WO2010116983A9 - 風車 - Google Patents

風車 Download PDF

Info

Publication number
WO2010116983A9
WO2010116983A9 PCT/JP2010/056197 JP2010056197W WO2010116983A9 WO 2010116983 A9 WO2010116983 A9 WO 2010116983A9 JP 2010056197 W JP2010056197 W JP 2010056197W WO 2010116983 A9 WO2010116983 A9 WO 2010116983A9
Authority
WO
WIPO (PCT)
Prior art keywords
wind
blade
support shaft
spiral
windmill
Prior art date
Application number
PCT/JP2010/056197
Other languages
English (en)
French (fr)
Other versions
WO2010116983A8 (ja
WO2010116983A1 (ja
Inventor
勇 松田
Original Assignee
Matsuda Isamu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Isamu filed Critical Matsuda Isamu
Publication of WO2010116983A1 publication Critical patent/WO2010116983A1/ja
Publication of WO2010116983A8 publication Critical patent/WO2010116983A8/ja
Publication of WO2010116983A9 publication Critical patent/WO2010116983A9/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a windmill serving as a power source such as wind power generation, and more particularly to a windmill capable of ensuring stable power even in strong winds.
  • Conventionally known wind turbines for wind power generation include a horizontal axis type and a vertical axis type depending on the setting of a support shaft.
  • the lift type that uses the force acting in the direction perpendicular to the wind flow, and the force acting in the direction parallel to the wind flow
  • a drag type that uses power
  • this propeller type has a power transmission device, a generator and the like on the upper part of the support, vibration is likely to occur and the noise is large. In addition, there are problems such as difficulty in maintaining them.
  • European propeller-type windmills are not assumed when the wind direction changes greatly, and have a structure that cannot handle 360 degrees in all directions.
  • An object of the present invention has been made in view of the above problems, and is to realize a windmill that can rotate regardless of the wind direction and can realize stable rotation even in a strong wind such as a typhoon.
  • the present invention is a wind turbine characterized in that, in claim 1, a rotating blade is provided spirally around a support shaft in the vertical direction.
  • the spiral rotary blade is attached to a vertical support shaft and can receive wind from all directions.
  • the material of the rotating blade may be arbitrary, and may be a rigid metal or the like, or a resin material having an appropriate elasticity.
  • a small wind receiving plate or the like may be attached to the back surface of the spiral surface so as to be easily subjected to drag. Further, a current plate may be provided.
  • the part that receives the wind becomes the spiral upper end and the side part, and these parts become the wind entrance. Then, when the wind sequentially flows downward inside the spiral shape, upward lift is generated and the blades are rotated.
  • the lift differs greatly between the case where the spiral surface is flat and the case where it is a curved surface.
  • the wind turbine is characterized in that the rotating blade has a curved shape that once rises to the upper side as it becomes the outer peripheral side, and then gradually drops like an umbrella.
  • the curved surface of this spiral blade is curved in a shape that gradually hangs from a raised state near the mounting position of the support shaft.
  • the amount of wind taken in between the pitches of the rotating blades can be increased.
  • a wind turbine is characterized in that a plurality of wind receiving plates are provided on either one or both of the front and rear surfaces of the rotary blade.
  • the wind receiving plate may be provided on either or both of the front surface and the back surface of the spiral blade, or may be a small-shaped projection plate or the like.
  • the wind flows along the front surface or the back surface of the spiral blade, It only has to protrude from the blade surface so as to receive and become a drag force.
  • it is not perpendicular to the spiral blade surface, but may be provided so as to be inclined more in the direction opposite to the rotation direction and receive the wind more strongly.
  • a wind receiving plate may be provided radially around the support shaft, and the radial tip side may be curved in the direction opposite to the rotation direction of the rotary blade.
  • the wind turbine is characterized in that the spiral pitch is four times the length from the support shaft to the tip of the rotary blade in a direction perpendicular to the support shaft from 0 mm.
  • the pitch of the spiral blades is preferably about 1/2 to 1/8 of the length (blade radius) from the support shaft to the tip of the rotary blade in the direction perpendicular to the support shaft.
  • the curved surface of the rotating rotating blade has a small curvature, it cannot receive sufficient wind, and lift and drag cannot be expected. On the other hand, if it is too large, the resistance will be too great to obtain a smooth rotational force.
  • it is 100 to 200%, more preferably 100 to 120% with respect to the radius of the rotary blade (the length from the support shaft to the tip of the rotary blade in the direction perpendicular to the support shaft).
  • start end portion serving as a wind intake port of the spiral blade and the end portion serving as a final wind exit be provided in the same direction from the support shaft. That is, it is on the same straight line from the support shaft.
  • the starting end is the upper part of the rotating blade
  • the terminal end is the lower part of the rotating blade, but if the directions from the central axis of the starting end and the terminal end do not match, the entire rotating blade Since the balance between the weight and the resistance is lost, there arises a problem that the rotation is not smooth.
  • Claim 8 is a windmill characterized in that a plurality of the rotating blades are combined.
  • Any combination of blade components can be used as long as a spiral blade having a curved surface can be formed.
  • It may be a part of a spiral, or a part composed of a plurality of parts.
  • a combination of a plurality of fan-shaped blades having a curved surface on a vertical axis, and a spiral blade may be formed.
  • the rotating blade is provided with a curved cover-type auxiliary wing for collecting the wind and taking the air into the inside, either on the front surface or the back surface, or on both surfaces.
  • the wind turbine is characterized in that an opening for allowing the wind that has flowed into the interior to flow out to the opposite surface side of the rotary blade is provided.
  • the auxiliary wing has a cover-type shape curved in a crescent or half-moon shape. Wind blows between the rotary blade and the auxiliary wing, and rotates through the opening provided in the rotary blade at the back. Smoothly flows out to the opposite side of the blade.
  • the rotational force of the rotating blades is reduced by the drag when blown into the auxiliary blades at this time and the drag when passing through the opening provided in the rotating blades because the back side of the auxiliary blades is narrowed and the pressure is increased. It can be raised.
  • the auxiliary wing may be either the front surface or the back surface of the rotating blade. However, if the auxiliary wings are provided symmetrically on both surfaces and the opening can be used in common, it is efficient, the drag is effectively increased, and the rotating force is further increased. Up.
  • the disc blade provided on the vertical support shaft has at least one curved cover type for collecting wind and taking in the wind inside either the upper surface or the lower surface, or both surfaces.
  • the wind turbine is provided with an opening for allowing the wind that has flowed into the inner side of the wind receiver to flow out to the opposite surface of the disk.
  • the wind blown into the wind receiver flows out to the opposite side of the disk through the opening at the back of the blade.
  • the vertical wind-receiving blade is a blade having a curved surface at least, and may be a blade having a crescent-shaped cross section, for example. Moreover, the blade plate which enabled it to change and adjust the angle of each blade plate may be sufficient.
  • the rotational force of the vertical wind receiving blade is added to the rotational force of the cover-shaped wind receiving blade provided on the disk, and a larger rotating force can be obtained.
  • the blades are relatively small and can be mounted on a truck as a power generator, it can be used as an emergency generator in the event of a disaster.
  • an effective disk type windmill can be realized in an omnidirectional manner.
  • Disk type windmills can be stacked and installed, and the rotational force can be increased by providing vertical rotating blades at the connecting portion.
  • This embodiment effectively utilizes both the drag, which is the force acting in the direction parallel to the wind flow, and the lift, which is the force acting in the direction perpendicular to the wind flow, and is stable even in strong winds such as typhoons.
  • This is an anti-lift type hybrid wind turbine that can exert its rotational force.
  • the rotary blade 1 of the anti-lift type hybrid wind turbine according to this embodiment rotates counterclockwise with respect to the support shaft 2.
  • Numeral 3 is a starting end that is an upper end face of the spiral blade 1
  • 4 is a terminal end that is an end face of the lower part of the rotating blade 1.
  • W indicates the direction of the wind
  • 6A and 6B indicate the iron wire frame
  • a and B indicate the flow of the wind near the iron wire frame.
  • the iron wire 6B on the left side is not hindered to rotate because the drag is small because it winds.
  • Example 1 An operation test was performed using the rotating blades of this example. The operation test was carried out using a factory electric fan.
  • a spiral blade windmill according to the present invention was installed on a support bearing base, and air was blown from a factory fan from a position 2 m away. Wind power was moderate.
  • the wind turbine started to rotate slowly with the air flow, and the rotation speed increased to about 60 to 100 rotations per minute.
  • FIG. 4 is a schematic view showing an embodiment of a wind turbine with spiral blades having a combined curved surface according to the present invention.
  • the support shaft 11 is made of a hard resin
  • the fixing shaft 12 for attaching the rotary blade unit 10 to the support shaft 11 is provided and five rotary blades 10 are attached.
  • FIG. 5 is a photograph showing an example of a windmill with spiral blades provided with auxiliary blades according to the present invention.
  • Cover-type auxiliary wings 21 curved in a crescent shape are provided on each of the upper and lower surfaces of the outer peripheral portion of the spiral blade 20 every 120 degrees.
  • This photo shows the wind turbine shaft 23 of the present invention attached and fixed to three pipe frames 24 on a box-shaped pedestal 22 and installed for conducting a wind tunnel experiment.
  • FIG. 6 is a plan view of the spiral blade 20 provided with the auxiliary wing 21 according to the present invention as seen from above.
  • the inlet portion of the auxiliary wing 21 is provided in a crescent shape so as to cover the spiral rotary blade 20.
  • FIG. 7 is a plan view of the spiral blade provided with the auxiliary wing according to the present invention as seen from below.
  • the wind that has flowed into the auxiliary blade 21 flows out from the opening 25 of the rotary blade shown in the drawing to the lower side.
  • the spiral is wound twice, and the auxiliary wings 21 are provided in six stages up and down in two stages for each 120 degree phase, and the upper and lower auxiliary wings 21 are provided symmetrically,
  • the opening 25 of the rotary blade 20 is provided so that the upper and lower auxiliary blades 21 are common.
  • FIG. 12 is a cross-sectional view of the auxiliary blade portion of the spiral blade provided with the auxiliary blade according to the present invention.
  • the auxiliary wing portion 21 of the present embodiment has a crescent-shaped cover shape, and is symmetrically attached so as to face both the upper surface and the lower surface of the spiral rotating blade 20.
  • An opening 25 that connects the upper surface and the lower surface is provided in the rotary blade 20 at the back of the blade.
  • this auxiliary wing 21 has a curved cover shape, the wind from the side opposite to the inlet flows without resistance. Moreover, since the attachment position is provided for every 120 degrees phase, the right and left drags of the windmill are not balanced by the direction of the wind, and the windmill can rotate smoothly.
  • FIG. 13 is a table showing wind turbine characteristic test results of spiral blades having a curved surface according to the present invention.
  • FIG. 13 is a table showing the experimental results.
  • Type 2 is a spiral blade windmill (type of FIG. 1) having a curved surface of the present invention
  • Type 3 is a spiral blade windmill with auxiliary blades (type of FIG. 5).
  • the number of rotations without addition was over 450 rpm, and good results were obtained for both rotational force and torque.
  • FIG. 14 is a schematic view showing an embodiment of a windmill in which a cover-type wind receiving blade is provided on a disk according to the present invention.
  • (1) is a side view
  • (2) is a plan view
  • (3) is a cross-sectional view of a wind vane blade section (XX cross section).
  • An opening 32 that penetrates the lower surface of the disk 30 is provided in the inner part of each wind receiving blade 31 and flows in from the inlet 31a of the wind receiving blade 31 as shown in FIG. The wind is compressed at the inner part, passes through the opening 32, and flows out to the lower surface side of the disk 30.
  • the wind receiving blade 31 receives the drag effectively, and the disk 30 obtains the rotational force.
  • FIG. 15 is a schematic view showing a multi-stage connected state of the disk type wind turbine according to the present invention. (1) is a side view, and (2) is a YY section cross-sectional arrow view.
  • the disk 30 is provided in three stages. As shown in (2) of the figure, a plate member 34 having a curved cross section is provided as a connecting member for connecting the respective discs 30 and functions as a vertical wind vane.
  • the rotational force of the disk 30 can be further increased by the drag of both the cover-type wind receiving blade 31 and the vertical wind receiving blade 34 of the disk 30.

Abstract

 風力発電などに利用可能であり、風向きに関係なく全方向に対応して回転でき、通常の風から台風などの強風時においても安定した回転を実現できる風車を実現することを課題とする。 鉛直方向の支持軸の周囲に螺旋状に回転羽根が設けられてなることを特徴とし、この回転羽根は、支持軸の取り付け位置を起点として、外周側になるにつれて、傘状に徐々に垂下する湾曲した形状となっており、回転羽根の表面に複数の風受け板が設けられていることを特徴とし、また、風を捕集して内部に風を取り込むための湾曲したカバー型の補助翼が設けられ、該補助翼内に流入した風を回転羽根の反対面側に流出させるための開口部が設けられていることを特徴とする風車としたものである。

Description

風車
 本発明は、風力発電などの動力源となる風車に関し、特に強風時にも安定した動力を確保できる風車に関する。
 従来より、風力発電装置用として、各種の風車が開発されている。従来公知の風力発電用の風車として、支持軸の設定により、水平軸型と垂直軸型がある。
 また、回転力の発生形態により、風の流れの中におかれた羽根に働く力の中で、風の流れに垂直方向に働く力を利用する揚力型と、風の流れに平行方向に働く力を利用する抗力型がある。
 現在、広く使用されている風車の大部分は、水平軸型で、かつ、揚力型のプロペラ型がある。この風車は、大型構造でありながら発生トルクが小さく、また、風向制御を必要とする。
 日本の場合には、海外と比べて、風の条件が大きく異なり、風の方向が年間を通じて大きく変化し、その方向は360度、全方向に対応した構造の風車が必要である。
 また、このプロペラ型は、さらに支持物上部に動力伝達装置や発電機等がある為、振動が起こり易く騒音も大きい。さらにそれらの保守点検が困難である等の問題もある。
 次に、垂直軸型、かつ、揚力型のダリウス型は、自己起動が不可能である為、補助手段を必要とし、また風速変動に対する制御が困難であり、振動も多く、さらに発生トルクが小さい等の問題が指摘されている。
 また、小型用として一部で使用されている垂直型、かつ、抗力型のサボニウス型は、風速変動に対する制御が困難で、風の受圧面積が大きい割には低効率であり、出力当りの装置重量が大で、余り経済的ではない等の問題がある。
 たとえば、特開2005-248935号公報では、風の流れの中におかれた主羽根と副羽根に働く力のうち、流れに垂直方向の揚力と、流れの中におかれた受風といに平行に働く抗力とを併せ利用できるように、受風といと、主羽根と、副羽根の3個を併設して1組とした回転翼を翼支持軸により風車の垂直支持軸と結合している風力発電用の風車が開示されている。
 また、特開平9-68152号公報では、風向きに関係なく回転運動を生じる風力原動機として、螺旋状の回転羽根を縦式の支持軸に取り付け、これをベアリング等を利用した、軸受けに保持する縦型の支持枠に取り付けた風力原動機が開示されている。
特開2005-248935号公報 特開平9-68152号公報
 現在使用されている風力発電用の風車は、欧州製が主流であるが、欧州と日本では、風の条件が大きく異なるため、そのまま導入すると、種々の問題が発生する。
 特に、日本では、風の方向が1年を通して大きく変化し、季節により、逆方向の風向きとなる。欧州では、年間を通して大きな風向きの変化はない。
 欧州製のプロペラ型の風車は、風向きが大きく変化する場合は、想定されておらず、360度、全方向に対応できない構造となっている。
 前記の特開2005-248935号公報では、風向きに関係なく、全方向対応であるが、もうひとつの日本の風の特徴である、台風のような強風での安定した回転の問題がある。
 このタイプの風車では、台風はおろか、風速15m程度が限界と思われる。日本では、台風時には、風車は止めているのが現状であるが、台風のときにも使用でき、安定した回転力を得られる風車が求められている。
 本発明の課題は、上記のような問題に鑑みてなされたものであり、風向きに関係なく、回転でき、台風などの強風時においても安定した回転を実現できる風車を実現することである。
 本発明は上記の課題を解決するために、請求項1では、鉛直方向の支持軸の周囲に螺旋状に回転羽根が設けられてなることを特徴とする風車としたものである。
 該螺旋状の回転羽根は、鉛直方向の支持軸に取り付けられ、全方向から風を受けることができるものである。
 螺旋状の回転羽根は、たとえば、スクリュー形状の回転羽根などでもよく、その螺旋形状のピッチを狭くして、揚力、抗力を受けやすくすることが好ましい。
 また、回転羽根の材質は、任意でよく、剛性の金属などでも良く、適度な弾力性を有する樹脂材などでも良い。
 また、螺旋面の裏面は、抗力を受けやすいように、小さな風受け板などを取り付けても良い。また、整流板を設けても良い。
 請求項2では、回転羽根の形状として、螺旋形状であるが、外周側になるにつれて、傘状に徐々に垂下する湾曲した形状としたことを特徴とする風車としたものである。
 湾曲状に垂れ下がる形状とすることにより、風を受ける部分は、螺旋形状の上端部と、側面部となり、これらの部分が風の入り口となる。そして、螺旋形状の内側を順次下方へ風が流れることにより、上向きの揚力が発生し、羽根が回転することとなる。
 螺旋形状であっても、その螺旋面が平坦である場合と、湾曲面である場合とでは、その揚力が大きく異なる。
 また、湾曲面である場合には、風がその内面側を下方へ流れていくときに、風が外部へ逃げにくくなり、螺旋の巻き数を複数段もうけることで、揚力を効果的に回転力に変換できるが、平坦面の場合には、巻数には関係なく、直ちに外部へ風が逃げてしまい、揚力は期待できない。
 尚、この螺旋羽根を複数段設けても良い。
 請求項3は、前記の回転羽根は、外周側になるにつれて、一旦上部側に盛り上がり、その後、傘状に徐々に垂下する湾曲した形状であることを特徴とする風車とするものである。
 本螺旋羽根の湾曲面は、支持軸の取り付け位置付近では一旦盛り上がった状態から徐々に垂れ下がった形状に湾曲させたものである。
 回転羽根のピッチ間の風の取り込み量を多くすることができる。
 請求項4は、前記の回転羽根の表面若しくは裏面のいずれか一方、または両面に、複数の風受け板が設けられていることを特徴とする風車とするものである。
 該風受け板は、螺旋羽根の表面または裏面のいずれかあるいは両面に設けても良く、小片形状の突起板などでもよく、風が螺旋羽根の表面または裏面に沿って流れる場合に、その流れる風を受け止めて抗力となるように、羽根面から突出していれば良い。また、螺旋羽根面に垂直ではなく、回転方向とは逆の方向に傾斜させ、より強く風を受けるように設けたものでも良い。
 このように傾斜させることにより、螺旋羽根の下面に吹き込んだ風が抗力として螺旋羽根を回転させる力を強く発揮し、回転羽根の始端部から吹き込んだ風による回転と同じ方向に回転させる力となる。また、この方向に傾斜させることで、逆回転させる力は働かない。
 また、螺旋羽根の表面または裏面において、支持軸を中心に放射状に風受け板を設け、かつ、放射状の先端側を回転羽根の回転方向とは逆方向に湾曲させて設けたものでも良い。
 逆回転方向に湾曲させた放射状の風受け板とすることにより、吹き込んだ風のうち、支持軸に対して右側の螺旋羽根の部分は、抗力として強い回転力が発生し、左側は、抵抗は少なくなるので逆回転力は働かない。
 このように、螺旋羽根の表面又は裏面に風受け板を設けると、風の抗力を効果的に利用して、強力な回転力が得られるものである。
 請求項5では、螺旋のピッチが、0mmから支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さの4倍であることを特徴とする風車としたものである。
 螺旋のピッチが小さすぎると、風の取り込みが少なくなり、効率が低下することになる。ピッチを0とした場合には、風の取り込みはなくなるが、回転羽根の補強となる。
 ピッチが大きくなると、羽根自体が強風に対して抵抗を受けてしまいスムーズに回転できなくなったり、また回転羽根が大型化する。
 螺旋羽根のピッチは、好ましくは、支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さ(羽根の半径)の1/2から1/8程度が良い。
 請求項6では、湾曲した回転羽根の曲率半径は、支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さに対して100~500%であることを特徴とする風車としたものである。
 湾曲の回転羽根の曲面は、曲率が小さいと、風を十分に受けられず、揚力及び抗力が期待できなくなる。逆に大きすぎると、抵抗が大きすぎてスムーズに回転力が得られなくなる。好ましくは回転羽根の半径(支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さ)に対して100~200%、さらに好ましくは100~120%が良い。
 このような、垂直軸に螺旋羽根が設けられた場合に、一方から風が吹くと、支持軸を中心として、螺旋面の入り口端面がある側には風が吹き込み、揚力が発生して回転しようとするが、支持軸を中心として、入り口端面がない側では、螺旋羽根の外面に風が当たり、逆方向に回転しようとする力が働くことになるが、湾曲しているので抵抗は非常に小さくなり、逆回転力する力はほとんど働かない。
 ここで単純な螺旋羽根の場合には、羽根に直接、風を受けることになり、支持軸を中心として、左右が対称に風を受けることになり、回転がスムーズとはならないので、風の誘導手段を設けたり、左右どちらかに風除けを設けるなどの対策が必要となる。
 請求項7では、回転羽根の螺旋面の始端部と終端部とは、支持軸から同一方向であることを特徴とする風車である。
 螺旋羽根の風の取り込み口となる始端部と、最終的な風の出口となる終端部とは、支持軸から同じ方向に設けることが好ましい。すなわち、支持軸から同一直線上となるものである。
 たとえば、始端部を回転羽根の上部とすると、終端部は、回転羽根の下部となるが、始端部と、終端部との中心軸からの方向が一致していない場合には、回転羽根全体の重量及び抵抗のバランスが崩れてしまうため、回転がスムーズにならないという問題が生じてしまう。
 請求項8は、前記の回転羽根は、複数組み合わせて構成されていることを特徴とする風車とするものである。
 複数の羽根部品を組み合わせて、湾曲面を有する螺旋羽根を形成できるものであれば、いずれでも良い。
 螺旋の1回転づつの部品としても良く、1回転を複数の部品で構成したものでも良い。
 たとえば、垂直軸に、湾曲面を有する扇形の羽根を複数組み合わせて、取り付け、螺旋羽根を形成したものでも良い。
 請求項9は、前記の回転羽根は、表面若しくは裏面のいずれか一方、または両面に、風を捕集して内部に風を取り込むための湾曲したカバー型の補助翼が設けられ、該補助翼内に流入した風を回転羽根の反対面側に流出させるための開口部が設けられていることを特徴とする風車とするものである。
 該補助翼は、三日月又は半月型に湾曲したカバー型の形状となっており、回転羽根と補助翼との間に風が吹き込み、その奥の回転羽根に設けられた開口部を通過して回転羽根の反対面にスムーズに流出する。
 この時の補助翼に吹き込まれた時の抗力と、補助翼の奥側が狭くなっており圧力が高められ、回転羽根に設けられた開口部を通過するときの抗力により、回転羽根の回転力を高めることができるものである。
 補助翼は、回転羽根の表面又は裏面のいずれでも良いが、両面に対称的に設け、開口部を共通に活用できるようにすると、効率的であり、抗力が効果的に高まり、回転力がよりアップする。
 また、補助翼の取り付け数は、取り付け間隔を均等にし、3か所あるいは5か所など奇数箇所とすることが好ましい。2か所あるいは4か所など偶数箇所に取り付けた場合には、風の向きによっては、風に対する抗力が左右均等となってしまう場合があり、回転を抑制することとなるので好ましくない。
 請求項10は、鉛直方向の支持軸に設けられた円盤羽根は、上面若しくは下面のいずれか一方、または両面に、風を捕集して内部に風を取り込むための1以上の湾曲したカバー型の風受け体が設けられ、該風受け体の内部側に流入した風を円盤の反対側の面に流出させるための開口部が設けられていることを特徴とする風車とするものである。
 この風車は、円盤上に三日月又は半月型に湾曲したカバー状の風受け体が設けるものであり、この風受け体が風の抗力を受けて回転力を得るものである。
 風受け体の内部に吹き込んだ風は、羽根の奥の開口部を通して円盤の反対側に流出する。
 三日月又は半月型になっているため、入口が広く、奥が狭くなっているので、圧力が高まり、抗力が大きくなり、奥部が曲面であり、風がスムーズに流れ、回転力を高めているものである。
 そして、湾曲しているため、入口と反対側から風が吹いた場合には抗力はほとんど働かないこととなり、効果的に回転力を発揮できるものである。
 請求項11は、前記の風受け羽根が設けられた円盤を複数段設け、上下の円盤を連結する連結部材が縦型の風受け羽根であることを特徴とする風車とするものである。
 該縦型の風受け羽根は、少なくとも風を受ける面は、湾曲面となっている羽根板であり、例えば、断面三日月形状の羽根板などでも良い。また、各々の羽根板の角度を変更、調整できるようにした羽根板でも良い。
 この縦型風受け羽根を設けることにより、円盤に設けたカバー状の風受け羽根の回転力に縦型風受け羽根の回転力が加わり、より大きな回転力を得ることが可能となる。
 本発明は以下の効果を奏する。
1)すべての方向からの風を受けて回転させることができる。
2)螺旋羽根に横方向から風が当たるため、強風においても、適時、風を逃がしながら回転するので、台風などの強風においても安定した回転運動が得られる。
3)螺旋面は湾曲しているので、風を受ける部分と風を逃がす部分がバランスよく形成されるので、効果的に揚力、抗力が得ら、安定した回転が得られる。
4)螺旋羽根の表面に風受け板が設けられるために、螺旋羽根の各段の間に吹き込んだ風を受けて、抗力により、回転力を高めることができる。
5)適度なピッチとすることで、効果的に揚力、抗力が得られる。
6)回転羽根の始端部と終端部を同じ方向とすることで、全体のバランスが保たれ、スムーズに回転させることができる。
7)螺旋形状を複数の部品で形成することで、製作しやすくなり、螺旋の巻き数を増やした複数段の回転羽根を実現できる。
8)羽根が比較的小型であり、発電装置としてトラックなどに搭載できるので、災害時などに非常用の発電機として活用できる。
9)カバー型の補助翼を取り付けることにより、回転力を高めることができる。
10)円盤にカバー型風受け羽根を設けることにより、全方向対応型で効果的な円盤型の風車を実現できる。
11)円盤型風車を積み重ねて設置でき、連結部に縦型回転羽根を設けて、回転力を増強することができる。
本発明による湾曲面を有する螺旋羽根による風車の実施例を示す概略図である。 本発明による湾曲面を有する螺旋羽根による風車の底面図である。 本発明による螺旋羽根の鉄線フレーム部分が風を受けた状態における風の流れを示す図である。 本発明による組み合わせ構成による湾曲面を有する螺旋羽根の実施例を示す写真である。 本発明による補助翼が設けられた螺旋羽根による風車の実施例を示す写真である。 本発明による補助翼が設けられた螺旋羽根の上部から見た平面写真である。 本発明による補助翼が設けられた螺旋羽根の下部から見た底面写真である。 本発明による補助翼が設けられた螺旋羽根による風車のA、B方向から見た側面写真である。 本発明による補助翼が設けられた螺旋羽根による風車のC、D方向から見た側面写真である。 本発明による補助翼が設けられた螺旋羽根による風車のE、F方向から見た側面写真である。 本発明による補助翼が設けられた螺旋羽根による風車のG、H方向から見た側面写真である。 本発明による補助翼が設けられた螺旋羽根の補助翼部の断面図である。 本発明による湾曲面を有する螺旋羽根の風車特性試験結果を示す表である。 本発明による円盤にカバー型風受け羽根が設けられた風車の実施例を示す概略図である。 本発明による円盤型風車の多段連結状態を示す概略図である。
 本発明の実施の形態について図面を用いて説明する。
 図1は、本発明による湾曲面を有する螺旋羽根による風車の実施例を示す概略図である。図2は、底面から見た概略図であり、鉄線フレーム6を示す図である。
 本実施例は、風の流れに平行方向に働く力である抗力と、風の流れに垂直方向に働く力である揚力との両方の力を有効に活用し、台風などの強風時においても安定して回転力を発揮できる、抗・揚力型ハイブリット風車である。
 本実施例の抗・揚力型ハイブリット風車は、支持軸2に鉄線6をフレームとして、グラスファイバー樹脂で螺旋羽根1を形成したものである。
 本実施例である抗・揚力型ハイブリット風車の回転羽根1は、支持軸2に対して左回転する。
 3は、螺旋羽根1の上部の端面である、始端部であり、4は回転羽根1の下部の端面である終端部である。
 ここで、風は、上記の始端部3から吹き込み、回転羽根1の下面に流れる。このときに揚力が働き、回転羽根1が上部に押し上げられ、左回転するものである。
 そしてさらに、螺旋羽根1の各段の隙間5から風が入り込む。この場合には、フレームとなる、鉄線6が支持軸2を中心として、図2に示すように、放射状に配置されており、かつ、先端側が右側に湾曲している。すなわち、回転方向とは逆方向に湾曲している。
 この鉄線6が螺旋羽根1の格段の隙間5及び下部側から入り込んだ風を受けることになる。すなわち、風受け面として有効に機能し、効果的な抗力を発揮するものである。
 図3は、螺旋羽根の鉄線フレーム部分が風を受けた状態における風の流れを示す図である。
 Wは風の方向を示し、6A、6Bは、鉄線フレームを示し、A、Bは、鉄線フレーム付近の風の流れを示す。
 図のように、螺旋羽根1が湾曲していることにより、この螺旋羽根1に当たる風のうち、支持軸2に対して、右側は、この鉄線6Aが風を受けて大きな抗力となり、矢印Aのように流れ、回転力を増強する。
 一方、左側の鉄線6Bは、風を受け流すため、抗力は小さいので、回転の妨げとはならない。
 さらにまた、支持軸2を中心として、右側へ吹き込んだ風は、螺旋形状の下がり面を流れるので、揚力が働き、左回転を補強する。
 支持軸2の左側に吹き込んだ風は、螺旋形状の上がり面を流れるので、揚力は小さく、逆回転するほどの力はなく、そのまま外部に流れて出て行くことになる。
 本例では、回転羽根1は2段のものである。回転羽根1は、傘形状に下部側に湾曲している。
 このように、下部側に湾曲していることにより、単純な螺旋形状ではないことにより、側方からの風に対して、支持軸2の右側と左側での風の受け方、揚力及び抗力の力が異なり、効果的な回転力を発揮し、かつ、風を効果的に逃がしながら回転し、バランスよく安定した回転を実現できるものである。
〔実験例1〕
 本実施例の回転羽根を用いて作動試験を行った。工場用扇風機を用いて、作動試験を実施した。
 本発明による螺旋羽根の風車を支持軸受け台に設置し、2m離れた位置から工場用扇風機で送風を行った。風力は、中程度でおこなった。
 本風車は、送風とともに、ゆっくりと回転を開始し、毎分60~100回転程度まで回転数が上昇した。
〔実験例2〕
 台風時に屋外で作動試験を実施した。
 台風接近時に、屋外に、本発明の螺旋羽根の風車を支持軸受け台に設置した。
 風が強くなってくるともに、回転数が高くなった。毎分200~300回転程度であった。
 暴風域になった状態においても、回転数は高くなっていたが、安定して回転していることが確認できた。

 図4は、本発明による組み合わせ式の湾曲面を有する螺旋羽根による風車の実施例を示す概略図である。
 本例では、支持軸11は、硬質樹脂性であり、該支持軸11に回転羽根単体10を取り付ける固定金具12を設けて、回転羽根10を5枚取り付けた状態を示す。
 この回転羽根単体10は、組み合わせることで、外面は、平坦になるが、内部は、図に示すように、各々内側に湾曲した羽根が飛び出している。
 この飛び出した羽根が形成されていることで、螺旋羽根の下部側から吹き込んだ風を受けて、回転力を高めるようになっているものである。
 図5は、本発明による補助翼が設けられた螺旋羽根による風車の実施例を示す写真である。
 螺旋羽根20の外周部の上下両面に、120度位相ごとに、三日月型に湾曲したカバー型の補助翼21が設けられている。
 この写真は、箱形の架台22上に、本発明の風車の軸23を3本のパイプ枠24に取り付けて固定したものであり、風洞実験を行うために、設置したものである。
 図6は、本発明による補助翼21が設けられた螺旋羽根20を上部から見た平面写真である。
 補助翼21の入口部分は三日月状に湾曲させ、螺旋状の回転羽根20をカバーするように設けられている。
 図7は、本発明による補助翼が設けられた螺旋羽根を下部から見た平面写真である。
 補助翼21に流入した風は、図に示す回転羽根の開口部25から下部側に流出することになる。
 本発明の補助翼21の取り付け状況は、解りにくいので、図6の平面写真に示すA~Hの8方向から見た側面写真を図8~図11に示す。
 本実施例では、螺旋は2回巻きであり、補助翼21は、120度位相ごとに、2段で上下に6か所づつ設けられており、上下の補助翼21は対称的に設けられ、回転羽根20の開口部25は、上下の補助翼21が共通となるように設けられている。
 図12は、本発明による補助翼が設けられた螺旋羽根の補助翼部の断面図である。
 本実施例の補助翼部21は、三日月型に湾曲したカバー型の形状であり、螺旋状の回転羽根20の上面と下面の両方に相対するように対称に取り付けられており、その補助翼21の奥部の回転羽根20に上面と下面とを連通する開口部25が設けられている。
 これにより、上部の補助翼21aの入口部21cから流入した風は、補助翼21a内部を矢印のように流れ、奥に行くに従って圧縮され、開口部25を通過して下部の補助翼21bから流出する。
 この時に大きな抗力により、回転力が増強されることとなるものである。
 この補助翼21は、湾曲したカバー形状であるため、入口と反対側からの風は抵抗なく流れる。また、取り付け位置が120度位相ごとに設けられているため、風の向きにより、風車の左右の抗力が釣り合ってしまうことはなく、スムーズに回転できるものである。
 図13は、本発明による湾曲面を有する螺旋羽根の風車特性試験結果を示す表である。
 本発明の湾曲面を有する螺旋羽根の風車について、台風などの強風時での実証試験として、琉球大学の風洞実験装置を用いて風速5m/s~50m/sまでの風洞実験を行った。
 図13の表は、その実験結果を示す一覧表である。Type2は、本発明の湾曲面を有する螺旋羽根の風車(図1のタイプ)であり、Type3は、補助翼付きの螺旋羽根の風車(図5のタイプ)を用いた。
 Type2は、風速35m/s、Type3は、風速50m/sでの確実な回転実績が得られ、台風時においても問題なく発電を可能とする風車であることが確認された。
 無付加での回転数は、450rpmを超える回転数が得られ、回転力、トルク共に良好な結果が得られた。
  図14は、本発明による円盤にカバー型風受け羽根が設けられた風車の実施例を示す概略図である。(1)は側面図であり、(2)は平面図であり、(3)は風受け羽根部(X-X断面部)の断面図である。
 この実施例では、支持軸33が設けられた円盤30に、三日月型に湾曲したカバー型の風受け羽根31が設けられている。
 風受け羽根31は、円盤30の上面に3個設けられており、120度位相の等間隔で設けられている。
 各風受け羽根31の内部の奥部には、円盤30の下面に貫通する開口部32が設けられており、図14の(3)に示すように、風受け羽根31の入口31aから流入した風は、その奥部で圧縮され、開口部32を通過して円盤30の下面側に流出する。
 これにより、風受け羽根31が効果的に抗力を受けて、円盤30が回転力を得るものである。
 本実施例では、風受け羽根31は、上部のみに設けたが、下部に設けても良く、上下両面に設けても良い。
 図15は、本発明による円盤型風車の多段連結状態を示す概略図である。(1)は側面図であり、(2)はY-Y部断面矢視図である。
 本実施例では、円盤30を3段設けたものである。各円盤30を連結する連結部材として、図の(2)に示すように、断面が湾曲した板材34が設けられており、縦型の風受け羽根として作用するものである。
 これにより、円盤30のカバー型風受け羽根31と、縦型風受け羽根34の両方の抗力により、円盤30の回転力をさらに高めることができるものである。
 風力又は水力を動力として利用するものであればいずれにも使用可能である。また、風車が小型になるので、災害時の移動式発電装置として活用することもできる。
 1、20 回転羽根
 2、11、23 支持軸
 3 始端部
 4 終端部
 5 各段の隙間
 6 鉄線(フレーム)
 10 回転羽根単体
 12 固定金具
 21 補助翼
 22 架台
 24 パイプ枠
 25、32 開口部
 30 円盤
 31 カバー型風受け羽根
 34 縦型風受け羽根

Claims (11)

  1.  鉛直方向の支持軸の周囲に螺旋状に回転羽根が設けられてなることを特徴とする風車。
  2.  前記の回転羽根は、外周側になるにつれて、傘状に徐々に垂下する湾曲した形状であることを特徴とする請求項1に記載の風車。
  3.  前記の回転羽根は、外周側になるにつれて、一旦上部側に盛り上がり、その後、傘状に徐々に垂下する湾曲した形状であることを特徴とする請求項1に記載の風車。
  4.  前記の回転羽根の表面若しくは裏面のいずれか一方、または両面に複数の風受け板が設けられていることを特徴とする請求項1から請求項3までのいずれか1項に記載の風車。
  5.  前記の回転羽根の螺旋のピッチが、0mmから支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さの4倍であることを特徴とする請求項1から請求項4までのいずれか1項に記載の風車。
  6.  湾曲した回転羽根の曲率半径は、支持軸に対して垂直方向の、支持軸から回転羽根の先端までの長さに対して100~500%であることを特徴とする請求項1から請求項5までのいずれか1項に記載の風車。
  7.  前記の回転羽根の螺旋面の始端部と終端部とは、支持軸から同一方向であることを特徴とする請求項1から請求項6までのいずれか1項に記載の風車。
  8.  前記の回転羽根は、複数組み合わせて構成されていることを特徴とする請求項1から請求項7までのいずれか1項に記載の風車。
  9.  前記の回転羽根は、表面若しくは裏面のいずれか一方、または両面に、風を捕集して内部に風を取り込むための湾曲したカバー型の補助翼が設けられ、該補助翼内に流入した風を回転羽根の反対面側に流出させるための開口部が設けられていることを特徴とする請求項1から請求項8までのいずれか1項に記載の風車。
  10.  鉛直方向の支持軸に設けられた円盤羽根は、上面若しくは下面のいずれか一方、または両面に、風を捕集して内部に風を取り込むための1以上の湾曲したカバー型の風受け体が設けられ、該風受け体の内部側に流入した風を円盤の反対側の面に流出させるための開口部が設けられていることを特徴とする風車。
  11.  前記の風受け体が設けられた円盤羽根を鉛直方向に複数段設け、上下の円盤を連結する連結部材が縦型の風受け羽根であることを特徴とする請求項10に記載の風車。
PCT/JP2010/056197 2009-04-06 2010-04-06 風車 WO2010116983A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-091832 2009-04-06
JP2009091832 2009-04-06
JP2010-087409 2010-04-05
JP2010087409A JP4740382B2 (ja) 2009-04-06 2010-04-05 風車

Publications (3)

Publication Number Publication Date
WO2010116983A1 WO2010116983A1 (ja) 2010-10-14
WO2010116983A8 WO2010116983A8 (ja) 2010-12-02
WO2010116983A9 true WO2010116983A9 (ja) 2011-01-27

Family

ID=42936266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056197 WO2010116983A1 (ja) 2009-04-06 2010-04-06 風車

Country Status (2)

Country Link
JP (1) JP4740382B2 (ja)
WO (1) WO2010116983A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487468B2 (en) * 2010-11-12 2013-07-16 Verterra Energy Inc. Turbine system and method
KR101578745B1 (ko) * 2015-05-14 2015-12-21 조영철 나선형 날개 유닛과 풍력 발전기 및 상기 나선형 날개 유닛을 위한 날개 연결구
US9874197B2 (en) 2015-10-28 2018-01-23 Verterra Energy Inc. Turbine system and method
FR3048029A1 (fr) * 2016-02-21 2017-08-25 Paluello Francesco Minio Rotor eolien helicoidale a profil aerodynamique
US10704532B2 (en) * 2016-04-14 2020-07-07 Ronald GDOVIC Savonius wind turbines
WO2019034225A1 (fr) * 2017-08-13 2019-02-21 Minio Paluello Francesco Rotor éolien hélicoïdal à profil aérodynamique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968152A (ja) * 1995-09-01 1997-03-11 Akimori Taniguchi 螺旋状の回転羽根を有する縦型の風力源動装置
JP2003214318A (ja) * 2002-01-25 2003-07-30 Ko Yamaguchi 垂直軸型風力発電機
JP4322845B2 (ja) * 2005-06-15 2009-09-02 竹内鉄工株式会社 テーパ付きサボニウス垂直軸風車とジャイロミル垂直軸風車とそれを応用した風力発電装置
JP4658882B2 (ja) * 2006-08-29 2011-03-23 弘 佐藤 原動力伝達装置
EP1925819A1 (en) * 2006-11-21 2008-05-28 Rotártica, S.A. Domestic wind powered generator
JP3987566B1 (ja) * 2006-11-29 2007-10-10 株式会社アサヒ建設コンサルタント 風力発電機用動力伝達装置

Also Published As

Publication number Publication date
WO2010116983A8 (ja) 2010-12-02
JP4740382B2 (ja) 2011-08-03
WO2010116983A1 (ja) 2010-10-14
JP2010261435A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
CA2579587C (en) Boundary layer wind turbine
JP3882162B2 (ja) 縦軸型風力発電装置
CN102695872B (zh) 风力发电用转子及具备其的风力发电装置
US7976267B2 (en) Helix turbine system and energy production means
WO2010116983A9 (ja) 風車
JP5346000B2 (ja) 風車
US20130093191A1 (en) Vertical axis wind turbine
US9074580B2 (en) Staggered multi-level vertical axis wind turbine
JP2010065676A (ja) 風力エネルギーシステム、風力エネルギー変換システム及び風トンネルモジュール
CA2590918A1 (en) Diffuser-augmented wind turbine
JP6954739B2 (ja) 発電機用のロータ
JP2022517093A (ja) 発電機ロータアセンブリ
TW201716687A (zh) 多層葉片式風力發電裝置
JP2007107496A (ja) 風力発電装置
US20110097200A1 (en) Wind power turbine
KR102026954B1 (ko) 집풍식 풍력발전시스템
JP2015166562A (ja) 強風による過回転を防止できる垂直軸抗力型風車及び風力発電装置
RU2351798C1 (ru) Ветровая энергетическая установка
KR101503358B1 (ko) 수평형 풍력발전기
JP2002081364A (ja) 風力装置
KR20080101338A (ko) 수평 원통형 풍력발전기
TWI833230B (zh) 風力渦輪機之改良
ES1078572U (es) Turbina eólica híbrida
TWM518272U (zh) 多層葉片式風力發電裝置
JP4894400B2 (ja) サボニウス形風車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761682

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 10761682

Country of ref document: EP

Kind code of ref document: A1