WO2010119154A1 - System for dissipating seismic energy in constructions - Google Patents

System for dissipating seismic energy in constructions Download PDF

Info

Publication number
WO2010119154A1
WO2010119154A1 PCT/ES2010/000179 ES2010000179W WO2010119154A1 WO 2010119154 A1 WO2010119154 A1 WO 2010119154A1 ES 2010000179 W ES2010000179 W ES 2010000179W WO 2010119154 A1 WO2010119154 A1 WO 2010119154A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
energy
auxiliary secondary
secondary structure
heatsink
Prior art date
Application number
PCT/ES2010/000179
Other languages
Spanish (es)
French (fr)
Inventor
Amadeo Benavent Climent
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Publication of WO2010119154A1 publication Critical patent/WO2010119154A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/123Deformation involving a bending action, e.g. strap moving through multiple rollers, folding of members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Definitions

  • the present invention belongs to the field of housing design and construction, non-residential building and civil engineering works, and has its maximum application in building structures (residential or not).
  • the invention is a new device "energy dissipator" that installed in the main structure of a construction protects against seismic movements. These types of devices are included in the so-called “passive control systems”.
  • a hysterical energy sink has two parts. One is the “energy dissipation elements” themselves and the other part is the “auxiliary secondary structure” used to connect the “energy dissipation elements” to the primary resistant structure of the construction.
  • the “energy dissipating elements” consist of pieces, usually made of steel, that deform inelastically under different loads and are of various types: X-shaped or bending deformed triangular steel sheets, perforated shear-perforated steel plates, bars circular section subjected to bending or torsion, steel bars that deform in the axial direction etc.
  • the most commonly used solutions as “auxiliary secondary structure” are reinforced concrete or steel walls, or metal triangulations.
  • auxiliary secondary structures that they need (concrete, steel or metal triangulation walls): (a) they significantly increase the weight of the structure and therefore the inertia forces generated by the earthquake; (b) reduce the diafanity of the spaces, hinder or prevent the opening of gaps and restrict flexibility in the design of the construction; and (c) are expensive.
  • bars with restricted buckling the drawbacks (a) and (b) are little or nothing important since the auxiliary structure is relatively simple (a simple steel tube filled with concrete), and they are installed as simple inclined bars taking up little space. They remain, however, an expensive solution because of the special material with which the bar must be wrapped to avoid adhesion with the concrete.
  • the invention relates to a seismic energy dissipator for a primary resistant structure of a construction, that is, the set of beams, columns, slabs or bases that are part of the structure of the construction.
  • the new heatsink proposed in this document minimizes or eliminates the inconveniences of known heatsinks.
  • it uses a simple "auxiliary secondary structure" with a relatively small weight.
  • it is installed in the construction as if it were a conventional inclined bar used to give lateral rigidity to the porticoed structures formed by beams and pillars.
  • This type of "auxiliary secondary structure” occupies little space and allows it to be incorporated flexibly into the construction design.
  • the "energy dissipating elements” are small parts that remain partially or completely visible, can be easily disassembled and inspected, and can be replaced without changing the "auxiliary secondary structure".
  • Figure 1 Shows a longitudinal section of the basic version of the heatsink of the invention. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3).
  • the fixing element (4) of the heatsink to the primary resistant structure of the construction is also shown.
  • Figure 2. Shows a longitudinal section of the basic version of the heatsink of the invention after plasticizing. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3) after plasticizing.
  • the fixing element (4) of the heatsink to the primary resistant structure of the construction is also shown.
  • Figure 3. Shows a cross section of the basic version of the heatsink of the invention. This section is made by a plane perpendicular to the axis of the heatsink, said plane containing the complete cross sections of the elements (1 and 2) that form the auxiliary secondary structure and the wings of one of the energy dissipating elements (3). Also shown (4) is the fixing element of the heatsink with the primary resistant structure of the construction.
  • Figure 4.- Shows a longitudinal section of the basic version of the heatsink of the invention, made in a plane parallel to the axis of the heatsink containing walls of one of the elements that form the auxiliary secondary structure (2) and the souls of the elements power heatsinks (3).
  • Figure 5. Shows a longitudinal section of a version of the heatsink with more than two elements (e) forming the auxiliary secondary structure. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements that form the auxiliary secondary structure (1, 2, 5 and 6) and the complete cross section of the energy dissipating elements (3).
  • Figure 6. Shows a cross section of a version of the heatsink with more than two elements forming the auxiliary secondary structure. Said section is made by a plane perpendicular to the axis of the heatsink, said plane containing the cross section of elements (1, 5 and 6) that form the auxiliary secondary structure and the wings of two of the energy dissipating elements (3).
  • Figure 7. Shows a longitudinal section of a version of the heatsink with more than two elements forming the auxiliary secondary structure. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of elements that form the auxiliary secondary structure (1 and 2) and the soul of the energy dissipating elements (3).
  • Figure 8. Shows an elevation view of the version of the heatsink with more than two elements forming the auxiliary secondary structure.
  • FIG. 9 Shows a detailed view of a first solution for fixing the wings of energy dissipating elements (3) to the elements (1 and 2) of the auxiliary secondary structure.
  • This fixing method consists in machining the wing edges of the wedge-shaped energy dissipating elements or the like, crimping one of the two halves of each wing with the wing of the adjacent energy dissipating element, and fixing the other half of the wing by screws (7).
  • Figure 10. Shows a detailed view of a second solution for fixing the wings of the energy dissipating elements to the elements that form the auxiliary secondary structure (1 and 2), consisting of using screws (7) on both sides of the soul of the energy dissipating element (3).
  • Figure 11.- Shows a detailed view of a third solution for fixing the wings of the energy dissipating elements (3) to the elements (1 and 2) that form the auxiliary secondary structure, by welding (8).
  • Figure 12. Shows a first mode of placement of the heatsink of the invention (9) within a porticoed structure (10).
  • the elements that form the auxiliary secondary structure (1 and 2) are arranged aligned with the axis that define the centers of two diametrically opposite beam-pillar knots (13 and 14) in the rectangle that form the beams (11) and the pillars ( 12) of the porch.
  • the elements (1 and 2) of the auxiliary secondary structure are joined at one end to the beam-pillar nodes (13 and 14) by means of steel brackets (15 and 16).
  • Figure 13 Shows a second mode of placement of the heatsink of the invention within a porticoed structure. Heatsink it is aligned with an axis that joins the center of one of the beam-pillar nodes (14) with an intermediate point of the beam (17).
  • Figure 14, - Shows a third mode of placement of the heatsink of the invention in a triangulated or lattice structure (18), formed by vertical bars (19), inclined bars (20) and horizontal bars (21).
  • the heatsink of the invention is placed in place of one or more bars of the triangulated or lattice structure, either one or more vertical bars (22), one or more inclined bars (23) or one or more horizontal bars (24).
  • Figure 15.- Shows a cross section of an I or H profile that constitutes the energy dissipating element.
  • the figure shows the wings (25), the soul (26), the curve according
  • Figure 16 Longitudinal sections of the heatsink made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3) , before and after dissipating energy.
  • the seismic energy sink object of this invention comprises at least two elements (1 and 2), preferably metal profiles, which together form what we will call “auxiliary secondary structure”, connected to each other by at least one element (3) which we will call “energy dissipating element”.
  • auxiliary secondary structure may have different sections (I, U, Z etc.), they can be hollow tubes (square, rectangular section etc.) or plates.
  • the number of profiles, tubes or sheets that form the "auxiliary secondary structure” may be greater than two depending on the needs of the construction.
  • the so-called "energy dissipating element” is constituted by a profile, preferably metallic, of cross-section in I or H characterized in that the thickness of its wings (25) is always greater than that of the soul (26) which allows to keep the wings within the elastic regime even when the tensions in the soul exceed the elastic limit due to hardening after plastification, - and because there is a curve of agreement (27) between the soul and the wings that prevents the occurrence of stress concentrations that lead to breakage premature soul profile (that is, before the material has exhausted all its intrinsic plastic deformation capacity).
  • these elements can be, for example, pieces of commercial metal profile of cross-section in I or H, of the type usually used for beams and / or pillars of a porticoed structure.
  • the energy dissipating element (3) is mounted on the elements that form the auxiliary secondary structure (1 and 2) so that when the latter try to move relative to each other in the direction of their axis, the soul of The energy dissipating elements deform flexurally in a plane perpendicular to the plane of said soul.
  • the axes of the energy dissipating elements (3) must form a substantially perpendicular angle (approximately 90 °) with respect to the axes of the elements (1) and (2) that form the auxiliary secondary structure. It is thus pursued that, when the seismic energy dissipator object of this invention receives a certain load derived from the seismic movement, the energy dissipating elements (3) can plasticize and dissipate energy.
  • the seismic energy introduced by the earthquake is absorbed by the energy dissipators and not by the primary resistant structure of the construction.
  • the energy dissipating elements (3) can be inspected and replaced, if necessary, without changing the elements (1 and 2) that form the auxiliary secondary structure.
  • the control of dissipated energy is exercised by modifying the number, geometry and arrangement of the energy dissipating elements (3).
  • the power sink has other elements
  • the heatsinks made as described allow the soul of the energy dissipation elements (3) to be plasticized when the elements (1 and 2) that form the auxiliary secondary structure are subjected to axial loads in the direction of their directrix.
  • a simple configuration and of easy execution it is possible to achieve a structural element that can be installed in a construction such as a simple conventional inclined bar, but with the advantage that it is able to dissipate energy in a stable way without panning.
  • the cross-sectional profiles in I or H are subjected to a completely unusual form of work because: (a) short pieces of profile are used whose length is similar or less than the cross-sectional dimensions; (b) what is fixed to the auxiliary secondary structure is not the extreme cross sections of the profile but its wings; (c) the profile is subjected to bending moments that represented by vectors are perpendicular to the plane of the profile cross section; and (d) the source of energy dissipation is the plasticization of the soul, not of the wings, of the profiles.
  • the new heatsink whose hysteretic behavior is of the elastoplastic type, ( Figure 1) has an auxiliary secondary structure formed by two or more elements (1, 2) made of a resistant material, for example in steel, and several energy dissipating elements ( 3) arranged with its axis perpendicular to that of the previous elements (1, 2).
  • the heatsink can be constructed in different ways by modifying the section of the energy dissipating elements, their auxiliary secondary structure and the way of placing the energy dissipating elements. Also, the way of placement of the heatsink in constructions can vary depending on the required damping needs.
  • the elements that constitute the "energy dissipating elements" may have sections in I or H.
  • Figures 5, 6, 7 and 8 show an embodiment of the heatsink in which more than two profiles are used to form the "auxiliary secondary structure", and the I or H profiles that constitute the "energy dissipating elements" are arranged in two parallel rows.
  • Modes of Placement of Energy Dissipation Elements can be one or more of one, can be grouped into one or several zones, and can be located in any zone or zones along the axis of the "auxiliary secondary structure".
  • connection between the energy dissipation elements (3) and the elements (1 and 2) that constitute the auxiliary secondary structure ( Figure 9) can be carried out by means of a fastening with screws (7), preferably by means of high-strength screws, when it is desired that there is no relative movement (sliding) between the energy dissipating elements (3) and the auxiliary secondary structure.
  • connection can be carried out by means of a less resistant fixing (7), for example, by ordinary screws with a smaller size than the housing that define the attachment points, so that there is a certain clearance between the screw and the point of union, the greater the smaller the screw or the larger the housing at the point of attachment when it is intended that the energy sink does not absorb small oscillations, and only absorb those efforts that cause a relative movement between the profiles or tubes that they form the secondary auxiliary structure greater than the clearance mentioned above.
  • a less resistant fixing for example, by ordinary screws with a smaller size than the housing that define the attachment points, so that there is a certain clearance between the screw and the point of union, the greater the smaller the screw or the larger the housing at the point of attachment when it is intended that the energy sink does not absorb small oscillations, and only absorb those efforts that cause a relative movement between the profiles or tubes that they form the secondary auxiliary structure greater than the clearance mentioned above.
  • special characteristics can be defined for each heatsink and prepared to absorb certain oscillations.
  • the wing edges of these elements (3) may carry ( Figure 9) a wedge-shaped or similar machining that allow one half of the element wing (3) to be crimped with the wing of the immediately preceding element and thus fix it to the auxiliary secondary structure even without screws
  • Figures 9, 10 and 11 show three solutions for joining the wings of the I or H profiles that constitute the "energy dissipating elements" to the profiles, tubes or sheets that form the "auxiliary secondary structure".
  • Figure 9 shows the solution of joining half a wing (3) by means of a wedge-shaped crimp with the wing of the previous profile, and joining, to the auxiliary secondary structure (1 and 2), the other half wing by means of screws (7).
  • Figure 10 shows a solution using screws (7) on both sides of the soul.
  • Figure 11 shows a solution using angle welds in grooves (8).
  • Figure 12 shows a first mode of placement of the heatsink (9) of the invention, installed within a porticoed structure (10) that can be metal, reinforced concrete, wood etc.
  • the porch consists of beams (11), columns (12) and beam-column knots (13 and 14).
  • the heatsink is aligned with the axis that defines the centers of two diametrically opposite beam-column nodes (13 and 14) in the rectangle that form the beams (11) and columns (12).
  • connections of the free end of one of the profiles (1), tubes or plates forming the "auxiliary secondary structure" at the first point of attachment to the structure (15), or of the free end of another of the profiles, tubes or plates forming the "auxiliary secondary structure” (2) with the second point of attachment to the structure (16) can be real joints made with pins, or simple standard structural connections made with welded or bolted plates.
  • Figure 13 shows a second mode of placement of the heatsink object of this patent, installed inside a porticoed structure that can be metal, reinforced concrete, wood etc.
  • the main difference with the embodiment of Figure 12 is that the heatsink is aligned with an axis that joins the center of one of the beam-column nodes (14) with an intermediate point of the beam (17).
  • the configuration of Figure 13 allows to leave an open space in the bay that may be desirable to arrange doors or windows there.
  • Figure 14 shows a third mode of placement of the heatsink object of the invention, installed in a triangulated or lattice structure (18) which can be metallic, reinforced concrete, wood etc.
  • the lattice is generally formed by vertical bars (19), inclined bars (20) and horizontal bars (21).
  • the new heatsink can be introduced by replacing one or several vertical bars (22), one or more inclined bars (23) or one or several horizontal bars (24). This significantly increases the energy dissipation capacity of triangulated or lattice structures, which, when constructed with conventional bars, is greatly reduced by being limited by the buckling of compression bars.
  • the new heatsink can also be installed in the sturdy structure, forming part of diada ("toggle brace") or "scissor” (scissors jack system) systems.
  • the new heatsink ( Figure 1) has an auxiliary secondary structure formed by two elements (1, 2) made of a resistant material, for example in steel, and several energy dissipating elements (3) arranged with its perpendicular axis of the elements (1, 2) above.
  • each profile (1, 2) is arranged so that when the souls of the energy dissipating elements (3) deform plastically, the profiles (1, 2) do not touch each other.
  • One end of each profile (1, 2) joins the primary structure of the construction as if it were a conventional inclined bar, preferably by connecting plates (4).
  • Figures 3 and 4 show a cross section and a longitudinal section of the preferred mode of the new heatsink, respectively.
  • the heatsink of the invention operates under axial tensile / compression loads in the direction of the axes of the profiles (1, 2).
  • the soul of the cross-section profile pieces in I or H deforms plastically to bending in a plane perpendicular to the plane of said soul ( Figure 2), and with it energy dissipates.

Abstract

The invention relates to a system for dissipating seismic energy in constructions, formed by two or more sections, tubes or plates disposed with the axes thereof in parallel (1, 2) and connected using one or more energy-dissipating elements (3) disposed such that the axes thereof are perpendicular to the axes of the sections, tubes or plates. The energy-dissipating elements can take the form of sections, preferably having an I- or H-shaped cross-section, which are made to function very differently to normal when used in earthquake-resistant structures, the core of the I- or H-section being subjected to plastic bending deformations in a plane perpendicular to the plane of the core, said cores being maintained in elastic state. Under axial loading, the invention dissipates energy in a stable manner without buckling.

Description

SISTEMA PARA DISIPAR LA ENERGÍA SÍSMICA EN LAS CONSTRUCCIONESSYSTEM TO DISSIP THE SEISM ENERGY IN CONSTRUCTIONS
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención pertenece al campo del diseño y construcción de viviendas, edificación no residencial y obras de ingeniería civil, y tiene su máxima aplicación en estructuras de edificios (residenciales o no) . La invención es un nuevo dispositivo "disipador de energía" que instalado en la estructura principal de una construcción la protege frente a movimientos sísmicos. Este tipo de dispositivos se engloban dentro de los denominados "sistemas de control pasivo" .The present invention belongs to the field of housing design and construction, non-residential building and civil engineering works, and has its maximum application in building structures (residential or not). The invention is a new device "energy dissipator" that installed in the main structure of a construction protects against seismic movements. These types of devices are included in the so-called "passive control systems".
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Cuando una construcción se ve sometida a un terremoto, ésta se mueve y acelera apareciendo fuerzas de inercia que multiplicadas por los desplazamientos equivalen a energía. La cantidad de energía que un terremoto severo introduce en una construcción puede ser muy elevada, y si la construcción no es capaz de disiparla terminará por derrumbarse. Las estructuras sismorresistentes tradicionales se proyectan para que, frente a un terremoto severo, la parte de la energía sísmica que no es absorbida por su mecanismo natural de amortiguamiento, sea disipada de forma estable mediante deformaciones plásticas en los elementos resistentes primarios de la construcción (vigas, pilares) . De esta manera se evita la pérdida de vidas humanas. Sin embargo, esta solución tiene el grave inconveniente de que, tras el terremoto, quedan daños importantes en la estructura primaria de la construcción cuya reparación puede ser muy cara obligando incluso a su demolición.When a construction is subjected to an earthquake, it moves and accelerates appearing forces of inertia that multiplied by displacements equal energy. The amount of energy that a severe earthquake introduces into a construction can be very high, and if the construction is not capable of dissipating it, it will eventually collapse. Traditional seismic-resistant structures are projected so that, in front of a severe earthquake, the part of the seismic energy that is not absorbed by its natural damping mechanism, is stably dissipated by plastic deformations in the primary resistant elements of the construction (beams , pillars). In this way the loss of human lives is avoided. However, this solution has the serious disadvantage that, after the earthquake, there are significant damages in the primary structure of the construction whose repair can be very expensive even forcing its demolition.
En las últimas décadas se han desarrollado soluciones innovadoras que se conocen en general como "sistemas de control pasivo" y que se basan en instalar en la estructura primaria de la construcción dispositivos especiales llamados "disipadores de energía" . Con ello se consigue concentrar los daños en los propios disipadores y proteger a los elementos resistentes primarios, encargados principalmente de soportar las cargas gravitatorias. El uso de disipadores de energía para aplicaciones sísmicas se ha extendido notablemente en los últimos años y está experimentando un crecimiento exponencial en países de sismicidad media o alta. Se han empleado tanto en construcciones nuevas, como en el reacondicionamiento de construcciones existentes. Los disipadores de energía se pueden clasificar en varios tipos: histeréticos, viscosos o viscoelásticos. El disipador de energía objeto de esta patente pertenece al primer tipo.In recent decades, innovative solutions have been developed that are generally known as "passive control systems" and that are based on installing special devices called "energy sinks" in the primary construction structure. With this, it is possible to concentrate the damage on the heatsinks themselves and protect the primary resistant elements, mainly responsible for supporting the gravitational loads. The use of energy dissipators for seismic applications has extended notably in recent years and is experiencing exponential growth in countries with medium or high seismicity. They have been used both in new constructions, and in the reconditioning of existing constructions. Energy dissipators can be classified into several types: hysteretic, viscous or viscoelastic. The energy sink object of this patent belongs to the first type.
Un disipador de energía de tipo histerético tiene dos partes. Una son los "elementos disipadores de energía" propiamente dichos y la otra parte es la "estructura secundaria auxiliar" que sirve para conectar los "elementos disipadores de energía" a la estructura resistente primaria de la construcción. Los "elementos disipadores de energía" consisten en piezas, normalmente de acero, que deforman inelásticamente bajo diferentes cargas y los hay de varios tipos: chapas de acero en forma de X o triangular deformadas a flexión, chapas perforadas de acero deformadas a cortante, barras de sección circular sometidas a flexión o a torsión, barras de acero que se deforman en la dirección axial etc. Las soluciones empleadas más comúnmente como "estructura secundaria auxiliar" son muros de hormigón armado o de acero, o triangulaciones metálicas. En el caso "elementos disipadores de energía" consistentes en barras de acero que deforman plásticamente en la dirección axial, además de la solución de embeberlas en muros de hormigón para que no pandeen a compresión (envolviendo previamente la barra con un material que evite la adherencia acero-hormigón) , existe otra consistente en introducir la barra en un tubo hueco de acero y rellenar el espacio entre ambos con hormigón (la barra también debe haber sido envuelta previamente con un material que evite la adherencia acero- hormigón) . Esta segunda solución se conoce como "barras con pandeo restringido", y permite instalar el disipador de energía en la estructura primaria de la construcción como una barra inclinada convencional.A hysterical energy sink has two parts. One is the "energy dissipation elements" themselves and the other part is the "auxiliary secondary structure" used to connect the "energy dissipation elements" to the primary resistant structure of the construction. The "energy dissipating elements" consist of pieces, usually made of steel, that deform inelastically under different loads and are of various types: X-shaped or bending deformed triangular steel sheets, perforated shear-perforated steel plates, bars circular section subjected to bending or torsion, steel bars that deform in the axial direction etc. The most commonly used solutions as "auxiliary secondary structure" are reinforced concrete or steel walls, or metal triangulations. In the case of "energy dissipating elements" consisting of steel bars that deform plastically in the axial direction, in addition to the solution of embedding them in concrete walls so that they do not buckle into compression (previously wrapping the bar with a material that prevents adhesion steel-concrete), there is another consisting of introducing the bar into a hollow steel tube and filling the space between them with concrete (the bar must also have been previously wrapped with a material that avoids steel-concrete adhesion). This second solution is known as "bars with restricted buckling", and allows the energy dissipator to be installed in the primary structure of the construction as a conventional inclined bar.
Los disipadores de energía existentes presentan varios inconvenientes. Las "estructuras secundarias auxiliares" que precisan (muros de hormigón, de acero o triangulaciones metálicas) : (a) incrementan notablemente el peso de la estructura y por lo tanto de las fuerzas de inercia generadas por el terremoto; (b) reducen la diafanidad de los espacios, dificultan o impiden la apertura de huecos y restringen la flexibilidad en el diseño de la construcción; y (c) son caras. En el caso de las "barras con pandeo restringido" , los inconvenientes (a) y (b) son poco o nada importantes ya que la estructura auxiliar es relativamente sencilla (un simple tubo de acero relleno de hormigón) , y se instalan como simples barras inclinadas ocupando por ello poco espacio. Siguen siendo sin embargo una solución cara por el material especial con el que hay que envolver la barra para evitar su adherencia con el hormigón. A este inconveniente económico se une otro más importante que es la imposibilidad de inspeccionar el estado de la barra de acero que constituye el "elemento disipador de energía" ya que está embebida en hormigón. Tras un terremoto, esto obliga a tener que sustituir necesariamente el disipador de energía completo (es decir, la barra de acero que constituye el "elemento disipador de energía" y la "estructura secundaria auxiliar" (formada por el tubo y el relleno de hormigón) . Esto es antieconómico y poco "sostenible" ya que normalmente los disipadores de energía tienen una capacidad muy elevada y podrían soportar varios terremotos.Existing power sinks have several drawbacks. The "auxiliary secondary structures" that they need (concrete, steel or metal triangulation walls): (a) they significantly increase the weight of the structure and therefore the inertia forces generated by the earthquake; (b) reduce the diafanity of the spaces, hinder or prevent the opening of gaps and restrict flexibility in the design of the construction; and (c) are expensive. In the case of "bars with restricted buckling", the drawbacks (a) and (b) are little or nothing important since the auxiliary structure is relatively simple (a simple steel tube filled with concrete), and they are installed as simple inclined bars taking up little space. They remain, however, an expensive solution because of the special material with which the bar must be wrapped to avoid adhesion with the concrete. To this economic inconvenience joins another more important one that is the impossibility of inspecting the state of the steel bar that constitutes the "energy dissipating element" since it is embedded in concrete. After an earthquake, this forces you to necessarily have to replace the complete energy dissipator (that is, the steel bar that constitutes the "energy dissipating element" and the "auxiliary secondary structure" (formed by the concrete pipe and filling) ) This is uneconomic and not very "sustainable" since normally the energy sinks have a very high capacity and could withstand several earthquakes.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La invención se refiere a un disipador de energía sísmica para una estructura resistente primaria de una construcción, es decir, el conjunto de vigas, columnas, losas o bases que forman parte de la estructura de la construcción.The invention relates to a seismic energy dissipator for a primary resistant structure of a construction, that is, the set of beams, columns, slabs or bases that are part of the structure of the construction.
El nuevo disipador propuesto en este documento minimiza o elimina los inconvenientes que presentan los disipadores conocidos. Por una parte, emplea una "estructura secundaria auxiliar" sencilla con un peso relativamente pequeño. Por otra parte, se instala en la construcción como si se tratase de una barra inclinada convencional de las usadas para dar rigidez lateral a las estructuras porticadas formadas por vigas y pilares. Este tipo de "estructura secundaria auxiliar" ocupa poco espacio y permite ser incorporada de forma flexible en el diseño de la construcción. Además, los "elementos disipadores de energía" son piezas pequeñas que quedan parcial o completamente visibles, pueden ser fácilmente desmontadas e inspeccionadas, y se pueden sustituir sin necesidad de cambiar la "estructura secundaria auxiliar" . A ello se une la ventaja económica de poder emplear como "elementos disipadores de energía" trozos de perfiles comerciales de sección transversal en forma de I o H de escasa longitud, que no requieren ningún tratamiento previo (recubrimientos etc.) más allá del mecanizado (taladros etc.) para unirlos a la "estructura secundaria auxiliar" .The new heatsink proposed in this document minimizes or eliminates the inconveniences of known heatsinks. On the one hand, it uses a simple "auxiliary secondary structure" with a relatively small weight. On the other hand, it is installed in the construction as if it were a conventional inclined bar used to give lateral rigidity to the porticoed structures formed by beams and pillars. This type of "auxiliary secondary structure" occupies little space and allows it to be incorporated flexibly into the construction design. In addition, the "energy dissipating elements" are small parts that remain partially or completely visible, can be easily disassembled and inspected, and can be replaced without changing the "auxiliary secondary structure". To this is added the economic advantage of being able to use as "energy dissipating elements" pieces of commercial profiles of cross-section in the form of I or H of short length, which do not require any previous treatment (coatings etc.) beyond machining ( drills etc.) to attach them to the "auxiliary secondary structure".
Descripción de las figurasDescription of the figures
Figura 1.- Muestra una sección longitudinal de la versión básica del disipador de la invención. Dicha sección está realizada por un plano paralelo al eje del disipador, conteniendo dicho plano paredes de los elementos (1 y 2) que forman la estructura secundaria auxiliar y la sección transversal completa de los elementos disipadores de energía (3) . También se muestra el elemento (4) de fijación del disipador a la estructura resistente primaria de la construcción.Figure 1.- Shows a longitudinal section of the basic version of the heatsink of the invention. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3). The fixing element (4) of the heatsink to the primary resistant structure of the construction is also shown.
Figura 2.- Muestra una sección longitudinal de la versión básica del disipador de la invención después de plastificar. Dicha sección está realizada por un plano paralelo al eje del disipador, conteniendo dicho plano paredes de los elementos (1 y 2) que forman la estructura secundaria auxiliar y la sección transversal completa de los elementos disipadores de energía (3) tras la plastificación. También se muestra el elemento (4) de fijación del disipador a la estructura resistente primaria de la construcción .Figure 2.- Shows a longitudinal section of the basic version of the heatsink of the invention after plasticizing. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3) after plasticizing. The fixing element (4) of the heatsink to the primary resistant structure of the construction is also shown.
Figura 3. - Muestra una sección transversal de la versión básica del disipador de la invención. Dicha sección está realizada por un plano perpendicular al eje del disipador, conteniendo dicho plano las secciones transversales completas de los elementos (1 y 2) que forman la estructura secundaria auxiliar y las alas de uno de los elementos disipadores de energía (3) . También se representa (4) el elemento de fijación del disipador con la estructura resistente primaria de la construcción.Figure 3. - Shows a cross section of the basic version of the heatsink of the invention. This section is made by a plane perpendicular to the axis of the heatsink, said plane containing the complete cross sections of the elements (1 and 2) that form the auxiliary secondary structure and the wings of one of the energy dissipating elements (3). Also shown (4) is the fixing element of the heatsink with the primary resistant structure of the construction.
Figura 4.- Muestra una sección longitudinal de la versión básica del disipador de la invención, realizada por un plano paralelo al eje del disipador que contiene paredes de uno de los elementos que forman la estructura secundaria auxiliar (2) y las almas de los elementos disipadores de energía (3) .Figure 4.- Shows a longitudinal section of the basic version of the heatsink of the invention, made in a plane parallel to the axis of the heatsink containing walls of one of the elements that form the auxiliary secondary structure (2) and the souls of the elements power heatsinks (3).
Figura 5.- Muestra una sección longitudinal de una versión del disipador con más de dos elementos (e) formando la estructura secundaria auxiliar. Dicha sección está realizada por un plano paralelo al eje del disipador, conteniendo dicho plano paredes de los elementos que forman la estructura secundaria auxiliar (1, 2, 5 y 6) y la sección transversal completa de los elementos disipadores de energía (3) .Figure 5.- Shows a longitudinal section of a version of the heatsink with more than two elements (e) forming the auxiliary secondary structure. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements that form the auxiliary secondary structure (1, 2, 5 and 6) and the complete cross section of the energy dissipating elements (3).
Figura 6.- Muestra una sección transversal de una versión del disipador con más de dos elementos formando la estructura secundaria auxiliar. Dicha sección está realizada por un plano perpendicular al eje del disipador, conteniendo dicho plano la sección transversal de elementos (1, 5 y 6) que forman la estructura secundaria auxiliar y las alas de dos de los elementos disipadores de energía (3) .Figure 6.- Shows a cross section of a version of the heatsink with more than two elements forming the auxiliary secondary structure. Said section is made by a plane perpendicular to the axis of the heatsink, said plane containing the cross section of elements (1, 5 and 6) that form the auxiliary secondary structure and the wings of two of the energy dissipating elements (3).
Figura 7. - Muestra una sección longitudinal de una versión del disipador con más de dos elementos formando la estructura secundaria auxiliar. Dicha sección está realizada por un plano paralelo al eje del disipador, conteniendo dicho plano paredes de elementos que forman la estructura secundaria auxiliar (1 y 2) y el alma de los elementos disipadores de energía (3) . Figura 8.- Muestra una vista en alzado de la versión del disipador con más de dos elementos formando la estructura secundaria auxiliar.Figure 7. - Shows a longitudinal section of a version of the heatsink with more than two elements forming the auxiliary secondary structure. Said section is made by a plane parallel to the axis of the heatsink, said plane containing walls of elements that form the auxiliary secondary structure (1 and 2) and the soul of the energy dissipating elements (3). Figure 8.- Shows an elevation view of the version of the heatsink with more than two elements forming the auxiliary secondary structure.
Figura 9.- Muestra una vista de detalle de una primera solución para fijar las alas de elementos disipadores de energía (3) a los elementos (1 y 2) de la estructura secundaria auxiliar. Esta forma de fijación consiste en mecanizar los bordes de las alas de los elementos disipadores de energía en forma de cuña o similar, engarzar una de las dos mitades de cada ala con el ala del elemento disipador de energía contiguo, y fijar la otra mitad del ala mediante tornillos (7) .Figure 9.- Shows a detailed view of a first solution for fixing the wings of energy dissipating elements (3) to the elements (1 and 2) of the auxiliary secondary structure. This fixing method consists in machining the wing edges of the wedge-shaped energy dissipating elements or the like, crimping one of the two halves of each wing with the wing of the adjacent energy dissipating element, and fixing the other half of the wing by screws (7).
Figura 10.- Muestra una vista de detalle de una segunda solución para fijar las alas de los elementos disipadores de energía a los elementos que forman la estructura secundaria auxiliar (1 y 2) , consistente en emplear tornillos (7) a ambos lados del alma del elemento disipador de energía (3) .Figure 10.- Shows a detailed view of a second solution for fixing the wings of the energy dissipating elements to the elements that form the auxiliary secondary structure (1 and 2), consisting of using screws (7) on both sides of the soul of the energy dissipating element (3).
Figura 11.- Muestra una vista de detalle de una tercera solución para fijar las alas de los elementos disipadores de energía (3) a los elementos (1 y 2) que forman la estructura secundaria auxiliar, mediante soldaduras (8) .Figure 11.- Shows a detailed view of a third solution for fixing the wings of the energy dissipating elements (3) to the elements (1 and 2) that form the auxiliary secondary structure, by welding (8).
Figura 12. -Muestra un primer modo de colocación del disipador de la invención (9) dentro de una estructura porticada (10) . Los elementos que forman la estructura secundaria auxiliar (1 y 2) se disponen alineados con el eje que definen los centros de dos nudos viga-pilar (13 y 14) diametralmente opuestos en el rectángulo que forman las vigas (11) y los pilares (12) del pórtico. Los elementos (1 y 2) de la estructura secundaria auxiliar se unen por un extremo a los nudos viga-pilar (13 y 14) mediante cartelas de acero (15 y 16) .Figure 12. - Shows a first mode of placement of the heatsink of the invention (9) within a porticoed structure (10). The elements that form the auxiliary secondary structure (1 and 2) are arranged aligned with the axis that define the centers of two diametrically opposite beam-pillar knots (13 and 14) in the rectangle that form the beams (11) and the pillars ( 12) of the porch. The elements (1 and 2) of the auxiliary secondary structure are joined at one end to the beam-pillar nodes (13 and 14) by means of steel brackets (15 and 16).
Figura 13.- Muestra un segundo modo de colocación del disipador de la invención dentro de una estructura porticada. El disipador está alineado con un eje que une el centro de uno de los nudos viga-pilar (14) con un punto intermedio de la viga (17) .Figure 13.- Shows a second mode of placement of the heatsink of the invention within a porticoed structure. Heatsink it is aligned with an axis that joins the center of one of the beam-pillar nodes (14) with an intermediate point of the beam (17).
Figura 14,- Muestra un tercer modo de colocación del disipador de la invención en una estructura triangulada o en celosía (18) , formada por barras verticales (19) , barras inclinadas (20) y barras horizontales (21) . El disipador de la invención es colocado en sustitución de una o varias barras de la estructura triangulada o en celosía, ya sea de una o más barras verticales (22) , de una o más barras inclinadas (23) o de una o más barras horizontales (24) .Figure 14, - Shows a third mode of placement of the heatsink of the invention in a triangulated or lattice structure (18), formed by vertical bars (19), inclined bars (20) and horizontal bars (21). The heatsink of the invention is placed in place of one or more bars of the triangulated or lattice structure, either one or more vertical bars (22), one or more inclined bars (23) or one or more horizontal bars (24).
Figura 15.- Muestra una sección transversal de un perfil en I o H que constituye el elemento disipador de energía. En la figura se muestran las alas (25) , el alma (26) , la curva de acuerdoFigure 15.- Shows a cross section of an I or H profile that constitutes the energy dissipating element. The figure shows the wings (25), the soul (26), the curve according
(27) entre el alma y las alas, y el mecanizado en cuña del borde(27) between soul and wings, and edge wedge machining
(28) .(28).
Figura 16.- Secciones longitudinales del disipador realizada por un plano paralelo al eje del disipador, conteniendo dicho plano paredes de los elementos (1 y 2) que forman la estructura secundaria auxiliar y la sección transversal completa de los elementos disipadores de energía (3) , antes y después de disipar energía.Figure 16.- Longitudinal sections of the heatsink made by a plane parallel to the axis of the heatsink, said plane containing walls of the elements (1 and 2) that form the auxiliary secondary structure and the complete cross section of the energy dissipating elements (3) , before and after dissipating energy.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El disipador de energía sísmica objeto de esta invención, de tipo histerético, comprende al menos dos elementos (1 y 2) , preferentemente perfiles metálicos, que en su conjunto forman lo que denominaremos "estructura secundaria auxiliar" , conectados entre sí mediante al menos un elemento (3) al que llamaremos "elemento disipador de energía" .The seismic energy sink object of this invention, of hysteretic type, comprises at least two elements (1 and 2), preferably metal profiles, which together form what we will call "auxiliary secondary structure", connected to each other by at least one element (3) which we will call "energy dissipating element".
Los elementos que constituyen la "estructura secundaria auxiliar" pueden tener diferentes secciones (I, U, Z etc.) , pueden ser tubos huecos (de sección cuadrada, rectangular etc.) o chapas. Además, el número de perfiles, tubos o chapas que forman la "estructura secundaria auxiliar" puede ser mayor de dos en función de las necesidades de la construcción. El denominado "elemento disipador de energía" está constituido por un perfil, preferentemente metálico, de sección transversal en I o H caracterizado porque el espesor de sus alas (25) es siempre mayor que el del alma (26) lo cual permite mantener las alas dentro del régimen elástico aún cuando las tensiones en el alma rebasen el límite elástico por endurecimiento tras la plastificación,- y porque existe una curva de acuerdo (27) entre el alma y las alas que evita que se produzcan concentraciones de tensiones que conduzcan a roturas prematuras del alma del perfil (es decir, antes de que el material haya agotado toda su capacidad intrínseca de deformación plástica) . Por sus características, estos elementos pueden ser, por ejemplo, trozos de perfil metálico comercial de sección transversal en I o H, del tipo empleado usualmente para vigas y/o pilares de una estructura porticada.The elements that constitute the "auxiliary secondary structure" may have different sections (I, U, Z etc.), they can be hollow tubes (square, rectangular section etc.) or plates. In addition, the number of profiles, tubes or sheets that form the "auxiliary secondary structure" may be greater than two depending on the needs of the construction. The so-called "energy dissipating element" is constituted by a profile, preferably metallic, of cross-section in I or H characterized in that the thickness of its wings (25) is always greater than that of the soul (26) which allows to keep the wings within the elastic regime even when the tensions in the soul exceed the elastic limit due to hardening after plastification, - and because there is a curve of agreement (27) between the soul and the wings that prevents the occurrence of stress concentrations that lead to breakage premature soul profile (that is, before the material has exhausted all its intrinsic plastic deformation capacity). Due to their characteristics, these elements can be, for example, pieces of commercial metal profile of cross-section in I or H, of the type usually used for beams and / or pillars of a porticoed structure.
El o los elementos disipadores de energía (3) se montan sobre los elementos que forman la estructura secundaria auxiliar (1 y 2) de forma que cuando éstos últimos intentan desplazarse unos respecto de otros en la dirección del eje de los mismos, el alma de los elementos disipadores de energía se deforma a flexión en un plano perpendicular al plano de dicha alma. Para ello, los ejes de los elementos disipadores de energía (3) deben formar un ángulo sensiblemente perpendicular (aproximadamente de 90°) respecto a los ejes de los elementos (1) y (2) que forman la estructura secundaria auxiliar. Se persigue con ello que, cuando el disipador de energía sísmica objeto de esta invención reciba una cierta carga derivada del movimiento sísmico, los elementos disipadores de energía (3) puedan plastificar y disipar energía.The energy dissipating element (3) is mounted on the elements that form the auxiliary secondary structure (1 and 2) so that when the latter try to move relative to each other in the direction of their axis, the soul of The energy dissipating elements deform flexurally in a plane perpendicular to the plane of said soul. For this, the axes of the energy dissipating elements (3) must form a substantially perpendicular angle (approximately 90 °) with respect to the axes of the elements (1) and (2) that form the auxiliary secondary structure. It is thus pursued that, when the seismic energy dissipator object of this invention receives a certain load derived from the seismic movement, the energy dissipating elements (3) can plasticize and dissipate energy.
De este modo la energía sísmica introducida por el terremoto es absorbida por los disipadores de energía y no por la estructura resistente primaria de la construcción. Después de un terremoto, los elementos disipadores de energía (3) pueden ser inspeccionados y en su caso sustituidos, sin necesidad de cambiar también los elementos (1 y 2) que forman la estructura secundaria auxiliar.In this way the seismic energy introduced by the earthquake is absorbed by the energy dissipators and not by the primary resistant structure of the construction. After an earthquake, The energy dissipating elements (3) can be inspected and replaced, if necessary, without changing the elements (1 and 2) that form the auxiliary secondary structure.
El control de la energía disipada se ejerce modificando el número, la geometría y la disposición de los elementos disipadores de energía (3) .The control of dissipated energy is exercised by modifying the number, geometry and arrangement of the energy dissipating elements (3).
Por último, el disipador de energía cuenta con otros elementosFinally, the power sink has other elements
(4) , que conectan los dos extremos más distantes de los elementos (1 y 2) que forman la estructura secundaria auxiliar con la estructura resistente primaria de la construcción.(4), which connect the two most distant ends of the elements (1 and 2) that form the auxiliary secondary structure with the primary resistant structure of the construction.
Los disipadores realizados según se ha descrito permiten hacer plastificar el alma de los elementos disipadores de energía (3) cuando los elementos (1 y 2) que forman la estructura secundaria auxiliar son sometidos a cargas axiles en la dirección de su directriz. Del mismo modo, mediante una configuración sencilla y de fácil ejecución se consigue un elemento estructural instalable en una construcción como una simple barra inclinada convencional, pero con la ventaja de que es capaz de disipar energía de forma estable y sin pandear.The heatsinks made as described allow the soul of the energy dissipation elements (3) to be plasticized when the elements (1 and 2) that form the auxiliary secondary structure are subjected to axial loads in the direction of their directrix. In the same way, by means of a simple configuration and of easy execution it is possible to achieve a structural element that can be installed in a construction such as a simple conventional inclined bar, but with the advantage that it is able to dissipate energy in a stable way without panning.
Conviene enfatizar finalmente que uno de los aspectos novedosos y originales de esta invención es la forma de trabajo a la que se someten los perfiles comerciales que aquí pueden emplearse como elementos disipadores de energía (3) . El uso estructural convencional de estos perfiles se caracteriza porque: (a) se emplean en forma de barras cuya longitud (es decir, la dimensión en la dirección del eje de la barra) es mucho mayor que las dimensiones de la sección transversal; (b) la barra se une a otras partes de la estructura fijando sus secciones transversales extremas; (c) los perfiles se someten a momentos flectores que representados mediante vectores, están contenidos en el plano de la sección transversal del perfil; y (d) cuando estas barras se emplean en estructuras sismorresistentes convencionales y zonas de las mismas (comúnmente denominadas "rótulas plásticas") se utilizan como fuente de disipación de energía, lo que se hace plastificar fundamentalmente son las alas del perfil pero no el alma.Finally, it should be emphasized that one of the novel and original aspects of this invention is the way of working to which the commercial profiles that can be used here as energy dissipating elements (3) are subjected. The conventional structural use of these profiles is characterized in that: (a) they are used in the form of bars whose length (ie, the dimension in the direction of the axis of the bar) is much greater than the dimensions of the cross section; (b) the bar is attached to other parts of the structure fixing its extreme cross sections; (c) the profiles are subjected to bending moments that represented by vectors, are contained in the plane of the cross section of the profile; and (d) when these bars are used in conventional seismic-resistant structures and areas thereof (commonly referred to as "plastic kneecaps") are used as a source of energy dissipation, what is basically plasticized are the wings of the profile but not the soul.
En esta invención sin embargo, los perfiles de sección transversal en I o H se someten a una forma de trabajo completamente inusual porque: (a) se emplean trozos cortos de perfil cuya longitud es similar o menor que las dimensiones de la sección transversal; (b) lo que se fija a la estructura secundaria auxiliar no son las secciones transversales extremas del perfil sino sus alas; (c) el perfil se somete a momentos flectores que representados mediante vectores son perpendiculares al plano de la sección transversal de perfil; y (d) la fuente de disipación de energía es la plastificación del alma, no de las alas, de los perfiles.In this invention, however, the cross-sectional profiles in I or H are subjected to a completely unusual form of work because: (a) short pieces of profile are used whose length is similar or less than the cross-sectional dimensions; (b) what is fixed to the auxiliary secondary structure is not the extreme cross sections of the profile but its wings; (c) the profile is subjected to bending moments that represented by vectors are perpendicular to the plane of the profile cross section; and (d) the source of energy dissipation is the plasticization of the soul, not of the wings, of the profiles.
Conviene señalar que aunque la geometría de los perfiles que se emplean usualmente como vigas y pilares en estructuras porticadas convencionales no ha sido pensada para la forma de trabajo a que se someten en esta invención aunque resulta, sorprendentemente, muy adecuada para la misma por las siguientes razones: (a) el espesor de las alas es siempre mayor que el del alma lo cual permite mantener las alas dentro del régimen elástico aún cuando las tensiones en el alma rebasen el límite elástico por endurecimiento del material tras la plastificación; (b) la curva de acuerdo entre el alma y las alas evita que se produzcan concentraciones de tensiones que conduzcan a roturas prematuras del alma del perfil (es decir, antes de que el material haya agotado toda su capacidad intrínseca de deformación plástica) .It should be noted that although the geometry of the profiles that are usually used as beams and pillars in conventional porticoed structures has not been designed for the way of work to which they are subjected in this invention although it is surprisingly very suitable for it by the following reasons: (a) the thickness of the wings is always greater than that of the soul, which allows the wings to be kept within the elastic regime even when tensions in the soul exceed the elastic limit due to hardening of the material after plasticizing; (b) the curve of agreement between the soul and the wings prevents concentrations of stresses that lead to premature breaks of the profile soul (that is, before the material has exhausted all its intrinsic plastic deformation capacity).
Esta adecuación de la geometría de los perfiles a la nueva forma de trabajo a los que se someten en esta invención permite utilizarlos con una mínima manipulación, minimizándose así los costes . MODOS DE REALIZACIÓN DE LA INVENCIÓNThis adaptation of the geometry of the profiles to the new way of working to which they are subjected in this invention allows them to be used with minimal manipulation, thus minimizing costs. EMBODIMENTS OF THE INVENTION
El nuevo disipador, cuyo comportamiento histerético es del tipo elastoplástico, (Figura 1) tiene una estructura secundaria auxiliar formada por dos o más elementos (1, 2) realizados con un material resistente, por ejemplo en acero, y varios elementos disipadores de energía (3) dispuestos con su eje perpendicular al de los elementos (1, 2) anteriores.The new heatsink, whose hysteretic behavior is of the elastoplastic type, (Figure 1) has an auxiliary secondary structure formed by two or more elements (1, 2) made of a resistant material, for example in steel, and several energy dissipating elements ( 3) arranged with its axis perpendicular to that of the previous elements (1, 2).
Partiendo de esta idea, el disipador puede construirse de distintas formas modificando la sección de los elementos disipadores de energía, su estructura secundaria auxiliar y la forma de colocación de los elementos disipadores de energía. Asimismo, la forma de colocación del disipador en las construcciones puede variar en función de las necesidades de amortiguación requeridas.Starting from this idea, the heatsink can be constructed in different ways by modifying the section of the energy dissipating elements, their auxiliary secondary structure and the way of placing the energy dissipating elements. Also, the way of placement of the heatsink in constructions can vary depending on the required damping needs.
Variaciones en la sección de los Elementos Disipadores deVariations in the Dissipating Elements section of
EnergíaEnergy
Los elementos que constituyen los "elementos disipadores de energía" pueden tener secciones en I o H.The elements that constitute the "energy dissipating elements" may have sections in I or H.
Variaciones en la Estructura Secundaria AuxiliarVariations in the Auxiliary Secondary Structure
La Figuras 5, 6, 7 y 8 muestran una realización del disipador en la cual se emplean más de dos perfiles para la formar la "estructura secundaria auxiliar", y los perfiles en I o H que constituyen los "elementos disipadores de energía" están dispuestos en dos filas paralelas. Modos de Colocación de los Elementos Disipadores de Energía Los "elementos disipadores de energía" pueden ser uno o más de uno, pueden estar agrupados en una o en varias zonas, y pueden estar situados en cualquier zona o zonas a lo largo del eje de la "estructura secundaria auxiliar" .Figures 5, 6, 7 and 8 show an embodiment of the heatsink in which more than two profiles are used to form the "auxiliary secondary structure", and the I or H profiles that constitute the "energy dissipating elements" are arranged in two parallel rows. Modes of Placement of Energy Dissipation Elements The "energy dissipation elements" can be one or more of one, can be grouped into one or several zones, and can be located in any zone or zones along the axis of the "auxiliary secondary structure".
La conexión entre los elementos disipadores de energía (3) y los elementos (1 y 2) que constituyen la estructura secundaria auxiliar (Figura 9) podrá llevarse a cabo mediante una fijación con tornillos (7) , preferentemente mediante tornillos de alta resistencia, cuando se desee que no exista ningún movimiento relativo (deslizamiento) entre los elementos disipadores de energía (3) y la estructura secundaria auxiliar.The connection between the energy dissipation elements (3) and the elements (1 and 2) that constitute the auxiliary secondary structure (Figure 9) can be carried out by means of a fastening with screws (7), preferably by means of high-strength screws, when it is desired that there is no relative movement (sliding) between the energy dissipating elements (3) and the auxiliary secondary structure.
Alternativamente, la unión podrá llevarse a cabo mediante una fijación (7) menos resistente, como por ejemplo, mediante tornillos ordinarios con un tamaño menor al alojamiento que definen los puntos de unión, de forma que exista una cierta holgura entre el tornillo y el punto de unión, tanto mayor cuanto menor sea el tornillo o más grande sea el alojamiento en el punto de unión cuando se pretenda que el disipador de energía no absorba oscilaciones pequeñas, y absorba únicamente aquellos esfuerzos que causan un movimiento relativo entre los perfiles o tubos que forman la estructura secundaria auxiliar mayor a la holgura antes comentada. De esta forma, variando la holgura de los puntos de unión y la resistencia de los elementos de fijación podrán definirse características especiales para cada disipador y prepararlo para absorber unas oscilaciones determinadas .Alternatively, the connection can be carried out by means of a less resistant fixing (7), for example, by ordinary screws with a smaller size than the housing that define the attachment points, so that there is a certain clearance between the screw and the point of union, the greater the smaller the screw or the larger the housing at the point of attachment when it is intended that the energy sink does not absorb small oscillations, and only absorb those efforts that cause a relative movement between the profiles or tubes that they form the secondary auxiliary structure greater than the clearance mentioned above. In this way, by varying the clearance of the attachment points and the strength of the fasteners, special characteristics can be defined for each heatsink and prepared to absorb certain oscillations.
Con el objeto de que los elementos disipadores de energía (3) puedan montarse y desmontarse fácilmente de la estructura secundaria auxiliar, los bordes de las alas de estos elementos (3) podrán llevar (Figura 9) un mecanizado en forma de cuña o similar que permita engarzar una mitad del ala del elemento (3) con el ala del elemento inmediatamente anterior y de esta forma fijarla a la estructura secundaria auxiliar incluso sin tornillos .In order that the energy dissipating elements (3) can be easily mounted and removed from the auxiliary secondary structure, the wing edges of these elements (3) may carry (Figure 9) a wedge-shaped or similar machining that allow one half of the element wing (3) to be crimped with the wing of the immediately preceding element and thus fix it to the auxiliary secondary structure even without screws
Las Figuras 9, 10 y 11 muestran tres soluciones para unir las alas de los perfiles en I o H que constituyen los "elementos disipadores de energía" a los perfiles, tubos o chapas que forman la "estructura secundaria auxiliar" . La Figura 9 muestra la solución de unir media ala (3) mediante engarzado en forma de cuña con el ala del perfil anterior, y unir, a la estructura secundaria auxiliar (1 y 2), la otra media ala mediante tornillos (7) . La Figura 10 muestra una solución empleando tornillos (7) a ambos lados del alma. La Figura 11 muestra una solución empleando soldaduras de ángulo en ranuras (8) .Figures 9, 10 and 11 show three solutions for joining the wings of the I or H profiles that constitute the "energy dissipating elements" to the profiles, tubes or sheets that form the "auxiliary secondary structure". Figure 9 shows the solution of joining half a wing (3) by means of a wedge-shaped crimp with the wing of the previous profile, and joining, to the auxiliary secondary structure (1 and 2), the other half wing by means of screws (7). Figure 10 shows a solution using screws (7) on both sides of the soul. Figure 11 shows a solution using angle welds in grooves (8).
Modos de colocación del disipador de energía en las construccionesModes of placement of the energy sink in buildings
La Figura 12 muestra un primer modo de colocación del disipador (9) de la invención, instalado dentro de una estructura porticada (10) que puede ser metálica, de hormigón armado, de madera etc. El pórtico esta formado por vigas (11), columnas (12) y nudos viga-columna (13 y 14) . El disipador se dispone alineado con el eje que definen los centros de dos nudos viga- columna (13 y 14) diametralmente opuestos en el rectángulo que forman las vigas (11) y columnas (12) . Las conexiones del extremo libre de uno de los perfiles (1) , tubos o chapas que forman la "estructura secundaria auxiliar" en el primer punto de unión a la estructura (15) , o del extremo libre de otro de los perfiles, tubos o chapas que forman la "estructura secundaria auxiliar" (2) con el segundo punto de unión a la estructura (16) pueden ser articulaciones reales realizadas con pasadores, o simples conexiones estructurales estándar realizadas con chapas soldadas o atornilladas.Figure 12 shows a first mode of placement of the heatsink (9) of the invention, installed within a porticoed structure (10) that can be metal, reinforced concrete, wood etc. The porch consists of beams (11), columns (12) and beam-column knots (13 and 14). The heatsink is aligned with the axis that defines the centers of two diametrically opposite beam-column nodes (13 and 14) in the rectangle that form the beams (11) and columns (12). The connections of the free end of one of the profiles (1), tubes or plates forming the "auxiliary secondary structure" at the first point of attachment to the structure (15), or of the free end of another of the profiles, tubes or plates forming the "auxiliary secondary structure" (2) with the second point of attachment to the structure (16) can be real joints made with pins, or simple standard structural connections made with welded or bolted plates.
En la Figura 13 se muestra un segundo modo de colocación del disipador objeto de esta patente, instalado dentro de una estructura porticada que puede ser metálica, de hormigón armado, madera etc. La diferencia principal con la realización de la Figura 12 es que el disipador está alineado con un eje que une el centro de uno de los nudos viga- columna (14) con un punto intermedio de la viga (17) . La configuración de la Figura 13 permite dejar un espacio abierto en el vano que puede ser deseable para disponer en él puertas o ventanas.Figure 13 shows a second mode of placement of the heatsink object of this patent, installed inside a porticoed structure that can be metal, reinforced concrete, wood etc. The main difference with the embodiment of Figure 12 is that the heatsink is aligned with an axis that joins the center of one of the beam-column nodes (14) with an intermediate point of the beam (17). The configuration of Figure 13 allows to leave an open space in the bay that may be desirable to arrange doors or windows there.
En la Figura 14 se muestra un tercer modo de colocación del disipador objeto de la invención, instalado en una estructura triangulada o en celosía (18) que puede ser metálica, de hormigón armado, madera etc. La celosía está formada en general por barras verticales (19), barras inclinadas (20) y barras horizontales (21) . El nuevo disipador se puede introducir sustituyendo una o varias barras verticales (22) , una o varias barra inclinadas (23) o una o varias barras horizontales (24) . Con ello se consigue aumentar notablemente la capacidad de disipación de energía de las estructuras trianguladas o en celosía, que cuando se construyen con barras convencionales es muy reducida al estar limitada por el pandeo de las barras a compresión.Figure 14 shows a third mode of placement of the heatsink object of the invention, installed in a triangulated or lattice structure (18) which can be metallic, reinforced concrete, wood etc. The lattice is generally formed by vertical bars (19), inclined bars (20) and horizontal bars (21). The new heatsink can be introduced by replacing one or several vertical bars (22), one or more inclined bars (23) or one or several horizontal bars (24). This significantly increases the energy dissipation capacity of triangulated or lattice structures, which, when constructed with conventional bars, is greatly reduced by being limited by the buckling of compression bars.
El nuevo disipador puede instalarse también en la estructura resistente formando parte de sistemas tipo diada ("toggle brace") o tipo "tijera" (scissors jack system) .The new heatsink can also be installed in the sturdy structure, forming part of diada ("toggle brace") or "scissor" (scissors jack system) systems.
Realización preferente de la invenciónPreferred Embodiment of the Invention
En el modo preferido el nuevo disipador (Figura 1) tiene una estructura secundaria auxiliar formada por dos elementos (1, 2) realizados en un material resistente, por ejemplo en acero, y varios elementos disipadores de energía (3) dispuestos con su eje perpendicular al de los elementos (1, 2) anteriores.In the preferred mode the new heatsink (Figure 1) has an auxiliary secondary structure formed by two elements (1, 2) made of a resistant material, for example in steel, and several energy dissipating elements (3) arranged with its perpendicular axis of the elements (1, 2) above.
La conexión entre ambos los perfiles (1, 2) y los elementos disipadores de energía se realiza mediante engarzado del mecanizado en cuña y tornillos (Figura 9) . El número, la geometría y la disposición de los trozos de perfil de sección transversal en I o H es variable y con estos parámetros se controla el volumen de acero que se desea hacer plastificar, así como la resistencia y rigidez axial del disipador.The connection between both the profiles (1, 2) and the energy dissipating elements is made by crimping the wedge and screw machining (Figure 9). The number, geometry and arrangement of the cross-section profile pieces in I or H is variable and with these parameters the volume of steel to be plasticized is controlled, as well as the resistance and axial stiffness of the heatsink.
Los perfiles (1, 2) se disponen de forma que cuando las almas de los elementos disipadores de energía (3) deforman plásticamente, los perfiles (1, 2) no lleguen a tocarse entre sí. Un extremo de cada perfil (1, 2) se une a la estructura primaria de la construcción como si se tratase de una barra inclinada convencional, preferentemente mediante chapas de conexión (4) . Las Figuras 3 y 4 muestran una sección transversal y una sección longitudinal del modo preferido del nuevo disipador, respectivamente .The profiles (1, 2) are arranged so that when the souls of the energy dissipating elements (3) deform plastically, the profiles (1, 2) do not touch each other. One end of each profile (1, 2) joins the primary structure of the construction as if it were a conventional inclined bar, preferably by connecting plates (4). Figures 3 and 4 show a cross section and a longitudinal section of the preferred mode of the new heatsink, respectively.
El disipador de la invención funciona bajo cargas axiles de tracción/compresión en la dirección de los ejes de los perfiles (1, 2) . Cuando el nuevo disipador se somete a dichas cargas axiles y un perfil (1, 2) intenta desplazarse respecto al otro, el alma de los trozos de perfil de sección transversal en I o H deforma plásticamente a flexión en un plano perpendicular al plano de dicha alma (Figura 2) , y con ello se disipa energía. The heatsink of the invention operates under axial tensile / compression loads in the direction of the axes of the profiles (1, 2). When the new heatsink is subjected to said axial loads and one profile (1, 2) tries to move with respect to the other, the soul of the cross-section profile pieces in I or H deforms plastically to bending in a plane perpendicular to the plane of said soul (Figure 2), and with it energy dissipates.

Claims

REIVINDICACIONES
1. Disipador de energía sísmica para una estructura resistente primaria de una construcción, que comprende: a) al menos dos elementos (estructura secundaria auxiliar) , preferentemente perfiles, tubos o chapas, dispuestos con sus ejes en paralelo (1 y 2) , fijados cada uno de estos elementos por uno de sus extremos a la estructura resistente primaria de la construcción; b) uno o más elementos disipadores de energía (3) que conectan los elementos de la estructura secundaria auxiliar (1, 2), de forma que los ejes de los elementos disipadores de energía (3) son sensiblemente perpendiculares a los ejes de dicha estructura secundaria auxiliar (1, 2) .1. Seismic energy dissipator for a primary resistant structure of a construction, comprising: a) at least two elements (auxiliary secondary structure), preferably profiles, tubes or sheets, arranged with their axes in parallel (1 and 2), fixed each of these elements at one of its ends to the primary resistant structure of the construction; b) one or more energy dissipating elements (3) connecting the elements of the auxiliary secondary structure (1, 2), so that the axes of the energy dissipating elements (3) are substantially perpendicular to the axes of said structure auxiliary secondary (1, 2).
2. Disipador de energía sísmica para una estructura resistente primaria de una construcción según reivindicación 1, caracterizado porque los elementos disipadores de energía (3) se colocan de forma que el movimiento sísmico los somete a deformaciones de flexión en un plano perpendicular al plano del alma (26) para propiciar que el alma plastifique y se disipe energía.2. Seismic energy dissipator for a primary resistant structure of a construction according to claim 1, characterized in that the energy dissipating elements (3) are positioned so that the seismic movement subjects them to bending deformations in a plane perpendicular to the plane of the soul (26) to encourage the soul to plasticize and dissipate energy.
3. Disipador de energía sísmica para una estructura resistente primaria de una construcción según reivindicación 2 caracterizado porque los elementos disipadores de energía (3) tienen una sección en I o H, preferentemente en I.3. Seismic energy dissipator for a primary resistant structure of a construction according to claim 2 characterized in that the energy dissipating elements (3) have a section in I or H, preferably in I.
4. Disipador de energía sísmica para una estructura resistente primaria de una construcción según reivindicaciones 2 ó 3 , caracterizado porque la conexión entre ambos la estructura secundaria auxiliar (1 y 2) y los elementos disipadores de energía (3) se realiza mediante engarzado de un mecanizado en cuña de los bordes de las alas y tornillos (Figura 9) . 4. Seismic energy dissipator for a primary resistant structure of a construction according to claims 2 or 3, characterized in that the connection between both the auxiliary secondary structure (1 and 2) and the energy dissipating elements (3) is made by crimping a Wedge machining of the edges of the wings and screws (Figure 9).
PCT/ES2010/000179 2009-04-17 2010-04-16 System for dissipating seismic energy in constructions WO2010119154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200901074A ES2350217B2 (en) 2009-04-17 2009-04-17 SYSTEM TO DISSIP SISMIC ENERGY IN CONSTRUCTIONS.
ESP200901074 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119154A1 true WO2010119154A1 (en) 2010-10-21

Family

ID=42982144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000179 WO2010119154A1 (en) 2009-04-17 2010-04-16 System for dissipating seismic energy in constructions

Country Status (2)

Country Link
ES (1) ES2350217B2 (en)
WO (1) WO2010119154A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251364A (en) * 2011-06-03 2012-12-20 Nippon Light Metal Co Ltd Vibration control device
EP2921612A1 (en) * 2014-03-18 2015-09-23 Maurer Söhne Engineering GmbH & Co. KG Energy dissipating device
CN105980635A (en) * 2014-01-24 2016-09-28 马可·法拉利 Dissipator
JP2018003466A (en) * 2016-07-04 2018-01-11 ホリー株式会社 Vibration damping device
EP3631230A4 (en) * 2017-05-22 2021-03-10 Istanbul Teknik Universitesi Modular shock absorber structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8703955A1 (en) * 1986-05-05 1987-03-01 Rodriguez Borlado Olavarrieta Improvements in structures resistant to seismic movements (Machine-translation by Google Translate, not legally binding)
WO2008138143A1 (en) * 2007-05-15 2008-11-20 Constantin Christopoulos Cast structural yielding fuse
WO2008149996A1 (en) * 2007-06-06 2008-12-11 Fukuvi Chemical Industry Co., Ltd. Earthquake damper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8703955A1 (en) * 1986-05-05 1987-03-01 Rodriguez Borlado Olavarrieta Improvements in structures resistant to seismic movements (Machine-translation by Google Translate, not legally binding)
WO2008138143A1 (en) * 2007-05-15 2008-11-20 Constantin Christopoulos Cast structural yielding fuse
WO2008149996A1 (en) * 2007-06-06 2008-12-11 Fukuvi Chemical Industry Co., Ltd. Earthquake damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAHIS CAROLA XAVIER: "Desarrollo of un nuevo disipador of inergia para diseno sismoresistente. Analisis numerico and validacion experimental of su comportamiento.", TESIS DOCTORAL UPC, October 2000 (2000-10-01), BARCELONA, pages 2.15, Retrieved from the Internet <URL:www.tdx.cat/TDX-0517101-124618> [retrieved on 20100712] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251364A (en) * 2011-06-03 2012-12-20 Nippon Light Metal Co Ltd Vibration control device
CN105980635A (en) * 2014-01-24 2016-09-28 马可·法拉利 Dissipator
US10590670B2 (en) 2014-01-24 2020-03-17 Marco Ferrari Dissipator
EP2921612A1 (en) * 2014-03-18 2015-09-23 Maurer Söhne Engineering GmbH & Co. KG Energy dissipating device
WO2015140188A1 (en) * 2014-03-18 2015-09-24 Maurer Söhne Engineering GmbH & Co. KG Energy dissipating device
US9958022B2 (en) 2014-03-18 2018-05-01 Maurer Söhne Engineering GmbH & Co. KG Energy dissipating device
EA031313B1 (en) * 2014-03-18 2018-12-28 Маурер Зёне Инжиниринг Гмбх & Ко. Кг Energy dissipating device
JP2018003466A (en) * 2016-07-04 2018-01-11 ホリー株式会社 Vibration damping device
EP3631230A4 (en) * 2017-05-22 2021-03-10 Istanbul Teknik Universitesi Modular shock absorber structure

Also Published As

Publication number Publication date
ES2350217A1 (en) 2011-01-20
ES2350217B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US8424252B2 (en) Buckling restrained brace
JP5123378B2 (en) Seismic joint device
US20150000228A1 (en) Buckling restrained brace with lightweight construction
WO2010119154A1 (en) System for dissipating seismic energy in constructions
EP2997203A1 (en) Modular structural system
KR101468167B1 (en) Frame structure with high endurance level against earthquake
Kadarningsih et al. Proposals of beam column joint reinforcement in reinforced concrete moment resisting frame: A literature review study
KR100944363B1 (en) Iron frame brace having bucking protection part
Kim et al. Experimental study of using cantilever type steel plates for passive energy dissipation
JP6983857B2 (en) Truss restraint buckling restraint brace
US10253837B2 (en) Sacrificial energy dissipation mechanism
David et al. Seismic performance of eccentrically braced frames
ES2357591B2 (en) SISMIC ENERGY SINK FOR A PRIMARY RESISTANT STRUCTURE OF A CONSTRUCTION.
Das et al. Performance-based seismic design of an innovative HCW system with shear links based on IDA
KR20120123916A (en) Post reinforcing structure for buckling of braces in the steel moment connection frame
KR20120042183A (en) Damping type structure
JP2017082455A (en) Hysteretic damper and antivibration structure of building
CN107288399B (en) Buckling restrained brace, building and assemble method containing L-type dissipative cell
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
WO2014158109A1 (en) Innovation for shear reinforcement of coupling beams of coupled shear walls
KR101294601B1 (en) Damping device
KR102394589B1 (en) Truss ball space frame seismic reinforcement device
WO2021250523A1 (en) Restrained buckling brace with reinforcement and method for manufacturing same
Wongpakdee et al. Effects of column capacity on the seismic behavior of mid-rise strong-column-weak-beam moment frames
Muyeed-Ul-Azam et al. Effect of infill as a structural component on the column design of multi-storied building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764129

Country of ref document: EP

Kind code of ref document: A1