WO2010118718A1 - Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse - Google Patents

Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse Download PDF

Info

Publication number
WO2010118718A1
WO2010118718A1 PCT/DE2010/000251 DE2010000251W WO2010118718A1 WO 2010118718 A1 WO2010118718 A1 WO 2010118718A1 DE 2010000251 W DE2010000251 W DE 2010000251W WO 2010118718 A1 WO2010118718 A1 WO 2010118718A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
potting material
radiation
main surface
base body
Prior art date
Application number
PCT/DE2010/000251
Other languages
English (en)
French (fr)
Inventor
Thomas Bemmerl
Ulrich Streppel
Bert Braune
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to US13/263,104 priority Critical patent/US8848297B2/en
Priority to JP2012505043A priority patent/JP2012524287A/ja
Priority to EP10716457A priority patent/EP2419779A1/de
Priority to CN2010800169804A priority patent/CN102395913A/zh
Publication of WO2010118718A1 publication Critical patent/WO2010118718A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Definitions

  • Lens, optoelectronic component having a lens and method for producing a lens
  • the present invention relates to a lens with a base body, an optoelectronic component with a light source and such a lens and a method for producing such a lens.
  • the invention has for its object to provide an improved lens that meets the above requirements.
  • a further object of the invention is to specify an optoelectronic component which has an improved emission characteristic, in particular a homogeneous overall impression.
  • a lens which has a
  • Base body and a potting material includes.
  • the main body has a first main surface, a second main surface and at least one cavity, which is arranged on the first main surface.
  • the potting material is arranged in the cavity of the base body and has at least one diffuser which scatters radiation of at least one wavelength range.
  • the lens has, in particular, at least two partial regions: the main body and the cavity with potting material arranged therein.
  • the main body has a lens shape that allows a light guide of radiation entering the lens.
  • the base body is designed in the manner of a converging lens or a Fresnel lens.
  • the base body has no diffuser, so that radiation entering the main body is conducted in the main body without being subject to scattering processes.
  • Radiation that enters the potting material is scattered at the diffuser.
  • Radiation is diffusely scattered at the diffuser.
  • the lens has at least two partial regions, which differ in particular by the degree of spreading of the material. This allows at least two different in the number of scattering processes beam paths in the lens.
  • the homogeneous visual appearance of the lens can be adapted to the requirements of lens design depending on the special arrangement of the cavity in the base body. A minimization of optical Auskoppelmannen while maintaining the radiation characteristics is possible with advantage.
  • such a lens therefore has at least two light paths, which differ in particular on the basis of the scattering processes.
  • a lens which has different properties in terms of scattering and refraction can thus be achieved with advantage.
  • the volume fraction of the lens having a diffuser can be minimized.
  • the entire main body has a diffuser, but only the potting material in the lens, in particular directly above the light source, in which this requirement is desired.
  • the cavity is completely filled by the potting material.
  • the potting material preferably ends flush with the first main surface of the base body.
  • no elevations or depressions are formed between the potting material and the first main surface.
  • the first main surface of the main body is in particular seamless and flush in the of the main body opposite surface of the potting material over. A continuous interface between the lens and the surrounding medium, which has no irregularities, in particular in the transition between the potting material and the base body, can thus be achieved with advantage.
  • the surface facing away from the base body of the potting material may have a curvature, in particular a concave or convex curvature.
  • a curvature in particular a concave or convex curvature.
  • an unevenness for example a step, can occur in the transition between the casting material and the base body.
  • a flush completion of the potting material with the first major surface of the body is not mandatory in this case.
  • the proportion of potting material on the lens is preferably not more than 20%, preferably not more than 10%, particularly preferably not more than 5%.
  • the fraction of the green body on the lens is thus preferably more than 80%, preferably more than 90%, particularly preferably more than
  • the potting material is epoxy resin.
  • the main body of the lens preferably comprises silicone, epoxy or a mixture of silicone and epoxy.
  • the base body may contain thermoplastic or thermoset materials such as PMMA (PMMA: polymethyl methacrylate) or PC (PC: polycarbonates).
  • PMMA polymethyl methacrylate
  • PC PC: polycarbonates
  • the refractive index of the material of the base body is similar to the refractive index of the potting material.
  • the refractive index of the material of the base body differs from the refractive index of the casting material by not more than 10%.
  • the main body and the potting material contain the same material.
  • the potting material and the body are in direct contact.
  • the base body and the potting material adjoin one another directly and there is no space or gap at the interface between the base body and potting material.
  • the first main surface has a curvature at least in places.
  • the first main surface is not flat.
  • the first major surface has a concave curvature or a convex curvature.
  • the first major surface is curved in places.
  • the second main surface has coupling-out structures.
  • the coupling-out structures are roughenings of the second main surface.
  • radiation penetrating the lens may be scattered on exiting the lens at the second major surface. Radiation is preferred diffused at the roughening of the second major surface. As a result, radiation which is guided by such a lens has an improved, in particular homogeneous, emission characteristic upon exiting the lens.
  • the base body has at least one reflective subregion.
  • the base body has two reflective subregions.
  • the two reflective portions are disposed on the first major surface and spaced from the cavity.
  • the reflective subregion of the base body may be a projection which has a shape such that radiation entering the reflective subregion is reflected, for example, at an interface of the reflective subregion.
  • the reflective portion may have surfaces coated with a reflective material.
  • the base body is formed at least in places in the manner of a Fresnel lens.
  • a Fresnel lens has, in particular, a plurality of steps on one of the main surfaces.
  • the first main surface preferably has the plurality of steps.
  • the first stage of the Fresnel lens forms the cavity of the base body.
  • the first stage of the Fresnel lens is, in particular, the middlemost stage on the first major surface of the lens.
  • the base body has at least one further cavity, which at the first Main surface is arranged and contains a potting material having at least one diffuser.
  • the number of further cavities with potting material contained therein preferably depends on the particular requirement and / or use of the lens. A selective diffusing of any lens areas depending on the given homogeneity requirement and design requirement of the lens is thus advantageously possible.
  • Basic body at least one converter.
  • the converter converts light of one wavelength into light of another wavelength.
  • the converter converts blue radiation at least partially into yellow radiation, which then mixes together with the blue radiation and enables white mixed radiation.
  • an optoelectronic component which has at least one lens and at least one light source, wherein the light source is arranged on the side of the first main surface.
  • the lens of the optoelectronic component is designed as disclosed in connection with one of the embodiments described above. That is, all features disclosed in connection with the lens are also disclosed for the lens of the optoelectronic device and vice versa.
  • the light source is arranged in particular on the side of the first main surface.
  • the first main surface thus forms a radiation entrance surface for radiation emitted by the light source.
  • the second major surface of the lens forms a radiation exit surface for that of the light source emitted and passed through the lens radiation.
  • the radiation entrance surface accordingly has the cavity with potting material contained therein.
  • the potting material contained in the diffuser is arranged upstream of the base body such that radiation which penetrates the potting material is subsequently conducted in the base body.
  • the potting material is thus arranged between the light source and the base body. Scattering processes of the radiation emitted by the light source thus occur
  • the optoelectronic component described here is based inter alia on the recognition that the
  • Abstrahl characterizing of components in combination with a clear lens has disturbing intensity peaks in the spatial radiation.
  • the device described here makes use of the idea of combining a potting material contained with a diffuser with a clear-sighted basic body. Due to the non-directional scattering of the radiation at the diffuser, the disturbing intensity peaks in the emission characteristic are advantageously avoided. As a result of the scattering of the emitted radiation at the diffuser, the color homogeneity is further improved and the electromagnetic radiation is smoothed in its intensities.
  • Color homogeneity is in particular the stability of the color locus via the spatial radiation through the surface of the component.
  • the effect can be avoided by such a lens that in the off state of the device, the light source for a viewer is visible, especially yellow.
  • This effect occurs in particular with white-emitting LED chips having a chip and a converter.
  • the component comprising a lens and a light source is accordingly designed such that the light source, in particular a white-emitting LED chip, is not visible in the switched-off state of the component.
  • such a lens fulfills the requirement to further ensure the emission of the LED chip in the switched-on state.
  • the potting material is disposed on any outside of the device.
  • the potting material with the diffuser contained therein is advantageously protected against mechanical and / or chemical influences.
  • Mechanical and / or chemical influences include, for example, impacts, penetration of liquid into the potting material or scratching of the potting material.
  • the light source is preferably arranged directly opposite the cavity of the base body.
  • the lateral extent of the cavity is less than or equal to the lateral extent of the light source.
  • the lateral extent is the extent that extends along the first major surface.
  • the light source is arranged outside the cavity of the base body.
  • the light source is arranged at a distance from the lens.
  • the light source can be arranged within the cavity of the base body.
  • the potting material completely surrounds the light source.
  • the light source is a light emitting diode (LED).
  • LED light emitting diode
  • a method for producing a lens is specified.
  • a lens can be produced, as disclosed in connection with one of the embodiments described above. That is, all features disclosed in connection with the lens or the device are also disclosed for the method and vice versa.
  • the potting material is introduced into the cavity by means of dispensing technology.
  • the potting material is introduced in droplet form.
  • this is a syringe or a pipette use.
  • the diffuser is preferably mixed before introducing the potting material into the cavity with the potting material.
  • the diffuser is distributed in the potting material such that the concentration of the diffuser is evenly distributed in the potting material.
  • FIGS. 1 to 3 each show a schematic cross section of an exemplary embodiment of an optoelectronic component according to the invention
  • FIG. 4 shows a schematic cross-section of an embodiment of a lens according to the invention during the process step of dispensing
  • FIGS. 5A, 5B each show a schematic cross section of an embodiment of a lens according to the invention.
  • FIG. 1 shows a schematic cross section of an optoelectronic component comprising a lens 1 and a light source 5.
  • the lens 1 has a first main surface 21 and a second main surface 22.
  • the light source 5 is in particular arranged upstream of the first main surface 21.
  • the first main surface 21 is accordingly a radiation entrance surface for radiation emitted by the light source 5.
  • Main surface 22 is a radiation exit surface for radiation emitted by the light source 5.
  • the light source 5 is preferably a semiconductor body and has an active layer.
  • the active layer of the light source 5 is preferably a semiconductor body and has an active layer.
  • Semiconductor body preferably has a pn junction, a double heterostructure, a single quantum well (SQW, single quantum well) or a multiple quantum well structure (MQW, multi quantum well) for generating radiation.
  • SQW single quantum well
  • MQW multiple quantum well structure
  • the semiconductor body is preferably a light-emitting diode chip, in particular a light-emitting diode.
  • the semiconductor body is preferably a thin-film semiconductor body.
  • a thin-film semiconductor body is in the context of the application Semiconductor body, during its production, the growth substrate on which a semiconductor layer sequence comprising the semiconductor body, for example epitaxially grown, has been detached.
  • the layers of the semiconductor body are preferably based on a III / V compound semiconductor material.
  • a III / V compound semiconductor material has at least one element of the third main group such as Al, Ga, In, and a fifth main group element such as N, P, As.
  • the term III / V compound semiconductor material includes the group of binary, ternary and quaternary compounds containing at least one element from the third main group and at least one element from the fifth main group, in particular nitride and phosphide compound semiconductors.
  • Such a binary, ternary and quaternary compound may additionally have, for example, one or more dopants and additional constituents.
  • the light source 5 also has a radiation exit side through which radiation generated in the light source can leave the light source 5.
  • the radiation exit side of the light source 5 in particular faces the radiation entrance surface 21 of the lens.
  • the lens 1 has a base body 23, in which a cavity 3 is formed.
  • the cavity 3 is at the first
  • Main surface 21 arranged and in particular the light source 5 faces.
  • the cavity 3 of the radiation exit side of the light source 5 is directly opposite.
  • the lateral extent of the cavity 3 is less than or equal to the lateral extent of the light source 5.
  • a potting material 4 is arranged, which has at least one diffuser which scatters radiation of at least one wavelength range.
  • the diffuser has the property to scatter radiation emitted by the light source 5.
  • the light source 5 is preferably arranged outside the cavity 3 of the main body 23. Preferably, the light source 5 is arranged at a distance from the lens 1.
  • the light source 5 is thus preferably not enclosed by the potting material 4, but is spaced from the potting material 4.
  • the lens 1 is in particular an independent component of the optoelectronic component and can preferably be manufactured separately.
  • the cavity 3 is preferably completely filled with the potting material 4.
  • the filling level of the potting material 4 in the cavity 3 is therefore dimensioned such that after curing of the potting material 4, the surface of the potting material 4 is preferably flush with the
  • a lens 1 which has a main body 23 and a potting material 4 with diffuser contained therein,
  • the light guidance in the lens 1 improves.
  • the emission characteristic of the component improves.
  • a homogeneous allows itself so with advantage.
  • the lens 1 comprising a base body 23 and a potting material 4 with diffuser contained therein avoided the effect that in the off state of the device, the light source 5 is visible to an observer, in particular appears yellow.
  • the lens 1 fulfills the requirement to further ensure the emission of the light source 5 in the switched-on state, in particular not to shade the emitted radiation of the light source 5.
  • the lens 1 thus has the property that in the off state of the device, the light source 5 is not visible to the viewer, wherein the lens 1 in the on state of the device for the radiation emitted by the light source 5 radiation-permeable properties and at the same time the radiation characteristics of Improved component.
  • the lens 1 due to the structure of base body 23 and potting material 4 may have different sub-areas, each allowing different light paths. Radiation passing through the first
  • Main surface 21 enters the base body 23 of the lens 1 is passed without scattering processes in the lens 1 to the second main surface 22 and can emerge at the second main surface 22 of the lens 1.
  • Radiation entering the potting material 4 at the first major surface 21 is scattered in the potting material 4, particularly at the diffuser disposed therein.
  • Radiation is diffusely scattered in the potting material 4.
  • the in the Potting material 4 diffusely scattered radiation is then passed in the main body 23 to the second main surface 22 and exits there from the lens 1.
  • the cavity with potting material 4 contained therein is arranged directly opposite the radiation exit side of the light source 5, hotspots in the emission characteristic of the component can be reduced or even avoided by the diffuse scattering processes in the potting material 4. In particular, can be due to the diffuse scattering a homogeneous
  • Distribution of the radiation emitted by the light source 5 and passes through the lens 1, are made possible.
  • FIG. 1 shows two examples of possible beam paths.
  • Radiation 7 incident on the first major surface 21 enters the body 23 at the first major surface 21, is guided in the body 23 to the second major surface 22 without being scattered in the body, and exits the lens 1 at the second Main surface 22.
  • the radiation 7 does not pass through the potting material 4 and is therefore not scattered in the lens 1.
  • Radiation 6 entering the potting material 4 at the first major surface 21 is applied to the diffuser in the potting material 4
  • Potting material 4 diffused.
  • the diffused scattered radiation 6a, 6b, 6c, 6d passes from the potting material 4 into the main body 23, where it is conducted to the second main surface 22, and exits at the second main surface 22 as diffused radiation 6a, 6b, 6c, 6d.
  • the lens 1 therefore has two light paths, a light path in which radiation is not subject to scattering processes and a second light path that passes through the cavity and the potting material 4 contained therein and experiences in this scattering process.
  • a homogeneous radiation characteristic of the radiation emerging from the lens 1 can be achieved.
  • the lens 1 can be formed by targeted arrangement of the cavity 3 in the base body 23 so that it meets predetermined homogeneity requirements and design requirements.
  • the main body 23 may in particular a plurality of
  • the potting material 4 is preferably epoxy resin.
  • the main body 23 preferably comprises silicone, an epoxy or a mixture of silicone and epoxy.
  • the base body 23 at least one thermoplastic material such as PMMA (PMMA: polymethyl methacrylate) or PC
  • PC polycarbonates
  • the refractive index of the material of the potting material 4 is preferably similar to the refractive index of the material of the base body 23. It is also possible that the potting material 4 and the base body 23 contain the same material. As a result, the radiation emitted by the light source 5 is advantageously not refracted or reflected at the interface between the casting material 4 and the base body 23. Optical Auskoppellage can be minimized with advantage.
  • a mechanical or chemical stress is to be understood in particular as mechanical or chemical environmental influences, such as, for example, moisture, impacts and / or scratching.
  • the lens may further comprise a converter for radiation conversion of the radiation emitted by the light source 5 (not shown). As a result, it is possible to emit mixed radiation of the component, in particular the emission of white light.
  • the first main surface 21 preferably has at least in places a curvature or a curvature.
  • the first main surface 21 is formed bent.
  • the first major surface 21 may have a curvature designed for use as a condenser lens. The curvature of the first main surface 21 depends in particular on the intended use of the lens 1.
  • FIG. 2 differs from the exemplary embodiment of FIG. 1 in that the second main surface 22 has coupling-out structures.
  • the second main surface 22 has a roughening 8. Radiation emitted by the light source 5, which is conducted in the lens 1, is thereby at the second before exiting the lens 1 Main surface 22 diffused. This further improves the emission characteristics of the device. In particular, this enables an improved homogeneous emission characteristic of the component.
  • Examples of possible beam paths through the lens 1 are as shown in Figure 1 by arrows 6, 7, 6a, 6b, 6c, 7a, 7b, 7c.
  • the beam 7 which does not pass through the potting material 4 and which is guided undisrupted in the lens 1, is diffusely scattered at the second main surface 22, in particular at the roughening 8, so that the beam 7 is divided into a plurality of scattered radiation beams 7a, 7b, 7c divides.
  • Potting material 4 is scattered so that even before light guide in the lens 1, a plurality of scattered radiation 6a, 6b, 6c arise, is also scattered at the roughening 8 each so that the scattered radiation 6a, 6b, 6c each decompose into further scattered radiation.
  • Radiation, which therefore does not pass through the potting material 4, is only diffusely scattered at the second major surface 22. Radiation passing through the potting material 4, on the other hand, is scattered in the potting material 4, the diffuser, and the second major surface 22. A homogeneous radiation characteristic of the passing through the lens 1 radiation 6, 7 is thus possible with advantage.
  • the embodiment of Figure 3 differs from the embodiment of Figure 1 in that the base body 23 has reflective portions 9a, 9b.
  • the reflective subregions 9a, 9b are on the first major surface 21 and laterally spaced from the cavity 3.
  • the lateral sections 9a, 9b may preferably have a height such that they surround the light source 5.
  • Radiation emitted by the light source 5 can be reflected at the reflecting subregions 9a, 9b in such a way that the appearance, in particular the
  • Examples of possible beam paths are again shown by arrows 6, 6a, 6b, 6c, 6d, 7, 7a, 7b.
  • a beam 7 emitted by the light source 5 enters one of the reflective subareas 9a, is guided in the reflective subarea 9a as a beam 7a, strikes the first main surface 21, which in particular has reflective properties, is reflected at this main surface 21, that the beam is guided in the direction of the second main surface 22 and emerges from the lens 1 at the second main surface 22 as a beam 7b. Accordingly, this jet 7 is not conducted through the potting material 4 and thus experiences no scattering processes in the lens 1.
  • the reflective properties of the reflective subregions 9a, 9b can be realized, for example, by means of a reflective coating 10 applied to the first main surface 21. Alternatively, by the refractive index difference between reflective
  • Subregions 9a, 9b and surrounding medium a reflection can be achieved.
  • the embodiment of Figure 4 illustrates a cross section of a lens 1 in the manufacturing process.
  • the lens of the embodiment of Figure 4 is formed in the manner of a Fresnel lens.
  • a Fresnel lens has, in particular on a main surface, in this case the first main surface 21, a plurality of steps 12a, 12b, 12c.
  • the second main surface 22 may be flat.
  • the cavity of the base body 23 is preferably formed by the first stage 12a of the Fresnel lens.
  • the first stage 12a of the Fresnel lens is in particular the centermost stage of the lens.
  • the first step 12a has a height H which is filled with the potting material 4.
  • the filling level of the potting material 4 may be smaller than the height H of the first stage 12a (not shown). In this case, the potting material 4 does not completely fill the height H of the first stage 12a, so that radiation can be introduced into the Fresnel structure, in particular into the first stage 12a, which advantageously contributes to an improved efficiency of the optics.
  • the potting material 4 is preferably introduced by means of Dispenstechnik in the cavity. For this purpose, the potting material 4 is dripped into the cavity 3, for example. The dripping can be carried out, for example, by means of a syringe 11 or a pipette 11.
  • the temperature of the potting material 4 in the process step of dispensing is preferably below the melting temperature of the material of the base body 23.
  • the potting material 4 is then cured by means of cooling.
  • the potting material 4 can be introduced into the cavity 3 by means of a jetting process (not shown).
  • FIGS. 5A and 5B each show a lens 1 comprising a main body 23 and a potting material 4.
  • the potting material 4 does not terminate flush with the first main surface 21 of the base body 23.
  • the surface of the potting material 4 facing away from the base body 23 has a curvature. For example, that of the
  • Base 23 remote from the surface of the potting material 4 may be formed in the manner of a converging lens or a diverging lens, depending on the intended use of the lens first
  • FIG. 5B shows a lens 1, in which the surface facing away from the base 23 of the potting material 4 has a convex curvature.
  • a predetermined, in particular desired light guide can be achieved in this region of the lens 1.
  • a bundling of radiation or a dispersion of radiation can be achieved in certain areas.
  • the invention is not limited by the description based on the embodiments of these, but includes each new feature and any combination of features, which in particular includes any combination of features in the claims, even if this feature or this combination itself is not explicitly in the claims Embodiments is given.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Led Device Packages (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Es ist eine Linse (1) vorgesehen, die einen Grundkörper (23) und ein Vergussmaterial (4) umfasst. Der Grundkörper (23) weist eine erste Hauptfläche (21), eine zweite Hauptfläche (22) und zumindest eine Kavität (3) auf, die an der ersten Hauptfläche (21) angeordnet ist. Das Vergussmaterial ist in der Kavität (3) angeordnet und weist zumindest einen Diffusor auf, der Strahlung zumindest eines Wellenlängenbereichs streut. Weiter ist ein optoelektronisches Bauelement angegeben, das eine derartige Linse aufweist. Ferner ist ein Verfahren zur Herstellung einer solchen Linse angegeben.

Description

Beschreibung
Linse, optoelektronisches Bauelement aufweisend eine Linse und Verfahren zur Herstellung einer Linse
Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2009 017 946.1, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.
Die vorliegende Erfindung betrifft eine Linse mit einem Grundkörper, ein optoelektronisches Bauelement mit einer Lichtquelle und einer derartigen Linse und ein Verfahren zur Herstellung einer derartigen Linse.
Bei Kombination eines LED-Chips mit einer Linse kann insbesondere bei weißen LED-Chips, die einen Chip und einen Konverter aufweisen, der Effekt auftreten, dass im ausgeschalteten Zustand aufgrund des Konverters der LED-Chip für den Betrachter sichtbar ist, insbesondere gelb erscheint. Dieser Effekt ist insbesondere bei bestimmten
Verwendungszwecken nicht erwünscht und sollte mit Vorteil vermieden werden, wobei die Abstrahlung des LED-Chips im eingeschalteten Zustand weiterhin gewährleistet sein sollte.
Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Linse anzugeben, die den oben genannten Anforderungen entspricht. Ferner ist es Aufgabe der Erfindung, ein optoelektronisches Bauelement anzugeben, das eine verbesserte Abstrahlcharakteristik, insbesondere einen homogenen Gesamteindruck, aufweist. Weiter ist es Aufgabe der
Erfindung, ein Verfahren zur Herstellung einer Linse mit verbessertem homogenen Gesamteindruck anzugeben. Diese Aufgaben werden unter anderem durch eine Linse mit den Merkmalen des Patentanspruchs 1, ein optoelektronisches Bauelement mit den Merkmalen des Anspruchs 11 und ein Verfahren zur Herstellung einer Linse mit den Merkmalen des Anspruchs 14 gelöst. Vorteilhafte Ausführungsformen und bevorzugte Weiterbildungen der Linse, des optoelektronischen Bauelements und des Verfahrens zur Herstellung der Linse sind Gegenstand der abhängigen Ansprüche .
Erfindungsgemäß ist eine Linse vorgesehen, die einen
Grundkörper und ein Vergussmaterial umfasst . Der Grundkörper weist eine erste Hauptfläche, eine zweite Hauptfläche und zumindest eine Kavität auf, die an der ersten Hauptfläche angeordnet ist. Das Vergussmaterial ist in der Kavität des Grundkörpers angeordnet und weist zumindest einen Diffusor auf, der Strahlung zumindest eines Wellenlängenbereichs streut .
Die Linse weist insbesondere zumindest zwei Teilbereiche auf: den Grundkörper und die Kavität mit darin angeordnetem Vergussmaterial .
Der Grundkörper weist eine Linsenform auf, die eine Lichtführung von in die Linse eintretender Strahlung ermöglicht. Beispielsweise ist der Grundkörper nach Art einer Sammellinse oder einer Fresnel-Linse ausgebildet. Vorzugsweise weist der Grundkörper keinen Diffusor auf, so dass in den Grundkörper eintretende Strahlung im Grundkörper geleitet wird, ohne Streuprozessen zu unterliegen.
Strahlung, die in das Vergussmaterial eintritt, wird dagegen an dem Diffusor gestreut. Vorzugsweise wird Strahlung an dem Diffusor diffus gestreut. Die Linse weist demnach zumindest zwei Teilbereiche auf, die sich insbesondere durch den Streugrad des Materials unterscheiden. Dadurch ermöglichen sich zumindest zwei in der Anzahl der Streuprozesse unterscheidende Strahlengänge in der Linse. Das homogene optische Erscheinungsbild der Linse kann so je nach spezieller Anordnung der Kavität im Grundkörper an Anforderungen des Linsensdesigns angepasst sein. Eine Minimierung von optischen Auskoppelverlusten unter Beibehaltung der Abstrahlcharakteristik ermöglicht sich mit Vorteil .
Eine derartige Linse weist aufgrund der zumindest zwei Teilbereiche demnach zumindest zwei Lichtpfade auf, die sich insbesondere anhand der Streuprozesse unterscheiden. Eine Linse, die bereichsweise unterschiedliche Eigenschaften betreffend Streuung und Refraktion aufweist, kann so mit Vorteil erzielt werden.
Ferner kann der Volumen-Anteil der Linse, der einen Diffusor aufweist, minimiert werden. Insbesondere ist nicht zwingend notwendig, dass der gesamte Grundkörper einen Diffusor aufweist, sondern lediglich das Vergussmaterial in der Linse, insbesondere direkt oberhalb der Lichtquelle, bei dem diese Anforderung erwünscht ist.
Vorzugsweise ist die Kavität vollständig von dem Vergussmaterial ausgefüllt. Insbesondere schließt das Vergussmaterial bevorzugt bündig mit der ersten Hauptfläche des Grundkörpers ab. Vorzugsweise sind keine Erhöhungen oder Vertiefungen zwischen Vergussmaterial und erster Hauptfläche ausgebildet . Die erste Hauptfläche des Grundkörpers geht insbesondere nahtlos und bündig in die von dem Grundkörper abgewandte Oberfläche des Vergussmaterials über. Eine durchgängige Grenzfläche zwischen Linse und umgebendem Medium, die insbesondere im Übergang zwischen Vergussmaterial und Grundkörper keine Unebenheiten aufweist, kann so mit Vorteil erzielt werden.
Alternativ kann die von dem Grundkörper abgewandte Oberfläche des Vergussmaterials eine Krümmung aufweisen, insbesondere eine konkave oder konvexe Wölbung. In diesem Fall kann im Übergang zwischen Vergussmaterial und Grundkörper eine Unebenheit, beispielsweise eine Stufe, auftreten. Ein bündiges Abschließen des Vergussmaterials mit der ersten Hauptfläche des Grundkörpers ist in diesem Fall nicht zwingend notwendig .
Der Anteil des Vergussmaterials an der Linse beträgt vorzugsweise nicht mehr als 20%, bevorzugt nicht mehr als 10%, besonders bevorzugt nicht mehr als 5%. Der Anteil des Gründkörpers an der Linse beträgt somit vorzugsweise mehr als 80%, bevorzugt mehr als 90%, besonders bevorzugt mehr als
95%.
Gemäß zumindest einer Ausführungsform ist das Vergussmaterial Epoxidharz. Der Grundkörper der Linse weist bevorzugt Silikon, Epoxid oder eine Mischung aus Silikon und Epoxid auf. Alternativ kann der Grundkörper Thermoplast- oder Duroplast-Materialien wie beispielsweise PMMA (PMMA: Polymethylmethacrylat) oder PC (PC: Polycarbonate) enthalten. In diesem Fall ist der Grundkörper mit Vorteil mittels eines Spritzgussverfahrens herstellbar.
Vorzugsweise ist der Brechungsindex des Materials des Grundkörpers dem Brechungsindex des Vergussmaterials ähnlich. Insbesondere unterscheidet sich der Brechungsindex des Materials des Grundkörpers von dem Brechungsindex des Vergussmaterials um nicht mehr als 10 %. Ferner besteht die Möglichkeit, dass der Grundkörper und das Vergussmaterial dasselbe Material enthalten. Durch einen ähnlichen oder gar gleichen Brechungsindex des Materials des Grundkörpers und des Vergussmaterials wird einfallende Strahlung nicht oder kaum an der Grenzfläche zwischen Grundkörper und Vergussmaterial gebrochen oder reflektiert. Vorteilhaft ermöglicht sich so eine gezielte Lichtführung der Strahlung in der Linse .
Bevorzugt stehen das Vergussmaterial und der Grundkörper in direktem Kontakt . Insbesondere grenzen der Grundkörper und das Vergussmaterial direkt aneinander an und es besteht kein Raum oder Spalt an der Grenzfläche zwischen Grundkörper und Vergussmaterial .
Bei einer bevorzugten Ausführungsform weist die erste Hauptfläche zumindest stellenweise eine Krümmung auf. Insbesondere ist die erste Hauptfläche nicht eben ausgebildet. Beispielsweise weist die erste Hauptfläche eine konkave Krümmung oder eine konvexe Krümmung auf. Beispielsweise ist die erste Hauptfläche stellenweise gewölbt.
Bei einer weiteren Ausführungsform weist die zweite Hauptfläche AuskoppelStrukturen auf. Beispielsweise sind die Auskoppelstrukturen Aufrauungen der zweiten Hauptfläche.
Durch die Aufrauung der zweiten Hauptfläche kann Strahlung, die die Linse durchdringt, bei Austritt aus der Linse an der zweiten Hauptfläche gestreut werden. Bevorzugt wird Strahlung an der Aufrauung der zweiten Hauptfläche diffus gestreut. Dadurch weist Strahlung, die von einer derartigen Linse geleitet wird, eine verbesserte, insbesondere homogene Abstrahlcharakteristik bei Austritt aus der Linse auf.
Bei einer bevorzugten Ausführungsform weist der Grundkörper zumindest einen reflektierenden Teilbereich auf.
Bei einer bevorzugten Ausführungsform weist der Grundkörper zwei reflektierende Teilbereiche auf. Bevorzugt sind die zwei reflektierenden Teilbereiche an der ersten Hauptfläche angeordnet und von der Kavität beabstandet . Der reflektierende Teilbereich des Grundkörpers kann insbesondere ein Vorsprung sein, der eine solche Form aufweist, dass Strahlung, die in den reflektierenden Teilbereich eintritt, beispielsweise an einer Grenzfläche des reflektierenden Teilbereichs reflektiert wird. Alternativ kann der reflektierende Teilbereich Flächen aufweisen, die mit einem reflektierenden Material beschichtet sind.
Bei einer bevorzugten Ausführungsform ist der Grundkörper zumindest stellenweise nach Art einer Fresnel -Linse ausgebildet. Eine Fresnel-Linse weist insbesondere an einer der Hauptflächen eine Mehrzahl von Stufen auf. Bevorzugt weist die erste Hauptfläche die Mehrzahl von Stufen auf.
Besonders bevorzugt bildet die erste Stufe der Fresnel-Linse die Kavität des Grundkörpers.
Die erste Stufe der Fresnel-Linse ist insbesondere die an der ersten Hauptfläche der Linse mittigste Stufe.
Bei einer bevorzugten Ausführungsform weist der Grundkörper zumindest eine weitere Kavität auf, die an der ersten Hauptfläche angeordnet ist und ein Vergussmaterial enthält, das zumindest einen Diffusor aufweist. Die Anzahl der weiteren Kavitäten mit darin enthaltenem Vergussmaterial richtet sich vorzugsweise an die jeweilige Anforderung und/oder Verwendung der Linse. Ein selektives Diffusieren beliebiger Linsenareale je nach vorgegebener Homogenitätsanforderung und Designanforderung der Linse ermöglicht sich so mit Vorteil.
Bei einer weiteren bevorzugten Ausführungsform enthält der
Grundkörper zumindest einen Konverter. Der Konverter wandelt insbesondere Licht einer Wellenlänge in Licht einer anderen Wellenlänge um. Beispielsweise wandelt der Konverter blaue Strahlung zumindest teilweise in gelbe Strahlung um, die sich dann zusammen mit der blauen Strahlung vermischt und weiße Mischstrahlung ermöglicht.
Darüber hinaus wird ein optoelektronisches Bauelement angegeben, das zumindest eine Linse und zumindest eine Lichtquelle aufweist, wobei die Lichtquelle auf der Seite der ersten Hauptfläche angeordnet ist. Die Linse des optoelektronischen Bauelements ist dabei so ausgebildet, wie es in Verbindung mit einer der oben beschriebenen Ausführungsformen offenbart ist. Das heißt, sämtliche in Verbindung mit der Linse offenbarten Merkmale sind auch für die Linse des optoelektronischen Bauelements offenbart und umgekehrt .
Die Lichtquelle ist insbesondere auf der Seite der ersten Hauptfläche angeordnet. Die erste Hauptfläche bildet somit eine Strahlungseintrittsfläche für von der Lichtquelle emittierte Strahlung. Die zweite Hauptfläche der Linse bildet eine Strahlungsaustrittsfläche für die von der Lichtquelle emittierte und durch die Linse geleitete Strahlung. Die Strahlungseintrittsfläche weist demnach die Kavität mit darin enthaltenem Vergussmaterial auf.
Insbesondere ist das den Diffusor enthaltene Vergussmaterial dem Grundkörper so vorgeordnet, dass Strahlung, die das Vergussmaterial durchdringt, anschließend in dem Grundkörper geleitet wird. Das Vergussmaterial ist somit zwischen Lichtquelle und Grundkörper angeordnet. Streuprozesse der von der Lichtquelle emittierten Strahlung finden somit vor
Eintritt in den Grundkörper, und somit vor Lichtführung in der Linse statt .
Das hier beschriebene optoelektronische Bauelement beruht unter anderem auf der Erkenntnis, dass die
Abstrahlcharakteristik von Bauelementen in der Kombination mit einer klarsichtigen Linse störende Intensitätsspitzen in der räumlichen Abstrahlung aufweist. Um solche störenden Intensitätsspitzen zu vermeiden, macht das hier beschriebene Bauelement von der Idee Gebrauch, ein mit Diffusor enthaltenes Vergussmaterial mit einem klarsichtigen Grundkörper zu kombinieren. Durch die ungerichtete Streuung der Strahlung an dem Diffusor werden die störenden Intensitätsspitzen in der Abstrahlcharakteristik mit Vorteil vermieden. Durch die Streuung der emittierten Strahlung an dem Diffusor wird weiter die Farbhomogenität verbessert und die elektromagnetische Strahlung in ihren Intensitäten geglättet .
Farbhomogenität ist insbesondere die Stabilität des Farborts über die räumliche Abstrahlung durch die Oberfläche des Bauelements . Insbesondere kann durch eine derartige Linse der Effekt vermieden werden, dass im ausgeschalteten Zustand des Bauelements die Lichtquelle für einen Betrachter sichtbar ist, insbesondere gelb erscheint. Dieser Effekt tritt insbesondere bei weiß emittierenden LED-Chips auf, die einen Chip und einen Konverter aufweisen. Das Bauelement aufweisend eine Linse und eine Lichtquelle ist demnach so ausgeführt, dass die Lichtquelle, insbesondere ein weiß emittierender LED-Chip, im ausgeschalteten Zustand des Bauelements nicht sichtbar ist.
Gleichzeitig erfüllt eine derartige Linse die Anforderung, im eingeschalteten Zustand die Abstrahlung des LED-Chips weiter zu gewährleisten. Diese Vorteile werden insbesondere durch das in der Kavität des Grundkörpers eingebrachte
Vergussmaterial mit darin enthaltenem Diffuser ermöglicht.
Durch die Anordnung der Kavität seitens der Lichtquelle ist das Vergussmaterial an keiner Außenseite des Bauelements angeordnet. Dadurch ist das Vergussmaterial mit darin enthaltenem Diffusor mit Vorteil vor mechanischen und/oder chemischen Einflüssen geschützt. Unter mechanischen und/oder chemischen Einflüssen fallen beispielsweise Stöße, Eindringen von Flüssigkeit in das Vergussmaterial oder Zerkratzen des Vergussmaterials.
Vorzugsweise ist die Lichtquelle der Kavität des Grundkörpers direkt gegenüber angeordnet. Bevorzugt ist die laterale Ausdehnung der Kavität kleiner oder gleich der lateralen Ausdehnung der Lichtquelle.
Die laterale Ausdehnung ist insbesondere die Ausdehnung, die sich entlang der ersten Hauptfläche erstreckt. Durch eine sich direkt gegenüberliegende Anordnung und eine derartige laterale Ausdehnung zueinander können insbesondere sogenannte Hotspots in der Abstrahlcharakteristik des Bauelements vermieden werden. Eine homogene
Abstrahlcharakteristik ermöglicht sich mit Vorteil.
Bei einer bevorzugten Ausführungsform des Bauelements ist die Lichtquelle außerhalb der Kavität des Grundkörpers angeordnet. Insbesondere ist die Lichtquelle von der Linse beabstandet angeordnet .
Alternativ kann die Lichtquelle innerhalb der Kavität des Grundkörpers angeordnet sein. In diesem Fall umschließt das Vergussmaterial die Lichtquelle vollständig.
Bevorzugt ist die Lichtquelle eine Licht emittierende Diode (LED) .
Darüber hinaus wird ein Verfahren zur Herstellung einer Linse angegeben. Mittels des Verfahrens ist eine Linse herstellbar, wie es in Verbindung mit einer der oben beschriebenen Ausführungsformen offenbart ist. Das heißt, sämtliche in Verbindung mit der Linse oder dem Bauelement offenbarten Merkmale sind auch für das Verfahren offenbart und umgekehrt.
Gemäß zumindest einer Ausführungsform des Verfahrens wird das Vergussmaterial mittels Dispenstechnik in die Kavität eingebracht . Das Vergussmaterial wird dazu in Tröpfchenform eingebracht. Beispielsweise findet hierzu eine Spritze oder eine Pipette Verwendung. Der Diffusor wird vorzugsweise vor Einbringen des Vergussmaterials in die Kavität mit dem Vergussmaterial vermengt. Vorzugsweise wird der Diffusor derart im Vergussmaterial verteilt, dass die Konzentration des Diffusors in dem Vergussmaterial gleichmäßig verteilt ist. Dadurch kann insbesondere eine isotrope Streuung von Strahlung, die auf das Vergussmaterial trifft und in dieses eindringt, erzielt werden.
Bei einer weiteren Ausführungsform des Verfahrens liegt die
Temperatur des Vergussmaterials bei dem Verfahrensschritt des Dispensens unterhalb der Schmelztemperatur des Materials des Grundkörpers. So kann eine Schädigung oder gar Zerstörung des Materials des Grundkörpers während der Herstellung der Linse vermieden werden.
Weitere Merkmale, Vorteile, bevorzugte Ausgestaltungen und Zweckmäßigkeiten der Linse, des optoelektronischen Bauelements und des Verfahrens zur Herstellung ergeben sich aus den im Folgenden in Verbindung mit den Figuren 1 bis 4 erläuterten Ausführungsbeispielen.
Es zeigen:
Figuren 1 bis 3 jeweils einen schematischen Querschnitt eines Ausführungsbeispiels eines erfindungsgemäßen optoelektronischen Bauelements,
Figur 4 einen schematischen Querschnitt eines Ausführungsbeispiels einer erfindungsgemäßen Linse während des Verfahrensschrittes des Dispensens, und Figuren 5A, 5B jeweils einen schematischen Querschnitt eines Ausführungsbeispiels einer erfindungsgemäßen Linse.
Gleiche oder gleich wirkende Bestandteile sind jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten
Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.
Figur 1 zeigt einen schematischen Querschnitt eines optoelektronischen Bauelements aufweisend eine Linse 1 und eine Lichtquelle 5. Die Linse 1 weist eine erste Hauptfläche 21 und eine zweite Hauptfläche 22 auf. Die Lichtquelle 5 ist insbesondere der ersten Hauptfläche 21 vorgeordnet. Die erste Hauptfläche 21 ist demnach eine Strahlungseintrittsfläche für von der Lichtquelle 5 emittierte Strahlung. Die zweite
Hauptfläche 22 ist eine Strahlungsaustrittsfläche für von der Lichtquelle 5 emittierte Strahlung.
Die Lichtquelle 5 ist vorzugsweise ein Halbleiterkörper und weist eine aktive Schicht auf. Die aktive Schicht des
Halbleiterkörpers weist bevorzugt einen pn-Übergang, eine Doppelheterostruktur, einen Einfachquantentopf (SQW, Single quantum well) oder eine Mehrfachquantentopfstruktur (MQW, multi quantum well) zur Strahlungserzeugung auf. Die Bezeichnung QuantentopfStruktur entfaltet hierbei keine
Bedeutung hinsichtlich der Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quantentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen.
Der Halbleiterkörper ist bevorzugt ein Leuchtdiodenchip, insbesondere eine Licht emittierende Diode. Bevorzugt ist der Halbleiterkörper ein Dünnfilmhalbleiterkörper. Als Dünnfilmhalbleiterkörper wird im Rahmen der Anmeldung ein Halbleiterkörper angesehen, während dessen Herstellung das Aufwachssubstrat, auf den eine Halbleiterschichtenfolge, die den Halbleiterkörper umfasst, beispielsweise epitaktisch aufgewachsen wurde, abgelöst worden ist.
Die Schichten des Halbleiterkörpers basieren bevorzugt auf einem III/V-Verbindungshalbleitermaterial . Ein III/V- Verbindungshalbleitermaterial weist wenigstens ein Element aus der dritten Hauptgruppe, wie beispielsweise Al, Ga, In, und ein Element aus der fünften Hauptgruppe, wie beispielsweise N, P, As, auf. Insbesondere umfasst der Begriff Ill/V-Verbindungshalbleitermaterial die Gruppe der binären, ternären und quaternären Verbindungen, die wenigstens ein Element aus der dritten Hauptgruppe und wenigstens ein Element aus der fünften Hauptgruppe enthalten, insbesondere Nitrid- und Phosphidverbindungshalbleiter . Eine solche binäre, ternäre und quaternäre Verbindung kann zudem beispielsweise einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen.
Die Lichtquelle 5 weist ferner eine Strahlungsaustrittsseite auf, durch die in der Lichtquelle erzeugte Strahlung die Lichtquelle 5 verlassen kann. Die Strahlungsaustrittsseite der Lichtquelle 5 ist insbesondere der Strahlungseintrittsfläche 21 der Linse zugewandt.
Vorzugsweise tritt kein oder kaum Licht durch Seitenflächen der Lichtquelle 5 aus.
Die Linse 1 weist einen Grundkörper 23 auf, in dem eine Kavität 3 ausgebildet ist. Die Kavität 3 ist an der ersten
Hauptfläche 21 angeordnet und insbesondere der Lichtquelle 5 zugewandt . Vorzugsweise liegt die Kavität 3 der Strahlungsaustrittsseite der Lichtquelle 5 direkt gegenüber. Besonders bevorzugt ist die laterale Ausdehnung der Kavität 3 kleiner oder gleich der lateralen Ausdehnung der Lichtquelle 5.
In der Kavität ist ein Vergussmaterial 4 angeordnet, das zumindest einen Diffusor aufweist, der Strahlung zumindest eines Wellenlängenbereichs streut. Insbesondere weist der Diffusor die Eigenschaft auf, von der Lichtquelle 5 emittierte Strahlung zu streuen.
Die Lichtquelle 5 ist vorzugsweise außerhalb der Kavität 3 des Grundkörpers 23 angeordnet. Bevorzugt ist die Lichtquelle 5 von der Linse 1 beabstandet angeordnet. Die Lichtquelle 5 wird somit vorzugsweise nicht von dem Vergussmaterial 4 umschlossen, sondern ist von dem Vergussmaterial 4 beabstandet. Die Linse 1 ist insbesondere ein eigenständiges Bestandteil des optoelektronischen Bauelements und kann vorzugsweise separat hergestellt werden.
Die Kavität 3 ist vorzugsweise vollständig mit dem Vergussmaterial 4 ausgefüllt. Die Füllhöhe des Vergussmaterials 4 in der Kavität 3 ist demnach derart bemessen, dass nach Aushärten des Vergussmaterials 4 die Oberfläche des Vergussmaterials 4 vorzugsweise bündig mit der
Oberfläche des Grundkörpers 23, insbesondere mit der ersten Hauptfläche 21, abschließt. An den Rändern des Übergangs Vergussmaterial 4 und Grundkörper 23, insbesondere zwischen Vergussmaterial 4 und erster Hauptfläche 21, bildet sich somit keine Stufe oder Unebenheit aus.
Durch eine Linse 1, die einen Grundkörper 23 und ein Vergussmaterial 4 mit darin enthaltenem Diffusor aufweist, verbessert sich insbesondere die Lichtführung in der Linse 1. Insbesondere verbessert sich die Abstrahlcharakteristik des Bauelements. Ein homogenes ermöglicht sich so mit Vorteil.
Insbesondere wird durch die Linse 1 aufweisend einen Grundkörper 23 und ein Vergussmaterial 4 mit darin enthaltenem Diffusor der Effekt vermieden, dass im ausgeschalteten Zustand des Bauelements die Lichtquelle 5 für einen Betrachter sichtbar ist, insbesondere gelb erscheint. Gleichzeitig erfüllt die Linse 1 die Anforderung, im eingeschalteten Zustand die Abstrahlung der Lichtquelle 5 weiter zu gewährleisten, insbesondere die emittierte Strahlung der Lichtquelle 5 nicht abzuschatten. Die Linse 1 weist somit die Eigenschaft auf, dass im ausgeschalteten Zustand des Bauelements die Lichtquelle 5 für den Betrachter nicht sichtbar ist, wobei die Linse 1 im eingeschalteten Zustand des Bauelements für die von der Lichtquelle 5 emittierte Strahlung strahlungsdurchlässige Eigenschaften aufweist und gleichzeitig die Abstrahlcharakteristik des Bauelements verbessert.
Insbesondere kann die Linse 1 aufgrund des Aufbaus aus Grundkörper 23 und Vergussmaterial 4 verschiedene Teilbereiche aufweisen, die jeweils unterschiedliche Lichtpfade ermöglichen. Strahlung, die durch die erste
Hauptfläche 21 in den Grundkörper 23 der Linse 1 eintritt, wird ohne Streuprozesse in der Linse 1 an die zweite Hauptfläche 22 geleitet und kann an der zweiten Hauptfläche 22 aus der Linse 1 austreten. Strahlung, die in das Vergussmaterial 4 an der ersten Hauptfläche 21 eintritt, wird in dem Vergussmaterial 4, insbesondere an dem darin angeordneten Diffusor, gestreut. Bevorzugt wird Strahlung in dem Vergussmaterial 4 diffus gestreut. Die in dem Vergussmaterial 4 diffus gestreute Strahlung wird anschließend in dem Grundkörper 23 zur zweiten Hauptfläche 22 geleitet und tritt dort aus der Linse 1 aus.
Da die Kavität mit darin enthaltenem Vergussmaterial 4 der Strahlungsaustrittsseite der Lichtquelle 5 direkt gegenüber angeordnet ist, können durch die diffusen Streuprozesse in dem Vergussmaterial 4 Hotspots in der Abstrahlcharakteristik des Bauelements reduziert oder gar vermieden werden. Insbesondere kann durch die diffuse Streuung eine homogene
Verteilung der Strahlung, die von der Lichtquelle 5 emittiert wird und durch die Linse 1 tritt, ermöglicht werden.
In Figur 1 sind zwei Beispiele möglicher Strahlengänge dargestellt. Strahlung 7, die auf die erste Hauptfläche 21 auftrifft, tritt an der ersten Hauptfläche 21 in den Grundkörper 23 ein, wird in dem Grundkörper 23 zur zweiten Hauptfläche 22 geleitet, ohne in dem Grundkörper gestreut zu werden, und verlässt die Linse 1 an der zweiten Hauptfläche 22. Insbesondere tritt die Strahlung 7 nicht durch das Vergussmaterial 4 und wird daher in der Linse 1 nicht gestreut .
Strahlung 6, die an der ersten Hauptfläche 21 in das Vergussmaterial 4 eintritt, wird an dem Diffusor in dem
Vergussmaterial 4 diffus gestreut. Die diffuse Streustrahlung 6a, 6b, 6c, 6d tritt aus dem Vergussmaterial 4 in den Grundkörper 23, wird dort zur zweiten Hauptfläche 22 geleitet, und tritt an der zweiten Hauptfläche 22 als diffus gestreute Strahlung 6a, 6b, 6c, 6d aus.
Die Linse 1 weist demnach zwei Lichtpfade auf, einen Lichtpfad, bei dem Strahlung keinen Streuprozessen unterliegt und einen zweiten Lichtpfad, der durch die Kavität und dem darin enthaltenen Vergussmaterial 4 führt und in diesem Streuprozesse erfährt. Dadurch kann eine homogene Abstrahlcharakteristik der Strahlung, die aus der Linse 1 austritt, erzielt werden. Insbesondere kann die Linse 1 durch gezielte Anordnung der Kavität 3 in dem Grundkörper 23 so ausgebildet sein, dass sie vorgegebene Homogenitätsanforderungen und Designanforderungen erfüllt.
Der Grundkörper 23 kann insbesondere eine Mehrzahl von
Kavitäten 3 aufweisen, die jeweils ein Vergussmaterial 4 mit darin enthaltenem Diffusor aufweisen (nicht dargestellt) . Dadurch ermöglicht sich ein selektives Diffusieren beliebiger Linsenareale je nach vorgegebener Homogenitätsanforderung.
Das Vergussmaterial 4 ist bevorzugt Epoxidharz. Der Grundkörper 23 weist bevorzugt Silikon, ein Epoxid oder eine Mischung aus Silikon und Epoxid auf. Alternativ kann der Grundkörper 23 zumindest ein Thermoplast -Material wie beispielsweise PMMA (PMMA: Polymethylmethacrylat ) oder PC
(PC: Polycarbonate) enthalten.
Der Brechungsindex des Materials des Vergussmaterials 4 ist vorzugsweise ähnlich dem Brechungsindex des Materials des Grundkörpers 23. Ferner besteht die Möglichkeit, dass das Vergussmaterial 4 und der Grundkörper 23 dasselbe Material enthalten. Dadurch wird mit Vorteil die von der Lichtquelle 5 emittierte Strahlung nicht an der Grenzfläche Vergussmaterial 4 und Grundkörper 23 gebrochen oder reflektiert. Optische Auskoppelverluste können so mit Vorteil minimiert werden.
Da die Kavität 3 mit darin enthaltenem Vergussmaterial 4 auf der der Lichtquelle 5 zugewandten Seite der Linse 1 angeordnet ist, ist das Vergussmaterial 4 keiner mechanischen und/oder chemischen Belastung ausgesetzt. Unter einer mechanischen oder chemischen Belastung sind insbesondere mechanische oder chemische Umwelteinflüsse zu verstehen, wie beispielsweise Feuchtigkeit, Stöße und/oder ein Verkratzen.
Durch ein Anordnen eines Vergussmaterials 4 mit darin enthaltenem Diffusor in einer Kavität der Linse 1 ist es für das Material des Grundkörpers 23 mit Vorteil nicht zwingend notwendig, ebenfalls streuende Eigenschaften aufzuweisen.
Eine Minimierung des Anteils der Linse 1, der lichtstreuende Eigenschaften aufweist, ist so mit Vorteil möglich.
Die Linse kann ferner einen Konverter zur Strahlungskonversion der von der Lichtquelle 5 emittierten Strahlung aufweisen (nicht dargestellt) . Dadurch ermöglicht sich vorzugsweise die Emission einer Mischstrahlung des Bauelements, insbesondere die Emission weißen Lichts.
Die erste Hauptfläche 21 weist vorzugsweise zumindest stellenweise eine Krümmung oder eine Wölbung auf. Insbesondere ist die erste Hauptfläche 21 gebogen ausgebildet. Beispielsweise kann die erste Hauptfläche 21 eine zur Verwendung als Sammellinse ausgebildete Krümmung aufweisen. Die Krümmung der ersten Hauptfläche 21 richtet insbesondere nach dem Verwendungszweck der Linse 1.
Figur 2 unterscheidet sich von dem Ausführungsbeispiel der Figur 1 dadurch, dass die zweite Hauptfläche 22 Auskoppelstrukturen aufweist. Insbesondere weist die zweite Hauptfläche 22 eine Aufrauung 8 auf. Von der Lichtquelle 5 emittierte Strahlung, die in der Linse 1 geleitet wird, wird dadurch vor Austritt aus der Linse 1 an der zweiten Hauptfläche 22 diffus gestreut. Dadurch verbessert sich weiter die Abstrahlcharakteristik des Bauelements. Insbesondere ermöglicht sich so eine verbesserte homogene Abstrahlcharakteristik des Bauelements.
Beispiele möglicher Strahlengänge durch die Linse 1 sind wie in Figur 1 durch Pfeile 6, 7, 6a, 6b, 6c, 7a, 7b, 7c dargestellt .
Der nicht durch das Vergussmaterial 4 tretende Strahl 7, der in der Linse 1 ungestreut geleitet wird, wird an der zweiten Hauptfläche 22, insbesondere an der Aufrauung 8, diffus gestreut, sodass sich der Strahl 7 in eine Mehrzahl von Streustrahlen 7a, 7b, 7c aufteilt. Der durch das Vergussmaterial 4 tretende Strahl 6, der in dem
Vergussmaterial 4 so gestreut wird, dass bereits vor Lichtführung in der Linse 1 eine Mehrzahl von Streustrahlen 6a, 6b, 6c entstehen, wird ebenfalls an der Aufrauung 8 jeweils so gestreut, dass die Streustrahlen 6a, 6b, 6c sich jeweils in weitere Streustrahlen zerlegen.
Strahlung, die also nicht durch das Vergussmaterial 4 tritt, wird erst an der zweiten Hauptfläche 22 diffus gestreut. Strahlung, die durch das Vergussmaterial 4 tritt, wird dagegen in dem Vergussmaterial 4, an dem Diffusor und an der zweiten Hauptfläche 22 gestreut. Eine homogene Abstrahlcharakteristik der durch die Linse 1 tretenden Strahlung 6, 7 ermöglicht sich so mit Vorteil.
Das Ausführungsbeispiel der Figur 3 unterscheidet sich von dem Ausführungsbeispiel der Figur 1 dadurch, dass der Grundkörper 23 reflektierende Teilbereiche 9a, 9b aufweist. Insbesondere sind die reflektierenden Teilbereiche 9a, 9b an der ersten Hauptfläche 21 und lateral beabstandet von der Kavität 3 angeordnet .
Die lateralen Teilbereiche 9a, 9b können vorzugsweise eine derartige Höhe aufweisen, dass sie die Lichtquelle 5 umschließen .
Von der Lichtquelle 5 emittierte Strahlung kann so an den reflektierenden Teilbereichen 9a, 9b reflektiert werden, dass sich das Erscheinungsbild, insbesondere die
Abstrahlcharakteristik des Bauelements weiter verbessert.
Beispiele möglicher Strahlengänge sind wieder durch Pfeile 6, 6a, 6b, 6c, 6d, 7, 7a, 7b gezeigt.
Beispielsweise tritt ein von der Lichtquelle 5 emittierter Strahl 7 in einen der reflektierenden Teilbereiche 9a ein, wird in dem reflektierenden Teilbereich 9a als Strahl 7a geleitet, trifft auf die erste Hauptfläche 21, die insbesondere reflektierende Eigenschaften aufweist, wird an dieser Hauptfläche 21 so reflektiert, dass der Strahl in Richtung zweiter Hauptfläche 22 geführt wird und an der zweiten Hauptfläche 22 als Strahl 7b aus der Linse 1 austritt . Dieser Strahl 7 wird demnach nicht durch das Vergussmaterial 4 geleitet und erfährt somit in der Linse 1 keine Streuprozesse.
Ein von der Lichtquelle 5 emittierter Strahl 6, der in das Vergussmaterial 4 eintritt, und nicht einen der reflektierenden Teilbereiche 9a, 9b durchläuft, wird dagegen wie in dem Ausführungsbeispiel zu Figur 1 an dem Diffusor diffus gestreut und erfährt keine Reflektionsprozesse . Die reflektierenden Eigenschaften der reflektierenden Teilbereiche 9a, 9b können beispielsweise mittels einer auf der ersten Hauptfläche 21 aufgebrachten reflektierenden Beschichtung 10 realisiert werden. Alternativ kann durch den Brechungsindexunterschied zwischen reflektierenden
Teilbereichen 9a, 9b und umgebenden Medium eine Reflexion erzielt werden.
Das Ausführungsbeispiel der Figur 4 stellt einen Querschnitt einer Linse 1 im Herstellungsprozess dar. Insbesondere ist die Linse des Ausführungsbeispiels der Figur 4 nach Art einer Fresnel-Linse ausgebildet. Eine Fresnel-Linse weist insbesondere an einer Hauptfläche, in diesem Fall der ersten Hauptfläche 21, eine Mehrzahl von Stufen 12a, 12b, 12c auf. Die zweite Hauptfläche 22 kann eben ausgebildet sein.
Die Kavität des Grundkörpers 23 wird vorzugsweise durch die erste Stufe 12a der Fresnel-Linse gebildet. Die erste Stufe 12a der Fresnel-Linse ist insbesondere die mittigste Stufe der Linse.
Insbesondere weist die erste Stufe 12a eine Höhe H auf, die mit dem Vergussmaterial 4 gefüllt wird.
Alternativ kann die Füllhöhe des Vergussmaterials 4 kleiner als die Höhe H der ersten Stufe 12a sein (nicht dargestellt) . In diesem Fall füllt das Vergussmaterial 4 nicht vollständig die Höhe H der ersten Stufe 12a aus, sodass Strahlung in die Fresnel -Struktur, insbesondere in die erste Stufe 12a, eingeleitet werden kann, was mit Vorteil zu einer verbesserten Effizienz der Optik beiträgt. Das Vergussmaterial 4 wird vorzugsweise mittels Dispenstechnik in die Kavität eingebracht. Dazu wird das Vergussmaterial 4 beispielsweise in die Kavität 3 eingetröpfelt. Das Eintropfen kann beispielsweise mittels einer Spritze 11 oder einer Pipette 11 durchgeführt werden.
Die Temperatur des Vergussmaterials 4 beim Verfahrensschritt des Dispensens liegt vorzugsweise unterhalb der Schmelztemperatur des Materials des Grundkörpers 23. Das Vergussmaterial 4 wird anschließend mittels Kühlung ausgehärtet .
Ferner kann das Vergussmaterial 4 mittels eines Jetting- Prozesses in die Kavität 3 eingebracht werden (nicht dargestellt) .
In den Figuren 5A und 5B ist jeweils eine Linse 1 umfassend einen Grundkörper 23 und ein Vergussmaterial 4 dargestellt.
Im Unterschied zu der in Figur 1 gezeigten Linse schließt in den Ausführungsbeispielen der Figuren 5A und 5B das Vergussmaterial 4 nicht mit der ersten Hauptfläche 21 des Grundkörpers 23 bündig ab. Insbesondere weist die von dem Grundkörper 23 abgewandte Oberfläche des Vergussmaterials 4 eine Krümmung auf. Beispielsweise kann die von dem
Grundkörper 23 abgewandte Oberfläche des Vergussmaterials 4 nach Art einer Sammellinse oder einer Zerstreuungslinse ausgebildet sein, je nach Verwendungszweck der Linse 1.
In dem Ausführungsbeispiel der Figur 5A weist die vom
Grundkörper 23 abgewandte Oberfläche des Vergussmaterials 4 eine konkave Krümmung auf. Figur 5B dagegen zeigt eine Linse 1, bei der die vom Grundkörper 23 abgewandte Oberfläche des Vergussmaterials 4 eine konvexe Krümmung aufweist.
Durch eine Krümmung der vom Grundkörper 23 abgewandten Oberfläche des Vergussmaterials 4 kann in diesem Bereich der Linse 1 eine vorbestimmte, insbesondere erwünschte Lichtführung erzielt werden. Insbesondere kann beispielsweise bereichsweise eine Bündelung von Strahlung oder eine Zerstreuung von Strahlung erzielt werden.
Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt, sondern umfasst jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen aus Ausführungsbeispielen angegeben ist.

Claims

Patentansprüche
1. Linse (1) umfassend
- einen Grundkörper (23), der eine erste Hauptfläche (21) , eine zweite Hauptfläche (22) und zumindest eine
Kavität (3) aufweist, die an der ersten Hauptfläche (21) angeordnet ist, und
- ein Vergussmaterial (4) , das in der Kavität (3) angeordnet ist und zumindest einen Diffusor aufweist, der Strahlung zumindest eines Wellenlängenbereichs streut.
2. Linse (1) nach Anspruch 1, wobei die erste Hauptfläche (21) zumindest stellenweise eine Krümmung aufweist.
3. Linse (1) nach einem der vorhergehenden Ansprüche, wobei das Vergussmaterial (4) bündig mit der ersten Hauptfläche (21) abschließt.
4. Linse (1) nach einem der vorhergehenden Ansprüche, wobei die zweite Hauptfläche (22) AuskoppelStrukturen (8) aufweist .
5. Linse (1) nach Anspruch 4, wobei die AuskoppelStrukturen (8) Aufrauungen der zweiten Hauptfläche (22) sind.
6. Linse (1) nach einem der vorhergehenden Ansprüche, wobei der Grundkörper (23) zumindest einen reflektierenden Teilbereich (9a, 9b) aufweist.
7. Linse (1) nach einem der vorhergehenden Ansprüche, wobei der Grundkörper (23) zumindest stellenweise nach Art einer Fresnel -Linse ausgebildet ist.
8. Linse (1) nach Anspruch 7, wobei die erste Stufe (12a) der Fresnel-Linse die Kavität bildet.
9. Linse (1) nach einem der vorhergehenden Ansprüche, wobei der Grundkörper (23) weitere Kavitäten (3) aufweist, in denen jeweils ein weiteres Vergussmaterial (4) angeordnet ist, das zumindest einen Diffusor aufweist.
10. Linse (1) nach einem der vorhergehenden Ansprüche, wobei das Vergussmaterial (4) Epoxidharz ist.
11. Optoelektronisches Bauelement, aufweisend
- zumindest eine Linse (1) gemäß einem der Ansprüche 1 bis 10, und
- zumindest eine Lichtquelle (5) , die auf der Seite der ersten Hauptfläche (21) angeordnet ist.
12. Optoelektronisches Bauelement nach Anspruch 11, wobei die Lichtquelle (5) außerhalb der Kavität (3) des Grundkörpers (23) angeordnet ist.
13. Optoelektronisches Bauelement nach einem der Ansprüche 11 oder 12, wobei die zumindest eine Lichtquelle (5) eine LED ist.
14. Verfahren zur Herstellung einer Linse (1) nach einem der Ansprüche 1 bis 10, wobei das Vergussmaterial (4) mittels Dispenstechnik in die Kavität (3) eingebracht wird.
15. Verfahren nach Anspruch 14, wobei die Temperatur des Vergussmaterials (4) beim Verfahrensschritt des Dispensens unterhalb der Schmelztemperatur des Materials des Grundkörpers (23) liegt .
PCT/DE2010/000251 2009-04-17 2010-03-05 Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse WO2010118718A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/263,104 US8848297B2 (en) 2009-04-17 2010-03-05 Lens, optoelectronic component comprising a lens and method for producing a lens
JP2012505043A JP2012524287A (ja) 2009-04-17 2010-03-05 レンズ、レンズを有するオプトエレクトロニクス素子およびレンズの製造方法
EP10716457A EP2419779A1 (de) 2009-04-17 2010-03-05 Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse
CN2010800169804A CN102395913A (zh) 2009-04-17 2010-03-05 透镜、具有透镜的光电子部件和用于制造透镜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910017946 DE102009017946A1 (de) 2009-04-17 2009-04-17 Linse, optoelektronisches Bauelement aufweisend eine Linse und Verfahren zur Herstellung einer Linse
DE102009017946.1 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010118718A1 true WO2010118718A1 (de) 2010-10-21

Family

ID=42224386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000251 WO2010118718A1 (de) 2009-04-17 2010-03-05 Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse

Country Status (8)

Country Link
US (1) US8848297B2 (de)
EP (1) EP2419779A1 (de)
JP (1) JP2012524287A (de)
KR (1) KR20120008057A (de)
CN (1) CN102395913A (de)
DE (1) DE102009017946A1 (de)
TW (1) TWI426301B (de)
WO (1) WO2010118718A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117016A1 (en) * 2011-12-02 2015-04-30 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US10060579B2 (en) 2011-12-02 2018-08-28 Seoul Semiconductor Co., Ltd. Light emitting module and lens

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047788A1 (de) * 2009-09-30 2011-03-31 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung für eine Kamera sowie Verfahren zum Betrieb derselben
KR101509876B1 (ko) * 2010-12-01 2015-04-06 나럭스 컴퍼니 리미티드 광학 소자 및 그 광학 소자를 사용한 조명 장치
KR20120082655A (ko) * 2011-01-14 2012-07-24 삼성전자주식회사 엘이디 플래시 렌즈 유닛 및 그 제조방법
JP2015535951A (ja) * 2012-09-19 2015-12-17 ヴェンティス テクノロジーズ エルエルシー 光を散乱させる装置
US10400984B2 (en) * 2013-03-15 2019-09-03 Cree, Inc. LED light fixture and unitary optic member therefor
JP5403775B1 (ja) * 2013-03-27 2014-01-29 株式会社光波 照明装置及び表示装置
JP6119460B2 (ja) * 2013-06-27 2017-04-26 コニカミノルタ株式会社 発光ユニット、及び、電子機器
CN104421834A (zh) * 2013-08-28 2015-03-18 鸿富锦精密工业(深圳)有限公司 复合透镜及其制造方法以及使用该复合透镜的光源装置
CN104864360B (zh) * 2015-05-27 2023-05-02 漳州立达信光电子科技有限公司 透镜结构
DE102016218139A1 (de) 2016-09-21 2018-04-05 Osram Gmbh Beleuchtungsvorrichtung
US11035564B2 (en) * 2017-10-06 2021-06-15 Zodiac Pool Systems Llc Lighting assemblies with heat-dissipating properties principally for swimming pools and spas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875456A (en) 1972-04-04 1975-04-01 Hitachi Ltd Multi-color semiconductor lamp
US4603496A (en) 1985-02-04 1986-08-05 Adaptive Micro Systems, Inc. Electronic display with lens matrix
EP0362993A2 (de) 1988-10-05 1990-04-11 Hewlett-Packard Company Nichtabbildende Lichtquelle
US5140220A (en) 1985-12-02 1992-08-18 Yumi Sakai Light diffusion type light emitting diode
US20030179584A1 (en) * 2002-03-19 2003-09-25 Greg Pond Side turn / marker lamp
US20070268694A1 (en) * 2006-04-18 2007-11-22 Lamina Ceramics, Inc. Optical devices for controlled color mixing
US20080231772A1 (en) * 2007-03-21 2008-09-25 Chi Mei Optoelectronics Corp. Flat panel display and fabrication method thereof
EP2009348A2 (de) * 2007-06-29 2008-12-31 Dialight Lumidrives Limited Verbesserte Raumbeleuchtung
EP2056016A1 (de) 2006-08-25 2009-05-06 The Furukawa Electric Co., Ltd. Beleuchtungsvorrichtung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469809U (de) * 1990-10-26 1992-06-19
AU2001245787A1 (en) * 2000-03-17 2001-10-03 Zograph, Llc High acuity lens system
DE10051464B4 (de) 2000-10-17 2011-08-11 OSRAM Opto Semiconductors GmbH, 93055 Stufenlinse
JP2003110146A (ja) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd 発光装置
US6654174B1 (en) * 2002-05-08 2003-11-25 Pin Chien Huang Micro lens systems and articles thereof
JP3707688B2 (ja) * 2002-05-31 2005-10-19 スタンレー電気株式会社 発光装置およびその製造方法
CN100407048C (zh) * 2002-08-30 2008-07-30 大日本印刷株式会社 透镜片以及带有透镜片的透过型屏
EP2262006A3 (de) * 2003-02-26 2012-03-21 Cree, Inc. Weisslichtquelle mit Leuchtdiode und Leuchtstoffe
US7233106B2 (en) 2004-07-14 2007-06-19 Taiwan Oasis Technology Co., Ltd. LED chip capping construction
US20070177263A1 (en) 2004-07-23 2007-08-02 Kuraray Co. Ltd Back projection-type screen and back projection-type projection device
DE102004042125B4 (de) * 2004-08-30 2008-05-08 Schefenacker Vision Systems Germany Gmbh & Co. Kg Leuchteinheit mit einer Vielzahl gekrümmter Flächenelemente
JP4635741B2 (ja) * 2005-06-27 2011-02-23 パナソニック電工株式会社 発光装置及びこの発光装置を備えた照明器具
KR100631992B1 (ko) * 2005-07-19 2006-10-09 삼성전기주식회사 측면 방출형 이중 렌즈 구조 led 패키지
KR100611922B1 (ko) 2005-09-27 2006-08-11 엘지전자 주식회사 발광 소자용 렌즈 및 그를 이용한 패키지
JP4952051B2 (ja) * 2006-05-10 2012-06-13 ソニー株式会社 金属酸化物ナノ粒子及びその製造方法、並びに、発光素子組立体及び光学材料
US7719636B2 (en) * 2007-03-14 2010-05-18 Lg Electronics Inc. Optical sheet and liquid crystal display using the same
CN101680647B (zh) * 2007-04-17 2012-11-07 皇家飞利浦电子股份有限公司 照明设备
WO2008134018A1 (en) * 2007-04-25 2008-11-06 Bright View Technologies, Inc. Light emitting device diffusers for general application lighting
US7999283B2 (en) 2007-06-14 2011-08-16 Cree, Inc. Encapsulant with scatterer to tailor spatial emission pattern and color uniformity in light emitting diodes
WO2009027915A1 (en) * 2007-08-27 2009-03-05 Koninklijke Philips Electronics N.V. Light output device
CN201152494Y (zh) * 2007-12-25 2008-11-19 欧创光电股份有限公司 光源透镜结构的改良
DE102008025756B4 (de) * 2008-05-29 2023-02-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiteranordnung
US8313218B2 (en) * 2009-05-25 2012-11-20 Lg Innotek, Co., Ltd. Gap member, lens and lighting device having the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875456A (en) 1972-04-04 1975-04-01 Hitachi Ltd Multi-color semiconductor lamp
US4603496A (en) 1985-02-04 1986-08-05 Adaptive Micro Systems, Inc. Electronic display with lens matrix
US5140220A (en) 1985-12-02 1992-08-18 Yumi Sakai Light diffusion type light emitting diode
EP0362993A2 (de) 1988-10-05 1990-04-11 Hewlett-Packard Company Nichtabbildende Lichtquelle
US20030179584A1 (en) * 2002-03-19 2003-09-25 Greg Pond Side turn / marker lamp
US20070268694A1 (en) * 2006-04-18 2007-11-22 Lamina Ceramics, Inc. Optical devices for controlled color mixing
EP2056016A1 (de) 2006-08-25 2009-05-06 The Furukawa Electric Co., Ltd. Beleuchtungsvorrichtung
US20080231772A1 (en) * 2007-03-21 2008-09-25 Chi Mei Optoelectronics Corp. Flat panel display and fabrication method thereof
EP2009348A2 (de) * 2007-06-29 2008-12-31 Dialight Lumidrives Limited Verbesserte Raumbeleuchtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117016A1 (en) * 2011-12-02 2015-04-30 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US10047930B2 (en) * 2011-12-02 2018-08-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US10060579B2 (en) 2011-12-02 2018-08-28 Seoul Semiconductor Co., Ltd. Light emitting module and lens

Also Published As

Publication number Publication date
EP2419779A1 (de) 2012-02-22
DE102009017946A1 (de) 2010-10-21
TW201106018A (en) 2011-02-16
US8848297B2 (en) 2014-09-30
US20120162783A1 (en) 2012-06-28
KR20120008057A (ko) 2012-01-25
JP2012524287A (ja) 2012-10-11
CN102395913A (zh) 2012-03-28
TWI426301B (zh) 2014-02-11

Similar Documents

Publication Publication Date Title
WO2010118718A1 (de) Linse, optoelektronisches bauelement aufweisend eine linse und verfahren zur herstellung einer linse
EP2628193B1 (de) Konversionsbauteil
EP2561386B1 (de) Flächenlichtleiter und flächenstrahler
WO2013135696A1 (de) Strahlungsemittierendes halbleiterbauteil, beleuchtungsvorrichtung und anzeigevorrichtung
DE102005018336A1 (de) Lichtleiter
WO2007036207A1 (de) Beleuchtungseinheit mit lumineszenzdiodenchip und lichtleiter, verfahren zum herstellen einer beleuchtungseinheit und lcd-display
DE102006035635A1 (de) Beleuchtungsanordnung
EP1917686A1 (de) Verfahren zum herstellen eines lumineszenzdiodenchips und lumineszenzdiodenchip
WO2016005150A1 (de) Halbleiterlaserbauteil und kamera
DE102014117983A1 (de) Konversionselement, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung von Konversionselementen
DE102014102258A1 (de) Optoelektronisches Bauelement
DE112017001296B4 (de) Halbleiterlichtquelle
DE112018001199B4 (de) Optoelektronisches Halbleiterbauteil
WO2013068204A1 (de) Strahlungsemittierendes bauelement
DE102010018029A1 (de) Flächenlichtleiter, Leuchte und Verfahren zur Herstellung eines Flächenlichtleiters
DE102011012264A1 (de) Optoelektronisches Halbleiterbauelement
DE102012104148A1 (de) Optoelektronisches Halbleiterbauelement mit einem optischen Diffusorelement und Verfahren zum Herstellen eines derartigen Halbleiterbauelements
DE112019003660B4 (de) Optoelektronisches bauelement und anzeigevorrichtung
DE102011087543A1 (de) Optoelektronische anordnung
WO2021028396A1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
WO2020173684A1 (de) Bauteil mit homogenisierter leuchtfläche
WO2021052825A1 (de) Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements
DE102016105988A1 (de) Konverter zur teilweisen Konversion einer Primärstrahlung und lichtemittierendes Bauelement
DE102008015551A1 (de) Optoelektronisches Bauelement mit planarer Kontaktierung und Verfahren zu dessen Herstellung
WO2023104454A1 (de) Optoelektronisches halbleiterbauelement und verfahren zur herstellung einer mehrzahl von optoelektronischen halbleiterbauelementen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016980.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10716457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010716457

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012505043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13263104

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117027409

Country of ref document: KR

Kind code of ref document: A