WO2010116107A1 - Dispositif de refroidissement pour véhicule automobile - Google Patents

Dispositif de refroidissement pour véhicule automobile Download PDF

Info

Publication number
WO2010116107A1
WO2010116107A1 PCT/FR2010/050690 FR2010050690W WO2010116107A1 WO 2010116107 A1 WO2010116107 A1 WO 2010116107A1 FR 2010050690 W FR2010050690 W FR 2010050690W WO 2010116107 A1 WO2010116107 A1 WO 2010116107A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
control
coolant
temperature
cooling
Prior art date
Application number
PCT/FR2010/050690
Other languages
English (en)
Inventor
Samuel Cregut
Marco Marsilia
Claire Oberti
Original Assignee
Renault Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault Sas filed Critical Renault Sas
Publication of WO2010116107A1 publication Critical patent/WO2010116107A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the subject of the invention is a cooling device for a motor vehicle, comprising a cooling circuit capable of cooling an engine assembly by means of a coolant cooled by a radiator coupled to a fan with several levels of speed.
  • the invention is advantageously applicable to electric motor vehicles.
  • the repeated combustions overheat the parts in contact, such as pistons, cylinders, and valves, and diffuse on all mechanical parts of the engine. They must therefore be cooled under pain of destruction. For proper operation, the combustion engines thus need a regular and suitable temperature.
  • a cooling system comprising one or more pumps for circulating a coolant through the engine, and a radiator, which is a heat exchanger for cooling the liquid.
  • the radiator is usually coupled to a fan.
  • the fan is a motor-driven blade apparatus used to force the passage of outside air into the radiator to absorb heat from the engine coolant.
  • the fan is typically at several speeds, which are controlled by switches called control relays. In order not to use the control relays, it is desirable not to switch them too often.
  • the device according to the invention makes it possible to achieve this objective.
  • the subject of the invention is a cooling device which makes it possible to extend the service life of the fan control relays.
  • the subject of the invention is thus a cooling device for a motor vehicle, comprising a cooling circuit capable of cooling an engine assembly by means of a coolant cooled by a radiator coupled to a fan with several levels of speed. the fan being controlled by a control system.
  • the control system is able to control the fan speed level as a function of the coolant temperature, the control of the passage from a lower speed level to a higher speed level of the engine.
  • fan being a function of a so-called rising target temperature
  • the control of the passage of said speed level higher than said lower speed level being a function of a so-called descending setpoint temperature lower than the rising target temperature.
  • the hysteresis control of the speed changes of the fan makes it possible not to carry out too frequent switching of the control relays.
  • the fan may be further coupled to an air conditioning system and the control system is advantageously adapted to control the fan speed level according to a cooling need of the air conditioning system.
  • the motor vehicle can be an electric vehicle and the motor assembly may comprise an electronic control system.
  • the electric vehicle may comprise a battery charger assembly and the cooling circuit is advantageously capable of cooling the charger assembly and the motor assembly.
  • the control system is preferably adapted to control the fan speed level according to a cooling need of the charger assembly or the motor assembly.
  • the device may comprise a first pump capable of selectively supplying cooling liquid to the motor assembly and a second pump capable of selectively supplying cooling liquid to the charger assembly.
  • the device may comprise a first valve adapted to prevent a passage of coolant in the charger assembly and a second valve adapted to prevent a passage of coolant in the motor assembly.
  • the device may also include a hydraulic restriction to maintain a minimum flow of coolant in the engine assembly.
  • the control system is advantageously capable of controlling the flow rate of each pump in a closed-loop control system as a function of the temperature of the coolant and a set temperature.
  • the servocontrol of the flow rate of each pump in a closed loop makes it possible to limit its wear and its energy consumption.
  • FIG. 1 illustrates, in block diagram form, a cooling device according to the invention integrated in an electric vehicle
  • FIG. 2 illustrates in block diagram form a control strategy of the device
  • FIG. 3 is a first diagram useful for understanding the control strategy
  • FIG. 4 illustrates in block diagram form part of the control strategy
  • FIG. 5 is a second diagram useful for understanding the control strategy.
  • the cooling device 1 as illustrated in FIG. 1, comprises a first electric pump 2, a second electric pump 3, a battery charger 4, a motor assembly 5, a radiator 6 and a first solenoid valve 7. and a second solenoid valve 8.
  • the first electric pump 2, the second electric pump 3, the first solenoid valve 7 and the second solenoid valve 8 are connected to a control device 9.
  • the first electric pump 2 is intended to be used when driving the vehicle, while the second electric pump 3 is intended to be used when charging the battery.
  • the flow rate of the first pump 2 and the flow rate of the second pump 3 can be adjusted by means of a control signal.
  • the charger 4 allows, when the vehicle is stopped, to recharge the electric traction battery, not shown, from the home electrical network.
  • the first solenoid valve 7 makes it possible to short-circuit the second pump 3 and the charger 4 during the driving of the vehicle, while the second solenoid valve 8 makes it possible to short-circuit the motor assembly 5 during charging of the battery, when believes that Cooling of the motor assembly 5 is not necessary.
  • the second solenoid valve 8 can be connected to a hydraulic restriction 10 which makes it possible to achieve a pressure drop and thus to maintain a coolant flow rate in the engine assembly 5, even when the second solenoid valve 8 is passing.
  • the motor assembly 5 comprises a motor 11 and an electronic control system 12 intended in particular to transform the DC voltage of the battery into AC voltage.
  • the radiator 6 is used to cool the coolant, similar to the cooling device of an internal combustion engine. It is equipped with a motor-fan 13 provided with rotating blades.
  • the fan 13 may comprise three levels of speed of rotation of the blades: a zero speed, a low speed and a high speed. It is necessary to cool the motor assembly 5 while driving the vehicle, and the charger 4 when the vehicle is stopped.
  • the cooling strategy is managed by the control device 9.
  • the control device 9 is a computer which is connected with sensors of the cooling circuit, in particular coolant temperature sensors.
  • the computer 9 also controls the pumps 2,3, the solenoid valves 7,8, and the motor-fan unit of the radiator 6.
  • the computer 9 is further advantageously connected to other computers of the vehicle, via a network of the type For example, the Controller Area Network (CAN) bus provides additional measures necessary for the cooling strategy.
  • CAN Controller Area Network
  • the control strategy of the cooling circuit can be carried out in the form of three modules A, B, C, as shown in Figure 2.
  • Module A concerns the regulation of the temperature of the coolant.
  • Module B concerns the choice of the electric pump 2, 3.
  • Module C concerns the control of the fan 13.
  • Module A is responsible for developing a coolant flow control depending on the condition of the vehicle (rolling or charging the battery when stopped).
  • the inputs of the module A are: the temperature T of the coolant: it can be obtained using one or more temperature sensors,
  • the inputs of the module B are: the flow control D CO m resulting from the module A, and
  • the state E of the vehicle it is a signal coming from the central computer of the car which is worth 1 if one is in charge mode of the battery of the vehicle and which is worth 0 if one is in mode rolling.
  • the outputs of module B are: - the control of the flow D CO mi of the first pump, used in running mode. It is a signal between 0 and 100 and expressing the percentage of the maximum flow rate that can be achieved by the pump, and
  • Controlling flow D CO m2 of the second pump, used in charging mode It is a signal between 0 and 100 and expressing the percentage of the maximum flow rate that can be achieved by the pump.
  • module B The purpose of module B is to automatically vary the flow control between a minimum value of flow D min and a maximum value of flow D max , depending on the temperature of the coolant. As long as the coolant temperature is below a set temperature, the flow control remains at the minimum value D min . As soon as the temperature of the coolant exceeds the temperature of setpoint, the flow control is obtained by closed-loop control, the setpoint considered being the setpoint temperature, and the reaction loop considered being the measured temperature of the coolant.
  • the inputs of module C are:
  • the cooling signal S 1 - This is a logic signal developed for example in the central computer.
  • This signal is the synthesis of the different signals coming from the various members of the traction system, which may be temperature sensors arranged near the engine, the charger and / or the electronic control system. If the signal is 0, there is no temperature alert from the organs. If it is 1, it means that at least one of the organs starts to be hot, and if it is 2, it indicates that at least one of the organs is in fault due to overheating. Thus, as soon as the signal is different from 0, the intensity of the cooling must be increased,
  • the command C c is a logic signal, internal to the central computer, and is developed by a module responsible for carrying out the control commands of the air conditioning system of the vehicle.
  • the signal C c can take the value 0 (no fan control), the value 1 (control of the fan at low speed) or the value 2 (control of the fan at high speed).
  • the output of the module C is the command C v which is sent to the fan.
  • the control C v takes into account both the need for cooling the air conditioning system and the need for cooling the traction chain circuit.
  • the command C v can take the value 0 (no control of the fan), the value 1 (control of the fan in slow speed) or the value 2 (command fan in high speed).
  • Figure 3 shows different setpoint temperatures as a function of vehicle speed.
  • the temperature TO represents the temperature setpoint for the flow control loop of the cooling circuit pumps.
  • the temperature T1 corresponds to the temperature threshold above which the fan passes from zero speed to low speed.
  • the temperature Tl is greater than TO because it is sought to solicit the fan only if the flow control is insufficient.
  • the temperature T2 corresponds to the temperature threshold above which the fan moves from low speed to high speed.
  • the temperature T3 corresponds to the temperature threshold below which the fan goes from high speed to low speed
  • the temperature T4 corresponds to the temperature threshold below which the fan goes from low speed to zero speed
  • the curves TO to T4 may constitute programmable maps in the calculator.
  • the fan control strategy is shown in the figure
  • the module C is composed of four blocks C1 to C4.
  • the block Cl monitors the cooling signal S r to see if one of the components of the power train requires cooling.
  • the block C1 then generates a signal, which, if there is a thermal alert on one of the components, drives the fan control at high speed.
  • Block C2 checks whether the temperature T of the coolant is below or above the four temperature thresholds T1 to T4.
  • the block C3 is an automaton which elaborates the command C v which is sent to the fan. Taking the example of the speed transition between the zero speed and the low speed of the fan, the transition from the zero speed to the low speed is controlled by the block C3 if the block C1 does not signal a thermal alarm on the one of the components and if at least one of the following two conditions is satisfied:
  • the temperature T of the coolant is between T 1 and T 2
  • the command C c takes the value 1. Conversely, the transition from the low speed to the zero speed is controlled by the block C3 if the following three conditions are satisfied:
  • the block C1 does not signal a thermal alarm on one of the components, the temperature T of the coolant is less than
  • Block C4 is a delay block which makes it possible to further reduce the load on the fan control relays. With block C4, a minimum time interval is maintained between two changes in fan speed level. Block C4 can in particular be implemented if the differences between the different rising and falling setpoint temperatures are too low.
  • FIG. 5 shows the evolution of the temperature T of the coolant and the temperatures T1 to T4 as a function of time, as well as the evolution of the command C v sent to the fan as a function of time, for a speed of the vehicle of about 10 km / h.
  • the temperature T is 30 ° C. and the command C v is at
  • the temperature T then increases until the temperature Tl is reached. At this moment, the command C v takes the value 1 and causes the passage Po ⁇ i of the fan from zero speed to low speed.
  • the command C v takes the value 2 and the device controls the passage Pi ⁇ 2 of the fan from the low speed to the high speed.
  • the temperature T then reaches a maximum, then begins to decrease.
  • the command C v takes the value 1 and the device controls the passage P 2 ⁇ i of the fan from the high speed to the low speed.
  • the temperature T then continues to fall and reaches the value T4.
  • the command C v then takes the value 0 and the device controls the passage Pi ⁇ 0 of the fan from the low speed to zero speed.
  • the invention may also relate to a device comprising one or more than two pumps. It can also be applied to a gasoline engine equipped with electric water pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention a pour objet un dispositif de refroidissement (1) pour véhicule automobile, comprenant un circuit de refroidissement apte à refroidir un ensemble moteur (5) à l'aide d'un liquide de refroidissement refroidi par un radiateur (6) couplé à un ventilateur (13) à plusieurs niveaux de vitesse, le ventilateur (13) étant commandé par un système de commande (9), caractérisé en ce que le système de commande (9) est apte à commander le niveau de vitesse du ventilateur (13) en fonction de la température du liquide de refroidissement, la commande du passage d'un niveau de vitesse inférieur à un niveau de vitesse supérieur du ventilateur (13) étant fonction d'une température de consigne dite montante, la commande du passage dudit niveau de vitesse supérieur audit niveau de vitesse inférieur étant fonction d'une température de consigne dite descendante inférieure à la température de consigne montante.

Description

DISPOSITIF DE REFROIDISSEMENT POUR VEHICULE
AUTOMOBILE
L'invention a pour objet un dispositif de refroidissement pour véhicule automobile, comprenant un circuit de refroidissement apte à refroidir un ensemble moteur à l'aide d'un liquide de refroidissement refroidi par un radiateur couplé à un ventilateur à plusieurs niveaux de vitesse. L'invention s'applique avantageusement aux véhicules automobiles électriques.
Dans un moteur à combustion interne, les combustions répétées surchauffent les pièces en contact, comme par exemple les pistons, les cylindres, et les soupapes, et se diffusent sur l'ensemble des pièces mécaniques du moteur. Il faut donc les refroidir sous peine de destruction. Pour un bon fonctionnement, les moteurs à explosion ont ainsi besoin d'une température régulière et adaptée.
Dans le cas d'un véhicule à propulsion électrique, il est également nécessaire de refroidir les différents éléments de la chaîne de traction.
Il est connu d'utiliser un système de refroidissement comprenant une ou plusieurs pompes permettant de faire circuler un liquide de refroidissement à travers le moteur, ainsi qu'un radiateur, qui est un échangeur de température permettant de refroidir le liquide. Le radiateur est généralement couplé à un ventilateur. Le ventilateur est un appareil à pales entraîné par un moteur et utilisé pour forcer le passage de l'air extérieur dans le radiateur, en vue de lui faire absorber la chaleur du liquide de refroidissement du moteur.
Pour adapter le refroidissement au refroidissement souhaité, le ventilateur est typiquement à plusieurs vitesses, qui sont commandées par des interrupteurs appelés relais de commande. Afin de ne pas user les relais de commande, il est souhaitable de ne pas les commuter trop souvent.
Le dispositif selon l'invention permet d'atteindre cet objectif. L'invention a pour objet un dispositif de refroidissement qui permet d'allonger la durée de vie des relais de commande du ventilateur.
L'invention a ainsi pour objet un dispositif de refroidissement pour véhicule automobile, comprenant un circuit de refroidissement apte à refroidir un ensemble moteur à l'aide d'un liquide de refroidissement refroidi par un radiateur couplé à un ventilateur à plusieurs niveaux de vitesse, le ventilateur étant commandé par un système de commande.
Conformément au dispositif selon l'invention, le système de commande est apte à commander le niveau de vitesse du ventilateur en fonction de la température du liquide de refroidissement, la commande du passage d'un niveau de vitesse inférieur à un niveau de vitesse supérieur du ventilateur étant fonction d'une température de consigne dite montante, la commande du passage dudit niveau de vitesse supérieur audit niveau de vitesse inférieur étant fonction d'une température de consigne dite descendante inférieure à la température de consigne montante.
Ainsi, la commande en hystérésis des changements de vitesse du ventilateur permet de ne pas réaliser des commutations trop fréquentes des relais de commande.
Le ventilateur peut être en outre couplé à un système de climatisation et le système de commande est avantageusement apte à commander le niveau de vitesse du ventilateur en fonction d'un besoin de refroidissement du système de climatisation. Le véhicule automobile peut être un véhicule électrique et l'ensemble moteur peut comprendre un système électronique de pilotage.
Le véhicule électrique peut comprendre un ensemble chargeur de batterie et le circuit de refroidissement est avantageusement apte à refroidir l'ensemble chargeur et l'ensemble moteur.
Le système de commande est de préférence apte à commander le niveau de vitesse du ventilateur en fonction d'un besoin de refroidissement de l'ensemble chargeur ou de l'ensemble moteur.
Le dispositif peut comprendre une première pompe apte à alimenter sélectivement en liquide de refroidissement l'ensemble moteur et une deuxième pompe apte à alimenter sélectivement en liquide de refroidissement l'ensemble chargeur.
A cet effet, le dispositif peut comprendre une première vanne apte à empêcher un passage de liquide de refroidissement dans l'ensemble chargeur et une deuxième vanne apte à empêcher un passage de liquide de refroidissement dans l'ensemble moteur.
Le dispositif peut également comprendre une restriction hydraulique permettant de maintenir un débit minimum de liquide de refroidissement dans l'ensemble moteur. Le système de commande est avantageusement apte à asservir le débit de chaque pompe dans un système de régulation en boucle fermée en fonction de la température du liquide de refroidissement et d'une température de consigne. Ainsi, l'asservissement du débit de chaque pompe en boucle fermée permet de limiter son usure et sa consommation d'énergie.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux dessins annexés sur lesquels : - la figure 1 illustre sous forme de schéma-blocs un dispositif de refroidissement selon l'invention, intégré à un véhicule électrique,
- la figure 2 illustre sous forme de schéma-blocs une stratégie de commande du dispositif, - la figure 3 est un premier diagramme utile à la compréhension de la stratégie de commande,
- la figure 4 illustre sous forme de schéma-blocs une partie de la stratégie de commande, et
- la figure 5 est un deuxième diagramme utile à la compréhension de la stratégie de commande.
Le dispositif de refroidissement 1, tel qu'illustré à la figure 1, comprend une première pompe électrique 2, une deuxième pompe électrique 3, un chargeur 4 de batterie, un ensemble moteur 5, un radiateur 6, ainsi qu'une première électrovanne 7 et une deuxième électrovanne 8. La première pompe électrique 2, la deuxième pompe électrique 3, la première électrovanne 7 et la deuxième électrovanne 8 sont reliées à un dispositif de commande 9.
La première pompe électrique 2 est destinée à être utilisée lors du roulage du véhicule, tandis que la deuxième pompe électrique 3 est destinée à être utilisée lors de la recharge de la batterie. Le débit de la première pompe 2 et le débit de la deuxième pompe 3 peuvent être réglés à l'aide d'un signal de commande.
Le chargeur 4 permet, lorsque le véhicule est à l'arrêt, de recharger la batterie électrique de traction, non représentée, à partir du réseau électrique domestique.
La première électrovanne 7 permet de court-circuiter la deuxième pompe 3 et le chargeur 4, lors du roulage du véhicule, tandis que la deuxième électrovanne 8 permet de court-circuiter l'ensemble moteur 5 lors du chargement de la batterie, lorsqu'on estime que le refroidissement de l'ensemble moteur 5 n'est pas nécessaire. La deuxième électrovanne 8 peut être reliée à une restriction hydraulique 10 qui permet de réaliser une perte de charge et de conserver ainsi un débit de liquide de refroidissement dans l'ensemble moteur 5, même lorsque la deuxième électrovanne 8 est passante
L'ensemble moteur 5 comprend un moteur 11 et un système électronique de pilotage 12 destiné notamment à transformer la tension continue de la batterie en tension alternative.
Le radiateur 6 permet de refroidir le liquide de refroidissement, de manière similaire au dispositif de refroidissement d'un moteur à combustion interne. Il est équipé d'un moto-ventilateur 13 muni de pales en rotation. Le ventilateur 13 peut comprendre trois niveaux de vitesse de rotation des pales : une vitesse nulle, une petite vitesse et une grande vitesse. II est nécessaire de refroidir l'ensemble moteur 5 lors du roulage du véhicule, ainsi que le chargeur 4 lorsque le véhicule est à l'arrêt. La stratégie de refroidissement est gérée par le dispositif de commande 9. Le dispositif de commande 9 est un calculateur qui est en liaison avec des capteurs du circuit de refroidissement, en particulier des capteurs de température du liquide de refroidissement. Le calculateur 9 pilote en outre les pompes 2,3, les électrovannes 7,8, ainsi que le groupe moto- ventilateur du radiateur 6. Le calculateur 9 est en outre avantageusement relié à d'autres calculateurs du véhicule, via un réseau de type bus CAN (Controller Area Network) par exemple, afin d'obtenir d'autres mesures nécessaires à la stratégie de refroidissement.
La stratégie de commande du circuit de refroidissement peut être réalisée sous la forme de trois modules A, B, C, tel qu'illustré à la figure 2. Le module A concerne la régulation de la température du liquide de refroidissement. Le module B concerne le choix de la pompe électrique 2, 3. Le module C concerne quant à lui la commande du ventilateur 13.
Le module A est chargé d'élaborer une commande de débit de liquide de refroidissement selon l'état du véhicule (roulage ou recharge de la batterie à l'arrêt). Les entrées du module A sont : - la température T du liquide de refroidissement : elle peut être obtenue à l'aide d'un ou plusieurs capteurs de température,
- la température Text à l'extérieur du véhicule, et
- la vitesse V du véhicule.
Les entrées du module B sont : - la commande de débit DCOm issue du module A, et
- l'état E du véhicule : c'est un signal en provenance du calculateur central de la voiture qui vaut 1 si on est en mode recharge de la batterie du véhicule et qui vaut 0 si on est en mode roulage.
Les sorties du module B sont : - la commande du débit DCOmi de la première pompe, utilisée en mode roulage. Il s'agit d'un signal compris entre 0 et 100 et exprimant le pourcentage du débit maximum pouvant être réalisé par la pompe, et
- la commande du débit DCOm2 de la deuxième pompe, utilisée en mode recharge. Il s'agit d'un signal compris entre 0 et 100 et exprimant le pourcentage du débit maximum pouvant être réalisé par la pompe.
De manière simple, on peut choisir de n'utiliser que la deuxième pompe si le signal de l'état du véhicule vaut 1 et de n'utiliser que la première pompe si le signal de l'état du véhicule vaut 0.
L'objectif du module B est de faire varier automatiquement la commande de débit entre une valeur minimum de débit Dmιn et une valeur maximum de débit Dmax, en fonction de la température du liquide de refroidissement. Tant que la température du liquide de refroidissement est inférieure à une température de consigne, la commande de débit reste à la valeur minimale Dmιn. Dès que la température du liquide de refroidissement dépasse la température de consigne, la commande de débit est obtenue par régulation en boucle fermée, la consigne considérée étant la température de consigne, et la boucle de réaction considérée étant la température mesurée du liquide de refroidissement. Les entrées du module C sont :
- le signal de refroidissement S1-. Il s'agit d'un signal logique élaboré par exemple dans le calculateur central. Ce signal est la synthèse des différents signaux en provenance des différents organes du système de traction, qui peuvent être des capteurs de température disposés à proximité du moteur, du chargeur et/ou du système électronique de pilotage. Si le signal vaut 0, il n'y a aucune alerte de température en provenance des organes. S'il vaut 1, cela signifie qu'au moins un des organes commence à être chaud, et s'il vaut 2, cela indique qu'au moins un des organes est en défaut du fait d'une surchauffe. Ainsi, dès que le signal est différent de 0, l'intensité du refroidissement doit être augmentée,
- la vitesse V du véhicule,
- la température T du liquide de refroidissement, et
- la commande Cc. Il s'agit d'un signal logique, interne au calculateur central, et qui est élaboré par un module chargé de réaliser les commandes de régulation du système de climatisation du véhicule. Le signal Cc peut prendre la valeur 0 (pas de commande du ventilateur), la valeur 1 (commande du ventilateur en petite vitesse) ou la valeur 2 (commande du ventilateur en grande vitesse). La sortie du module C est la commande Cv qui est envoyée au ventilateur. La commande Cv tient compte à la fois du besoin de refroidissement du système de climatisation et du besoin de refroidissement du circuit de la chaîne de traction. La commande Cv peut prendre la valeur 0 (pas de commande du ventilateur), la valeur 1 (commande du ventilateur en petite vitesse) ou la valeur 2 (commande du ventilateur en grande vitesse).
La figure 3 montre différentes températures de consigne en fonction de la vitesse du véhicule.
La température TO représente la consigne de température pour la boucle de régulation du débit des pompes du circuit de refroidissement.
La température Tl correspond au seuil de température au- dessus duquel le ventilateur passe de la vitesse nulle à la petite vitesse. La température Tl est supérieure à TO, car on cherche à solliciter le ventilateur uniquement si la régulation de débit est insuffisante. La température T2 correspond au seuil de température au-dessus duquel le ventilateur passe de la petite vitesse à la grande vitesse.
La température T3 correspond au seuil de température au- dessous duquel le ventilateur passe de la grande vitesse à la petite vitesse, et la température T4 correspond au seuil de température au- dessous duquel le ventilateur passe de la petite vitesse à la vitesse nulle.
Les courbes TO à T4 peuvent constituer des cartographies programmables dans le calculateur. La stratégie de commande du ventilateur est illustrée à la figure
4, qui constitue une vue de détail du module C. Le module C est composé de quatre blocs Cl à C4.
Le bloc Cl surveille le signal de refroidissement Sr pour voir si un des organes de la chaîne de traction nécessite un refroidissement. Le bloc Cl élabore alors un signal, qui, s'il y a une alerte thermique sur un des composants, entraîne la commande du ventilateur en grande vitesse.
Le bloc C2 vérifie si la température T du liquide de refroidissement est en dessous ou au-dessus des quatre seuils de température Tl à T4. Le bloc C3 est un automate qui élabore la commande Cv qui est envoyée au ventilateur. En prenant l'exemple de la transition de vitesse entre la vitesse nulle et la petite vitesse du ventilateur, le passage de la vitesse nulle à la petite vitesse est commandé par le bloc C3 si le bloc Cl ne signale pas d'alerte thermique sur l'un des composants et si l'une au moins des deux conditions suivantes est satisfaite :
- la température T du liquide de refroidissement est comprise entre Tl et T2,
- la commande Cc prend la valeur 1. Inversement, le passage de la petite vitesse à la vitesse nulle est commandé par le bloc C3 si les trois conditions suivantes sont satisfaites :
- le bloc Cl ne signale pas d'alerte thermique sur l'un des composants, - la température T du liquide de refroidissement est inférieure à
T4,
- la commande Cc prend la valeur 0.
Le bloc C4 est un bloc de temporisation qui permet de diminuer encore davantage la sollicitation des relais de commande du ventilateur. Grâce au bloc C4, on maintient un intervalle de temps minimum entre deux changements de niveau de vitesse du ventilateur. Le bloc C4 peut notamment être mis en œuvre si les écarts entre les différentes températures de consigne montante et descendante sont trop faibles.
La figure 5 montre l'évolution de la température T du liquide de refroidissement et des températures Tl à T4 en fonction du temps, ainsi que l'évolution de la commande Cv envoyée au ventilateur en fonction du temps, pour un vitesse du véhicule d'environ 10 km/h.
Au début, la température T est de 3O0C et la commande Cv est à
0. La température T augmente ensuite jusqu'à atteindre la température Tl. A cet instant, la commande Cv prend la valeur 1 et entraîne le passage Poi du ventilateur de la vitesse nulle à la petite vitesse. Lorsque la température T atteint la valeur T2, la commande Cv prend la valeur 2 et le dispositif commande le passage Pi→2 du ventilateur de la petite vitesse à la grande vitesse. La température T atteint ensuite un maximum, puis commence à décroître. Lorsque la température T atteint la valeur T3, la commande Cv prend la valeur 1 et le dispositif commande le passage P2→i du ventilateur de la grande vitesse à la petite vitesse. La température T continue ensuite de baisser et atteint la valeur T4. La commande Cv prend alors la valeur 0 et le dispositif commande le passage Pi→0 du ventilateur de la petite vitesse à la vitesse nulle.
Comme la température T3 est inférieure à la température T2, et que la température T4 est inférieure à la température Tl, la commutation des relais de commande est retardée, ce qui permet d'allonger leur durée de vie.
Bien que le dispositif décrit ci-dessus comprenne deux pompes, l'invention peut également concerner un dispositif comprenant une ou plus de deux pompes. Elle peut également s'appliquer à un moteur à essence équipé de pompes à eau électriques.

Claims

REVENDICATIONS
1. Dispositif de refroidissement (1) pour véhicule automobile, comprenant un circuit de refroidissement apte à refroidir un ensemble moteur (5) à l'aide d'un liquide de refroidissement refroidi par un radiateur (6) couplé à un ventilateur (13) à plusieurs niveaux de vitesse, le ventilateur (13) étant commandé par un système de commande (9), caractérisé en ce que le système de commande (9) est apte à commander le niveau de vitesse du ventilateur (13) en fonction de la température du liquide de refroidissement, la commande du passage d'un niveau de vitesse inférieur à un niveau de vitesse supérieur du ventilateur (13) étant fonction d'une température de consigne dite montante, la commande du passage dudit niveau de vitesse supérieur audit niveau de vitesse inférieur étant fonction d'une température de consigne dite descendante inférieure à la température de consigne montante.
2. Dispositif (1) selon la revendication 1, caractérisé en ce que le ventilateur (13) est en outre couplé à un système de climatisation et en ce que le système de commande (9) est apte à commander le niveau de vitesse du ventilateur (13) en fonction d'un besoin de refroidissement du système de climatisation.
3. Dispositif (1) selon la revendication 1 ou 2, caractérisé en ce que le véhicule automobile est un véhicule électrique et en ce que l'ensemble moteur (5) comprend un système électronique de pilotage (12).
4. Dispositif (1) selon la revendication 3, caractérisé en ce que le véhicule électrique comprend un ensemble chargeur (4) de batterie et en ce que le circuit de refroidissement est apte à refroidir l'ensemble chargeur (4) et l'ensemble moteur (5).
5. Dispositif (1) selon la revendication 4, caractérisé en ce que le système de commande (9) est apte à commander le niveau de vitesse du ventilateur (13) en fonction d'un besoin de refroidissement de l'ensemble chargeur (4) ou de l'ensemble moteur (5).
6. Dispositif (1) selon la revendication 4 ou 5, caractérisé en ce qu'il comprend une première pompe (2) apte à alimenter sélectivement en liquide de refroidissement l'ensemble moteur (5) et une deuxième pompe (3) apte à alimenter sélectivement en liquide de refroidissement l'ensemble chargeur (4).
7. Dispositif (1) selon la revendication 6, caractérisé en ce qu'il comprend une première vanne (7) apte à empêcher un passage de liquide de refroidissement dans l'ensemble chargeur (4) et une deuxième vanne (8) apte à empêcher un passage de liquide de refroidissement dans l'ensemble moteur (5).
8. Dispositif (1) selon la revendication 7, caractérisé en ce qu'il comprend une restriction hydraulique (10) permettant de maintenir un débit minimum de liquide de refroidissement dans l'ensemble moteur (5).
9. Dispositif (1) selon l'une des revendications 6 à 8, caractérisé en ce que le système de commande (9) est apte à asservir le débit de chaque pompe (2,3) dans un système de régulation en boucle fermée en fonction de la température du liquide de refroidissement et d'une température de consigne.
PCT/FR2010/050690 2009-04-09 2010-04-09 Dispositif de refroidissement pour véhicule automobile WO2010116107A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952365A FR2944237A1 (fr) 2009-04-09 2009-04-09 Dispositif de refroidissement pour vehicule automobile
FR0952365 2009-04-09

Publications (1)

Publication Number Publication Date
WO2010116107A1 true WO2010116107A1 (fr) 2010-10-14

Family

ID=41667264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050690 WO2010116107A1 (fr) 2009-04-09 2010-04-09 Dispositif de refroidissement pour véhicule automobile

Country Status (2)

Country Link
FR (1) FR2944237A1 (fr)
WO (1) WO2010116107A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2203268A (en) * 1987-04-04 1988-10-12 Behr Thomson Dehnstoffregler Cooling system for an internal combustion engine
DE19757772A1 (de) * 1997-04-28 1998-10-29 Daewoo Electronics Co Ltd Verfahren und Vorrichtung zum variablen Steuern der Drehzahl eines Gebläsemotors bei einem Kraftfahrzeug
WO2005121521A2 (fr) * 2004-04-07 2005-12-22 Toyota Jidosha Kabushiki Kaisha Systeme de refroidissement, son procede de commande et vehicule automobile
US20070224030A1 (en) * 2006-03-22 2007-09-27 Asustek Computer Inc. Fan system with hysteresis character and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2203268A (en) * 1987-04-04 1988-10-12 Behr Thomson Dehnstoffregler Cooling system for an internal combustion engine
DE19757772A1 (de) * 1997-04-28 1998-10-29 Daewoo Electronics Co Ltd Verfahren und Vorrichtung zum variablen Steuern der Drehzahl eines Gebläsemotors bei einem Kraftfahrzeug
WO2005121521A2 (fr) * 2004-04-07 2005-12-22 Toyota Jidosha Kabushiki Kaisha Systeme de refroidissement, son procede de commande et vehicule automobile
US20070224030A1 (en) * 2006-03-22 2007-09-27 Asustek Computer Inc. Fan system with hysteresis character and method thereof

Also Published As

Publication number Publication date
FR2944237A1 (fr) 2010-10-15

Similar Documents

Publication Publication Date Title
EP2417337B1 (fr) Dispositif de refroidissement pour véhicule automobile
EP2417338B1 (fr) Dispositif de refroidissement pour véhicule automobile
EP2555932A1 (fr) Dispositif de refroidissement pour vehicule automobile
EP3559425B1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
WO2020207770A1 (fr) Dispositif de refroidissement et de lubrification d'un groupe motopropulseur électrique d'un véhicule automobile électrique ou hybride
FR2954405A1 (fr) Dispositif de refroidissement pour vehicule automobile
WO2018121985A1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
EP3870818A1 (fr) Procede de refroidissement d'un equipement d'un vehicule et vehicule comprenant cet equipement
EP1362168B1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR3027259A1 (fr) Procede de pilotage et de regulation thermique d'un systeme de prolongation d'autonomie d'un vehicule automobile
FR2973742A1 (fr) Vehicule hybride muni d'un systeme de regulation thermique d'une boite de vitesses automatique
FR2914233A1 (fr) Dispositif et procede de recuperation d'energie pour moteur a combustion interne de vehicule automobile.
FR3052185A1 (fr) Procede de remplissage en fluide caloporteur d’un circuit de refroidissement
US10012227B2 (en) Fluid supply device
FR2965128A1 (fr) Procede et dispositif de gestion d'un generateur d'un systeme de recuperation d'energie d'un vehicule automobile
WO2010116108A1 (fr) Dispositif de refroidissement pour véhicule automobile
WO2010116107A1 (fr) Dispositif de refroidissement pour véhicule automobile
EP3026246A1 (fr) Dispositif de récupération d'énergie à cycle rankine ayant une source froide régulée et véhicule équipé d'un tel dispositif, procédé de récupération d'énergie correspondant
FR2891205A1 (fr) Machine a moteur electrique de deplacement, moteur electrique de pompe d'un systeme hydraulque et refroidissement par liquide
EP3575118A1 (fr) Systeme de regulation thermique destine a un vehicule electrique ou hybride
EP3862201A1 (fr) Dispositif de récuperation et de régulation d' énergie thermique d'un véhicule électrique à génerateur électrochimique avec un système hvac
EP3747080B1 (fr) Procédé de refroidissement d'un dispositif de stockage électrique équipant un véhicule
EP4069534B1 (fr) Procédé de régulation d'un circuit de fluide réfrigerant
EP4338252A1 (fr) Procédé de protection thermique d'un dispositif de charge embarqué de vehicule électrifié
EP4051897A1 (fr) Procédé d'estimation de l'état thermique d'un composant moteur et procédé de pilotage de commandes gmp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10723240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10723240

Country of ref document: EP

Kind code of ref document: A1