WO2010113288A1 - Assembling device for display - Google Patents

Assembling device for display Download PDF

Info

Publication number
WO2010113288A1
WO2010113288A1 PCT/JP2009/056738 JP2009056738W WO2010113288A1 WO 2010113288 A1 WO2010113288 A1 WO 2010113288A1 JP 2009056738 W JP2009056738 W JP 2009056738W WO 2010113288 A1 WO2010113288 A1 WO 2010113288A1
Authority
WO
WIPO (PCT)
Prior art keywords
display element
unit
panel
display
positioning
Prior art date
Application number
PCT/JP2009/056738
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 田本
仁啓 谷口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN200980000279.0A priority Critical patent/CN101933067B/en
Priority to PCT/JP2009/056738 priority patent/WO2010113288A1/en
Publication of WO2010113288A1 publication Critical patent/WO2010113288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to an assembling apparatus for a display device that performs assembly processing such as fitting, pressurizing, and fixing a display element into a recessed portion of a lighting device or a casing in assembling a liquid crystal display device or the like.
  • FIG. 15 shows a cross-sectional structure of a typical display device.
  • the display device shown in FIG. 15 includes an illumination device 50, a metal housing (bezel) 51, a display element 52, a polarizing plate 53, an FPC 54, and a driving IC 55.
  • a typical assembly process of the display device is configured as follows, for example.
  • Positioning by image recognition is also common in the assembly process of liquid crystal display devices, but replacement with methods that do not use image recognition is progressing to reduce manufacturing costs, and positioning using the outer shape of members as an alternative means A method is being considered.
  • the liquid crystal display device is designed so that the gap between the recess of the liquid crystal panel and the backlight unit (hereinafter referred to as B / L unit) is as small as possible.
  • B / L unit the backlight unit
  • the assembling member is a means for freely moving in the assembling plane
  • Means for automatically correcting the relative position by a tapered shape formed on the outer peripheral portion of the member when there is a shift in position is described.
  • one end of the positioning body 40 is attached to the upper plate of the movable frame 48. It is supported from both sides by two fixed support pillars 44.
  • Each of the support pillars 44 has ball joints 43 at two locations, and the support pillars 44 are configured to freely follow the movement of the positioning body 40.
  • springs 47 are provided for pressing and centering the positioning body 40 supported by the support pillars 44 from four directions. Each spring 47 presses the positioning body 40 via the telescopic cylinders 45 and 46.
  • the positioning body 40 has guide plates 42 facing each other, and tapered surfaces 49 are formed on both sides of the tip, and the position of the positioning body 40 is determined by hitting the outer shape of the flange portion 41. The movement is corrected (for example, see Japanese Patent Laid-Open No. 9-273661). In another prior art, as shown in FIG.
  • the floating unit 20 includes an X-axis linear guide 27 that is movable in the X-axis direction within a horizontal plane, and a Y-axis that is connected to the X-axis linear guide 27 and connected to the X-axis linear guide 27.
  • An axially movable Y-axis linear guide 24 and an X-axis linear guide 27 and a tension spring 32 for positioning the Y-axis linear guide 24 at a neutral point are configured to move and correct the position of the insertion member 38. (For example, see JP-A-8-85089).
  • JP-A-8-85089 Japanese Patent Application Laid-Open No.
  • 9-273661 discloses a holding means via a ball joint. It is necessary to hold the member.
  • the prior art disclosed in Japanese Patent Laid-Open No. 8-85089 requires means for stacking two axes of an X-axis linear guide and a Y-axis linear guide, both of which have complicated floating means for holding members. Increases in size. In addition, this increases the inertial mass and lowers the positioning accuracy when the transfer machine is turned on. Therefore, it is necessary to increase the taper-shaped dimensions for absorbing positioning errors, like the B / L unit. It is difficult to apply to a member having a narrow side wall.
  • An object of the present invention is to provide an assembling apparatus that can perform high-precision and high-speed assembly processing with a simple configuration with respect to members such as a liquid crystal panel and a B / L unit because the inertial mass of the floating means can be reduced. It is to be.
  • the present invention is an assembling apparatus for manufacturing a liquid crystal display device by holding a display element and incorporating the display element into the recessed portion of a lighting device or a display element housing having a recessed portion, Elastic holding means for pressing and holding the lighting device or the display device housing simultaneously with positioning; Suction means for holding the display element after positioning; A transfer unit for transferring the display element held by the suction means to the illumination device or the display element housing; An assembling apparatus comprising: a pressing unit that incorporates the display element into a recess of the lighting device or the display element housing.
  • the floating means for moving and correcting the position of the member is provided on the member to be assembled, so that the inertial mass of the transfer machine is reduced and the positioning accuracy of the transfer machine is improved.
  • the floating means of the present invention has a simple configuration in which the member can be positioned and held at the same time using the elastic holding means, and the member can be moved and corrected. Therefore, since the inertial mass of the floating means can be reduced, high-accuracy and high-speed assembly processing can be performed with a simple configuration for members such as a liquid crystal panel and a B / L unit.
  • the elastic holding means that presses and holds the lighting device or the display element housing simultaneously with positioning includes a plurality of compression springs that press the side surface of the lighting device and center the lighting device.
  • the present invention is characterized by being configured. According to the present invention, since the member to be assembled is centered by the compression spring, when the member to be assembled interferes with the member to be assembled, the position can be freely corrected and assembled in the assembling plane. Furthermore, the present invention is an assembling apparatus that manufactures a display device by holding a display element and incorporating the display element into the recessed portion of a lighting device or a display element housing having a recessed portion, The lighting device or the display element housing has a positioning guide against which a side surface is pressed, and the lighting device or the display element housing is positioned by pressing the side surface of the lighting device or the display element housing against the positioning guide.
  • Elastic holding means for pressing and holding at the same time;
  • Suction means for holding the display element after positioning;
  • a transfer unit for transferring the display element held by the suction means directly above the recess of the illumination device or the display element housing;
  • a pressurizing part that incorporates the display element into the recess of the illumination device or the display element housing, In the positional relationship in which the lighting device or display element housing held by the elastic holding means and the display element held by the suction means are projected onto an installation plane, the lighting device or display element housing and display When the reference sides of the elements are pressed against the respective positioning guides, the display elements are assembled in the recesses of the illumination device with a predetermined interval therebetween.
  • the members on the reference side do not interfere with each other, and on the opposite side, if the size of the liquid crystal panel is too large or the size of the B / L unit recess is too small, the members are Even when there is interference, the B / L unit slightly moves in the direction in which the elastic holding means for positioning and holding the B / L unit is pushed, so that the interference between members can be eliminated, resulting in poor assembly and damage. Absent. Further, there is no need for means for allowing the B / L unit to move freely within the assembling plane, and the structure is simple because it is composed of only the positioning guide and the pressing means from one direction.
  • the present invention is characterized in that the elastic holding means is constituted by a compression spring, and presses and holds the lighting device or the display element housing against a guide with a predetermined deflection amount.
  • the pressing force calculated from the spring constant of the spring to be used and the amount of deflection can be applied to the B / L unit.
  • the predetermined deflection amount By setting the predetermined deflection amount, the B / L unit can be positioned on the positioning guide. Further, by setting the pressing force so as not to prevent the movement of the B / L unit in the direction of canceling the interference, it is possible to avoid the occurrence of an assembly failure even when the members interfere with each other.
  • FIG. 2A and 2B show embodiments of the floating means of a structure different from FIG. 2A and 2B.
  • FIG. 2A and 2B shows embodiment of the floating means of a structure different from FIG. 2A and 2B.
  • FIG. 2A and 2B shows embodiments of the floating means of the structure different from FIG. 2A and 2B.
  • FIG. 2A and 2B shows side view of the floating means of the structure different from FIG. 2A and 2B.
  • FIG. 2A and 2B shows the state before the panel 5 is integrated in the B / L unit 1.
  • FIG. It is a side view which shows the state in which the panel 5 was integrated in the B / L unit 1.
  • FIG. 5 is a plan view showing a state in which the panel 5 is positioned on the B / L unit 1 by the compression spring 4.
  • FIG. 6 is a plan view showing a state in which the panel 5 is positioned by the positioning pins 7 and the movable pins 8. It is a top view in the state where the B / L unit 1 and the panel 5 which were positioned by the positioning means were arranged oppositely just before the assembly. It is an enlarged plan view of a reference corner portion. It is a side view which shows the state by which the B / L unit 1 and the panel 5 were opposingly arranged.
  • FIG. 4 is a side view showing a state where the lowered panel 5 has reached the B / L unit 1 assembly surface.
  • FIG. 6 is a side view showing a state immediately after the end surface of the panel 5 interferes with the tapered portion 1b of the wall surface of the B / L unit 1.
  • FIG. It is a side view which shows the state of the display apparatus after completion of integration. It is a figure which shows the case where the dimension B1 of the taper part 1b is smaller than the position error A of the panel 5.
  • FIG. It is a figure which shows the case where the dimension B2 of the taper part 1b is larger than the position error A of the panel 5.
  • FIG. It is a figure which shows the whole structure of a panel-B / L unit assembly apparatus, and the flow of the member used as an assembly object. It is a time chart for demonstrating operation
  • FIG. 1 is a perspective view for explaining an assembling apparatus according to an embodiment of the present invention, and shows a state in which a backlight unit (hereinafter referred to as a B / L unit) 1 and a panel 5 are assembled.
  • a panel 5 corresponding to a built-in member is sucked and held after positioning by a suction hand of a transfer machine (not shown), and a B / L unit corresponding to a built-in member placed on the placement stage 10. Move it directly above 1 and install it.
  • a backlight unit hereinafter referred to as a B / L unit
  • the side surface of the B / L unit 1 is pressed from four directions by a compression spring 4 as an elastic holding means such as a compression spring or a plunger.
  • a compression spring 4 as an elastic holding means such as a compression spring or a plunger.
  • a chamfered portion (not shown) is formed on the entire circumference of the side wall of the B / L unit 1, and when interference occurs with the B / L unit 1 when the panel 5 is assembled, When the component force acts, the B / L unit 1 can be assembled by moving and correcting the position freely in the assembly plane. It is sufficient that the pressing force of the compression spring 4 is slightly larger than the maximum static friction coefficient between the B / L unit 1 and the mounting stage 10, and the assembly can be performed with a small load.
  • FIGS. 3A and 3B are views showing an embodiment of the floating means different from FIGS. 2A and 2B
  • FIG. 3A is a plan view of the floating means
  • FIG. 3B is a side view of the floating means.
  • 4A is a side view showing a state before the panel 5 is assembled into the B / L unit 1
  • FIG. 4B is a side view showing a state where the panel 5 is incorporated into the B / L unit 1.
  • the mounting stage 10 of the B / L unit 1 is connected and held to the base 15 by a compression spring 4 disposed in a direction perpendicular to the assembly plane.
  • the compression spring 4 is composed of three compression coil springs, and can freely move and correct within the built-in plane, and can follow the movement in which the mounting stage 10 freely tilts. Therefore, as shown in FIG. 4A, even when the panel 5 is inserted with an inclination, the B / L unit 1 can be incorporated as shown in FIG. The built-in pressure is uniformly applied to both. However, since the present embodiment serves as a means for correcting the movement of the mounting stage 10 holding the B / L unit 1, the inertial mass of the movement correcting means can be reduced unless the mounting stage 10 is lightweight. Therefore, it is not suitable for high-speed embedded processing. 5A and 5B show a method for positioning the B / L unit 1 and the panel 5 on the basis of the outer shape, and FIG.
  • FIG. 5A is a plan view showing a state in which the panel 5 is positioned on the B / L unit 1 by the compression spring 4.
  • FIG. 5B is a plan view showing a state in which the panel 5 is positioned by the positioning pins 7 and the movable pins 8.
  • the B / L unit 1 has a convex portion 1a serving as a position reference on the outer periphery thereof, and positioning is performed by positioning the convex portion 1a on a reference block 3 serving as a positioning reference.
  • a compression spring 4 which is an elastic holding means is arranged on the opposite side to the corner portion where the positioning block 3 is disposed, and the B / L unit 1 is pushed out diagonally by the compression spring 4 so that the B / L
  • the convex portions 1a formed on the two sides of the L unit 1 are positioned on the positioning block 3, and are held simultaneously with the positioning.
  • the compression springs 4 are arranged at two locations on the opposite side of the positioning block 3, but only one location may be disposed at the corner portion and pushed in the diagonal direction.
  • the positioning block 3 may be replaced with a pin, and the B / L unit 1 can be positioned based on the outer shape.
  • the positioning means of the panel 5 includes a positioning pin 7 disposed on the reference side and a movable pin 8 disposed on the opposite side, and the panel 5 is supplied with the movable pin 8 in an open state, and the supply is completed. Later, the movable pin 8 is closed, so that the positioning pin 7 is positioned.
  • FIG. 6 is a plan view for explaining a state in which the B / L unit 1 and the panel 5 positioned by the positioning means are arranged to face each other immediately before assembly.
  • the B / L unit 1 is positioned and held on the positioning block 3 by the compression spring 4, and the panel is arranged oppositely on the B / L unit 1 while being sucked and held by a conveying means such as an XY orthogonal stage or a SCARA robot. Is done.
  • the relative positions obtained by projecting the positions of the B / L unit 1 and the panel 5 onto the built-in plane have a relationship in which the reference sides on which the two are positioned are arranged at a predetermined interval.
  • the set value of the predetermined interval will be described in detail with reference to an enlarged plan view of the reference corner portion of FIG.
  • L1 is the inner wall thickness of the B / L unit, and corresponds to the distance from the tip of the convex portion 1a of the B / L unit 1 to the end face of the B / L inner wall.
  • L2 is the distance from the positioning block 3 with which the tip of the convex portion 1a of the B / L unit 1 abuts to the outer edge of the panel 5.
  • L3 is the distance between the B / L unit inner wall end face and the panel outer end face, and corresponds to the difference between the dimension L2 and the dimension L1.
  • the set value of the predetermined interval described above is derived from conditions for preventing the inner wall of the B / L unit 1 and the outer shape of the panel 5 from interfering with each other regardless of an error factor of the relative position between them.
  • the error factors consist of three factors: (1) accuracy of the member positioning means, (2) positioning accuracy of the panel transport means, and (3) thickness tolerance of the side wall of the B / L unit 1, and each error factor is a mechanism system It is defined by the specification value and the dimensional standard of the member.
  • the clearance L1 which is the distance between the inner wall end face of the B / L unit 1 and the panel outer end face
  • the inner wall of the L unit 1 and the panel outer shape do not interfere with each other on the reference side side.
  • the positioning pin 7 of the panel 5 can be adjusted by a fine movement means such as a built-in micrometer head or a scaled feed screw.
  • FIG. 8A shows a state in which the B / L unit 1 and the panel 5 are arranged to face each other, and the B / L unit 1 is positioned and held by the positioning guide 3 by the compression spring 4.
  • a panel 5 that is attracted and fixed to the panel holding stage 9 is disposed oppositely.
  • the positioning guide side has a positional relationship such that the B / L unit inner wall and the panel outer shape do not interfere with each other by maintaining a predetermined distance. Moves down in the axial direction and starts the assembling operation.
  • FIG. 8B is a side view showing a state in which the lowered panel 5 has reached the assembling surface of the B / L unit 1. Due to the dimensional relationship between the outer dimensions of the panel and the inner dimensions of the B / L unit, interference occurs between the end of the panel 5 and the side wall of the B / L unit 1 on the opposite side of the reference side.
  • the figure shows a state in which the end face of the panel 5 overlaps the side wall of the B / L unit 1 when the outer dimension of the panel is larger than the design dimension and the inner dimension of the B / L unit 1 is smaller than the design dimension.
  • FIG. 8C is a side view showing a state immediately after the end surface of the overlapped panel 5 interferes with the chamfered portion 1 b of the wall surface of the B / L unit 1.
  • the arrow X indicates the direction in which the compression spring 4 pushes the B / L unit 1
  • the arrow -X indicates the direction in which the compression spring 4 is pushed, that is, the direction in which the B / L unit 1 cancels interference.
  • FIG. 8D is a side view showing the state of the display device after completion of the assembly. The display device is positioned and held on the positioning guide 3 by the compression spring 4 again by releasing the pressurization and suction holding on the panel 5.
  • FIG. 9A is a diagram illustrating a case where the dimension B1 of the chamfered portion 1b is smaller than the position error A of the panel 5.
  • FIG. The position error of the panel 5 is determined by the accumulation of the panel outer dimension tolerance and the built-in accuracy, and is defined by the member tolerance and the specification value of the transfer means. Therefore, when the panel 5 having a size larger than the design value is inserted or when the positioning error of the transfer machine is large, the interference cannot be eliminated, and an assembly failure occurs.
  • FIG. 9A is a diagram illustrating a case where the dimension B1 of the chamfered portion 1b is smaller than the position error A of the panel 5.
  • FIG. The position error of the panel 5 is determined by the accumulation of the panel outer dimension tolerance and the built-in accuracy, and is defined by the member tolerance and the specification value of the transfer means. Therefore, when the panel 5 having a size larger than the design value is inserted or when the positioning error of the transfer machine is large, the interference cannot be eliminated, and an assembly failure occurs.
  • the B / L unit 1 exerts a force component in the direction to eliminate the interference with the panel 5 and normal assembly processing is performed. Yes. That is, how much the position can be corrected depends on the dimension of the chamfered portion, and the chamfered dimension may be designed according to the member tolerance and the specification value of the transfer means. Since the built-in device positions the panel 5 and the B / L unit 1 on the basis of the external shape, the positioning accuracy is improved as compared with the positioning method using centering.
  • FIG. 10 shows the entire configuration of the display device assembly apparatus and the flow of members to be assembled.
  • the index table 11 rotates counterclockwise every 90 °, and the following processing is performed at each step.
  • the B / L unit 1 is inserted from the 0 o'clock direction (P1).
  • the loaded B / L unit 1 is positioned on the index table 11 and then positioned and held on the guide block by elastic holding means (not shown).
  • the index table 11 is rotated by 90 ° (P2), and the panel 5 positioned from the 9 o'clock direction is loaded by a transfer machine (not shown) (P3).
  • a transfer machine (not shown) is lowered in the Z-axis direction and assembled into the B / L unit 1.
  • the B / L unit 1 and the panel 5 are fixed by, for example, a double-sided tape (not shown) attached in advance to the B / L unit.
  • the index table 11 is rotated by 90 ° (P4), and the pressure plate 12 installed immediately above the display device is lowered at a position of 6 o'clock to apply a certain load to the display device (P5).
  • the pressurizing operation here is an additional pressurizing means for ensuring the incorporation of the panel 5 and the B / L unit 1, and the initial pressurizing is performed in the operation P3.
  • the index table 11 is rotated by 90 ° (P6), the display device is unlocked at the 3 o'clock position, and is carried out by a transfer machine (not shown) (P7).
  • FIG. 11 is a time chart for explaining the operation of the assembling apparatus
  • FIG. 12 is a flowchart for explaining the operation of the assembling apparatus.
  • each process can be performed in parallel, and a liquid crystal panel can be manufactured efficiently. That is, first, the first set of B / L units is inserted at timing T10 (step S1), and positioning and fixing are simultaneously performed on the B / L units inserted at timing T11 (step S2). Next, the index table 11 rotates at timing T12 (step S3), and during this period, positioning is performed in parallel with respect to the first set of panels 5 at timing T13. Then, the positioned B / L unit 1 is sucked and held by the transfer machine (step S4), the panel is inserted at timing T14 and assembled (step S4), and in parallel at timing T20. The second set of B / L unit 1 is inserted.
  • the index table 11 is rotated at timing T15 (step S6), and the second panel 5 is positioned in parallel at timing T23.
  • the first set of display devices is pressurized at timing T16 (step S7), and the second set of B / L unit 1 and the panel 5 are assembled at timing T24.
  • the index table 11 rotates at timing T17 (step S8), and the first display device is carried out at timing T18, and the processing of the first set of display devices is completed.
  • the second set of display devices is pressurized at the timing T26, the index table is subsequently rotated at the timing T27, and the second set of display devices is carried out at the timing T28 (step S9).
  • the index table 11 rotates at regular intervals (step S10), so that the liquid crystal member mounted on the index table 11 flows continuously, and the B / L unit installed around the index table 11
  • the loading / unloading machine, the panel loading / unloading machine, the pressure plate, and the unloading / transferring machine of the display device repeat the same operation in synchronization with the rotation of the index table 11. Therefore, since each component part can work in parallel, it is possible to minimize the standby time, and to efficiently assemble the display device.
  • assembling using the index table 11 is performed immediately after the index table 11 rotates at the timing T12, and the panel is inserted at the timing T14 and incorporated into the B / L unit 1.
  • FIG. 13 is a diagram showing a schematic configuration of the assembling apparatus according to the first embodiment of the present invention, and shows an apparatus in which the panel transfer machine is directly incorporated into the B / L unit 1.
  • FIG. 14 is a diagram showing a schematic configuration of an assembling apparatus according to another embodiment of the present invention, and shows an apparatus in which the panel transfer machine and the assembling apparatus are separated.
  • the panel transfer machine 13 inputs the panel to the panel holding stage 9 from a panel supply position (not shown) of the panel 5.
  • the panel holding stages 9 and 10 that hold the panel 5 and the B / L unit 1 can be assembled by the lifting means 14 such as an air cylinder while maintaining the relative position of the panel 5 and the panel 5 After being sucked and held by the panel holding stage 9, the lifting / lowering means operates to be incorporated into the B / L unit 1.
  • the lifting means 14 such as an air cylinder
  • the lifting / lowering means operates to be incorporated into the B / L unit 1.
  • higher assembling accuracy can be obtained compared to the first embodiment, and the required dimensions of the chamfered portion can be suppressed.
  • the organic EL panel is fitted into a concave portion of the housing, pressed, fixed, and the like. Is common to liquid crystal display devices. Therefore, for example, it can be applied when assembling a flat display element and a box-shaped housing.
  • the floating means for moving and correcting the position of the member is provided on the member to be assembled side, so that the inertial mass of the transfer machine is reduced and the transfer machine is positioned. Accuracy is improved. Therefore, highly accurate assembly processing is possible regardless of the design dimensions of each member.
  • the floating means has a simple configuration in which positioning and member holding are simultaneously performed using an elastic body and the member can be moved and corrected. Therefore, since the inertial mass of the floating means can be reduced, high-precision and high-speed assembly processing can be performed on members such as a liquid crystal panel and a B / L unit even with an apparatus having a simple configuration. This makes it possible to incorporate a liquid crystal panel and a B / L unit with high accuracy and high speed according to the external shape reference of the member without using an alignment method based on image recognition even in the assembly process of the liquid crystal display device. It is the best method to realize.
  • the present invention can be implemented in various other forms without departing from the spirit or main features thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is an assembling device of a simple structure for assembling, for example, a liquid crystal panel and a backlight unit. In order to attain assembling work with a high accuracy and quickly, the backlight unit (1) is pressed by compression springs (4) for positioning and holding the panel (5), and in such a state, the panel (5) is fitted into the recess of the backlight unit (1) and fixed.

Description

表示装置の組立装置Display device assembly equipment
 本発明は、液晶表示装置などの組立において、表示素子を照明装置もしくは筐体の凹部に嵌合し、加圧し、固定するなどの組立加工を行う、表示装置の組立装置に関する。 The present invention relates to an assembling apparatus for a display device that performs assembly processing such as fitting, pressurizing, and fixing a display element into a recessed portion of a lighting device or a casing in assembling a liquid crystal display device or the like.
 携帯機器の薄型化、小型化が進展している背景には、照明装置の薄型化・筐体の薄型化・信号線や電源線を引き回すための空間を極力小さくためのFPCの採用など、個々の部品を薄くすること、表示素子の狭額縁化などにより筐体面積に占める表示面積を極力大きくすることなどの工夫がある。
 図15に代表的な表示装置の断面構造を示す。図15に示す表示装置は、照明装置50、金属筐体(ベゼル)51、表示素子52、偏光板53、FPC54、および駆動用IC55によって構成されている。
 表示装置(液晶モジュール)の代表的な組立工程は、例えば、次のように構成される。
 (1)表示素子(液晶パネル)に偏光板を貼り付ける工程
 (2)表示素子に駆動用半導体装置(ドライバIC)を実装する工程
 (3)表示素子に外部からの入出力信号や電源を供給するための可撓性基板(Flexible Printed Circuits:略称FPC)を実装する工程
 (4)表示素子を照明装置(バックライトユニット)の凹部に組込む工程
 (5)表示面の裏側に可撓性基板を折込み固定する工程
 (6)金属筐体を取り付けて表示装置として完成させる工程
 従来、離間した2つの部材を位置決め手段を用いて対向配置させ、嵌合などの組立加工を行う方法として、それぞれの部材の位置を画像認識手段によって把握し、位置決めする方法がある。液晶表示装置の組立工程においても画像認識による位置決め方法が一般的であるが、製造コスト削減のため画像認識を用いない手法への置き換えが進んでおり、代替手段として、部材の外形を利用した位置決め方法が検討されている。しかし、携帯機器の薄型化、小型化に伴い、液晶表示装置では液晶パネルとバックライトユニット(以下B/Lユニットと称す)凹部の隙間も極力小さくなるように設計されており、隙間に余裕のない部材同士を組込む場合、部材の誤差や組立加工誤差によっては組込み時に部材同士が干渉し、部材の破損が生じることがあるといった課題を有していた。そのため、下記の特開平9-273661号公報および特開平8-85089号公報に示されている従来技術によれば、組込み用部材が組込み平面内で自在に動ける手段となっており、部材の相対位置にずれがあった場合、部材外周部に形成されたテーパー形状により自動的に相対位置を修正する手段が説明されている。
 具体的には、図16Aの組立装置を側方から見た断面図および図16Bの組立装置を上方から見た断面図に示すように、位置決め体40は、一端が可動フレーム48の上板に固定されている2本の支持柱44により、両側から支持されている。前記支持柱44のそれぞれ2箇所にボールジョイント43を有しており、支持柱44は位置決め体40の動きに対して自由に追従できるように構成されている。可動フレーム48の四方の側壁には、前記支持柱44によって支持されている位置決め体40を四方から押圧してセンタリングするスプリング47が設けられる。各スプリング47は、伸縮筒45、46を介して位置決め体40を押圧している。また、位置決め体40は、それぞれ対向するガイド板42を有しており、その先端両側にはテーパー面49が形成されており、フランジ部41の外形部に当ることによって、位置決め体40の位置を移動修正する(例えば、特開平9-273661号公報参照)。
 また、他の従来技術では、図17に示すように、フローティングユニット20は、水平面内でX軸方向に移動自在なX軸リニアガイド27と、このX軸リニアガイド27に連結され水平面内でY軸方向に移動自在なY軸リニアガイド24と、前記X軸リニアガイド27およびY軸リニアガイド24を中立点に位置決めする引張りばね32とから構成され、挿入用部材38の位置を移動修正している(例えば、特開平8-85089号公報参照)。
 しかしながら、前述の各従来技術において、移載機側が保持した組込み用部材を組込み面内で自在に動かすために、特開平9-273661号公報に示される従来技術では、ボールジョイントを介した保持手段によって部材を保持する必要がある。また、特開平8-85089号公報に示される従来技術では、X軸リニアガイドとY軸用リニアガイドの2軸を積み上げた手段が必要であり、いずれも部材を保持するフローティング手段が複雑で装置が大型化する。また、そのために慣性質量が増大し、移載機が投入する際の位置決め精度が低下することから、位置決め誤差を吸収するためのテーパー形状の寸法を大きくする必要があり、B/Lユニットのような側壁が狭い部材には適用が困難であった。
 また、移載機側の位置決め精度を確保するために、従来技術のフローティング手段を組込み用部材ではなく被組込み用部材に適用した場合でも、移載機側の位置決め精度は向上するものの、被組込み用部材の慣性質量が増大するために、組込み時に干渉を回避する部材の移動加速度が低下する。したがって処理タクトの長い部材組込みには適用できるが、高速処理が要求される場合には、フローティング手段自体の慣性質量を低減する必要があった。
The background of the progress of thinning and miniaturization of portable devices is the individualization such as thinning of lighting devices, thinning of housings, and adoption of FPC to minimize the space for routing signal and power lines. There are contrivances such as making the display area thin as much as possible and increasing the display area in the housing area as much as possible by narrowing the frame of the display element.
FIG. 15 shows a cross-sectional structure of a typical display device. The display device shown in FIG. 15 includes an illumination device 50, a metal housing (bezel) 51, a display element 52, a polarizing plate 53, an FPC 54, and a driving IC 55.
A typical assembly process of the display device (liquid crystal module) is configured as follows, for example.
(1) A process of attaching a polarizing plate to a display element (liquid crystal panel) (2) A process of mounting a driving semiconductor device (driver IC) on the display element (3) Supplying external input / output signals and power to the display element (4) The step of incorporating the display element into the recess of the lighting device (backlight unit) (5) The flexible substrate is mounted on the back side of the display surface Step of folding and fixing (6) Step of attaching a metal casing to complete a display device Conventionally, as a method of performing assembly processing such as fitting by disposing two spaced apart members using positioning means, each member There is a method of grasping the position of the image by the image recognition means and positioning it. Positioning by image recognition is also common in the assembly process of liquid crystal display devices, but replacement with methods that do not use image recognition is progressing to reduce manufacturing costs, and positioning using the outer shape of members as an alternative means A method is being considered. However, as the mobile devices become thinner and smaller, the liquid crystal display device is designed so that the gap between the recess of the liquid crystal panel and the backlight unit (hereinafter referred to as B / L unit) is as small as possible. When assembling non-members, there is a problem that the members may interfere with each other at the time of assembling depending on the error of the member or the assembling process error, and the member may be damaged. Therefore, according to the prior art disclosed in Japanese Patent Application Laid-Open No. 9-273661 and Japanese Patent Application Laid-Open No. 8-85089 below, the assembling member is a means for freely moving in the assembling plane, Means for automatically correcting the relative position by a tapered shape formed on the outer peripheral portion of the member when there is a shift in position is described.
Specifically, as shown in a cross-sectional view of the assembling apparatus of FIG. 16A from the side and a cross-sectional view of the assembling apparatus of FIG. 16B viewed from above, one end of the positioning body 40 is attached to the upper plate of the movable frame 48. It is supported from both sides by two fixed support pillars 44. Each of the support pillars 44 has ball joints 43 at two locations, and the support pillars 44 are configured to freely follow the movement of the positioning body 40. On the four side walls of the movable frame 48, springs 47 are provided for pressing and centering the positioning body 40 supported by the support pillars 44 from four directions. Each spring 47 presses the positioning body 40 via the telescopic cylinders 45 and 46. The positioning body 40 has guide plates 42 facing each other, and tapered surfaces 49 are formed on both sides of the tip, and the position of the positioning body 40 is determined by hitting the outer shape of the flange portion 41. The movement is corrected (for example, see Japanese Patent Laid-Open No. 9-273661).
In another prior art, as shown in FIG. 17, the floating unit 20 includes an X-axis linear guide 27 that is movable in the X-axis direction within a horizontal plane, and a Y-axis that is connected to the X-axis linear guide 27 and connected to the X-axis linear guide 27. An axially movable Y-axis linear guide 24 and an X-axis linear guide 27 and a tension spring 32 for positioning the Y-axis linear guide 24 at a neutral point are configured to move and correct the position of the insertion member 38. (For example, see JP-A-8-85089).
However, in each of the prior arts described above, in order to freely move the assembling member held on the transfer machine side within the assembling surface, the prior art disclosed in Japanese Patent Application Laid-Open No. 9-273661 discloses a holding means via a ball joint. It is necessary to hold the member. Further, the prior art disclosed in Japanese Patent Laid-Open No. 8-85089 requires means for stacking two axes of an X-axis linear guide and a Y-axis linear guide, both of which have complicated floating means for holding members. Increases in size. In addition, this increases the inertial mass and lowers the positioning accuracy when the transfer machine is turned on. Therefore, it is necessary to increase the taper-shaped dimensions for absorbing positioning errors, like the B / L unit. It is difficult to apply to a member having a narrow side wall.
In addition, in order to ensure the positioning accuracy on the transfer machine side, even when the floating means of the prior art is applied to the built-in member instead of the built-in member, the positioning accuracy on the transfer machine side is improved, but the built-in Since the inertial mass of the working member increases, the moving acceleration of the member that avoids interference during assembly is reduced. Therefore, it can be applied to assembling a member having a long processing tact, but when high-speed processing is required, it is necessary to reduce the inertial mass of the floating means itself.
 本発明の目的は、フローティング手段の慣性質量が低減できるため、液晶パネルやB/Lユニットのような部材に対して簡易な構成によって高精度で高速な組込み処理を行うことができる組立装置を提供することである。
 本発明は、表示素子を保持して、凹部を有する照明装置または表示素子筐体の前記凹部に前記表示素子を組込むことによって液晶表示装置を製造する組立装置であって、
 前記照明装置または表示装置筐体を位置決めと同時に押圧保持する弾性保持手段と、
 前記表示素子を位置決めした後に保持する吸着手段と、
 前記吸着手段で保持した前記表示素子を前記照明装置または表示素子筐体に移送する移載部と、
 前記表示素子を前記照明装置または表示素子筐体の凹部に組込む加圧部とを含むことを特徴とする組立装置である。
 本発明によれば、部材の位置を移動修正するフローティング手段を被組込み用部材側に持たせることで、移載機の慣性質量が低減し、移載機の位置決め精度が向上するため、液晶パネルとB/Lユニットのような部材間の隙間が小さく、テーパー形状を形成する領域が確保しにくい部材同士の組込みが可能になる。
 また、本発明のフローティング手段は弾性保持手段を用いて部材の位置決めと部材の保持を同時に行い、且つ部材を移動修正できる簡易な構成である。したがって、フローティング手段の慣性質量が低減できるため、液晶パネルとB/Lユニットのような部材に対して簡易な構成によって高精度で高速な組込み処理が可能となる。
 また本発明の組立装置は、前記照明装置または表示素子筐体を位置決めと同時に押圧保持する前記弾性保持手段は、前記照明装置の側面を押圧して、前記照明装置をセンタリングする複数の圧縮スプリングにより構成されることを特徴とする。
 本発明によれば、被組込み用部材が圧縮スプリングによってセンタリングされているために、組込み用部材と干渉した場合に、組込み平面内で自在に位置を移動修正して組込みが可能となる。
 さらに本発明は、表示素子を保持して、凹部を有する照明装置または表示素子筐体の前記凹部に前記表示素子を組込むことによって表示装置を製造する組立装置であって、
 前記照明装置または表示素子筐体の側面が押し当てられる位置決めガイドを有し、この位置決めガイドに前記照明装置または表示素子筐体の側面を押し当てることによって、前記照明装置または表示素子筐体を位置決めと同時に押圧保持する弾性保持手段と、
 前記表示素子を位置決めした後に保持する吸着手段と、
 前記吸着手段で保持した前記表示素子を前記照明装置または表示素子筐体の凹部の直上に移送する移載部と、
 前記表示素子を前記照明装置または表示素子筐体の凹部に組込む加圧部とを有し、
 前記弾性保持手段によって保持された前記照明装置または表示素子筐体と、前記吸着手段によって保持された前記表示素子とを組込み平面に投影した位置関係において、前記照明装置または表示素子筐体、および表示素子の基準辺同士は、それぞれの位置決めガイドに押し当てる際に所定の間隔をあけた状態で、前記表示素子を前記照明装置の凹部に組込むことを特徴とする組立装置である。
 本発明によれば、基準辺側は部材同士が干渉することはなく、対辺側は、液晶パネルの寸法が大きすぎるか、または、B/Lユニット凹部の寸法が小さい過ぎる場合など、もし部材同士が干渉する場合であっても、B/Lユニットを位置決め保持する弾性保持手段が押し込まれる方向にB/Lユニットが微動することによって部材同士の干渉を解消でき、組込み不良や破損を生じることがない。また、B/Lユニットが組込み面内で自在に動ける手段が不要となり、位置決めガイドと1方向からの押圧手段のみで構成されるため簡易な構造となる。したがって、フローティング手段の慣性質量を低減でき、部材同士が干渉した場合であっても、被組込み用部材が瞬時に移動修正することによって高速な組込みが可能となる。
 さらに本発明は、前記弾性保持手段は圧縮スプリングによって構成され、所定のたわみ量をもって前記照明装置または表示素子筐体をガイドに押圧保持することを特徴とする。
 本発明によれば、使用するスプリングのばね定数とたわみ量から算出される押圧力をB/Lユニットに付与することができる。所定のたわみ量に設定することによって、B/Lユニットを位置決めガイドに位置決めすることが可能となる。また、B/Lユニットが干渉を解消する方向への動きを妨げない押圧力に設定することによって、部材同士が干渉する場合であっても組込み不良の発生を回避できる。
An object of the present invention is to provide an assembling apparatus that can perform high-precision and high-speed assembly processing with a simple configuration with respect to members such as a liquid crystal panel and a B / L unit because the inertial mass of the floating means can be reduced. It is to be.
The present invention is an assembling apparatus for manufacturing a liquid crystal display device by holding a display element and incorporating the display element into the recessed portion of a lighting device or a display element housing having a recessed portion,
Elastic holding means for pressing and holding the lighting device or the display device housing simultaneously with positioning;
Suction means for holding the display element after positioning;
A transfer unit for transferring the display element held by the suction means to the illumination device or the display element housing;
An assembling apparatus comprising: a pressing unit that incorporates the display element into a recess of the lighting device or the display element housing.
According to the present invention, the floating means for moving and correcting the position of the member is provided on the member to be assembled, so that the inertial mass of the transfer machine is reduced and the positioning accuracy of the transfer machine is improved. Since the gap between the members such as the B / L unit is small, it is possible to incorporate the members that do not easily secure the tapered region.
In addition, the floating means of the present invention has a simple configuration in which the member can be positioned and held at the same time using the elastic holding means, and the member can be moved and corrected. Therefore, since the inertial mass of the floating means can be reduced, high-accuracy and high-speed assembly processing can be performed with a simple configuration for members such as a liquid crystal panel and a B / L unit.
In the assembling apparatus of the present invention, the elastic holding means that presses and holds the lighting device or the display element housing simultaneously with positioning includes a plurality of compression springs that press the side surface of the lighting device and center the lighting device. It is characterized by being configured.
According to the present invention, since the member to be assembled is centered by the compression spring, when the member to be assembled interferes with the member to be assembled, the position can be freely corrected and assembled in the assembling plane.
Furthermore, the present invention is an assembling apparatus that manufactures a display device by holding a display element and incorporating the display element into the recessed portion of a lighting device or a display element housing having a recessed portion,
The lighting device or the display element housing has a positioning guide against which a side surface is pressed, and the lighting device or the display element housing is positioned by pressing the side surface of the lighting device or the display element housing against the positioning guide. Elastic holding means for pressing and holding at the same time;
Suction means for holding the display element after positioning;
A transfer unit for transferring the display element held by the suction means directly above the recess of the illumination device or the display element housing;
A pressurizing part that incorporates the display element into the recess of the illumination device or the display element housing,
In the positional relationship in which the lighting device or display element housing held by the elastic holding means and the display element held by the suction means are projected onto an installation plane, the lighting device or display element housing and display When the reference sides of the elements are pressed against the respective positioning guides, the display elements are assembled in the recesses of the illumination device with a predetermined interval therebetween.
According to the present invention, the members on the reference side do not interfere with each other, and on the opposite side, if the size of the liquid crystal panel is too large or the size of the B / L unit recess is too small, the members are Even when there is interference, the B / L unit slightly moves in the direction in which the elastic holding means for positioning and holding the B / L unit is pushed, so that the interference between members can be eliminated, resulting in poor assembly and damage. Absent. Further, there is no need for means for allowing the B / L unit to move freely within the assembling plane, and the structure is simple because it is composed of only the positioning guide and the pressing means from one direction. Therefore, the inertial mass of the floating means can be reduced, and even when the members interfere with each other, the to-be-assembled member instantaneously moves and corrects to enable high-speed assembly.
Furthermore, the present invention is characterized in that the elastic holding means is constituted by a compression spring, and presses and holds the lighting device or the display element housing against a guide with a predetermined deflection amount.
According to the present invention, the pressing force calculated from the spring constant of the spring to be used and the amount of deflection can be applied to the B / L unit. By setting the predetermined deflection amount, the B / L unit can be positioned on the positioning guide. Further, by setting the pressing force so as not to prevent the movement of the B / L unit in the direction of canceling the interference, it is possible to avoid the occurrence of an assembly failure even when the members interfere with each other.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の一実施形態の組立装置を示す斜視図である。 図1に示す組立装置の平面図である。 図1に示す組立装置の側面図である。 図2Aおよび図2Bとは異なる構成のフローティング手段の実施形態を示す平面図である。 図2Aおよび図2Bとは異なる構成のフローティング手段の側面図である。 パネル5がB/Lユニット1に組込まれる前の状態を示す側面図である。 パネル5がB/Lユニット1に組込まれた状態を示す側面図である。 パネル5が圧縮スプリング4によってB/Lユニット1に位置決めされた状態を示す平面図である。 パネル5が位置決めピン7および可動ピン8によって位置決めされた状態を示す平面図である。 位置決め手段により位置決めされたB/Lユニット1とパネル5が組込み直前に対向配置された状態における平面図である。 基準コーナー部の拡大平面図である。 B/Lユニット1とパネル5が対向配置された状態を示す側面図である。 下降したパネル5がB/Lユニット1の組込み面に到達した状態を示す側面図である。 パネル5の端面がB/Lユニット1の壁面のテーパー部1bに干渉した直後の状態を示す側面図である。 組込み完了後の表示装置の状態を示す側面図である。 パネル5の位置誤差Aよりもテーパー部1bの寸法B1が小さい場合を示す図である。 パネル5の位置誤差Aよりもテーパー部1bの寸法B2が大きい場合を示す図である。 パネル-B/Lユニット組立装置の全体構成と組込み対象となる部材の流れを示す図である。 組立装置の動作を説明するためのタイムチャートである。 組立装置の動作を説明するためのフローチャートである。 本発明の第1の実施形態の組立装置の概略的な構成を示す図である。 本発明の他の実施形態の組立装置の概略的構成を示す図である。 代表的な表示装置の断面構造を示す図である。 従来技術の組立装置を側方から見た断面図である。 従来技術の組立装置を上方から見た断面図である。 他の従来技術の組立装置を示す分解斜視図である。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
It is a perspective view which shows the assembly apparatus of one Embodiment of this invention. It is a top view of the assembly apparatus shown in FIG. It is a side view of the assembly apparatus shown in FIG. It is a top view which shows embodiment of the floating means of a structure different from FIG. 2A and 2B. It is a side view of the floating means of the structure different from FIG. 2A and 2B. It is a side view which shows the state before the panel 5 is integrated in the B / L unit 1. FIG. It is a side view which shows the state in which the panel 5 was integrated in the B / L unit 1. FIG. FIG. 5 is a plan view showing a state in which the panel 5 is positioned on the B / L unit 1 by the compression spring 4. FIG. 6 is a plan view showing a state in which the panel 5 is positioned by the positioning pins 7 and the movable pins 8. It is a top view in the state where the B / L unit 1 and the panel 5 which were positioned by the positioning means were arranged oppositely just before the assembly. It is an enlarged plan view of a reference corner portion. It is a side view which shows the state by which the B / L unit 1 and the panel 5 were opposingly arranged. FIG. 4 is a side view showing a state where the lowered panel 5 has reached the B / L unit 1 assembly surface. 6 is a side view showing a state immediately after the end surface of the panel 5 interferes with the tapered portion 1b of the wall surface of the B / L unit 1. FIG. It is a side view which shows the state of the display apparatus after completion of integration. It is a figure which shows the case where the dimension B1 of the taper part 1b is smaller than the position error A of the panel 5. FIG. It is a figure which shows the case where the dimension B2 of the taper part 1b is larger than the position error A of the panel 5. FIG. It is a figure which shows the whole structure of a panel-B / L unit assembly apparatus, and the flow of the member used as an assembly object. It is a time chart for demonstrating operation | movement of an assembly apparatus. It is a flowchart for demonstrating operation | movement of an assembly apparatus. It is a figure which shows schematic structure of the assembly apparatus of the 1st Embodiment of this invention. It is a figure which shows schematic structure of the assembly apparatus of other embodiment of this invention. It is a figure which shows the cross-section of a typical display apparatus. It is sectional drawing which looked at the assembly apparatus of a prior art from the side. It is sectional drawing which looked at the assembly apparatus of a prior art from upper direction. It is a disassembled perspective view which shows the assembly apparatus of another prior art.
符号の説明Explanation of symbols
 1 バックライトユニット
 1a 凸部
 1b 面取り部
 3 位置決めブロック
 4 圧縮スプリング
 5 パネル
 7 位置決めピン
 8 可動ピン
 9 パネル保持ステージ
 10 載置ステージ
 11 インデックステーブル
 12 加圧プレート
 13 パネル移載機
 14 昇降手段
 15 基台
DESCRIPTION OF SYMBOLS 1 Backlight unit 1a Convex part 1b Chamfer part 3 Positioning block 4 Compression spring 5 Panel 7 Positioning pin 8 Movable pin 9 Panel holding stage 10 Mounting stage 11 Index table 12 Pressure plate 13 Panel transfer machine 14 Lifting means 15 Base
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 本発明にかかる表示装置の製造装置の実施形態を以下に記載する。図1は本発明の一実施形態の組立装置を説明する斜視図であり、バックライトユニット(以下、B/Lユニットと記す)1とパネル5を組込む状態を示している。本実施形態では、組込み用部材に相当するパネル5を、図示しない移載機の吸着ハンドによって位置決め後に吸着保持し、載置ステージ10に載置された被組込み用部材に相当するB/Lユニット1の直上に移動させて組込みを行う。本実施形態では、図2Aの平面図および図2Bの側面図に示すとおり、B/Lユニット1の側面に対して4方向から圧縮スプリングやプランジャなどの弾性保持手段としての圧縮スプリング4によって押圧することによって、センタリングすると同時に部材を保持している。B/Lユニット1の側壁の全周には、図示しない面取り部が形成されており、パネル5を組込む際にB/Lユニット1との間に干渉が生じた場合、組込み面と水平方向に分力が働くことで、B/Lユニット1が組込み平面内で自在に位置を移動修正して組込みが可能となる。
 圧縮スプリング4の押圧力は、B/Lユニット1と載置ステージ10との最大静止摩擦係数よりも僅かに大きければ十分であり、小さな荷重で組込みが可能となる。逆に圧縮スプリング4の押圧力が大きすぎる場合は、B/Lユニット1の移動修正を妨げることになり、不適である。
 次に図3Aおよび図3Bは、図2Aおよび図2Bとは異なるフローティング手段の実施形態を示す図であり、図3Aはフローティング手段の平面図であり、図3Bはフローティング手段の側面図である。図4Aはパネル5がB/Lユニット1に組込まれる前の状態を示す側面図であり、図4Bはパネル5がB/Lユニット1に組込まれた状態を示す側面図である。B/Lユニット1の載置ステージ10は、組込み平面と垂直方向に配置された圧縮スプリング4によって基台15と連結保持されている。圧縮スプリング4は3本の圧縮コイルばねから成り、組込み平面内で自在に移動補正できるとともに、載置ステージ10が自由に傾く動きに追従可能である。
 したがって、図4Aに示すように、パネル5が傾きを持って投入された場合であっても、B/Lユニット1が追従して傾くことで、図4Bに示すように組込むことができ、かつ両者に対して組込み圧力が均一に加わる。ただし、本実施形態は、B/Lユニット1を保持する載置ステージ10ごと移動補正する手段になるため、載置ステージ10が軽量な場合でないと移動補正手段の慣性質量を低減することができず、高速な組込み処理には不向きである。
 図5Aおよび図5BはB/Lユニット1とパネル5を外形基準で位置決めを行う方法を示し、図5Aはパネル5が圧縮スプリング4によってB/Lユニット1に位置決めされた状態を示す平面図であり、図5Bはパネル5が位置決めピン7および可動ピン8によって位置決めされた状態を示す平面図である。B/Lユニット1はその外周に位置基準となる凸部1aを有しており、位置決めの基準となる基準ブロック3に凸部1aを位置決めすることによって位置決めを行う。この際、位置決めブロック3が配設されたコーナー部と対辺側に弾性保持手段である圧縮スプリング4を配置し、この圧縮スプリング4によりB/Lユニット1を対角方向に押し出すことで、B/Lユニット1の2辺に形成された凸部1aが位置決めブロック3に位置決めされ、位置決めと同時に保持する。図中では、圧縮スプリング4は、位置決めブロック3の対辺側に2か所配置されているが、コーナー部に1か所のみ配置し対角方向に押す構成としてもよい。また、B/Lユニット1の外周に位置基準となる凸部1aがない場合は、位置決めブロック3をピンに置き換えればよく、B/Lユニット1を外形基準で位置決めすることが可能である。
 一方、パネル5の位置決め手段は、基準辺に配設された位置決めピン7と対辺側に配設された可動ピン8から構成され、可動ピン8が開状態にてパネル5が供給され、供給完了後に可動ピン8が閉状態となることで、位置決めピン7に位置決めされる。位置決め後にパネル5は吸着保持され、組込み時に位置決めピン7および可動ピン8は、B/Lユニット1と干渉しないように全てのピンがパネル搭載面より下方へ退避して組込み前の保持状態を完了する。
 図6は位置決め手段により位置決めされたB/Lユニット1及びパネル5が、組込み直前に対向配置された状態を説明する平面図である。ここでB/Lユニット1は、圧縮スプリング4によって位置決めブロック3に位置決め保持されており、パネルはXY直交ステージやスカラロボットといった搬送手段により吸着保持された状態でB/Lユニット1上に対向配置される。この際のB/Lユニット1とパネル5の位置を組込み平面に投影した相対位置は、両者を位置決めした基準辺同士が所定の間隔を保って配置される関係となる。
 前記所定の間隔の設定値について、図7の基準コーナー部の拡大平面図を用いて詳細に説明する。図中L1はB/Lユニットの内壁厚みであり、B/Lユニット1の凸部1a先端からB/L内壁端面までの距離に相当する。図中L2は、B/Lユニット1の凸部1a先端が当接する位置決めブロック3からパネル5の外形端面までの距離である。図中L3は、B/Lユニット内壁端面とパネル外形端面との距離であり、寸法L2と寸法L1の差分に相当する。ここで、前述した所定の間隔の設定値は、B/Lユニット1の内壁とパネル5の外形とが両者の相対位置の誤差要因にかかわらず干渉しないための条件から導出される。
 誤差要因は、(1)部材位置決め手段の精度、(2)パネル搬送手段の位置決め精度、(3)B/Lユニット1の側壁の厚み公差の3つの要因からなり、各誤差要因は、機構系の仕様値および部材の寸法規格により規定される。すなわち、B/Lユニット1の内壁端面とパネル外形端面との距離であるクリアランスL1が前記の3要因の累積誤差以上に設定されていれば、各誤差要因がいかなる場合であっても、B/Lユニット1の内壁とパネル外形が基準辺側で干渉することがない。本実施形態では、位置決めした基準辺同士が絶対に干渉しないことを前提条件としており、そのために必要な間隔を誤差要因となる3要因から算出し、所定の間隔の設定値としている。また、両者の相対位置が設定値となるように調整する手段として、パネル5の位置決めピン7は内蔵されたマイクロメーターヘッドや目盛り付き送りネジ等の微動手段によって調整可能となっている。
 次に、本実施形態におけるパネル-B/Lユニット組込み時の挙動について、図8Aおよび図8Bの側面図を用いて説明する。図8Aは、B/Lユニット1とパネル5が対向配置された状態を示し、圧縮スプリング4によってB/Lユニット1が位置決めガイド3に位置決め保持されている。B/Lユニット1の上部にはパネル保持ステージ9に吸着固定されたパネル5が対向配置されている。前述したとおり、位置決めガイド側は所定の間隔を保つことによってB/Lユニット内壁とパネル外形とが干渉しないような位置関係となっており、この位置関係を維持したまま、パネル保持ステージ9がZ軸方向へと下降して組込み動作を開始する。
 図8Bは、下降したパネル5がB/Lユニット1の組込み面に到達した状態を示す側面図である。パネル外寸とB/Lユニット内寸の寸法関係により、基準辺の対辺ではパネル5の端部とB/Lユニット1の側壁との間で干渉が起きる。図はパネルの外形寸法が設計寸法より大きく、B/Lユニット1の内寸が設計寸法より小さい場合に、パネル5の端面がB/Lユニット1の側壁に重なり合う状態を示す。
 図8Cは、重なり合ったパネル5の端面がB/Lユニット1の壁面の面取り部1bに干渉した直後の状態を示す側面図である。図中矢印Xは圧縮スプリング4がB/Lユニット1を押し込む方向を示し、矢印-Xは圧縮スプリング4が押し込まれる方向、すなわちB/Lユニット1が干渉を解消する方向を示す。パネル5の端面がB/Lユニット1の壁面に形成された面取り部1bに接触すると、組込み平面の水平方向に働く加圧力の分力によって、B/Lユニット1は-X方向へと微動し、同時にパネル5がB/Lユニット1の側壁より内側に組込まれる。したがって、圧縮スプリング4の押圧力は、B/Lユニット1と載置ステージ10との最大摩擦静止力より大きく、且つ、組込み時にB/Lユニット1とパネル5の干渉を回避するために働く加圧力の分力より小さい必要がある。本実施形態では、組込み荷重10kgfに対し、圧縮スプリング4の押圧範囲を30~150gfとすることによって、良好な組込み結果を得られた。
 図8Dは、組込み完了後の表示装置の状態を示す側面図である。パネル5への加圧と吸着保持を解除することによって、表示装置は再度圧縮スプリング4によって位置決めガイド3に位置決め保持される。最後に圧縮スプリング4が開放されて表示装置として次工程へと搬出される。
 次に、B/Lユニット側壁に形成される面取り部1bの詳細について図9Aおよび図9Bを用いて説明する。図9Aは、パネル5の位置誤差Aよりも面取り部1bの寸法B1が小さい場合を示す図である。パネル5の位置誤差は、パネル外寸公差と組込み精度の累積によって決まり、部材公差と移載手段の仕様値から規定される。したがって、パネル5のサイズが設計値よりも大きいものが投入された場合や移載機の位置決め誤差が大きい場合に、干渉を解消できず、組込み不良を発生する。
 一方、図9Bは、パネル5の位置誤差Aよりも面取り部1bの寸法B2が大きい場合を示す。この場合、投入されるパネル5のサイズや移載機の位置決め精度によらず、B/Lユニット1がパネル5との干渉を解消する方向へ加圧力の分力が作用し正常な組込み処理が行える。すなわち、どれだけ位置補正できるかは、面取り部の寸法に依存しており、部材公差や移載手段の仕様値に応じて面取り寸法を設計すればよい。組込装置は、パネル5およびB/Lユニット1を外形基準で位置決めするため、センタリングによる位置決め方法よりも位置決め精度は向上する。
 また、移動補正量を増やすためには、このような面取りに限らずコーナーR加工であっても同様の効果が得られる。
 なお、一般にB/Lユニットの主要部材はプラスチック製が多く使用され、B/Lユニット1の側壁に前述したような面取り部を形成していなくても、成型加工時にできた自然な角部の丸み(コーナーR)によって干渉を回避することも可能である。
 表示装置の組立装置の全体構成と組込み対象となる部材の流れを図10に示す。インデックステーブル11が反時計周りに90°毎に回転し、各ステップで下記の処理を行う。まず、0時方向よりB/Lユニット1を投入する(P1)。投入されたB/Lユニット1は、インデックステーブル11上で位置決めを行った後、図示しない弾性保持手段によりガイドブロックに位置決め保持される。次にインデックステーブル11が90°回転し(P2)、9時方向より位置決めされたパネル5が図示しない移載機によって投入される(P3)。パネル5は、B/Lユニット1の直上に対向配置された後、図示しない移載機がZ軸方向に下降してB/Lユニット1に組込まれる。
 なお、B/Lユニット1とパネル5とは、例えば、B/Lユニットに予め貼付けられた両面テープ(図示せず)によって固定される。
 次に、インデックステーブル11が90°回転し(P4)、6時方向の位置にて表示装置の直上に設置された加圧プレート12が下降して表示装置に一定の荷重を負荷する(P5)。ここでの加圧動作はパネル5とB/Lユニット1の組込みを確実にするための追加加圧手段であり、当初の加圧は動作P3で行っている。次にインデックステーブル11が90°回転し(P6)、3時方向の位置にて表示装置の固定が解除され、図示しない移載機によって搬出される(P7)。
 図11は組立装置の動作を説明するためのタイムチャートであり、図12は組立装置の動作を説明するためのフローチャートである。図11に示すとおり、インデックステーブル11を使用することによって、各工程処理をパラレルに行うことができ、効率よく液晶パネルを製造することが可能である。
 すなわち、まず、タイミングT10で1セット目のB/Lユニットが投入され(ステップS1)、タイミングT11で投入されたB/Lユニットに対し位置決めと固定が同時に行われる(ステップS2)。次に、タイミングT12でインデックステーブル11が回転し(ステップS3)、この間タイミングT13にて1セット目のパネル5に対して位置決めが平行して行われる。そして、位置決めされたB/Lユニット1に対して、移載機によって吸着保持され(ステップS4)、そのパネルがタイミングT14で投入されて組込みが行われ(ステップS4)、平行してタイミングT20で2セット目のB/Lユニット1が投入される。続いて、インデックステーブル11がタイミングT15で回転し(ステップS6)、平行して2セット目のパネル5がタイミングT23で位置決めされる。続いて、1セット目の表示装置がタイミングT16で加圧される(ステップS7)と同時に、2セット目のB/Lユニット1とパネル5の組込みがタイミングT24で行われる。さらに、インデックステーブル11はタイミングT17で回転し(ステップS8)、タイミングT18で1セット目の表示装置が搬出されて1セット目の表示装置の処理が完了する。
 また、タイミングT18と平行して2セット目の表示装置がタイミングT26で加圧され、続いてタイミングT27でインデックステーブルが回転し、タイミングT28で2セット目の表示装置が搬出される(ステップS9)。
 このように、インデックステーブル11が一定の時間毎に回転する(ステップS10)ことで、インデックステーブル11に搭載された液晶部材が連続的に流れ、インデックステーブル11の周辺に設置されたB/Lユニット投入移載機、パネル投入移載機、加圧プレート、表示装置の搬出移載機は、インデックステーブル11の回転と同期して同じ動作を繰り返す。
 したがって、各構成部が平行して作業を行えるため、無駄に待機している時間を最小限に抑えることができ、表示装置の組立を効率良く行うことができる。
 また、インデックステーブル11を用いた組込みは、タイミングT12でインデックステーブル11が回転した直後に、タイミングT14でパネルが投入され、B/Lユニット1に組込まれる。
 このような組立装置によれば、B/Lユニットを保持するフローティング手段は、位置決めと同時に部材保持し、かつ移動補正が可能な簡易な構成で実現することができる。したがって、被組込み用部材がインデックステーブル11に載置され、組込み前後で被組込み用部材が移動するような場合であっても、フローティング手段の慣性質量が低減することによって位置決め精度が向上するとともに静定時間が短縮できる。よって、高精度且つ高速な組込み処理を可能にすることができる。
 図13は本発明の第1の実施形態の組立装置の概略的な構成を示す図であり、パネル移載機がB/Lユニット1に直接組込みを行う装置を示す。この場合、パネル5は別の箇所で位置決めされており、パネル投入移載機13は、位置決めされたパネル5を吸着保持してB/Lユニット1に対して組込み処理を行う。
 図14は本発明の他の実施形態の組立装置の概略的構成を示す図であり、パネル移載機と組立装置が分離されている装置を示す。パネル移載機13は、パネル5の図示しないパネル供給ポジションからパネル保持ステージ9にパネルを投入する。パネル5とB/Lユニット1を保持するパネル保持ステージ9,10は、エアシリンダ等の昇降手段14によって、対向配置した相対位置を維持したまま組込み処理が行える構成となっており、パネル5は、パネル保持ステージ9で吸着保持された後に、昇降手段が動作することによって、B/Lユニット1に組込まれる。本実施形態では、昇降手段を介して組込みが行われるため、第一の実施形態に比べてより高い組込み精度を得られ、面取り部の必要寸法を抑えることができる。
 なお、上述の実施形態は、液晶表示装置を例示的に用いて説明したが、本発明は表示装置の種類に係らず適用可能である。例えば、有機EL表示装置の場合は、自発光型の表示装置であるため、照明装置は不要となるが、有機ELパネルを、筐体の凹部に嵌合し、加圧し、固定するなどの加工は液晶表示装置と共通のものである。したがって、例えば平板状の表示素子と箱状の筐体を組立加工する際に適用可能である。
 以上のように本発明にかかる組立装置によれば、部材の位置を移動修正するフローティング手段を被組込み用部材側に持たせることで、移載機の慣性質量が低減し、移載機の位置決め精度が向上する。したがって、各部材の設計寸法に関わらず、高精度の組立て加工が可能になる。上記の構成に加えて、フローティング手段は弾性体を用いて位置決めと部材保持を同時に行い、且つ部材を移動修正できる簡易な構成とする。したがって、フローティング手段の慣性質量も低減できるため、液晶パネルやB/Lユニットなどの部材に対し、簡易な構成の装置でも、高精度かつ高速の組立加工を行うことができる。これによって、液晶表示装置の組立工程においても画像認識によるアライメント手法を用いず、部材の外形基準により高精度且つ高速に液晶パネルとB/Lユニットの組込みが可能になることから、低コスト製造を実現する手法として最適である。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
Embodiments of a display device manufacturing apparatus according to the present invention will be described below. FIG. 1 is a perspective view for explaining an assembling apparatus according to an embodiment of the present invention, and shows a state in which a backlight unit (hereinafter referred to as a B / L unit) 1 and a panel 5 are assembled. In the present embodiment, a panel 5 corresponding to a built-in member is sucked and held after positioning by a suction hand of a transfer machine (not shown), and a B / L unit corresponding to a built-in member placed on the placement stage 10. Move it directly above 1 and install it. In this embodiment, as shown in the plan view of FIG. 2A and the side view of FIG. 2B, the side surface of the B / L unit 1 is pressed from four directions by a compression spring 4 as an elastic holding means such as a compression spring or a plunger. Thus, the member is held simultaneously with the centering. A chamfered portion (not shown) is formed on the entire circumference of the side wall of the B / L unit 1, and when interference occurs with the B / L unit 1 when the panel 5 is assembled, When the component force acts, the B / L unit 1 can be assembled by moving and correcting the position freely in the assembly plane.
It is sufficient that the pressing force of the compression spring 4 is slightly larger than the maximum static friction coefficient between the B / L unit 1 and the mounting stage 10, and the assembly can be performed with a small load. On the contrary, when the pressing force of the compression spring 4 is too large, the movement correction of the B / L unit 1 is hindered, which is not suitable.
Next, FIGS. 3A and 3B are views showing an embodiment of the floating means different from FIGS. 2A and 2B, FIG. 3A is a plan view of the floating means, and FIG. 3B is a side view of the floating means. 4A is a side view showing a state before the panel 5 is assembled into the B / L unit 1, and FIG. 4B is a side view showing a state where the panel 5 is incorporated into the B / L unit 1. The mounting stage 10 of the B / L unit 1 is connected and held to the base 15 by a compression spring 4 disposed in a direction perpendicular to the assembly plane. The compression spring 4 is composed of three compression coil springs, and can freely move and correct within the built-in plane, and can follow the movement in which the mounting stage 10 freely tilts.
Therefore, as shown in FIG. 4A, even when the panel 5 is inserted with an inclination, the B / L unit 1 can be incorporated as shown in FIG. The built-in pressure is uniformly applied to both. However, since the present embodiment serves as a means for correcting the movement of the mounting stage 10 holding the B / L unit 1, the inertial mass of the movement correcting means can be reduced unless the mounting stage 10 is lightweight. Therefore, it is not suitable for high-speed embedded processing.
5A and 5B show a method for positioning the B / L unit 1 and the panel 5 on the basis of the outer shape, and FIG. 5A is a plan view showing a state in which the panel 5 is positioned on the B / L unit 1 by the compression spring 4. FIG. 5B is a plan view showing a state in which the panel 5 is positioned by the positioning pins 7 and the movable pins 8. The B / L unit 1 has a convex portion 1a serving as a position reference on the outer periphery thereof, and positioning is performed by positioning the convex portion 1a on a reference block 3 serving as a positioning reference. At this time, a compression spring 4 which is an elastic holding means is arranged on the opposite side to the corner portion where the positioning block 3 is disposed, and the B / L unit 1 is pushed out diagonally by the compression spring 4 so that the B / L The convex portions 1a formed on the two sides of the L unit 1 are positioned on the positioning block 3, and are held simultaneously with the positioning. In the drawing, the compression springs 4 are arranged at two locations on the opposite side of the positioning block 3, but only one location may be disposed at the corner portion and pushed in the diagonal direction. Further, when there is no protrusion 1a serving as a position reference on the outer periphery of the B / L unit 1, the positioning block 3 may be replaced with a pin, and the B / L unit 1 can be positioned based on the outer shape.
On the other hand, the positioning means of the panel 5 includes a positioning pin 7 disposed on the reference side and a movable pin 8 disposed on the opposite side, and the panel 5 is supplied with the movable pin 8 in an open state, and the supply is completed. Later, the movable pin 8 is closed, so that the positioning pin 7 is positioned. After positioning, the panel 5 is sucked and held, and the positioning pins 7 and the movable pins 8 are retracted downward from the panel mounting surface so that they do not interfere with the B / L unit 1 when assembled, and the holding state before assembly is completed. To do.
FIG. 6 is a plan view for explaining a state in which the B / L unit 1 and the panel 5 positioned by the positioning means are arranged to face each other immediately before assembly. Here, the B / L unit 1 is positioned and held on the positioning block 3 by the compression spring 4, and the panel is arranged oppositely on the B / L unit 1 while being sucked and held by a conveying means such as an XY orthogonal stage or a SCARA robot. Is done. In this case, the relative positions obtained by projecting the positions of the B / L unit 1 and the panel 5 onto the built-in plane have a relationship in which the reference sides on which the two are positioned are arranged at a predetermined interval.
The set value of the predetermined interval will be described in detail with reference to an enlarged plan view of the reference corner portion of FIG. In the figure, L1 is the inner wall thickness of the B / L unit, and corresponds to the distance from the tip of the convex portion 1a of the B / L unit 1 to the end face of the B / L inner wall. In the figure, L2 is the distance from the positioning block 3 with which the tip of the convex portion 1a of the B / L unit 1 abuts to the outer edge of the panel 5. In the drawing, L3 is the distance between the B / L unit inner wall end face and the panel outer end face, and corresponds to the difference between the dimension L2 and the dimension L1. Here, the set value of the predetermined interval described above is derived from conditions for preventing the inner wall of the B / L unit 1 and the outer shape of the panel 5 from interfering with each other regardless of an error factor of the relative position between them.
The error factors consist of three factors: (1) accuracy of the member positioning means, (2) positioning accuracy of the panel transport means, and (3) thickness tolerance of the side wall of the B / L unit 1, and each error factor is a mechanism system It is defined by the specification value and the dimensional standard of the member. That is, if the clearance L1, which is the distance between the inner wall end face of the B / L unit 1 and the panel outer end face, is set to be equal to or greater than the cumulative error of the above three factors, The inner wall of the L unit 1 and the panel outer shape do not interfere with each other on the reference side side. In this embodiment, it is a precondition that the positioned reference sides do not interfere with each other, and an interval necessary for the calculation is calculated from three factors that cause an error, and is set as a predetermined interval. As a means for adjusting the relative position between the two to be a set value, the positioning pin 7 of the panel 5 can be adjusted by a fine movement means such as a built-in micrometer head or a scaled feed screw.
Next, the behavior when the panel-B / L unit is assembled in this embodiment will be described with reference to the side views of FIGS. 8A and 8B. FIG. 8A shows a state in which the B / L unit 1 and the panel 5 are arranged to face each other, and the B / L unit 1 is positioned and held by the positioning guide 3 by the compression spring 4. On the upper part of the B / L unit 1, a panel 5 that is attracted and fixed to the panel holding stage 9 is disposed oppositely. As described above, the positioning guide side has a positional relationship such that the B / L unit inner wall and the panel outer shape do not interfere with each other by maintaining a predetermined distance. Moves down in the axial direction and starts the assembling operation.
FIG. 8B is a side view showing a state in which the lowered panel 5 has reached the assembling surface of the B / L unit 1. Due to the dimensional relationship between the outer dimensions of the panel and the inner dimensions of the B / L unit, interference occurs between the end of the panel 5 and the side wall of the B / L unit 1 on the opposite side of the reference side. The figure shows a state in which the end face of the panel 5 overlaps the side wall of the B / L unit 1 when the outer dimension of the panel is larger than the design dimension and the inner dimension of the B / L unit 1 is smaller than the design dimension.
FIG. 8C is a side view showing a state immediately after the end surface of the overlapped panel 5 interferes with the chamfered portion 1 b of the wall surface of the B / L unit 1. In the figure, the arrow X indicates the direction in which the compression spring 4 pushes the B / L unit 1, and the arrow -X indicates the direction in which the compression spring 4 is pushed, that is, the direction in which the B / L unit 1 cancels interference. When the end surface of the panel 5 comes into contact with the chamfered portion 1b formed on the wall surface of the B / L unit 1, the B / L unit 1 slightly moves in the -X direction due to the component force of the applied force acting in the horizontal direction of the assembly plane. At the same time, the panel 5 is assembled inside the side wall of the B / L unit 1. Therefore, the pressing force of the compression spring 4 is larger than the maximum frictional static force between the B / L unit 1 and the mounting stage 10 and is applied to avoid interference between the B / L unit 1 and the panel 5 during installation. It needs to be smaller than the pressure component. In the present embodiment, a favorable assembling result was obtained by setting the pressing range of the compression spring 4 to 30 to 150 gf with respect to the assembling load of 10 kgf.
FIG. 8D is a side view showing the state of the display device after completion of the assembly. The display device is positioned and held on the positioning guide 3 by the compression spring 4 again by releasing the pressurization and suction holding on the panel 5. Finally, the compression spring 4 is opened and carried out as a display device to the next process.
Next, details of the chamfered portion 1b formed on the side wall of the B / L unit will be described with reference to FIGS. 9A and 9B. 9A is a diagram illustrating a case where the dimension B1 of the chamfered portion 1b is smaller than the position error A of the panel 5. FIG. The position error of the panel 5 is determined by the accumulation of the panel outer dimension tolerance and the built-in accuracy, and is defined by the member tolerance and the specification value of the transfer means. Therefore, when the panel 5 having a size larger than the design value is inserted or when the positioning error of the transfer machine is large, the interference cannot be eliminated, and an assembly failure occurs.
On the other hand, FIG. 9B shows a case where the dimension B2 of the chamfered portion 1b is larger than the position error A of the panel 5. In this case, regardless of the size of the panel 5 to be inserted and the positioning accuracy of the transfer machine, the B / L unit 1 exerts a force component in the direction to eliminate the interference with the panel 5 and normal assembly processing is performed. Yes. That is, how much the position can be corrected depends on the dimension of the chamfered portion, and the chamfered dimension may be designed according to the member tolerance and the specification value of the transfer means. Since the built-in device positions the panel 5 and the B / L unit 1 on the basis of the external shape, the positioning accuracy is improved as compared with the positioning method using centering.
Further, in order to increase the movement correction amount, the same effect can be obtained not only in such chamfering but also in corner R machining.
In general, the main member of the B / L unit is often made of plastic, and even if the chamfered portion as described above is not formed on the side wall of the B / L unit 1, natural corners formed at the time of molding are formed. It is also possible to avoid interference by roundness (corner R).
FIG. 10 shows the entire configuration of the display device assembly apparatus and the flow of members to be assembled. The index table 11 rotates counterclockwise every 90 °, and the following processing is performed at each step. First, the B / L unit 1 is inserted from the 0 o'clock direction (P1). The loaded B / L unit 1 is positioned on the index table 11 and then positioned and held on the guide block by elastic holding means (not shown). Next, the index table 11 is rotated by 90 ° (P2), and the panel 5 positioned from the 9 o'clock direction is loaded by a transfer machine (not shown) (P3). After the panel 5 is disposed so as to face the B / L unit 1 directly above, a transfer machine (not shown) is lowered in the Z-axis direction and assembled into the B / L unit 1.
Note that the B / L unit 1 and the panel 5 are fixed by, for example, a double-sided tape (not shown) attached in advance to the B / L unit.
Next, the index table 11 is rotated by 90 ° (P4), and the pressure plate 12 installed immediately above the display device is lowered at a position of 6 o'clock to apply a certain load to the display device (P5). . The pressurizing operation here is an additional pressurizing means for ensuring the incorporation of the panel 5 and the B / L unit 1, and the initial pressurizing is performed in the operation P3. Next, the index table 11 is rotated by 90 ° (P6), the display device is unlocked at the 3 o'clock position, and is carried out by a transfer machine (not shown) (P7).
FIG. 11 is a time chart for explaining the operation of the assembling apparatus, and FIG. 12 is a flowchart for explaining the operation of the assembling apparatus. As shown in FIG. 11, by using the index table 11, each process can be performed in parallel, and a liquid crystal panel can be manufactured efficiently.
That is, first, the first set of B / L units is inserted at timing T10 (step S1), and positioning and fixing are simultaneously performed on the B / L units inserted at timing T11 (step S2). Next, the index table 11 rotates at timing T12 (step S3), and during this period, positioning is performed in parallel with respect to the first set of panels 5 at timing T13. Then, the positioned B / L unit 1 is sucked and held by the transfer machine (step S4), the panel is inserted at timing T14 and assembled (step S4), and in parallel at timing T20. The second set of B / L unit 1 is inserted. Subsequently, the index table 11 is rotated at timing T15 (step S6), and the second panel 5 is positioned in parallel at timing T23. Subsequently, the first set of display devices is pressurized at timing T16 (step S7), and the second set of B / L unit 1 and the panel 5 are assembled at timing T24. Furthermore, the index table 11 rotates at timing T17 (step S8), and the first display device is carried out at timing T18, and the processing of the first set of display devices is completed.
In parallel with the timing T18, the second set of display devices is pressurized at the timing T26, the index table is subsequently rotated at the timing T27, and the second set of display devices is carried out at the timing T28 (step S9). .
In this way, the index table 11 rotates at regular intervals (step S10), so that the liquid crystal member mounted on the index table 11 flows continuously, and the B / L unit installed around the index table 11 The loading / unloading machine, the panel loading / unloading machine, the pressure plate, and the unloading / transferring machine of the display device repeat the same operation in synchronization with the rotation of the index table 11.
Therefore, since each component part can work in parallel, it is possible to minimize the standby time, and to efficiently assemble the display device.
In addition, assembling using the index table 11 is performed immediately after the index table 11 rotates at the timing T12, and the panel is inserted at the timing T14 and incorporated into the B / L unit 1.
According to such an assembling apparatus, the floating means for holding the B / L unit can be realized with a simple configuration capable of holding the member simultaneously with positioning and correcting movement. Therefore, even when the member to be assembled is placed on the index table 11 and the member to be assembled is moved before and after assembling, the inertial mass of the floating means is reduced, so that the positioning accuracy is improved and the static is improved. The fixed time can be shortened. Therefore, high-precision and high-speed incorporation processing can be enabled.
FIG. 13 is a diagram showing a schematic configuration of the assembling apparatus according to the first embodiment of the present invention, and shows an apparatus in which the panel transfer machine is directly incorporated into the B / L unit 1. In this case, the panel 5 is positioned at another location, and the panel loading / unloading machine 13 sucks and holds the positioned panel 5 and performs an assembling process on the B / L unit 1.
FIG. 14 is a diagram showing a schematic configuration of an assembling apparatus according to another embodiment of the present invention, and shows an apparatus in which the panel transfer machine and the assembling apparatus are separated. The panel transfer machine 13 inputs the panel to the panel holding stage 9 from a panel supply position (not shown) of the panel 5. The panel holding stages 9 and 10 that hold the panel 5 and the B / L unit 1 can be assembled by the lifting means 14 such as an air cylinder while maintaining the relative position of the panel 5 and the panel 5 After being sucked and held by the panel holding stage 9, the lifting / lowering means operates to be incorporated into the B / L unit 1. In this embodiment, since assembling is performed via the lifting means, higher assembling accuracy can be obtained compared to the first embodiment, and the required dimensions of the chamfered portion can be suppressed.
Although the above embodiment has been described by using a liquid crystal display device as an example, the present invention is applicable regardless of the type of the display device. For example, in the case of an organic EL display device, since it is a self-luminous display device, an illuminating device is not required, but the organic EL panel is fitted into a concave portion of the housing, pressed, fixed, and the like. Is common to liquid crystal display devices. Therefore, for example, it can be applied when assembling a flat display element and a box-shaped housing.
As described above, according to the assembling apparatus according to the present invention, the floating means for moving and correcting the position of the member is provided on the member to be assembled side, so that the inertial mass of the transfer machine is reduced and the transfer machine is positioned. Accuracy is improved. Therefore, highly accurate assembly processing is possible regardless of the design dimensions of each member. In addition to the above configuration, the floating means has a simple configuration in which positioning and member holding are simultaneously performed using an elastic body and the member can be moved and corrected. Therefore, since the inertial mass of the floating means can be reduced, high-precision and high-speed assembly processing can be performed on members such as a liquid crystal panel and a B / L unit even with an apparatus having a simple configuration. This makes it possible to incorporate a liquid crystal panel and a B / L unit with high accuracy and high speed according to the external shape reference of the member without using an alignment method based on image recognition even in the assembly process of the liquid crystal display device. It is the best method to realize.
The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.

Claims (4)

  1.  表示素子を保持して、凹部を有する照明装置または表示素子筐体の前記凹部に前記表示素子を組込むことによって表示装置を製造する組立装置であって、
     前記照明装置、または表示素子筐体を位置決めと同時に押圧保持する弾性保持手段と、
     前記表示素子を位置決めした後に保持する吸着手段と、
     前記吸着手段で保持した前記表示素子を前記照明装置または表示素子筐体に移送する移載部と、
     前記表示素子を前記照明装置または表示素子筐体の凹部に組込む加圧部とを含むことを特徴とする表示装置の組立装置。
    An assembly device for manufacturing a display device by holding a display element and incorporating the display element into the recess of the illumination device having a recess or the display element housing,
    Elastic holding means for pressing and holding the lighting device or the display element housing simultaneously with positioning; and
    Suction means for holding the display element after positioning;
    A transfer unit for transferring the display element held by the suction means to the illumination device or the display element housing;
    An assembly apparatus for a display device, comprising: a pressing unit that incorporates the display element into a recess of the illumination device or the display element housing.
  2.  前記弾性保持手段は、前記照明装置または表示素子筐体の側面を押圧して、前記照明装置をセンタリングする複数の圧縮スプリングにより構成されることを特徴とする請求項1に記載の表示装置の組立装置。 The display device assembly according to claim 1, wherein the elastic holding unit includes a plurality of compression springs that press the side surface of the lighting device or the display element housing to center the lighting device. apparatus.
  3.  表示素子を保持して、凹部を有する照明装置または表示素子筐体の前記凹部に前記表示素子を組込むことによって表示装置を製造する組立装置であって、
     前記照明装置または表示素子筐体の側面が押し当てられるガイドを有し、このガイドに前記照明装置、または表示素子筐体の側面を押し当てることによって、前記照明装置または表示素子筐体を位置決めと同時に押圧保持する弾性保持手段と、
     前記表示素子を位置決めした後に保持する吸着手段と、
     前記吸着手段で保持した前記表示素子を前記照明装置または表示素子筐体に移送する移載部と、
     前記表示素子を前記照明装置または表示素子筐体の凹部に組込む加圧部とを有し、
     前記弾性保持手段によって保持された前記照明装置または表示素子筐体と、前記吸着手段によって保持された前記表示素子とを組込み平面に投影した位置関係において、前記照明装置または表示素子筐体、および表示素子の前記ガイドに押し当てる基準端同士が所定の間隔を保った状態で、前記表示素子を前記照明装置の凹部に組込むことを特徴とする表示装置の組立装置。
    An assembly device for manufacturing a display device by holding a display element and incorporating the display element into the recess of the illumination device having a recess or the display element housing,
    The lighting device or the display element housing has a guide that is pressed against a side surface of the lighting device or the display element housing, and the lighting device or the display element housing is pressed against the guide to position the lighting device or the display element housing. Elastic holding means for pressing and holding at the same time;
    Suction means for holding the display element after positioning;
    A transfer unit for transferring the display element held by the suction means to the illumination device or the display element housing;
    A pressurizing part that incorporates the display element into the recess of the illumination device or the display element housing,
    In the positional relationship in which the lighting device or display element housing held by the elastic holding means and the display element held by the suction means are projected onto an installation plane, the lighting device or display element housing and display An assembly apparatus for a display device, wherein the display element is incorporated into a recess of the illumination device in a state where a reference end pressed against the guide of the element is kept at a predetermined interval.
  4.  前記弾性保持手段は、圧縮スプリングによって構成され、所定のたわみ量をもって前記照明装置または表示素子筐体を前記ガイドに押圧保持することを特徴とする請求項3に記載の表示装置の組立装置。 4. The display device assembly apparatus according to claim 3, wherein the elastic holding means is constituted by a compression spring, and presses and holds the illumination device or the display element housing against the guide with a predetermined deflection amount.
PCT/JP2009/056738 2009-03-31 2009-03-31 Assembling device for display WO2010113288A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980000279.0A CN101933067B (en) 2009-03-31 2009-03-31 Assembling device for display
PCT/JP2009/056738 WO2010113288A1 (en) 2009-03-31 2009-03-31 Assembling device for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056738 WO2010113288A1 (en) 2009-03-31 2009-03-31 Assembling device for display

Publications (1)

Publication Number Publication Date
WO2010113288A1 true WO2010113288A1 (en) 2010-10-07

Family

ID=42827620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056738 WO2010113288A1 (en) 2009-03-31 2009-03-31 Assembling device for display

Country Status (2)

Country Link
CN (1) CN101933067B (en)
WO (1) WO2010113288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063198A (en) * 2013-12-26 2014-04-10 Japan Display Inc Assembly apparatus of liquid crystal display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363711A (en) * 2014-12-01 2015-02-18 韶关好特利电子有限公司 Strip backlight source board appearance processing method
KR101566928B1 (en) * 2015-03-13 2015-11-06 (주) 루켄테크놀러지스 Push structure and auto probe inspection apparatus using the same
CN106405897B (en) * 2016-11-29 2019-03-15 京东方科技集团股份有限公司 A kind of alignment device and array substrate maintenance equipment
CN107139213A (en) * 2017-06-14 2017-09-08 京信通信系统(中国)有限公司 Mechanical device with error compensation function
TWI699608B (en) * 2019-03-15 2020-07-21 日月光半導體製造股份有限公司 Apparatus for assembling an optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190974A (en) * 1997-12-26 1999-07-13 Fujitsu Ltd Display device
JPH11274276A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Substrate holder
JP3090301U (en) * 2002-05-28 2002-12-06 東京電子工業株式会社 Panel part inspection unit alignment mechanism
JP2006154338A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Display device, mobile telephone, and assembling method for display device
JP2007078926A (en) * 2005-09-13 2007-03-29 Sanyo Epson Imaging Devices Corp Electrooptical device and electronic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078487B2 (en) * 2005-05-25 2008-04-23 株式会社日立プラントテクノロジー Substrate assembly apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190974A (en) * 1997-12-26 1999-07-13 Fujitsu Ltd Display device
JPH11274276A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Substrate holder
JP3090301U (en) * 2002-05-28 2002-12-06 東京電子工業株式会社 Panel part inspection unit alignment mechanism
JP2006154338A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Display device, mobile telephone, and assembling method for display device
JP2007078926A (en) * 2005-09-13 2007-03-29 Sanyo Epson Imaging Devices Corp Electrooptical device and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063198A (en) * 2013-12-26 2014-04-10 Japan Display Inc Assembly apparatus of liquid crystal display device

Also Published As

Publication number Publication date
CN101933067A (en) 2010-12-29
CN101933067B (en) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2010113288A1 (en) Assembling device for display
TWI631649B (en) Substrate replacement device, exposure device, substrate replacement method, exposure method, manufacturing method of flat panel display, and component manufacturing method
JP2019216243A (en) Transport device, exposure device, and device manufacturing method
KR100844968B1 (en) Substrate assembling apparatus and method
CN109791370B (en) Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
JP6245308B2 (en) Substrate transport method, device manufacturing method, substrate transport apparatus, and exposure apparatus
KR101636118B1 (en) Pattern forming apparatus and pattern forming method
US20160243707A1 (en) Conveying hand and lithography apparatus
CN110114725B (en) Transfer apparatus, exposure apparatus, method for manufacturing flat panel display, and method for manufacturing device
KR102454458B1 (en) Substrate assembling apparatus and substrate assembling method using the same
JP6207843B2 (en) Alignment apparatus and alignment method
TWI743614B (en) Substrate processing device and substrate processing method
JP5386238B2 (en) Panel substrate transfer device and display panel module assembly device
KR100993220B1 (en) The apparatus for aligning of the cassette for the exposure equipment
JP5386217B2 (en) Display panel transfer device and display panel module assembly device
KR20150006334A (en) Film mask correction device
JP4763521B2 (en) Component mounting apparatus, component mounting method, crimping apparatus, and crimping method
JP6066764B2 (en) Pattern forming apparatus and pattern forming method
KR20140086558A (en) Apparatus for testing
JP2014144628A (en) Pattern forming device
KR101636119B1 (en) Pattern forming apparatus and pattern forming method
US20230225057A1 (en) Bending apparatus, device to be bent and machining method therefor, bent device, and display device
KR102449761B1 (en) Apparatus for Multi-Axial Active Adjustment
JP2009128326A (en) Position regulator and regulating method
KR101543784B1 (en) Loading appratus for touch screen module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000279.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP