向中央側に所定間隔離れた位置において電極構造体4101が仮止めされ、ガラス管4100の他端部に電極構造体4106が封着され、電極構造体4101とガラス管の一方の端との間に水銀放出体4111が挿入された状態(すなわち、本発明の第21の実施形態に係る低圧放電ランプの製造方法における電極構造体挿入工程から水銀放出体挿入工程までを行った後の状態)において、ガラス管4100内の排気とガラス管4100内への希ガスの充填を行う。具体的には、給排気装置のヘッド(図示せず)をガラス管4100の水銀放出体4111側端部に装着し、ガラス管4100内を排気して真空にすると共に、図示しない加熱装置によってガラス管4100全体を外部から加熱する。この場合の加熱温度は、ガラス管4100の外表面において約400[℃]である。これによって、蛍光体層4102に潜入している不純ガスを含めガラス管4100内の不純ガスが排出される。加熱を止めた後、所定量の希ガスが充填される。希ガスは、例えばネオン95[mol%]とアルゴン5[mol%]との混合ガスである。このガラス管4100内の排気と希ガスの封入は、ガラスビード4105とガラス管4100の内面との間に形成される通気空間を通じて行われる。
<Temporary sealing process>
First, the electrode structure 4101 is temporarily fixed from one end of the glass tube 4100 to the center side in the tube axis direction of the glass tube, the electrode structure 4106 is sealed to the other end of the glass tube 4100, and the electrode A state in which the mercury emitter 4111 is inserted between the structure 4101 and one end of the glass tube (that is, the mercury from the electrode structure insertion step in the manufacturing method of the low-pressure discharge lamp according to the twenty-first embodiment of the present invention) In the state after performing the emitter insertion step), the glass tube 4100 is exhausted and the glass tube 4100 is filled with a rare gas. Specifically, the head (not shown) of the air supply / exhaust device is attached to the end of the glass tube 4100 on the mercury emitter 4111 side, the inside of the glass tube 4100 is evacuated and evacuated, and the glass is heated by a heating device (not shown). The entire tube 4100 is heated from the outside. The heating temperature in this case is about 400 [° C.] on the outer surface of the glass tube 4100. Thereby, the impure gas in the glass tube 4100 including the impure gas that has entered the phosphor layer 4102 is discharged. After the heating is stopped, a predetermined amount of rare gas is filled. The rare gas is, for example, a mixed gas of neon 95 [mol%] and argon 5 [mol%]. The exhaust in the glass tube 4100 and the rare gas sealing are performed through a ventilation space formed between the glass bead 4105 and the inner surface of the glass tube 4100.
 そして、図33(a)に示すように、希ガスが充填された後に、電極構造体4101および水銀放出体4111よりもガラス管4100の一端側においてガラス管4100を加熱して封止する。そして、この封止によりガラス管4100の封止端部4100bが形成される。加熱は、例えばバーナー4114等により行われる。なお、ガラス管4100内に封入される希ガス等の条件は、本発明の第21の実施形態に係る低圧放電ランプの製造方法における仮封止工程と同様の条件を適用することができる。 Then, as shown in FIG. 33A, after the rare gas is filled, the glass tube 4100 is heated and sealed on one end side of the glass tube 4100 with respect to the electrode structure 4101 and the mercury emitter 4111. And the sealing end part 4100b of the glass tube 4100 is formed by this sealing. Heating is performed, for example, by a burner 4114 or the like. In addition, the conditions, such as a noble gas enclosed in the glass tube 4100, can apply the conditions similar to the temporary sealing process in the manufacturing method of the low pressure discharge lamp which concerns on the 21st Embodiment of this invention.
 <凸部形成工程>
 続いて、図33(b)に示すように、ガラス管4100の一端と電極構造体4101および水銀放出体4111との間において、凸部4112を形成する。凸部4112は、例えば、ガラス管の外表面に加熱された空気を当てることにより、形成することができる。加熱された空気は、例えば、ヒーター等の発熱体(図示せず)で加熱された空気をダクト4117から吹き出すものである。ダクト4117から吹き出される加熱された空気の温度(ダクト4117内部先端の温度)は、約920[℃]である。なお、加熱された空気の温度は、約920[℃]に限らず、800[℃]以上1050[℃]以下の範囲内であることが好ましい。そして、このときの風量は8[L/min]以上30[L/min]以下の範囲内であることが好ましい。この場合、風量を増やすことにより多くの熱が発熱体(図示せず)から移動するため、発熱体の温度は下がり、ダクトから噴出される温度は上がることになる。よって、ヒーター効率を上げ、少ないポジションでの安定した肉厚の凸部を形成することができる。特に、風量は、15[L/min]以上20[L/min]以下の範囲内であることがより好ましい。
<Projection forming step>
Subsequently, as shown in FIG. 33 (b), a convex portion 4112 is formed between one end of the glass tube 4100 and the electrode structure 4101 and the mercury emitter 4111. The convex part 4112 can be formed by, for example, applying heated air to the outer surface of the glass tube. The heated air blows out air heated by a heating element (not shown) such as a heater from the duct 4117, for example. The temperature of the heated air blown out from the duct 4117 (the temperature at the inner tip of the duct 4117) is about 920 [° C.]. The temperature of the heated air is not limited to about 920 [° C.], but is preferably in the range of 800 [° C.] to 1050 [° C.]. The air volume at this time is preferably in the range of 8 [L / min] to 30 [L / min]. In this case, since a large amount of heat is moved from the heating element (not shown) by increasing the air volume, the temperature of the heating element is lowered and the temperature ejected from the duct is raised. Therefore, the heater efficiency can be increased and a stable thick convex portion can be formed at a small number of positions. In particular, the air volume is more preferably in the range of 15 [L / min] to 20 [L / min].
 仮封止工程の後に凸部形成工程を行う場合、ガラス管4100が封止されているため、ガラス管の内部は、大気に対して負圧下となっている。この場合、バーナーで凸部4112を形成しようとすると、その炎が雰囲気に影響されやすく、温度制御が困難で加熱にむらがあるため、局所的な凸部4112を安定して形成するのが困難となる。逆に、バーナーの加熱を安定させようとすると、火力を上昇させる必要があるため、急激にガラス管4100が加熱されてしまい、封止端部4100bと同様に凸部4112の肉厚が薄くなってしまう。 When performing a convex part formation process after a temporary sealing process, since the glass tube 4100 is sealed, the inside of a glass tube is under a negative pressure with respect to air | atmosphere. In this case, when the convex portion 4112 is formed with a burner, the flame is easily affected by the atmosphere, temperature control is difficult, and uneven heating is caused, so that it is difficult to stably form the local convex portion 4112. It becomes. On the contrary, if it is attempted to stabilize the heating of the burner, it is necessary to increase the heating power, and thus the glass tube 4100 is heated suddenly, and the thickness of the convex portion 4112 becomes thin like the sealing end portion 4100b. End up.
 これに対して、加熱された空気を当てることで、凸部4112を形成すると加熱する部位がぶれにくく、ガスバーナーのように急激な加熱をしなくても、一定の熱量を安定的に継続して当てることができ、ガラス管4100の封止短部4100bに対して凸部4112の肉厚を厚くすることができる。したがって、水銀放出体加熱工程において、水銀放出体4111から水銀蒸気が放出される際、水銀蒸気が水銀放出体4111の外部に放出される力によって、水銀放出体4111が弾け飛び、水銀放出体4111が凸部4112に衝突したとしても、凸部4112の肉厚が厚いために、ガラス管4100が凸部4112の部分で破損するのを防止することができる。 On the other hand, by applying heated air, when the convex portion 4112 is formed, the heated portion is less likely to be shaken, and a constant amount of heat can be stably maintained even without abrupt heating as in a gas burner. The thickness of the convex portion 4112 can be increased with respect to the sealing short portion 4100b of the glass tube 4100. Therefore, when mercury vapor is released from the mercury emitter 4111 in the mercury emitter heating step, the mercury emitter 4111 jumps out by the force with which the mercury vapor is released to the outside of the mercury emitter 4111, and the mercury emitter 4111. Even if it collides with the convex portion 4112, the glass tube 4100 can be prevented from being damaged at the convex portion 4112 because the convex portion 4112 is thick.
 なお、図33(b)において、ガラス管4100の外表面に対して、一方から加熱された空気を当てているが、ガラス管4100の周回方向において複数の箇所に加熱された空気を当ててもよい。この場合、凸部4112を複数個所に形成することで、凸部4112からガラス管4100の一端側に水銀放出体4111がすり抜けるのを防止しやすくすることができる。 In FIG. 33 (b), air heated from one side is applied to the outer surface of the glass tube 4100. However, even if heated air is applied to a plurality of locations in the circulation direction of the glass tube 4100. Good. In this case, by forming the convex portions 4112 at a plurality of locations, it is possible to easily prevent the mercury emitter 4111 from slipping from the convex portions 4112 to one end side of the glass tube 4100.
 さらに、ガラス管4100の外表面に対して、ガラス管4100の周回方向において2箇所以上4箇所以下の範囲内で加熱された空気を当てることが好ましい。この場合、複数個所に形成される各凸部4112の大きさを小さくして凸部4112付近の歪の発生を防止することができる。 Furthermore, it is preferable to apply air heated within the range of 2 to 4 locations in the circumferential direction of the glass tube 4100 to the outer surface of the glass tube 4100. In this case, the size of each convex portion 4112 formed at a plurality of locations can be reduced to prevent the occurrence of distortion near the convex portion 4112.
 上記のとおり、本発明の第22の実施形態に係る低圧放電ランプの製造方法によれば、仮封止工程の後に凸部形成工程を行っても、水銀放出体4111を加熱する際、ガラス管4100の封止端部4100bおよび凸部4112が破損するのを防止することができる。 As described above, according to the method for manufacturing a low-pressure discharge lamp according to the twenty-second embodiment of the present invention, the glass tube is heated when the mercury emitter 4111 is heated even if the protrusion forming step is performed after the temporary sealing step. It is possible to prevent the sealing end portion 4100b and the convex portion 4112 of 4100 from being damaged.
 (第23の実施形態)
 本発明の第23の実施形態に係る低圧放電ランプの製造方法は、電極構造体固定工程と水銀放出体工程との間に第1の凸部を形成する工程(第1の凸部形成工程)を有し、凸部形成工程を第2の凸部を形成させる工程とした点を除いて、本発明の第21の実施形態に係る低圧放電ランプの製造方法または本発明の第22の実施形態に係る低圧放電ランプの製造方法と実質的に同じ構成を有する。
(23rd embodiment)
In the method for manufacturing a low-pressure discharge lamp according to the twenty-third embodiment of the present invention, a step of forming a first convex portion between the electrode structure fixing step and the mercury emitter step (first convex portion forming step). And the method of manufacturing the low-pressure discharge lamp according to the twenty-first embodiment of the present invention or the twenty-second embodiment of the present invention, except that the convex-forming step is a step of forming the second convex portion. The manufacturing method of the low-pressure discharge lamp according to the above has substantially the same configuration.
 すなわち、本願の第23の実施形態に係る低圧放電ランプの製造方法は、ガラス管の少なくとも一方の端部に電極構造体が設けられた低圧放電ランプの製造方法であって、前記ガラス管の一端の開口部から前記ガラス管の内部に前記電極構造体を挿入する工程と、前記電極構造体を前記ガラス管の内部に固定する工程と、前記ガラス管の一端と前記電極構造体との間において、前記ガラス管の内面側に突出する第1の凸部を形成する工程と、前記ガラス管の一端の開口部から前記ガラス管の内部に水銀放出体を挿入する工程と、前記ガラス管の一端と前記第1の凸部および前記水銀放出体との間において、前記ガラス管の内面側に突出する第2の凸部を形成する工程と、前記第2の凸部よりも前記ガラス管の一端側において、前記ガラス管を封止する工程と、前記水銀放出体を加熱する工程とを有する。あるいは、ガラス管の少なくとも一方の端部に電極構造体が設けられた低圧放電ランプの製造方法であって、前記ガラス管の一端の開口部から前記ガラス管の内部に前記電極構造体を挿入する工程と、前記電極構造体を前記ガラス管の内部に固定する工程と、前記ガラス管の一端と前記電極構造体との間において、前記ガラス管の内面側に突出する第1の凸部を形成する工程と、前記ガラス管の一端の開口部から前記ガラス管の内部に水銀放出体を挿入する工程と、前記第1の凸部および前記電極構造体よりも前記ガラス管の一端側において、前記ガラス管を封止する工程と、前記ガラス管の一端と前記第1の凸部および前記水銀放出体との間において、前記ガラス管の内面側に突出する第2の凸部を形成する工程と、前記水銀放出体を加熱する工程とを有する。 That is, the low pressure discharge lamp manufacturing method according to the twenty-third embodiment of the present application is a low pressure discharge lamp manufacturing method in which an electrode structure is provided on at least one end of a glass tube. Inserting the electrode structure into the glass tube through the opening, fixing the electrode structure into the glass tube, and between one end of the glass tube and the electrode structure A step of forming a first protrusion protruding toward the inner surface of the glass tube, a step of inserting a mercury emitter into the glass tube from an opening at one end of the glass tube, and one end of the glass tube Forming a second protrusion projecting toward the inner surface of the glass tube between the first protrusion and the mercury emitter, and one end of the glass tube from the second protrusion On the side, the glass tube And a step of sealing and the step of heating the mercury releasing material. Or it is a manufacturing method of a low pressure discharge lamp in which an electrode structure is provided in at least one end of a glass tube, and the electrode structure is inserted into the inside of the glass tube from an opening at one end of the glass tube A step of fixing the electrode structure to the inside of the glass tube, and a first convex portion protruding toward the inner surface of the glass tube between one end of the glass tube and the electrode structure; The step of inserting a mercury emitter into the inside of the glass tube from the opening at one end of the glass tube, the one end side of the glass tube from the first convex portion and the electrode structure, A step of sealing the glass tube, and a step of forming a second convex portion protruding toward the inner surface of the glass tube between one end of the glass tube and the first convex portion and the mercury emitter. Heating the mercury emitter And a that process.
 よって、第1の凸部形成工程について図34を用いて詳細に説明し、その他の点については、説明を省略する。 Therefore, the first protrusion forming step will be described in detail with reference to FIG. 34, and description of other points will be omitted.
 <第1の凸部形成工程>
 まず、図34(a)に示すように、ガラス管4100の一端からガラス管の管軸方向中央側に所定間隔離れた位置において電極構造体4101が仮止めされ、ガラス管4100の他端部に電極構造体4106が封着された状態(すなわち、本発明の第21の実施形態に係る低圧放電ランプの製造方法における電極構造体挿入工程から電極構造体固定工程までを行った後の状態)において、ガラス管4100の一端と電極構造体4101との間において、ガラス管の内面側に突出する第1の凸部4118を形成する。具体的には、ガラス管4100の一端と電極構造体4101との間において、ガラス管4100の外表面をバーナー4119等で加熱することにより第1の凸部4118を形成する。
<First convex portion forming step>
First, as shown in FIG. 34 (a), the electrode structure 4101 is temporarily fixed at one end of the glass tube 4100 from the one end of the glass tube to the center side in the tube axis direction of the glass tube. In a state in which the electrode structure 4106 is sealed (that is, a state after performing the steps from the electrode structure insertion step to the electrode structure fixing step in the low-pressure discharge lamp manufacturing method according to the twenty-first embodiment of the present invention). Between the one end of the glass tube 4100 and the electrode structure 4101, a first convex portion 4118 that protrudes to the inner surface side of the glass tube is formed. Specifically, the first convex portion 4118 is formed between the one end of the glass tube 4100 and the electrode structure 4101 by heating the outer surface of the glass tube 4100 with a burner 4119 or the like.
 なお、第1の凸部4118は、バーナー4119に限らず、加熱された空気を当てたり、バーナーや加熱された空気を当ててガラス管4100を加熱した後に冶具を押圧することによって形成することもできる。 The first convex portion 4118 is not limited to the burner 4119, and may be formed by applying heated air or pressing a jig after heating the glass tube 4100 by applying a burner or heated air. it can.
 <水銀放出体挿入工程>
 次に、図34(b)に示すように、ガラス管4100の一端の開口部4100aからガラス管4100の内部に水銀放出体4111を挿入する。この際、水銀放出体4111が第1の凸部4118に引っかかることで、水銀放出体4111が第1の凸部4118よりもガラス管4100の管軸方向中央側に移動することを防止し、水銀放出体4111がガラス管4100の内面と電極構造体4101のリード線4104との間に入り込んで、最終的に水銀放出体4111を取り出す際、取り出し難くなるのを防止することができる。
<Mercury emitter insertion process>
Next, as shown in FIG. 34 (b), a mercury emitter 4111 is inserted into the glass tube 4100 from the opening 4100 a at one end of the glass tube 4100. At this time, the mercury emitter 4111 is caught by the first protrusion 4118, thereby preventing the mercury emitter 4111 from moving to the center side in the tube axis direction of the glass tube 4100 from the first protrusion 4118. It is possible to prevent the emitter 4111 from entering between the inner surface of the glass tube 4100 and the lead wire 4104 of the electrode structure 4101 and making it difficult to take out the mercury emitter 4111 finally.
 上記のとおり、本発明の第23の実施形態に係る低圧放電ランプの製造方法によれば、水銀放出体4111を加熱する際、ガラス管4100の封止端部4100bが破損するのを防止することができ、ガラス管4100から水銀放出体4111を取り出す際、取り出しやすくすることができる。 As described above, according to the low-pressure discharge lamp manufacturing method of the twenty-third embodiment of the present invention, when the mercury emitter 4111 is heated, the sealing end 4100b of the glass tube 4100 is prevented from being damaged. When the mercury emitter 4111 is taken out from the glass tube 4100, it can be made easy to take out.
 (変形例)
 以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
(Modification)
As described above, the present invention has been described based on the specific examples shown in the above embodiments. However, the content of the present invention is not limited to the specific examples shown in the respective embodiments. Variations can be used.
 1.水銀放出体
 水銀放出体は、水銀放出体4111に限らず、例えば以下のようなものを用いることができる。
1. Mercury emitter The mercury emitter is not limited to the mercury emitter 4111. For example, the following can be used.
 (1)水銀放出体の変形例1
 水銀放出体の変形例1(以下、「水銀放出体4120」という。)の斜視図を図35(a)に示す。水銀放出体4120は、チタン(Ti)と水銀(Hg)との金属間化合物を含む水銀放出部4121を有し、前記金属間化合物は、TiHg、Ti1.73HgおよびTi3Hgのうちいずれか1種以上を含むことが好ましい。この場合、本発明を適用することにより、ガラス管の封止端部の破損を防止しやすくすることができる。
(1) Modification 1 of mercury emitter
A perspective view of Modification 1 of the mercury emitter (hereinafter referred to as “mercury emitter 4120”) is shown in FIG. The mercury emitter 4120 has a mercury emitting portion 4121 containing an intermetallic compound of titanium (Ti) and mercury (Hg), and the intermetallic compound is any one of TiHg, Ti 1.73 Hg, and Ti 3 Hg. Preferably it contains more than one species. In this case, by applying the present invention, it is possible to easily prevent breakage of the sealed end portion of the glass tube.
 また、水銀放出部4121は、鉄およびニッケルのうち少なくとも1種以上を含むことが好ましい。この場合、水銀放出体4120の加熱効率を向上させることができる。 Moreover, it is preferable that the mercury discharge part 4121 contains at least 1 or more types among iron and nickel. In this case, the heating efficiency of the mercury emitter 4120 can be improved.
 さらに、水銀放出部4121は、水銀放出効率を向上させるプロモータ(図示せず)が含まれていてもよい。プロモータは、例えば、銅ベースの合金であり、CuとSnとの合金、CuとAgとの合金、CuとSiとの合金、CuとSnとMMとの合金などを挙げることができる。ここで「MM」はミュシュメタルと呼ばれる金属元素の配合物であり、主としてセリウム、ランタンおよびネオジウム、および少量の他の希土類金属を含む。 Furthermore, the mercury releasing part 4121 may include a promoter (not shown) that improves mercury releasing efficiency. The promoter is, for example, a copper-based alloy, and examples thereof include an alloy of Cu and Sn, an alloy of Cu and Ag, an alloy of Cu and Si, and an alloy of Cu, Sn, and MM. Here, “MM” is a blend of metallic elements called mush metal, which mainly contains cerium, lanthanum and neodymium, and small amounts of other rare earth metals.
 (2)水銀放出体の変形例2
 水銀放出体の変形例2(以下、「水銀放出体4122」という。)の斜視図を図35(b)に示す。水銀放出体4122は、少なくとも一部に開口部4123aを有する容器4123の内部に水銀放出部4121が格納されている。この場合、水銀放出部4121の定形性を高めることができる。
(2) Modification 2 of mercury emitter
A perspective view of Modification 2 of the mercury emitter (hereinafter referred to as “mercury emitter 4122”) is shown in FIG. The mercury emitter 4122 stores the mercury emitter 4121 inside a container 4123 having an opening 4123a at least in part. In this case, the regularity of the mercury emission part 4121 can be improved.
 さらに、容器4123は、鉄およびニッケルのうち少なくとも1種以上で形成されていることが好ましい。この場合、水銀放出部4121の加熱効率を向上させることができる。 Furthermore, the container 4123 is preferably formed of at least one of iron and nickel. In this case, the heating efficiency of the mercury discharge part 4121 can be improved.
 また、容器4123には、その長手方向に沿うようにスリット4123bが設けられていることが好ましい。この場合、水銀放出工程において、スリット4123bを介しても水銀を放出させることができるため、水銀放出効率を向上させることができる。 Moreover, it is preferable that the container 4123 is provided with a slit 4123b along the longitudinal direction thereof. In this case, since mercury can be released through the slit 4123b in the mercury releasing step, the mercury releasing efficiency can be improved.
 (3)水銀放出体の変形例3
 水銀放出体の変形例3(以下、「水銀放出体4124」という。)の斜視図を図35(c)に示す。水銀放出体4124は、水銀放出部4121と、水銀放出部4121を覆う金属の焼結体から構成される焼結体部4125とを備える。この場合、水銀放出工程において、焼結体部4125からも水銀を放出させることができるため、水銀放出効率を向上させることができる。
(3) Modification 3 of mercury emitter
A perspective view of Modification 3 of the mercury emitter (hereinafter referred to as “mercury emitter 4124”) is shown in FIG. The mercury emitter 4124 includes a mercury emitter 4121 and a sintered body 4125 made of a sintered metal that covers the mercury emitter 4121. In this case, mercury can be released also from the sintered body portion 4125 in the mercury releasing step, so that the mercury releasing efficiency can be improved.
 焼結体部4124は、鉄およびニッケルのうち少なくとも1種以上で形成されていることが好ましい。この場合、水銀放出部4121の加熱効率を向上させることができる。 The sintered body portion 4124 is preferably formed of at least one of iron and nickel. In this case, the heating efficiency of the mercury discharge part 4121 can be improved.
 2.ガラス管
 (1)ガラス管4100の熱膨張係数は、3.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内のものを用いることができる。特に、ガラス管4100の熱膨張係数は、8.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内であることが好ましい。この場合、ガラスの強度が弱くなるため、本発明の作用効果を特に発揮できる。
2. Glass tube (1) The thermal expansion coefficient of the glass tube 4100 may be within the range of 3.0 × 10 −6 [K −1 ] or more and 10.0 × 10 −6 [K −1 ] or less. . In particular, the thermal expansion coefficient of the glass tube 4100 is preferably in the range of 8.0 × 10 −6 [K −1 ] to 10.0 × 10 −6 [K −1 ]. In this case, since the intensity | strength of glass becomes weak, the effect of this invention can be exhibited especially.
 なお、ガラス管4100の熱膨張係数が8.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内である場合には、ガラス管の両端部を封止させた後において、歪除去工程を設けることが好ましい。歪除去工程は、上述した本発明に係る低圧放電ランプの製造方法に限らず、熱膨張係数が8.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内のガラスを用いた低圧放電ランプ(特に冷陰極放電ランプ)に適用することができる。 In addition, when the thermal expansion coefficient of the glass tube 4100 is within a range of 8.0 × 10 −6 [K −1 ] or more and 10.0 × 10 −6 [K −1 ] or less, both end portions of the glass tube After sealing, it is preferable to provide a strain removing step. The distortion removing step is not limited to the above-described method for manufacturing a low-pressure discharge lamp according to the present invention, and the thermal expansion coefficient is 8.0 × 10 −6 [K −1 ] or more and 10.0 × 10 −6 [K −1 ]. The present invention can be applied to a low-pressure discharge lamp (particularly a cold cathode discharge lamp) using glass within the following range.
 熱膨張係数が8.0×10-6[K-1]以上10.0×10-6[K-1]以下の範囲内のガラス管を有する低圧放電ランプの製造方法であって、前記ガラス管の両端部を封止する工程(封止工程)と、前記ガラス管の両端部を前記ガラス管が溶融しない温度において加熱する工程(歪除去工程)とを有する。 A method for producing a low-pressure discharge lamp having a glass tube having a thermal expansion coefficient of 8.0 × 10 −6 [K −1 ] or more and 10.0 × 10 −6 [K −1 ] or less, the glass A step of sealing both ends of the tube (sealing step), and a step of heating both ends of the glass tube at a temperature at which the glass tube does not melt (strain removal step).
 封止工程は、公知に工程または、本発明の第21の実施形態において上述した方法により行うことができる。 The sealing step can be performed by a known step or the method described above in the twenty-first embodiment of the present invention.
 歪除去工程の概念図を図36に示す。図36に示すように、両端部が封止されたガラス管4100の両端部をガラス管4100が溶融しない温度において加熱する。 Fig. 36 shows a conceptual diagram of the distortion removal process. As shown in FIG. 36, both ends of the glass tube 4100 sealed at both ends are heated at a temperature at which the glass tube 4100 does not melt.
 加熱は、ガラス管4100の両端部をそれぞれ加熱炉4126の間を通すことにより行う。加熱炉4126は、ガラス管4100の長手方向で切った断面が略コの字形状のヒーターであり、略コの字の開口部4126aが向かい合うように一対に配置されている。加熱炉により加熱することで、ガラス管4100の両端部の雰囲気温度が安定して上昇しやすく、ガラス管4100の両端部の歪を除去しやすくすることができる。 The heating is performed by passing both ends of the glass tube 4100 between the heating furnaces 4126, respectively. The heating furnace 4126 is a heater having a substantially U-shaped cross section cut in the longitudinal direction of the glass tube 4100, and is arranged in a pair so that the substantially U-shaped openings 4126a face each other. By heating with a heating furnace, the atmospheric temperature at both ends of the glass tube 4100 is likely to rise stably and the distortion at both ends of the glass tube 4100 can be easily removed.
 なお、少なくとも電極の管軸方向中央部側の先端までが加熱炉の開口部4126aの深さMの範囲内に収まることが好ましい。この場合、ガラス管4100の両端部に残存する歪を除去しやすくすることができる。 In addition, it is preferable that at least the tip of the electrode in the tube axial direction center side is within the range of the depth M of the opening 4126a of the heating furnace. In this case, it is possible to easily remove the strain remaining at both ends of the glass tube 4100.
 歪除去工程では、破線矢印の方向に加熱炉4126の略コの字の開口部4126aの中にガラス管4100の端部を通すことによって、ガラス管4100の端部を加熱させることができる。なお、加熱炉内でのガラス管の端部表面の温度は、例えば480[℃]~600[℃]である。 In the distortion removal step, the end of the glass tube 4100 can be heated by passing the end of the glass tube 4100 through the substantially U-shaped opening 4126a of the heating furnace 4126 in the direction of the broken line arrow. The temperature of the end surface of the glass tube in the heating furnace is, for example, 480 [° C.] to 600 [° C.].
 この場合、ガラス管4100の両端部を加熱炉ではなくバーナーの炎により直接加熱する場合に比べて、ガラス管4100の両端部付近の雰囲気温度がさらに安定して上昇しやすく、ガラス管4100の端部周辺をしっかりと加熱できるため、ガラス管4100の端部に残存する歪をしっかりと除去することができる。 In this case, compared with the case where both ends of the glass tube 4100 are directly heated by a flame of a burner rather than a heating furnace, the ambient temperature near both ends of the glass tube 4100 is more likely to rise more stably. Since the periphery of the part can be heated firmly, the strain remaining at the end of the glass tube 4100 can be removed firmly.
 なお、加熱炉4126は、図36に示す加熱炉4126に限らず、例えばシーズヒーターや内部にバーナーを備えるもの等であってもよい。また、作業安全のため、加熱炉4126の周囲は断熱材により覆われていることが好ましい。 The heating furnace 4126 is not limited to the heating furnace 4126 shown in FIG. 36, and may be, for example, a sheathed heater or a furnace equipped with a burner inside. Moreover, it is preferable that the circumference | surroundings of the heating furnace 4126 are covered with the heat insulating material for work safety.
 さらに、ガラス管4100をその管軸を回転軸として例えば一点鎖線矢印の方向に回転させることがより好ましい。この場合、ガラス管4100の端部の周方向においてより均一に加熱させることができ、歪を除去しやすくすることができる。 Furthermore, it is more preferable that the glass tube 4100 is rotated in the direction of a one-dot chain line arrow with the tube axis as a rotation axis. In this case, heating can be performed more uniformly in the circumferential direction of the end portion of the glass tube 4100, and distortion can be easily removed.
 なお、図36においては、ガラス管4100の両端部の歪除去について説明したが、ガラス管の一端部のみに歪が残存するおそれがある場合は、ガラス管の一端部のみ歪除去工程を行ってもよい。 In FIG. 36, the strain removal at both ends of the glass tube 4100 has been described. However, when there is a possibility that the strain remains only at one end of the glass tube, the strain removal process is performed only at one end of the glass tube. Also good.
 3.ランプの種類
 上記の各実施形態においては、低圧放電ランプの製造方法として、ガラス管の両端部に電極構造体が設けられた冷陰極蛍光ランプの製造方法を中心に説明したが、これに限らず、ガラス管の少なくとも一方の端部に電極構造体が設けられていればよい。例えば内部外部電極蛍光ランプやガラス管の内面に蛍光体層の形成されていない紫外線ランプにも適用することができる。
3. Types of Lamps In the above embodiments, the method for manufacturing a low-pressure discharge lamp has been described focusing on a method for manufacturing a cold cathode fluorescent lamp in which electrode structures are provided at both ends of a glass tube. However, the present invention is not limited to this. The electrode structure only needs to be provided on at least one end of the glass tube. For example, the present invention can be applied to an internal / external electrode fluorescent lamp or an ultraviolet lamp in which a phosphor layer is not formed on the inner surface of a glass tube.
 本発明は、電極構造体、電極構造体の製造方法、低圧放電ランプ、照明装置および画像表示装置に広く適用することができる。 The present invention can be widely applied to electrode structures, electrode structure manufacturing methods, low-pressure discharge lamps, lighting devices, and image display devices.
 100、107、400、404 電極構造体
 101、401、405 電極
 102、402、406 封着線
 103、403 ガラス部材
 105 酸化膜
 106 拡散層
 200、300、500、501 低圧放電ランプ
 201 ガラスバルブ
 600、700、800 照明装置
 900 画像表示装置
100, 107, 400, 404 Electrode structure 101, 401, 405 Electrode 102, 402, 406 Sealing wire 103, 403 Glass member 105 Oxide film 106 Diffusion layer 200, 300, 500, 501 Low pressure discharge lamp 201 Glass bulb 600, 700, 800 Illumination device 900 Image display device

Claims (12)

  1.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
     前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の中間部には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、
     前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
    An electrode structure having an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire,
    Of the surface of the sealing wire, an oxide film is not formed on the middle portion in the longitudinal direction of the portion covered with the glass member, or an oxide film having a maximum thickness of 0.1 [μm] or less. Formed,
    An electrode structure, wherein a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  2.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
     前記封着線の表面のうち、前記ガラス部材に被覆された部分には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、
     前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
    An electrode structure having an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire,
    Of the surface of the sealing wire, an oxide film is not formed on the portion covered with the glass member, or an oxide film having a maximum thickness of 0.1 [μm] or less is formed,
    An electrode structure, wherein a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  3.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
     前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の中間部は、最大厚みが0.1[μm]以下の酸化膜が形成されており、
     前記酸化膜には、Fe34およびFeOのいずれか一方または両方が含まれており、
     前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
    An electrode structure having an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire,
    Of the surface of the sealing wire, an intermediate portion in the longitudinal direction in the portion covered with the glass member is formed with an oxide film having a maximum thickness of 0.1 [μm] or less,
    The oxide film contains one or both of Fe 3 O 4 and FeO,
    An electrode structure, wherein a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  4.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
     前記封着線の表面のうち、前記ガラス部材に被覆された部分には、最大厚みが0.1[μm]以下の酸化膜が形成されており、
     前記酸化膜には、Fe34およびFeOのいずれか一方または両方が含まれており、
     前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
    An electrode structure having an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire,
    Of the surface of the sealing wire, an oxide film having a maximum thickness of 0.1 [μm] or less is formed on the portion covered with the glass member,
    The oxide film contains one or both of Fe 3 O 4 and FeO,
    An electrode structure, wherein a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member.
  5.  前記拡散層の最小厚みは8[μm]以上であり、前記拡散層の最大厚みは30[μm]以下であることを特徴とする請求項1に記載の電極構造体。 2. The electrode structure according to claim 1, wherein the minimum thickness of the diffusion layer is 8 [μm] or more, and the maximum thickness of the diffusion layer is 30 [μm] or less.
  6.  前記封着線は、48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことを特徴とする請求項1に記載の電極構造体。 The sealing wire includes iron in a range of 48 [wt%] to 54 [wt%] and nickel in a range of 46 [wt%] to 52 [wt%]. Item 2. The electrode structure according to Item 1.
  7.  前記ガラス部材は、酸化物換算で、SiO2が60[wt%]~75[wt]%、Al23が1[wt%]~5[wt%]、Li2Oが0[wt%]~5[wt%]、K2Oが3[wt%]~11[wt%]、Na2Oが3[wt%]~12[wt%]、CaOが0[wt%]~9[wt%]、MgOが0[wt%]~9[wt%]、SrOが0[wt%]~12[wt%]、BaOが0[wt%]~12[wt%]の組成を有することを特徴とする請求項1に記載の電極構造体。 The glass member has an oxide conversion of SiO 2 of 60 wt% to 75 wt%, Al 2 O 3 of 1 wt% to 5 wt%, and Li 2 O of 0 wt%. ] ~ 5 [wt%], K 2 O is 3 [wt%] ~ 11 [ wt%], Na 2 O is 3 [wt%] ~ 12 [ wt%], CaO is 0 [wt%] ~ 9 [ wt%], MgO has a composition of 0 [wt%] to 9 [wt%], SrO has a composition of 0 [wt%] to 12 [wt%], and BaO has a composition of 0 [wt%] to 12 [wt%]. The electrode structure according to claim 1.
  8.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
     前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させることで、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
    An electrode structure having an electrode, a sealing wire having one end connected to the electrode, and a glass member formed to cover at least a part of the sealing wire,
    Of the surface of the sealing wire, the oxide film formed in the substantially middle part in the longitudinal direction in the portion covered with the glass member is all diffused, or the oxide film having a maximum thickness of 0.1 [μm] or less The electrode structure is characterized in that a diffusion layer of the material of the sealing wire is formed on the sealing wire side of the glass member by diffusing so as to remain.
  9.  電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、
     前記電極と、前記封着線の一端部とを接続させる工程と、
     前記封着線の表面に酸化膜を形成させる工程と、
     前記封着線の少なくとも一部に前記ガラス部材を被覆させ、前記封着線の表面のうち、前記ガラス部材に被覆された部分における長手方向の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程とを有することを特徴とする電極構造体の製造方法。
    An electrode structure comprising: an electrode; a sealing wire having one end connected to the electrode; and a glass member formed to cover at least a part of the sealing wire,
    Connecting the electrode and one end of the sealing wire;
    Forming an oxide film on the surface of the sealing wire;
    At least a part of the sealing wire is covered with the glass member, and all of the oxide film formed in a substantially middle portion in the longitudinal direction of the surface of the sealing wire covered with the glass member is diffused. Or a step of diffusing so as to leave an oxide film having a maximum thickness of 0.1 [μm] or less.
  10.  ガラスバルブと、前記ガラスバルブの少なくとも一方の端部に設けられた請求項1~8のいずれか1項に記載の電極構造体とを有することを特徴とする低圧放電ランプ。 A low-pressure discharge lamp comprising a glass bulb and the electrode structure according to any one of claims 1 to 8 provided at at least one end of the glass bulb.
  11.  請求項10に記載の低圧放電ランプを備えることを特徴とする照明装置。 A lighting device comprising the low-pressure discharge lamp according to claim 10.
  12.  請求項11に記載の照明装置を備えることを特徴とする画像表示装置。 An image display device comprising the illumination device according to claim 11.
PCT/JP2010/002723 2009-04-15 2010-04-14 Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device WO2010119684A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-098687 2009-04-15
JP2009098687A JP2010251092A (en) 2009-04-15 2009-04-15 Electrode structure, low-pressure discharge lamp, illumination device, and image display device
JP2009-133665 2009-06-03
JP2009133665A JP2010282770A (en) 2009-06-03 2009-06-03 Electrode structure, method of manufacturing electrode structure, cold-cathode discharge lamp, lighting device, and image display device
JP2009138891A JP2010287363A (en) 2009-06-10 2009-06-10 Electrode structure, low-pressure discharge lamp, lighting system and image display device
JP2009-138891 2009-06-10
JP2009-206640 2009-09-08
JP2009206640A JP2011060475A (en) 2009-09-08 2009-09-08 Method of manufacturing low-pressure discharge lamp

Publications (1)

Publication Number Publication Date
WO2010119684A1 true WO2010119684A1 (en) 2010-10-21

Family

ID=42982357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002723 WO2010119684A1 (en) 2009-04-15 2010-04-14 Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device

Country Status (1)

Country Link
WO (1) WO2010119684A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213129A (en) * 2004-02-02 2005-08-11 Toshiba Lighting & Technology Corp Lighting glass composition, fluorescent lamp and lighting fittings
JP2008130395A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Electrode member group for cold cathode fluorescent lamp
JP2009037806A (en) * 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd Lead wire and lead member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213129A (en) * 2004-02-02 2005-08-11 Toshiba Lighting & Technology Corp Lighting glass composition, fluorescent lamp and lighting fittings
JP2008130395A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Electrode member group for cold cathode fluorescent lamp
JP2009037806A (en) * 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd Lead wire and lead member

Similar Documents

Publication Publication Date Title
JPWO2007111246A1 (en) Fluorescent lamp, backlight unit, and liquid crystal display device
US20090091235A1 (en) Fluorescent lamp and backlight unit
US7977262B2 (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
JP4351295B2 (en) Fluorescent lamp, backlight unit and liquid crystal display device
JPWO2008093768A1 (en) Fluorescent lamp, and light emitting device and display device using fluorescent lamp
JP4899846B2 (en) Backlight unit and liquid crystal display device
JP2008218403A (en) Discharge lamp, backlight unit, and liquid crystal display device
JP2009152221A (en) Discharge lamp, lighting device, and liquid crystal display device
WO2010119684A1 (en) Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device
JP2010282770A (en) Electrode structure, method of manufacturing electrode structure, cold-cathode discharge lamp, lighting device, and image display device
JP2010086739A (en) Low pressure discharge lamp, lighting system, and liquid crystal display
JP4539137B2 (en) Fluorescent lamp and backlight unit
JP2010251092A (en) Electrode structure, low-pressure discharge lamp, illumination device, and image display device
JP2010287363A (en) Electrode structure, low-pressure discharge lamp, lighting system and image display device
JP2010262917A (en) Electrode structure, discharge tube, lighting system, backlight unit, and image display device
JP2010170699A (en) Method of manufacturing low-pressure discharge lamp, low-pressure discharge lamp, lighting device and image display apparatus
JP2010212051A (en) Low-pressure discharge lamp, method of manufacturing low-pressure discharge lamp, lighting system, and image display
JP2011060475A (en) Method of manufacturing low-pressure discharge lamp
JP4461127B2 (en) Cold cathode fluorescent lamp, backlight unit and display device
JP2007157706A (en) External electrode type discharge lamp, backlight unit, liquid crystal display device, and manufacturing method of external electrode type discharge lamp
JP2008177012A (en) Low pressure discharge lamp, back light unit, and liquid crystal display device
JP2008269830A (en) Fluorescent lamp, back light unit, and liquid crystal display device
JP2012048999A (en) External lead wire, lead wire for lamp, electrode structure, cold-cathode discharge lamp, lighting device, and image display device
JP2008251430A (en) Glass tube for lamp, low-voltage discharge lamp, backlight unit, and liquid crystal display
JP2010225500A (en) Cold cathode discharge lamp, method of manufacturing cold cathode discharge lamp, lighting device, and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764271

Country of ref document: EP

Kind code of ref document: A1