WO2010114883A1 - Ultraviolet radiation curable pressure sensitive acrylic adhesive - Google Patents
Ultraviolet radiation curable pressure sensitive acrylic adhesive Download PDFInfo
- Publication number
- WO2010114883A1 WO2010114883A1 PCT/US2010/029364 US2010029364W WO2010114883A1 WO 2010114883 A1 WO2010114883 A1 WO 2010114883A1 US 2010029364 W US2010029364 W US 2010029364W WO 2010114883 A1 WO2010114883 A1 WO 2010114883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylate
- pressure sensitive
- sensitive adhesive
- hydroxy
- curable pressure
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title description 3
- 239000003522 acrylic cement Substances 0.000 title description 2
- 239000000178 monomer Substances 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 45
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 45
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 33
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims abstract description 25
- 125000005442 diisocyanate group Chemical group 0.000 claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 20
- 239000000853 adhesive Substances 0.000 claims description 26
- 230000001070 adhesive effect Effects 0.000 claims description 26
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 17
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 17
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical group OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 16
- 239000003112 inhibitor Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 10
- 239000003431 cross linking reagent Substances 0.000 claims description 9
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 claims description 6
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 claims description 6
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 4
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 claims description 3
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 3
- 238000003848 UV Light-Curing Methods 0.000 claims description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 3
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- 230000013011 mating Effects 0.000 claims description 3
- RZFODFPMOHAYIR-UHFFFAOYSA-N oxepan-2-one;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1CCCCCO1 RZFODFPMOHAYIR-UHFFFAOYSA-N 0.000 claims description 3
- 239000004014 plasticizer Substances 0.000 claims description 3
- AZIQALWHRUQPHV-UHFFFAOYSA-N prop-2-eneperoxoic acid Chemical compound OOC(=O)C=C AZIQALWHRUQPHV-UHFFFAOYSA-N 0.000 claims description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 3
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 claims 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- -1 tackifiers Substances 0.000 description 12
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 11
- 239000012965 benzophenone Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 9
- 229920005601 base polymer Polymers 0.000 description 7
- 238000001212 derivatisation Methods 0.000 description 6
- 239000012948 isocyanate Substances 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 5
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 5
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000012943 hotmelt Substances 0.000 description 5
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 239000004831 Hot glue Substances 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- AQWSFUIGRSMCST-UHFFFAOYSA-N 3-pyridin-3-ylsulfonyl-5-(trifluoromethyl)chromen-2-one Chemical compound N1=CC(=CC=C1)S(=O)(=O)C=1C(OC2=CC=CC(=C2C=1)C(F)(F)F)=O AQWSFUIGRSMCST-UHFFFAOYSA-N 0.000 description 3
- TXFPEBPIARQUIG-UHFFFAOYSA-N 4'-hydroxyacetophenone Chemical compound CC(=O)C1=CC=C(O)C=C1 TXFPEBPIARQUIG-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000010546 Norrish type I reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002313 adhesive film Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- ZWVHTXAYIKBMEE-UHFFFAOYSA-N 2-hydroxyacetophenone Chemical class OCC(=O)C1=CC=CC=C1 ZWVHTXAYIKBMEE-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000012986 chain transfer agent Substances 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical class CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- HBKBEZURJSNABK-MWJPAGEPSA-N 2,3-dihydroxypropyl (1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylate Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(=O)OCC(O)CO HBKBEZURJSNABK-MWJPAGEPSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 206010012422 Derealisation Diseases 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B37/1284—Application of adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/625—Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
- C08G18/6254—Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/062—Copolymers with monomers not covered by C09J133/06
- C09J133/066—Copolymers with monomers not covered by C09J133/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09J175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1403—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
- B29C65/1406—Ultraviolet [UV] radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/4815—Hot melt adhesives, e.g. thermoplastic adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/4825—Pressure sensitive adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/4845—Radiation curing adhesives, e.g. UV light curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4865—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B2037/1253—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/08—Treatment by energy or chemical effects by wave energy or particle radiation
- B32B2310/0806—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
- B32B2310/0831—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/302—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/416—Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1462—Polymer derived from material having at least one acrylic or alkacrylic group or the nitrile or amide derivative thereof [e.g., acrylamide, acrylate ester, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
Definitions
- the invention concerns a process of making an ultraviolet (“UV”) curable pressure sensitive adhesives ("PSA”) by derivatizing an acrylic polymer, such as a hydroxy-functional acrylic polymer, with a derivatizing agent prepared from a diisocyanate and a hydroxy-functional acrylate monomer.
- UV ultraviolet
- PSA pressure sensitive adhesives
- Solvent based PSA typically have low solids content, such as from about 40% to about 55% solids.
- the coating process from solution generally limits the effective coating thickness for common applications, as it is difficult to evaporate solvents from a thick film. However, for many applications, thicker films are desired.
- Hot melt adhesives offer an avenue to easily generate thick films. Historically, most hot melt adhesives are rubber-based, and have limitations in performance.
- UV curable acrylic hot melt PSA offer a potentially attractive alternative to rubber based hot melt adhesives, as lightly crosslinked acrylic adhesives have premium peel and shear performance, as well as outstanding weathering and aging performance compared to rubber based adhesives.
- many attempts at a UV curable acrylic PSA have had limited commercial success for thick film applications. This is generally due to inefficiency in uniformly curing thicker films through the complete depth of the film.
- a primary limitation for UV curable PSA in certain commercial applications is due to the nature of the photoinitiator entity.
- the photoinitiator is built into the acrylic polymer backbone by free radical polymerization of an acrylated benzophenone.
- the built-in benzophenone entity is incorporated at a level of about 0.5% to about 1.0%.
- the benzophenone group is a very strong UV absorber, and is a strong hydrogen abstracter when excited by UV.
- the hydrogen-abstraction process causes free radicals to be generated. When these free radicals recombine, it causes a slight crosslinking of the polymer. This crosslinking is the key to converting a melt- flowable polymer into an adequate PSA.
- UV curable acrylic hot melt PSA include adhesive compositions comprising a combination of built-in photoinitiator and olefinic components to facilitate crosslinking.
- an acrylate functional polyurethane has been advocated as UV curable warm melt PSA. All of these hot melt PSA are 100% solids with no volatile organic content (“VOC”) during application, eliminating the need for drying ovens and incinerators/thermal oxidizers.
- VOC volatile organic content
- the invention pertains to a process to make a UV curable PSA from a hydroxy-functionalized acrylic polymer comprising derivatizing the polymer with a derivatizing agent prepared from a diisocyanate and a hydroxy-functional acrylate monomer.
- the hydroxyls in the acrylic polymer react with the derivatizing agent to form a urethane linkage.
- This process generates an acrylate-functional acrylic polymer that can be cured by UV irradiation.
- the derivatizing agent is prepared from a diisocyanate comprising differential reactivity between the two isocyanate groups, such that the reaction with one equivalent of hydroxy-functional acrylate monomer yields primarily a monourethane and not a random distribution of monourethane, diurethane, and unreacted diisocyanate.
- a diisocyanate comprising differential reactivity between the two isocyanate groups, such that the reaction with one equivalent of hydroxy-functional acrylate monomer yields primarily a monourethane and not a random distribution of monourethane, diurethane, and unreacted diisocyanate.
- the acrylate-functionalized acrylic polymer can be UV curable at greater adhesive film thicknesses than typically encountered with benzophenone substituted UV curable PSA products.
- the acrylate-functionalized acrylic polymer by itself is not
- the adhesive may further comprise fillers and additives, such as tackifiers, cross-linking agents, stabilizers, inhibitors, solvents, plasticizers, and the like, and combinations thereof.
- the PSA may be applied in methods of adhering materials. The methods comprise the steps of providing substrate materials for the PSA, applying the PSA to a surface of a substrate, UV curing the adhesive and mating and adhering the substrate material to another substrate material, preferably with the application of pressure.
- Fig. 1 shows a functionalized acrylic polymer in accordance with an embodiment of the invention.
- the hydroxy-functionalized polymer is typically an acrylic polymer having a molecular weight of about 40,000 to about 100,000.
- Acrylic monomers that may be used for the invention comprise a large percentage of a monomer that generates a low glass transition temperature (Tg) polymer.
- Tg glass transition temperature
- Such monomers include those selected from the group consisting of 2-ethylhexyl acrylate, iso- octyf acrylate, iso-decyl acrylate, lauryl acrylate, n-butyl acrylate and the like, and combinations thereof.
- the acrylic polymer may further comprise monomers that modify the Tg, such as those selected from the group consisting of methyl acrylate, ethyl acrylate, methyl methacrylate, styrene, vinyl acetate and combinations thereof.
- monomers that modify the Tg such as those selected from the group consisting of methyl acrylate, ethyl acrylate, methyl methacrylate, styrene, vinyl acetate and combinations thereof.
- the calculated Tg of the acrylic polymer before derivatization and UV cure should ideally be in the range of about - 35 0 C to about -50 0 C, preferably about - 40 0 C to about -45 0 C.
- hydroxy-functional monomers are separate from the hydroxy- functional monomer(s) of the derivatizing agent, which is the agent hydroxy- functional monomer.
- hydroxy-functional monomers that may be incorporated into the backbone of the acrylic polymer include: 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate and the like and combinations thereof.
- the acrylic polymer may also comprise other functional monomers to enhance adhesion properties such as those selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, glycidyl methacrylate, N-vinyl pyrrolidone, N-vinyl caprolactam, and acryfamide, and combinations thereof.
- the derivatizing agent is prepared such that most, if not all, of the molecules in the adduct will generally comprise at least about one reactive isocyanate group, and in an embodiment most molecules in the derivatizing agent comprise one reactive isocyanate group.
- the isocyanate group reacts with the hydroxyls in the acrylic polymer to form a urethane linkage, and this linkage attaches the acrylate double bond functionality to the acrylic polymer. This attachment makes the acrylic polymer reactive to free radical polymerization reactions.
- a typical functionalized acrylic polymer useful in the invention is shown in Fig. 1.
- the derivatizing agent is prepared from a diisocyanate and a hydroxy-functional acrylate monomer, the agent hydroxy-functional monomer.
- the diisocyanate will generally comprise differential reactivity between the two isocyanate groups, such that only one isocyanate can be preferentially reacted with the hydroxy-functional acrylate monomer of the derivatizing agent, leaving the other isocyanate available for later reaction with the acrylic polymer.
- Diisocyanates useful in the invention include isophorone diisocyanate, toluene diisocyanate and the like and combinations thereof.
- the hydroxy-functional acrylate monomer in the derivatizing agent may be selected from the group consisting of 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and the like and combinations thereof.
- Specialty hydroxy-functional acrylates like caprolactone acrylate (SARTOMER ® 495, available from the Sartomer Company, Inc., Exton, Pennsylvania) or ACETM hydroxyl acrylate monomers from HEXION TM Specialties Chemicals, Columbus, Ohio can also be used.
- the ratio of hydroxy-functional acrylate monomer to diisocyanate in the derivatizing agent is typically greater than about 1 :1 , preferably greater than about 1.1 :1.
- the ratio of hydroxy-functional acrylate monomer to diisocyanate in the derivatizing agent is from about 1.1 :1 to about 1.5:1 , typically about 1.05:1 to about 1.5:1 , preferably from about 1.12:1 to about 1.2:1.
- a typical ratio range of hyclroxy-functional acrylate monomer to diisocyanate is from about 1.05:1 to about 1.2:1.
- the amount of derivatizing agent reacted with the polymer is relevant to the properties of the adhesive. If too little is reacted, the polymer will not crosslink sufficiently during UV cure to give good properties. If too much is reacted, the polymers will over-crosslink during UV cure, and properties may be compromised.
- the PSA composition should preferably comprise about 2.0% to about 9.0% of the hydroxy-functional acrylic diisocyanate derivatizing agent, preferably about 3.5 % to about 7.5 %, by weight solids.
- the level of the derivatizing agent is a function of the molecular weight of the acrylic polymer. At low molecular weights, a higher degree of derivatization may be required, while at higher molecular weights, a lower degree of derealization may be required.
- the PSA compositions comprising the derivatized acrylic polymer may be a 100 % solids composition for hot melt applications.
- the PSA compositions may be in the form of a solution adhesive, including those having a solids content ranging from about 50% to about 80%, preferably about 60% to about 75%.
- the UV curable PSA compositions comprise photoinitiators which generate free radicals during UV exposure and induce free radical polymerization of the active acrylate groups.
- photoinitiators may be selected from commercially available photoinitiators provided that the photoinitiator is matched to the UV lamp that is used, and such that there is no strongly absorbing component of the adhesive that would block the UV absorbance of the photoinitiator. Care must be taken when using UV-curable monomers and additives that contain aromatic functionality. Most photoinitiators absorb strongly in the 250-300 nm region of the UV spectrum, but most other aromatics can also absorb in this region.
- the photoinitiator component may comprise Norrish Type I or Type
- Norrish Type I initiators cleave into two radical species when excited by UV. Either one or both radicals may induce polymerization.
- Examples of Norrish Type I photoinitiators useful in the invention include benzil, benzoin ethers, benzil esters, hydroxyacetophenones, phosphine oxides and the like and combinations thereof.
- Norrish Type H initiators abstract hydrogen radicals when excited. The active polymerization initiator is typically the species that lost the hydrogen radical.
- Examples of Norrish Type Il initiators useful in the invention include benzophenone, thioxanthone and the like and combinations thereof.
- Photoinitiators that work into the visible region are very effective, as there are typically no other strong absorbers in this region, and such photoinitiator may provide good through-cure on relatively thicker samples, such as when a thicker layer or layers of the UV curable PSA are applied to a substrate.
- Phosphine oxides like monoacyl phosphine oxide (such as Daracure TPO) or biacyl phosphine oxide (“BAPO”) (such as IRGACURE® 819) are effective in this regard.
- Photoinitiators may be selected to provide good surface cure, as a critical radical flux is needed to overcome oxygen inhibition at the surface of adhesives UV cured in air. Benzophenones, benzoin ethers, hydroxyacetophenones and the like and combinations thereof may be used in this regard.
- surface cure can be critical, as this is the point of contact for the adhesive to the substrate. Without complete surface cure, a layer of undercured adhesive can transfer to the substrate when the adhesive is removed. This situation is referred to as ghosting, and is a common problem for UV cured adhesives.
- Combinations of photoinitiators described above may be used.
- the photoinitiator component may comprise hydroxyacetophenone (such as Duracure 1173, IRGACURE® 184 or ESACURE® KIP150) and a benzophenone.
- the photoinitiator may comprise BAPO to provide good thru-cure.
- the photoinitiator contains the combination of hydroxyacetophenone and benzophenone, and may contain the combination of hydroxyacetophenone, benzophenone and BAPO.
- the UV curable PSA composition may comprise one or more inhibitors. Because the UV curable PSA composition comprises reactive acrylate groups, a viable free radical scavenger may be present to prevent premature gelation, either in storage or preparation for coating, especially in the case of hot melt adhesive compositions.
- Inhibitors comprising phenolic compounds are one class of such materials that may be used in the invention, including, for example, 4-methoxyphenol (MEHQ, methyl ether of hydroquinone), hydroquinone, 2-methylhydroquinone, 2-t-butylhydroquinone, t-buty[ catechol, butylated hydroxy toluene, and butylated hydroxy anisole and the like and combinations thereof.
- MEHQ 4-methoxyphenol
- hydroquinone 2-methylhydroquinone
- 2-t-butylhydroquinone 2-t-butylhydroquinone
- the PSA composition may also comprise one or more further components.
- these further components are selected form the group consisting of tackifiers, crosslinking agents, stabilizers, fillers, solvents, plasticizers and the like. Combinations of these materials may be used. The amount and type of these further components may be a function of the intended application of the PSA.
- PSA compositions for low surface energy substrates will usually comprise tackifiers for peel performance.
- a crosslinking agent may be of importance.
- stabilizers may be used in the formulations.
- tackifier is preferred if low surface energy adhesion is a desired property of the PSA.
- Particularly effective and compatible with the acrylate polymer are rosin esters, preferably hydrogenated rosin esters.
- rosin esters preferably hydrogenated rosin esters.
- glycerol tris-rosinate available from Pinova Inc., Brunswick, Georgia, USA
- pentaerythritol tetra-rosinate (FORAL® 105 available from Pinova Inc.)
- Other tackifiers that may be used include hydrocarbon C 5 and Cg tackifiers, generally in amounts up to about 5 % loading for acrylic compatibility. Overall loading of the tackifiers may range from about 10 % to about 30 %, and more typically about 15 % to about 25 %.
- Cross linking agents useful in the invention which generally enhance crosslink density in the UV cured adhesive, include multifunctional acrylate species. By increasing the crosslink density, the cohesive properties of the adhesive will improve, and shear performance should be enhanced. However, the selection and level of the crosslinking agent needs to be carefully determined. With the wrong type or level of multifunctional acrylate, the crosslink density can be much higher than desired, and peel performance will be greatly compromised. Multifunctional acrylates made from ethoxylated diols or triols are preferred cross linking agents, such as ethoxylated hexanediol diacrylate, ethoxylated trimethylolpropane triacrylate and the like and combinations thereof.
- Ethoxylated acrylates are generally more reactive than non-ethoxylated acrylates, in that the hydrogen atoms on the carbon next to the ether have been found to be labile and participate in the polymerization process.
- the UV curable PSA compositions may comprise about 1 % to about 5 %, preferably about 2 % to about 3 %, cross linking agent.
- the UV curable PSA described herein may be used for adhering substrates.
- a typical method for application of the UV curable PSA compositions comprises the steps of: a. providing at least a first substrate and a second substrate each having one or more surfaces; b. providing the PSA described herein; c. applying the PSA to a surface of the first substrate; d. UV curing the PSA; and e. mating the surface of the first substrate having the PSA with a surface of the second substrate to adhere the first substrate and the second substrate.
- the PSA may be applied to surfaces of both the first substrate and second substrate.
- the PSA may be coated and cured on release liner, and then be used as a two-sided transfer tape.
- the PSA of the invention may be applied in relatively larger thicknesses than conventional PSA, yet achieve an acceptable UV cure.
- the PSA compositions may generally be applied to the substrate at thicknesses greater than or equal to about 2 mils, such as greater than about 3 mils, like in the range of about 2 mils to about 5 mils, typically about 2.5 mils to about 5 mils, including about 3 mils to about 5 mils.
- Typical substrates include mylar, polypropylene, polyethylene, high density polyethylene and the like.
- Adhesive films for testing were prepared by applying the PSA in solution form onto a substrate using standard drawdown equipment, followed by periods of air and oven drying. Alternatively, hot melt films were prepared using a heated drawdown station. Films were coated at a thickness of about 1 to about 5 mils on a poly(ethylene terephthalate) substrate for testing. Once applied and dried, the films were subjected to UV irradiation using a Fusion Systems 600- Watt device equipped with an H-bulb. Light dosages were adjusted by variation of the conveyor belt speed.
- PSTC Test Method # 1 for peel strength
- PTSC Test Method # 7 for shear adhesion failure time.
- PSTC Test Method # 1 and PTSC Test Method # 7 are incorporated herein by reference in their entirety.
- the jacket temperature was set to 85 0 C, and the ethyl
- acetate was heated until a good reflux was obtained. Also, a slow nitrogen purge passed through the headspace of the reactor. The reactor contents were stirred at 130-150 rpm during the course of the reaction. Separately, a solution of 4 g dilauroyl peroxide and 37 g of ethyl acetate were prepared. After 20 minutes of solvent reflux, the monomer solution and the peroxide solution were separately fed into the reactor. Monomer feed time was 90 minutes and peroxide feed time was 120 minutes. At the end of the feeds, an additional 42 g of ethyl acetate was used to wash the feed systems. The reaction mixture continued to heat for an additional 5 hours after the feeds were complete. After this time period, the
- IPDI isophorone diisocyanate
- DBTDL dibutyltin dilaurate
- BHT butylated hydroxy toluene
- the temperature was slowly raised to 50 0 C, and then held there for 60 minutes.
- the polymer base described above was derivatized at 3.3 % active derivatization agent (solids-to-solids basis) using a derivatizing agent with an HEA/IPDI ratio of 1.12:1 , and reacting under comparable conditions as described above.
- the derivatized resin was formulated with 1.5 % Lamberti ESACURE KIP150 photoinitiator.
- a dried coating of 2-mil was prepared on poly(ethylene terephthalate) and UV cured at 125 ft/min on a FUSION UV SYSTEMS, INC.® ("Fusion Systems”) 600-Watt device with an H-bulb.
- UV dosage as measured by a "light bug” was 139 mJ/cm 2 UV-A, 95 mJ/cm 2 UV-B, and 17 mJ/cm 2 UV-C.
- Adhesive performance was evaluated by measuring 180 peel strength on SS (24-hour dwell) which resulted in 3.6 Ib/in with adhesive failure and also by measuring shear failure time (1" x 1" x 2kg) which resulted in greater than 300 hours with no slippage. This data indicates performance in-line or better than many commercial PSA. It has been demonstrated that UV cure often gives shear performance that is significantly better than typical commercial PSA
- Example 1 The base polymer described in Example 1 was derivatized at 4.4 % active derivatizing agent, which had an HEA/IPDI ratio of 1.12:1.
- the derivatized base was then formulated as shown below, on a solids basis:
- Adhesive films were prepared from this formulation at 1.3 mils thickness and cured at 125 ft/min on the Fusion Systems 600-Watt unit with an
- Adhesive performance was measured by 180° Peels, RT Shear
- RT Shear adhesion failure time (1" x 1" x 1kg) was greater than 2 weeks with no failure
- the RT Shear adhesion failure time ⁇ 1" x 1" x 5lbs) was greater than 2 weeks with no failure
- the RT Shear adhesion failure time ⁇ 1" x 1" x 5lbs was greater than 2 weeks with no failure and the RT Shear adhesion
- Shear adhesion failure time (1 " x 1 " x 1 kg) was greater than 2 weeks with no
- the data demonstrates that in addition to excellent peel and room temperature shear, the UV cured products have excellent high temperature shear performance. With the addition of tackifiers, the product also has excellent adhesion to low surface energy substrates.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10759335A EP2417211A4 (en) | 2009-04-03 | 2010-03-31 | Ultraviolet radiation curable pressure sensitive acrylic adhesive |
MX2011010409A MX2011010409A (en) | 2009-04-03 | 2010-03-31 | Ultraviolet radiation curable pressure sensitive acrylic adhesive. |
CA2757455A CA2757455C (en) | 2009-04-03 | 2010-03-31 | Ultraviolet radiation curable pressure sensitive acrylic adhesive |
CN201080022965.0A CN102449094B (en) | 2009-04-03 | 2010-03-31 | ultraviolet radiation curable pressure sensitive acrylic adhesive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16643109P | 2009-04-03 | 2009-04-03 | |
US61/166,431 | 2009-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010114883A1 true WO2010114883A1 (en) | 2010-10-07 |
Family
ID=42826417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/029364 WO2010114883A1 (en) | 2009-04-03 | 2010-03-31 | Ultraviolet radiation curable pressure sensitive acrylic adhesive |
Country Status (6)
Country | Link |
---|---|
US (2) | US8735506B2 (en) |
EP (1) | EP2417211A4 (en) |
CN (1) | CN102449094B (en) |
CA (1) | CA2757455C (en) |
MX (1) | MX2011010409A (en) |
WO (1) | WO2010114883A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2631279A2 (en) * | 2010-10-20 | 2013-08-28 | LG Chem, Ltd. | Adhesive composition for touch panel |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2897998A1 (en) * | 2012-09-18 | 2015-07-29 | Basf Se | Polymers comprising a polyurethane backbone endcapped with reactive (meth)acrylic terminating groups and their use as adhesives |
US9546305B2 (en) | 2013-03-29 | 2017-01-17 | Ashland Licensing And Intellectual Property Llc | Ultraviolet cureable pressure sensitive adhesives comprising bound photoinitiator and vinyl groups |
CN104533043A (en) * | 2014-12-03 | 2015-04-22 | 珠海东诚光固化材料有限公司 | Decoration board and preparation method thereof |
EP3233948B1 (en) * | 2014-12-16 | 2022-02-23 | Ashland Licensing And Intellectual Property, LLC | Electron beam curable pressure sensitive adhesive comprising acrylic polymer with bound vinyl group |
WO2016124202A1 (en) * | 2015-02-02 | 2016-08-11 | Coloplast A/S | Ostomy device |
TWI586780B (en) | 2015-03-23 | 2017-06-11 | 阿科瑪法國公司 | Pressure sensitive adhesives |
DK3280368T3 (en) | 2015-04-10 | 2019-09-23 | Coloplast As | STOMA DEVICE |
EP3337843B1 (en) | 2015-08-18 | 2022-09-28 | 3M Innovative Properties Company | Polyester compositions |
JP6800215B2 (en) * | 2015-08-18 | 2020-12-16 | スリーエム イノベイティブ プロパティズ カンパニー | Impact resistant polyester pressure sensitive adhesive |
CA3082141C (en) | 2016-02-19 | 2022-06-14 | Eric L. Bartholomew | Two stage methods for processing adhesives and related compositions |
US20190117824A1 (en) | 2016-04-13 | 2019-04-25 | Coloplast A/S | Method for applying an adhesive |
EP3532520A1 (en) | 2016-10-25 | 2019-09-04 | Avery Dennison Corporation | Block polymers with photoinitiator groups in backbone and their use in adhesive compositions |
CN106590480A (en) * | 2016-12-02 | 2017-04-26 | 陈佩珊 | Adhesive |
CN111699229B (en) | 2018-02-09 | 2023-02-28 | 3M创新有限公司 | Film initiated structural adhesive film curing |
KR20200118141A (en) | 2018-02-09 | 2020-10-14 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Primer-initiated curing of structural adhesive films |
CA3140966A1 (en) * | 2019-05-31 | 2020-12-03 | Oregon State University | Pressure sensitive adhesives made from uv curing of plant oil-based polyesters |
WO2021024204A1 (en) | 2019-08-07 | 2021-02-11 | 3M Innovative Properties Company | Core-sheath filaments and methods of printing an adhesive |
KR102426261B1 (en) * | 2019-09-26 | 2022-07-29 | 주식회사 엘지화학 | Adhesive composition for dicing tape and dicing tape comprising the same |
EP4114904A1 (en) | 2020-03-06 | 2023-01-11 | 3M Innovative Properties Company | Thermal debonding of primer-initiated curable structural adhesive films |
CN115244150A (en) | 2020-03-06 | 2022-10-25 | 3M创新有限公司 | Composite PSA/structural adhesive bonds tunable by patterned surface-initiated curing |
EP4146762B1 (en) | 2020-05-07 | 2024-05-08 | Dow Silicones Corporation | Silicone hybrid pressure sensitive adhesive and methods for its preparation and use on uneven surfaces |
US20230174721A1 (en) | 2020-05-07 | 2023-06-08 | Dow Silicones Corporation | (meth)acrylate functional silicone and methods for its preparation and use |
WO2021225673A1 (en) | 2020-05-07 | 2021-11-11 | Dow Silicones Corporation | Silicone hybrid pressure sensitive adhesive and methods for its preparation and use in protective films for (opto)electronic device fabrication |
WO2022066261A1 (en) | 2020-09-22 | 2022-03-31 | Dow Silicones Corporation | Curable silicone-(meth)acrylate composition and methods for its preparation and use |
CN113322031A (en) * | 2021-05-20 | 2021-08-31 | 新丰杰力电工材料有限公司 | Pressure-sensitive adhesive, preparation method and application |
CN113698908B (en) * | 2021-09-06 | 2022-11-11 | 合肥工业大学 | UV (ultraviolet) viscosity reducing adhesive and preparation method thereof |
WO2023196484A1 (en) | 2022-04-07 | 2023-10-12 | Basf Se | Dual curable pressure sensitive adhesive |
CN114672189B (en) * | 2022-04-13 | 2023-05-09 | 佳化化学科技发展(上海)有限公司 | Ultraviolet light curing ink, preparation method and product thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030129385A1 (en) * | 2001-06-28 | 2003-07-10 | Mikiko Hojo | Photocurable resin composition, finely embossed pattern-forming sheet, finely embossed pattern transfer sheet, optical article, stamper and method of forming finely embossed pattern |
US6982107B1 (en) * | 1997-09-15 | 2006-01-03 | 3M Innovative Properties Company | Release liner for pressure sensitive adhesives |
US20090075008A1 (en) * | 2007-08-31 | 2009-03-19 | Yong Ha Hwang | Photocurable composition for the formation of pressure-sensitive adhesive layer and dicing tape produced using the same |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087660A (en) * | 1962-07-24 | 1963-04-30 | Yankee Plasties Inc | Two-step garment hanger |
US4326532A (en) * | 1980-10-06 | 1982-04-27 | Minnesota Mining And Manufacturing Company | Antithrombogenic articles |
JPS60197719A (en) * | 1984-03-19 | 1985-10-07 | Showa Highpolymer Co Ltd | Production of curable resin |
US4668763A (en) | 1985-05-07 | 1987-05-26 | Dynamit Nobel Ag | Polyesters containing side chains and the use thereof |
US4690502A (en) | 1985-07-08 | 1987-09-01 | Desoto, Inc. | Ultraviolet curable optical glass fiber coatings from acrylate terminated, end-branched polyurethane polyurea oligomers |
US4806574A (en) | 1985-07-22 | 1989-02-21 | Desoto, Inc. | Ultraviolet curable coatings for optical glass fiber based on a polyfunctional core |
US5206417A (en) | 1988-06-16 | 1993-04-27 | Andreas Boettcher | Radiation-sensitive, ethylenically unsaturated copolymerizable compounds and their preparation |
DE3844445A1 (en) | 1988-12-31 | 1990-07-19 | Basf Ag | UV-CROSSLINKABLE MASSES BASED ON (METH) -ACRYLESTER POLYMERISATS |
US5674192A (en) * | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
JPH0662905B2 (en) | 1990-03-07 | 1994-08-17 | 大日本塗料株式会社 | Ink composition |
WO1991017724A1 (en) * | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
DE4020767C1 (en) | 1990-06-29 | 1992-03-05 | Basf Ag, 6700 Ludwigshafen, De | |
DE4037079A1 (en) | 1990-11-22 | 1992-05-27 | Basf Ag | UNSATURATED PHENONE DERIVATIVES AND THEIR USE AS ADHESIVE ADHESIVES |
JPH04306282A (en) | 1991-04-03 | 1992-10-29 | Dainippon Ink & Chem Inc | Complex curable adhesive for laminate |
JPH04326966A (en) | 1991-04-26 | 1992-11-16 | Kansai Paint Co Ltd | Finishing method for coating |
JP3659979B2 (en) | 1992-04-15 | 2005-06-15 | 松本油脂製薬株式会社 | Thermally expandable microcapsule and its production method |
JPH05320539A (en) | 1992-05-19 | 1993-12-03 | Kansai Paint Co Ltd | Coating compound composition for preventing adhesion of underwater organism |
US5391406A (en) * | 1994-03-25 | 1995-02-21 | National Starch And Chemical Investment Holding Corporation | Process of preparing hot melt pressure sensitive adhesives on a substrate |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
JP3258868B2 (en) | 1995-07-31 | 2002-02-18 | 三洋電機株式会社 | Positive electrode active material and lithium secondary battery using the same |
EP0764675B1 (en) * | 1995-09-19 | 1998-05-13 | Mitsubishi Gas Chemical Company, Inc. | Biodegrable water-soluble polymer |
US7378105B2 (en) * | 1997-09-26 | 2008-05-27 | Abbott Laboratories | Drug delivery systems, kits, and methods for administering zotarolimus and paclitaxel to blood vessel lumens |
US6964999B1 (en) * | 1998-02-27 | 2005-11-15 | Kaneka Corporation | Polymer and curable composition |
US6264533B1 (en) * | 1999-05-28 | 2001-07-24 | 3M Innovative Properties Company | Abrasive processing apparatus and method employing encoded abrasive product |
US6358557B1 (en) * | 1999-09-10 | 2002-03-19 | Sts Biopolymers, Inc. | Graft polymerization of substrate surfaces |
US8088060B2 (en) * | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
DE10029553A1 (en) * | 2000-06-15 | 2002-01-03 | Beiersdorf Ag | Process for the preparation of crosslinkable acrylic PSAs |
JP2002173516A (en) | 2000-12-05 | 2002-06-21 | Mitsubishi Chemicals Corp | Actinic energy ray-curable aqueous emulsion composition |
GB0100760D0 (en) * | 2001-01-11 | 2001-02-21 | Biocompatibles Ltd | Drug delivery from stents |
DE10143630A1 (en) * | 2001-09-06 | 2003-03-27 | Bayer Ag | Urethane acrylate for coating materials, e.g. paper, prepared from diisocyanate and/or polyisocyanate, and hydroxyfunctional partial ester which is product of acrylic acid and/or methacrylic acid with oxalkylated polyols |
JP2003129004A (en) | 2001-10-25 | 2003-05-08 | Kansai Paint Co Ltd | Coating material composition and coating finishing method using the same |
US20030088307A1 (en) * | 2001-11-05 | 2003-05-08 | Shulze John E. | Potent coatings for stents |
US6939376B2 (en) * | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US6694999B2 (en) | 2001-12-07 | 2004-02-24 | Hettinger Welding, Inc. | Systems for well gas collection and processing |
WO2003077787A1 (en) | 2002-03-18 | 2003-09-25 | Guido Herzog | Functional orthodontic appliance with an extraoral device |
US7349336B2 (en) * | 2002-06-04 | 2008-03-25 | Lucent Technologies Inc. | Random early drop with per hop behavior biasing |
US20060121080A1 (en) * | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
JP4306282B2 (en) | 2003-02-28 | 2009-07-29 | 富士ゼロックス株式会社 | Conveying belt unit and recording apparatus |
US7527632B2 (en) * | 2003-03-31 | 2009-05-05 | Cordis Corporation | Modified delivery device for coated medical devices |
US7279174B2 (en) * | 2003-05-08 | 2007-10-09 | Advanced Cardiovascular Systems, Inc. | Stent coatings comprising hydrophilic additives |
JP4848150B2 (en) | 2004-07-30 | 2011-12-28 | 東洋インキScホールディングス株式会社 | Manufacturing method of electromagnetic shielding mesh, electromagnetic shielding mesh manufactured by the method, and display including the electromagnetic shielding mesh |
US7268172B2 (en) * | 2004-10-15 | 2007-09-11 | Bayer Materialscience Llc | Radiation curable compositions |
US7745505B2 (en) | 2004-12-29 | 2010-06-29 | Henkel Ag & Co. Kgaa | Photoinitiators and UV-crosslinkable acrylic polymers for pressure sensitive adhesives |
US20070070907A1 (en) * | 2005-09-29 | 2007-03-29 | Alok Kumar | Method and apparatus to implement a very efficient random early detection algorithm in the forwarding path |
KR101449620B1 (en) | 2005-11-16 | 2014-10-21 | 앤드류 레오 해인즈 | Improvements in or relating to forming apparatus |
DK1957130T3 (en) * | 2005-12-09 | 2010-11-22 | Dsm Ip Assets Bv | Hydrophilic coating comprising a polyelectrolyte |
US7724660B2 (en) * | 2005-12-13 | 2010-05-25 | Alcatel Lucent | Communication traffic congestion management systems and methods |
EP1981442A2 (en) * | 2006-01-23 | 2008-10-22 | Smith and Nephew, Inc. | Patellar components |
JP4382069B2 (en) | 2006-09-13 | 2009-12-09 | 電気化学工業株式会社 | Acrylic adhesive for industrial glass |
US20080075753A1 (en) * | 2006-09-25 | 2008-03-27 | Chappa Ralph A | Multi-layered coatings and methods for controlling elution of active agents |
US8425459B2 (en) * | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
JP4493643B2 (en) * | 2006-12-06 | 2010-06-30 | 日東電工株式会社 | Re-peelable pressure-sensitive adhesive composition, and pressure-sensitive adhesive tape or sheet |
JP2008162027A (en) | 2006-12-27 | 2008-07-17 | Toyo Ink Mfg Co Ltd | Hard coat film |
US8114466B2 (en) * | 2007-01-03 | 2012-02-14 | Boston Scientific Scimed, Inc. | Methods of applying coating to the inside surface of a stent |
US7887830B2 (en) * | 2007-02-27 | 2011-02-15 | Boston Scientific Scimed, Inc. | Medical devices having polymeric regions based on styrene-isobutylene copolymers |
US20090105809A1 (en) * | 2007-10-19 | 2009-04-23 | Lee Michael J | Implantable and lumen-supporting stents and related methods of manufacture and use |
JP4952642B2 (en) * | 2008-04-15 | 2012-06-13 | 富士通株式会社 | Packet transfer apparatus and packet discarding method |
-
2010
- 2010-03-31 US US12/751,190 patent/US8735506B2/en active Active
- 2010-03-31 EP EP10759335A patent/EP2417211A4/en not_active Ceased
- 2010-03-31 CN CN201080022965.0A patent/CN102449094B/en not_active Expired - Fee Related
- 2010-03-31 CA CA2757455A patent/CA2757455C/en active Active
- 2010-03-31 WO PCT/US2010/029364 patent/WO2010114883A1/en active Application Filing
- 2010-03-31 MX MX2011010409A patent/MX2011010409A/en active IP Right Grant
-
2014
- 2014-04-11 US US14/250,896 patent/US9475968B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6982107B1 (en) * | 1997-09-15 | 2006-01-03 | 3M Innovative Properties Company | Release liner for pressure sensitive adhesives |
US20030129385A1 (en) * | 2001-06-28 | 2003-07-10 | Mikiko Hojo | Photocurable resin composition, finely embossed pattern-forming sheet, finely embossed pattern transfer sheet, optical article, stamper and method of forming finely embossed pattern |
US20090075008A1 (en) * | 2007-08-31 | 2009-03-19 | Yong Ha Hwang | Photocurable composition for the formation of pressure-sensitive adhesive layer and dicing tape produced using the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP2417211A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2631279A2 (en) * | 2010-10-20 | 2013-08-28 | LG Chem, Ltd. | Adhesive composition for touch panel |
EP2631279A4 (en) * | 2010-10-20 | 2014-08-27 | Lg Chemical Ltd | Adhesive composition for touch panel |
US9556364B2 (en) | 2010-10-20 | 2017-01-31 | Lg Chem, Ltd. | Pressure sensitive adhesive composition for touch panel |
Also Published As
Publication number | Publication date |
---|---|
US20160046844A1 (en) | 2016-02-18 |
MX2011010409A (en) | 2012-01-20 |
US9475968B2 (en) | 2016-10-25 |
US20100255239A1 (en) | 2010-10-07 |
CA2757455C (en) | 2017-08-22 |
EP2417211A1 (en) | 2012-02-15 |
CN102449094A (en) | 2012-05-09 |
CA2757455A1 (en) | 2010-10-07 |
EP2417211A4 (en) | 2012-08-29 |
CN102449094B (en) | 2014-10-22 |
US8735506B2 (en) | 2014-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2757455C (en) | Ultraviolet radiation curable pressure sensitive acrylic adhesive | |
TWI464187B (en) | Radiation curable adhesive | |
KR102299794B1 (en) | Ultraviolet curable pressure sensitive adhesives | |
EP3274386B1 (en) | Pressure sensitive adhesives | |
WO2004000961A1 (en) | Radiation-curable, solvent-free and printable precursor of a pressure-sensitive adhesive | |
JP2014162852A (en) | Photocurable resin composition and laminated sheet using same | |
JP7028660B2 (en) | Adhesive sheet and its manufacturing method, as well as adhesive film | |
US11542354B2 (en) | Curable heat-seal adhesives for bonding polymers | |
JP2004503619A (en) | Method for producing crosslinkable contact adhesive acrylate material | |
CA2971178C (en) | Electron beam curable pressure sensitive adhesive comprising acrylic polymer with bound vinyl group | |
JP2004143344A (en) | Crosslinkable resin composition having ultraviolet light-absorbing ability | |
WO2023074555A1 (en) | Photocurable adhesive sheet | |
WO2023074554A1 (en) | Photocurable adhesive sheet | |
JP2022070985A (en) | Pressure-sensitive adhesive sheet and method for producing the same and adhesive film | |
EP4240800A1 (en) | Crosslinkable and crosslinked compositions | |
JP2005272801A (en) | Method for producing photopolymerization initiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080022965.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10759335 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2757455 Country of ref document: CA Ref document number: MX/A/2011/010409 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010759335 Country of ref document: EP |