WO2010118552A1 - 采用人机交互调速方式的跑步机及其控制方法 - Google Patents

采用人机交互调速方式的跑步机及其控制方法 Download PDF

Info

Publication number
WO2010118552A1
WO2010118552A1 PCT/CN2009/000400 CN2009000400W WO2010118552A1 WO 2010118552 A1 WO2010118552 A1 WO 2010118552A1 CN 2009000400 W CN2009000400 W CN 2009000400W WO 2010118552 A1 WO2010118552 A1 WO 2010118552A1
Authority
WO
WIPO (PCT)
Prior art keywords
treadmill
frequency
speed
amplitude
swing
Prior art date
Application number
PCT/CN2009/000400
Other languages
English (en)
French (fr)
Inventor
余军涛
Original Assignee
Yu Juntao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Juntao filed Critical Yu Juntao
Priority to PCT/CN2009/000400 priority Critical patent/WO2010118552A1/zh
Priority to US13/264,749 priority patent/US20120040798A1/en
Priority to CN2009801013472A priority patent/CN102083503A/zh
Publication of WO2010118552A1 publication Critical patent/WO2010118552A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • A63B22/025Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation electrically, e.g. D.C. motors with variable speed control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/806Video cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/836Sensors arranged on the body of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/045Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/30Measuring physiological parameters of the user blood pressure
    • A63B2230/305Measuring physiological parameters of the user blood pressure used as a control parameter for the apparatus

Definitions

  • Treadmill adopting human-computer interaction speed regulation mode and control method thereof
  • the invention relates to a treadmill, and also relates to a method for realizing speed or direction control of the treadmill, in particular to dynamically adjusting a user's swing arm information (frequency and amplitude), heart rate, blood pressure and the like by monitoring the user's swing arm information (frequency and amplitude), heart rate, blood pressure and the like.
  • the electric treadmill with running speed and the method for realizing speed control and virtual scene direction control belong to the technical field of fitness equipment.
  • the treadmill is a very extensive range of fitness equipment. Different from the working principle, it can be divided into mechanical treadmill and electric treadmill.
  • Mechanical treadmills are relatively early products. When using a mechanical treadmill for fitness training, the user drives the running belt to move by the kicking motion of the foot.
  • the advantage is that the speed of running can be freely controlled, but the kicking of the running belt can cause the joint of the leg. Strain damage is not good for people's health, so now mechanical treadmills have basically withdrawn from the market.
  • the electric treadmill uses an electric motor to drive the running belt through the transmission.
  • the electric motor uses an electric motor to drive the running belt through the transmission.
  • the user runs on the running belt, he adjusts the speed of his running to match the speed at which the running belt moves.
  • If the user wants to change his running speed he needs to manually change the speed of the running belt by pressing the corresponding button on the front control panel of the treadmill to change the speed of the running belt, and then passively change his running speed. This is a far cry from the habits of people who are free to change their running speed in nature.
  • the person is in an unstable state during the running process, let him use the eyes to search for the corresponding button on the treadmill control panel and press the button with the finger, which is not only troublesome, but also easy to distract the runner, affecting the exercise. effect. For some young or old people, it can even be dangerous.
  • the load sensing detection circuit transmits the current load signal that the user steps on the running belt to
  • the micro-processing unit calculates the time difference between the signals, and the difference is compared with the previously measured stable difference, and the speed of the running belt is accelerated by the difference between the latest difference and the stable difference. Or slow down or maintain a constant speed. Therefore, when the user uses the treadmill to exercise, he can adjust the running speed according to his physical fitness to achieve fitness. The effect is to avoid the situation that the user accidentally falls due to the difference between the running speed of the user and the running speed of the running belt.
  • the treadmill with the above method of speed control has a certain improvement compared with the treadmill that needs to be adjusted by pressing the button on the control panel, but it is still comparable to the speed at which people can adjust the running speed when they are running outdoors. Some troubles, and it is easy to distract attention during running and interfere with normal running. On the other hand, it takes a long time for the detection system to detect the person's pace and adjust the motor speed to reach the specified speed in the treadmill, so that the time required for the person to accelerate or slow down the pace is less than the time required for the running belt to adjust the speed.
  • the acceleration and deceleration of the treadmill can't keep up with the acceleration and deceleration of the person. It is easy to cause the person to rush to the instrument panel when accelerating, or to retreat or even fall when decelerating.
  • the input end of the treadmill adaptive speed control module is connected with an ECG monitoring module, a speed closed loop module and a keyboard/display module, and a treadmill is connected to the input end of the speed closed loop module.
  • the utility model automatically adjusts the speed of the treadmill according to the user's heart rate condition to achieve the desired fitness purpose, avoids the fitness effect due to insufficient exercise volume, or endangers the body health due to excessive exercise.
  • the heart rate condition is only one of the factors that allow the user to adjust the running speed.
  • the physical fitness of different users is different. Therefore, the application of the speed control method of the running machine is limited, and the practicality is not satisfactory.
  • the technical problem to be solved by the present invention is to provide an electric motor for dynamically adjusting the running speed of the running belt by monitoring the user's swing arm information (frequency and amplitude), heart rate, blood pressure and the like in view of the deficiencies of the treadmill speed control mode.
  • the present invention adopts the following technical solution - a treadmill using human-computer interaction speed regulation, including a base, a running frame and an electric motor mounted on the base, and a running mounted on the running frame. a plate, a running belt that is tensioned on the front and rear rollers and bypasses the running board, a stand mounted on the base, a control panel mounted on the stand, and a control circuit, the motor and the control panel are respectively connected to the Control circuit,
  • the treadmill further has an arm swing detecting unit.
  • the control circuit can also be connected to the computing unit through the interface circuit.
  • the treadmill further has a heart rate detecting unit and a blood pressure detecting unit, and the heart rate detecting unit and the blood pressure detecting unit are connected to the control circuit.
  • the treadmill may also have an arm swing and running speed function parameter analysis unit.
  • the analysis unit can be connected to the control circuit or to the calculation unit.
  • the arm swing detecting unit is a physical quantity sensor held by a user or worn at the wrist, such as a speed sensor, an acceleration sensor or a gyroscope.
  • the arm swing detecting unit is a video collecting system, and the video collecting system directly collects a video image of the arm swing, and calculates an amplitude or a frequency of the arm swing according to the video image.
  • a treadmill control method using a human-computer interaction speed regulation method is implemented based on the above treadmill, and the treadmill control method includes the following steps:
  • the user moves on the treadmill, and detects the amplitude and frequency of the user's arm swing by the arm swing detecting unit;
  • the new running belt transmission speed is converted according to the new swing arm amplitude or frequency; otherwise the running belt maintains the original transmission speed;
  • the arm swing detecting unit is a physical quantity sensor, such as a speed sensor, an acceleration sensor or a gyroscope; the physical quantity sensor detects a speed, an acceleration, and a direction parameter of the arm swing, thereby calculating an arm swing.
  • the amplitude or frequency and the data is transmitted to the control circuit.
  • the arm swing detecting unit is a video capturing system, and the video collecting system directly collects a video image of the arm swing, calculates the amplitude or frequency of the arm swing according to the video image, and calculates the data. Transfer to the control circuit.
  • the arm swing and running speed function parameter analysis unit automatically records the frequency, amplitude and treadmill speed of the user's swing arm; by recording and analyzing the frequency and amplitude of the user's many swing arms at different treadmill speeds
  • the arm swinging and running speed function parameter analysis unit can obtain the conversion formula or function parameter between the user swing arm frequency, the amplitude and the running speed, so that the treadmill can quickly and accurately convert the treadmill speed according to the swing arm frequency or amplitude.
  • the user can use the arm swing detection unit alone or wear the heart rate detection unit and the blood pressure detection unit.
  • the heart rate detecting unit and the blood pressure detecting unit dynamically measure the heartbeat frequency and the blood pressure parameter during the user's movement; if the heart rate and the blood pressure parameter are within the normal range, the amplitude or frequency of the user's arm swing increases. Or reduce the speed of the running belt. If the heart rate and blood pressure parameters are outside the normal range, the running speed of the running belt is reduced only according to the amplitude or frequency of the arm swing.
  • the arm swing detecting unit respectively detects the amplitude or frequency of the swing of the two arms; when the difference between the frequency or amplitude of the swing arm between the two arms is less than a preset threshold, The virtual scene is displayed as a straight running state; when the difference between the frequency or amplitude of the swing arm between the two arms is greater than a preset threshold, the turning direction and the turning radius in the virtual scene are changed according to the difference between the frequency or amplitude of the swing arms of the two arms.
  • the human-computer interaction speed treadmill and the control method thereof provided by the invention automatically adjust the speed of the treadmill by dynamically monitoring the swing arm information (including the swing amplitude and the swing frequency, etc.), effectively overcoming the existing
  • the swing arm information including the swing amplitude and the swing frequency, etc.
  • FIG. 1 is a block diagram showing the system structure of a first embodiment of an electric treadmill according to the present invention
  • 2 is a block diagram showing the system structure of a second embodiment of the electric treadmill according to the present invention
  • FIG. 3 is a block diagram showing the system structure of the third embodiment of the electric treadmill according to the present invention.
  • the embodiment adds an arm swinging and running speed function parameter analyzing unit based on the first embodiment, and the unit is connected with the control circuit;
  • FIG. 4 is a block diagram showing the system structure of a fourth embodiment of the electric treadmill according to the present invention. This embodiment adds an arm swing and running speed function parameter analysis unit based on the first embodiment, and the unit is connected to the calculation unit;
  • FIG. 5 is a block diagram showing the system structure of a fifth embodiment of the electric treadmill according to the present invention. This embodiment adds an arm swing and running speed function parameter analysis unit based on the second embodiment, and the unit is connected to the control circuit;
  • FIG. 6 is a block diagram showing the system structure of a sixth embodiment of the electric treadmill according to the present invention. This embodiment adds an arm swing and running speed function parameter analysis unit based on the second embodiment, and the unit is connected to the calculation unit;
  • FIG. 7 is a schematic diagram showing an implementation step of realizing a human-computer interaction speed adjustment method by using the electric treadmill provided by the present invention.
  • Figure 8 is a flow chart of the method for dynamically adjusting the running speed of the running belt and the direction of the virtual scene by detecting the arm swing frequency in the human-computer interaction speed regulation mode.
  • the electric treadmill Similar to the existing electric treadmill, the electric treadmill provided by the invention has a base, a treadmill and an electric motor mounted on the base, and a front and rear roller driven by the electric motor mounted on the treadmill.
  • the electric treadmill can also have two left and right handles fixed on the vertical frame, and the control panel can also be equipped with a liquid crystal display and its control button. The design and installation of these functional elements are conventional techniques well known to those of ordinary skill in the art and will not be described in detail herein.
  • the motor and the control panel in the electric treadmill are respectively connected to the control circuit.
  • the control circuit can also be connected to the computing unit via an interface circuit.
  • instruments such as an external arm swing detecting unit, a heart rate detecting unit, and a blood pressure detecting unit are also connected to the control circuit, and the specific connection manner can be realized by a wired circuit method or a wireless connection method such as Bluetooth or infrared.
  • the arm swing detecting unit may be a physical quantity sensor held by the user or installed at the wrist of the user, such as a speed sensor, an acceleration sensor or a gyroscope, and the heart rate detecting unit and the blood pressure detecting unit may be provided by the existing high end.
  • Wrist electronic blood pressure monitors such as EW3003, HEM-6021 are implemented. It should be noted that the electric treadmill is not limited to the arm swing detecting unit, the heart rate detecting unit, and the blood pressure detecting unit described above. Any biomedical instrument that can be used to monitor the user's physical indicators during exercise can be used in this electric treadmill.
  • Figure 2 shows a second embodiment of the electric treadmill.
  • the motor and control panel The control circuit is respectively connected, and the control circuit is connected to the calculation unit through the interface circuit.
  • the computing unit can be a computer or a DSP (Digital Signal Processor).
  • the arm swing detection unit is directly connected to the calculation unit. This embodiment is particularly suitable for situations where the arm swing detection unit is implemented by the video capture system by analyzing the arm swing image. This will be explained in detail below.
  • a special arm swing and running speed function parameter analysis unit can be added.
  • the arm swing and running speed function parameter analysis unit automatically records the frequency, amplitude and treadmill speed of the user's swing arm; by recording and analyzing the frequency and amplitude of the user's many swing arms at different treadmill speeds.
  • the arm swinging and running speed function parameter analysis unit can obtain the conversion formula or function parameter between the user swing arm frequency, the amplitude and the running speed, so that the treadmill can quickly and accurately convert the treadmill speed according to the swing arm frequency or amplitude.
  • the arm swinging and running speed function parameter analyzing unit may be connected to the control circuit or may be connected to the calculating unit.
  • the electric treadmill creatively combines various indexes such as heart rate frequency and blood pressure with the user's swing arm information (frequency and amplitude) when implementing human-computer interaction speed regulation, using the swing arm information as The main judgment is based on the user's physical response to adjust the speed of the running belt in a targeted manner, thus giving the user a better experience.
  • various indexes such as heart rate frequency and blood pressure
  • the swing arm information frequency and amplitude
  • the user When using the electric treadmill, the user first wears the heart rate detecting unit and the blood pressure detecting unit at the wrist.
  • the heart rate detection unit and the blood pressure detecting unit dynamically detect the heartbeat frequency and blood pressure parameters of the user during exercise.
  • the heartbeat frequency and blood pressure parameters can be displayed on the LCD panel of the control panel to show the effect of the exercise to the user.
  • the heartbeat frequency and blood pressure parameters if they are within the normal range, they can be displayed to the user in a softer manner (such as using less conspicuous colors and smaller fonts); if it is beyond normal
  • the scope of the user can be presented in a more conspicuous text, or the user can be audible.
  • the treadmill speed is automatically adjusted by dynamically monitoring the swing arm information (including the swing amplitude and the swing frequency, etc.), effectively overcoming the disadvantages of the above method, and allowing the user to change the speed of the running belt very naturally.
  • the swing arm information including the swing amplitude and the swing frequency, etc.
  • the magnitude and frequency of the step are roughly proportional to the amplitude and frequency of the arm swing.
  • the faster the swing arm frequency the faster the frequency of the footsteps.
  • the greater the amplitude of the swing arm the greater the step size of the step.
  • the side of the turn is also related to the swing of the arm. When turning to the left, the swing of the right arm is large, and the swing of the left arm is small; turn right When bending, the swing of the left arm is large, and the swing of the right arm is small.
  • the speed of the treadmill can't keep up with our speed changes, which can easily lead people to hit the dashboard or fall backwards.
  • the frequency or amplitude of the arm swing on the treadmill and gradually change the treadmill speed after the relevant detection unit detects and calculates, the frequency and amplitude of the user's running will naturally change with the speed of the treadmill. Change, people will not rush or fall.
  • the frequency or amplitude of the arm swing will be reconciled with the frequency or amplitude of the running. Therefore, by collecting and analyzing the information of the arm swing to adjust the speed of the treadmill, the entire speed adjustment process can be both natural and safe.
  • V F (r, f).
  • V the speed of the treadmill
  • r the amplitude of the user's swing arm
  • f the frequency of the swing arm
  • F ( ) is a function.
  • the parameters of the function are related to each person's running characteristics and are generally maintained for a certain user. Stable, can constitute a relatively stable curve.
  • the swing arm frequency is kept constant and the swing arm amplitude is increased by m times
  • the swing of the person's running will also increase by n times in the case of outdoor running (the ratio of m and n roughly satisfies a relative for an individual) A stable curve) is equivalent to a person's running speed will increase by n times, so that we can increase the treadmill's speed by n times.
  • the swing arm amplitude is kept constant and the swing arm frequency is increased by m times
  • the running frequency of the person running in the outdoor running mode will also increase by n times (normally, m and n are approximately equal), which is equivalent.
  • the running speed of the person will increase by n times, so that we can increase the treadmill's speed by n times. If the amplitude and frequency of the swing arm change at the same time, consider both factors to adjust the treadmill speed.
  • the running opportunity gradually transitions from the original speed to the new speed, so that the user has an adaptive process to prevent A sudden change in the speed of the treadmill causes the user to fall or other discomfort.
  • the control circuit of the treadmill can pre-set a set of function conversion parameter values that are extracted for most people, which can meet the needs of general users. If you want the treadmill to be more suitable for the specific situation of a certain user, the user can set the function or curve specific conversion parameter value on the treadmill control panel to suit the running characteristics of a certain user.
  • an arm swing and running speed function parameter analysis unit is set in the treadmill.
  • the user can either use the conventional control mode that controls the speed of the treadmill through the control panel, or switch to the swing arm control mode through the switch.
  • the arm swing and running speed function parameter analysis unit can automatically record the frequency, amplitude and treadmill speed of the user's swing arm;
  • the arm control mode when the swing arm frequency and amplitude and the running speed are stabilized, the arm swing and running speed function parameter analysis unit can also automatically record the frequency, amplitude and treadmill speed of the user's swing arm.
  • the arm swing and running speed function parameter analysis unit can finally obtain the user's swing arm frequency through a self-learning method such as artificial neural network.
  • a self-learning method such as artificial neural network.
  • self-learning algorithms such as artificial neural networks, are conventional techniques that can be grasped by a person skilled in the software field, and will not be described in detail herein.
  • the first method is to hold an acceleration sensor or gyroscope by the user's hands. They can detect the speed, acceleration, direction and other parameters of the arm swing, and calculate the frequency and amplitude, and then transmit it to the control circuit through Bluetooth or wireless module.
  • the second method is to wear a device on both hands or wrists of the user, which is equipped with an acceleration sensor or a gyroscope. It can detect the speed, acceleration, direction and other parameters of the arm swing, calculate the frequency and amplitude, and then pass Bluetooth or The wireless module is transmitted to the control circuit.
  • the above two methods are suitable for the electric treadmill described in the first embodiment above.
  • the third method is to directly oscillate the video image through the video acquisition system, calculate the amplitude and frequency of the arm swing according to the image, and transmit the data to the control circuit. This method is suitable for the second implementation described above
  • a threshold can be set in the control circuit, as long as the changed pendulum The difference in the frequency or amplitude of the arm relative to the previous stable value is greater than this threshold, and the control circuit issues an instruction to the treadmill to allow the treadmill to change speed. This allows the treadmill to maintain a hook speed even when the normal swing is running, although the amplitude or frequency of the arm swing may vary slightly.
  • This threshold can be adjusted on the treadmill dashboard according to your own situation, making the speed control of the runner more suitable for personal habits.
  • the heartbeat frequency and blood pressure parameters are within the normal range during the automatic adjustment of the treadmill speed by dynamically monitoring the swing arm information, it is allowed to increase according to the amplitude or frequency of the user's arm swing or Reduce the speed of the running belt; however, if the heart rate and blood pressure parameters are outside the normal range, the running speed of the running belt can only be reduced according to the amplitude or frequency of the arm swing.
  • the speed can be changed or the direction can be changed by the swing arm.
  • the speed of the treadmill can be reduced to reduce the stability.
  • the difference divides the detection process into two cases. When the difference between the frequency or amplitude of the swing arm between the two arms is less than a certain threshold, it is a straight running state, and the system changes the treadmill speed according to the swing arm frequency or amplitude without changing the running direction.
  • the system When the difference between the frequency or amplitude of the swing arm between the two arms is greater than a certain threshold, at this time, the turning running state, the system only changes the turning direction and the turning radius of the human in the virtual scene according to the difference of the frequency or amplitude of the swing arms of the two arms, Change the treadmill speed based on the swing arm frequency or amplitude.
  • a certain threshold At this time, the turning running state, the system only changes the turning direction and the turning radius of the human in the virtual scene according to the difference of the frequency or amplitude of the swing arms of the two arms, Change the treadmill speed based on the swing arm frequency or amplitude.
  • the runner itself is also connected to the computing unit through a data interface, and the speed at which the person runs or The direction is transmitted to the virtual scene software on the computing unit in real time.
  • the virtual scene software can display the virtual scene through the display on the control panel, and use the speed and direction of the person running to control the speed and direction of the person running in the virtual scene, thereby achieving the combination of sports and entertainment.
  • you want to turn the characters in the virtual scene you only need to make the frequency or amplitude of the arms swing inconsistent.
  • you want to turn to the left increase the swing amplitude or frequency of the right arm to reduce the swing amplitude or frequency of the left arm.
  • When turning to the right increase the swing amplitude or frequency of the left arm to reduce the swing amplitude or frequency of the right arm. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)

Description

采用人机交互调速方式的跑步机及其控制方法
技术领域
本发明涉及一种跑步机, 同时也涉及该跑步机实现速度或方向控制的方法, 尤 其涉及一种通过监控使用者的摆臂信息 (频率和幅度)、 心跳频率、 血压等指标, 动态调整其跑步带传送速度的电动跑步机及其实现速度控制和虚拟场景方向控制 的方法, 属于健身器材技术领域。
背景技术
跑步机是一种使用非常广泛的健身器材。 从工作原理上区分, 可以分为机械式 跑步机和电动跑步机两种。
机械式跑步机是比较早期的产品。 在使用机械式跑步机进行健身训练时, 使用 者通过脚的蹬腿动作带动跑步带移动, 其优点是可以自由控制跑步的速度, 但因为 跑步时带动跑步带移动的蹬腿动作会导致腿部关节的劳损, 对人的健康不利, 所以 现在机械式跑步机基本上退出了市场。
目前, 市场上广泛流行电动跑步机。 电动跑步机采用电动马达通过传动装置带 动跑步带移动。 使用者在跑步带上跑步时, 通过调节自己跑步的速度来与跑步带移 动的速度保持一致。 如果使用者想改变自己的跑步速度, 需要先用手按动跑步机前 方控制面板上的相应按钮改变马达的转速来改变跑步带移动的速度, 然后再被动地 改变自己的跑步速度。 这与人在自然界中可以随意改变自己跑步速度的生活习惯相 差甚远。 同时, 人在跑动的过程中身体处于不稳定状态, 让他在跑步机控制面板上 用眼睛去搜寻相应的按钮并用手指去按按钮, 不仅比较麻烦, 而且容易使跑步者分 心, 影响锻炼效果。 对于一些年幼年老或身体不好的使用者来说, 甚至可能造成危 险。
为了解决电动跑步机不便于调速的问题, 现在已经出现了多种相应的技术解决 方案。 例如在专利号为 ZL 02148196. 2的发明专利 "光学感应式虚拟实境跑步机" 中, 在跑步机的前后端和两侧安装光学感应器, 通过光学感应器来测量人跑步的步 伐状态, 来调整跑步机的速度。 在专利号为 ZL 02112184. 2的发明专利 "专用于电 动跑步机的操控方法" 中, 在跑步机的适当区域安装检测装置, 形成一个空间感应 区域, 使用者在相应的空间感应区域摆动手部来控制跑步机速度。 另外, 在中国发 明专利 ZL 200410104202. 7中, 介绍了一种随电流负载差值调整跑步机跑步带速度 的系统, 该负载感应侦测电路将使用者每踩踏于跑步带的电流负载信号传递至微处 理单元, 并计算其信号间的时间差值, 该差值再与原先测得的稳定差值比较, 借助 最新差值与稳定差值间的差值大小, 令马达带动跑步带的转速加快或变慢或维持均 速。 从而使用者利用跑步机运动时, 可以依自身体能而适当的调整跑速而达到健身 的效果, 更避免因使用者的跑速与跑步带的转速不同时致使用者不慎跌倒的情形发 生。
釆用上述方法调速方法的跑步机比起原先需要在控制面板上按动按钮来调速 的跑步机有了一定的进步, 但与人们平时在室外跑步时可以随心所欲的调整跑步速 度相比还是有些麻烦, 而且容易分散跑步时的注意力, 干扰人的正常跑步。 另一方 面, 跑步机中检测系统检测人的步伐并调整马达速度使之达到指定的速度需要的时 间较长, 使得人加快步伐或减慢步伐所需时间比跑步带调整速度所需时间小, 跑步 机的加减速赶不上人的加减速, 容易导致人加速时冲到仪表盘上, 或减速时向后退 甚至摔倒。
在中国实用新型专利 200720032627. 0 中, 提供了一种跑步机自适应调速控制
'装置, 该跑步机自适应调速控制模块的输入端连接有心电监测模块、 速度闭环模块 和键盘 /显示模块, 速度闭环模块输入端连接有跑步机。 该实用新型会根据使用者 的心率状况自动调整跑步机的速度, 以达到预期的健身目的, 避免由于运动量不足 而达不到健身效果, 或者由于运动量过大而危害身体健康。 但是, 心率状况只是使 用者调整跑步速度的因素之一。 而且, 不同使用者的体质是不一样的。 因此这种跑 步机速度控制方式的适用面有限, 实用性并不理想。
发明内容
本发明所要解决的技术问题在于针对跑步机调速方式的不足, 提供一种通过 监控使用者的摆臂信息 (频率和幅度)、 心跳频率、 血压等指标, 动态调整其跑步 带传送速度的电动跑步机及其实现速度控制和虚拟场景方向控制的方法。
为实现上述的发明目的, 本发明采用下述的技术方案- ' 一种采用人机交互调速方式的跑步机,包括底座、安装在底座上的跑步架和电 动机、 安装在跑步架上的跑步板、 张紧在前后滚轴上且绕过跑步板的跑步带、 安装 在底座上的立架、 安装在立架上的控制面板和控制电路, 所述电动机和所述控制面 板分别连接所述控制电路,
其特征在于- 所述跑步机中还具有手臂摆动检测单元。
其中, 所述控制电路还可以通过接口电路连接计算单元。
所述跑步机中还具有心率检测单元和血压检测单元,所述心率检测单元和血压 检测单元与所述控制电路连接。
所述跑步机中还可以具有手臂摆动与跑步速度函数参数分析单元。该分析单元 可以与控制电路进行连接, 也可以与计算单元进行连接。
+ 所述手臂摆动检测单元为由使用者手持或者佩戴在手腕处的物理量传感器,如 速度传感器、 加速度传感器或陀螺仪等。
或者,所述手臂摆动检测单元为视频釆集系统,所述视频采集系统直接采集手 臂摆动的视频图像, 根据视频图像计算出手臂摆动的幅度或频率。 一种采用人机交互调速方式的跑步机控制方法,基于上述的跑步机实现,所述 跑步机控制方法包括如下的步骤:
(1) 使用者在跑步机上运动, 通过手臂摆动检测单元检测使用者手臂摆动的幅 度和频率;
(2) 手臂摆动的幅度或频率是否有改变?
(3) 在手臂摆动的幅度或频率的改变值大于预设阈值的情况下, 根据新的摆臂 幅度或频率换算出新的跑步带传送速度; 否则跑步带保持原有的传送速度;
(4) 根据新的跑步带传送速度, 通过控制电路改变电动机的转速, 使跑步带按 照新的传送速度进行传送。
其中,所述步骤 (1)中,所述手臂摆动检测单元为物理量传感器,如速度传感器、 加速度传感器或陀螺仪; 所述物理量传感器检测手臂摆动的速度、 加速度、 方向参 数, 由此算出手臂摆动的幅度或频率, 并将数据传输给所述控制电路。 . 或者, 所述步骤 (1)中, 所述手臂摆动检测单元为视频采集系统, 所述视频采集 系统直接采集手臂摆动的视频图像, 根据视频图像计算出手臂摆动的幅度或频率, 并将数据传输给所述控制电路。
手臂摆动与跑步速度函数参数分析单元自动记录使用者摆臂的频率、 幅度和与 之相对应的跑步机速度; 通过记录并分析使用者在不同跑步机速度下的许多次摆臂 的频率和幅度, 手臂摆动与跑步速度函数参数分析单元可以得到该使用者摆臂频 率、 幅度与跑步速度之间的换算公式或函数的参数, 便于跑步机快速准确的根据摆 臂频率或幅度换算出跑步机速度。
使用者可以单独使用手臂摆动检测单元, 也可以选择佩戴心率检测单元和血压 检测单元。 通过所述心率检测单元和血压检测单元动态捡测使用者运动时的心跳频 率和血压参数; 如果所述心跳频率和血压参数在正常的范围内, 则根据使用者的手 臂摆动的幅度或频率增加或者减少跑步带传送速度, 如果所述心跳频率和血压参数 超出了正常的范围, 则只根据手臂摆动的幅度或频率减少跑步带传送速度。
在通过控制面板上的显示器显示虚拟场景的情况下, 所述手臂摆动检测单元 分别检测两个手臂摆动的幅度或频率; 当两臂之间摆臂频率或幅度之差小于预设阈 值时, 所述虚拟场景显示为直行跑步状态; 当两臂之间摆臂频率或幅度之差大于预 设阈值时, 根据两臂摆臂频率或幅度之差改变虚拟场景中的转弯方向和转弯半径。
与现有技术相比较, 本发明所提供的人机交互调速跑步机及其控制方法通过 动态监测摆臂信息 (包括摆动幅度和摆动频率等) 来自动调整跑步机速度, 有效克 服了现有技术所存在的缺点, 可以让使用者非常自然地改变跑步带的传送速度, 获 得更完美的使用体验。 ,
-附图说明
下面结合附图和具体实施方式对本发明作进一步的说明。
图 1为本发明所提供的电动跑步机的第一实施例的系统结构框图; 图 2为本发明所提供的电动跑步机的第二实施例的系统结构框图; ' 图 3 为本发明所提供的电动跑步机的第三实施例的系统结构框图。 该实施例 在第一实施例的基础上增加了手臂摆动与跑步速度函数参数分析单元, 该单元与控 制电路进行连接;
图 4 为本发明所提供的电动跑步机的第四实施例的系统结构框图。 该实施例 在第一实施例的基础上增加了手臂摆动与跑步速度函数参数分析单元, 该单元与计 算单元进行连接;
图 5 为本发明所提供的电动跑步机的第五实施例的系统结构框图。 该实施例 在第二实施例的基础上增加了手臂摆动与跑步速度函数参数分析单元, 该单元与控 制电路进行连接;
图 6 为本发明所提供的电动跑步机的第六实施例的系统结构框图。 该实施例 在第二实施例的基础上增加了手臂摆动与跑步速度函数参数分析单元, 该单元与计 '算单元进行连接;
图 7 为利用本发明所提供的电动跑步机实现人机交互调速方法的实施步骤示 意图;
图 8 为人机交互调速方式中, 通过检测手臂摆动频率动态调整跑步带传送速 度和虚拟场景方向的方法流程图。
具体实施方式
与现有的电动跑步机类似, 本发明所提供的釆用人机交互调速方式的电动跑步 机也具有底座、 安装在底座上的跑步架和电动机、 安装在跑步架上以电动机带动的 前后滚轴、 安装在跑步架上的跑步板、 张紧在前后滚轴上且绕过跑步板的跑步带、 安装在底座上的立架以及安装在立架上的控制面板等。 此外, 电动跑步机上还可以 具有固定在立架上的左右两个把管, 控制面板上还可以安装液晶显示器及其控制按 '键等。 上述这些功能元件的设计和安装是本领域一般技术人员都很熟悉的常规技 术, 在此就不详细赘述了。
参见图 1所示的第一实施例的结构框图, 本电动跑步机中的电动机和控制面板 分别连接控制电路。 该控制电路还可以通过接口电路连接计算单元。 另外, 外置的 手臂摆动检测单元、 心率检测单元和血压检测单元等仪器也与该控制电路相连接, 具体连接方式可以通过有线电路方式实现, 也可以采用蓝牙或红外等无线连接方式 实现。 在本实施例中, 手臂摆动检测单元可以是由使用者手持或者安装在使用者手 腕处的物理量传感器, 如速度传感器、 加速度传感器或陀螺仪, 心率检测单元和血 压检测单元可以由现有的高端手腕式电子血压计如 EW3003、 HEM-6021 等实现。 需 要说明的是, 电动跑步机中并不限于釆用上述的手臂摆动检测单元、 心率检测单元 和血压检测单元。 凡是可用于监测运动过程中使用者身体指标的生物医学仪器都可 '以在本电动跑步机中采用。
图 2所示为本电动跑步机的第二实施例。 在该实施例之中, 电动机和控制面板 分别连接控制电路,控制电路通过接口电路连接计算单元。计算单元可以为计算机, 也可以为 DSP (数字信号处理器) 等。 手臂摆动检测单元直接与计算单元实现了连 •接。 该实施例尤其适合手臂摆动检测单元由视频采集系统通过分析手臂摆动图像来 实现的情况。 下面还将对此展开详细的说明。
本电动跑步机在实现人机交互调速时, 为了便于根据新的摆臂幅度或频率换算 出新的跑步带传送速度, 可以增加专门的手臂摆动与跑歩速度函数参数分析单元。 手臂摆动与跑步速度函数参数分析单元自动记录使用者摆臂的频率、 幅度和与之相 对应的跑步机速度; 通过记录并分析使用者在不同跑步机速度下的许多次摆臂的频 率和幅度, 手臂摆动与跑步速度函数参数分析单元可以得到该使用者摆臂频率、 幅 度与跑步速度之间的换算公式或函数的参数, 便于跑步机快速准确的根据摆臂频率 或幅度换算出跑步机速度。 如图 3〜图 6所示的第三实施例至第六实施例, 该手臂 摆动与跑步速度函数参数分析单元可以与控制电路进行连接, 也可以与计算单元进 行连接。
参见图 7所示, 本电动跑步机在实现人机交互调速时, 创造性地将心跳频率、 血压等多项指标与使用者的摆臂信息 (频率和幅度) 结合起来, 以摆臂信息作为主 要的判断依据, 根据使用者的身体反应有针对性地调整跑步带的传送速度, 从而给 使用者带来更佳的使用体验。
使用者在使用本电动跑步机时, 首先在手腕处佩戴心率检测单元和血压检测单 元。 通过心率检测单元和血压检测单元动态检测使用者运动时的心跳频率和血压参 数。 心跳频率和血压参数可以显示在控制面板的液晶显示屏上, 向使用者显示锻炼 的效果。 在使用者的运动过程中, 心跳频率和血压参数如果在正常的范围内, 则可 以以较为柔和的方式 (如采用不太显眼的颜色和较小的字体) 向使用者显示; 如果 超出了正常的范围, 则可以以较为显眼的文字提示使用者, 也可以以发声的方式提 示使用者。
. 但是, 每个人使用者的身体素质差异很大。 对于按照医学规律所确定的心跳频 率和血压参数的非正常范围, 每个人实际的身体感觉并不相同。 有的使用者对心率 过速的耐受能力强, 而有的使用者则难以忍受短时间的心率过速。 因此, 直接根据 心跳频率和血压参数来调整跑步带的传送速度, 很难兼顾每一个使用者的个体差 异, 是一种较为机械的做法。
在本发明中, 通过动态监测摆臂信息 (包括摆动幅度和摆动频率等) 来自动调 整跑步机速度, 有效克服了以上方法的缺点, 可以让使用者非常自然地改变跑步带 的传送速度。
有关的生理学和运动学研究表明, 人在跑步时为了维持身体平衡, 迈步的幅度 和频率与手臂摆动的幅度和频率大致呈正比关系。 摆臂频率越快, 脚步的频率就对 应越快。 摆臂的幅度越大, 脚步的步幅就对应越大。 另外, 人在转弯时, 转弯的方 .向与手臂摆动也有关系。 向左转弯时, 右臂摆动幅度大, 左臂摆动幅度小; 向右转 弯时, 左臂摆动幅度大, 右臂摆动幅度小。
如果我们在电动跑步机上直接改变跑步的频率或幅度, 由于跑步机的速度改变 跟不上我们的速度改变, 容易导致人撞上仪表盘或向后摔倒。 如果我们在跑步机上 '先改变手臂挥动的频率或幅度, 经过相关检测单元检测并计算后逐渐改变跑步机速 度, 此时使用者跑步的频率和幅度会很自然的随着跑步机的速度改变而改变, 人不 会前冲或摔倒。 跑步机达到新的速度后, 此时手臂挥动的频率或幅度与跑步的频率 或幅度会重新达到协调一致。 因此, 通过采集和分析手臂挥动的信息进行跑步机的 调速, 可以使整个调速的过程既自然又安全。
根据这个原理, 参照图 8所示的方法流程图。 人在跑步机上跑步时, 手臂摆动 与迈步协调一致。 如果想让跑步机速度加快, 只要加快摆臂频率或加大摆臂幅度, 检测系统检测到摆臂频率或幅度增大后, 马上增加跑步机速度, 此时腿迈步的频率 或幅度也随之加快, 与摆臂重新达成协调一致。 如果想让跑步机速度减慢, 只要减 小摆臂频率或摆臂幅度, 检测系统检测到摆臂频率或幅度减小后, 马上减小跑步机 速度, 此时腿迈步的频率或幅度也随之减小, 与摆臂重新达成协调一致。
· 跑步机的速度与使用者摆臂的幅度与频率近似满足一个换算公式: V= F (r, f)。 其中 V为跑步机的速度, r为使用者摆臂的幅度, f 为摆臂的频率, F ( ) 为一 个函数, 该函数的参数与每个人的跑步特点相关, 对某一使用者大致保持稳定, 可 以构成一个相对稳定的变化曲线。例如: 若保持摆臂频率不变, 摆臂幅度增大 m倍, 则在室外跑步的情况下人跑步的迈步幅度也会增大 n倍 (m和 n的比值针对某个个 人大致满足一个相对稳定的变化曲线), 则相当于人的跑步速度会增大 n 倍, 这样 我们可以将跑步机的转速增大 n倍。 又如: 若保持摆臂幅度不变, 摆臂频率增大 m 倍, 则在室外跑步的情况下人跑步的迈步频率也会增大 n倍 (正常情况下 m和 n大 致相等), 则相当于人的跑步速度会增大 n倍, 这样我们可以将跑步机的转速增大 n 倍。 若摆臂幅度和频率同时发生改变, 则同时考虑这两个因素来调整跑步机速度。
为了让使用者更容易适应新的跑步速度,当跑步机速度随着摆臂的频率或幅度 改变时,跑步机会从原来的速度逐渐过渡到新的速度,让使用者有一个适应的过程, 防止跑步机的速度突然改变引起使用者摔倒或其他不适。
在跑步机出厂前,跑步机的控制电路中可以预先设置一组针对大多数人提炼出 来的函数换算参数值, 它可以满足一般使用者的需要。 如果想让跑步机更适合于某 一个使用者的具体情况, 可以由使用者在跑步机控制面板上设置该函数或曲线具体 的换算参数值, 以便适合某一个使用者的跑步特点。
为了更准确地得到该函数针对某一使用者的参数值, 在跑步机中设置了手臂摆 动与跑步速度函数参数分析单元。 本跑步机在使用时, 使用者既可以采用通过控制 面板控制跑步机速度的常规控制模式, 也可以通过切换开关切换到摆臂控制模式。 在通过控制面板控制跑步机速度的常规控制模式下, 手臂摆动与跑步速度函数参数 分析单元可以自动记录使用者摆臂的频率、 幅度和与之想对应的跑步机速度; 在摆 臂控制模式下, 当摆臂频率和幅度与跑步速度达到稳定后, 手臂摆动与跑步速度函 数参数分析单元也可以自动记录使用者摆臂的频率、 幅度和与之想对应的跑步机速 度。 通过记录并分析使用者在不同跑步机速度下的许多次摆臂的频率和幅度, 手臂 摆动与跑步速度函数参数分析单元最后可以通过人工神经网络等自学习方法得到 ·该使用者摆臂频率、 幅度与跑步速度之间的换算公式或函数的参数。 在摆臂控制模 式下, 就可以直接使用这些参数, 既方便又准确。 这种人工神经网络等自学习算法 是软件领域一般技术人员都能掌握的常规技术, 在此就不详细赘述了。
摆臂的幅度和频率的检测方法可以有多种。 第一种办法是由使用者的双手各持 一个加速度传感器或陀螺仪。 它们可以检测手臂摆动的速度、加速度、方向等参数, 并算出频率和幅度, 然后通过蓝牙或无线模块传输给控制电路。 第二种办法是由使 用者的双手手臂或手腕上各佩戴一个装置, 内装着加速度传感器或陀螺仪, 可以检 测手臂摆动的速度、 加速度、 方向等参数, 并算出频率和幅度, 然后通过蓝牙或无 线模块传输给控制电路。 上述两种方法适合于上述第一实施例所述的电动跑步机。
第三种办法是通过视频采集系统直接釆集手臂摆动视频图像, 根据图像计算出 手臂摆动的幅度和频率, 并将数据传输给控制电路。 这种方法适合于上述第二实施
.例所述的电动跑歩机。
在实施上述第三种方法时, 为了让人跑步摆臂过程中无意中造成的摆臂频率或 幅度变化不影响跑歩机的运转, 可以在控制电路中设置一个阈值, 只要当改变后的 摆臂的频率或幅度相对于前一个稳定值的差大于这个阈值, 控制电路才给跑步机发 出指令, 让跑步机改变速度。 这样做可以使得人们在正常匀速跑步时, 虽然手臂摆 动幅度或频率可能会有轻微变化, 但跑步机也能保持勾速。 这个阈值可以根据自己 的情况在跑步机仪表盘上进行适当的调整, 使得跑歩机的调速更适合个人的习惯。
为了保障使用者的身心健康, 在通过动态监测摆臂信息自动调整跑步机速度的 过程中, 如果心跳频率和血压参数在正常的范围内, 则允许根据使用者的手臂摆动 的幅度或频率增加或者减少跑步带传送速度; 但如果心跳频率和血压参数超出了正 常的范围, 则只能根据手臂摆动的幅度或频率减少跑步带传送速度而不能增加传送
.速度。
通过摆臂既可以改变速度, 也可以改变方向, 为了防止在控制虚拟场景中的人 转弯时两臂不同步摆动造成跑步机速度变化从而降低平稳性, 可以根据两臂之间摆 臂频率或幅度之差将检测过程分成两种情况。 当两臂之间摆臂频率或幅度之差小于 某个阈值时, 此时为直行跑步状态, 系统根据摆臂频率或幅度改变跑步机速度, 不 改变跑步方向。 当两臂之间摆臂频率或幅度之差大于某个阈值时, 此时为转弯跑步 状态, 系统只根据两臂摆臂频率或幅度之差改变虚拟场景中的人转弯方向和转弯半 径, 不根据摆臂频率或幅度改变跑步机速度。 当然, 如果不考虑平稳性, 需要更直 接的控制跑步机速度和方向, 也可以不增加这个限制。
在本发明中, 跑歩机本身还通过数据接口与计算单元相连, 将人跑步的速度或 方向实时传到计算单元上的虛拟场景软件。 该虚拟场景软件可以通过控制面板上的 显示器显示虚拟场景, 并使用人跑步的速度和方向控制虚拟场景中人跑步的速度和 方向, 达到体育与娱乐相结合的目的。 在这种情况下, 如果想让虚拟场景中的人物 转弯, 只需要让双臂摆动的频率或幅度不一致即可。 如要向左转弯, 则加大右臂摆 动幅度或频率, 减小左臂摆动幅度或频率; 要向右转弯时, 则加大左臂摆动幅度或 -频率, 减小右臂摆动幅度或频率。
以上对本发明所述的釆用人机交互调速方式的跑步机及其控制方法进行了详细 的说明, 但显然本发明的具体实现形式并不局限于此。对于本技术领域的一般技术人员 来说,在不背离本发明的权利要求范围的情况下对它进行的各种显而易见的改变都在本 发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种采用人机交互调速方式的跑步机, 包括底座、 安装在底座上的跑步架 和电动机、 安装在跑步架上的跑步板、 张紧在前后滚轴上且绕过跑步扳的跑步带、 安装在底座上的立架、 安装在立架上的控制面板和控制电路, 所述电动机和所述控 制面板分别连接所述控制电路, 其特征在于:
' 所述跑步机中还具有手臂摆动检测单元。
2. 如权利要求 1所述的釆用人机交互调速方式的跑步机, 其特征在于: 所述手臂摆动检测单元为由使用者手持或者佩戴在手腕处的物理量传感器。
3. 如权利要求 1所述的采用人机交互调速方式的跑步机, 其特征在于: 所述手臂摆动检测单元为视频釆集系统,所述视频釆集系统直接采集手臂摆动 的视频图像, 根据视频图像计算出手臂摆动的幅度或频率。
4. 如权利要求 2所述的采用人机交互调速方式的跑步机, 其特征在于: 所述手臂摆动检测单元连接控制电路。
5. 如权利要求 3所述的采用人机交互调速方式的跑步机, 其特征在于- 所述手臂摆动检测单元连接计算单元,所述计算单元通过接口电路与控制电路 相连。
' 6. 如权利要求 1所述的采用人机交互调速方式的跑步机, 其特征在于: 所述跑步机中还具有心率检测单元和血压捡测单元,所述心率检测单元和血压 检测单元与所述控制电路连接。
7. 如权利要求 1所述的采用人机交互调速方式的跑步机, 其特征在于: 所述跑步机中还具有手臂摆动与跑步速度函数参数分析单元。
8. 一种采用人机交互调速方式的跑步机控制方法, 基于如权利要求 1所述的 跑步机实现, 所述跑步机控制方法包括如下的步骤- (1) 使用者在跑步机上运动, 通过手臂摆动检测单元检测使用者手臂摆动的幅 度和频率;
(2) 手臂摆动的幅度或频率是否有改变?
(3) 在手臂摆动的幅度或频率的改变值大于预设阈值的情况下, 根据新的摆臂 幅度或频率换算出新的跑步带传送速度; 否则跑步带保持原有的传送速度;
(4) 根据新的跑步带传送速度, 通过控制电路改变电动机的转速, 使跑步带按 照新的传送速度进行传送。
9. 如权利要求 8所述的采用人机交互调速方式的跑步机控制方法, 其特征在 于:
所述步骤 (1)中,所述手臂摆动捡测单元为物理量传感器;所述物理量传感器检 测手臂摆动的速度、 加速度、 方向参数, 由此算出手臂摆动的幅度或频率, 并将数 据传输给所述控制电路。
10. 如权利要求 8所述的采用人机交互调速方式的跑步机控制方法,其特征在 于:
所述步骤 (1)中,所述手臂摆动检测单元为视频采集系统,所述视频采集系统直 接采集手臂摆动的视频图像, 根据视频图像计算出手臂摆动的幅度或频率, 并将数 据传输给所述控制电路。
11. 如权利要求 8所述的釆用人机交互调速方式的跑步机控制方法,其特征在 于:
' 使用者首先通过所述心率检测单元和血压检测单元动态检测使用者运动时的 心跳频率和血压参数; 如果所述心跳频率和血压参数在正常的范围内, 则根据使用 者的手臂摆动的幅度或频率增加或者减少跑步带传送速度, 如果所述心跳频率和血 压参数超出了正常的范围, 则只根据手臂摆动的幅度或频率减少跑步带传送速度。
12. 如权利要求 8所述的采用人机交互调速方式的跑步机控制方法,其特征在 于:
在通过控制面板上的显示器显示虚拟场景的情况下, 所述手臂摆动检测单元分 别检测两个手臂摆动的幅度或频率; 当两臂之间摆臂频率或幅度之差小于预设阈值 时, 所述虚拟场景显示为直行跑步状态; 当两臂之间摆臂频率或幅度之差大于预设 阈值时, 根据两臂摆臂频率或幅度之差改变虚拟场景中的转弯方向和转弯半径。
PCT/CN2009/000400 2009-04-15 2009-04-15 采用人机交互调速方式的跑步机及其控制方法 WO2010118552A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2009/000400 WO2010118552A1 (zh) 2009-04-15 2009-04-15 采用人机交互调速方式的跑步机及其控制方法
US13/264,749 US20120040798A1 (en) 2009-04-15 2009-04-15 Treadmill with Man-Machine Interaction Speed Regulation and Control Method Thereof
CN2009801013472A CN102083503A (zh) 2009-04-15 2009-04-15 采用人机交互调速方式的跑步机及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000400 WO2010118552A1 (zh) 2009-04-15 2009-04-15 采用人机交互调速方式的跑步机及其控制方法

Publications (1)

Publication Number Publication Date
WO2010118552A1 true WO2010118552A1 (zh) 2010-10-21

Family

ID=42982100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000400 WO2010118552A1 (zh) 2009-04-15 2009-04-15 采用人机交互调速方式的跑步机及其控制方法

Country Status (3)

Country Link
US (1) US20120040798A1 (zh)
CN (1) CN102083503A (zh)
WO (1) WO2010118552A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069617A (zh) * 2014-06-23 2014-10-01 韩静华 一种虚拟跑步机系统及其控制方法
CN108992843A (zh) * 2018-07-31 2018-12-14 锐嘉科集团有限公司 基于3d摄像机的运动器材及控制方法
CN114534202A (zh) * 2020-11-26 2022-05-27 广州视源电子科技股份有限公司 基于跑步机的背景音调整方法、装置、存储介质和智能设备
CN115445144A (zh) * 2022-09-15 2022-12-09 武汉古宝斋文化艺术品有限公司 一种基于虚拟现实的智能交互式展示平台

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI519971B (zh) * 2014-02-26 2016-02-01 神達電腦股份有限公司 利用字型變化的資訊顯示方法及電子裝置
US9901780B2 (en) * 2015-09-03 2018-02-27 International Business Machines Corporation Adjusting exercise machine settings based on current work conditions
CN105169621A (zh) * 2015-10-09 2015-12-23 北京乐动卓越科技有限公司 一种跑步机速度调节方法及跑步机
CN107754212A (zh) * 2016-08-16 2018-03-06 上海掌门科技有限公司 跑步运动设备及其虚拟现实交互方法
US11179617B2 (en) * 2016-08-16 2021-11-23 Shanghai Zhangmen Science And Technology Co., Ltd. Method, virtual reality device, system, and non-volatile storage media for providing virtual realistic scenes
IT201600106425A1 (it) * 2016-10-21 2018-04-21 Technogym Spa Metodo di controllo adattativo di un tappeto rotante, tappeto rotante con controllo adattativo e relativo prodotto programma.
JP7064329B2 (ja) * 2017-05-09 2022-05-10 アルインコ株式会社 トレッドミル型運動機における安全装置
US20190022463A1 (en) * 2017-07-19 2019-01-24 Nnamdi Emmanuel Iheakaram Method and apparatus for architecture of a knowledge system for mathematization of knowledge representation and intelligent task processing
CN108404382A (zh) * 2018-02-24 2018-08-17 上海康斐信息技术有限公司 一种自适应训练计划生成的算法及系统
CN112999568B (zh) * 2021-02-24 2022-10-11 杭州士腾科技有限公司 一种跑步机速度自适应的控制方法、跑步机及控制装置
CN113797484A (zh) * 2021-08-02 2021-12-17 北京邮电大学 智能跑步训练方法及其系统
CN114949740A (zh) * 2022-06-15 2022-08-30 湖南嘿哈猫网络科技有限公司 一种基于心率自动调节速度的跑步机装置
CN116501175B (zh) * 2023-06-25 2023-09-22 江西格如灵科技股份有限公司 虚拟角色移动方法、装置、计算机设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20207573U1 (de) * 2002-05-14 2002-08-22 Chen Shui Jung Laufband
US6719668B1 (en) * 2002-12-30 2004-04-13 Ping-Hui Huang Treadmill operation mode control system
CN2745124Y (zh) * 2004-07-09 2005-12-07 昆明利普机器视觉工程有限公司 基于多媒体技术的人体康复过程自动识别装置
CN1857756A (zh) * 2005-05-08 2006-11-08 李家庆 多媒体智能情景跑步机控制器
CN101385894A (zh) * 2008-10-24 2009-03-18 深圳市景新健身产品有限公司 一种跑步机的速度控制方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707319A (en) * 1996-08-21 1998-01-13 Riley; Ronald J. Treadmill adaptive speed control
KR100702898B1 (ko) * 2006-05-29 2007-04-03 경북대학교 산학협력단 동작분석을 이용한 보행훈련 장치
EP2195099B1 (en) * 2007-09-10 2011-08-24 Trixter PLC Sensing apparatus for use with exercise bicycles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20207573U1 (de) * 2002-05-14 2002-08-22 Chen Shui Jung Laufband
US6719668B1 (en) * 2002-12-30 2004-04-13 Ping-Hui Huang Treadmill operation mode control system
CN2745124Y (zh) * 2004-07-09 2005-12-07 昆明利普机器视觉工程有限公司 基于多媒体技术的人体康复过程自动识别装置
CN1857756A (zh) * 2005-05-08 2006-11-08 李家庆 多媒体智能情景跑步机控制器
CN101385894A (zh) * 2008-10-24 2009-03-18 深圳市景新健身产品有限公司 一种跑步机的速度控制方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069617A (zh) * 2014-06-23 2014-10-01 韩静华 一种虚拟跑步机系统及其控制方法
CN108992843A (zh) * 2018-07-31 2018-12-14 锐嘉科集团有限公司 基于3d摄像机的运动器材及控制方法
CN108992843B (zh) * 2018-07-31 2021-05-28 锐嘉科集团有限公司 基于3d摄像机的运动器材及控制方法
CN114534202A (zh) * 2020-11-26 2022-05-27 广州视源电子科技股份有限公司 基于跑步机的背景音调整方法、装置、存储介质和智能设备
CN115445144A (zh) * 2022-09-15 2022-12-09 武汉古宝斋文化艺术品有限公司 一种基于虚拟现实的智能交互式展示平台
CN115445144B (zh) * 2022-09-15 2024-05-31 每步科技(上海)有限公司 一种基于虚拟现实的智能交互式展示平台

Also Published As

Publication number Publication date
US20120040798A1 (en) 2012-02-16
CN102083503A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2010118552A1 (zh) 采用人机交互调速方式的跑步机及其控制方法
CN201389288Y (zh) 采用人机交互调速方式的跑步机
US5318487A (en) Exercise system and method for managing physiological intensity of exercise
CA2095999C (en) Exercise system and method for managing physiological intensity of exercise
US20100279822A1 (en) Systems and methods for optimizing one or more audio tracks to a video stream
US10569137B2 (en) Apparatus, system and method for healthy motion environment managing
US7815547B2 (en) Exercise system capable of providing heart rate detection warning and control method thereof
US20080032864A1 (en) Internet Enabled Motivational Exercise System and Apparatus
EP1369082A3 (en) Physical activity measurement apparatus
CN102961847B (zh) 一种跑步机速度跟随自适应控制方法及装置
JP2017158999A (ja) 最大酸素消費をリアルタイムに監視する監視方法
CN207024470U (zh) 一种跳绳系统
US20200410892A1 (en) Processing system, walking training system, processing method, and program
CN1311782C (zh) 一种智能运动或医疗器械的实现方法
CN102614624B (zh) 配置体重自动测定系统的电动跑步机的运行方法
GB2588261A (en) Apparatus, use of the apparatus and arrangement
TWI490013B (zh) Intelligent body fitness training system
CN112221090A (zh) 一种柔性上肢训练装置及训练方法
CN107456711B (zh) 一种具有保护机构的智能跑步设备及其工作方法
JP6697300B2 (ja) 情報処理方法、プログラム及び情報処理装置
US20120157859A1 (en) Device to assist in the practice of a physical activity session, and physical activity apparatus provided with such a device
TWI290058B (en) Physical fitness information display system
CN210170785U (zh) 一种智能律动机
CN112451913A (zh) 一种跑步机语音控制系统
CN109999411B (zh) 一种用于体育运动的体能训练系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101347.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843186

Country of ref document: EP

Kind code of ref document: A1