JP3258868B2 - Positive electrode active material and lithium secondary battery using the same - Google Patents

Positive electrode active material and lithium secondary battery using the same

Info

Publication number
JP3258868B2
JP3258868B2 JP21521295A JP21521295A JP3258868B2 JP 3258868 B2 JP3258868 B2 JP 3258868B2 JP 21521295 A JP21521295 A JP 21521295A JP 21521295 A JP21521295 A JP 21521295A JP 3258868 B2 JP3258868 B2 JP 3258868B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21521295A
Other languages
Japanese (ja)
Other versions
JPH0945329A (en
Inventor
幹也 山崎
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21521295A priority Critical patent/JP3258868B2/en
Publication of JPH0945329A publication Critical patent/JPH0945329A/en
Application granted granted Critical
Publication of JP3258868B2 publication Critical patent/JP3258868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に係わり、詳しくは電池容量の大きいリチウム二次電池
を得ることを目的とした、正極活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement in a positive electrode active material for obtaining a lithium secondary battery having a large battery capacity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池が、水の分解電圧を考慮する必要がな
いために、正極活物質を適宜選定することにより高電圧
化が可能であるなどの理由から、次世代の二次電池とし
て注目されている。
2. Description of the Related Art In recent years,
Because lithium secondary batteries do not need to consider the decomposition voltage of water, high voltage can be achieved by appropriately selecting the positive electrode active material. I have.

【0003】而して、高電圧化のために、LiCo
2 、LiNiO2 等のリチウム・遷移金属複合酸化物
が正極活物質として主に使用されている。
[0003] In order to increase the voltage, LiCo
Lithium / transition metal composite oxides such as O 2 and LiNiO 2 are mainly used as positive electrode active materials.

【0004】しかしながら、リチウム・遷移金属複合酸
化物は重量及び体積当たりの実容量が総じて小さく、こ
のためこれを正極活物質として使用したリチウム二次電
池には、電池容量が小さいという問題がある。
[0004] However, the lithium / transition metal composite oxide has a small actual capacity per weight and volume. Therefore, a lithium secondary battery using this as a positive electrode active material has a problem that the battery capacity is small.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、高電圧、且
つ高容量のリチウム二次電池を得ることを可能にする新
規なリチウム二次電池用の正極活物質及びそれを使用し
たリチウム二次電池を提供するにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a novel lithium secondary battery capable of obtaining a high-voltage, high-capacity lithium secondary battery. An object of the present invention is to provide a positive electrode active material for a battery and a lithium secondary battery using the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池用の正極活物質は、L
2xCa1-x Si2 (0.3<x≦0.4)及び/又は
Li2yCa1-y Ge2(0.5<y≦0.6)からな
る。
In order to achieve the above object, a positive electrode active material for a lithium secondary battery according to the present invention comprises L
It is composed of i 2x Ca 1-x Si 2 (0.3 <x ≦ 0.4) and / or Li 2y Ca 1-y Ge 2 (0.5 <y ≦ 0.6).

【0007】また、本発明に係るリチウム二次電池(本
発明電池)は、上記のLi2xCa1-x Si2 (0.3<
x≦0.4)及び/又はLi2yCa1-y Ge2 (0.5
<y≦0.6)からなる正極活物質を使用した電池であ
る。
Further, the lithium secondary battery (battery of the present invention) according to the present invention includes the above-mentioned Li 2x Ca 1-x Si 2 (0.3 <
x ≦ 0.4) and / or Li 2y Ca 1-y Ge 2 (0.5
<Y ≦ 0.6) using a positive electrode active material.

【0008】Li2xCa1-x Si2 (0.3<x≦0.
4)及びLi2yCa1-y Ge2 (0.5<y≦0.6)
は、LiCoO2 、LiNiO2 等のリチウム・遷移金
属複合酸化物に比べて重量及び体積当たりの実容量がと
もに大きい。また、これらは、リチウム・遷移金属複合
酸化物とほぼ同程度の電位(vsLi/Li+ )を有す
る。したがって、これらを正極活物質として使用するこ
とにより、高電圧、且つ高容量のリチウム二次電池を得
ることが可能となる。
Li 2x Ca 1-x Si 2 (0.3 <x ≦ 0.
4) and Li 2y Ca 1-y Ge 2 (0.5 <y ≦ 0.6)
Has a larger real capacity per weight and volume than lithium / transition metal composite oxides such as LiCoO 2 and LiNiO 2 . In addition, these have a potential (vsLi / Li + ) substantially equal to that of the lithium / transition metal composite oxide. Therefore, by using these as a positive electrode active material, a lithium secondary battery having a high voltage and a high capacity can be obtained.

【0009】[0009]

【発明の実施の形態】Li2xCa1-x Si2 (0.3<
x≦0.4)としては、特にx=0.4のLi0.8 Ca
0.6 Si2 が実容量が最も大きいので好ましい。また、
Li2yCa1-y Ge2 (0.5<y≦0.6)として
は、特にy=0.6のLi1.2 Ca0.4Ge2 が実容量
が最も大きいので好ましい。Li2xCa1-x Si
2 (0.3<x≦0.4)とLi2yCa1-y Ge
2 (0.5<y≦0.6)とは、いずれか一方のみを用
いてもよく、必要に応じて両者を併用してもよい。Li
2xCa1-x Si2 (0.3<x≦0.4)及びLi2y
1-y Ge2 (0.5<y≦0.6)は、例えば次のよ
うにして作製することができる。
DETAILED DESCRIPTION OF THE INVENTION Li 2x Ca 1-x Si 2 (0.3 <
x ≦ 0.4), in particular, Li 0.8 Ca with x = 0.4
0.6 Si 2 is preferable since the actual capacity is the largest. Also,
As Li 2y Ca 1-y Ge 2 (0.5 <y ≦ 0.6), Li 1.2 Ca 0.4 Ge 2 with y = 0.6 is particularly preferable since the actual capacity is the largest. Li 2x Ca 1-x Si
2 (0.3 <x ≦ 0.4) and Li 2y Ca 1-y Ge
2 (0.5 <y ≦ 0.6), either one of them may be used, or both may be used as needed. Li
2x Ca 1-x Si 2 (0.3 <x ≦ 0.4) and Li 2y C
a 1-y Ge 2 (0.5 <y ≦ 0.6) can be produced, for example, as follows.

【0010】すなわち、先ず、過塩素酸アンモニウムの
アセトニトリル溶液を電解液とし、SCE(Saturated
Calomel Electrode)電極を対極として、CaSi2 又は
CaGe2 を定電位電解酸化する。この第1の操作によ
り、CaSi2 又はCaGe2 からCaの一部(xモル
又はyモル)が脱離してCa1-x Si2 又はCa1-y
2 が得られる。定電位電解酸化時のCaSi2 又はC
aGe2 に印加する電位が1V(vsSCE電極電位)
を越えると電解液が分解するので、1Vが限度である。
次に、過塩素酸リチウムのプロピレンカーボネート溶液
を電解液とし、Li極を対極として、Ca1-x Si2
はCa1-y Ge2 を定電位電解還元する。この第2の操
作により、原子価2価のCaがxモル又はyモル脱離し
て生じた格子欠陥に原子価1価のLiが2xモル又は2
yモル挿入されて、Li2xCa1-x Si2 (0.3<x
≦0.4)又はLi2yCa1-y Ge2 (0.5<y≦
0.6)が得られる。
That is, first, an acetonitrile solution of ammonium perchlorate is used as an electrolyte, and SCE (Saturated
The Calomel Electrode) electrode as a counter electrode, a constant potential electrolysis oxidizing CaSi 2 or CAGE 2. By this first operation, part (x mole or y mole) of Ca is desorbed from CaSi 2 or CaGe 2 and Ca 1-x Si 2 or Ca 1-y G
e 2 is obtained. CaSi 2 or C during constant potential electrolytic oxidation
potential applied to the AGE 2 is 1V (vs SCE electrode potential)
If it exceeds 1, the electrolytic solution is decomposed, so that 1 V is the limit.
Next, Ca 1-x Si 2 or Ca 1-y Ge 2 is subjected to constant potential electrolytic reduction using a propylene carbonate solution of lithium perchlorate as an electrolyte and a Li electrode as a counter electrode. As a result of this second operation, 2 x mol or 2 x
y 2 mol of Li 2x Ca 1-x Si 2 (0.3 <x
≦ 0.4) or Li 2y Ca 1-y Ge 2 (0.5 <y ≦
0.6) is obtained.

【0011】x及びyが、それぞれ0.3より大及び
0.5より大に規制されるのは、xが0.3以下のLi
2xCa1-x Si2 及びyが0.5以下のLi2yCa1-y
Ge2では、従来のリチウム・遷移金属複合酸化物に比
べて実容量が同程度か、若しくは小さくなるからであ
る。また、x及びyが、それぞれ0.4以下及び0.6
以下に規制されるのは、xが0.4より大のLi2xCa
1-x Si2 及びyが0.6より大のLi2yCa1-y Ge
2 が実際には得られないからである。これらは、理論上
は上記第1の操作に於ける定電位電解酸化時の電圧を高
くすれば得られる筈であるが、そのようにすると電解液
が分解してしまうため、実際上は得られないのである。
The reason that x and y are regulated to be larger than 0.3 and larger than 0.5, respectively, is that x is 0.3 or less.
2x Ca 1-x Si 2 and Li 2y Ca 1-y with y of 0.5 or less
This is because the actual capacity of Ge 2 is equal to or smaller than that of the conventional lithium / transition metal composite oxide. Also, x and y are 0.4 or less and 0.6, respectively.
Regulated below are those for Li 2x Ca with x greater than 0.4.
Li 2y Ca 1-y Ge with 1-x Si 2 and y greater than 0.6
2 is not actually obtained. These should be obtained theoretically by increasing the voltage during the constant potential electrolytic oxidation in the first operation. However, in such a case, the electrolytic solution is decomposed, and therefore, it is actually obtained. There is no.

【0012】本発明に係る正極活物質は、LiCo
2 、LiNiO2 等の従来のリチウム・遷移金属複合
酸化物に比べて重量及び体積当たりの理論容量(mAh
/g)は小さい。しかし、本発明に係る正極活物質は、
上記第2の操作によりCa1-x Si2 又はCa1-y Ge
2 にリチウムを電気化学的に挿入して作製したものであ
るので、挿入されたリチウムの100%が充放電に与か
る。すなわち、理論容量と実容量が一致する。これに対
して、原材料の混合物を焼成することにより作製される
リチウム・遷移金属複合酸化物は、含有せるリチウムの
一部が充放電に与かるだけである。このため、本発明に
係る正極活物質は、従来のリチウム・遷移金属複合酸化
物に比べて重量及び体積当たりの実容量(mAh/g)
が大きいのである。参考までに、Li0.8 Ca0.6 Si
2 、Li1.2 Ca0.4 Ge2 、LiCoO2 及びLiN
iO2 の重量当たりの理論容量(mAh/g)及び重量
当たりの実容量(mAh/g)を表1に示す。実容量は
200mAで4.2V(vsLi/Li+ )まで充電し
た後、2.8V(vsLi/Li+ )まで放電したとき
の値である。
The cathode active material according to the present invention is LiCo
Theoretical capacity per unit weight and volume (mAh) compared to conventional lithium / transition metal composite oxides such as O 2 and LiNiO 2
/ G) is small. However, the positive electrode active material according to the present invention,
By the above second operation, Ca 1-x Si 2 or Ca 1-y Ge
Since lithium is electrochemically inserted into 2 , 100% of the inserted lithium is charged and discharged. That is, the theoretical capacity and the actual capacity match. On the other hand, in the lithium-transition metal composite oxide produced by baking the mixture of the raw materials, only a part of the contained lithium affects charging and discharging. For this reason, the positive electrode active material according to the present invention has a real capacity per weight and volume (mAh / g) that is higher than that of the conventional lithium / transition metal composite oxide.
Is big. For reference, Li 0.8 Ca 0.6 Si
2 , Li 1.2 Ca 0.4 Ge 2 , LiCoO 2 and LiN
Table 1 shows the theoretical capacity per unit weight (mAh / g) and the actual capacity per unit weight (mAh / g) of iO 2 . The actual capacity is a value obtained when the battery is charged to 4.2 V (vsLi / Li + ) at 200 mA and then discharged to 2.8 V (vsLi / Li + ).

【0013】[0013]

【表1】 [Table 1]

【0014】本発明電池の負極材料としては、電気化学
的にリチウムイオンを吸蔵及び放出することが可能な黒
鉛、コークス等の炭素材料及び充電時にリチウムが析出
し放電時にリチウムが溶解するところの金属リチウムが
例示される。樹枝状の電析リチウムの成長に起因する内
部短絡の虞れがない点で、炭素材料が好ましく、高容量
化の点で、炭素材料の中でも黒鉛が特に好ましい。
As the negative electrode material of the battery of the present invention, a carbon material such as graphite and coke capable of occluding and releasing lithium ions electrochemically and a metal in which lithium precipitates during charging and dissolves during discharging. Lithium is exemplified. A carbon material is preferred in that there is no risk of internal short-circuiting due to the growth of dendritic lithium, and graphite is particularly preferred among carbon materials in terms of increasing capacity.

【0015】リチウムを負極活物質とする本発明電池で
は、リチウムが水と極めて反応し易い物質であるため、
アルカリ電解液は使用し得ず、水を含まない非水電解液
が使用される。非水電解液としては、例えばエチレンカ
ーボネート、ビニレンカーボネート、プロピレンカーボ
ネート等の高誘電率溶媒に、又は、これらの高誘電率溶
媒とジエチルカーボネート、ジメチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、エトキシメトキシエタン等の低沸点溶媒との混合溶
媒に、LiPF6 、LiBF4 等の溶質(電解質)を溶
かした溶液を使用することができる。なお、このような
液体電解質の外、液漏れの無いポジションフリーの電池
を得るために、固体電解質又はゲル状電解質(擬似固体
電解質)を使用することもできる。
In the battery of the present invention in which lithium is used as a negative electrode active material, since lithium is a material which is very easily reacted with water,
An alkaline electrolyte cannot be used, and a non-aqueous electrolyte containing no water is used. As the non-aqueous electrolyte, for example, ethylene carbonate, vinylene carbonate, a high dielectric constant solvent such as propylene carbonate, or these high dielectric constant solvents and diethyl carbonate, dimethyl carbonate,
A solution in which a solute (electrolyte) such as LiPF 6 or LiBF 4 is dissolved in a mixed solvent with a low boiling point solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and ethoxymethoxyethane can be used. . In addition to such a liquid electrolyte, a solid electrolyte or a gel electrolyte (pseudo solid electrolyte) can also be used to obtain a position-free battery with no liquid leakage.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0017】(実施例1) 〔正極の作製〕酸化カルシウム(CaO)と珪素(S
i)とをモル比3:5で混合し、炭酸ガス雰囲気下にて
1000°Cで2時間焼成して、CaSi2 を得た。こ
のCaSi2 を、過塩素酸アンモニウムの1M(モル/
リットル)アセトニトリル溶液を電解液とし、SCE
(Saturated Calomel Electrode)電極を対極として、1
V(vsSCE電極電位)で2時間定電位電解酸化して
40%のCaを脱離させて、Ca0.6 Si2 を得た。次
に、このCa0.6 Si2 を、過塩素酸リチウムの1Mプ
ロピレンカーボネート溶液を電解液とし、Li極を対極
として、4.2V(vsLi/Li+ )で2時間定電位
電解還元してLiを挿入し、Li0.8 Ca0.6Si
2 (比重:2.8)を得た。
(Example 1) [Preparation of positive electrode] Calcium oxide (CaO) and silicon (S
i) was mixed at a molar ratio of 3: 5, and calcined at 1000 ° C. for 2 hours in a carbon dioxide atmosphere to obtain CaSi 2 . The CaSi 2 was converted to 1 M (mol / mol) of ammonium perchlorate.
Liter) using acetonitrile solution as electrolyte, SCE
(Saturated Calomel Electrode)
V (vs SCE electrode potential) was subjected to constant potential electrolytic oxidation for 2 hours to desorb 40% of Ca to obtain Ca 0.6 Si 2 . Next, this Ca 0.6 Si 2 was subjected to a constant potential electrolytic reduction at 4.2 V (vs Li / Li + ) for 2 hours at 4.2 V (vs Li / Li + ) using a 1 M propylene carbonate solution of lithium perchlorate as an electrolyte and a Li electrode as a counter electrode. Insert Li 0.8 Ca 0.6 Si
2 (specific gravity: 2.8) was obtained.

【0018】このLi0.8 Ca0.6 Si2 (粉末)と、
導電剤としてのアセチレンブラックと、結着剤としての
ポリフッ化ビニリデンとを、重量比90:6:4で混合
し、これにNMP(N−メチル−2−ピロリドン)を加
えて混練してスラリーを調製し、このスラリーを集電体
としてのアルミニウム箔の両面に塗布し、60°Cで2
時間真空乾燥して、正極を作製した。
The Li 0.8 Ca 0.6 Si 2 (powder),
Acetylene black as a conductive agent and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4, NMP (N-methyl-2-pyrrolidone) was added thereto, and the mixture was kneaded to form a slurry. This slurry was applied to both sides of an aluminum foil as a current collector,
After vacuum drying for a time, a positive electrode was prepared.

【0019】〔負極の作製〕平均粒径12μmの黒鉛粉
末(関西熱化学社製、商品コード「NG12」)495
重量部と、結着剤としてのポリイミド5重量部をNMP
1250重量部に溶かした結着剤溶液1255重量部と
を混練してスラリーを調製し、このスラリーを集電体と
しての銅箔の両面に塗布し、60°Cで2時間真空乾燥
して、負極を作製した。
[Preparation of Negative Electrode] 495 graphite powder having an average particle diameter of 12 μm (manufactured by Kansai Thermochemical Co., Ltd., product code “NG12”) 495
Parts by weight and 5 parts by weight of polyimide as a binder
A slurry was prepared by kneading 1255 parts by weight of a binder solution dissolved in 1250 parts by weight, and this slurry was applied to both surfaces of a copper foil as a current collector, and vacuum-dried at 60 ° C. for 2 hours. A negative electrode was manufactured.

【0020】〔非水電解液の調製〕エチレンカーボネー
トとジエチルカーボネートとの体積比1:1の混合溶媒
に、ヘキサフルオロ燐酸リチウム(LiPF6 )を1モ
ル/リットル溶かして非水電解液を調製した。
[Preparation of Nonaqueous Electrolyte] A nonaqueous electrolyte was prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1. .

【0021】〔電池の組立〕以上の正極、負極、非水電
解液、及び、セパレータとしてのポリエチレン製の微多
孔膜などを用いて、AAサイズのリチウム二次電池(本
発明電池)A1を組み立てた。なお、この電池は、正極
の容量を負極の容量に比べて小さくして、電池容量が正
極の容量に支配されるようにした電池である。
[Assembly of Battery] An AA size lithium secondary battery (battery of the present invention) A1 is assembled using the above-described positive electrode, negative electrode, non-aqueous electrolyte, polyethylene microporous membrane as a separator, and the like. Was. In this battery, the capacity of the positive electrode is smaller than the capacity of the negative electrode, so that the battery capacity is controlled by the capacity of the positive electrode.

【0022】図1は、組み立てたリチウム二次電池を模
式的に示す断面図であり、図示のリチウム二次電池A1
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極リード4、負極リード5、正極
蓋6、負極缶7などからなる。
FIG. 1 is a cross-sectional view schematically showing the assembled lithium secondary battery.
Comprises a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode lead 4, a negative electrode lead 5, a positive electrode cover 6, a negative electrode can 7, and the like.

【0023】正極1及び負極2は、セパレータ3を間に
介して渦巻き状に巻き取られ、負極缶(電池缶)7内に
収納されており、正極1は正極リード4を介して正極蓋
6に、また負極2は負極リード5を介して負極缶7に接
続され、電池A1の内部に生じた化学エネルギーを両端
子から電気エネルギーとして外部へ取り出し得るように
なっている。なお、セパレータ3には、封口前に非水電
解液が注入されている。
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween and housed in a negative electrode can (battery can) 7. In addition, the negative electrode 2 is connected to a negative electrode can 7 via a negative electrode lead 5 so that chemical energy generated inside the battery A1 can be taken out from both terminals as electric energy. The separator 3 is filled with a non-aqueous electrolyte before sealing.

【0024】(実施例2)酸化カルシウム(CaO)と
ゲルマニウム(Ge)とをモル比3:5で混合し、炭酸
ガス雰囲気下にて1000°Cで2時間焼成して、Ca
Ge2 を得た。このCaGe2 を、過塩素酸アンモニウ
ムの1Mアセトニトリル溶液を電解液とし、SCE(Sa
turated Calomel Electrode)電極を対極として、1V
(vsSCE電極電位)で2時間定電位電解酸化して6
0%のCaを脱離させて、Ca0.4 Ge2 を得た。次
に、このCa0.4 Ge2 を、過塩素酸リチウムの1Mプ
ロピレンカーボネート溶液を電解液とし、Li極を対極
として、4.2V(vsLi/Li+ )で2時間定電位
電解還元してLiを挿入し、Li1.2 Ca0.4 Ge
2 (比重:2.9)を得た。
Example 2 Calcium oxide (CaO) and germanium (Ge) were mixed at a molar ratio of 3: 5, and calcined at 1000 ° C. for 2 hours in a carbon dioxide atmosphere to obtain a mixture of Ca and Ca.
Ge 2 was obtained. This CaGe 2 was converted to SCE (Sa) by using a 1 M solution of ammonium perchlorate in acetonitrile as an electrolyte.
turated Calomel Electrode) 1V with electrode as counter electrode
(Vs SCE electrode potential) at constant potential electrolytic oxidation for 2 hours
0% of Ca was desorbed to obtain Ca 0.4 Ge 2 . Next, this Ca 0.4 Ge 2 was subjected to constant potential electrolytic reduction at 4.2 V (vs Li / Li + ) for 2 hours at 4.2 V (vs Li / Li + ) using a 1 M propylene carbonate solution of lithium perchlorate as an electrolyte and a Li electrode as a counter electrode. Insert Li 1.2 Ca 0.4 Ge
2 (specific gravity: 2.9) was obtained.

【0025】このLi0.8 Ca0.6 Si2 (粉末)と、
導電剤としてのアセチレンブラックと、結着剤としての
ポリフッ化ビニリデンとを、重量比90:6:4で混合
し、これにNMP(N−メチル−2−ピロリドン)を加
えて混練してスラリーを調製し、このスラリーを集電体
としてのアルミニウム箔の両面に塗布し、60°Cで2
時間真空乾燥して、正極を作製した。この正極を使用し
たこと以外は実施例1と同様にして、AAサイズのリチ
ウム二次電池(本発明電池)A2を組み立てた。
This Li 0.8 Ca 0.6 Si 2 (powder),
Acetylene black as a conductive agent and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4, NMP (N-methyl-2-pyrrolidone) was added thereto, and the mixture was kneaded to form a slurry. This slurry was applied to both sides of an aluminum foil as a current collector,
After vacuum drying for a time, a positive electrode was prepared. An AA-size lithium secondary battery (battery of the present invention) A2 was assembled in the same manner as in Example 1 except that this positive electrode was used.

【0026】(比較例)水酸化リチウム(LiOH)と
水酸化コバルト(Co(OH)2 )とを乳鉢中にてモル
比1:1で混合し、乾燥空気雰囲気下にて750°Cで
20時間焼成して、LiCoO2 (比重:3.0)を得
た。このLiCoO2 (粉末)と、導電剤としてのアセ
チレンブラックと、結着剤としてのポリフッ化ビニリデ
ンとを、重量比90:6:4で混合し、これにNMP
(N−メチル−2−ピロリドン)を加えて混練してスラ
リーを調製し、このスラリーを集電体としてのアルミニ
ウム箔の両面に塗布し、60°Cで2時間真空乾燥し
て、正極を作製した。この正極を使用したこと以外は実
施例1と同様にして、AAサイズのリチウム二次電池
(比較電池)Bを組み立てた。
Comparative Example Lithium hydroxide (LiOH) and cobalt hydroxide (Co (OH) 2 ) were mixed in a mortar at a molar ratio of 1: 1 and dried at 750 ° C. in a dry air atmosphere. After calcination for an hour, LiCoO 2 (specific gravity: 3.0) was obtained. This LiCoO 2 (powder), acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4, and NMP was added thereto.
(N-methyl-2-pyrrolidone) was added and kneaded to prepare a slurry, and this slurry was applied to both sides of an aluminum foil as a current collector, and vacuum-dried at 60 ° C. for 2 hours to produce a positive electrode. did. An AA-size lithium secondary battery (comparative battery) B was assembled in the same manner as in Example 1 except that this positive electrode was used.

【0027】なお、上記の実施例1,2及び比較例で
は、正極活物質の重量を互いに等しくして正極を作製し
た。
In Examples 1 and 2 and Comparative Example, positive electrodes were manufactured with the same weight of the positive electrode active material.

【0028】〔各電池の放電特性〕各電池の放電特性
を、200mAで4.2Vまで充電した後、200mA
で2.8Vまで放電して調べた。結果を図2に示す。図
2は、各電池の放電特性を、縦軸に電池電圧(V)を、
横軸に放電容量(mAh)を、それぞれとって示したグ
ラフである。
[Discharge characteristics of each battery] The discharge characteristics of each battery were measured at 200 mA to 4.2 V and then charged at 200 mA.
And discharged to 2.8V. The results are shown in FIG. FIG. 2 shows the discharge characteristics of each battery, the vertical axis shows the battery voltage (V),
It is a graph which showed the discharge capacity (mAh) on the horizontal axis.

【0029】図2に示すように、本発明電池A1,A2
は、比較電池Bに比べて、格段大きな放電容量を有して
いる。また、放電電圧に関しても、本発明電池A1,A
2は、比較電池Bに比べて、若干高い。このことから、
本発明に係るLi2xCa1-xSi2 (0.3<x≦0.
4)及び/又はLi2yCa1-y Ge2 (0.5<y≦
0.6)からなる正極活物質を使用することにより、高
電圧、且つ高容量のリチウム二次電池が得られることが
分かる。
As shown in FIG. 2, the batteries A1 and A2 of the present invention
Has a significantly larger discharge capacity than the comparative battery B. Also, regarding the discharge voltage, the batteries A1, A
2 is slightly higher than the comparative battery B. From this,
Li 2x Ca 1-x Si 2 (0.3 <x ≦ 0.
4) and / or Li 2y Ca 1-y Ge 2 (0.5 <y ≦
It can be seen that the use of the positive electrode active material composed of 0.6) enables a high-voltage, high-capacity lithium secondary battery to be obtained.

【0030】上記実施例1及び2では、Li2xCa1-x
Si2 (0.3<x≦0.4)及びLi2yCa1-y Ge
2 (0.5<y≦0.6)の中で最も容量の大きいLi
0.8Ca0.6 Si2 又はLi1.2 Ca0.4 Ge2 を正極
活物質として使用したが、他の正極活物質〔Li2xCa
1-x Si2 (0.3<x<0.4)及びLi2yCa1-y
Ge2 (0.5<y<0.6)〕を用いた場合にも、従
来のリチウム・遷移金属複合酸化物を正極活物質に使用
したリチウム二次電池に比べて高容量の電池を得ること
ができることを確認している。
In Examples 1 and 2, Li 2x Ca 1-x
Si 2 (0.3 <x ≦ 0.4) and Li 2y Ca 1-y Ge
2 Li with the largest capacity among (0.5 <y ≦ 0.6)
Although 0.8 Ca 0.6 Si 2 or Li 1.2 Ca 0.4 Ge 2 was used as the positive electrode active material, other positive electrode active materials [Li 2x Ca 2
1-x Si 2 (0.3 <x <0.4) and Li 2y Ca 1-y
Even when Ge 2 (0.5 <y <0.6)] is used, a battery having a higher capacity can be obtained as compared with a lithium secondary battery using a conventional lithium / transition metal composite oxide as a positive electrode active material. Make sure you can.

【0031】[0031]

【発明の効果】本発明に係る正極活物質は、重量及び体
積当たりの実容量が従来のリチウム・遷移金属複合酸化
物に比べて大きく、また電位も高い。このため、本発明
に係る正極活物質を使用することにより、高電圧、且つ
高容量のリチウム二次電池を得ることが可能になる。
The positive electrode active material according to the present invention has a higher real capacity per weight and volume than a conventional lithium / transition metal composite oxide and a higher potential. Therefore, by using the positive electrode active material according to the present invention, a high-voltage, high-capacity lithium secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てたAAサイズのリチウム二次
電池の断面図である。
FIG. 1 is a cross-sectional view of an AA size lithium secondary battery assembled in an example.

【図2】本発明電池及び比較電池の放電特性を示したグ
ラフである。
FIG. 2 is a graph showing discharge characteristics of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

A1 リチウム二次電池(本発明電池) 1 正極 2 負極 3 セパレータ A1 Lithium secondary battery (battery of the present invention) 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−321305(JP,A) 特開 平6−163080(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-321305 (JP, A) JP-A-6-163080 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Li2xCa1-x Si2 (0.3<x≦0.
4)及び/又はLi2yCa1-y Ge2 (0.5<y≦
0.6)からなるリチウム二次電池用の正極活物質。
(1) Li 2x Ca 1-x Si 2 (0.3 <x ≦ 0.
4) and / or Li 2y Ca 1-y Ge 2 (0.5 <y ≦
0.6). A positive electrode active material for a lithium secondary battery comprising:
【請求項2】Li0.8 Ca0.6 Si2 及び/又はLi
1.2 Ca0.4 Ge2 からなるリチウム二次電池用の正極
活物質。
Wherein Li 0.8 Ca 0.6 Si 2 and / or Li
A cathode active material for a lithium secondary battery comprising 1.2 Ca 0.4 Ge 2 .
【請求項3】Li2xCa1-x Si2 (0.3<x≦0.
4)及び/又はLi2yCa1-y Ge2 (0.5<y≦
0.6)からなる正極活物質が使用されているリチウム
二次電池。
3. Li 2x Ca 1-x Si 2 (0.3 <x ≦ 0.
4) and / or Li 2y Ca 1-y Ge 2 (0.5 <y ≦
A lithium secondary battery using the positive electrode active material according to 0.6).
【請求項4】Li0.8 Ca0.6 Si2 及び/又はLi
1.2 Ca0.4 Ge2 からなる正極活物質が使用されてい
るリチウム二次電池。
4. Li 0.8 Ca 0.6 Si 2 and / or Li 0.8 Ca 0.6 Si 2
A lithium secondary battery using a positive electrode active material composed of 1.2 Ca 0.4 Ge 2 .
【請求項5】電気化学的にリチウムイオンを吸蔵及び放
出することが可能な炭素材料が負極のリチウムイオン吸
蔵材として使用されている請求項3又は4記載のリチウ
ム二次電池。
5. The lithium secondary battery according to claim 3, wherein a carbon material capable of electrochemically storing and releasing lithium ions is used as the lithium ion storage material of the negative electrode.
JP21521295A 1995-07-31 1995-07-31 Positive electrode active material and lithium secondary battery using the same Expired - Fee Related JP3258868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21521295A JP3258868B2 (en) 1995-07-31 1995-07-31 Positive electrode active material and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21521295A JP3258868B2 (en) 1995-07-31 1995-07-31 Positive electrode active material and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH0945329A JPH0945329A (en) 1997-02-14
JP3258868B2 true JP3258868B2 (en) 2002-02-18

Family

ID=16668560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21521295A Expired - Fee Related JP3258868B2 (en) 1995-07-31 1995-07-31 Positive electrode active material and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3258868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475968B2 (en) 2009-04-03 2016-10-25 Ashland Licensing And Intellectual Property, Llc Ultraviolet radiation curable pressure sensitive acrylic adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475968B2 (en) 2009-04-03 2016-10-25 Ashland Licensing And Intellectual Property, Llc Ultraviolet radiation curable pressure sensitive acrylic adhesive

Also Published As

Publication number Publication date
JPH0945329A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4949018B2 (en) Lithium secondary battery
US20050266316A1 (en) Non-aqueous electrolyte secondary battery
JPH0945373A (en) Lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JPH08236155A (en) Lithium secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JPH07335261A (en) Lithium secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH05290844A (en) Lithium secondary battery
JPH09147910A (en) Lithium secondary battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH08171936A (en) Lithium secondary battery
JP3519766B2 (en) Non-aqueous secondary battery
JP3258868B2 (en) Positive electrode active material and lithium secondary battery using the same
JP2000228215A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JPH06275273A (en) Nonaqueous secondary battery
JP3373978B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees