WO2010116913A1 - Lead-free glass composition - Google Patents

Lead-free glass composition Download PDF

Info

Publication number
WO2010116913A1
WO2010116913A1 PCT/JP2010/055516 JP2010055516W WO2010116913A1 WO 2010116913 A1 WO2010116913 A1 WO 2010116913A1 JP 2010055516 W JP2010055516 W JP 2010055516W WO 2010116913 A1 WO2010116913 A1 WO 2010116913A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
glass composition
free glass
weight
composition
Prior art date
Application number
PCT/JP2010/055516
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 高山
一郎 内山
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Publication of WO2010116913A1 publication Critical patent/WO2010116913A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials

Definitions

  • the present invention relates to a lead-free glass composition.
  • Inorganic materials such as glass and ceramics are generally less susceptible to thermal degradation and better electrical insulation than organic materials such as synthetic resins, and as an insulating material in electronic parts that require high reliability. Used. Glass in such a field is also used for applications such as coating on metal members, adhesion between metal members, sealing of openings, and the like.
  • glass for such applications has a softening point and a thermal expansion coefficient according to the application, as well as chemical durability such as water resistance, acid resistance, and alkali resistance, as well as excellent electrical insulation. Is needed.
  • a low melting point metal such as aluminum is bonded, sealed, or coated, it is necessary to fire at a temperature of 570 ° C. or lower, preferably 550 ° C. or lower.
  • Patent Document 1 discloses a PbO-containing glass composition having a thermal expansion coefficient of 125 to 140 ⁇ 10 ⁇ 7 / ° C. in the range of 30 to 300 ° C.
  • PbO glass since environmental problems have been pointed out in PbO glass, it is desired to replace it with glass that does not contain PbO.
  • Patent Document 2 describes a magnetic head glass composition containing a large amount of an alkali metal oxide such as Li 2 O, Na 2 O, and K 2 O mainly composed of Bi 2 O 3 instead of PbO.
  • an alkali metal oxide such as Li 2 O, Na 2 O, and K 2 O mainly composed of Bi 2 O 3 instead of PbO.
  • glass formers such as Bi 2 O 3 and SiO 2 contain only alkali metal oxides such as Li 2 O, Na 2 O and K 2 O, there is a tendency for problems in chemical durability.
  • the glass flux composition described in Patent Document 3 and the glass composition described in Patent Document 4 cannot have sufficient chemical durability because they contain a large amount of B 2 O 3 .
  • the low melting point glass composition described in Patent Document 5 and the ceramic color composition glass described in Patent Document 6 and Patent Document 7 do not substantially contain B 2 O 3 , so that crystallization occurs rapidly. There is a problem that sufficient fluidity cannot be obtained during firing.
  • Patent Document 8 and Patent Document 9 disclose ceramic color compositions having excellent acid resistance. Although these glass compositions have excellent acid resistance, it is difficult to lower the melting point because there are few alkali oxides that are effective components for lowering the melting point.
  • Patent Documents 10 to 12 disclose ceramic color compositions having excellent acid resistance. However, these glass compositions have a high alkali oxide content and a low melting point, but have not yet had sufficient chemical durability.
  • Japanese Patent Laid-Open No. 4-55341 Japanese Unexamined Patent Publication No. Sho 63-35432 Japanese Patent Laid-Open No. 2-180730 JP-A-5-262536 JP 2000-302480 A JP 2002-362940 A JP2003-104754A JP-A-7-144933 JP-A-8-34640 JP-A-6-234547 JP 2000-154036 A JP 2002-20140 A
  • a main object of the present invention is to provide a lead-free glass composition having excellent chemical durability while having a low softening point.
  • the present inventors have found that the above object can be achieved by containing a predetermined amount of a predetermined substance as a glass component of a lead-free glass composition, and the present invention has been completed. It came to do.
  • the present invention relates to the following lead-free glass composition.
  • a) Bi 2 O 3 50 to 75% by weight
  • b) SiO 2 15 to 30% by weight
  • d) B 2 O 3 0.1
  • Lead-free glass composition containing -4% by weight and e) TiO 2 0.1-8% by weight.
  • the lead-free glass composition according to claim 1 further comprising Al 2 O 3 : 0.1 to 5% by weight as a glass component.
  • a method for performing surface coating of a metal member or a ceramic member using the lead-free glass composition according to Item 1. 9. Item 9. The method according to Item 8, wherein the lead-free glass composition is heated at 460 to 570 ° C to perform surface coating. 10. A method for sealing a metal member or a ceramic member using the lead-free glass composition according to Item 1. 11. Item 11. The method according to Item 10, wherein the lead-free glass composition is heated at 460 to 570 ° C or lower for sealing. 12 A method for bonding a metal member or a ceramic member using the lead-free glass composition according to Item 1 above. 13. Item 11. The method according to Item 10, wherein the lead-free glass composition is bonded by heating at 460 to 570 ° C or lower.
  • the lead-free glass composition of the present invention is composed of a specific composition, it can exhibit excellent chemical durability while having a low softening point.
  • the member since it is excellent in chemical stability, it can be suitably used for protecting members that require acid resistance and alkali resistance.
  • the member since the member has a low softening point, even if the member has a low melting point, a protective film or the like can be formed without altering the member.
  • Lead-free glass composition contains, as glass components, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9 %), D) B 2 O 3 : 0.1 to 4% by weight and e) TiO 2 : 0.1 to 8% by weight.
  • Bi 2 O 3 , SiO 2 , Li 2 O, B 2 O 3 and TiO 2 are contained as essential components as glass components. It may also contain Al 2 O 3 as required. Furthermore, as an alkali metal oxide, at least one of Na 2 O and K 2 O may be contained in addition to Li 2 O.
  • the lead-free glass composition of the present invention does not substantially contain a lead (Pb) component.
  • the composition of the present invention can avoid problems such as environmental pollution.
  • the “glass component” refers to a component that is subjected to melting and contained in a glass state in the process of producing the lead-free glass composition of the present invention.
  • the weight ratio as a glass component says the weight ratio as an oxide conversion value when the sum total of a lead-free glass composition is 100 weight%.
  • Bi 2 O 3 is an effective component for making the lead-free glass composition of the present invention have a low softening point, and is a constituent component of crystals precipitated during heat treatment.
  • the content of Bi 2 O 3 in the glass component is usually 50 to 75% by weight, preferably 50 to 70% by weight, more preferably 55 to 65% by weight.
  • a Bi 2 O 3 content of less than 50% by weight is not preferable because the softening point of the lead-free glass composition increases. If the softening point is too high, the heat resistance of the member that can be applied to the composition of the present invention is greatly restricted, and the selection range of the applicable member is limited.
  • the composition of the present invention when the composition of the present invention is fired on a metal member, it becomes necessary to fire at a high temperature when the softening point is high, and therefore, it is applied to a member made of a material having a relatively low melting point (for example, aluminum). I can't do that.
  • the Bi 2 O 3 content exceeds 75%, chemical durability such as acid resistance is lowered even if the softening point can be sufficiently reduced.
  • SiO 2 is an effective component for stabilizing the glass state of the glass component, and is a constituent component of crystals that are precipitated during heat treatment.
  • the SiO 2 content in the glass component is usually 15 to 30% by weight, preferably 15 to 25% by weight, more preferably 16 to 23% by weight.
  • the content of SiO 2 in the glass component is less than 10%, it is difficult to impart sufficient stability to the lead-free glass composition.
  • the SiO 2 content exceeds 30 wt%, it is not necessary to the firing temperature of the Pb-free glass composition in a high temperature occurs not preferable.
  • Li 2 O contributes to lowering the softening point of the lead-free glass composition and is a constituent component of crystals that precipitate during heat treatment.
  • the Li 2 O content in the glass component is usually 4 to 9% by weight, preferably 5 to 8.5% by weight, more preferably 5.5 to 8% by weight.
  • the softening point of the lead-free glass composition is increased, making it difficult to precipitate crystals at 570 ° C. or lower, and sufficient for the residual glass composition after crystallization. It becomes difficult to impart chemical durability.
  • the Li 2 O content exceeds 9% by weight, the amount of crystal precipitation becomes too large, making glass production difficult.
  • Al 2 O 3 is an effective component for stabilizing the glass state of the glass component and making the lead-free glass composition excellent in chemical durability.
  • the Al 2 O 3 content in the glass component is usually 0.1 to 5% by weight, preferably 0.1 to 3% by weight, more preferably 0.4 to 2% by weight.
  • the content of Al 2 O 3 in the composition of the present invention is less than 0.1% by weight, it becomes difficult to impart sufficient chemical durability to the lead-free glass composition.
  • the Al 2 O 3 content exceeds 5% by weight, the glass components such as devitrification may be destabilized and glass production may become difficult.
  • Al 2 O 3 content exceeds 5% the contact it also to the sintering temperature is raised to a temperature above 570 ° C. of the Pb-free glass composition.
  • B 2 O 3 is an effective component for stabilizing the glass state of the glass component and making the lead-free glass composition have a low softening point.
  • the content of B 2 O 3 in the glass component is usually 0.1 to 4%, preferably 2.5 to 3.5% by weight.
  • the content of B 2 O 3 is less than 0.1% by weight, the glass components such as devitrification may be destabilized and it may be difficult to produce glass.
  • the B 2 O 3 content exceeds 4% by weight, it is difficult to precipitate crystals, and it may be difficult to impart sufficient chemical durability to the lead-free glass composition. It is.
  • the content of B 2 O 3 is more than 4 wt%, at the time of crystallization by heat treatment, contact it is also to increase the residual glass composition and reduce the chemical durability of the remaining glass composition.
  • TiO 2 is an effective component for making the lead-free glass composition excellent in chemical durability, and is a constituent component of crystals precipitated during heat treatment.
  • the TiO 2 content in the glass component is usually 0.1 to 8% by weight, preferably 2 to 8% by weight, more preferably 5 to 8% by weight.
  • the TiO 2 content is less than 0.1% by weight, it is difficult to impart sufficient chemical durability to the lead-free glass composition.
  • the TiO 2 content exceeds 8%, there is a possibility that glass production is difficult.
  • the firing temperature of the lead-free glass composition may be increased to a temperature exceeding 570 ° C.
  • At least one of Na 2 O and K 2 O may be contained in addition to Li 2 O as the alkali metal oxide. These components are effective components for lowering the low softening point of the lead-free glass composition as described above. At least one of Na 2 O and K 2 O is 5.5 to 10% by weight, preferably 6 to 9% by weight in the glass component in total with the Li 2 O content. If the total content is less than 5.5%, the firing temperature of the lead-free glass composition may be increased to a temperature exceeding 570 ° C. Further, if the total content exceeds 10%, when crystallized by heat treatment, the chemical durability of the residual glass composition is lowered, and sufficient chemical durability is imparted to the lead-free glass composition. May be difficult.
  • ZnO is an effective component for making the lead-free glass composition have a low softening point.
  • the ZnO content in the glass component is usually 5% by weight or less, preferably 1 to 3% by weight.
  • BaO is an effective component for imparting a high thermal expansion coefficient to the lead-free glass composition.
  • the BaO content in the glass component is usually 5% by weight or less, preferably 4% by weight or less, and more preferably 2% by weight or less. If the BaO content exceeds 5% by weight, the chemical durability, particularly acid resistance, of the lead-free glass composition may be greatly reduced.
  • At least one of MgO, CaO and SrO is an effective component for lowering the softening point of the lead-free glass composition.
  • the content of these components in the glass component may be generally 5% by weight or less in total with the BaO content.
  • ZrO 2 is an effective component for adjusting the viscosity and thermal expansion coefficient when the lead-free glass composition is softened.
  • the ZrO 2 content in the glass component is usually 5% by weight or less, preferably 4% by weight or less. If the content of ZrO 2 exceeds 5 wt%, there is a possibility to raise the firing temperature of the Pb-free glass composition to a temperature in excess of 570 ° C..
  • the lead-free glass composition of the present invention is composed of each component.
  • Specific examples of the composition include a) Bi 2 O 3 : 55 to 70% by weight, b) SiO 2 : 17 to 22% by weight.
  • a composition containing TiO 2 : 4.5 to 7.5% by weight can be mentioned.
  • composition A a) Bi 2 O 3 : 59 to 61 wt%, b) SiO 2 : 20 to 22 wt%, c) Li 2 O: 7.0 to 8.0 wt%, d A) Al 2 O 3 : 0.3 to 0.7 wt%, e) B 2 O 3 : 2.5 to 3.5 wt%, f) TiO 2 : 6.5 to 7.5 wt% and g) ZnO: a composition containing 0.5 to 1.5% by weight, as composition B, a) Bi 2 O 3 : 55 to 70% by weight, b) SiO 2 : 17 to 22% by weight, c) Li 2 O: 6.0 to 7.5 wt%, d) Al 2 O 3 : 0.1 to 1.5 wt%, e) B 2 O 3 : 2 to 3.5 wt%, and f) TiO 2 : 4 to 6 composition containing by weight%, a composition C, a) Bi 2 O 3 :
  • the lead-free glass composition in the present invention is a crystallized glass in which bismuth silicate crystals, bismuth titanate crystals and lithium silicate crystals are precipitated by heat treatment (baking) at 460 ° C. to 570 ° C. in the atmosphere.
  • these crystals can be precipitated during firing.
  • Li 2 O is effective for lowering the melting point, but it is a component that lowers chemical durability.
  • Li 2 O itself can be precipitated as a lithium silicate crystal having strong chemical durability.
  • a fired body (crystallized glass) can be provided. That is, high chemical durability is expressed by heat-treating the lead-free glass composition of the present invention at the time of use.
  • bismuth silicate crystal, bismuth titanate crystal and lithium silicate crystal are produced at any temperature between 460 ° C. and 570 ° C. in the heat treatment in the atmosphere. It only has to be expressed.
  • the softening point is not particularly limited, but it is usually 420 to 500 ° C, particularly preferably 430 to 480 ° C.
  • the glass transition temperature is usually 350 to 480 ° C., particularly preferably 380 to 450 ° C. If it is in these temperature ranges, it can be set as the glass composition of the low softening point which has more excellent acid resistance, water resistance, etc.
  • the lead-free glass composition of the present invention is excellent in chemical durability, it can be used for protecting members requiring acid resistance and alkali resistance (particularly acid resistance).
  • the lead-free glass composition of the present invention when fired at 460 to 570 ° C., excellent chemical durability can be exhibited by crystallization. For this reason, it can be used, for example, to protect the surface of a member subjected to a plating process, an etching process or the like. In particular, it can be suitably used for surface coating, sealing or adhesion of a metal member or a ceramic member.
  • the present invention relates to 1) a method of covering a surface of a metal member or a ceramic member, 2) a method of sealing a metal member or a ceramic member, or 3) a method of bonding a metal member or a ceramic member. It can also be provided. In particular, these methods are preferably carried out by firing (heat treatment) the lead-free glass composition of the present invention at 460 to 570 ° C.
  • the lead-free glass composition of the present invention has a relatively low softening point, it can be used in a lower temperature range. Therefore, it can be suitably used for forming a protective film on the surface of a material having a low melting point (more specifically, a material having a melting point of 580 to 800 ° C.). For example, it can be effectively used as a protective film of aluminum or an aluminum-based alloy.
  • the lead-free glass composition of the present invention can exhibit excellent effects in addition to conductor pastes such as Ag and Al, as well as for compounding into resistor pastes.
  • the lead-free glass composition of the present invention has a relatively high coefficient of thermal expansion, it can be used not only for metallic members, but also for sealing high-expansion ceramic members and covering the surfaces of high-expansion ceramic members. Useful.
  • the lead-free glass composition of the present invention can be suitably used for bonding between high expansion ceramic members or between high expansion ceramics and a metal member.
  • it can be effectively used for applications (for example, for insulation) in which glass compositions are conventionally used.
  • the production method of the glass composition of the present invention is not particularly limited.
  • a compound that serves as a supply source of the glass component of the glass composition of the present invention may be used as a raw material.
  • the H 3 BO 3, B 2 O 3 for B 2 O 3 it can be used as a raw material
  • the use of Al (OH) 3, Al 2 O 3 or the like as a raw material for Al 2 O 3 it can.
  • a glass composition of the present invention is obtained by melting a mixture containing usually used raw materials such as various oxides, carbonates, and nitrates in a predetermined ratio. be able to.
  • the lead-free glass composition of the present invention is produced by a manufacturing method including 1) a first step of obtaining a mixture by mixing raw material compounds and 2) a second step of obtaining a melt by melting the obtained mixture. Obtainable.
  • the first step for example, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9% by weight, d) B 2 O 3 : A raw material that becomes a glass component containing 0.1 to 4% by weight and e) TiO 2 : 0.1 to 8% by weight may be used.
  • the mixing order of the raw materials of each component is not particularly limited, and may be blended at the same time or may be blended in order from a predetermined compound.
  • the raw material is usually supplied in the form of powder. Such raw material powder can be obtained by pulverizing, mixing, and the like of the raw material containing each component by a known method.
  • a melt is obtained by melting the mixture.
  • the glass melting temperature may be set according to the raw material composition and the like, but it is usually performed at about 1000 to 1200 ° C.
  • the obtained melt may be subjected to a process for producing a powder as it is from the melt as necessary.
  • a flaky powder can be obtained while cooling the melt with a cooling roll.
  • the powder can be obtained by processing such as pulverization and classification as necessary.
  • the lead-free glass composition of the present invention can be suitably provided as a powder.
  • the average particle diameter (D 50 ) of the powder is not limited, but is usually about 0.5 to 2 ⁇ m.
  • an inorganic filler component or the like can be blended with the obtained powder as necessary.
  • the inorganic filler should protect the inner side even if part of the glass component is dissolved and eroded from the surface side. Function. That is, the lead-free glass composition of the present invention is further improved in chemical stability by containing an inorganic filler component in addition to the glass component.
  • the said inorganic filler component can also be made to act as a modified pigment, and is useful also for adjustment of the color tone of a lead-free glass composition.
  • the inorganic filler component is not particularly limited as long as it has the function described above, for example TiO 2, Al 2 O 3, SiO 2, ZrO 2, MgO, MgAl 2 O 4, CaF 2, MgF 2 and BaF At least one of 2 can be suitably used.
  • These inorganic filler components are usually contained in the lead-free glass composition as particulates, for example, TiO 2 particles, Al 2 O 3 particles, SiO 2 particles, ZrO 2 particles, MgO particles, CaF 2 particles, and it can be contained in the Pb-free glass composition as inorganic particles such as BaF 2 particles. That is, the inorganic filler component can be contained in the form of inorganic particles, and the lead-free glass composition of the present invention can be formed, for example, by mixing powder glass composed of the glass component and the inorganic particles.
  • the inorganic filler component can be blended in powder form, but the average particle size (D 50 ) is usually about 0.3 to 3 ⁇ m.
  • the proportion of the inorganic filler component in the total amount of the inorganic filler component and the glass component is usually 20% by weight or less, and particularly preferably in the range of 3 to 10% by weight.
  • Examples 1 to 11 and Comparative Examples 1 to 7 ⁇ Preparation of lead-free glass composition>
  • the blended raw materials were weighed so as to have the compositions shown in Table 1 and Table 2, mixed, and then melted at a temperature of about 1000 to 1200 ° C. for 1 to 2 hours using a platinum crucible.
  • the molten glass was quenched with a stainless steel cooling roll to produce glass flakes, and lead-free glass compositions of Examples 1 to 8 and Comparative Examples 1 to 7 were produced.
  • the obtained lead-free glass composition (glass flakes) is further pulverized and classified by airflow, and adjusted to become powdered glass having an average particle size (D 50 ) of 0.5 to 2.0 ⁇ m for each evaluation. did.
  • an inorganic filler component was mixed with the powder glass formed from the lead-free glass composition of Example 1 so as to have a blending ratio shown in Table 1, and lead-free glass compositions of Examples 9 to 11 were produced.
  • Test example 1 Each physical property was measured about the lead-free glass composition obtained by the Example and the comparative example.
  • the molded body of the powdery sample was fired to prepare a block-shaped sample having a height of 5 mm, a width of 10 mm, and a length of 15 mm, and this was used as a sample for evaluating chemical stability (water resistance, acid resistance). .
  • Crystallinity The crystallization peak intensity was measured using an X-ray diffractometer (XRD) for the samples using the lead-free glass compositions of the examples and comparative examples, and a calibration curve prepared in advance. Based on the above, the volume ratio of the crystal phase was calculated. Those having a crystallinity of 85% by volume or more were judged as “ ⁇ ”, and those having a crystallinity of less than 85% by volume were judged as “x”. Those where no crystallization peak was detected were designated as “N”. The results are also shown in Table 1 and Table 2.
  • Thermal expansion coefficient A rod-like sample using the lead-free glass composition of each Example and Comparative Example and a standard sample formed of quartz glass were used at room temperature to 10 ° C. using a thermomechanical analyzer (TMA). The glass formed by the lead-free glass composition of each Example and Comparative Example by measuring the thermal expansion curve by raising the temperature at / min and averaging the values of the thermal expansion coefficients observed from 50 ° C. to 250 ° C. The thermal expansion coefficient of was determined. A result is combined with Table 1 and Table 2, and is shown.
  • the lead-free glass composition of the present invention can exhibit excellent chemical durability while having a low softening point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is a lead-free glass composition which exhibits excellent chemical durability, while having a low softening point. Specifically disclosed is a lead-free glass composition which contains, as glass components, (a) 50-75% by weight of Bi2O3, (b) 15-30% by weight of SiO2, (c) 4-9% by weight of Li2O, (d) 0.1-4% by weight of B2O3 and (e) 0.1-8% by weight of TiO2.

Description

無鉛ガラス組成物Lead-free glass composition
 本発明は、無鉛ガラス組成物に関する。 The present invention relates to a lead-free glass composition.
 ガラス、セラミックス等の無機材料は、合成樹脂等の有機材料に比べて、一般的に熱劣化が少なく、電気絶縁性に優れていることから、高い信頼性の要求される電子部品における絶縁材料として用いられる。このような分野におけるガラスは、金属製部材に対する被覆、金属製部材どうしの接着、開口部の封着等の用途等にも用いられている。 Inorganic materials such as glass and ceramics are generally less susceptible to thermal degradation and better electrical insulation than organic materials such as synthetic resins, and as an insulating material in electronic parts that require high reliability. Used. Glass in such a field is also used for applications such as coating on metal members, adhesion between metal members, sealing of openings, and the like.
 一般に、このような用途におけるガラスには、用途に応じた軟化点及び熱膨張係数を有するとともに耐水性、耐酸性、耐アルカリ性等の化学的耐久性のほか、電気絶縁性等に優れていることが必要とされる。また、焼成時の金属製部材の劣化を防止するという観点のほか、コストダウンの見地より、できるだけ低温での焼成で性能を発揮することが望ましい。特に、アルミニウム等の低融点金属を接着、封着、被覆する場合570℃以下、好ましくは550℃以下の温度で焼成する必要がある。 In general, glass for such applications has a softening point and a thermal expansion coefficient according to the application, as well as chemical durability such as water resistance, acid resistance, and alkali resistance, as well as excellent electrical insulation. Is needed. In addition to preventing deterioration of the metal member during firing, it is desirable to exhibit performance by firing at as low a temperature as possible from the viewpoint of cost reduction. In particular, when a low melting point metal such as aluminum is bonded, sealed, or coated, it is necessary to fire at a temperature of 570 ° C. or lower, preferably 550 ° C. or lower.
 従来、化学的耐久性に優れた低軟化点ガラスとして一般的に鉛含有ガラスが広く用いられている。例えば、特許文献1には、30~300℃の範囲における熱膨張係数が125~140×10-7/℃であることを特徴とするPbO含有ガラス組成物が開示されている。しかしながら、PbOガラスには環境上の問題が指摘されていることから、PbOを含まないガラスに置換することが望まれている。 Conventionally, lead-containing glass has been widely used as a low softening point glass excellent in chemical durability. For example, Patent Document 1 discloses a PbO-containing glass composition having a thermal expansion coefficient of 125 to 140 × 10 −7 / ° C. in the range of 30 to 300 ° C. However, since environmental problems have been pointed out in PbO glass, it is desired to replace it with glass that does not contain PbO.
 一方、特許文献2には、PbOの代わりにBiを主成分としたLiO、NaO、KO等のアルカリ金属酸化物を多量に含有させる磁気ヘッドガラス組成物が記載されている。しかしながら、Bi、SiO等のガラスフォーマー以外はLiO、NaO、KO等のアルカリ金属酸化物しか含有しないため、化学的耐久性に問題が生ずる傾向にある。 On the other hand, Patent Document 2 describes a magnetic head glass composition containing a large amount of an alkali metal oxide such as Li 2 O, Na 2 O, and K 2 O mainly composed of Bi 2 O 3 instead of PbO. Has been. However, since glass formers such as Bi 2 O 3 and SiO 2 contain only alkali metal oxides such as Li 2 O, Na 2 O and K 2 O, there is a tendency for problems in chemical durability.
 特許文献3に記載のガラス融剤組成物、特許文献4に記載のガラス組成物では、Bを多量に含有するために十分な化学的耐久性を有し得ない。 The glass flux composition described in Patent Document 3 and the glass composition described in Patent Document 4 cannot have sufficient chemical durability because they contain a large amount of B 2 O 3 .
 一方、特許文献5に記載の低融点ガラス組成物、及び特許文献6、特許文献7に記載のセラミックカラー組成物用ガラスは実質的にBを含まないため、急激に結晶化が起こり、焼成の際に十分な流動性が得られないという問題がある。 On the other hand, the low melting point glass composition described in Patent Document 5 and the ceramic color composition glass described in Patent Document 6 and Patent Document 7 do not substantially contain B 2 O 3 , so that crystallization occurs rapidly. There is a problem that sufficient fluidity cannot be obtained during firing.
 特許文献8及び特許文献9には、耐酸性に優れたセラミックカラー組成物が開示されている。これらのガラス組成物は、耐酸性に優れるものの、低融点化に有効な成分であるアルカリ酸化物が少ないために低融点化が困難である。 Patent Document 8 and Patent Document 9 disclose ceramic color compositions having excellent acid resistance. Although these glass compositions have excellent acid resistance, it is difficult to lower the melting point because there are few alkali oxides that are effective components for lowering the melting point.
 特許文献10~12には、耐酸性に優れたセラミックカラー組成物が開示されている。しかし、これらのガラス組成物は、アルカリ酸化物の含有量が多く、低融点化がなされているが、十分な化学的耐久性を有するに至っていない。 Patent Documents 10 to 12 disclose ceramic color compositions having excellent acid resistance. However, these glass compositions have a high alkali oxide content and a low melting point, but have not yet had sufficient chemical durability.
 このように、無鉛系のガラス組成物において、低い軟化点と優れた化学的耐久性とを同時に満たす組成はこれまで見出されておらず、両者を満たすガラス組成物の開発が切望されている。 Thus, in a lead-free glass composition, a composition that simultaneously satisfies a low softening point and excellent chemical durability has not been found so far, and development of a glass composition that satisfies both has been eagerly desired. .
特開平4-55341号公報Japanese Patent Laid-Open No. 4-55341 特開昭63-35432号公報Japanese Unexamined Patent Publication No. Sho 63-35432 特開平2-180730公報Japanese Patent Laid-Open No. 2-180730 特開平5-262536公報JP-A-5-262536 特開2000-302480公報JP 2000-302480 A 特開2002-362940公報JP 2002-362940 A 特開2003-104754公報JP2003-104754A 特開平7-144933公報JP-A-7-144933 特開平8-34640公報JP-A-8-34640 特開平6-234547公報JP-A-6-234547 特開2000-154036公報JP 2000-154036 A 特開2002-20140公報JP 2002-20140 A
 従って、本発明の主な目的は、低軟化点でありながら優れた化学耐久性を有する無鉛ガラス組成物を提供することにある。 Therefore, a main object of the present invention is to provide a lead-free glass composition having excellent chemical durability while having a low softening point.
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、無鉛ガラス組成物のガラス成分として所定の物質を所定量含有させることにより上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the problems of the prior art, the present inventors have found that the above object can be achieved by containing a predetermined amount of a predetermined substance as a glass component of a lead-free glass composition, and the present invention has been completed. It came to do.
 すなわち、本発明は、下記の無鉛ガラス組成物に係る。
1. ガラス成分として、a)Bi:50~75重量%、b)SiO:15~30重量%、c)LiO:4~9重量%、d)B:0.1~4重量%及びe)TiO:0.1~8重量%を含有する無鉛ガラス組成物。
2. ガラス成分として、Al:0.1~5重量%をさらに含有する、請求項1に記載の無鉛ガラス組成物。
3. LiO、NaO及びKOの合計が5.5~10重量%となるように、NaO及びKOの少なくとも1種をさらに含む、請求項1に記載の無鉛ガラス組成物。
4. MgO、SrO、BaO及びZnOの少なくとも1種を合計で5.0重量%以下、ZrOを4重量%以下の範囲内で含有する、請求項1に記載の無鉛ガラス組成物。
5. 当該無鉛ガラス組成物を大気中460~570℃の温度範囲内で焼成した際に、珪酸ビスマス結晶、チタン酸ビスマス結晶及びリチウムシリケート結晶が析出する、請求項1に記載の無鉛ガラス組成物。
6. 金属製部材又はセラミックス製部材の表面被覆、封着又は接着のために用いる、請求項1に記載の無鉛ガラス組成物。
7. 前記金属製部材の融点が580~800℃である、請求項6に記載の無鉛ガラス組成物。
8. 前記項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の表面被覆を行う方法。
9. 前記無鉛ガラス組成物を460~570℃で加熱して表面被覆を行う、前記項8に記載の方法。
10. 前記項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の封着を行う方法。
11. 前記無鉛ガラス組成物を460~570℃以下で加熱して封着を行う、前記項10に記載の方法。
12.前記項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の接着を行う方法。
13.前記無鉛ガラス組成物を460~570℃以下で加熱して接着を行う、前記項10に記載の方法。
That is, the present invention relates to the following lead-free glass composition.
1. As glass components, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9% by weight, d) B 2 O 3 : 0.1 Lead-free glass composition containing -4% by weight and e) TiO 2 : 0.1-8% by weight.
2. The lead-free glass composition according to claim 1, further comprising Al 2 O 3 : 0.1 to 5% by weight as a glass component.
3. The lead-free glass composition according to claim 1, further comprising at least one of Na 2 O and K 2 O such that the total of Li 2 O, Na 2 O, and K 2 O is 5.5 to 10 wt%. object.
4). MgO, SrO, BaO and less at least 5.0% by weight of one of the sum of ZnO, containing in the range of the ZrO 2 4 wt% or less, Pb-free glass composition according to claim 1.
5). The lead-free glass composition according to claim 1, wherein bismuth silicate crystals, bismuth titanate crystals and lithium silicate crystals are precipitated when the lead-free glass composition is baked in a temperature range of 460 to 570 ° C in the air.
6). The lead-free glass composition according to claim 1, which is used for surface coating, sealing or adhesion of a metal member or a ceramic member.
7). The lead-free glass composition according to claim 6, wherein the metal member has a melting point of 580 to 800 ° C.
8). A method for performing surface coating of a metal member or a ceramic member using the lead-free glass composition according to Item 1.
9. Item 9. The method according to Item 8, wherein the lead-free glass composition is heated at 460 to 570 ° C to perform surface coating.
10. A method for sealing a metal member or a ceramic member using the lead-free glass composition according to Item 1.
11. Item 11. The method according to Item 10, wherein the lead-free glass composition is heated at 460 to 570 ° C or lower for sealing.
12 A method for bonding a metal member or a ceramic member using the lead-free glass composition according to Item 1 above.
13. Item 11. The method according to Item 10, wherein the lead-free glass composition is bonded by heating at 460 to 570 ° C or lower.
 本発明の無鉛ガラス組成物は、特定の組成から構成されているので、低軟化点でありながら優れた化学耐久性を発揮することができる。 Since the lead-free glass composition of the present invention is composed of a specific composition, it can exhibit excellent chemical durability while having a low softening point.
 すなわち、化学的安定性に優れているため、耐酸性及び耐アルカリ性が要求される部材の保護のために好適に用いることができる。また、低軟化点であることから、前記部材の融点が低いものであっても、その部材を変質させることなく、保護膜等の形成をすることができる。 That is, since it is excellent in chemical stability, it can be suitably used for protecting members that require acid resistance and alkali resistance. In addition, since the member has a low softening point, even if the member has a low melting point, a protective film or the like can be formed without altering the member.
 無鉛ガラス組成物
 本発明の無鉛ガラス組成物は、ガラス成分として、a)Bi:50~75重量%、b)SiO:15~30重量%、c)LiO:4~9重量%、d)B:0.1~4重量%及びe)TiO:0.1~8重量%を含有する。
Lead-free glass composition The lead-free glass composition of the present invention contains, as glass components, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9 %), D) B 2 O 3 : 0.1 to 4% by weight and e) TiO 2 : 0.1 to 8% by weight.
 上記のように、本発明では、ガラス成分としてBi、SiO、LiO、B及びTiOが必須成分として含有されている。また、必要に応じてAlが含まれていても良い。さらに、アルカリ金属酸化物として、LiOのほか、NaO及びKOの少なくとも1種が含まれていても良い。 As described above, in the present invention, Bi 2 O 3 , SiO 2 , Li 2 O, B 2 O 3 and TiO 2 are contained as essential components as glass components. It may also contain Al 2 O 3 as required. Furthermore, as an alkali metal oxide, at least one of Na 2 O and K 2 O may be contained in addition to Li 2 O.
 さらに、任意成分として、ZnO、BaO、MgO、CaO、SrO、ZrO、SeO、CeO、Fe、MnO、CuO、CoO、SnO、Sb、V、NiO、Cr、TeO等の少なくとも1種が本発明の効果を著しく損ねない範囲内で含有されていても良い。 Furthermore, as optional components, ZnO, BaO, MgO, CaO, SrO, ZrO 2 , SeO 2 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , At least one of NiO, Cr 2 O 3 , TeO 2 and the like may be contained within a range that does not significantly impair the effects of the present invention.
 一方、本発明の無鉛ガラス組成物は、鉛(Pb)成分を実質的に含まない。この点において、本発明組成物は環境汚染等の問題を回避できるものである。 On the other hand, the lead-free glass composition of the present invention does not substantially contain a lead (Pb) component. In this respect, the composition of the present invention can avoid problems such as environmental pollution.
 以下、各成分について説明する。なお、本発明において「ガラス成分」とは、本発明の無鉛ガラス組成物を製造する過程において、溶融に供され、ガラス状態で含有されている成分を言う。ガラス成分としての重量割合は、無鉛ガラス組成物の合計を100重量%とした場合の酸化物換算値としての重量割合を言う。 Hereinafter, each component will be described. In the present invention, the “glass component” refers to a component that is subjected to melting and contained in a glass state in the process of producing the lead-free glass composition of the present invention. The weight ratio as a glass component says the weight ratio as an oxide conversion value when the sum total of a lead-free glass composition is 100 weight%.
 Biは、本発明の無鉛ガラス組成物を低軟化点にするために有効な成分であり、熱処理の際に析出する結晶の構成成分である。ガラス成分中におけるBiの含有量は、通常50~75重量%、好ましくは50~70重量%とし、より好ましくは55~65重量%とする。Bi含有量が50重量%未満の場合は、無鉛ガラス組成物の軟化点が上昇するために好ましくない。軟化点が高くなりすぎると、本発明組成物に適用できる部材の耐熱性に大きな制約がかかり、適用できる部材の選択範囲が限定されてしまうことになる。例えば、金属製部材の上で本発明組成物を焼成する場合等において、軟化点が高くなると高温で焼成する必要が生じるため、比較的融点が低い材質からなる部材(例えば、アルミニウム)に適用することができなくなる。一方で、Bi含有量が75%を超える場合には、軟化点を十分低減できたとしても、耐酸性等の化学的耐久性が低下する。 Bi 2 O 3 is an effective component for making the lead-free glass composition of the present invention have a low softening point, and is a constituent component of crystals precipitated during heat treatment. The content of Bi 2 O 3 in the glass component is usually 50 to 75% by weight, preferably 50 to 70% by weight, more preferably 55 to 65% by weight. A Bi 2 O 3 content of less than 50% by weight is not preferable because the softening point of the lead-free glass composition increases. If the softening point is too high, the heat resistance of the member that can be applied to the composition of the present invention is greatly restricted, and the selection range of the applicable member is limited. For example, when the composition of the present invention is fired on a metal member, it becomes necessary to fire at a high temperature when the softening point is high, and therefore, it is applied to a member made of a material having a relatively low melting point (for example, aluminum). I can't do that. On the other hand, when the Bi 2 O 3 content exceeds 75%, chemical durability such as acid resistance is lowered even if the softening point can be sufficiently reduced.
 SiOは、ガラス成分のガラス状態を安定化させるために有効な成分であり、熱処理の際に析出する結晶の構成成分である。ガラス成分中におけるSiO含有量は、通常15~30重量%とし、好ましくは15~25重量%とし、より好ましくは16~23重量%とする。SiOのガラス成分に占める含有量が10%未満の場合は、無鉛ガラス組成物に十分な安定性を付与することが困難となる。また、SiO含有量が30重量%を超える場合は、無鉛ガラス組成物の焼成温度を高温にする必要が生じるので好ましくない。 SiO 2 is an effective component for stabilizing the glass state of the glass component, and is a constituent component of crystals that are precipitated during heat treatment. The SiO 2 content in the glass component is usually 15 to 30% by weight, preferably 15 to 25% by weight, more preferably 16 to 23% by weight. When the content of SiO 2 in the glass component is less than 10%, it is difficult to impart sufficient stability to the lead-free glass composition. Also, if the SiO 2 content exceeds 30 wt%, it is not necessary to the firing temperature of the Pb-free glass composition in a high temperature occurs not preferable.
 LiOは、無鉛ガラス組成物を低軟化点化に寄与するものであり、熱処理の際に析出する結晶の構成成分である。ガラス成分中におけるLiO含有量は、通常4~9重量%、好ましくは5~8.5重量%、より好ましくは5.5~8重量%である。LiO含有量が4重量%未満の場合は、無鉛ガラス組成物の軟化点が上昇し、570℃以下で結晶を析出させることが困難となる上、結晶化後の残存ガラス組成に十分な化学的耐久性を付与することが困難となる。一方、LiO含有量が9重量%を超えると結晶析出量が多くなりすぎ、ガラスの生産が困難となる。 Li 2 O contributes to lowering the softening point of the lead-free glass composition and is a constituent component of crystals that precipitate during heat treatment. The Li 2 O content in the glass component is usually 4 to 9% by weight, preferably 5 to 8.5% by weight, more preferably 5.5 to 8% by weight. When the Li 2 O content is less than 4% by weight, the softening point of the lead-free glass composition is increased, making it difficult to precipitate crystals at 570 ° C. or lower, and sufficient for the residual glass composition after crystallization. It becomes difficult to impart chemical durability. On the other hand, if the Li 2 O content exceeds 9% by weight, the amount of crystal precipitation becomes too large, making glass production difficult.
 Alは、ガラス成分のガラス状態を安定化させるとともに無鉛ガラス組成物を化学的耐久性に優れたものとするために有効な成分である。ガラス成分中におけるAl含有量は、通常0.1~5重量%とし、好ましくは0.1~3重量%とし、より好ましくは0.4~2重量%とする。本発明組成物中におけるAl含有量が0.1重量%未満の場合は、無鉛ガラス組成物に十分な化学的耐久性を付与することが困難となる。一方、Al含有量が5重量%を超えると、失透する等ガラス成分を不安定化させ、ガラスの生産が困難となるおそれがある。また、Al含有量が5%を超えると、無鉛ガラス組成物の焼成温度を570℃を超える温度に上昇させるおそれもある。 Al 2 O 3 is an effective component for stabilizing the glass state of the glass component and making the lead-free glass composition excellent in chemical durability. The Al 2 O 3 content in the glass component is usually 0.1 to 5% by weight, preferably 0.1 to 3% by weight, more preferably 0.4 to 2% by weight. When the content of Al 2 O 3 in the composition of the present invention is less than 0.1% by weight, it becomes difficult to impart sufficient chemical durability to the lead-free glass composition. On the other hand, if the Al 2 O 3 content exceeds 5% by weight, the glass components such as devitrification may be destabilized and glass production may become difficult. Further, Al 2 O 3 content exceeds 5%, the contact it also to the sintering temperature is raised to a temperature above 570 ° C. of the Pb-free glass composition.
 Bは、ガラス成分のガラス状態を安定化させるとともに無鉛ガラス組成物を低軟化点とするために有効な成分である。ガラス成分中におけるB含有量は、通常0.1~4%とし、好ましくは2.5~3.5重量%とする。B含有量が0.1重量%未満の場合は、失透する等ガラス成分を不安定化させガラスの生産が困難となるおそれがある。また、B含有量が4重量%を超える含有量とすると結晶を析出させることが困難となり、無鉛ガラス組成物に十分な化学的耐久性を付与することが困難となるおそれを有するためである。また、B含有量が4重量%を超えると、熱処理により結晶化した際の、残存ガラス組成を増加させかつ残存ガラス組成の化学的耐久性を低下させるおそれもある。 B 2 O 3 is an effective component for stabilizing the glass state of the glass component and making the lead-free glass composition have a low softening point. The content of B 2 O 3 in the glass component is usually 0.1 to 4%, preferably 2.5 to 3.5% by weight. When the content of B 2 O 3 is less than 0.1% by weight, the glass components such as devitrification may be destabilized and it may be difficult to produce glass. Further, if the B 2 O 3 content exceeds 4% by weight, it is difficult to precipitate crystals, and it may be difficult to impart sufficient chemical durability to the lead-free glass composition. It is. Further, the content of B 2 O 3 is more than 4 wt%, at the time of crystallization by heat treatment, contact it is also to increase the residual glass composition and reduce the chemical durability of the remaining glass composition.
 TiOは、無鉛ガラス組成物を化学的耐久性に優れたものとするために有効な成分であり、 熱処理の際に析出する結晶の構成成分である。ガラス成分中におけるTiO含有量は、通常0.1~8重量%とし、好ましくは2~8重量%とし、より好ましくは5~8重量%とする。TiO含有量が0.1重量%未満では、無鉛ガラス組成物に十分な化学的耐久性を付与することが困難となる。また、TiO含有量が8%を超える場合は、ガラスの生産が困難となるおそれがあるためである。さらには、TiO含有量が8%を超えると、無鉛ガラス組成物の焼成温度を570℃を超える温度に上昇させるおそれもある。 TiO 2 is an effective component for making the lead-free glass composition excellent in chemical durability, and is a constituent component of crystals precipitated during heat treatment. The TiO 2 content in the glass component is usually 0.1 to 8% by weight, preferably 2 to 8% by weight, more preferably 5 to 8% by weight. When the TiO 2 content is less than 0.1% by weight, it is difficult to impart sufficient chemical durability to the lead-free glass composition. Further, if the TiO 2 content exceeds 8%, there is a possibility that glass production is difficult. Furthermore, if the TiO 2 content exceeds 8%, the firing temperature of the lead-free glass composition may be increased to a temperature exceeding 570 ° C.
 本発明の無鉛ガラス組成物では、アルカリ金属酸化物として、LiOのほかに、NaO及びKOの少なくとも1種が含まれていても良い。これらの成分は、先にも述べたように無鉛ガラス組成物の低軟化点を下げるために有効な成分である。NaO及びKOの少なくとも1種は、LiO含有量との合計でガラス成分中5.5~10重量%、好ましくは6~9重量%とする。前記の合計含有量が5.5%未満では、無鉛ガラス組成物の焼成温度を570℃を超える温度まで上昇させるおそれがある。また、前記の合計含有量が10%を超えると、熱処理により結晶化した際において、残存ガラス組成の化学的耐久性を低下させ、無鉛ガラス組成物に十分な化学的耐久性を付与することが困難となるおそれがある。 In the lead-free glass composition of the present invention, at least one of Na 2 O and K 2 O may be contained in addition to Li 2 O as the alkali metal oxide. These components are effective components for lowering the low softening point of the lead-free glass composition as described above. At least one of Na 2 O and K 2 O is 5.5 to 10% by weight, preferably 6 to 9% by weight in the glass component in total with the Li 2 O content. If the total content is less than 5.5%, the firing temperature of the lead-free glass composition may be increased to a temperature exceeding 570 ° C. Further, if the total content exceeds 10%, when crystallized by heat treatment, the chemical durability of the residual glass composition is lowered, and sufficient chemical durability is imparted to the lead-free glass composition. May be difficult.
 前記任意成分のうち、ZnOは、無鉛ガラス組成物を低軟化点とするために有効な成分である。ガラス成分中におけるZnO含有量は、通常5重量%以下とし、好ましくは1~3重量%とすれば良い。 Among the optional components, ZnO is an effective component for making the lead-free glass composition have a low softening point. The ZnO content in the glass component is usually 5% by weight or less, preferably 1 to 3% by weight.
 前記任意成分のうち、BaOは、無鉛ガラス組成物に対して高い熱膨張係数を付与させるために有効な成分である。ガラス成分中のBaO含有量は、通常5重量%以下、好ましくは4重量%以下とし、より好ましくは2重量%以下とすれば良い。BaO含有量が5重量%を超える場合は、無鉛ガラス組成物の化学的耐久性、特に耐酸性を大きく低下させるおそれがある。 Among the optional components, BaO is an effective component for imparting a high thermal expansion coefficient to the lead-free glass composition. The BaO content in the glass component is usually 5% by weight or less, preferably 4% by weight or less, and more preferably 2% by weight or less. If the BaO content exceeds 5% by weight, the chemical durability, particularly acid resistance, of the lead-free glass composition may be greatly reduced.
 前記任意成分のうち、MgO、CaO及びSrOの少なくとも1種は、無鉛ガラス組成物の低軟化点化に有効な成分である。これらの成分のガラス成分中の含有量は、BaO含有量との合計で通常5重量%以下となる量とすれば良い。 Among the optional components, at least one of MgO, CaO and SrO is an effective component for lowering the softening point of the lead-free glass composition. The content of these components in the glass component may be generally 5% by weight or less in total with the BaO content.
 前記任意成分のうち、ZrOは、無鉛ガラス組成物の軟化時の粘性及び熱膨張係数の調整に有効な成分である。ガラス成分中におけるZrO含有量は、通常5重量%以下とし、好ましくは4重量%以下とすれば良い。ZrO含有量が5重量%を超える場合は、無鉛ガラス組成物の焼成温度を570℃を超える温度まで上昇させるおそれがある。 Among the optional components, ZrO 2 is an effective component for adjusting the viscosity and thermal expansion coefficient when the lead-free glass composition is softened. The ZrO 2 content in the glass component is usually 5% by weight or less, preferably 4% by weight or less. If the content of ZrO 2 exceeds 5 wt%, there is a possibility to raise the firing temperature of the Pb-free glass composition to a temperature in excess of 570 ° C..
 さらに、前記任意成分のうち、SeO、CeO、Fe、MnO、CuO、CoO、SnO、Sb、V、NiO、Cr、TeO等の少なくとも1種は、その合計含有量が、ガラス成分中に2重量%以下となる量で含有させても本発明の効果を著しく損ねるおそれは低い。 Further, among the optional components, SeO 2 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , NiO, Cr 2 O 3 , TeO 2, etc. Even when at least one kind is contained in an amount of 2% by weight or less in the glass component, there is little possibility that the effects of the present invention will be significantly impaired.
 このように、本発明の無鉛ガラス組成物は各成分から構成されるが、具体的な組成としては、例えばa)Bi:55~70重量%、b)SiO:17~22重量%、c)LiO:6.0~8重量%、d)Al:0.1~1.5重量%、e)B:2~3.5重量%及びf)TiO:4.5~7.5重量%を含有する組成が挙げられる。 As described above, the lead-free glass composition of the present invention is composed of each component. Specific examples of the composition include a) Bi 2 O 3 : 55 to 70% by weight, b) SiO 2 : 17 to 22% by weight. C) Li 2 O: 6.0 to 8 wt%, d) Al 2 O 3 : 0.1 to 1.5 wt%, e) B 2 O 3 : 2 to 3.5 wt% and f) A composition containing TiO 2 : 4.5 to 7.5% by weight can be mentioned.
 より具体的には、組成Aとしてa)Bi:59~61重量%、b)SiO:20~22重量%、c)LiO:7.0~8.0重量%、d)Al:0.3~0.7重量%、e)B:2.5~3.5重量%、f)TiO:6.5~7.5重量%及びg)ZnO:0.5~1.5重量%を含有する組成、組成Bとして、a)Bi:55~70重量%、b)SiO:17~22重量%、c)LiO:6.0~7.5重量%、d)Al:0.1~1.5重量%、e)B:2~3.5重量%及びf)TiO:4~6重量%を含有する組成、組成Cとして、a)Bi:64~68重量%、b)SiO:17~19重量%、c)LiO:6~8重量%、d)Al:0.1~1.5重量%、e)B:2~3重量%、f)TiO:4~6重量%及びg)KO:1~3重量%を含有する組成等は、特に耐水性、耐酸性、軟化点等の点においてより好ましい組成である。 More specifically, as composition A, a) Bi 2 O 3 : 59 to 61 wt%, b) SiO 2 : 20 to 22 wt%, c) Li 2 O: 7.0 to 8.0 wt%, d A) Al 2 O 3 : 0.3 to 0.7 wt%, e) B 2 O 3 : 2.5 to 3.5 wt%, f) TiO 2 : 6.5 to 7.5 wt% and g) ZnO: a composition containing 0.5 to 1.5% by weight, as composition B, a) Bi 2 O 3 : 55 to 70% by weight, b) SiO 2 : 17 to 22% by weight, c) Li 2 O: 6.0 to 7.5 wt%, d) Al 2 O 3 : 0.1 to 1.5 wt%, e) B 2 O 3 : 2 to 3.5 wt%, and f) TiO 2 : 4 to 6 composition containing by weight%, a composition C, a) Bi 2 O 3 : 64 ~ 68 wt%, b) SiO 2: 17 ~ 19 wt%, c) Li 2 O: 6 ~ 8 wt%, d) Al O 3: 0.1 ~ 1.5 wt%, e) B 2 O 3 : 2 ~ 3 wt%, f) TiO 2: 4 ~ 6 wt% and g) K 2 O: containing 1-3 wt% The composition to be used is a more preferable composition particularly in terms of water resistance, acid resistance, softening point and the like.
 本発明における無鉛ガラス組成物は、大気中460℃~570℃で熱処理(焼成)することにより珪酸ビスマス結晶、チタン酸ビスマス結晶及びリチウムシリケート結晶が析出する結晶化ガラスとなる。本発明では特定の組成を採用することにより、焼成時にこれらの結晶を析出させることができる。特に、リチウムシリケート結晶を析出させることができる点が重要である。本来、LiOは低融点化に有効である反面、化学的耐久性を低下させる成分である。これに対し、本発明では、上記特定の組成を採用することにより、LiO自体を化学的耐久性の強いリチウムシリケート結晶として析出させることが可能となる結果、熱処理後に高い化学的耐久性をもつ焼成体(結晶化ガラス)を与えることができる。すなわち、本発明の無鉛ガラス組成物を使用時において熱処理されることで高い化学的耐久性を発現する。 The lead-free glass composition in the present invention is a crystallized glass in which bismuth silicate crystals, bismuth titanate crystals and lithium silicate crystals are precipitated by heat treatment (baking) at 460 ° C. to 570 ° C. in the atmosphere. In the present invention, by adopting a specific composition, these crystals can be precipitated during firing. In particular, it is important that lithium silicate crystals can be deposited. Originally, Li 2 O is effective for lowering the melting point, but it is a component that lowers chemical durability. On the other hand, in the present invention, by adopting the above specific composition, Li 2 O itself can be precipitated as a lithium silicate crystal having strong chemical durability. As a result, high chemical durability is obtained after heat treatment. A fired body (crystallized glass) can be provided. That is, high chemical durability is expressed by heat-treating the lead-free glass composition of the present invention at the time of use.
 なお、本発明においては、大気中における熱処理において460℃~570℃のいずれかの温度で珪酸ビスマス結晶、チタン酸ビスマス結晶及びリチウムシリケート結晶(X線回折分析のチャートにおいてこれらの結晶のピーク)が発現すれば良い。 In the present invention, bismuth silicate crystal, bismuth titanate crystal and lithium silicate crystal (peaks of these crystals in the X-ray diffraction analysis chart) are produced at any temperature between 460 ° C. and 570 ° C. in the heat treatment in the atmosphere. It only has to be expressed.
 本発明の無鉛ガラス組成物においては、その軟化点は特に制限されないが、通常420~500℃、特に430~480℃であることが好ましい。また、ガラス転移温度は、通常350~480℃であり、特に380~450℃であることが好ましい。これらの温度範囲内のものであれば、より優れた耐酸性、耐水性等を兼ね備えた低軟化点のガラス組成物とすることができる。 In the lead-free glass composition of the present invention, the softening point is not particularly limited, but it is usually 420 to 500 ° C, particularly preferably 430 to 480 ° C. The glass transition temperature is usually 350 to 480 ° C., particularly preferably 380 to 450 ° C. If it is in these temperature ranges, it can be set as the glass composition of the low softening point which has more excellent acid resistance, water resistance, etc.
 本発明の無鉛ガラス組成物は、化学的耐久性に優れているので、耐酸性及び耐アルカリ性(特に耐酸性)が要求される部材の保護のために用いることができる。特に、前記の通り、本発明の無鉛ガラス組成物を460~570℃で焼成する場合には、結晶化により優れた化学耐久性を発揮することができる。このため、例えばメッキ工程、エッチング工程等が施される部材の表面を保護するために用いることができる。特に、金属製部材又はセラミックス製部材の表面被覆、封着又は接着のために好適に用いることができる。すなわち、本発明は、1)金属製部材又はセラミックス製部材を表面被覆する方法、2)金属製部材又はセラミックス製部材を封着する方法又は3)金属製部材又はセラミックス製部材を接着する方法を提供することもできる。特に、これらの方法では、本発明の無鉛ガラス組成物を460~570℃で焼成(熱処理)することにより実施することが望ましい。 Since the lead-free glass composition of the present invention is excellent in chemical durability, it can be used for protecting members requiring acid resistance and alkali resistance (particularly acid resistance). In particular, as described above, when the lead-free glass composition of the present invention is fired at 460 to 570 ° C., excellent chemical durability can be exhibited by crystallization. For this reason, it can be used, for example, to protect the surface of a member subjected to a plating process, an etching process or the like. In particular, it can be suitably used for surface coating, sealing or adhesion of a metal member or a ceramic member. That is, the present invention relates to 1) a method of covering a surface of a metal member or a ceramic member, 2) a method of sealing a metal member or a ceramic member, or 3) a method of bonding a metal member or a ceramic member. It can also be provided. In particular, these methods are preferably carried out by firing (heat treatment) the lead-free glass composition of the present invention at 460 to 570 ° C.
 しかも、本発明の無鉛ガラス組成物は軟化点が比較的低いので、より低温域で使用することができる。このため、融点が低い材料(より具体的には融点が580~800℃の材料)の表面の保護膜の形成のために好適に用いることができる。例えば、アルミニウム又はアルミニウム系合金の保護膜としても効果的に使用することができる。 Moreover, since the lead-free glass composition of the present invention has a relatively low softening point, it can be used in a lower temperature range. Therefore, it can be suitably used for forming a protective film on the surface of a material having a low melting point (more specifically, a material having a melting point of 580 to 800 ° C.). For example, it can be effectively used as a protective film of aluminum or an aluminum-based alloy.
 また、本発明の無鉛ガラス組成物は、Ag、Al等の導体ペーストのほか、抵抗体ペーストへの配合用途等にも優れた効果を発揮できる。 Moreover, the lead-free glass composition of the present invention can exhibit excellent effects in addition to conductor pastes such as Ag and Al, as well as for compounding into resistor pastes.
 また、本発明の無鉛ガラス組成物は比較的高い熱膨張係数を有することから、金属製部材のみならず、高膨張セラミックス製部材の封着、高膨張セラミックス製部材の表面被覆等の用途においても有用である。 In addition, since the lead-free glass composition of the present invention has a relatively high coefficient of thermal expansion, it can be used not only for metallic members, but also for sealing high-expansion ceramic members and covering the surfaces of high-expansion ceramic members. Useful.
 さらに、本発明の無鉛ガラス組成物は、高膨張セラミックス製部材どうし又は高膨張セラミックスと金属製部材との接着用途等にも好適に用いることができる。その他、従来よりガラス組成物が使用されている用途(例えば、絶縁用)にも効果的に用いることができる。 Furthermore, the lead-free glass composition of the present invention can be suitably used for bonding between high expansion ceramic members or between high expansion ceramics and a metal member. In addition, it can be effectively used for applications (for example, for insulation) in which glass compositions are conventionally used.
 無鉛ガラス組成物の製造
 本発明ガラス組成物の製造方法としては、特に限定されない。まず、原料としては、本発明ガラス組成物のガラス成分の供給源となる化合物を使用すれば良い。例えば、BのためにHBO、Bを原料として用いることができ、AlのためにAl(OH)、Al等を原料として用いることができる。他の成分についても同様に、各種酸化物、炭酸塩、硝酸塩等の通常に用いられる原料を所定の割合で含有する混合物を出発原料として用い、これらを溶融することにより本発明ガラス組成物を得ることができる。例えば、1)原料化合物を混合することにより混合物を得る第1工程及び2)得られた混合物を溶融することにより溶融物を得る第2工程を含む製造方法によって、本発明の無鉛ガラス組成物を得ることができる。
Production of lead-free glass composition The production method of the glass composition of the present invention is not particularly limited. First, as a raw material, a compound that serves as a supply source of the glass component of the glass composition of the present invention may be used. For example, the H 3 BO 3, B 2 O 3 for B 2 O 3 it can be used as a raw material, the use of Al (OH) 3, Al 2 O 3 or the like as a raw material for Al 2 O 3 it can. Similarly, with respect to other components, a glass composition of the present invention is obtained by melting a mixture containing usually used raw materials such as various oxides, carbonates, and nitrates in a predetermined ratio. be able to. For example, the lead-free glass composition of the present invention is produced by a manufacturing method including 1) a first step of obtaining a mixture by mixing raw material compounds and 2) a second step of obtaining a melt by melting the obtained mixture. Obtainable.
 第1工程では、例えば、a)Bi:50~75重量%、b)SiO:15~30重量%、c)LiO:4~9重量%、d)B:0.1~4重量%及びe)TiO:0.1~8重量%を含有するガラス成分となるような原料を使用すれば良い。この場合、各成分の原料の混合順序等は特に制限されず、同時に配合しても良いし、所定の化合物から順番に配合しても良い。また、原料は、通常は粉末の形態で供給される。このような原料粉末は、各成分を含む原料を公知の方法で粉砕、混合等を実施することにより得ることができる。 In the first step, for example, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9% by weight, d) B 2 O 3 : A raw material that becomes a glass component containing 0.1 to 4% by weight and e) TiO 2 : 0.1 to 8% by weight may be used. In this case, the mixing order of the raw materials of each component is not particularly limited, and may be blended at the same time or may be blended in order from a predetermined compound. The raw material is usually supplied in the form of powder. Such raw material powder can be obtained by pulverizing, mixing, and the like of the raw material containing each component by a known method.
 第2工程では、混合物を溶融することにより溶融物を得る。溶融に際しては、原料組成等に応じてガラス溶融温度を設定すれば良いが、通常は1000~1200℃程度で実施すれば良い。得られた溶融物は、必要に応じて、溶融物からそのまま粉末を製造する工程に供しても良い。例えば、溶融物を冷却ロールにて冷却しながらフレーク状粉末を得ることができる。また例えば、溶融物を冷却した後、必要に応じて粉砕、分級等の処理することにより粉末を得ることもできる。このように、本発明の無鉛ガラス組成物は、粉末状として好適に提供することができる。この場合の粉末の平均粒径(D50)は限定的ではないが、通常は0.5~2μm程度とすれば良い。 In the second step, a melt is obtained by melting the mixture. In melting, the glass melting temperature may be set according to the raw material composition and the like, but it is usually performed at about 1000 to 1200 ° C. The obtained melt may be subjected to a process for producing a powder as it is from the melt as necessary. For example, a flaky powder can be obtained while cooling the melt with a cooling roll. Further, for example, after the melt is cooled, the powder can be obtained by processing such as pulverization and classification as necessary. Thus, the lead-free glass composition of the present invention can be suitably provided as a powder. In this case, the average particle diameter (D 50 ) of the powder is not limited, but is usually about 0.5 to 2 μm.
 また、本発明では、得られた粉末に対して必要に応じて無機フィラー成分等を配合することができる。例えば、ガラス保護膜として、その表面に酸性又はアルカリ性の液体等が接触した場合、たとえガラス成分の一部が溶解されて表面側から侵食を受けたとしても無機フィラーがその内部側を保護すべく機能する。すなわち、本発明の無鉛ガラス組成物は、無機フィラー成分を前記ガラス成分に加えて含有させることにより化学的安定性がよりいっそう向上する。また、前記無機フィラー成分は、改質顔料として作用させることもでき、無鉛ガラス組成物の色調の調整にも有用である。 In the present invention, an inorganic filler component or the like can be blended with the obtained powder as necessary. For example, when an acidic or alkaline liquid contacts the surface of the glass protective film, the inorganic filler should protect the inner side even if part of the glass component is dissolved and eroded from the surface side. Function. That is, the lead-free glass composition of the present invention is further improved in chemical stability by containing an inorganic filler component in addition to the glass component. Moreover, the said inorganic filler component can also be made to act as a modified pigment, and is useful also for adjustment of the color tone of a lead-free glass composition.
 無機フィラー成分としては上記のような機能を有するものであれば特に限定されないが、例えばTiO、Al、SiO、ZrO、MgO、MgAl、CaF、MgF及びBaFの少なくとも1種を好適に用いることができる。これらの無機フィラー成分は、通常は粒状物として無鉛ガラス組成物に含有されており、例えば、TiO粒子、Al粒子、SiO粒子、ZrO粒子、MgO粒子、CaF粒子、及びBaF粒子等の無機物粒子として無鉛ガラス組成物に含有させることができる。すなわち、無機フィラー成分は、無機物粒子の状態で含有させることができ、本発明の無鉛ガラス組成物は、例えば前記ガラス成分からなる粉末ガラスと上記無機物粒子とを混合して形成させることができる。 As the inorganic filler component is not particularly limited as long as it has the function described above, for example TiO 2, Al 2 O 3, SiO 2, ZrO 2, MgO, MgAl 2 O 4, CaF 2, MgF 2 and BaF At least one of 2 can be suitably used. These inorganic filler components are usually contained in the lead-free glass composition as particulates, for example, TiO 2 particles, Al 2 O 3 particles, SiO 2 particles, ZrO 2 particles, MgO particles, CaF 2 particles, and it can be contained in the Pb-free glass composition as inorganic particles such as BaF 2 particles. That is, the inorganic filler component can be contained in the form of inorganic particles, and the lead-free glass composition of the present invention can be formed, for example, by mixing powder glass composed of the glass component and the inorganic particles.
 無機フィラー成分は粉末状で配合することができるが、その平均粒径(D50)は通常0.3~3μm程度とすれば良い。 The inorganic filler component can be blended in powder form, but the average particle size (D 50 ) is usually about 0.3 to 3 μm.
 なお、該無機フィラー成分と前記ガラス成分との合計量に占める無機フィラー成分の割合は、通常20重量%以下、特に3~10重量%の範囲内であることが好ましい。 The proportion of the inorganic filler component in the total amount of the inorganic filler component and the glass component is usually 20% by weight or less, and particularly preferably in the range of 3 to 10% by weight.
 次に、実施例及び比較例を挙げて本発明をさらに詳しく説明する。ただし、本発明の範囲は、これら実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the scope of the present invention is not limited to these examples.
 実施例1~11及び比較例1~7
 <無鉛ガラス組成物の作製>
 表1及び表2に示す組成となるように配合原料を秤量し、混合した後、白金ルツボを用いて約1000~1200℃の温度で1~2時間溶融した。溶融したガラスをステンレス製の冷却ロールにて急冷し、ガラスフレークを作製して実施例1~8及び比較例1~7の無鉛ガラス組成物を作製した。得られた無鉛ガラス組成物(ガラスフレーク)は、さらに粉砕した後に気流分級して平均粒径(D50)が0.5~2.0μmの粉末ガラスとなるように調整して各評価に供した。
Examples 1 to 11 and Comparative Examples 1 to 7
<Preparation of lead-free glass composition>
The blended raw materials were weighed so as to have the compositions shown in Table 1 and Table 2, mixed, and then melted at a temperature of about 1000 to 1200 ° C. for 1 to 2 hours using a platinum crucible. The molten glass was quenched with a stainless steel cooling roll to produce glass flakes, and lead-free glass compositions of Examples 1 to 8 and Comparative Examples 1 to 7 were produced. The obtained lead-free glass composition (glass flakes) is further pulverized and classified by airflow, and adjusted to become powdered glass having an average particle size (D 50 ) of 0.5 to 2.0 μm for each evaluation. did.
 また、実施例1の無鉛ガラス組成物によって形成された粉末ガラスに表1の配合割合となるように無機フィラー成分を混合し、実施例9~11の無鉛ガラス組成物を作製した。 In addition, an inorganic filler component was mixed with the powder glass formed from the lead-free glass composition of Example 1 so as to have a blending ratio shown in Table 1, and lead-free glass compositions of Examples 9 to 11 were produced.
 試験例1
 実施例及び比較例で得られた無鉛ガラス組成物について各物性を測定した。
Test example 1
Each physical property was measured about the lead-free glass composition obtained by the Example and the comparative example.
 <評価試料の作製>
 実施例1~11及び比較例1~8の無鉛ガラス組成物が用いられた粉末状試料をそのまま示差熱分析(DTA)用試料とした。
 上記粉末状試料をプレス成型し、それにより得られた成形体を焼成した後、粉砕したものをX線回折測定用試料とした。
 また、上記粉末試料をプレス成型し、焼成した後、直径5mm×長さ15~20mmのロッド状試料を作製し、熱膨張係数測定用試料とした。
 また、上記粉末状試料の成形体を焼成して、高さ5mm×幅10mm×長さ15mmのブロック状試料を作製し、これを化学的安定性(耐水性、耐酸性)評価用試料とした。
<Production of evaluation sample>
The powdery samples using the lead-free glass compositions of Examples 1 to 11 and Comparative Examples 1 to 8 were directly used as samples for differential thermal analysis (DTA).
The powdery sample was press-molded, and the molded body obtained thereby was fired and then pulverized to obtain a sample for X-ray diffraction measurement.
The powder sample was press-molded and fired, and then a rod-shaped sample having a diameter of 5 mm and a length of 15 to 20 mm was prepared and used as a sample for measuring the thermal expansion coefficient.
Moreover, the molded body of the powdery sample was fired to prepare a block-shaped sample having a height of 5 mm, a width of 10 mm, and a length of 15 mm, and this was used as a sample for evaluating chemical stability (water resistance, acid resistance). .
 <物性の測定・評価>
 1)軟化点
 各実施例及び比較例の無鉛ガラス組成物が用いられた粉末状試料約50mgを白金セルに入れ、アルミナ粉末を用いたリファレンスとともにDTA装置にセットし、室温から20℃/minの昇温速度で昇温させ、得られたDTA曲線における吸熱開始点(外挿点)の温度をガラス転移点(Tg)、吸熱終了点(外挿点)の温度を軟化点(Ts)とした。その結果を表1及び表2に併せて示す。
<Measurement and evaluation of physical properties>
1) Softening point About 50 mg of a powdery sample using the lead-free glass composition of each Example and Comparative Example was placed in a platinum cell, set in a DTA apparatus together with a reference using alumina powder, and from room temperature to 20 ° C / min. The temperature is increased at a rate of temperature increase, and the temperature at the endothermic start point (extrapolation point) in the obtained DTA curve is defined as the glass transition point (Tg), and the temperature at the endotherm end point (extrapolation point) is defined as the softening point (Ts). . The results are also shown in Table 1 and Table 2.
 2)結晶化度
 各実施例及び比較例の無鉛ガラス組成物が用いられた試料に対し、X線回折装置(XRD)を用いて結晶化ピーク強度を測定し、予め作成しておいた検量線をもとに結晶相の体積比率を計算した。結晶化度が85体積%以上のものを“○”として判定し、それ未満のものを“×”として判定した。結晶化ピークが検出されないものは“N”とした。その結果を表1及び表2に併せて示す。
2) Crystallinity The crystallization peak intensity was measured using an X-ray diffractometer (XRD) for the samples using the lead-free glass compositions of the examples and comparative examples, and a calibration curve prepared in advance. Based on the above, the volume ratio of the crystal phase was calculated. Those having a crystallinity of 85% by volume or more were judged as “◯”, and those having a crystallinity of less than 85% by volume were judged as “x”. Those where no crystallization peak was detected were designated as “N”. The results are also shown in Table 1 and Table 2.
 3)化学的耐久性
 3-1)耐水性
 各実施例及び比較例の無鉛ガラス組成物が用いられたブロック状試料の重量を精秤して初期重量(W)を測定した後に121℃、2atm、100%RH雰囲気中に48時間暴露させ、再びこのブロック状試料の重量を精秤して試験後重量(W)を求め、初期重量に対する重量減少率(〔W-W〕/W×100%)を計算した。重量減少がないものを“◎“、重量減少率が0%を超えて0.05%以下の場合を“○”として判定し、0.05%を超える重量減少率が認められたものを“×”として判定した。その結果を、表1及び表2に併せて示す。
3) Chemical durability 3-1) Water resistance 121 ° C. after measuring the initial weight (W 0 ) by accurately weighing the weight of the block-shaped sample using the lead-free glass composition of each Example and Comparative Example, It was exposed to an atmosphere of 2 atm and 100% RH for 48 hours, and the weight of this block-like sample was weighed again to determine the post-test weight (W 1 ). The weight reduction rate ([W 0 -W 1 ] / W 0 × 100%) was calculated. The case where there was no weight reduction was judged as “◎”, the case where the weight reduction rate was over 0% and 0.05% or less was judged as “◯”, and the case where the weight reduction rate over 0.05% was recognized “ Judged as “x”. The results are also shown in Table 1 and Table 2.
 3-2)耐酸性
 イオン交換水中に代えて0.1Nの硝酸水溶液を用いた以外は、前記耐水性の試験と同様に評価した。すなわち、各実施例及び比較例の無鉛ガラス組成物が用いられたブロック状試料の重量を精秤して初期重量(W)を測定した後に50℃の0.1N硝酸水溶液中に30分浸漬させ、再びこのブロック状試料の重量を精秤して試験後重量(W)を求め、初期重量に対する重量減少率(〔W-W〕/W×100%)を計算した。判定基準については、重量減少率が0.05%以下を“◎”、0.05%を超えて2%以下の場合を“○”とし、2%を超える重量減少率が見られたものを“×”とした。その結果を表1及び表2に併せて示す。
3-2) Acid resistance The evaluation was made in the same manner as in the water resistance test except that a 0.1N nitric acid aqueous solution was used instead of ion-exchanged water. That is, the weight of a block-like sample using the lead-free glass composition of each Example and Comparative Example was precisely weighed and the initial weight (W 0 ) was measured, and then immersed in a 0.1N nitric acid aqueous solution at 50 ° C. for 30 minutes. Then, the weight of this block sample was precisely weighed to determine the weight (W 1 ) after the test, and the weight reduction rate ([W 0 −W 1 ] / W 0 × 100%) relative to the initial weight was calculated. Regarding the judgment criteria, the weight reduction rate is 0.05% or less as “◎”, the case where it exceeds 0.05% and 2% or less as “◯”, and the weight reduction rate exceeding 2% is observed. “×”. The results are also shown in Table 1 and Table 2.
 4)熱膨張係数
 各実施例、比較例の無鉛ガラス組成物が用いられたロッド状試料と石英ガラスにより形成された標準試料とを、熱機械分析装置(TMA)を用いて、室温から10℃/minで昇温して熱膨張曲線の測定を行い、50℃から250℃までに観測される熱膨張係数の値を平均して各実施例、比較例の無鉛ガラス組成物によって形成されるガラスの熱膨張係数を求めた。結果を、表1及び表2に併せて示す。
4) Thermal expansion coefficient A rod-like sample using the lead-free glass composition of each Example and Comparative Example and a standard sample formed of quartz glass were used at room temperature to 10 ° C. using a thermomechanical analyzer (TMA). The glass formed by the lead-free glass composition of each Example and Comparative Example by measuring the thermal expansion curve by raising the temperature at / min and averaging the values of the thermal expansion coefficients observed from 50 ° C. to 250 ° C. The thermal expansion coefficient of was determined. A result is combined with Table 1 and Table 2, and is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果からも明らかなように、本発明の無鉛ガラス組成物は、低軟化点でありながらも優れた化学的耐久性を発揮できることがわかる。 As is clear from the results of Tables 1 and 2, it can be seen that the lead-free glass composition of the present invention can exhibit excellent chemical durability while having a low softening point.

Claims (13)

  1. ガラス成分として、a)Bi:50~75重量%、b)SiO:15~30重量%、c)LiO:4~9重量%、d)B:0.1~4重量%及びe)TiO:0.1~8重量%を含有する無鉛ガラス組成物。 As glass components, a) Bi 2 O 3 : 50 to 75% by weight, b) SiO 2 : 15 to 30% by weight, c) Li 2 O: 4 to 9% by weight, d) B 2 O 3 : 0.1 Lead-free glass composition containing -4% by weight and e) TiO 2 : 0.1-8% by weight.
  2. ガラス成分として、Al:0.1~5重量%をさらに含有する、請求項1に記載の無鉛ガラス組成物。 The lead-free glass composition according to claim 1, further comprising Al 2 O 3 : 0.1 to 5% by weight as a glass component.
  3. LiO、NaO及びKOの合計が5.5~10重量%となるように、NaO及びKOの少なくとも1種をさらに含む、請求項1に記載の無鉛ガラス組成物。 The lead-free glass composition according to claim 1, further comprising at least one of Na 2 O and K 2 O such that the total of Li 2 O, Na 2 O, and K 2 O is 5.5 to 10 wt%. object.
  4. MgO、SrO、BaO及びZnOの少なくとも1種を合計で5.0重量%以下、ZrOを4重量%以下の範囲内で含有する、請求項1に記載の無鉛ガラス組成物。 MgO, SrO, BaO and less at least 5.0% by weight of one of the sum of ZnO, containing in the range of the ZrO 2 4 wt% or less, Pb-free glass composition according to claim 1.
  5. 当該無鉛ガラス組成物を大気中460~570℃の温度範囲内で焼成した際に、珪酸ビスマス結晶、チタン酸ビスマス結晶及びリチウムシリケート結晶が析出する、請求項1に記載の無鉛ガラス組成物。 The lead-free glass composition according to claim 1, wherein bismuth silicate crystals, bismuth titanate crystals and lithium silicate crystals are precipitated when the lead-free glass composition is baked in a temperature range of 460 to 570 ° C in the air.
  6. 金属製部材又はセラミックス製部材の表面被覆、封着又は接着のために用いる、請求項1に記載の無鉛ガラス組成物。 The lead-free glass composition according to claim 1, which is used for surface coating, sealing or adhesion of a metal member or a ceramic member.
  7. 前記金属製部材の融点が580~800℃である、請求項6に記載の無鉛ガラス組成物。 The lead-free glass composition according to claim 6, wherein the metal member has a melting point of 580 to 800 ° C.
  8. 請求項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の表面被覆を行う方法。 A method for performing surface coating of a metal member or a ceramic member using the lead-free glass composition according to claim 1.
  9. 前記無鉛ガラス組成物を460~570℃で加熱して表面被覆を行う、請求項8に記載の方法。 The method according to claim 8, wherein the lead-free glass composition is heated at 460 to 570 ° C for surface coating.
  10. 請求項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の封着を行う方法。 A method for sealing a metal member or a ceramic member using the lead-free glass composition according to claim 1.
  11. 前記無鉛ガラス組成物を460~570℃以下で加熱して封着を行う、請求項10に記載の方法。 The method according to claim 10, wherein sealing is performed by heating the lead-free glass composition at 460 to 570 ° C or lower.
  12. 請求項1に記載の無鉛ガラス組成物を用いて、金属製部材又はセラミックス製部材の接着を行う方法。 A method for bonding a metal member or a ceramic member using the lead-free glass composition according to claim 1.
  13. 前記無鉛ガラス組成物を460~570℃以下で加熱して接着を行う、請求項10に記載の方法。 The method according to claim 10, wherein adhesion is performed by heating the lead-free glass composition at 460 to 570 ° C or lower.
PCT/JP2010/055516 2009-03-29 2010-03-29 Lead-free glass composition WO2010116913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009080734 2009-03-29
JP2009-080734 2009-03-29

Publications (1)

Publication Number Publication Date
WO2010116913A1 true WO2010116913A1 (en) 2010-10-14

Family

ID=42936198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055516 WO2010116913A1 (en) 2009-03-29 2010-03-29 Lead-free glass composition

Country Status (1)

Country Link
WO (1) WO2010116913A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479592A (en) * 2020-12-18 2021-03-12 黄山市晶特美新材料有限公司 Glass powder with strong impact resistance and adjustable expansion coefficient and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154036A (en) * 1998-11-13 2000-06-06 Asahi Glass Co Ltd Ceramic color composition
JP2000302480A (en) * 1999-04-16 2000-10-31 Asahi Glass Co Ltd Low-melting glass composition
JP2002020140A (en) * 2000-06-29 2002-01-23 Okuno Chem Ind Co Ltd Ceramic color composition and method for bending sheet glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154036A (en) * 1998-11-13 2000-06-06 Asahi Glass Co Ltd Ceramic color composition
JP2000302480A (en) * 1999-04-16 2000-10-31 Asahi Glass Co Ltd Low-melting glass composition
JP2002020140A (en) * 2000-06-29 2002-01-23 Okuno Chem Ind Co Ltd Ceramic color composition and method for bending sheet glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479592A (en) * 2020-12-18 2021-03-12 黄山市晶特美新材料有限公司 Glass powder with strong impact resistance and adjustable expansion coefficient and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5413562B2 (en) Sealing material
KR101125169B1 (en) Sealing composition
JP5033339B2 (en) Glass composition
WO2002000563A1 (en) Ceramic coloring composition and method for bending flat glass
CN111243777B (en) Composite conductive powder and preparation method thereof
JP5212884B2 (en) Bismuth-based sealing material and bismuth-based paste material
CN110078371B (en) Low-melting glass composition with excellent water resistance
WO2007029425A1 (en) Nonlead glass composition
JP5594682B2 (en) Lead-free low melting point glass with acid resistance
JP3339647B2 (en) Lead-free low melting glass and sealing glass composition
WO2011093177A1 (en) Glass for semiconductor coating and material for semiconductor coating using the same
JP4874492B2 (en) Glass composition and glass-forming material containing the composition
JP2000072473A (en) Low melting point glass and sealing composition
JP5545589B2 (en) Manufacturing method of sealing material
JP2007126319A (en) Bismuth-based lead-free glass composition
JP2007161524A (en) Bismuth-based glass composition
WO2010013692A1 (en) Lead-free glass composition
JP2015117170A (en) Glass for coating metal and metal member having glass layer attached thereto
JP2001261369A (en) Low melting point glass composition
WO2010116913A1 (en) Lead-free glass composition
JP2001322832A (en) Sealing composition
JP5773327B2 (en) Glass for semiconductor coating
CN112512982B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP7506566B2 (en) Sealing and coating materials
JP7117256B2 (en) glass composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP