WO2010118622A1 - 一种催化成炭型阻燃复合材料及其制备方法 - Google Patents

一种催化成炭型阻燃复合材料及其制备方法 Download PDF

Info

Publication number
WO2010118622A1
WO2010118622A1 PCT/CN2010/000049 CN2010000049W WO2010118622A1 WO 2010118622 A1 WO2010118622 A1 WO 2010118622A1 CN 2010000049 W CN2010000049 W CN 2010000049W WO 2010118622 A1 WO2010118622 A1 WO 2010118622A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardant composite
polymer
hydrotalcite
preparing
flame
Prior art date
Application number
PCT/CN2010/000049
Other languages
English (en)
French (fr)
Inventor
张法智
张利霞
雷晓东
郑秀婷
李如事
徐赛龙
段雪
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2010118622A1 publication Critical patent/WO2010118622A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials

Definitions

  • the invention belongs to the technical field of preparation of flame-retardant composite materials, and particularly relates to a catalytic carbon-forming flame-retardant composite material and a preparation method thereof.
  • Hydrotalcite-like compounds include hydrotalcite (Hydrata lc i te ) and hydrotal lc i te-l ike compound, the main body of which consists of hydroxides of two metals. Therefore, it is also called Layered Double Hydroxide (abbreviated as LDH). Hydrotalcite, hydrotalcite-like, and intercalated hydrotalcite are collectively referred to as hydrotalcite-like intercalation materials (LDHs). This type of material is an inorganic material with unique structural properties: such as tunable denaturation of elemental composition over a wide range, controllability of grain size and distribution, and designability of intercalated intercalated anion species.
  • Such materials have the potential to be the basis for flame retardants or flame retardant precursors with potential applications. Due to the special structure and composition, LDHs absorb a large amount of heat when decomposed by heat. The water and carbon dioxide gas released by decomposition can dilute and block the flammable gas.
  • the decomposed product is an alkaline porous substance, which is larger than the surface and can absorb harmful gases. Especially acid gases. Therefore, it has the dual functions of flame retardant and smoke suppression, and can be used as a flame retardant in the field of polymer materials.
  • the object of the present invention is to provide a catalytic carbon-forming flame retardant composite material and a preparation method thereof, which have good flame retardant and smoke suppressing properties.
  • the technical scheme of the invention is as follows: Firstly, a nickel-containing hydrotalcite having a particle size of nanometer or submicron is prepared, and the flame retardant composite material is obtained by melt blending with a polymer.
  • Method 1 The hydrotalcite and the polymer with the particle size of nanometer or submicron are melt-blended at 130-250 °C by a mixer or extruder for 10-180 min.
  • the composite material, the mass ratio of hydrotalcite to polymer is 1:100-2: 1; the composite material prepared by 4 bar is sampled, and its oxygen index and smoke density are tested by oxygen index tester and smoke density tester. .
  • Method 2 The nickel-containing hydrotalcite and the polymer with a particle size of nanometer or submicron are melt-blended at 130-250 °C for 10 to 180 minutes by a mixer or extruder, thereby obtaining a catalytic carbon type.
  • the flame retardant composite material has a mass ratio of nickel-containing hydrotalcite to polymer of 1:100-2:1.
  • the chemical formula of the hydrotalcite is: [M 2+ 1-X M 3+ X (OH) 2 ] ⁇ + ⁇ (A n ") x / n - mH 2 0, wherein M 2+ is Mg 2 ⁇ One, two or three of Ni 2+ , Cu 2+ , Co 2+ , Fe 2+ , Zn 2+ , Mn 2+ , Cd 2+ , Ca 2+ , Pd 2+ or Pt 2+ , M 3+ is any one or two of Al 3+ , Cr 3+ , Co 3 ⁇ Fe 3+ , Ga 3 ⁇ V 3+ or In 3+ , 0. 2 ⁇ x ⁇ 0. 33 , m is 5-9 ⁇ The amount of crystallization water, the value range is 0. 5-9.
  • M 2+ is Ni 2+ or Ni 2+ and Mg 2+ , Cu 2+ , Co 2 ⁇ Fe 2 ⁇ Zn 2+ , Mn 2+ , Cd 2 ⁇ Ca 2+ , Pd 2+ , Pt 2+
  • M 3+ is any one or two of Al 3+ , Cr 3+ , Co 3+ , Fe 3+ , Ga 3 ⁇ V 3+ or In 3+ 5-9 ⁇
  • the hydrotalcite or nickel-containing hydrotalcite is prepared by a coprecipitation method, a nucleation crystallization/isolation method, a non-equilibrium crystallization method or a hydrothermal synthesis method.
  • the polymer described in the step B of the present invention is polyethylene, polypropylene, polyisobutylene, poly-decylpentene, polyvinyl chloride, polyethylene-vinyl acetate or polyacrylonitrile-butadiene-styrene.
  • the beneficial effects of the invention are as follows:
  • the prepared catalytic carbon-based flame retardant composite material can better promote the conversion of the polymer itself into graphite structural carbon during the combustion process by using nickel-containing hydrotalcite, thereby reducing polymer cracking during combustion.
  • the released flammable gas content reduces the burning rate of the material, so that the material has self-protection;
  • the nickel-containing hydrotalcite absorbs a large amount of heat when decomposed by heat, and the water and carbon dioxide gas released by the decomposition can dilute and block the flammable gas;
  • the product is an alkaline porous material, which is larger than the surface and can adsorb harmful gases, especially acid gases, and thus has the dual functions of flame retardant and smoke suppression.
  • the method is simple in process, good in product performance, and suitable for industrial production.
  • Example 1 is an XRD spectrum of Ni 2 A l-C0 3 -LDHs obtained in Example 1;
  • Example 2 is an XRD spectrum of the carbon residue after combustion of the composite material obtained in Example 1;
  • Figure 3 is a digital photograph of the carbon residue after combustion of the composite material obtained in Example 1;
  • Fig. 4 is a SEM image of the carbon residue after combustion of the composite material obtained in Example 1.
  • Hydrotalcite is prepared by nucleation crystallization/isolation method. The specific method is to weigh 174. 48g i ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0 and 1 12. 54g Al (N0 3 ) 3 ⁇ 9 ⁇ 2 0 dissolved in 750 mL mixed salt solution was prepared in ionic water, and 64. 8 g of NaOH and 95.39 g of Na 2 C0 3 were dissolved in deionized water to prepare 750 mL of mixed alkali solution, and the two mixed solutions were simultaneously added to the full back-mixed membrane reactor.
  • step B Weigh 60g of nickel-containing hydrotalcite N i 2 A C0 3 - LDHs obtained in step A, and weigh 100g of poly Propylene, 17G"C melt-blended on a two-wheel mixing machine for 30min, which is a catalytic carbon-forming flame retardant composite;
  • step C The composite obtained in the step B was tableted, and the oxygen index and the smoke density were measured by an oxygen index tester and a smoke density tester.
  • the prepared composites were qualitatively analyzed using a Shimadu XRD-6000 powder X-ray diffractometer. The results are as follows:
  • Fig. 1 is an XRD spectrum of the obtained Ni 2 Al-C0 3 -LDHs. It can be seen from the figure that the three characteristic peaks 003, 006 and 009 of the hydrotalcite having a large diffraction intensity appear at 11.54° and 23.34°, respectively. And 34.44. Where, the layer spacing 4 corresponding to the 003 diffraction peak reflecting the layer spacing. The value of 3 is 0.76 nm, the diffraction pattern is flat and the peaks of each diffraction peak are sharp, indicating that the synthesized NiAl-C0 3 - LDHs have a complete layered structure.
  • Figure 2 is an XRD spectrum of the carbon residue after combustion of the composite material. It can be seen from the figure that the characteristic diffraction peak of graphitic carbon appears at 2 at 25.76 °, 37.16. And 43.22 ° is the characteristic peak of the metal oxide.
  • Figure 3 is a digital photograph of the carbon residue after combustion of the composite material. It can be seen from the figure that the carbon residue forms a uniform and dense structure, and the pore structure of the carbon layer is clearly visible.
  • FIG. 4 is an electronic scan of residual carbon. A dense carbon layer can be seen from the figure, which is smooth and uniform.
  • step B Weigh 10g of nickel-magnesium-aluminum hydrotalcite obtained in step A, weigh 100g of polyethylene, melt-blend and react at 180 °C for 30min on a two-wheel mixing machine to obtain a carbon-based flame retardant composite;
  • step B Weigh 100g of nickel-containing hydrotalcite Ni 2 A Bu C0 3 - LDHs obtained in step A, and weigh 100g of polybutene, 17 (TC melt-blended on a two-wheel mixing machine for 30min, which is catalyzed by charcoal Flame retardant composite material;
  • step A Weigh 150g of nickel-containing hydrotalcite obtained in step A, weigh 100g of polyacrylonitrile-butadiene-styrene, melt-blend and react at 160°C for 90min on a two-wheel mixing machine to obtain carbonized form.
  • Flame retardant composite material; C Same as example 1.
  • step B Weigh 180g of the nickel-magnesium-aluminum hydrotalcite obtained in step A, weigh 100g of polyacrylonitrile-butadiene-stupyl ethylene, and melt-blend the mixture for 60min at 180°C on a two-wheel mixing machine to obtain carbon. Flame retardant composite material;
  • step A Weigh 180g of the nickel-magnesium-aluminum hydrotalcite obtained in step A, weigh 100g of polyethylene, and melt-blend the mixture at 160 °C for 120min on a two-wheel mixing machine to obtain a carbon-based flame retardant composite;
  • C Same as example 1.
  • step B Weigh the nickel-magnesium-aluminum hydrotalcite obtained in step lg, weigh 100g poly-methylpentene, melt-blend the mixture at 240 °C for 20min on a two-wheel mixing machine to obtain a carbon-based flame retardant composite. material.
  • step B Weigh the nickel-magnesium-aluminum hydrotalcite obtained in step A, weigh 100 g of polyacrylonitrile-butadiene-styrene, melt-blend at 140 °C for 180 min on a two-wheel mixing machine to obtain a carbon-forming type. Flame retardant composite.
  • Hydrotalcite is prepared by co-precipitation method. The specific method is to weigh 174. 48g Ni (N0 3 ) 2 -6H 2 0 and 112. 54g ⁇ 1 ( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0 dissolved in deionized water to form 750 mL mixed salt solution, weighed 64. 8g NaOH and 95.
  • step B Weigh 60g of nickel-containing hydrotalcite Ni 2 A C0 3 -LDHs obtained in step A, weigh 100g of polypropylene, 17 (TC melt-blended on a two-wheel mixing machine for 30min, which is catalyzed into carbon-type resistance Combustion composites.
  • the hydrotalcite is prepared by a coprecipitation method, and the specific method is to weigh 35. 65g NiCl 2 .6H 2 0, 91. 69g MgCl 2 .6H 2 0 and 72. 43g A1C 1 3 '6H 2 0 dissolved in deionized water The 7.5 mL mixed salt solution; and then weighed 72. 00g NaOH dissolved in deionized water to form 750 mL of alkali solution; under nitrogen protection, the alkali solution was slowly dropped into the mixed salt solution, the end point pH was 7.5. , the resulting mixed slurry 70 will be obtained. (Reflow crystallization for 6 hours to obtain nickel magnesium aluminum hydrotalcite;
  • step B Weigh 10g of nickel-magnesium-aluminum hydrotalcite obtained in step A, weigh 100g of polyethylene, and 18 (TC melt-blended and reacted on a two-wheel mixing machine for 30min to obtain a carbon-based flame retardant composite.
  • Example 1 and Example 2 were tableted, and their oxygen index and smoke density were measured by an oxygen index tester and a smoke density tester.
  • the oxygen index test was carried out according to the national standard GB/T2406 using the JF-3 oxygen index tester, and the smoke density test was carried out according to the national standard GB/T8627-1999 using the JCY-1 smoke density tester.
  • Table 1 shows examples 1 and 2 The measured oxygen index values;
  • Table 2 is the smoke density values measured in Examples 1 and 2; and the measured data is compared with the same conditions.
  • PP polypropylene
  • LDHs is hydrotalcite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

一种催化成炭型阻燃复合材料及其制备方法 技术领域
本发明属于阻燃复合材料制备技术领域, 特别涉及一种催化成炭型阻燃 复合材料及其制备方法。
背景技术
近几十年来, 塑料、 橡胶、 合成纤维等聚合物材料及其制品得到蓬勃发 展, 它们正迅速代替传统的钢材、 金属、 水泥及木材、 棉等天然聚合物, 广 泛应用于工业、 农业、 军事等国民经济的各个部门。 2000年仅塑料的生产量 即达 1. 7亿吨, 其体积大大超过同年生产的钢材体积。 但是大多数高聚物属 于易燃、 可燃材料, 在燃烧时释放速率大, 热值高, 火焰传播速度快, 不易 熄灭, 有时还产生浓烟和有毒气体, 造成对环境的危害, 对人们生命安全形 成巨大的威胁。 因此, 如何提高合成高聚物及天然高聚物材料的阻燃性已成 为一个急需解决的问题。
近年来火灾频繁, 特大火灾伤人事故常有发生, 特别是公共场所几次火 灾造成重大人员死亡和财产损失,社会影响很大。我国 1997年火灾达 14万起, 2000年升至 18万起。 欧美工业发达国家年火灾损失有时能达到国民生产总值 的 0. 2°/。。 预防火灾成为人们心中迫切的愿望。 而对高聚物进行阻燃处理是减 少火灾的重要措施之一。
据报道, 世界上因火灾事故而死亡的人中, 90%以上是因为高分子材料 燃烧中散发出的烟雾和毒性气体使人窒息而死, 并非明火烧身。 正因如此, 高分子材料燃烧中的抑烟问题越来越得到人们的重视, 并成为阻燃研究中不 可回避的问题。
很早以来人们就发现聚合物炭化的阻燃特性。 20世纪 70年代中期, P. W. Van reve len 明确指出, 高聚物燃烧时如生成炭层, 可明显改善材料的阻 燃性, 提高高聚物燃烧时的成炭量, 可达到阻燃目的。 高聚物炭化已成为目 前阻燃技术研究的的一个热点。
水滑石类化合物包括水滑石 ( Hydrota lc i te ) 和类水滑石 (Hydrota lc i te-l ike compound) , 其主体一^:由两种金属的氢氧化物构成, 因此又称为层状双羟基复合金属氧化物(Layered Double Hydrox ide , 简写 为 LDH)。 水滑石、 类水滑石和插层水滑石统称为水滑石类插层材料(LDHs)。 该类材料是一种具有独特结构特性的无机材料: 如元素组成在较宽范围内的 可调变性、 晶粒尺寸及分布的可调控性以及层间插层阴离子种类的可设计性 等奠定了这类材料有可能成为具有潜在应用前景的阻燃剂或阻燃剂前驱体 的基础。 由于特殊的结构和组成, LDHs受热分解时吸收大量热, 分解释放出 的水和二氧化碳气体能稀释、 阻隔可燃性气体; 分解后的产物为碱性多孔性 物质, 比表面大, 能吸附有害气体特别是酸性气体。 因而具有阻燃抑烟双重 功能, 可以作为阻燃剂应用于高分子材料领域。
发明内容
本发明的目的是提供一种催化成炭型阻燃复合材料及其制备方法, 该产 品具有 ί艮好的阻燃抑烟性能。
本发明的技术方案是: 首先制备出粒径为纳米级或亚微米级的含镍水滑 石, 将其与聚合物通过熔融共混反应后制得无 阻燃复合材料。
本发明的具体制备步骤如下:
方法一: 将粒径为纳米级或亚微米级的水滑石和聚合物在 130-250°C用 混练机或挤出机熔融共混反应 10- 180 min, 即得催化成炭型阻燃复合材料, 水滑石与聚合物的质量比范围为 1: 100-2: 1; 4巴制得的复合材料压片制样, 用氧指数测试仪和烟密度测试仪测试其氧指数和烟密度。
方法二: 将粒径为纳米级或亚微米级的含镍水滑石和聚合物在 130-250 °C用混练机或挤出机熔融共混反应 10-180 min, 即得催化成炭型阻燃复合材 料, 含镍水滑石与聚合物的质量比为 1: 100-2: 1。
所述的水滑石的化学式是: [M2+ 1-XM3+ X (OH) 2] χ+· (An") x/n-mH20,其中, M2+是 Mg2\ Ni2+、 Cu2+、 Co2+、 Fe2+、 Zn2+、 Mn2+、 Cd2+、 Ca2+、 Pd2+或 Pt2+中的一种、 两种或三 种, M3+是 Al3+、 Cr3+、 Co3\ Fe3+、 Ga3\ V3+或 In3+中的任意一种或两种, 0. 2 < x < 0. 33 , m为结晶水数量, 取值范围为 0. 5-9。
所述的含镍水滑石的化学式是: [M + OH r A
Figure imgf000004_0001
其中, M2+ 是 Ni2+或 Ni2+与 Mg2+、 Cu2+、 Co2\ Fe2\ Zn2+、 Mn2+、 Cd2\ Ca2+、 Pd2+、 Pt2+中的 一种或两种, M3+是 Al 3+、 Cr3+、 Co3+、 Fe3+、 Ga3\ V3+或 In3+中的任意一种或两 种, 0. 2 x < 0. 33 , m为结晶水数量, 取值范围为 0. 5-9。
所述的水滑石或含镍水滑石采用共沉淀法、 成核晶化 /隔离法、 非平衡 晶化法或水热合成法制备。
本发明步骤 B所述的聚合物为聚乙烯, 聚丙烯, 聚异丁烯, 聚-曱基戊 烯, 聚氯乙烯, 聚乙浠 -醋酸乙烯或聚丙烯腈-丁二晞-苯乙烯。
本发明的有益效果为: 制备出的催化成炭型阻燃复合材料, 利用含镍水 滑石在燃烧过程中能更好地促进聚合物本身转化为石墨结构炭,从而减少燃 烧过程中聚合物裂解释放出的可燃气体含量, 降低材料的燃烧速度, 使材料 具有自我保护作用; 含镍水滑石受热分解时吸收大量热, 分解释放出的水和 二氧化碳气体能稀释、 阻隔可燃性气体; 分解后的产物为碱性多孔性物质, 比表面大, 能吸附有害气体特别是酸性气体, 因而具有阻燃抑烟双重功能。 该方法工艺简单, 产品性能良好, 适宜工业化生产。
附图说明
图 1是实施例 1所获得的 Ni2A l-C03-LDHs的 XRD谱图;
图 2是实施例 1制得的复合材料燃烧后残炭的 XRD谱图;
图 3是实施例 1制得的复合材料燃烧后残炭的数码照片;
图 4是实施例 1制得的复合材料燃烧后残炭的 SEM图。
具体实施方式
下面结合实施例对本发明作进一步的描述:
实施例 1
A: 采用成核晶化 /隔离法制备水滑石, 具体方法为称取 174. 48g i (Ν03) 2·6Η20和 1 12. 54g Al (N03) 3·9Η20溶解在去离子水中配成 750 mL混合盐 溶液, 称取 64. 8g NaOH和 95. 39g Na2C03溶解在去离子水中配成 750 mL混 合碱溶液, 将两种混合溶液同时加入全返混液膜反应器, 调节反应器转子与 定子之间的狭缝宽度为 2 mm, 工作电压为 140 V, 转子转速为 5000 rpm, 将 得到的混合浆液转移到三口烧瓶中加热搅拌, 氮气保护, 70 °C回流晶化 6 小时后用去离子水充分洗涤至 pH 值为 7, 于 70 °C干燥 12 小时, 得到 Ni2A l-C03-LDHs ;
B: 称取 60g步骤 A所得的含镍水滑石 N i2A C03- LDHs , 再称取 100g 聚 丙烯, 17G"C于双轮混练机上熔融共混反应 30min, 即得催化成炭型阻燃复合 材料;
C: 把步骤 B所得的复合材料压片制样, 用氧指数测试仪和烟密度测试 仪测试其氧指数和烟密度。
采用 Shimadu XRD- 6000型粉末 X射线衍射仪对制备的复合材料进行定 性分析, 结果如下:
图 1为所获得的 Ni2Al-C03-LDHs的 XRD谱图, 从图可以看出, 水滑石的 3个 衍射强度较大的特征峰 003、 006和 009分别出现在 11.54° 、 23.34° 和 34.44 。 处, 反映层间距的 003衍射峰对应的层间距 4。3值为 0.76 nm, 衍射图基线氐 平并且各衍射峰峰形尖耸, 说明合成的 NiAl-C03- LDHs具有完整的层状结构。 图 2为制得的复合材料燃烧后残炭的 XRD谱图,从图中可以看出在 2 为 25.76 ° 处出现了石墨碳的特征衍射峰, 37.16。 和 43.22° 处为金属氧化物的特征 峰。
图 3为制得的复合材料燃烧后残炭的数码照片, 从图中可以看出, 残炭 形成均匀、 致密的结构, 炭层的孔隙结构清晰可见。
采用 Hitachi- S3500N 型扫描电子显微:镜进行样品形貌分析, 图 4为残 炭的电子扫描照片, 从图中可以看出一层致密的炭层, 平滑、 均匀。
实施例 2
A:称取 174.48 g Ni (Ν03)2·6Η20和 75.96 g Al (Ν03) 3·9Η20溶解在去离子 水中配成 750 mL混合盐溶液; 然后再称取 51.36g NaOH和 63.59g Na2C03¾- 解在去离子水中配成 750 mL混合碱溶液; 将上述两种混合溶液同时加入全 返混液膜反应器, 调节反应器转子与定子之间的狭缝宽度为 2 mm, 工作电压 为 140 V, 转子转速为 5000rpm, 将得到的混合浆液加入三口烧瓶中加热搅 拌, 氮气保护, 保持瓶混合浆液的温度为 70 。C 回流晶化 6 小时, 得到 Ni3Al-C03-LDHs;
B: 同实例 1;
C: 同实例 1。
实施例 3
A: 称取 43.62g Ni (Ν03)2·6Η20、 115.38g Mg (N03) 2·6Η20 和 112.53g Al (N03) 3·9Η20溶解在去离子水中配成 750 mL混合盐溶液;然后再称取 57.60g NaOH和 95. 39g Na2C03溶解在去离子水中配成 750 mL混合碱溶液; 将上述两 种混合溶液同时加入全返混液膜反应器,调节反应器转子与定子之间的狭缝 宽度为 1 讓, 工作电压为 140 V, 转子转速为 5000rpm, 将得到的混合浆液 加入三口烧瓶中加热搅拌, 氮气保护, 保持瓶混合浆液的温度为 70 。C回流 晶化 6小时, 得到镍镁铝水滑石;
B: 同实例 1;
C: 同实例 1。
实施例 4
A: 称取 35.65g NiCl2-6H20、 91.69g MgCl2'6H20和 72.43g A1C13'6H20溶 解在去离子水中配成 750 mL混合盐溶液; 然后再称取 72.00g NaOH溶解在 去离子水中配成 750 mL碱溶液; 将上述两种混合溶液同时加入全返混液膜 反应器, 调节反应器转子与定子之间的狭缝宽度为 2顏, 工作电压为 140V, 转子转速为 5000rpm, 将得到的混合浆液加入三口烧瓶中加热搅拌, 氮气保 护, 保持瓶混合浆液的温度为 70 。C回流晶化 6小时, 得到镍镁铝水滑石;
B: 称取 10g步骤 A所得的镍镁铝水滑石, 再称取 100g 聚乙烯, 180°C 于双轮混练机上熔融共混反应 30min, 即得催化成炭型阻燃复合材料;
C: 同实例 1。
实施例 5
A: 同实例 1;
B:称取 100g步骤 A所得的含镍水滑石 Ni2A卜 C03- LDHs,再称取 100g 聚 丁烯, 17 (TC于双轮混练机上熔融共混反应 30min, 即得催化成炭型阻燃复合 材料;
C: 同实例 1。
实施例 6
A: 同实例 2;
B: 称取 150g步骤 A所得的含镍水滑石,再称取 100g 聚丙烯腈-丁二烯 -苯乙烯, 160°C于双轮混练机上熔融共混反应 90min, 即得催化成炭型阻燃 复合材料; C: 同实例 1。
实施例 7
A: 同实例 3;
B: 称取 180g步骤 A所得的镍镁铝水滑石,再称取 100g 聚丙烯腈-丁二 烯-笨乙烯, 180°C于双轮混练机上熔融共混反应 60min, 即得催化成炭型阻 燃复合材料;
C: 同实例 1。
实施例 8
A: 同实例 4;
B: 称取 180g步骤 A所得的镍镁铝水滑石, 再称取 100g 聚乙烯, 160 °C于双轮混练机上熔融共混反应 120min, 即得催化成炭型阻燃复合材料; C: 同实例 1。
实施例 9
A: 同实施例 3;
B:称取 lg步骤 A所得的镍镁铝水滑石,再称取 100g 聚-甲基戊烯, 240 °C于双轮混练机上熔融共混反应 20min, 即得催化成炭型阻燃复合材料。
实施例 10
A: 同实施例 4;
B: 称取 步骤 A所得的镍镁铝水滑石, 再称取 100g聚丙浠腈-丁二烯 -苯乙烯, 140 °C于双轮混练机上熔融共混反应 180min, 即得催化成炭型阻 燃复合材料。
实施例 11
称取 2g粒径为纳米级的含镍水滑石, 再称取 100g聚异丁烯, 210 于 双轮混练机上熔融共混反应 35min, 即得催化成炭型阻燃复合材料。
实施例 12
称取 120g粒径为亚微米级的含镍水滑石,再称取 100g聚氯乙烯, 175 °C 于双轮混练机上熔融共混反应 165min, 即得催化成炭型阻燃复合材料。
实施例 13
A: 采用共沉淀法制备水滑石, 具体方法为称取 174. 48g Ni (N03) 2-6H20 和 112. 54g Α1 (Ν03) 3·9Η20溶解在去离子水中配成 750 mL混合盐溶液, 称取 64. 8g NaOH和 95. 39g Na2C03溶解在去离子水中配成 750 mL混合碱溶液, 氮 气保护下, 将混合碱溶液缓慢滴入混合盐溶液中, 终点 pH值为 6. 5, 将得到 的混合浆液 70 °C回流晶化 6小时后用去离子水充分洗涤至 pH值为 7 , 于 70 °C干燥 12小时, 得到 Ni2A l-C03-LDHs ;
B: 称取 60g步骤 A所得的含镍水滑石 Ni2A C03-LDHs , 再称取 100g 聚 丙烯, 17 (TC于双轮混练机上熔融共混反应 30min, 即得催化成炭型阻燃复合 材料.
实施例 14
A: 采用共沉淀法制备水滑石, 具体方法为称取 35. 65g NiCl2.6H20、 91. 69g MgCl2.6H20和 72. 43g A1C 13'6H20溶解在去离子水中配成 750 mL混合 盐溶液; 然后再称取 72. 00g NaOH溶解在去离子水中配成 750 mL碱溶液; 氮气保护下, 将碱溶液緩慢滴入混合盐溶液中, 终点 pH值为 7. 5, 将得到的 混合浆液 70 。( 回流晶化 6小时, 得到镍镁铝水滑石;
B: 称取 10g步骤 A所得的镍镁铝水滑石, 再称取 100g 聚乙烯, 18(TC 于双轮混练机上熔融共混反应 30min, 即得催化成炭型阻燃复合材料。
将实施例 1和实施例 2制得的复合材料压片制样, 用氧指数测试仪和烟密 度测试仪测试其氧指数和烟密度。 采用 JF-3型氧指数测定仪根据国家标准 GB/T2406进行氧指数测试, 采用 JCY-1型烟密度测试仪根据国家标准 GB/T8627-1999进行烟密度测试, 表 1为实例 1、 2所测得的氧指数值; 表 2是 实例 1、 2所测得的烟密度值; 并将所测数据与相同条件下对比样品一一镁铝 水滑石或锌镁铝水滑石与聚丙烯复合材料的测试数据进行比较。 由于镍具有 较好催化成炭性能, 因此从测试结果可以看出含镍水滑石与聚丙烯复合得到 的阻燃复合材料的烟密度比不含镍的阻燃复合材料有很大的降低, 同时氧指 数也有所提高。
表 1: 氧指数测试数据
样品 水滑石添加量八 00份 PP 氧指数(% ) 聚合物 PP 0 17. 7 对比样品 1 MgA l-C03-LDHs/PP 60 21. 8 对比样品 2 ZnMgAl- CO厂 LDHs/PP 60 22. 0 实施例 1 Ni2A l-C03-LDHs/PP 60 26. 6 实施例 2 N i3A l-C03-LDHs/PP 60 25. 8 表 2: 烟密度测试数据
Figure imgf000010_0001
说明: PP即聚丙烯, LDHs为水滑石。

Claims

权 利 要 求
1、 一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 其具体制 备步骤为: 将粒径为纳米级或亚微米级的水滑石和聚合物在 130- 250°C用混 练机或挤出机熔融共混反应 10-180 min, 即得催化成炭型阻燃复合材料, 水 滑石与聚合物的质量比范围为 1: 100-2: 1 ; 把制得的复合材料压片制样, 用氧指数测试仪和烟密度测试仪测试其氧指数和烟密度。
2、 一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 其具体制 备步骤为: 将粒径为纳米级或亚微米級的含镍水滑石和聚合物在 130-250°C 用混练机或挤出机熔融共混反应 10-180 min, 即得催化成炭型阻燃复合材 料, 含镍水滑石与聚合物的质量比为 1: 100-2: 1。
3、 根据权利要求 1所述的一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 所述的水滑石的化学式是: [M2VXM3+ X (0Η) 2] χ+· (An") x/n-mH20, 其中, M2+是 Mg2+、 Ni2+、 Cu2+、 Co2+、 Fe2+、 Zn2+、 Mn2+、 Cd2+、 Ca2+、 Pd2+或 Pt2+中的一种、 两种或三种, M3+是 Al3+、 Cr3+、 Co3+、 Fe3+、 Ga3\ V3+或 In3+中的任意一种或两 种, 0. 2 x < 0. 33 , m为结晶水数量, 取值范围为 0. 5-9。
4、 根据权利要求 2所述的一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 所述的含镍水滑石的化学式是: [M2VxM3+ x (OH) 2] x+. (An— ) x/n.mH20, 其中, M2+是 N i2+或 Ni2+与 Mg2+、 Cu2\ Co2+、 Fe2+、 Zn2\ Mn2+、 Cd2+、 Ca2+、 Pd2+、 Pt2+中的一种或两种, M3+是 Al3+、 Cr3+、 Co3+、 Fe3+、 Ga3+、 V3+或 In3+中的任意一 种或两种, 0. 2 x 0. 33 , m为结晶水数量, 取值范围为 0. 5-9。
5、 根据权利要求 1或 3所述的一种催化成炭型阻燃复合材料的制备方 法, 其特征在于: 所述的氷滑石采用共沉淀法、 成核晶化 /隔离法、 非平衡 晶化法或水热合成法制备。
6、 根据权利要求 2或 4所述的一种催化成炭型阻燃复合材料的制备方 法, 其特征在于: 所述的含镍水滑石采用共沉淀法、 成核晶化 /隔离法、 非 平衡晶化法或水热合成法制备。
7、 根据权利要求 1、 2、 3或 4所述的一种催化成炭型阻燃复合材料的 制备方法, 其特征在于: 所述的聚合物为聚乙烯, 聚丙烯, 聚异丁烯, 聚- 甲基戊烯, 聚氯乙烯, 聚乙烯-醋酸乙烯或聚丙烯腈-丁二烯 -苯乙烯。
8、 根据权利要求 5所述的一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 所述的聚合物为聚乙烯, 聚丙烯, 聚异丁烯, 聚 -曱基戊烯, 聚氯乙烯, 聚乙烯-醋酸乙烯或聚丙烯腈-丁二浠 -笨乙烯。
9、 根据权利要求 6所述的一种催化成炭型阻燃复合材料的制备方法, 其特征在于: 所述的聚合物为聚乙烯, 聚丙烯, 聚异丁烯, 聚 -曱基戊烯, 聚氯乙烯, 聚乙烯 -醋酸乙烯或聚丙烯腈-丁二烯-苯乙烯。
PCT/CN2010/000049 2009-04-17 2010-01-12 一种催化成炭型阻燃复合材料及其制备方法 WO2010118622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100824443A CN101538411B (zh) 2009-04-17 2009-04-17 一种催化成炭型阻燃复合材料及其制备方法
CN200910082444.3 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010118622A1 true WO2010118622A1 (zh) 2010-10-21

Family

ID=41121810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000049 WO2010118622A1 (zh) 2009-04-17 2010-01-12 一种催化成炭型阻燃复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN101538411B (zh)
WO (1) WO2010118622A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538411B (zh) * 2009-04-17 2011-06-01 北京化工大学 一种催化成炭型阻燃复合材料及其制备方法
CN102888053B (zh) * 2011-07-21 2014-08-27 中国石油化工股份有限公司 一种无卤阻燃聚丙烯发泡材料及制备方法
CN102863770B (zh) * 2012-09-26 2015-04-01 上海锦湖日丽塑料有限公司 一种低烟密度pc/abs合金及其制备方法
CN108659514B (zh) * 2018-06-02 2020-11-03 北京化工大学 一种聚氨酯高效抑烟剂的制备及应用
CN112194835A (zh) * 2020-10-19 2021-01-08 张兴富 低烟无卤硅烷交联阻燃线缆料及其生产工艺
CN113881183B (zh) * 2021-11-09 2023-10-20 广东锦湖日丽高分子材料有限公司 一种低红外反射率的阻燃abs树脂组合物及其制备方法
CN114806170B (zh) * 2022-04-13 2023-09-01 青岛海洋新材料科技有限公司 一种杂化聚酰亚胺泡沫材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280072A (zh) * 2008-04-25 2008-10-08 北京化工大学 类水滑石用作工程塑料阻燃抑烟剂及其制备方法
CN101538411A (zh) * 2009-04-17 2009-09-23 北京化工大学 一种催化成炭型阻燃复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280072A (zh) * 2008-04-25 2008-10-08 北京化工大学 类水滑石用作工程塑料阻燃抑烟剂及其制备方法
CN101538411A (zh) * 2009-04-17 2009-09-23 北京化工大学 一种催化成炭型阻燃复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARLES MANZI-NSHUTI ET AL.: "Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate)", J. MATER. CHEM., 19 May 2008 (2008-05-19), pages 3092,3097 *
QU HONGQIANG ET AL.: "Effect on the flame retardancy and thermal behavior of flexible poly(vinyl chloride) treated with hydrotalcite", JOURNAL OF FUNCTIONAL MATERIALS, vol. 38, no. SUPP., 2007, pages 2807 - 2809 *

Also Published As

Publication number Publication date
CN101538411B (zh) 2011-06-01
CN101538411A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
Wang et al. The influence of cerium dioxide functionalized reduced graphene oxide on reducing fire hazards of thermoplastic polyurethane nanocomposites
Ye et al. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends
Du et al. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite
WO2010118622A1 (zh) 一种催化成炭型阻燃复合材料及其制备方法
Zhang et al. Few layered Co (OH) 2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling
Kong et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan
Wang et al. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites
Zhou et al. Synergetic effect of ferrocene and MoS 2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties
Guo et al. Construction of sandwich-structured CoAl-layered double hydroxide@ zeolitic imidazolate framework-67 (CoAl-LDH@ ZIF-67) hybrids: towards enhancing the fire safety of epoxy resins
Sai et al. Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate
Jiang et al. Fabrication of Ce-doped MnO 2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism
Xu et al. Layered double hydroxides used as flame retardant for engineering plastic acrylonitrile–butadiene–styrene (ABS)
Gong et al. Superior thermal and fire safety performances of epoxy-based composites with phosphorus-doped cerium oxide nanosheets
Wang et al. A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy
Xu et al. Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide
Hong et al. Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites
Deng et al. Effect of two types of iron MMTs on the flame retardation of LDPE composite
Zhou et al. Multigram-scale fabrication of organic modified MoS 2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties
Shi et al. Co-MOF@ MXene hybrids flame retardants for enhancing the fire safety of thermoplastic polyurethanes
CN114539616B (zh) 纳米复合阻燃剂、阻燃双马来酰亚胺树脂及其制备方法
Zhou et al. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene–vinyl acetate copolymer
Hu et al. Combined effects of layered nanofillers and intumescent flame retardant on thermal and fire behavior of ABS resin
Guo et al. Polyaniline‐coupled graphene/nickel hydroxide nanohybrids as flame retardant and smoke suppressant for epoxy composites
Zhou et al. The influence of α-FeOOH/rGO hybrids on the improved thermal stability and smoke suppression properties in polystyrene
Hong et al. Fabrication of graphene/Ni–Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764035

Country of ref document: EP

Kind code of ref document: A1