WO2010114285A2 - Method for manufacturing vacuum glass, and vacuum glass manufactured by same - Google Patents

Method for manufacturing vacuum glass, and vacuum glass manufactured by same Download PDF

Info

Publication number
WO2010114285A2
WO2010114285A2 PCT/KR2010/001940 KR2010001940W WO2010114285A2 WO 2010114285 A2 WO2010114285 A2 WO 2010114285A2 KR 2010001940 W KR2010001940 W KR 2010001940W WO 2010114285 A2 WO2010114285 A2 WO 2010114285A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass
vacuum
seal member
plate
frit seal
Prior art date
Application number
PCT/KR2010/001940
Other languages
French (fr)
Korean (ko)
Other versions
WO2010114285A3 (en
Inventor
박재홍
Original Assignee
주식회사 에피온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에피온 filed Critical 주식회사 에피온
Publication of WO2010114285A2 publication Critical patent/WO2010114285A2/en
Publication of WO2010114285A3 publication Critical patent/WO2010114285A3/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a vacuum glass manufacturing method made by stacking a plurality of plate glass so that the space between the plate glass is in a vacuum state, and more particularly, to a vacuum glass manufactured by using a plurality of plate glass in a vacuum atmosphere using a low melting point frit glass
  • a metal sheet having a shape that is free of shrinkage expansion in sealing bonding stress does not occur even if the plate glass at both ends shrinks and expands differently due to the temperature difference between the ends of the plurality of plate glass.
  • the present invention relates to a vacuum glass manufacturing method and a vacuum glass manufactured by the same, wherein the metal sheet absorbs the shrinkage and expansion stress of both ends of the glass to prevent the bending and cracking of the vacuum glass.
  • glass is a material that can make the appearance of buildings beautiful and diverse in buildings, but glass has some fatal weaknesses in buildings.
  • the glass increases energy consumption compared to the concrete wall due to the lower insulation rate, and as a result, the higher the specific gravity of the glass in the building, the combination of sunshades such as blinds, verticals and curtains to cover the sun. Therefore, it has a disadvantage that the additional cost increases.
  • glass not only accepts hot direct sunlight from the sun, but also discharges heat inside the room as it is, thereby acting as one of the main sources of energy loss in the building.
  • the heating cost is increased because the heat of the interior of the glass is leaked out as it is, and in the summer, the cooling cost increases because the external heat flows into the interior as it passes through the glass.
  • glass is usually an important medium that penetrates the interior and exterior of a building, but its thermal conductivity is 10 times weaker than that of a wall.
  • the national energy consumption in the domestic building sector accounts for about 30% of the total energy consumption, and about 40% of the building's energy consumption is lost through windows.
  • increasing the insulation rate of the building through is a shortcut to energy saving and can be directly linked to fundamentally strengthening the competitiveness of the national economy.
  • Double-layer glass refers to the compression of a film having a high tensile force between the plate glass and the plate glass or the formation of a dry air layer between the plate glass and the plate glass. In the latter case, a vacuum is formed as a dry air layer formed inside. do.
  • This multilayer glass is a double glass with a space of about 1cm between two layers of glass plates, and is widely used as a window material for high-grade buildings due to its high sunscreen, soundproofing, and insulation effect.
  • FIG. 1 is a perspective view (a) and a cross-sectional view (b) of a vacuum glass according to the prior art.
  • the vacuum glass 90 has a circumference to vacuum-tighten a space where a spacer (support pillar) 94 is disposed between two layers of panes 91 and 92. Sealed with a sealing material 93, the inner air is exhausted through an exhaust tube 95 formed in the plate glass on one surface, and is manufactured under reduced pressure.
  • the hard type Roy glass may be applied as a single plate, but a soft type having excellent radiant heat shielding degree compared to the hard Roy glass.
  • the application of Roy glass was difficult. This requires heating the panes 91 and 92 in the atmosphere to 450 ° C. in the air in order to melt the sealing material 93 between the two layers of panes 91 and 92 in the process of making the vacuum glass. This is because the coating film is oxidized, discolored, and loses the radiation shielding function.
  • the sealing material 93 of the vacuum glass 90 was used as the sealing material 93 of the vacuum glass 90 to seal two layers of glass at about 200 ° C., but in this case, the vacuum glass 90 As the price increases due to the indium or the indium alloy, as well as the internal vacuum may be weakened as the gas remaining without being sufficiently exhausted through the exhaust tube 95 due to low temperature bonding is gradually degassed. There has been a problem that the insulation function is lost after a year.
  • the applicant of the present invention in the KR 10-2007-0101888 to ensure that the sealing bonding of the plate glass and the plate glass in the vacuum atmosphere and the process of discharging the air inside the same at the same time to separate the exhaust process and the exhaust hole and It provides a vacuum glass manufacturing method that does not require the step of forming the exhaust tube.
  • the vacuum glass manufactured by this manufacturing method is clearly easy to manufacture and mass-load, in the case of large glass having a size of 2m to 3m, variations in glass itself, that is, deflexion, are caused by internal and external temperature variations. Deformation occurs and this warpage variation causes cracking, resulting in cracking and cracking of the glass. In addition, the larger the temperature deviation, and the larger the glass size, the greater the difference in thermal expansion between the glass, which is likely to be a serious problem.
  • the present invention has been made to solve the above-mentioned problems, the functional plate glass of any one of a soft type low-E glass, a color conversion (electrochromatic) glass, a reflective glass, or a glass formed with a solar cell substrate Even if the function is not lost even though the temperature difference between both ends of the vacuum glass is large, and the difference in thermal expansion degree of both glass is large, the sheet metal is easily deflected and expanded due to its shape so that it is deformed and broken. It is to provide a vacuum glass which prevents a crack phenomenon.
  • the present invention is to provide a vacuum glass that does not require a separate exhaust process and the formation step of the exhaust hole and the exhaust tube so that the sealing bonding of the plate glass and the plate glass in the vacuum atmosphere and the step of discharging the air inside the same at the same time.
  • a vacuum glass that does not require a separate exhaust process and the formation step of the exhaust hole and the exhaust tube so that the sealing bonding of the plate glass and the plate glass in the vacuum atmosphere and the step of discharging the air inside the same at the same time.
  • Vacuum glass manufacturing method for solving the above problems, the top glass and the bottom glass is spaced at regular intervals and sealed so that the inside is in a vacuum state, the top glass and the bottom glass is different from each other due to the vacuum
  • a vacuum glass manufacturing method comprising a micro spacer provided as an inner space so as not to adhere, the method comprising: a first step of preparing the cleaned lower plate glass; A second step of forming a plurality of spacers on an upper surface of the lower glass; A third step of seating the cleaned upper glass on the spacer; A fourth step of mounting a frit seal member formed of low melting solder glass on one surface of the upper glass and the lower glass; A fifth step of mounting a thin metal plate on an upper surface of the frit seal member; A sixth step of aligning the resultant through the steps and fixing each part with a clamp so that the alignment is not disturbed; A seventh step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber; An eighth step of cooling the metal sheet portion after frit melt sealing
  • the fifth step and the sixth step further comprising the step of seating the formed frit seal member on the seal portion on the metal sheet and seating the cover glass on the frit seal member do.
  • the fourth step and the fifth step further comprising the step of seating the height correction glass on the upper surface of the glass plate upper frit seal member and the frit seal member on the upper surface of the height correction glass; .
  • the frit seal member and the cover glass formed on the seal portion on the metal foil is sequentially stacked.
  • the upper glass and the lower glass is spaced at regular intervals and the inside is sealed to be in a vacuum state, the vacuum glass including a micro spacer provided in the inner space so that the upper glass and the lower glass does not stick to each other due to the vacuum
  • the first step of preparing the cleaned lower plate glass A second step of forming a plurality of spacers on the upper surface of the lower glass; A third step of mounting a frit seal member formed of low melting point solder glass on one surface of the lower plate glass; Step 04 for mounting the thin metal plate on the upper surface of the frit seal member; A fifth step of mounting a frit seal member on the metal sheet and the upper glass seal; A sixteenth step of seating the cleaned upper glass on the result of the fifth step; A seventh step of aligning a result of the steps and fixing each part with a clamp so that the alignment is not disturbed; An eighth step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber; A ninth step of cooling the metal sheet portion after frit melt sealing
  • the method may further include forming a cover glass on the frit seal member positioned at both ends of the lower plate glass between the sixth and seventh steps.
  • Vacuum glass according to the present invention for solving the above problems, the upper glass and the lower glass to be spaced apart at regular intervals and sealed so that the inside is in a vacuum state, so that the upper glass and the lower glass does not stick to each other due to the vacuum
  • the vacuum glass manufacturing method comprising a micro-spacer provided as an inner space, further comprising a frit seal member, a siler getter located between one end of the upper glass and the lower glass, further comprising a getter lead wire extending to the getter Characterized in that.
  • the exhaust port sealing member is further installed in the lower direction adjacent to the exhaust port, characterized in that the heat compression.
  • At this time, at least one of the plate glass is characterized in that any one of the glass, the tempered glass, Roy glass, reflective glass, color conversion glass, and the solar cell substrate is formed.
  • At least one inner surface of the upper glass and the lower glass is characterized in that further forming a functional thin film layer susceptible to oxidation of the atmospheric pressure process.
  • At least one outer surface of the upper glass and the lower glass is further characterized in that the functional thin film layer vulnerable to the oxidation of the atmospheric pressure process, and the outside of the functional thin film layer to form a multi-layered structure.
  • the vacuum glass according to the present invention is applied to any one of soft type low-E glass, electrochromatic glass, reflective glass, or glass on which a solar cell substrate is formed. Even if the function is not lost, the temperature difference between the two ends of the vacuum glass is large, and even though the difference in thermal expansion between the two glasses is large, the sheet metal, which is easily contracted and expanded, is deformed and cracked due to absorption. ) Increases durability by preventing occurrence of phenomena and has the effect of extending stability and lifespan.
  • the vacuum glass according to the present invention has the effect of making the process simpler and easier since there is no need to perform a separate exhaust process, and thus forming the exhaust hole and the exhaust tube or forming the exhaust tube.
  • the vacuum glass according to the present invention even if there is no exhaust hole and exhaust tube or there is an exhaust hole, the surface is flattened due to the absence of the exhaust tube, so that the mass can be loaded more stably. There is.
  • FIG. 1 is a perspective view (a) and a cross-sectional view (b) of a vacuum glass according to the prior art
  • FIGS. 2 and 3 are cross-sectional views showing a first embodiment according to the present invention.
  • 4 and 5 are cross-sectional views showing a second embodiment according to the present invention.
  • 6 and 7 are cross-sectional views showing a third embodiment according to the present invention.
  • FIGS. 8 and 9 are cross-sectional views showing a fourth embodiment according to the present invention.
  • 10 to 13 are cross-sectional views showing a fifth embodiment according to the present invention.
  • 14 and 15 are cross-sectional views showing a sixth embodiment according to the present invention.
  • 16 to 18 are cross-sectional views showing a seventh embodiment according to the present invention.
  • FIG. 19 is a sectional view showing an eighth embodiment according to the present invention.
  • FIG. 20 is a cross-sectional view showing a ninth embodiment according to the present invention.
  • 21 to 23 is a view showing the principle of the metal sheet and various description
  • FIGS. 2 and 3 are a cross-sectional view showing a first embodiment according to the present invention
  • Figures 4 and 5 are a cross-sectional view showing a second embodiment according to the present invention
  • Figure 6 and 7 is a third view according to the present invention
  • 8 and 9 are cross-sectional views showing a fourth embodiment according to the present invention
  • FIGS. 10 to 13 are cross-sectional views showing a fifth embodiment according to the present invention
  • 16 is a cross-sectional view showing a sixth embodiment according to the present invention
  • FIGS. 16 to 18 are cross-sectional views showing a seventh embodiment according to the present invention
  • FIG. 19 is a cross-sectional view showing an eighth embodiment according to the present invention.
  • 20 is a sectional view showing a ninth embodiment according to the present invention
  • Figure 21 to Figure 23 is a view showing the principle of the metal sheet and various description.
  • the manufacturing method for this is as follows.
  • a first step of preparing the cleaned lower platen glass 120 is first performed, and a second spacer 500 is formed on the upper surface of the lower platen glass 120. Carry out the steps. Subsequently, a third step of seating the cleaned upper plate glass 110 on the upper surface of the spacer 500 and a frit seal formed of low melting solder glass on one surface of the upper plate glass 110 and the lower plate glass 120 are performed.
  • a fourth step of seating the member 200, a fifth step of seating the thin metal plate 300 on the upper surface of the frit seal member 200, the alignment of the resultant through the above steps and each part with a clamp so that the alignment is not disturbed A sixth step of fixing, the fixed step of inserting the resultant into the vacuum chamber, and a seventh step of performing a chamber evacuation and heating process, an eighth step of cooling the metal thin plate 300 after the frit melt sealing, and the lower plate If the exhaust port 610 is present in the glass 120, the ninth step of cooling the air temperature to room temperature after sealing the exhaust port is continuously performed.
  • the sealing bonding of the vacuum through the sealing bonding of the upper and lower panes 11 and 120 and the metal thin plate 300 is made easy. To lose.
  • the frit seal member 200 seated on the seal portion on the metal thin plate 300 is seated and the frit seal is formed.
  • the method may further include mounting the cover glass 130 on the member 200.
  • FIG. 5 is the same as the second embodiment except for the case where the exhaust port 610 is not present in the lower glass 120 of the second embodiment.
  • the height correction glass 140 is disposed on the upper surface of the frit seal member 200. And further comprising the step of seating the frit seal member 200 on the upper surface of the height correction glass (140).
  • FIG. 7 is the same as the third embodiment except for the case where the exhaust port 610 is not present in the lower plate glass 120.
  • the third embodiment it is possible to reduce the overall thickness of the vacuum glass 100 manufactured according to the application of the height correction glass 140, it is possible to slim, the thin metal plate 300 and the frit seal member 200 ) The attaching process is easier than the first embodiment.
  • the fourth embodiment includes the frit seal member 200 formed in a seal portion on the metal foil 300 between the fifth and sixth steps in the first embodiment. Laminating the cover glass 130 in sequence.
  • FIG. 9 is the same as the fourth embodiment except that the exhaust port 610 is not present in the lower glass of the fourth embodiment.
  • the frit seal member 200 is preferably a binder and gas contained in the frit to be a raw material is removed and degassed.
  • the degassed frit seal member 200 puts a frit in the form of powder or paste into a crucible or jig in a vacuum chamber, and is heated to perform degassing and debinding. It is produced by molding into a predetermined shape in the state of fluidity. That is, in order to manufacture the frit seal member 200, a flowable frit is extruded through a nozzle and molded in a solder form. Alternatively, the frit seal member 200 is manufactured by pouring a frit in a fluid state into a molding die and molding. Accordingly, the frit seal member 200, which is an adhesive low melting point solder glass, may be prepared. In this case, the shape of the frit seal member 200 is not limited to solder.
  • the metal thin plate 300 is composed of a thin plate structure formed of a metal alloy, which is the plate glass is deformed due to thermal expansion, but fine in the case of the plate glass in the high temperature environment of the upper plate glass 110 and the lower plate glass 120 This is to prevent deflection or cracking in advance by creating a space that can accommodate such a case.
  • the metal thin plate 300 is composed of a metal alloy component, in this case, preferably 52% iron (FE), nickel (NI) 48% component metal alloy, or iron (FE) 54%, nickel (NI) Prepared with 46% component metal alloy.
  • the metal thin plate 300 is a flexible metal strip shape, the coefficient of thermal expansion is configured to be the same or very similar to the plate glass, it is preferable to prevent the bending (deflexion) or crack (crack) phenomenon of the plate glass. Do.
  • the metal thin plate 300 has a flexible flexibility in a metal thin plate shape and is configured by adjusting the metal alloy component so that the thermal expansion coefficient with glass is similar.
  • At least one of the plate glasses 110 and 120 may be formed of any one of tempered glass, Roy glass, reflective glass, color conversion glass, and a glass on which a solar cell substrate is formed.
  • the micro spacer 500 is intended to prevent the problem that the facing glass is bent and stuck or broken due to the vacuum when the space between the glass and the plate glass is sealed with a vacuum as in the conventional vacuum glass. Therefore, the arrangement shape of the micro spacer 500 can be freely deformed within a range that can prevent the bending of the plate glass (110, 120).
  • the vacuum atmosphere is formed by a vacuum chamber capable of evacuating the vacuum degree of 10 -2 Torr to 10 -7 Torr, for example, a heater capable of heating up to 500 °C and It is equipped with a gas inlet valve to increase the pressure.
  • a vacuum chamber capable of evacuating the vacuum degree of 10 -2 Torr to 10 -7 Torr
  • a heater capable of heating up to 500 °C and It is equipped with a gas inlet valve to increase the pressure.
  • the vacuum chamber exhausts the gas introduced therein as much as the target value. Start the heater. At this time, by forming an exhaust hole in one of the two panes of the plate glass, the air inside is sufficiently escaped to form a high vacuum.
  • the degree of vacuum between the pane and the pane is from 10 -3 Torr to 10 -6 Torr.
  • the temperature in the vacuum chamber heated by the heater is different depending on the material of the frit seal member 200, but is usually performed at about 270 °C to 470 °C, preferably 420 °C or more, the holding time Usually 15 minutes is enough. Obviously, shorter times are required at higher temperatures and longer at lower temperatures.
  • the frit seal member 200 is shown in a plate shape, but is not limited to this, and may be all in the shape of a polygonal column such as a square pillar, preferably the alignment of the plate glass (110,120) and the metal thin plate (300) And a shape that is easy to manufacture.
  • the plate glass located on at least one side of the both sides of the resultant may be used that is a hole, which means an embodiment of forming a separate exhaust port 610.
  • the exhaust hole 610 further exhausts the inner air to achieve a target value, which is larger than the hole 610. It is preferable to block the outside and the space between the plate glass (110, 120) by blocking the hole 610 with the exhaust port sealing member 620 and heat compression. In this case, it is preferable to use a degassed frit molded article (not shown) as the medium for bonding the lid glass 130 to the frit seal member 200.
  • the first step of preparing the cleaned lower platen glass 120 is performed, and then the second step of forming a plurality of spacers 500 on the upper surface of the lower platen glass 120 is performed.
  • step 03 of mounting the frit seal member 200 formed of low melting point solder glass on one surface of the lower plate glass 120 the metal thin plate 300 is seated on the top surface of the frit seal member 200.
  • Step 04 the step of mounting the frit seal member 200 in the metal thin plate 300 and the top glass 110, the seal portion (Seoul) 05, the top glass 110 cleaned in the result of the step 05 Step (06) for seating, step (07) for aligning the resultant through the above steps and fixing each part with a clamp so that the alignment is not disturbed, and evacuating and heating the chamber after inserting the fixed result into the vacuum chamber.
  • the eighth step the twelfth step of cooling the metal thin plate 300 after the frit melt sealing, and if the exhaust port 610 is in the lower plate glass 120, the tenth step of cooling to room temperature after sealing the exhaust port continuously To be carried out.
  • FIG. 6C illustrates an embodiment in which the shape of the metal thin plate 300 is opened and one side is tapered and converged like a pencil lead. 6d shows a case where there is no exhaust port.
  • FIG. 6C illustrates an embodiment in which the shape of the metal thin plate 300 is opened and one side is tapered and converged like a pencil lead. 6d shows a case where there is no exhaust port.
  • the cover glass 130 is further formed on the frit seal member 200 positioned on both ends of the lower plate 120 between the sixth and seventh steps. do.
  • the basic manufacturing method is the same as the first to fourth embodiments, the material is also the same, detailed description thereof will be omitted.
  • a seventh embodiment which is another embodiment, will be described with reference to FIGS. 16 to 18.
  • the configuration using a getter 410 or a getter 410 and a getter line 420 is disclosed, which additionally adsorbs the gas desorbed by expansion and contraction during the use of vacuum glass for a long time. It is a configuration to keep it continuously.
  • the getter line 420 can be heated by connecting a power supply capable of simply supplying current from the outside, and the getter line 420 can be heated by a laser or an induction heating device.
  • the getter 410 material When the getter 410 is activated by supplying power for high temperature heating, the getter 410 material may be evaporated and coated in a vacuum glass to apply a non-evaporable getter that does not leave a mark. .
  • the non-evaporable getter is disposed inside the frit seal member 200 disposed on the plate glass, and a current lead line (getter line) for supplying power to the non-evaporable getter is formed from the non-evaporable getter.
  • a current lead line getter line
  • the functional thin film layer 150 may be applicable to Roy glass, color conversion glass, and the like.
  • a functional thin film layer 150 vulnerable to oxidation of an atmospheric pressure process may be further formed on at least one outer surface of the upper glass 110 and the lower glass 120, and the outer surface of the functional thin film layer 150 may be formed in a multilayered structure.
  • a multilayered structure may be This is easy to UV-block and is a structure for improving heat insulation.
  • the bottom of the structure is finished using the multi-layered bottom glass 170 and the multi-layered support 250 for supporting the media is mediated.
  • the plate glass (110,120) is generally used a transparent glass widely used, but is not limited to this, at least one of the glass according to the purpose of tempered glass, low-E glass (low-E glass), reflective glass,
  • the functional plate glass of any one of electrochromatic glass or glass on which a solar cell substrate is formed may be used.
  • 21 to 23 are views illustrating reasons for inserting the thin metal plate 300 and principles for preventing bending and cracking of the plate glass according to various embodiments of the present disclosure.
  • the thin metal plate 300 is to prevent the cracks and warpage of the plate glass by causing the shrinkage in the other portions when the portion is expanded, the shape of the metal thin plate 300 is not only in the shape of bent in a square But it may be a semi-circle, straight, and may be configured in various shapes.
  • the vacuum glass manufacturing method according to the present invention as the plate glass can be applied to the soft (roy) type of glass (excellent heat radiation shielding and heat insulation excellent) than the hard (hard type) Roy glass. This is because there is no fear that the Ag metal coating film of the soft Roy glass is oxidized because the sealing bonding process due to the hot pressing of the plate glass and the plate glass is performed in a vacuum atmosphere.
  • the vacuum glass manufacturing method according to the present invention is functionally lost due to the oxidation of the metal coating film and other characteristic changes in the glass with the color conversion glass, the reflective glass, and the solar cell substrate on which the metal coating film is formed, as with the soft Roy glass.
  • it can be applied within the range without problems.
  • the glass on which the solar cell substrate is formed may become translucent or opaque due to the formation of the solar cell substrate.
  • the glass on which the solar cell substrate is formed is distributed only to a part of the entire area of the vacuum glass to be manufactured so that the view through this is achieved. It is desirable to secure.
  • the vacuum glass according to the present invention does not lose its function even when the functional sheet glass of soft type low-E glass, electrochromatic glass, reflecting glass, or glass on which a solar cell substrate is formed is applied.
  • the sheet metal having the shape of easy expansion and contraction is absorbed by the metal sheet so that the deflection and cracking do not occur. This increases the durability and has the effect of extending stability and lifespan, and there is no need to perform a separate exhaust process, and thus forming the exhaust hole and the exhaust tube or forming the exhaust tube, thereby simplifying and facilitating the process. .
  • the vacuum glass according to the present invention increases durability, can be used in various fields, and can be said to be an effective invention in general use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention relates to a vacuum glass manufacturing method that manufactures vacuum glass by overlapping a plurality of panes such that vacuum gaps form between the panes, and to vacuum glass manufactured by same. More particularly, an expandable and contractible thin metal plate is inserted during hermetic bonding of the plurality of panes using low-melting frit glass, so that stress is not generated even though the panes disposed at both ends of the plurality of panes of the vacuum glass contract and expand in different manners due to a temperature difference between both ends of the panes. Even if the temperature varies greatly within the vacuum glass, the thin metal plate absorbs the stress caused by contraction and expansion at both ends of the glass, and can prevent the generation of deflection and cracks in the vacuum glass. As hermetic bonding of low-melting glass is performed under a high vacuum atmosphere, the vacuum glass does not lose its functionality even if functional panes of the type which lose functionality due to oxidization, such as soft-type low-E glass, reflective glass, electrochromatic glass or glass with a solar cell substrate, are used.

Description

진공 유리 제조방법 및 이에 의하여 제조되는 진공유리Vacuum glass manufacturing method and vacuum glass produced thereby
본 발명은 판유리 사이의 공간이 진공상태가 되도록 복수의 판유리를 겹쳐서 만든 진공유리 제조방법 및 이에 의하여 제조되는 진공유리에 관한 것으로, 더욱 상세하게는 진공 분위기에서 복수의 판유리를 저 융점 frit 유리를 사용한 밀봉 접합시킴에 있어 수축 팽창이 자유로운 형상의 금속 박판을 삽입함으로써 복수의 판유리 양단의 온도차이에 의해 양단의 판유리가 서로 달리 수축과 팽창을 하더라도 stress가 발생치 않아, 진공 유리 양단에서의 온도 차이가 크더라도 양단 유리의 수축과 팽창 stress를 금속박판이 흡수함으로써 진공유리의 휨(deflexion) 및 깨짐(crack) 현상이 발생하지 않도록 할 수 있는 진공유리 제조방법 및 이에 의하여 제조되는 진공유리에 관한 것이다.The present invention relates to a vacuum glass manufacturing method made by stacking a plurality of plate glass so that the space between the plate glass is in a vacuum state, and more particularly, to a vacuum glass manufactured by using a plurality of plate glass in a vacuum atmosphere using a low melting point frit glass By inserting a metal sheet having a shape that is free of shrinkage expansion in sealing bonding, stress does not occur even if the plate glass at both ends shrinks and expands differently due to the temperature difference between the ends of the plurality of plate glass. The present invention relates to a vacuum glass manufacturing method and a vacuum glass manufactured by the same, wherein the metal sheet absorbs the shrinkage and expansion stress of both ends of the glass to prevent the bending and cracking of the vacuum glass.
요즘 신축하는 아파트, 주상복합, 사무용 빌딩 등 크고 작은 모든 건축물은 그 외관을 미려하게 함과 동시에 확 트인 전망을 확보하기 위해 건물 외벽 전체를 또는 대부분을 유리로 마감 처리하는 추세에 있다.Nowadays, all large and small buildings such as new apartments, residential complexes, office buildings, etc., have a tendency to finish the entire or most of the exterior walls of glass in order to have a beautiful appearance and to have a clear view.
이처럼 유리는 건축물에 있어서 건물의 외형을 아름답고 다양하게 해 줄 수 있는 재료이나, 건축물에 있어서 유리는 몇 가지 치명적인 약점을 가지고 있다.As such, glass is a material that can make the appearance of buildings beautiful and diverse in buildings, but glass has some fatal weaknesses in buildings.
즉, 상기 유리는 단열율이 떨어짐으로 인하여 콘크리트 벽에 비해 에너지의 소모를 증가시키게 되고, 이로 인해 건축물에서 유리의 비중이 높을수록 태양을 가 릴 블라인드, 버티컬, 커튼과 같은 차양장치를 겸비해야 하기 때문에 부대비용이 증가한다는 단점을 갖는 것이다.That is, the glass increases energy consumption compared to the concrete wall due to the lower insulation rate, and as a result, the higher the specific gravity of the glass in the building, the combination of sunshades such as blinds, verticals and curtains to cover the sun. Therefore, it has a disadvantage that the additional cost increases.
특히, 유리는 태양으로부터 뜨거운 직사광선을 그대로 받아들일 뿐만 아니라 실내의 열을 그대로 밖으로 유출시킴으로써 건물 내에서 에너지 손실의 주요 원인 중 하나로 작용하게 된다.In particular, glass not only accepts hot direct sunlight from the sun, but also discharges heat inside the room as it is, thereby acting as one of the main sources of energy loss in the building.
즉, 겨울철에는 유리로 인한 실내의 열이 밖으로 그대로 유출되기 때문에 난방비가 올라가고, 여름철에는 외부의 열이 유리를 통과하여 그대로 실내로 유입되기 때문에 냉방비가 상승하는 원인으로 작용하는 것이다.That is, in winter, the heating cost is increased because the heat of the interior of the glass is leaked out as it is, and in the summer, the cooling cost increases because the external heat flows into the interior as it passes through the glass.
다시 말해, 통상 유리를 이용한 (window)는 건물 내외부를 관통하는 중요한 매개체이나 이 는 벽체에 비해 열전도율이 10 배 이상 취약하다고 할 수 있다.In other words, glass is usually an important medium that penetrates the interior and exterior of a building, but its thermal conductivity is 10 times weaker than that of a wall.
특히, 국내 건물 부분에서 이루어지는 국가 에너지 총 소비는 전체 에너지 소비의 약 30 %를 차지하고, 건물의 에너지 소모분의 약 40 %가 창을 통해 손실되는 바, 우리나라와 같이 에너지 수입이 98 %에 이르고 있는 현실을 살펴볼 때, 를 통한 건축물의 단열율을 높이는 것은 에너지 절약의 지름길이며, 나아가 국가 경제의 경쟁력을 근본적으로 강화하는 데 직결된다 할 수 있을 것이다.In particular, the national energy consumption in the domestic building sector accounts for about 30% of the total energy consumption, and about 40% of the building's energy consumption is lost through windows. In view of the reality, increasing the insulation rate of the building through is a shortcut to energy saving and can be directly linked to fundamentally strengthening the competitiveness of the national economy.
이에 최근에는 단겹(혹은 단층)의 유리에서 복겹(혹은 복층)의 유리로 변경되는 추세에 있다.Recently, there has been a trend to change from single layer (or single layer) glass to double layer (or multilayer) glass.
복겹의 유리란 판유리와 판유리 사이에 인장력이 큰 필름을 넣고 압착시키거나 판유리와 판유리 사이에 건조한 공기층을 형성한 것을 이르며, 특히 후자의 경우 내부에 형성하는 건조한 공기층으로서 진공을 형성한 것을 진공유리라고 한다. 이러한 복층유리는 두 겹의 유리판 사이에 1cm 정도의 공간을 둔 이중 유리로 태양광 차단과 방음 및 단열 효과가 높아 고급 건축물의 창문 자재로 많이 쓰인다. Double-layer glass refers to the compression of a film having a high tensile force between the plate glass and the plate glass or the formation of a dry air layer between the plate glass and the plate glass. In the latter case, a vacuum is formed as a dry air layer formed inside. do. This multilayer glass is a double glass with a space of about 1cm between two layers of glass plates, and is widely used as a window material for high-grade buildings due to its high sunscreen, soundproofing, and insulation effect.
도 1은 종래 기술에 따른 진공 유리를 도시한 사시도(a) 및 단면도(b)이다.1 is a perspective view (a) and a cross-sectional view (b) of a vacuum glass according to the prior art.
도면에 도시된 바와 같이, 종래 기술에 따른 진공 유리(90)는 두 겹의 판유리(91, 92) 사이에 스페이서(spacer; support pillar, 94)가 배치된 공간을 진공으로 기밀하기 위해 그 둘레가 실링재(93)로 밀봉되고, 일면의 판유리에 형성된 배기튜브(95)를 통해 그 내측 공기를 배기하여 감압상태로 제조된다.As shown in the figure, the vacuum glass 90 according to the prior art has a circumference to vacuum-tighten a space where a spacer (support pillar) 94 is disposed between two layers of panes 91 and 92. Sealed with a sealing material 93, the inner air is exhausted through an exhaust tube 95 formed in the plate glass on one surface, and is manufactured under reduced pressure.
그러나, 이러한 진공유리(90)는 로이유리(low-E glass)를 적용하는 경우 하드(hard type) 로이유리는 단판으로 적용 가능하지만, 하드 로이유리에 비해 복사열 차폐도가 우수한 소프트(soft type) 로이유리를 적용하는 데는 어려움이 있었다. 이는 진공 유리를 만드는 과정에서 두 겹의 판유리(91, 92) 사이의 실링재(93)를 용융시키기 위해 대기 중에서 통상 450 ℃까지 판유리(91, 92)를 가열해야 하는데, 이때 소프트 로이유리의 Ag 금속 코팅막이 산화되어 변색되고 복사열 차폐 기능을 상실하기 때문이다.However, when the low-E glass is applied to the vacuum glass 90, the hard type Roy glass may be applied as a single plate, but a soft type having excellent radiant heat shielding degree compared to the hard Roy glass. The application of Roy glass was difficult. This requires heating the panes 91 and 92 in the atmosphere to 450 ° C. in the air in order to melt the sealing material 93 between the two layers of panes 91 and 92 in the process of making the vacuum glass. This is because the coating film is oxidized, discolored, and loses the radiation shielding function.
또한, 색변환(electrochromatic) 유리 또는 태양전지 기판이 형성된 유리를 적용하는 데 있어서도 상기 소프트 로이 유리와 마찬가지로 그에 따른 금속 코팅막이 산화되는 문제점이 있었다.In addition, in the application of electrochromatic glass or glass on which a solar cell substrate is formed, there is a problem in that the metal coating film is oxidized similarly to the soft Roy glass.
이를 회피하기 위해 상기 진공 유리(90)의 실링재(93)로서 저 융점의 인듐(indium) 또는 인듐 합금을 사용하여 약 200 ℃에서 두 겹의 판유리를 밀봉하기도 하였으나, 이 경우의 진공 유리(90)는 상기 인듐 또는 인듐 합금으로 인해 가격이 상승함은 물론, 저온 접합으로 인해 상기 배기튜브(95)를 통해 충분히 배기되지 않고 남아 있던 가스가 서서히 탈 가스화되면서 내부 진공이 약해질 수 있으며, 이로 인해 수 년 만에 단열 기능을 상실하기도 하는 문제점이 있었다.In order to avoid this, a low melting point of indium (indium) or an indium alloy was used as the sealing material 93 of the vacuum glass 90 to seal two layers of glass at about 200 ° C., but in this case, the vacuum glass 90 As the price increases due to the indium or the indium alloy, as well as the internal vacuum may be weakened as the gas remaining without being sufficiently exhausted through the exhaust tube 95 due to low temperature bonding is gradually degassed. There has been a problem that the insulation function is lost after a year.
또한, 상기 진공 유리(90)는 내부 진공을 위해 별도의 배기 과정을 거쳐야 하므로 제조 과정이 까다롭고, 배기를 위해 형성된 배기튜브(95)가 돌출되어 있으므로 대량 적재에도 어려움이 있었다.In addition, since the vacuum glass 90 has to go through a separate exhaust process for the internal vacuum, the manufacturing process is difficult, and since the exhaust tube 95 formed for the exhaust is protruded, there is a difficulty in mass loading.
이러한 단점을 극복하기 위하여 본원 발명의 출원인은 KR 10-2007-0101888 에서 진공 분위기에서 판유리와 판유리의 밀봉 접합 및 그 내측 공기를 배출시키는 공정이 동시에 이루어지도록 하여 별도의 배기 공정과 그에 따른 배기공 및 배기튜브의 형성 단계가 필요 없는 진공유리 제조방법을 제공하고 있다.In order to overcome this disadvantage, the applicant of the present invention in the KR 10-2007-0101888 to ensure that the sealing bonding of the plate glass and the plate glass in the vacuum atmosphere and the process of discharging the air inside the same at the same time to separate the exhaust process and the exhaust hole and It provides a vacuum glass manufacturing method that does not require the step of forming the exhaust tube.
이러한 제조방법에 의하여 제작된 진공유리는 제조 공정 및 대량 적재에 분명히 용이한 구조이기는 하나, 2m 내지 3m 크기의 대형 유리인 경우에는 내부 및 외부 온도 편차에 의하여 유리 자체의 변동, 즉 휨(deflexion) 변형이 생기게 되고 이러한 휨 변동은 깨짐(crack)을 유발시켜 유리의 균열 및 깨짐을 가져오게 된다. 그리고, 온도 편차가 크면 클수록, 또 유리 사이즈가 크면 클수록 유리 간 열팽창 차이가 커져 심각한 문제점으로 대두될 여지가 크다 할 것이다.Although the vacuum glass manufactured by this manufacturing method is clearly easy to manufacture and mass-load, in the case of large glass having a size of 2m to 3m, variations in glass itself, that is, deflexion, are caused by internal and external temperature variations. Deformation occurs and this warpage variation causes cracking, resulting in cracking and cracking of the glass. In addition, the larger the temperature deviation, and the larger the glass size, the greater the difference in thermal expansion between the glass, which is likely to be a serious problem.
본 발명은 상기 종래의 문제점을 해결하기 위하여 안출된 것으로, 소프트 로이유리(soft type low-E glass), 색변환(electrochromatic) 유리, 반사유리, 또는 태양전지 기판이 형성된 유리 중 어느 하나의 기능성 판유리를 적용하여도 기능이 상실되지 않으면서, 진공 유리 양단에서의 온도 차이가 커 양 유리의 열 팽창 정도 차이가 크더라도 수축팽창이 용이한 형상의 금속 박판이 그를 흡수함으로 인해 휨(deflexion) 및 깨짐(crack) 현상이 발생하지 않도록 하는 진공 유리를 제공하는 데 있다. The present invention has been made to solve the above-mentioned problems, the functional plate glass of any one of a soft type low-E glass, a color conversion (electrochromatic) glass, a reflective glass, or a glass formed with a solar cell substrate Even if the function is not lost even though the temperature difference between both ends of the vacuum glass is large, and the difference in thermal expansion degree of both glass is large, the sheet metal is easily deflected and expanded due to its shape so that it is deformed and broken. It is to provide a vacuum glass which prevents a crack phenomenon.
또한, 본 발명은 진공 분위기에서 판유리와 판유리의 밀봉 접합 및 그 내측 공기를 배출시키는 공정이 동시에 이루어지도록 하여 별도의 배기공정과 그에 따른 배기공 및 배기튜브의 형성 단계가 필요 없는 진공 유리를 제공함에 다른 목적이 있다.In addition, the present invention is to provide a vacuum glass that does not require a separate exhaust process and the formation step of the exhaust hole and the exhaust tube so that the sealing bonding of the plate glass and the plate glass in the vacuum atmosphere and the step of discharging the air inside the same at the same time. There is another purpose.
상기 과제를 해결하기 위한 본 발명에 따른 진공유리 제조 방법은, 상판유리와 하판유리가 일정한 간격으로 이격되도록 하고 그 내측이 진공상태가 되도록 밀봉하되, 상기 상판유리 및 하판유리가 진공으로 인해 서로 달라 붙지 않도록 내측 공간으로 구비되는 마이크로 스페이서를 포함하는 진공유리 제조방법에 있어서, 세정된 상기 하판유리를 준비하는 제1 단계; 상기 하판유리 상면에 다수 스페이서를 구성하는 제2 단계; 상기 스페이서 상면에 세정된 상부유리를 안착시키는 제3 단계; 상기 상판유리 및 하판유리 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재를 안착시키는 제4 단계; 상기 프릿실 부재 상면에 금속 박판을 안착시키는 제5 단계; 상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제6 단계; 상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제7 단계; 상기 금속 박판 부위를 프릿 용융 밀봉 후 냉각시키는 제8 단계; 및 상기 하판유리에 배기구가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제9 단계;를 포함하는 것을 특징으로 한다.Vacuum glass manufacturing method according to the present invention for solving the above problems, the top glass and the bottom glass is spaced at regular intervals and sealed so that the inside is in a vacuum state, the top glass and the bottom glass is different from each other due to the vacuum A vacuum glass manufacturing method comprising a micro spacer provided as an inner space so as not to adhere, the method comprising: a first step of preparing the cleaned lower plate glass; A second step of forming a plurality of spacers on an upper surface of the lower glass; A third step of seating the cleaned upper glass on the spacer; A fourth step of mounting a frit seal member formed of low melting solder glass on one surface of the upper glass and the lower glass; A fifth step of mounting a thin metal plate on an upper surface of the frit seal member; A sixth step of aligning the resultant through the steps and fixing each part with a clamp so that the alignment is not disturbed; A seventh step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber; An eighth step of cooling the metal sheet portion after frit melt sealing; And a ninth step of cooling to room temperature after the exhaust port is sealed when there is an exhaust port in the lower plate glass.
여기에서, 상기 제5 단계와 제6 단계 사이에, 상기 금속 박판 위 실(seal) 부위에 성형된 프릿실 부재를 안착시키고 상기 프릿실 부재 위에 덮개유리를 안착하는 단계를 더 포함하는 것을 특징으로 한다.Here, between the fifth step and the sixth step, further comprising the step of seating the formed frit seal member on the seal portion on the metal sheet and seating the cover glass on the frit seal member do.
여기에서, 상기 제4 단계와 제5 단계 사이에, 상기 하판유리 상면 프릿실 부재 상면에 높이보정유리를 안착하고 상기 높이보정유리 상면에 프릿실 부재를 안착시키는 단계를 더 포함하는 것을 특징으로 한다.Here, between the fourth step and the fifth step, further comprising the step of seating the height correction glass on the upper surface of the glass plate upper frit seal member and the frit seal member on the upper surface of the height correction glass; .
이 때, 상기 제5 단계 및 제6 단계 사이에, 금속박판 위 실(seal) 부위에 성형된 프릿실 부재 및 덮개유리를 순서적으로 적층한 것을 특징으로 한다.At this time, between the fifth step and the sixth step, the frit seal member and the cover glass formed on the seal portion on the metal foil is sequentially stacked.
또한, 상판유리와 하판유리가 일정한 간격으로 이격되도록 하고 그 내측이 진공상태가 되도록 밀봉하되, 상기 상판유리 및 하판유리가 진공으로 인해 서로 달라 붙지 않도록 내측 공간으로 구비되는 마이크로 스페이서를 포함하는 진공유리 제조방법에 있어서, 세정된 상기 하판유리를 준비하는 제01 단계; 상기 하판유리 상면에 다수 스페이서를 구성하는 제02 단계; 상기 하판유리 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재를 안착시키는 제03 단계; 상기 프릿실 부재 상면에 금속 박판을 안착시키는 제04 단계; 상기 금속 박판과 상부유리 실(seal) 부위에 프릿실 부재를 안착시키는 제05 단계; 상기 제05 단계를 마친 결과물에 세정된 상부유리를 안착시키는 제06 단계; 상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제07 단계; 상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제08 단계; 상기 금속 박판 부위를 프릿 용융 밀봉 후 냉각시키는 제09 단계; 및 상기 하판유리에 배기구가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제10 단계;를 포함하는 것을 특징으로 한다.In addition, the upper glass and the lower glass is spaced at regular intervals and the inside is sealed to be in a vacuum state, the vacuum glass including a micro spacer provided in the inner space so that the upper glass and the lower glass does not stick to each other due to the vacuum In the manufacturing method, the first step of preparing the cleaned lower plate glass; A second step of forming a plurality of spacers on the upper surface of the lower glass; A third step of mounting a frit seal member formed of low melting point solder glass on one surface of the lower plate glass; Step 04 for mounting the thin metal plate on the upper surface of the frit seal member; A fifth step of mounting a frit seal member on the metal sheet and the upper glass seal; A sixteenth step of seating the cleaned upper glass on the result of the fifth step; A seventh step of aligning a result of the steps and fixing each part with a clamp so that the alignment is not disturbed; An eighth step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber; A ninth step of cooling the metal sheet portion after frit melt sealing; And a tenth step of cooling to room temperature after sealing the exhaust port if there is an exhaust port in the lower plate glass.
여기에서, 상기 제06 단계 및 제07 단계 사이에 상기 하판유리 양측 끝단 상부에 위치한 프릿실 부재 위에 덮개유리를 형성하는 단계를 더 포함하는 것을 특징으로 한다.The method may further include forming a cover glass on the frit seal member positioned at both ends of the lower plate glass between the sixth and seventh steps.
상기 과제를 해결하기 위한 본 발명에 따른 진공유리는, 상판유리와 하판유리가 일정한 간격으로 이격되도록 하고 그 내측이 진공상태가 되도록 밀봉하되, 상기 상판유리 및 하판유리가 진공으로 인해 서로 달라 붙지 않도록 내측 공간으로 구비되는 마이크로 스페이서를 포함하는 진공유리 제조방법에 있어서, 상기 상부유리 및 하부유리 일측 끝단 사이에 위치하는 프릿실 부재 사이러 게터를 더 설치하고, 상기 게터에 연장되는 게터 리드선을 더 구성하는 것을 특징으로 한다.Vacuum glass according to the present invention for solving the above problems, the upper glass and the lower glass to be spaced apart at regular intervals and sealed so that the inside is in a vacuum state, so that the upper glass and the lower glass does not stick to each other due to the vacuum In the vacuum glass manufacturing method comprising a micro-spacer provided as an inner space, further comprising a frit seal member, a siler getter located between one end of the upper glass and the lower glass, further comprising a getter lead wire extending to the getter Characterized in that.
또한, 상기 하판유리 일측 하면에 배기구가 형성되어 있는 경우에는 상기 배기구에 인접하는 하부 방향으로 배기구 밀봉 부재를 더 설치하여 가열 압착하는 것을 특징으로 한다.In addition, when the exhaust port is formed on one lower surface of the lower plate glass, the exhaust port sealing member is further installed in the lower direction adjacent to the exhaust port, characterized in that the heat compression.
이 때, 상기 판유리 중 적어도 어느 하나는 강화유리, 로이유리, 반사유리, 색변환 유리, 및 태양전지기판이 형성된 유리 중 어느 하나인 것을 특징으로 한다.At this time, at least one of the plate glass is characterized in that any one of the glass, the tempered glass, Roy glass, reflective glass, color conversion glass, and the solar cell substrate is formed.
또한, 상기 상부유리 및 하부유리의 적어도 내측 한 면에는 대기압 공정의 산화에 취약한 기능성 박막층을 더 형성하는 것을 특징으로 한다.In addition, at least one inner surface of the upper glass and the lower glass is characterized in that further forming a functional thin film layer susceptible to oxidation of the atmospheric pressure process.
또한, 상기 상부유리 및 하부유리의 적어도 외측 일면에는 대기압 공정의 산화에 취약한 기능성 박막층을 더 형성하고, 상기 기능성 박막층 외부를 다시 복층화한 구조로 형성하는 것을 특징으로 한다.In addition, at least one outer surface of the upper glass and the lower glass is further characterized in that the functional thin film layer vulnerable to the oxidation of the atmospheric pressure process, and the outside of the functional thin film layer to form a multi-layered structure.
이상에서 살펴본 바와 같이, 본 발명에 따른 진공 유리는 소프트 로이유리(soft type low-E glass), 색변환(electrochromatic) 유리, 반사유리, 또는 태양전지 기판이 형성된 유리 중 어느 하나의 기능성 판유리를 적용하여도 기능이 상실되지 않으면서, 진공 유리 양단에서의 온도 차이가 커 양 유리의 열 팽창 정도 차이가 크더라도 수축팽창이 용이한 형상의 금속 박판이 그를 흡수함으로 인해 휨(deflexion) 및 깨짐 (crack) 현상이 발생하지 않도록 하여 내구성을 증대시키며 안정성 및 수명을 연장하는 효과를 가진다.As described above, the vacuum glass according to the present invention is applied to any one of soft type low-E glass, electrochromatic glass, reflective glass, or glass on which a solar cell substrate is formed. Even if the function is not lost, the temperature difference between the two ends of the vacuum glass is large, and even though the difference in thermal expansion between the two glasses is large, the sheet metal, which is easily contracted and expanded, is deformed and cracked due to absorption. ) Increases durability by preventing occurrence of phenomena and has the effect of extending stability and lifespan.
또한, 본 발명에 따른 진공 유리는 별도의 배기공정과 그에 따른 배기공 및 배기튜브의 형성 단계 또는 배기튜브의 형성 단계를 실행할 필요가 없어져 공정이 보다 간단하고 용이해지는 효과가 있다.In addition, the vacuum glass according to the present invention has the effect of making the process simpler and easier since there is no need to perform a separate exhaust process, and thus forming the exhaust hole and the exhaust tube or forming the exhaust tube.
또한, 본 발명에 따른 진공 유리는 배기공 및 배기튜브가 없거나 배기공이 있더라도 배기튜브가 없어짐으로 인해 표면이 편평해져 보다 안정적으로 대량 적재할 수 있으며, 내부의 진공도가 장기간 유지되어 수명이 길어지는 효과가 있다.In addition, the vacuum glass according to the present invention, even if there is no exhaust hole and exhaust tube or there is an exhaust hole, the surface is flattened due to the absence of the exhaust tube, so that the mass can be loaded more stably. There is.
도 1은 종래 기술에 따른 진공유리를 도시한 사시도(a) 및 단면도(b),1 is a perspective view (a) and a cross-sectional view (b) of a vacuum glass according to the prior art,
도 2 및 도 3은 본 발명에 따른 제1 실시 예를 도시한 단면도 2 and 3 are cross-sectional views showing a first embodiment according to the present invention.
도 4 및 도 5는 본 발명에 따른 제2 실시 예를 도시한 단면도 4 and 5 are cross-sectional views showing a second embodiment according to the present invention.
도 6 및 도 7은 본 발명에 따른 제3 실시 예를 도시한 단면도 6 and 7 are cross-sectional views showing a third embodiment according to the present invention.
도 8 및 도 9는 본 발명에 따른 제4 실시 예를 도시한 단면도 8 and 9 are cross-sectional views showing a fourth embodiment according to the present invention.
도 10 내지 도 13은 본 발명에 따른 제5 실시 예를 도시한 단면도 10 to 13 are cross-sectional views showing a fifth embodiment according to the present invention.
도 14 및 도 15은 본 발명에 따른 제6 실시 예를 도시한 단면도 14 and 15 are cross-sectional views showing a sixth embodiment according to the present invention.
도 16 내지 도 18은 본 발명에 따른 제7 실시 예를 도시한 단면도 16 to 18 are cross-sectional views showing a seventh embodiment according to the present invention.
도 19는 본 발명에 따른 제8 실시 예를 도시한 단면도19 is a sectional view showing an eighth embodiment according to the present invention;
도 20은 본 발명에 따른 제9 실시 예를 도시한 단면도20 is a cross-sectional view showing a ninth embodiment according to the present invention.
도 21 내지 도 23은 금속박판 원리 및 다양한 설명 도시한 도면21 to 23 is a view showing the principle of the metal sheet and various description
<도면의 주요 부분에 대한 부호설명><Code Description of Main Parts of Drawing>
110: 상판유리 120: 하판유리110: top glass 120: bottom glass
130: 덮개유리 140: 높이보정유리130: cover glass 140: height correction glass
200: 프릿실부재 300: 금속박판200: frit seal member 300: metal sheet
400: 게터 500: 스페이서 400: getter 500: spacer
610: 배기구멍 620: 배기구 밀봉부재610: exhaust hole 620: exhaust port sealing member
이하, 본 발명의 바람직한 실시 예를 첨부한 도면에 의거하여 더욱 상세하게 설명하면 다음과 같다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention in more detail as follows.
도 2 및 도 3은 본 발명에 따른 제1 실시 예를 도시한 단면도, 도 4 및 도 5는 본 발명에 따른 제2 실시 예를 도시한 단면도, 도 6 및 도 7은 본 발명에 따른 제3 실시 예를 도시한 단면도, 도 8 및 도 9는 본 발명에 따른 제4 실시 예를 도시한 단면도, 도 10 내지 도 13은 본 발명에 따른 제5 실시 예를 도시한 단면도, 도 14 및 도 15는 본 발명에 따른 제6 실시 예를 도시한 단면도, 도 16 내지 도 18은 본 발명에 따른 제7 실시 예를 도시한 단면도, 도 19는 본 발명에 따른 제8 실시 예를 도시한 단면도, 도 20은 본 발명에 따른 제9 실시 예를 도시한 단면도, 도 21내지 도 23은 금속박판 원리 및 다양한 설명 도시한 도면이다.2 and 3 are a cross-sectional view showing a first embodiment according to the present invention, Figures 4 and 5 are a cross-sectional view showing a second embodiment according to the present invention, Figure 6 and 7 is a third view according to the present invention 8 and 9 are cross-sectional views showing a fourth embodiment according to the present invention, FIGS. 10 to 13 are cross-sectional views showing a fifth embodiment according to the present invention, FIGS. 14 and 15. 16 is a cross-sectional view showing a sixth embodiment according to the present invention, FIGS. 16 to 18 are cross-sectional views showing a seventh embodiment according to the present invention, and FIG. 19 is a cross-sectional view showing an eighth embodiment according to the present invention. 20 is a sectional view showing a ninth embodiment according to the present invention, Figure 21 to Figure 23 is a view showing the principle of the metal sheet and various description.
<제1 실시예 내지 제4 실시 예><First to Fourth Embodiments>
먼저, 이에 대한 제조방법은 다음과 같다.First, the manufacturing method for this is as follows.
도 2에서와 같이, 제1 실시 예의 경우, 먼저, 세정된 상기 하판유리(120)를 준비하는 제1 단계를 실시하고, 상기 하판유리(120) 상면에 다수 스페이서(500)를 구성하는 제2 단계를 실시한다. 이어서, 상기 스페이서(500) 상면에 세정된 상판유리(110)를 안착시키는 제3 단계 및 상기 상판유리(110) 및 하판유리(120) 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재(200)를 안착시키는 제4 단계, 상기 프릿실 부재(200) 상면에 금속 박판(300)을 안착시키는 제5 단계, 상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제6 단계, 상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제7 단계, 상기 금속 박판(300) 부위를 프릿 용융 밀봉 후 냉각시키는 제8 단계 및 상기 하판유리(120)에 배기구(610)가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제9 단계를 연속적으로 실행한다.As shown in FIG. 2, in the first embodiment, a first step of preparing the cleaned lower platen glass 120 is first performed, and a second spacer 500 is formed on the upper surface of the lower platen glass 120. Carry out the steps. Subsequently, a third step of seating the cleaned upper plate glass 110 on the upper surface of the spacer 500 and a frit seal formed of low melting solder glass on one surface of the upper plate glass 110 and the lower plate glass 120 are performed. A fourth step of seating the member 200, a fifth step of seating the thin metal plate 300 on the upper surface of the frit seal member 200, the alignment of the resultant through the above steps and each part with a clamp so that the alignment is not disturbed A sixth step of fixing, the fixed step of inserting the resultant into the vacuum chamber, and a seventh step of performing a chamber evacuation and heating process, an eighth step of cooling the metal thin plate 300 after the frit melt sealing, and the lower plate If the exhaust port 610 is present in the glass 120, the ninth step of cooling the air temperature to room temperature after sealing the exhaust port is continuously performed.
상기 제7 단계에서는, 진공챔버 내부 진공분위기에서 가열압착하여 그 내부의 가스를 배기시킴과 동시에 상하 판유리(11, 120)와 금속 박판(300)의 밀봉 접합을 통한 진공의 밀봉 접합이 용이하게 이루어지도록 한다.In the seventh step, by heat-compressing in the vacuum atmosphere inside the vacuum chamber to exhaust the gas therein and at the same time, the sealing bonding of the vacuum through the sealing bonding of the upper and lower panes 11 and 120 and the metal thin plate 300 is made easy. To lose.
도 3은, 상기 제1 실시 예 중 하판유리(120)에 배기구(610)가 없는 경우만 제외하고는 제1 실시 예와 동일하다.3 is the same as in the first embodiment except that the exhaust port 610 is not provided in the lower plate 120 of the first embodiment.
도 4에서와 같이, 제2 실시 예는, 상기 제5 단계와 제6 단계 사이에, 상기 금속 박판(300) 위 실(seal) 부위에 성형된 프릿실 부재(200)를 안착시키고 상기 프릿실 부재(200) 위에 덮개유리를(130) 안착하는 단계를 더 포함한다.As shown in FIG. 4, in the second embodiment, between the fifth and sixth steps, the frit seal member 200 seated on the seal portion on the metal thin plate 300 is seated and the frit seal is formed. The method may further include mounting the cover glass 130 on the member 200.
도 5는, 상기한 제2 실시 예 중, 하판유리(120)에 배기구(610)가 없는 경우만 제외하고는 제2 실시 예와 동일하다.FIG. 5 is the same as the second embodiment except for the case where the exhaust port 610 is not present in the lower glass 120 of the second embodiment.
도 6에서와 같이, 제3 실시예는 상기 제1 실시 예에서, 상기 제4 단계와 제5 단계 사이에, 상기 하판유리(120) 상면 프릿실 부재(200) 상면에 높이보정유리(140)를 안착하고 상기 높이보정유리(140) 상면에 프릿실 부재(200)를 안착시키는 단계를 더 포함한다.As shown in FIG. 6, in the first embodiment, between the fourth step and the fifth step, the height correction glass 140 is disposed on the upper surface of the frit seal member 200. And further comprising the step of seating the frit seal member 200 on the upper surface of the height correction glass (140).
도 7은, 상기한 제3 실시 예 중, 하판유리(120)에 배기구(610)가 없는 경우만 제외하고는 제3 실시 예와 동일하다.FIG. 7 is the same as the third embodiment except for the case where the exhaust port 610 is not present in the lower plate glass 120.
상기 제3 실시 예에 의할 경우에는, 높이보정유리(140) 적용에 따라서 제조된 진공유리(100)의 전체 두께를 줄일 수 있어 슬림화가 가능하며, 금속박판(300) 및 프릿실 부재(200) 부착 공정이 제1 실시 예에 비하여 작업이 수월하게 된다.According to the third embodiment, it is possible to reduce the overall thickness of the vacuum glass 100 manufactured according to the application of the height correction glass 140, it is possible to slim, the thin metal plate 300 and the frit seal member 200 ) The attaching process is easier than the first embodiment.
도 8에서와 같이, 제4 실시예는 상기 제1 실시 예에서, 상기 제5 단계 및 제6 단계 사이에, 금속박판(300) 위 실(seal) 부위에 성형된 프릿실 부재(200) 및 덮개유리(130)를 순서적으로 적층하는 단계를 더 포함한다.As shown in FIG. 8, the fourth embodiment includes the frit seal member 200 formed in a seal portion on the metal foil 300 between the fifth and sixth steps in the first embodiment. Laminating the cover glass 130 in sequence.
도 9는, 상기한 제4 실시 예 중, 하판유리에 배기구(610)가 없는 경우만 제외하고는 제4 실시 예와 동일하다. FIG. 9 is the same as the fourth embodiment except that the exhaust port 610 is not present in the lower glass of the fourth embodiment.
여기에서, 상기 프릿실(frit seal) 부재(200)는 원재료가 되는 프릿 내에 포함되어 있던 바인더 및 가스가 제거되어 탈 가스화된 상태의 것을 사용함이 바람직하다.Here, the frit seal member 200 is preferably a binder and gas contained in the frit to be a raw material is removed and degassed.
예를 들어, 탈 가스화된 프릿실 부재(200)는 파우더(powder)나 페이스트(paste) 형태의 프릿을 진공 챔버 내의 도가니나 지그(jig)에 넣은 후 가열하여 탈 가스, 탈 바인더를 실행한 후 유동성이 있는 상태에서 소정의 형상으로 성형하여 제작된다. 즉, 상기 프릿실 부재(200)를 제작하기 위해서는 노즐을 통하여 유동성 있는 프릿을 압출하여 솔더 형태로 성형시킨다. 또는 상기 프릿실 부재(200)는 유동성이 있는 상태의 프릿을 성형 틀에 부어 성형시킴으로 인해 제작된다. 이에 따라서, 접착성 있는 저융점 솔더 유리인 프릿실 부재(200)를 준비할 수 있는데, 이 때, 상기 프릿실 부재(200)의 모양은 솔더 형태로만 제한되지 않음은 물론이다.For example, the degassed frit seal member 200 puts a frit in the form of powder or paste into a crucible or jig in a vacuum chamber, and is heated to perform degassing and debinding. It is produced by molding into a predetermined shape in the state of fluidity. That is, in order to manufacture the frit seal member 200, a flowable frit is extruded through a nozzle and molded in a solder form. Alternatively, the frit seal member 200 is manufactured by pouring a frit in a fluid state into a molding die and molding. Accordingly, the frit seal member 200, which is an adhesive low melting point solder glass, may be prepared. In this case, the shape of the frit seal member 200 is not limited to solder.
이 경우, 메탈 박판(300)는 메탈 합금으로 성형된 박판 구조로 구성하며, 이는 상판유리(110) 및 하판유리(120) 중 고온 환경에 처해 있는 판유리의 경우 미세하나마 열팽창에 의하여 판유리가 변형이 생기는 경우에 이를 수용할 수 있는 공간을 만듬으로 인하여 휨(deflexion) 혹은 깨짐(crack) 현상을 미연에 방지할 수 있도록 하기 위함이다. In this case, the metal thin plate 300 is composed of a thin plate structure formed of a metal alloy, which is the plate glass is deformed due to thermal expansion, but fine in the case of the plate glass in the high temperature environment of the upper plate glass 110 and the lower plate glass 120 This is to prevent deflection or cracking in advance by creating a space that can accommodate such a case.
그리고 이러한 금속 박판(300)은 메탈합금 성분으로 구성하는데, 이 경우, 바람직하게는 철(FE) 52%, 니켈(NI) 48% 성분 메탈 합금이거나, 철(FE) 54%, 니켈(NI) 46% 성분 메탈 합금으로 준비한다. 아울러, 상기 금속박판(300)은 플렉시블(flexible)한 메탈 스트립 형상으로 열팽창계수는 판유리와 동일하거나 매우 유사하게 구성하여 판유리의 휨(deflexion) 또는 깨짐(crack) 현상을 방지할 수 있도록 함이 바람직하다.And the metal thin plate 300 is composed of a metal alloy component, in this case, preferably 52% iron (FE), nickel (NI) 48% component metal alloy, or iron (FE) 54%, nickel (NI) Prepared with 46% component metal alloy. In addition, the metal thin plate 300 is a flexible metal strip shape, the coefficient of thermal expansion is configured to be the same or very similar to the plate glass, it is preferable to prevent the bending (deflexion) or crack (crack) phenomenon of the plate glass. Do.
이 경우, 상기 금속 박판(300)은 메탈 박판 형상으로 플렉시블한 유연성을 가지고 있으며 유리와의 열팽창 계수가 유사하게 될 수 있도록 메탈 합금 성분을 조절하여 구성한다. In this case, the metal thin plate 300 has a flexible flexibility in a metal thin plate shape and is configured by adjusting the metal alloy component so that the thermal expansion coefficient with glass is similar.
또한, 본 발명에 따른 진공유리(100) 제조방법에서는 금속박판 접착단계에서 결과물에 포함된 판유리의 수가 적당한지를 판단하여 적당하지 않다면 단계를 반복하여 더 구비하도록 함이 바람직하다.In addition, in the method of manufacturing the vacuum glass 100 according to the present invention, it is preferable to further include the step by repeating the step if it is not appropriate to determine whether the number of plate glass included in the resultant in the metal thin plate bonding step is appropriate.
이어서, 상기 금속박판(300) 접착 단계의 결과물을 정렬하고 정렬이 흐트러지지 않도록 고정하는 정렬 및 고정단계를 실행한다. Subsequently, the alignment and fixing step of aligning the resultant of the bonding step of the thin metal plate 300 and fixing the alignment is not disturbed.
상기 진공유리 제조 과정에서 상기 판유리(110, 120) 중 적어도 어느 하나는 강화유리, 로이유리, 반사유리, 색변환 유리, 및 태양전지기판이 형성된 유리 중 어느 하나로 구성할 수 있다.In the vacuum glass manufacturing process, at least one of the plate glasses 110 and 120 may be formed of any one of tempered glass, Roy glass, reflective glass, color conversion glass, and a glass on which a solar cell substrate is formed.
그리고, 상기 마이크로 스페이서(500)는 통상의 진공 유리에서와 마찬가지로 상기 판유리와 판유리 사이의 공간이 진공으로 기밀되었을 때 대향하고 있는 판유리가 진공으로 인해 휘어져 달라붙거나 파손되는 문제를 예방하기 위한 것이다. 따라서, 상기 마이크로 스페이서(500)의 배치 모양은 상기 판유리(110, 120)의 휨을 방지할 수 있는 범위 내에서 자유롭게 변형 가능하다.In addition, the micro spacer 500 is intended to prevent the problem that the facing glass is bent and stuck or broken due to the vacuum when the space between the glass and the plate glass is sealed with a vacuum as in the conventional vacuum glass. Therefore, the arrangement shape of the micro spacer 500 can be freely deformed within a range that can prevent the bending of the plate glass (110, 120).
상기 가열압착 단계에서, 진공 분위기는 진공도가 10-2 토르(torr) 내지 10-7 토르의 진공 상태로 배기 가능한 진공 챔버에 의해 형성되는 것으로, 일 예로 500 ℃까지 가열이 가능한 히터(heater)와 압력을 높일 수 있는 가스유입밸브를 갖추고 있다. 여기서, 상기 진공챔버 내부의 진공도가 높을수록 보다 양질의 진공유리를 제조할 수 있음은 자명한 사실이다.In the heating and pressing step, the vacuum atmosphere is formed by a vacuum chamber capable of evacuating the vacuum degree of 10 -2 Torr to 10 -7 Torr, for example, a heater capable of heating up to 500 ℃ and It is equipped with a gas inlet valve to increase the pressure. Here, it is obvious that the higher the degree of vacuum inside the vacuum chamber, the higher quality vacuum glass can be manufactured.
두 겹의 판유리가 대기 상태에서 서로 마주하며 정렬 및 고정됨으로 인해 그 내측에 공기를 포함하고 있는 상태로 상기 진공챔버 내부로 투입되면, 상기 진공챔버는 내부에 유입된 가스를 목표치 만큼 배기시키는 동시에 상기 히터를 가동시킨다. 이때, 상기 두 겹의 판유리 중 어느 하나 판유리 일측에 배기구멍을 형성하여 내측의 공기가 충분히 빠져 나와 고 진공이 형성된다. 바람직하게는 상기 판유리와 판유리 사이의 진공도가 10-3 토르 내지 10-6 토르가 되도록 한다.When the two layers of glass are introduced into the vacuum chamber with the air inside thereof due to alignment and fixation facing each other in the atmospheric state, the vacuum chamber exhausts the gas introduced therein as much as the target value. Start the heater. At this time, by forming an exhaust hole in one of the two panes of the plate glass, the air inside is sufficiently escaped to form a high vacuum. Preferably the degree of vacuum between the pane and the pane is from 10 -3 Torr to 10 -6 Torr.
이와 동시에, 히터가 가동됨에 따라 상기 판유리(110, 120)가 소정의 온도에 도달하게 되면, 상기 판유리(110, 120)에 부착된 다수개의 프릿실 부재(200)에 유동성이 발생하게 된다. 이때, 상기 모든 판유리(110, 120)를 별도의 가압력 제공이 가능한 클램프(clamp)를 사용하여 일정 시간 동안 밀착 가압하면, 상기 프릿실 부재(200)는 유동성이 생겨 높이가 낮아지는 대신에 옆으로 퍼지면서 상기 판유리(110, 120) 좌우 측면 모서리로부터 가로 내측 방향으로 균일한 두께로 밀봉 접합된다. 그리고 나서 상기 진공챔버 내의 온도를 하강시키면 밀봉 접합 공정이 완료된다.At the same time, when the panes 110 and 120 reach a predetermined temperature as the heater is operated, fluidity is generated in the plurality of frit seal members 200 attached to the panes 110 and 120. At this time, if all the plate glass (110, 120) is pressed tightly for a predetermined time using a clamp (clamp) that can provide a separate pressing force, the frit seal member 200 has a fluidity to the side instead of lowering the height While spreading, the plate glass 110 and 120 are sealed to be bonded to each other at a uniform thickness in a horizontally inward direction from left and right side edges thereof. Then, the temperature in the vacuum chamber is lowered to complete the sealing bonding process.
여기서, 히터에 의해 가열된 진공챔버 내의 온도는 상기 프릿실 부재(200)의 재료에 따라 차이가 있으나 통상 270 ℃ 내지 470 ℃정도에서 행해지며, 바람직하게는 420 ℃ 이상은 되어야 하며, 유지시간은 통상 15분이면 충분하다. 물론 높은 온도에서는 보다 짧은 시간이, 낮은 온도에서는 보다 긴 시간이 소요됨은 자명한 사실이다. Here, the temperature in the vacuum chamber heated by the heater is different depending on the material of the frit seal member 200, but is usually performed at about 270 ℃ to 470 ℃, preferably 420 ℃ or more, the holding time Usually 15 minutes is enough. Obviously, shorter times are required at higher temperatures and longer at lower temperatures.
한편, 여기서는 게터가 적용되지 않은 실시 예를 나타낸 것으로서, 설명의 이해를 돕기 위해 판유리를 각각 2 장, 3 장 사용한 예를 나타내고 있을 뿐 본 발명에 따른 진공유리 제조방법에 사용되는 판유리의 수를 한정하는 것이 아니다.On the other hand, as shown herein is an embodiment without a getter, showing the use of two or three sheets of glass, respectively, to aid in the understanding of the description, limiting the number of plate glass used in the vacuum glass manufacturing method according to the present invention It is not.
한편, 상기 프릿실 부재(200)는 판형으로 도시되어 있으나, 이에 한정되는 것이 아니라 사각기둥과 같은 다각기둥 모양으로도 모두 가능하며, 바람직하게는 상기 판유리(110,120) 및 금속박판(300)의 정렬과 그 제조가 용이한 모양으로 결정하도록 한다.On the other hand, the frit seal member 200 is shown in a plate shape, but is not limited to this, and may be all in the shape of a polygonal column such as a square pillar, preferably the alignment of the plate glass (110,120) and the metal thin plate (300) And a shape that is easy to manufacture.
상기한 실시 예에서는 두 겹의 판유리를 겹친 형상을 개시하였으나, 판유리를 3개 이상 적층하여 진공유리를 만드는 경우에도 동일하게 적용할 수 있음은 자명하다 할 것이다.In the above-described embodiment, the shape of overlapping two layers of plate glass is disclosed, but it will be apparent that the same applies to the case where three or more plate glass are laminated to make a vacuum glass.
한편, 상기 실시 예에서 결과물 양면 중 적어도 어느 한 면에 위치하는 판유리에는 구멍이 뚫린 것을 사용할 수도 있으며, 이는 별도의 배기구(610)를 형성하고 있는 실시 모습을 의미한다. On the other hand, in the above embodiment in the plate glass located on at least one side of the both sides of the resultant may be used that is a hole, which means an embodiment of forming a separate exhaust port 610.
즉, 상기 배기구멍(610)은 판유리(110)와 판유리(120) 사이의 진공도가 충분하지 않다고 판단되는 경우 목표치 달성을 위해 그 내측 공기를 추가적으로 더 배기시키기 위한 것으로, 상기 구멍(610)보다 큰 배기구 밀봉부재(620)로 상기 구멍(610)을 막고 가열 압착함으로써 상기 판유리(110, 120) 사이의 공간과 외부를 차단함이 바람직하다. 이때, 상기 덮개유리(130)를 접합시키기 위한 매개체로는 상기 프릿실 부재(200)와 같이 탈 가스화된 프릿 성형물(미도시)을 사용함이 바람직하다.That is, when it is determined that the vacuum degree between the plate glass 110 and the plate glass 120 is not sufficient, the exhaust hole 610 further exhausts the inner air to achieve a target value, which is larger than the hole 610. It is preferable to block the outside and the space between the plate glass (110, 120) by blocking the hole 610 with the exhaust port sealing member 620 and heat compression. In this case, it is preferable to use a degassed frit molded article (not shown) as the medium for bonding the lid glass 130 to the frit seal member 200.
이하, 도 10 내지 도 15를 참조하여 또 다른 실시 예를 설명하면 다음과 같다.Hereinafter, another embodiment will be described with reference to FIGS. 10 to 15.
< 제5 실시 예 및 제6 실시 예 ><Fifth Embodiment and Sixth Embodiment>
먼저, 세정된 상기 하판유리(120)를 준비하는 제01 단계를 실시하고, 이어서, 상기 하판유리(120) 상면에 다수 스페이서(500)를 구성하는 제02 단계를 실시한다. 이어서, 상기 하판유리(120) 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재(200)를 안착시키는 제03 단계, 상기 프릿실 부재(200) 상면에 금속 박판(300)을 안착시키는 제04 단계, 상기 금속 박판(300)과 상판유리(110) 실(seal) 부위에 프릿실 부재(200)를 안착시키는 제05 단계, 상기 제05 단계를 마친 결과물에 세정된 상판유리(110)를 안착시키는 제06 단계, 상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제07 단계, 상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제08 단계, 상기 금속 박판(300) 부위를 프릿 용융 밀봉 후 냉각시키는 제09 단계 및 상기 하판유리(120)에 배기구(610)가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제10 단계를 연속적으로 실시한다.First, the first step of preparing the cleaned lower platen glass 120 is performed, and then the second step of forming a plurality of spacers 500 on the upper surface of the lower platen glass 120 is performed. Subsequently, in step 03 of mounting the frit seal member 200 formed of low melting point solder glass on one surface of the lower plate glass 120, the metal thin plate 300 is seated on the top surface of the frit seal member 200. Step 04, the step of mounting the frit seal member 200 in the metal thin plate 300 and the top glass 110, the seal portion (Seoul) 05, the top glass 110 cleaned in the result of the step 05 Step (06) for seating, step (07) for aligning the resultant through the above steps and fixing each part with a clamp so that the alignment is not disturbed, and evacuating and heating the chamber after inserting the fixed result into the vacuum chamber. The eighth step, the twelfth step of cooling the metal thin plate 300 after the frit melt sealing, and if the exhaust port 610 is in the lower plate glass 120, the tenth step of cooling to room temperature after sealing the exhaust port continuously To be carried out.
도 6c는 금속 박판(300)의 형태가 일측은 개구되며 타측은 연필심 모양처럼 테이퍼되어 수렴되는 모양을 하고 있는 실시 예를 도시하고 있다. 6d는 배기구가 없는 경우를 도시하고 있다. 이러한 금속 박판의 다양한 형태 구성은 도 11에서 보다 상세하게 설명하기로 한다.FIG. 6C illustrates an embodiment in which the shape of the metal thin plate 300 is opened and one side is tapered and converged like a pencil lead. 6d shows a case where there is no exhaust port. Various configuration of such a thin metal plate will be described in more detail in FIG.
또한, 도 7에서와 같이, 상기 제06 단계 및 제07 단계 사이에 상기 하판유리(120) 양측 끝단 상부에 위치한 프릿실 부재(200) 위에 덮개유리(130)를 형성하는 단계를 더 포함하도록 구성한다.In addition, as shown in FIG. 7, the cover glass 130 is further formed on the frit seal member 200 positioned on both ends of the lower plate 120 between the sixth and seventh steps. do.
여기에서는, 상기 제1 내지 제4 실시 예와 기본적인 제조방법은 동일하며, 그 재료 또한 동일한 바, 상세한 설명은 생략한다. Here, the basic manufacturing method is the same as the first to fourth embodiments, the material is also the same, detailed description thereof will be omitted.
이어서, 도 16 내지 도 18을 참조하여, 또 다른 실시 예인 제 7 실시 예를 설명한다. 여기서는 게터(getter, 410) 혹은 게터(410) 및 게터라인(getter line, 420)을 이용한 구성을 개시하고 있는데, 이는 장기간 진공유리를 사용하는 중 팽창 수축에 의해 탈착되어 나오는 가스를 추가적으로 흡착하여 진공도를 지속적으로 유지하기 위한 구성이다. 또한 미세 누설에 의한 진공 불량 혹은 완전 파괴를 간단히 검증 가능하다. 예를 들어 게터(410)에 일정량(약 20와트 정도)의 파워를 공급하면 진공도가 양호할 경우 게터(410)는 온도가 상승하여 붉은색으로 변한다. 그러나 외부로부터 누설이 발생되어 진공이 파괴되거나 불량한 경우 상기 게터(410)는 붉게 변하지 않고 검은색으로 산화되어 타버린다. Next, a seventh embodiment, which is another embodiment, will be described with reference to FIGS. 16 to 18. Here, the configuration using a getter 410 or a getter 410 and a getter line 420 is disclosed, which additionally adsorbs the gas desorbed by expansion and contraction during the use of vacuum glass for a long time. It is a configuration to keep it continuously. In addition, it is possible to simply verify the vacuum failure or complete destruction caused by fine leakage. For example, when a certain amount (about 20 watts) of power is supplied to the getter 410, when the vacuum degree is good, the getter 410 rises in temperature to turn red. However, when the leakage occurs from the outside and the vacuum is broken or poor, the getter 410 is oxidized to black and burned out without turning red.
한편, 게터 라인(420)을 겸비한 경우 외부에서 간단히 전류공급이 가능한 전원장치를 연결하여 가열 가능하고 게터 라인(420)이 없는 경우는 laser 혹은 유도가열 장치를 통해 가열가능 하다.On the other hand, in the case of having the getter line 420 can be heated by connecting a power supply capable of simply supplying current from the outside, and the getter line 420 can be heated by a laser or an induction heating device.
상기 게터(410)로는 고온 가열 하기 위한 power를 공급하여 활성화 시킬 때 게터(410) 물질이 증발되어 진공유리 내부에 코팅되어 자국을 남기지 않는 비증발성 게터(non-evaporable getter)를 적용함이 바람직하다. 이때, 상기 비증발성 게터는 상기 판유리에 배치된 프릿실 부재(200) 안쪽에 배치하고, 상기 비증발성 게터에 전원을 공급하기 위한 전류인입선(게터라인)은 상기 비증발성 게터로부터 상기 프릿실 부재(200)를 교차하여 배치되도록 함으로써, 추후 완성된 진공유리의 외부로부터 전원을 공급받을 수 있도록 한다. When the getter 410 is activated by supplying power for high temperature heating, the getter 410 material may be evaporated and coated in a vacuum glass to apply a non-evaporable getter that does not leave a mark. . In this case, the non-evaporable getter is disposed inside the frit seal member 200 disposed on the plate glass, and a current lead line (getter line) for supplying power to the non-evaporable getter is formed from the non-evaporable getter. By being arranged to cross 200, it is possible to receive power from the outside of the finished vacuum glass later.
비록, 케터 및/또는 게터라인이 도시된 진공유리 구조가 한정되어 있는 것처럼 보이지만 이러한 구성은 본 발명에 따른 모든 실시 예에서 적용이 가능함은 물론이다.Although it appears that the vacuum glass structure in which the keter and / or getterline is shown is limited, this configuration is of course applicable in all embodiments according to the present invention.
도 19 및 도 20은 본 발명에 따른 제8 및 제9 실시 예 모습을 도시하고 있다. 19 and 20 show the eighth and ninth embodiments according to the present invention.
즉, 상기 상판유리(110) 및 하판유리(120)의 적어도 내측 한 면에는 대기압 공정의 산화에 취약한 기능성 박막층(150)을 더 형성하도록 하고 있다. 이 경우 상기 기능성 박막층(150)은 로이유리, 색 변환 유리 등의 적용이 가능할 것이다.That is, at least one inner surface of the upper glass 110 and the lower glass 120 is to form a functional thin film layer 150 vulnerable to oxidation of the atmospheric pressure process. In this case, the functional thin film layer 150 may be applicable to Roy glass, color conversion glass, and the like.
또는, 상기 상판유리(110) 및 하판유리(120)의 적어도 외측 일면에는 대기압 공정의 산화에 취약한 기능성 박막층(150)을 더 형성하고, 상기 기능성 박막층(150) 외부를 다시 복층화한 구조로 형성할 수도 있을 것이다. 이는 자외선 차단에 용이하고 단열성을 향상시키기 위한 구성이다. 이를 위하여 구조물 저면에는 복층저면유리(170)를 이용하여 마감하며 이를 지지하기 위한 복층지지부(250)가 매개된다.Alternatively, a functional thin film layer 150 vulnerable to oxidation of an atmospheric pressure process may be further formed on at least one outer surface of the upper glass 110 and the lower glass 120, and the outer surface of the functional thin film layer 150 may be formed in a multilayered structure. Could be This is easy to UV-block and is a structure for improving heat insulation. To this end, the bottom of the structure is finished using the multi-layered bottom glass 170 and the multi-layered support 250 for supporting the media is mediated.
한편, 상기 판유리(110,120)는 일반적으로 널리 사용되는 투명유리를 사용하고 있으나, 이에 한정되는 것이 아니라 그 목적에 따라 적어도 어느 하나의 판유리로서 강화유리, 로이유리(low-E glass), 반사유리, 색변환(electrochromatic) 유리, 또는 태양전지기판이 형성된 유리 중 어느 하나의 기능성 판유리를 사용할 수도 있다.On the other hand, the plate glass (110,120) is generally used a transparent glass widely used, but is not limited to this, at least one of the glass according to the purpose of tempered glass, low-E glass (low-E glass), reflective glass, The functional plate glass of any one of electrochromatic glass or glass on which a solar cell substrate is formed may be used.
도 21 내지 도 23은 상기 다양한 실시 예에 있어서, 금속 박판(300)을 삽입하는 이유 및 판유리의 휨 및 크랙을 방지하는 원리에 대하여 도시한 도면이다.21 to 23 are views illustrating reasons for inserting the thin metal plate 300 and principles for preventing bending and cracking of the plate glass according to various embodiments of the present disclosure.
도시된 바와 같이, 금속 박판(300)은 일부가 팽창시 상대적으로 다른 부분에서 수축이 일어나게 함으로써 판유리의 크랙 및 휨을 방지할 수 있도록 하고 있으며, 이에 대한 금속 박판(300) 형상은 각형으로 꺾인 모양 뿐만 아니라 반원, 직선형이라도 무방하며, 다양한 형상으로 구성이 가능할 것이다. As shown, the thin metal plate 300 is to prevent the cracks and warpage of the plate glass by causing the shrinkage in the other portions when the portion is expanded, the shape of the metal thin plate 300 is not only in the shape of bent in a square But it may be a semi-circle, straight, and may be configured in various shapes.
특히, 본 발명에 따른 진공유리 제조방법은 상기 판유리로서 하드(hard type) 로이유리보다 복사열 차폐도 및 단열성이 우수한 소프트(soft type) 로이유리의 적용이 가능해진다. 이는 판유리와 판유리의 가열 압착으로 인한 밀봉 접합 공정이 진공분위기에서 이루어지기 때문에 소프트 로이유리의 Ag 금속 코팅막이 산화될 염려가 없기 때문이다.In particular, the vacuum glass manufacturing method according to the present invention, as the plate glass can be applied to the soft (roy) type of glass (excellent heat radiation shielding and heat insulation excellent) than the hard (hard type) Roy glass. This is because there is no fear that the Ag metal coating film of the soft Roy glass is oxidized because the sealing bonding process due to the hot pressing of the plate glass and the plate glass is performed in a vacuum atmosphere.
또한, 본 발명에 따른 진공유리 제조방법은 소프트 로이유리와 마찬가지로 금속코팅막이 형성된 색변환 유리, 반사유리 및 태양전지기판이 형성된 유리에 있어서도 그에 따른 금속코팅막의 산화 및 그 외의 특성변화로 인한 기능 상실의 문제가 없는 범위 내에서 적용이 가능함은 물론이다.In addition, the vacuum glass manufacturing method according to the present invention is functionally lost due to the oxidation of the metal coating film and other characteristic changes in the glass with the color conversion glass, the reflective glass, and the solar cell substrate on which the metal coating film is formed, as with the soft Roy glass. Of course, it can be applied within the range without problems.
한편, 태양전지기판이 형성된 유리는 태양전지기판이 형성됨으로 인해 반투명 또는 불투명해지기도 하는데, 이 경우 상기 태양전지기판이 형성된 유리는 제조하고자 하는 진공유리의 전체 면적 중 일부분에만 분포하도록 하여 이를 통한 시야를 확보함이 바람직하다.On the other hand, the glass on which the solar cell substrate is formed may become translucent or opaque due to the formation of the solar cell substrate. In this case, the glass on which the solar cell substrate is formed is distributed only to a part of the entire area of the vacuum glass to be manufactured so that the view through this is achieved. It is desirable to secure.
또한, 본 발명의 다른 측면에 따르면, 이상에서 설명된 본 발명에 따른 진공유리 제조방법에 의해 제조된 진공유리를 제시할 수 있다.In addition, according to another aspect of the present invention, it is possible to present a vacuum glass produced by the vacuum glass manufacturing method according to the present invention described above.
이상 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to preferred embodiments of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the invention Of course it is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the equivalents as well as the claims to be described later.
본 발명에 따른 진공 유리는 소프트 로이유리(soft type low-E glass), 색변환(electrochromatic) 유리, 반사유리, 또는 태양전지 기판이 형성된 유리 중 어느 하나의 기능성 판유리를 적용하여도 기능이 상실되지 않으면서, 진공 유리 양단에서의 온도 차이가 커 양 유리의 열 팽창 정도 차이가 크더라도 수축팽창이 용이한 형상의 금속 박판이 그를 흡수함으로 인해 휨(deflexion) 및 깨짐 (crack) 현상이 발생하지 않도록 하여 내구성을 증대시키며 안정성 및 수명을 연장하는 효과를 가지며, 별도의 배기공정과 그에 따른 배기공 및 배기튜브의 형성 단계 또는 배기 튜브의 형성 단계를 실행할 필요가 없어져 공정이 간단하고 용이해지는 효과가 있다. The vacuum glass according to the present invention does not lose its function even when the functional sheet glass of soft type low-E glass, electrochromatic glass, reflecting glass, or glass on which a solar cell substrate is formed is applied. However, even if the temperature difference between the two ends of the vacuum glass is large and the difference in the thermal expansion degree of both glasses is large, the sheet metal having the shape of easy expansion and contraction is absorbed by the metal sheet so that the deflection and cracking do not occur. This increases the durability and has the effect of extending stability and lifespan, and there is no need to perform a separate exhaust process, and thus forming the exhaust hole and the exhaust tube or forming the exhaust tube, thereby simplifying and facilitating the process. .
이러한 면에서, 본 발명에 따른 진공 유리는 내구성을 증대시키며 다양한 분야에서 사용할 수 있으며, 범용적으로 효과적인 발명이라고 할 수 있습니다. In this respect, the vacuum glass according to the present invention increases durability, can be used in various fields, and can be said to be an effective invention in general use.

Claims (13)

  1. 상판유리와 하판유리가 일정한 간격으로 이격되도록 하고 그 내측이 진공상태가 되도록 밀봉하되, 상기 상판유리 및 하판유리가 진공으로 인해 서로 달라 붙지 않도록 내측 공간으로 구비되는 마이크로 스페이서를 포함하는 진공유리 제조방법에 있어서,A method of manufacturing a vacuum glass including a micro spacer provided with an inner space such that the upper glass and the lower glass are spaced at regular intervals and sealed to have a vacuum inside thereof, so that the upper glass and the lower glass do not stick to each other due to vacuum. To
    세정된 상기 하판유리를 준비하는 제1 단계;A first step of preparing the cleaned lower platen glass;
    상기 하판유리 상면에 다수 스페이서를 구성하는 제2 단계;A second step of forming a plurality of spacers on an upper surface of the lower glass;
    상기 스페이서 상면에 세정된 상판유리를 안착시키는 제3 단계;A third step of seating the cleaned upper glass on the spacer;
    상기 상판유리 및 하판유리 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재를 안착시키는 제4 단계;A fourth step of mounting a frit seal member formed of low melting solder glass on one surface of the upper glass and the lower glass;
    상기 프릿실 부재 상면에 금속 박판을 안착시키는 제5 단계;A fifth step of mounting a thin metal plate on an upper surface of the frit seal member;
    상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제6 단계;A sixth step of aligning the resultant through the steps and fixing each part with a clamp so that the alignment is not disturbed;
    상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제7 단계;A seventh step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber;
    상기 금속 박판 부위를 프릿 용융 밀봉 후 냉각시키는 제8 단계; 및An eighth step of cooling the metal sheet portion after frit melt sealing; And
    상기 하판유리에 배기구가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제9 단계;를 포함하는 것을 특징으로 하는 진공유리 제조방법.If there is an exhaust port in the lower plate glass sealing the exhaust port after the ninth step; vacuum glass manufacturing method comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제5 단계와 제6 단계 사이에, 상기 금속 박판 위 실(seal) 부위에 성형된 프릿실 부재를 안착시키고 상기 프릿실 부재 위에 덮개유리를 안착하는 단계를 더 포함하는 것을 특징으로 하는 진공유리 제조방법.Between the fifth step and the sixth step, the vacuum glass further comprising the step of seating the molded frit seal member on the seal portion on the metal sheet and seating the lid glass on the frit seal member Manufacturing method.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제4 단계와 제5 단계 사이에, 상기 하판유리 상면 프릿실 부재 상면에 높이보정유리를 안착하고 상기 높이보정유리 상면에 프릿실 부재를 안착시키는 단계를 더 포함하는 것을 특징으로 하는 진공유리 제조방법.Between the fourth step and the fifth step, the step of mounting the height correction glass on the upper surface of the glass fritsil member upper plate and the step of mounting the frit seal member on the upper surface of the height compensation glass Way.
  4. 제 3항에 있어서,The method of claim 3,
    상기 제5 단계 및 제6 단계 사이에, 금속박판 위 실(seal) 부위에 성형된 프릿실 부재 및 덮개유리를 순서적으로 적층한 것을 특징으로 하는 진공유리 제조방법.Between the fifth step and the sixth step, the vacuum glass manufacturing method characterized in that the laminated frit seal member and the cover glass in order on the seal portion on the metal sheet in sequence.
  5. 상판유리와 하판유리가 일정한 간격으로 이격되도록 하고 그 내측이 진공상태가 되도록 밀봉하되, 상기 상판유리 및 하판유리가 진공으로 인해 서로 달라 붙지 않도록 내측 공간으로 구비되는 마이크로 스페이서를 포함하는 진공유리 제조방법에 있어서,A method of manufacturing a vacuum glass including a micro spacer provided with an inner space such that the upper glass and the lower glass are spaced at regular intervals and sealed to have a vacuum inside thereof, so that the upper glass and the lower glass do not stick to each other due to vacuum. To
    세정된 상기 하판유리를 준비하는 제01 단계;A first step of preparing the cleaned lower platen glass;
    상기 하판유리 상면에 다수 스페이서를 구성하는 제02 단계;A second step of forming a plurality of spacers on the upper surface of the lower glass;
    상기 하판유리 일면에 저융점 솔더 유리로 성형된 프릿실(frit seal)부재를 안착시키는 제03 단계;A third step of mounting a frit seal member formed of low melting point solder glass on one surface of the lower plate glass;
    상기 프릿실 부재 상면에 금속 박판을 안착시키는 제04 단계;Step 04 for mounting the thin metal plate on the upper surface of the frit seal member;
    상기 금속 박판과 상부유리 실(seal) 부위에 프릿실 부재를 안착시키는 제05 단계;A fifth step of mounting a frit seal member on the metal sheet and the upper glass seal;
    상기 제05 단계를 마친 결과물에 세정된 상부유리를 안착시키는 제06 단계;A sixteenth step of seating the cleaned upper glass on the result of the fifth step;
    상기 단계들을 거친 결과물을 정렬하고 정렬이 흐트러지지 않도록 클램프로 각 부위를 고정하는 제07 단계;A seventh step of aligning a result of the steps and fixing each part with a clamp so that the alignment is not disturbed;
    상기 고정된 결과물을 진공챔버 내부로 투입한 후 챔버 배기 및 가열 공정을 진행하는 제08 단계;An eighth step of injecting the fixed result into the vacuum chamber and then evacuating and heating the chamber;
    상기 금속 박판 부위를 프릿 용융 밀봉 후 냉각시키는 제09 단계; 및A ninth step of cooling the metal sheet portion after frit melt sealing; And
    상기 하판유리에 배기구가 있는 경우 배기구 밀봉 후 상온으로 냉각시키는 제10 단계;를 포함하는 것을 특징으로 하는 진공유리 제조방법.And a tenth step of cooling to room temperature after sealing the exhaust port if the exhaust plate is provided in the lower plate glass.
  6. 제 5항에 있어서,The method of claim 5,
    상기 제06 단계 및 제07 단계 사이에 상기 하판유리 양측 끝단 상부에 위치한 프릿실 부재 위에 덮개유리를 형성하는 단계를 더 포함하는 것을 특징으로 하는 진공유리 제조방법.And forming a cover glass on the frit seal member positioned at both ends of the lower plate glass between the sixteenth and seventeenth steps.
  7. 제 1항 내지 제 6항 중 어느 한 항에 따른 제조방법에 의하여 제조되는 것을 특징으로 하는 진공유리 Vacuum glass, characterized in that produced by the manufacturing method according to any one of claims 1 to 6.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 상부유리 및 하부유리 일측 끝단 사이에 위치하는 프릿실 부재 사이로 게터를 더 설치하는 것을 특징으로 하는 진공유리.Vacuum glass, characterized in that further installing a getter between the frit seal member located between one end of the upper glass and the lower glass.
  9. 제 8항에 있어서,The method of claim 8,
    상기 게터에 게터 라인을 연장하여 더 설치하는 것을 특징으로 하는 진공유리.Vacuum glass, characterized in that further installed by extending the getter line to the getter.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 하판유리 일측 하면에 배기구가 형성되어 있는 경우에는 상기 배기구에 인접하는 하부 방향으로 배기구 밀봉 부재를 더 설치하여 가열 압착하는 것을 특징으로 하는 진공유리.When the exhaust port is formed on one lower surface of the lower plate glass, the vacuum glass, characterized in that the exhaust port sealing member is further provided in the lower direction adjacent to the exhaust port and heat-compression bonding.
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 판유리 중 적어도 어느 하나는 강화유리, 로이유리, 반사유리, 색변환 유리, 및 태양전지기판이 형성된 유리 중 어느 하나인 것을 특징으로 하는 진공유리.At least one of the plate glass is a glass, characterized in that any one of tempered glass, Roy glass, reflective glass, color conversion glass, and a glass formed with a solar cell substrate.
  12. 제 10항에 있어서,The method of claim 10,
    상기 상부유리 및 하부유리의 적어도 내측 한 면에는 대기압 공정의 산화에 취약한 기능성 박막층을 더 형성하는 것을 특징으로 하는 진공유리.At least one inner surface of the upper glass and the lower glass vacuum glass, characterized in that further forming a functional thin film layer susceptible to oxidation of the atmospheric pressure process.
  13. 제 10항에 있어서,The method of claim 10,
    상기 상부유리 및 하부유리의 적어도 외측 일면에는 대기압 공정의 산화에 취약한 기능성 박막층을 더 형성하고, 상기 기능성 박막층 외부를 다시 복층화한 구조로 형성하는 것을 특징으로 하는 진공유리.And at least one outer surface of the upper glass and the lower glass to further form a functional thin film layer vulnerable to oxidation in an atmospheric pressure process, and to form a structure in which the outside of the functional thin film layer is multilayered again.
PCT/KR2010/001940 2009-03-30 2010-03-30 Method for manufacturing vacuum glass, and vacuum glass manufactured by same WO2010114285A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0026941 2009-03-30
KR1020090026941A KR101081390B1 (en) 2009-03-30 2009-03-30 Vacuum glazing manufacturing method and Vacuum glazing using it

Publications (2)

Publication Number Publication Date
WO2010114285A2 true WO2010114285A2 (en) 2010-10-07
WO2010114285A3 WO2010114285A3 (en) 2011-03-10

Family

ID=42828842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001940 WO2010114285A2 (en) 2009-03-30 2010-03-30 Method for manufacturing vacuum glass, and vacuum glass manufactured by same

Country Status (2)

Country Link
KR (1) KR101081390B1 (en)
WO (1) WO2010114285A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193399A (en) * 2013-04-08 2013-07-10 徐国华 Integrally self-formed high-strength laminated vacuum glass and manufacture method thereof
EP2907795A4 (en) * 2012-10-15 2016-06-22 Asahi Glass Co Ltd Double-pane glass, and manufacturing method for double-pane glass
JP2017535696A (en) * 2014-10-07 2017-11-30 エージーシー グラス ユーロップAgc Glass Europe Method for producing insulating window glass
CN111918847A (en) * 2018-03-26 2020-11-10 Lg电子株式会社 Apparatus for manufacturing vacuum glass
CN113277751A (en) * 2020-09-30 2021-08-20 江苏景泰玻璃有限公司 Drying device for vacuum glass production and drying method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813906B1 (en) 2011-03-15 2018-01-03 삼성디스플레이 주식회사 Display panel
KR101453305B1 (en) * 2012-12-03 2014-10-22 주식회사 에피온 Method for manufacturing vacuum glass panel
KR102204881B1 (en) * 2018-08-03 2021-01-18 김진방 Double Vacuum Glass for Sun Loop and Manufacturing Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320229A (en) * 2004-04-08 2005-11-17 Nippon Sheet Glass Co Ltd Pressure reduced glass lined panel and method of manufacturing the same
US20080166570A1 (en) * 2007-01-10 2008-07-10 Cooper David J Vacuum IG window unit with metal member in hermetic edge seal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117632A (en) * 1997-10-13 1999-04-27 Central Glass Co Ltd Double glazing glass and manufacture thereof
JPH11278877A (en) * 1998-03-31 1999-10-12 Central Glass Co Ltd Double layer glass having low-pressure space and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320229A (en) * 2004-04-08 2005-11-17 Nippon Sheet Glass Co Ltd Pressure reduced glass lined panel and method of manufacturing the same
US20080166570A1 (en) * 2007-01-10 2008-07-10 Cooper David J Vacuum IG window unit with metal member in hermetic edge seal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907795A4 (en) * 2012-10-15 2016-06-22 Asahi Glass Co Ltd Double-pane glass, and manufacturing method for double-pane glass
CN103193399A (en) * 2013-04-08 2013-07-10 徐国华 Integrally self-formed high-strength laminated vacuum glass and manufacture method thereof
JP2017535696A (en) * 2014-10-07 2017-11-30 エージーシー グラス ユーロップAgc Glass Europe Method for producing insulating window glass
CN111918847A (en) * 2018-03-26 2020-11-10 Lg电子株式会社 Apparatus for manufacturing vacuum glass
US11920404B2 (en) 2018-03-26 2024-03-05 Lg Electronics Inc. Apparatus for manufacturing vacuum glass
CN113277751A (en) * 2020-09-30 2021-08-20 江苏景泰玻璃有限公司 Drying device for vacuum glass production and drying method thereof
CN113277751B (en) * 2020-09-30 2023-08-22 江苏景泰玻璃有限公司 Drying device for vacuum glass production and drying method thereof

Also Published As

Publication number Publication date
KR101081390B1 (en) 2011-11-08
KR20100108751A (en) 2010-10-08
WO2010114285A3 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2010114285A2 (en) Method for manufacturing vacuum glass, and vacuum glass manufactured by same
WO2013022239A2 (en) Heat-strengthened vacuum glass
WO2013073883A1 (en) Vacuum glass panel having getter filler and method of manufacturing same
WO2012050308A2 (en) Vacuum insulation glass panel and refrigerator having the same
JP6452822B2 (en) Double glazing
ITMI20081245A1 (en) VACUUM SOLAR THERMAL PANEL
CN105074113B (en) Window with vacuum insulated glass building (VIG) unit and containing vacuum insulation structure
WO2001023700A1 (en) Vacuum insulation glass window unit with peripheral
EP2627957A2 (en) Vacuum insulation glass panel and refrigerator having the same
KR100990858B1 (en) Vacuum glazing and manufacturing method thereof
WO2000029703A1 (en) Method of and apparatus for evacuating a glass chamber
JP2018505977A (en) Multi-layer glass spacer
WO2011081411A2 (en) Triple multi-layer glass having an easily adjustable gap therebetween
WO2011115400A2 (en) Integrated lower-plate glass and manufacturing method of vacuum multi-layer glass including same
KR101322585B1 (en) Vacuum glass panel and method of manufacturing thereof
US20190024442A1 (en) Insulating glass unit and methods to produce it
CN101475304B (en) Back bolt type vacuum glass and manufacturing method thereof
KR100957667B1 (en) Manufacturing method of vacuum adiabatic glass
WO2021230543A1 (en) Multilayer glass having improved airtightness and production method thereof
US20220186548A1 (en) Spacer for insulated glazing
JP3382709B2 (en) Double glazing for structural silicone construction
CN201679401U (en) Dual-cavity coated hollow glass with three blocking dual-isolation frames
CN113348075A (en) Insulating glass unit with low CTE center pane
WO2011081483A2 (en) Triple-layered glass having dual spacer structure
WO2016195316A1 (en) Vacuum glass panel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759010

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10759010

Country of ref document: EP

Kind code of ref document: A2