WO2010112768A1 - Procede pour le lissage de la surface d'une piece en materiau cmc. - Google Patents

Procede pour le lissage de la surface d'une piece en materiau cmc. Download PDF

Info

Publication number
WO2010112768A1
WO2010112768A1 PCT/FR2010/050606 FR2010050606W WO2010112768A1 WO 2010112768 A1 WO2010112768 A1 WO 2010112768A1 FR 2010050606 W FR2010050606 W FR 2010050606W WO 2010112768 A1 WO2010112768 A1 WO 2010112768A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
ceramic
vitreous coating
vitreous
deposited
Prior art date
Application number
PCT/FR2010/050606
Other languages
English (en)
Inventor
Eric Bouillon
Nicolas Eberling-Fux
Serge Chateigner
Original Assignee
Snecma Propulsion Solide
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma Propulsion Solide, Snecma filed Critical Snecma Propulsion Solide
Priority to CA2757387A priority Critical patent/CA2757387C/fr
Priority to US13/262,120 priority patent/US8846218B2/en
Priority to JP2012502749A priority patent/JP5678028B2/ja
Priority to RU2011143260/03A priority patent/RU2523265C2/ru
Priority to BRPI1015247-4A priority patent/BRPI1015247B1/pt
Priority to EP10717696.8A priority patent/EP2414305B1/fr
Priority to CN201080024064.5A priority patent/CN102448910B/zh
Priority to KR1020117024803A priority patent/KR101787766B1/ko
Publication of WO2010112768A1 publication Critical patent/WO2010112768A1/fr
Priority to US14/467,938 priority patent/US9404185B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/311Layer deposition by torch or flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • the present invention relates to ceramic composite material parts. It relates more particularly to improving the surface condition of such parts.
  • the blades are an important part of the mass of the low pressure stages. In order to significantly reduce the mass and to admit operating temperatures higher than those authorized with current metal alloys, one solution would be to use ceramic matrix composite materials for producing the blades.
  • the ceramic matrix composite materials are part of so-called thermostructural composite materials, that is to say composite materials having good mechanical properties and ability to retain these properties at high temperature.
  • parts, such as blades, made of CMC have a significant weight gain compared to the same parts made with the usual metal alloys.
  • the CMC parts are formed by a fibrous reinforcement of refractory fibers (carbon or ceramic) which is densified by a ceramic matrix, in particular carbide, nitride, refractory oxide, ....
  • Typical examples of CMC materials are C-SiC materials (carbon fiber reinforcement and silicon carbide matrix), SiC-SiC materials and CC / Si materials (mixed matrix) carbon / silicon carbide).
  • the manufacture of CMC composite parts is well known. Densification of the fibrous reinforcement can be carried out by a liquid route (impregnation with a precursor resin of the ceramic matrix and transformation into ceramic by crosslinking and pyrolysis, the process being repeatable) or by a gaseous route (chemical vapor infiltration).
  • the CMC parts have a wavy and relatively rough surface appearance that may be incompatible with the aerodynamic performance required for parts such as blades.
  • the surface corrugation is due to the fibrous reinforcement while the roughness is related to the ceramic matrix in "seal-coat", in particular when it is deposited by chemical vapor infiltration (CVI).
  • the parts made of metal alloys and associated processes have a smooth surface appearance with a very low roughness (of the order of 1 micron).
  • a solution for improving the surface state of a CMC part consists in applying to the surface thereof a liquid composition containing a ceramic precursor polymer, for example silicon carbide, and a refractory solid filler in the form of grains for forming a ceramic coating.
  • This ceramic coating makes it possible to erase the undulations present on the surface of the piece.
  • This step is followed by a ceramic deposition, for example of SiC, formed by chemical vapor infiltration (CVI) for a period of about 30 hours which makes it possible to bond the grains of the refractory filler together.
  • CVI chemical vapor infiltration
  • the glassy smoothing coating must meet several conditions to be adapted to the structural and functional characteristics of CMC parts.
  • the vitreous smoothing coating must in particular have, at least during its application to the part, a surface tension or surface tension, and possibly a viscosity, adapted to the smoothing, that is to say which allows easy spreading and uniform of the coating on the surface of the piece.
  • the smoothing coating must further have a coefficient of thermal expansion close to that of the CMC material of the workpiece in order to avoid differential expansion in the workpiece when it is exposed to high temperatures.
  • the coating used must still have a melting temperature greater than the use temperature of the CMC part so as to ensure the integrity of the coating at this temperature which can be up to 1100 ° C. in the case of gas turbine blades, for example.
  • the object of the present invention is to provide a process which does not have the abovementioned disadvantages for obtaining CMC parts with a controlled surface state, in particular compatible with applications requiring aerodynamic performance.
  • the invention provides a method for surface smoothing of a piece of ceramic matrix composite material having a corrugated and rough surface, in which process, in accordance with the invention, a refractory glassy coating or refractory glass composition is further deposited on the surface of the composite material, the vitreous coating essentially containing silica, alumina, barite and lime.
  • the method makes it possible, by depositing a vitreous coating on the surface of the CMC material, to considerably improve the surface condition of the part, and this with a treatment that is much faster and cheaper than a chemical infiltration in phase. gas.
  • the process comprises, before depositing the vitreous coating on the surface of the part, the formation of a ceramic coating produced by applying to the surface of the part a liquid composition containing a ceramic precursor polymer and a refractory solid filler, crosslinking of the polymer, and conversion of the crosslinked ceramic polymer by heat treatment.
  • the deposition of the vitreous coating also makes it possible to stabilize and reinforce the ceramic coating by bonding between them the grains of the solid filler and / or the particles of the ceramic coating.
  • the vitreous coating preferably contains, in mass percentage, between 55% and 70% of silica, between 5% and 20% of alumina, between 5% and 15% of barite and between 5% and 10% of lime.
  • the vitreous coating may further contain at least one additional compound selected from at least one alkaline earth oxide and an alkaline oxide.
  • the vitreous coating has a melting point greater than or equal to 1300 ° C.
  • the vitreous coating has a thermal expansion coefficient of at most ⁇ 0.5 10 -6 X 1 relative to the thermal expansion coefficient of the CMC material of the workpiece.
  • the vitreous coating can be deposited on the piece by oxyacetylene flame projection or plasma projection.
  • the vitreous coating may be deposited on the part by coating, a heat treatment of the deposited coating then being carried out.
  • the present invention also relates to a CMC part whose surface state has been improved in accordance with the method of the invention, the accessible surface of the CMC part being covered with a vitreous coating essentially containing silica, alumina, barite and lime.
  • the vitreous coating may further contain at least one additional compound selected from at least one alkaline earth oxide and an alkaline oxide.
  • the part is further provided with a ceramic coating comprising a ceramic phase and a solid charge.
  • the part can be in particular a blade for a gas turbine.
  • FIG. 1 is a three-dimensional view showing the surface state of a portion of a CMC part without additional surface treatment
  • FIG. 2 is a curve for measuring the dimensional variations of the part portion of FIG. 1,
  • FIG. 3 is a curve for measuring the dimensional variations on the surface of a metallic material used for the production of aeronautical engine blades
  • FIG. 4 is a flowchart illustrating successive steps of modes of implementation of a method according to the invention.
  • FIG. 5 is a perspective view of a turbomachine blade.
  • the present invention provides a method for surface smoothing a ceramic matrix composite (CMC) part having a corrugated and rough surface.
  • CMC ceramic matrix composite
  • a method of manufacturing a CMQ part implementing a smoothing method according to the invention comprises the following steps.
  • the manufacture of a CMC part begins with the provision of a fibrous structure from which will be formed a fibrous preform whose shape is similar to that of the part to be manufactured (step 10).
  • the fibrous structure can be in various forms, such as:
  • UD Unidirectional web
  • nD multidirectional webs
  • a fibrous structure formed of several superimposed layers of fabric, braid, knit, felt, plies or others, which layers are bonded together, for example by sewing, by implantation of threads or rigid elements or by needling.
  • the fibers constituting the fibrous structure are refractory fibers, that is to say ceramic fibers, for example silicon carbide (SiC), carbon fibers or even fibers made of a refractory oxide, for example alumina (Al 2 O 3 ).
  • the fibrous texture is consolidated by impregnation of the latter with a liquid composition containing a ceramic precursor consolidation resin (step 20).
  • a liquid composition containing a ceramic precursor consolidation resin for this purpose, the fibrous texture is immersed in a bath containing the resin and usually a solvent thereof. After draining, drying is carried out in an oven. The drying may be accompanied by a pre-crosslinking or partial crosslinking of the resin. Such pre-crosslinking providing additional stiffness, it must, if performed, remain limited to preserve sufficient deformability of the fibrous texture.
  • impregnation techniques such as preparing a prepreg by passing the fibrous texture in a continuous impregnation, infusion impregnation, or impregnation by RTM ("Resin Transfer Molding"),
  • the consolidation resin is chosen to leave, after pyrolysis, a ceramic residue sufficient to ensure consolidation of the fibrous preform made thereafter.
  • a ceramic precursor resin may be, for example, a polycarbosilane resin precursor of silicon carbide (SiC), or a polysiloxane resin precursor of SiCO, or a polyborocarbosilazane resin precursor of SiCNB, or a polysilazane resin
  • a fibrous preform intended to constitute the fibrous reinforcement of the part to be produced is shaped by conformation of the fibrous texture using a holding tooling .
  • the shaping of the fibrous preform is preferably accompanied by a compacting of the fibrous structure in order to increase the volume content of fibers in the composite material of the part to be produced.
  • the crosslinking of the resin is performed, or completed if there has been pre-crosslinking, the preform being in a tool.
  • the consolidation is completed by a heat treatment of pyrolysis of the resin.
  • the pyrolysis is carried out at a temperature of, for example, about 900 ° C. to 1000 ° C.
  • Consolidation can also be achieved by chemical vapor infiltration (CVI). After this consolidation, the densification of the fibrous preform by a ceramic matrix is continued (step 30).
  • CVI chemical vapor infiltration
  • the densification is advantageously carried out by chemical vapor infiltration (CVI), the parameters of the CVI process and the nature of the reactant gas phase being adapted to the nature of the matrix to be formed. It is thus possible to chain in the same oven the pyrolysis operations of the consolidation and densification resin.
  • CVI chemical vapor infiltration
  • the ceramic matrix formed by CVI can be a matrix
  • SiC silicon-boron-carbon matrix (Si-BC) or a boron carbide matrix (B 4 C) or a matrix sequenced with alternating matrix phases non-healing ceramic and ceramic healing.
  • Si-BC silicon-boron-carbon matrix
  • B 4 C boron carbide matrix
  • the ceramic matrix may be deposited in several successive infiltration cycles with between each cycle a machining operation to reopen the porosity of the surface material and facilitate the deposition of the matrix in the fibrous reinforcement.
  • FIG. 1 shows the surface state of a portion of a CMC part made from a multilayer fibrous texture of three-dimensional weaving of SiC fibers (Guipex® satin base of 8) consolidated, shaped and densified following the method described above.
  • the piece has on the surface both corrugations of more than 200 ⁇ m in amplitude and a roughness level of the order of 5 ⁇ m.
  • FIG. 3 shows a measurement of the surface condition of a blade of a low-pressure stage of an aeronautical engine, the latter having been made of metallic material. Note that this blade has no surface ripple and has a mean level of roughness of the order of 1 micron.
  • a refractory vitreous coating directly on the accessible surface of the CMC material of the part (step 90).
  • accessible surface means the external geometrical surface of the part, but also the surface of the internal porosity of the material which is open, that is to say the porosity accessible from the outside.
  • the coating is in direct contact with the CMC material of the part.
  • the composition of the deposited vitreous coating is chosen to be compatible with the CMC material of the part.
  • a coating composition is chosen which has a coefficient of thermal expansion which is relatively close to that of the CMC material, that is to say which varies at most ⁇ 0.5 ⁇ 10 -6 K -1 relative to the thermal expansion coefficient of the CMC material in the workpiece
  • the vitreous coating has, for example, a coefficient of thermal expansion between 4.1CT 6 f 1 and 5.1 (T 6 K -1 , the coefficient of expansion the CMC is generally between 4 and 4.5.
  • a vitreous coating composition is also chosen which does not chemically interact with the CMC material.
  • the vitreous coating is further selected according to the conditions of use of the CMC part. In particular, it must be able to withstand the operating temperatures of the room and have a service life at least equal to that defined for the room.
  • a vitreous coating having a melting temperature above the maximum temperature of use of the part is chosen. In the case, for example, of parts constituting gas turbine blades, the maximum temperatures encountered by these parts can reach 1100 ° C. In this case, the vitreous coating has a melting point greater than or equal to 1300 ° C.
  • the vitreous coating preferably contains in percent by weight:
  • the glassy smoothing coating has, at least during its application to the part, a surface tension or surface tension, as well as possibly a viscosity, suitable for smoothing, that is to say which allows an easy and uniform spreading of the coating on the surface of the piece.
  • the smoothing coating further has a coefficient of thermal expansion close to that of the CMC material of the workpiece to prevent differential expansion in the workpiece when exposed to high temperatures.
  • Silica represents the base oxide of the composition.
  • Alumina provided by natural mineral raw materials, makes it possible to increase the melting temperature of the glass. It also makes it possible to adjust the coefficient of thermal expansion and the surface tension of the glass. By increasing the percentage of alumina in the composition of the vitreous coating, the coefficient of thermal expansion and the surface tension of the latter are increased.
  • Barite makes it possible to adjust the duration of the melting stage at high temperature of the glass, that is to say the time range over which the fusion extends. It also makes it possible to adjust the coefficient of thermal expansion, the viscosity and the surface tension of the glass. By increasing the percentage of baryte in the composition of the vitreous coating, the coefficient of thermal expansion, the viscosity and the surface tension of the latter are reduced. Lime makes it possible to adjust the viscosity and the surface tension of the glass. By increasing the percentage of lime in the composition of the vitreous coating, the coefficient of thermal expansion and the viscosity are decreased and the surface tension of the latter is increased.
  • the vitreous coating may further contain one or more additional compounds selected from alkaline earth oxides, such as magnesia (MgO) or zirconia (ZrO 2 ), and alkaline oxides such as sodium oxide (Na 2 O ) and potash (K 2 O).
  • alkaline earth oxides such as magnesia (MgO) or zirconia (ZrO 2 )
  • alkaline oxides such as sodium oxide (Na 2 O ) and potash (K 2 O).
  • the vitreous coating may comprise, in addition to silica, alumina, barite and lime, between 0% and 5% of magnesia and / or between 0% and 10% of zirconia and / or between 0% and 5% of sodium oxide.
  • Magnesia makes it possible to adjust the surface tension of the glass. By increasing the percentage of magnesia in the composition of the vitreous coating, the surface tension of the latter is increased.
  • Zirconia contributes to the mechanical properties of glass. It also makes it possible to adjust the surface tension of the glass. By increasing the percentage of zirconia in the composition of the vitreous coating, the surface tension of the latter is increased.
  • Sodium oxide adjusts the viscosity and surface tension of the glass. By increasing the percentage of sodium oxide in the vitreous coating composition, the viscosity is decreased and the surface tension of the latter is increased.
  • alkaline earth oxides barite, lime, magnesia, etc.
  • conventional alkaline oxides sodium oxide, potassium hydroxide, etc.
  • the vitreous coating may be obtained by deposition of a starting composition and heat treatment at about 1350 ° C., the heat treatment being able to be carried out simultaneously with the deposit or after it.
  • the starting composition may, for example, contain the following raw materials:
  • Barite is preferably formed from barium carbonate to form a metastable glass.
  • composition may further contain the following additional raw materials:
  • zirconium silicate (zircon) to form zirconia
  • sodium feldspar to form sodium oxide.
  • the amounts of raw materials are adjusted in the starting composition according to the proportions of the components of the vitreous coating that is desired.
  • a first starting composition containing in percentage by weight: - 39% of silica sand,
  • the vitreous coating may in particular be deposited on the CMC part by projection or coating.
  • a composition in the form of a powder is used which is projected on the part preferably via an oxyacetylene flame or a plasma, which makes it possible to reduce the deposition temperature on the material and, therefore, warming the room.
  • oxyacetylene or plasma flame sputtering techniques are well known and will not be described in more detail for the sake of simplification.
  • the deposition by coating may in particular be carried out by spraying, by application of a slurry or by dipping, the starting composition being kept in suspension in water for example.
  • a heat treatment must be applied to fix the vitreous coating on the part.
  • the heat treatment is preferably made locally, that is to say without subjecting the entire part to the heat treatment.
  • the thickness of the vitreous coating layer deposited is determined mainly according to the level of the irregularities to be compensated.
  • the vitreous coating layer has a thickness that can be between 50 microns and 300 microns.
  • a ceramic coating may be formed on the accessible surface of the part before depositing the vitreous coating.
  • a ceramic coating composition is prepared (step 40).
  • This composition comprises a refractory solid filler in the form of a powder, in particular ceramic, a ceramic precursor polymer and an optional solvent for the polymer.
  • the powder is, for example, an SiC powder.
  • the particle size is chosen to be fine enough to allow the powder particles to penetrate the surface porosity to be filled with CMC composite material.
  • the average grain size is chosen to be less than 100 microns, for example between 5 microns and 50 microns.
  • powders of different particle sizes For example, grains of average size between 5 microns and 15 microns can be used in combination with grains of average size of between 25 microns and 50 microns, the mass proportion of grains of larger average size being for example at least equal to that of grains of smaller average size.
  • powders in particular ceramic, may be used, having substantially the same particle size, for example chosen from carbide powders (other than SiC), nitride or boride, powders of different kinds that can be mixed.
  • the ceramic precursor polymer is selected depending on the nature of the desired coating.
  • the polymer is chosen for example from polycarbosilane (PCS) and polytitanocarbosilane (PTCS),
  • PCS polycarbosilane
  • PTCS polytitanocarbosilane
  • Other precursor polymers of ceramics are usable, for example silicones which are precursors of SiC (or SiC + C, with excess carbon), polysilazanes which, pyrolyzed under a gas, make it possible to obtain residues based on Si 3 N 4 and / or SiC, and polyborazines, BN precursors.
  • constituent ceramic of the solid charges and that of which the polymer is precursor are preferably, but not necessarily, of the same nature.
  • the solvent is determined according to the ceramic precursor polymer used.
  • the solvent may be xylene.
  • Other solvents can be used for other polymers, for example heptane, hexane, methyl ethyl ketone or ethanol for silicones.
  • the amount of solid filler, relative to that of the ceramic precursor polymer is chosen to ensure a satisfactory filling of the surface porosity of the thermostructural composite material, while allowing the composition to penetrate to a certain depth.
  • the mass quantity of solid filler is preferably between 0.4 times and 4 times the amount by mass of ceramic precursor polymer. This range also makes it possible to adjust the rate of shrinkage of the ceramic precursor polymer during its transformation.
  • the amount of solvent used is chosen to impart the appropriate viscosity to the liquid composition for application to the surface of the workpiece.
  • a typical composition for a composition for forming an SiC coating may be selected within the following limits:
  • the liquid composition is applied to the workpiece surface (step 50).
  • the application can be simply done by brush or brush. Other methods may be used, for example pistolletting.
  • the ceramic precursor polymer After drying (step 60), for example with hot air, to remove the solvent, the ceramic precursor polymer is crosslinked (step 70).
  • the crosslinking can be carried out by heat treatment. In the case for example PCS, the temperature is gradually raised to a plateau of about 350 ° C.
  • the crosslinked polymer is subjected to heat treatment for ceramization (step 80).
  • the transformation into SiC is carried out by gradually raising the temperature to a plateau of about 900 ° C.
  • crosslinking and ceramization may be different with other precursors of ceramics, these conditions having no original character.
  • a ceramic coating is thus obtained comprising a phase resulting from the ceramization of the ceramic precursor and a solid filler.
  • This coating fills the undulations and hollows on the surface of the room.
  • the ceramic coating thus formed must be structurally stabilized.
  • step 60 depositing a refractory vitreous coating on the ceramic coating under the conditions described above (step 60).
  • a vitreous coating allows, by the formation of a vitreous matrix, to bind the grains and / or particles of the ceramic coating between them. Such impregnation also increases the wear resistance of the CMC part (in homogeneous friction conditions).
  • the vitreous coating is formed to compensate for surface irregularities on the ceramic coating, the amount of glass coating being selected according to the irregularities to be compensated.
  • the vitreous coating layer has a thickness that can be between 50 microns and 300 microns. The layer thus formed makes it possible to smooth the surface of the ceramic coating and, consequently, that of the part.
  • the vitreous coating of the invention makes it possible to reduce the level of corrugations on the surface of the workpiece to values of less than 40 ⁇ m and the level of surface roughness to values of less than 1 ⁇ m.
  • the invention is applicable to various types of turbomachine blades, in particular compressor and turbine blades of different gas turbine bodies such as that illustrated in FIG. 5.
  • the blade 10 of FIG. 5 comprises, in a well-known manner, a blade 20, a foot 30 formed by a portion of greater thickness, for example with a bulbous section, extended by a stilt 32, an inner platform 40 located between the stilt 32 and the blade 20 and an outer platform or heel 50 in the vicinity of the free end of the blade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Un procédé pour le lissage de surface d'une pièce en matériau composite à matrice céramique présentant une surface ondulée et rugueuse. Le procédé comprend Ie dépôt d'un revêtement vitreux réfractaire sur Ia surface de la pièce (90), le revêtement vitreux contenant essentiellement de Ia silice, de l'alumine, de la baryte et de la chaux.

Description

Procédé pour Ie lissage de la surface d'une pièce en matériau CMC
Arrière-plan de l'invention
La présente invention concerne les pièces en matériau composite à matrice céramique. Elle concerne plus particulièrement l'amélioration de l'état de surface de telles pièces.
Dans les moteurs aéronautiques et en particulier dans les turbines à gaz de tels moteurs, les pièces présentant des formes aérodynamiques, comme les aubes, sont habituellement réalisées en alliages métalliques selon un procédé de fonderie et des usinages locaux. Les exigences actuelles et futures en matière de réduction de consommation spécifique, diminution de pollution, etc. dans les moteurs aéronautiques engendrent un accroissement de masse significative pour ces derniers et notamment au niveau des étages basse pression des turbines.
Les aubes constituent une partie importante de la masse des étages basse pression. Afin de réduire de façon significative la masse et admettre des températures de fonctionnement plus élevées que celles autorisées avec les alliages métalliques actuels, une solution serait d'utiliser des matériaux composites à matrice céramique pour la réalisation des aubes.
En effet, les matériaux composites à matrice céramique (CMC) font partie des matériaux composites dits thermostructuraux, c'est-à-dire des matériaux composites ayant des bonnes propriétés mécaniques et une capacité à conserver ces propriétés à température élevée. En outre, des pièces, telles que des aubes, réalisées en CMC présentent un gain de masse significatif par rapport à de mêmes pièces réalisées avec les alliages métalliques habituels.
De façon bien connue, les pièces en CMC sont formées par un renfort fibreux en fibres réfractaires (carbone ou céramique) qui est densiflé par une matrice céramique, notamment carbure, nitrure, oxyde réfractaire,.... Des exemples typiques de matériaux CMC sont les matériaux C-SiC (renfort en fibres de carbone et matrice en carbure de silicium), les matériaux SiC-SiC et les matériaux C-C/SîC (matrice mixte carbone/carbure de silicium). La fabrication de pièces en composite CMC est bien connue. La densiflcation du renfort fibreux peut être réalisée par voie liquide (imprégnation par une résine précurseur de la matrice céramique et transformation en céramique par réticulation et pyrolyse, le processus pouvant être répété) ou par voie gazeuse (infiltration chimique en phase vapeur).
Cependant, les pièces en CMC présentent un aspect de surface ondulé et relativement rugueux qui peut s'avérer incompatible avec les performances aérodynamiques requises pour des pièces telles que des aubes. L'ondulation de surface est due au renfort fibreux tandis que la rugosité est liée à la matrice céramique en "seal-coat", en particulier lorsque celle-ci est déposée par infiltration chimique en phase vapeur (CVI).
A l'inverse, les pièces réalisées en alliages métalliques et par les procédés associés présentent un aspect de surface lisse avec une rugosité très faible (de l'ordre de 1 μm).
Une solution pour améliorer l'état de surface d'une pièce en CMC consiste à appliquer à la surface de celle-ci une composition liquide contenant un polymère précurseur de céramique, par exemple du carbure de silicium, et une charge solide réfractaire sous forme de grains permettant de former un revêtement céramique. Ce revêtement céramique permet de gommer les ondulations présentes à la surface de la pièce. Cette étape est suivie d'un dépôt de céramique, par exemple de SiC, formé par infiltration chimique en phase vapeur (CVI) pendant une durée de 30 heures environ qui permet de lier entre eux les grains de la charge réfractaire. Un tel procédé de traitement de surface de pièce en CMC est décrit dans ie document US 2006/0141154.
Bien que ce procédé permette d'améliorer signiflcativement l'état de surface d'une pièce en CMC en réduisant les ondulations à 40 μm et la rugosité de surface à des valeurs comprises entre 2 μm et 5 μm (conditionnée par le dépôt de céramique en phase vapeur), la nécessité d'une infiltration chimique par voie gazeuse supplémentaire après la formation du revêtement céramique entraîne une augmentation importante sur le coût et la durée de fabrication de la pièce. II existe, par conséquent, un besoin pour un revêtement de lissage de surface de pièces en CMC qui est moins pénalisant pour Ia durée et le coût de fabrication de Ia pièce. Un tel revêtement de lissage peut être formé par un revêtement vitreux déposé sur la pièce.
Toutefois, le revêtement de lissage vitreux doit remplir plusieurs conditions pour être adapté aux caractéristiques structurelles et fonctionnelles des pièces en CMC. Le revêtement de lissage vitreux doit notamment présenter, au moins lors de son application sur la pièce, une tension de surface ou tension superficielle, ainsi qu'éventuellement une viscosité, adaptées au lissage, c'est-à-dire qui permet un étalement aisé et uniforme du revêtement à la surface de la pièce. Le revêtement de lissage doit en outre avoir un coefficient de dilatation thermique proche de celui du matériau CMC de la pièce afin d'éviter des dilatations différentielles dans la pièce lorsque celle-ci est exposée à de hautes températures. Enfin, le revêtement utilisé doit encore présenter une température de fusion supérieure à la température d'utilisation de la pièce en CMC de manière à assurer l'intégrité du revêtement à cette température qui peut aller jusqu'à 11000C dans le cas d'aubes de turbines à gaz, par exemple.
Obiet et résumé de l'invention
La présente invention a pour but de proposer un procédé ne présentant pas les inconvénients précités pour l'obtention de pièces en CMC avec un état de surface maîtrisé, notamment compatible avec des applications nécessitant des performances aérodynamiques. A cet effet, l'invention propose un procédé pour le lissage de surface d'une pièce en matériau composite à matrice céramique présentant une surface ondulée et rugueuse, procédé dans lequel, conformément à l'invention, un revêtement vitreux réfractaire ou composition verrière réfractaire est en outre déposé sur la surface du matériau composite, Ie revêtement vitreux contenant essentiellement de Ia silice, de l'alumine, de la baryte et de la chaux.
Ainsi, Ie procédé permet, par le dépôt d'un revêtement vitreux en surface du matériau CMC, d'améliorer considérablement l'état de surface de Ia pièce, et ce avec un traitement bien plus rapide et économique qu'une infiltration chimique en phase gazeuse. Selon une variante de réalisation de l'invention, Ie procédé comprend, avant Ie dépôt du revêtement vitreux sur Ia surface de Ia pièce, Ia formation d'un revêtement céramique réalisé par application sur la surface de la pièce d'une composition liquide contenant un polymère précurseur de céramique et une charge solide réfractaire, réticulation du polymère, et transformation du polymère réticulé en céramique par traitement thermique.
Dans ce cas, le dépôt du revêtement vitreux permet en outre de stabiliser et renforcer le revêtement céramique en liant entre eux les grains de la charge solide et/ou les particules du revêtement céramique.
Le revêtement vitreux contient de préférence, en pourcentage massique, entre 55% et 70% de silice, entre 5% et 20% d'alumine, entre 5% et 15% de baryte et entre 5% et 10% de chaux.
Le revêtement vitreux peut outre contenir au moins un composé supplémentaire choisi parmi au moins un oxyde alcalino-terreux et un oxyde alcalin.
Selon un aspect de l'invention, le revêtement vitreux présente une température de fusion supérieure ou égale à 13000C.
Selon un autre aspect, le revêtement vitreux présente un coefficient de dilatation thermique variant au plus de ±0,5 10"6X1 par rapport au coefficient de dilatation thermique du matériau CMC de la pièce.
Le revêtement vitreux peut être déposé sur la pièce par projection à la flamme oxyacétylénique ou projection plasma. En variante, le revêtement vitreux peut être déposé sur la pièce par enduction, un traitement thermique du revêtement déposé étant ensuite réalisé.
La présente invention vise également une pièce en CMC dont l'état de surface a été amélioré conformément au procédé de l'invention, la surface accessible de la pièce en CMC étant recouverte d'un revêtement vitreux contenant essentiellement de Ia silice, de l'alumine, de la baryte et de la chaux.
Le revêtement vitreux peut outre contenir au moins un composé supplémentaire choisi parmi au moins un oxyde alcalino-terreux et un oxyde alcalin. Selon une variante de réalisation de l'invention, la pièce est en outre munie d'un revêtement céramique comprenant une phase céramique et une charge solide.
La pièce peut être notamment une aube pour turbine à gaz.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est vue tridimensionnelle montrant l'état de surface d'une portion d'une pièce en CMC sans traitement supplémentaire de surface,
- la figure 2 est une courbe de mesure des variations dimensionnelles de la portion de pièce de la figure 1,
- la figure 3 est une courbe de mesure des variations dimensionnelles à la surface d'un matériau métallique utilisé pour la réalisation d'aubes de moteur aéronautique,
- la figure 4 est un ordinogramme illustrant des étapes successives de modes de mise en œuvre d'un procédé conforme à l'invention,
- la figure 5 est une vue en perspective d'une aube de turbomachine.
Description détaillée de modes de réalisation
La présente invention propose un procédé pour le lissage de surface d'une pièce en matériau composite à matrice céramique (CMC) présentant une surface ondulée et rugueuse.
En référence à la figure 4, un procédé de fabrication d'une pièce en CMQ mettant en œuvre un procédé de lissage conforme à l'invention, comprend les étapes suivantes. La fabrication d'une pièce en CMC débute par Ia fourniture d'une structure fibreuse à partir de laquelle sera formée une préforme fibreuse dont la forme est voisine de celle de la pièce à fabriquer (étape 10).
La structure fibreuse peut être sous différentes formes, telles que :
- tissu bidimensionnel (2D),
- tissu tridimensionnel (3D) obtenu par tissage 3D ou multicouches,
- tresse, - tricot,
- feutre,
- nappe unidirectionnelle (UD) de fils ou câbles ou nappes multidirectionnelle (nD) obtenue par superposition de plusieurs nappes UD dans des directions différentes et liaison des nappes UD entre elles par exemple par couture, par agent de liaison chimique ou par aiguilletage.
On peut aussi utiliser une structure fibreuse formée de plusieurs couches superposées de tissu, tresse, tricot, feutre, nappes ou autres, lesquelles couches sont liées entre elles par exemple par couture, par implantation de fils ou d'éléments rigides ou par aiguilletage. Les fibres constitutives de la structure fibreuse sont des fibres réfractaires, c'est-à-dire des fibres en céramique, par exemple en carbure de silicium (SiC), des fibres en carbone ou même encore des fibres en un oxyde réfractaire, par exemple en alumine (AI2O3).
Une fois constituée, la texture fibreuse est consolidée par imprégnation de cette dernière avec une composition liquide contenant une résine de consolidation précurseur de céramique (étape 20). A cet effet, la texture fibreuse est immergée dans un bain contenant la résine et habituellement un solvant de celle-ci. Après égouttage, un séchage est réalisé en étuve. Le séchage peut être accompagné d'une pré-réticulation ou réticulation partielle de la résine. Une telle pré-réticulation apportant une raideur supplémentaire, elle doit, si elle est réalisée, rester limitée pour préserver une déformabîlité suffisante de la texture fibreuse.
D'autres techniques connues d'imprégnation peuvent être utilisées telles que préparation d'un pré-imprégné par passage de Ia texture fibreuse dans une imprégnatrîce en continu, imprégnation par infusion, ou encore imprégnation par RTM ("Resin Transfer Moulding"), La résine de consolidation est choisie pour laisser, après pyrolyse, un résidu céramique suffisant pour assurer la consolidation de la préforme fibreuse réalisée ensuite.
Une résine précurseur de céramique peut être par exemple une résine polycarbosilane précurseur de carbure de silicium (SiC), ou une résine polysiloxane précurseur de SiCO, ou une résine polyborocarbosilazane précurseur de SiCNB, ou une résine polysilazane
(SiCN).
Après imprégnation, une préforme fibreuse destinée à constituer le renfort fibreux de la pièce à réaliser, et ayant une forme correspondant sensiblement à celle de cette pièce, est mise en forme par conformation de la texture fibreuse à l'aide d'un outillage de maintien.
La mise en forme de la préforme fibreuse est de préférence accompagnée d'un compactage de la structure fibreuse afin d'augmenter le taux volumique de fibres dans le matériau composite de la pièce à réaliser.
Après mise en forme de la préforme, la réticulation de la résine est réalisée, ou achevée s'il y a eu pré-réticulation, la préforme étant dans un outillage. Ensuite, la consolidation est achevée par un traitement thermique de pyrolyse de la résine. La pyrolyse est réalisée à une température par exemple d'environ 9000C à 10000C.
La consolidation peut être également réalisée par infiltration chimique en phase gazeuse (CVI). Après cette consolidation, la densification de la préforme fibreuse par une matrice céramique est poursuivie (étape 30).
La densification est avantageusement réalisée par infiltration chimique en phase gazeuse (CVI), les paramètres du processus CVI et la nature de la phase gazeuse réactîonnelle étant adaptés à la nature de la matrice à former. On peut ainsi enchaîner dans le même four les opérations de pyrolyse de la résine de consolidation et de densification.
La matrice céramique formée par CVI peut être une matrice
SiC, ou une matrice au moins en partie auto-cicatrisante, telle qu'une matrice silîcium-bore-carbone (Si-B-C) ou une matrice carbure de bore (B4C) ou encore une matrice séquencée avec des phases de matrices alternées en céramique non cicatrisante et en céramique cicatrisante. On pourra se référer notamment aux documents FR 2 401 888, US 5 246 736, US 5 965 266, US 6 068 930 et US 6 291 058.
La matrice céramique peut être déposée en plusieurs cycles d'infiltration successifs avec entre chaque cycle une opération d'usinage permettant de rouvrir la porosité du matériau en surface et de faciliter le dépôt de la matrice dans le renfort fibreux.
La figure 1 montre l'état de surface d'une portion d'une pièce en CMC réalisée à partir d'une texture fibreuse multicouche de tissage tridimensionnel de fibres de SiC (Guipex® base satin de 8) consolidée, mise en forme et densiflée suivant la méthode décrite ci-dessus. Comme mesurée sur la figure 2, la pièce présente en surface à la fois des ondulations de plus de 200 μm d'amplitude et un niveau de rugosité de l'ordre de 5 μm.
Comme expliqué précédemment, une telle irrégularité de surface ne peut vraisemblablement pas permettre d'utiliser la pièce telle quelle pour des applications aérodynamiques. Par comparaison, la figure 3 montre une mesure de l'état de surface d'une aube d'un étage basse pression d'un moteur aéronautique, celle-ci ayant été réalisée en matériau métallique. On remarque que cette aube ne comporte pas d'ondulation de surface et présente un niveau moyen de rugosité de l'ordre de 1 μm.
A cet effet et conformément à un mode de réalisation de l'invention, on procède à un dépôt d'un revêtement vitreux réfractaire directement sur la surface accessible du matériau CMC de la pièce (étape 90). Par "surface accessible", on entend la surface géométrique externe de la pièce, mais aussi la surface de la porosité interne du matériau qui est débouchante, c'est-à-dire la porosité accessible depuis l'extérieur. Dans le mode de réalisation décrit ici, le revêtement est directement en contact avec le matériau CMC de la pièce.
La composition du revêtement vitreux déposé est choisie de manière à être compatible avec le matériau CMC de la pièce. En particulier, on choisi une composition de revêtement qui présente un coefficient de dilatation thermique qui est relativement proche de celui du matériau CMC, c'est-à-dire qui varie au plus de ±0,5.10"6 K""1 par rapport au coefficient de dilatation thermique du matériau CMC de Ia pièce. Le revêtement vitreux présente, par exemple, un coefficient de dilatation thermique compris entre 4.1CT6 f€1 et 5.1(T6 K"1, le coefficient de dilatation thermique du CMC étant généralement compris entre 4 et 4,5. On choisit également une composition de revêtement vitreux qui n'înteragit pas chimiquement avec Ie matériau CMC.
Le revêtement vitreux est en outre choisi en fonction des conditions d'utilisation de Ia pièce CMC. Il doit en particulier pouvoir résister aux températures d'utilisation de la pièce et présenter une durée de vie au moins égale à celle définie pour Ia pièce. A cet effet, on choisit un revêtement vitreux ayant une température de fusion supérieure à la température maximale d'utilisation de Ia pièce. Dans le cas par exemple, de pièces constituant des aubes de turbines à gaz, les températures maximales rencontrées par ces pièces peuvent atteindre 11000C. Dans ce cas, le revêtement vitreux présente une température de fusion supérieure ou égale à 13000C.
Le revêtement vitreux contient de préférence en pourcentage massiques:
- entre 55% et 70% de silice (SiO2),
- entre 5% et 20% d'alumine (AI2O3),
- entre 5% et 15% de baryte (BaO), et
- entre 5% et 10% de chaux (CaO). Avec une telle composition, on forme un verre silico-alumineux avec fondants alcalino-terreux qui présente une température de fusion supérieure à 11000C formant ainsi un revêtement vitreux sur la pièce qui conserve son intégrité jusqu'à des températures d'utilisation pouvant atteindre 11000C. Avec Ia composition indiquée ci-avant, Ie revêtement de lissage vitreux présente, au moins lors de son application sur la pièce, une tension de surface ou tension superficielle, ainsi qu'éventuellement une viscosité, adaptées au lissage, c'est-à-dire qui permet un étalement aisé et uniforme du revêtement à la surface de la pièce. Le revêtement de lissage possède en outre un coefficient de dilatation thermique proche de celui du matériau CMC de la pièce afin d'éviter des dilatations différentielles dans la pièce lorsque celle-ci est exposée à de hautes températures. La silice représente l'oxyde de base de la composition. L'alumine, apportée par des matières premières minérales naturelles, permet d'augmenter la température de fusion du verre. Elle permet en outre d'ajuster Ie coefficient de dilatation thermique et la tension superficielle du verre. En augmentant le pourcentage d'alumine dans la composition du revêtement vitreux, on augmente Ie coefficient de dilatation thermique et la tension superficielle de ce dernier.
La baryte permet d'ajuster la durée du palier de fusion à haute température du verre, c'est-à-dire ia plage de temps sur laquelle s'étend la fusion. Elle permet en outre d'ajuster le coefficient de dilatation thermique, la viscosité et la tension superficielle du verre. En augmentant le pourcentage de baryte dans la composition du revêtement vitreux, on diminue le coefficient de dilatation thermique, la viscosité et la tension superficielle de ce dernier. La chaux permet d'ajuster la viscosité et la tension superficielle du verre. En augmentant le pourcentage de chaux dans la composition du revêtement vitreux, on diminue le coefficient de dilatation thermique et la viscosité et on augmente la tension superficielle de ce dernier.
Le revêtement vitreux peut en outre contenir un ou plusieurs composés supplémentaires choisis parmi des oxydes alcalino-terreux, tels que la magnésie (MgO) ou la zircone (ZrO2), et des oxydes alcalins tels que l'oxyde de sodium (Na2O) et la potasse (K2O). A titre d'exemple, le revêtement vitreux peut comprendre, en outre de la silice, l'alumine, la baryte et la chaux, entre 0% et 5% de magnésie et/ou entre 0% et 10% de zircone et/ou entre 0% et 5% d'oxyde de sodium.
La magnésie permet d'ajuster la tension superficielle du verre. En augmentant le pourcentage de magnésie dans la composition du revêtement vitreux, on augmente la tension superficielle de ce dernier.
La zircone participe aux propriétés mécaniques du verre. Elle permet également d'ajuster la tension superficielle du verre. En augmentant le pourcentage de zircone dans la composition du revêtement vitreux, on augmente la tension superficielle de ce dernier.
L'oxyde de sodium permet d'ajuster la viscosité et la tension superficielle du verre. En augmentant le pourcentage d'oxyde de sodium dans la composition du revêtement vitreux, on diminue Ia viscosité et on augmente Ia tension superficielle de ce dernier.
D'une manière générale, dans ce type de composition verrière, l'emploi d'oxydes alcalino-terreux (baryte, chaux, magnésie, etc.), par rapport aux oxydes alcalins classiques (oxyde de sodium, potasse, etc.), permet de diminuer Ie coefficient de dilatation thermique pour des températures d'utilisation plus élevées. il
Le revêtement vitreux peut être obtenu par dépôt d'une composition de départ et traitement thermique à environ 13500C, le traitement thermique pouvant être réalisé simultanément au dépôt ou postérieurement à celui-ci. La composition de départ peut, par exemple, contenir les matières premières suivantes:
- du sable pour former la silice,
- du kaolin ou de l'argile pour former principalement de l'alumine et, dans une moindre mesure de la silice, - du carbonate de baryum pour former de la baryte,
- de carbone de calcium pour former de la chaux.
La baryte est formée de préférence à partir de carbonate de baryum afin de former un verre métastable.
Cette composition peut en outre contenir les matières premières supplémentaires suivantes:
- de la stéatite pour former principalement de la magnésie et, dans une moindre mesure, de l'alumine,
- du silicate de zirconium (zircon) pour former de la zircone,
- du feldspath sodique pour former de l'oxyde de sodium. Les quantités de matières premières sont ajustées dans la composition de départ en fonction des proportions des composants du revêtement vitreux que l'on souhaite obtenir.
A titre d'exemple non limitatif, une première composition de départ contenant en pourcentage massique: - 39% de sable de silice,
- 9% de kaolin,
- 5% d'argile,
- 10% de carbonate de baryum,
- 7% de carbonate de calcium, - 2% de stéatite,
- 28% de feldspath, permet de former un revêtement vitreux contenant:
- 66% de silice,
- 13% d'alumine, - 10% de baryte,
- 7% de chaux, - 1% de magnésie,
- 3% d'oxyde de sodium.
Selon un deuxième exemple, une composition de départ contenant en pourcentage massique: - 31% de sable de silice,
- 8% de kaolin,
- 5% d'argile,
- 10% de carbonate de baryum,
- 7% de carbonate de calcium, - 2% de stéatite,
- 10% de silicate de zirconium
- 27% de feldspath, permet de former un revêtement vitreux contenant:
- 61% de silice, - 12% d'alumine,
- 10% de baryte,
- 7% de chaux,
- 1% de magnésie,
- 6% de zircone, - 3% d'oxyde de sodium.
Le revêtement vitreux peut être notamment déposé sur la pièce CMC par projection ou par enduction.
Dans le cas de la projection, on utilise une composition sous forme de poudre (matériau d'apport) qui est projetée sur la pièce de préférence par l'intermédiaire d'une flamme oxyacétylénique ou d'un plasma, ce qui permet de diminuer la température de dépôt sur le matériau et, par conséquent, réchauffement de la pièce. Les techniques de dépôt par projection à la flamme oxyacétylénique ou plasma sont bien connues et ne seront pas décrites plus en détail par souci de simplification.
Le dépôt par enduction peut être notamment réalisé par pulvérisation, par application d'une barbotine ou par trempage, la composition de départ étant maintenue en suspension dans de l'eau par exemple. Dans ce cas, un traitement thermique doit être appliqué pour fixer le revêtement vitreux sur la pièce. Le traitement thermique est de préférence réalisé localement, c'est-à-dire sans soumettre l'ensemble de la pièce au traitement thermique.
L'épaisseur de la couche de revêtement vitreux déposé est déterminée principalement en fonction du niveau des irrégularités à compenser. La couche de revêtement vitreux présente une épaisseur qui peut être comprise entre 50 μm et 300 μm.
Selon une variante de réalisation de l'invention, un revêtement céramique peut être formé sur la surface accessible de la pièce avant de déposer le revêtement vitreux. Dans ce cas, après formation d'une structure fibreuse (étape 10), consolidation de celle-ci (étape 20) et densification de la préforme (étape 30), une composition de revêtement céramique est préparée (étape 40). Cette composition comprend une charge solide réfractaire sous forme d'une poudre, notamment en céramique, un polymère précurseur de céramique et un solvant éventuel du polymère- La poudre est par exemple une poudre de SiC. La granulométrie est choisie suffisamment fine pour permettre aux grains de poudre de pénétrer dans la porosité superficielle à combler du matériau composite CMC. De préférence, la taille moyenne des grains est choisie inférieure à 100 microns, par exemple comprise entre 5 microns et 50 microns. On pourra également utiliser des poudres de granulométries différentes. Par exemple, on peut utiliser des grains de taille moyenne comprise entre 5 microns et 15 microns en association avec des grains de taille moyenne comprise entre 25 microns et 50 microns, la proportion en masse de grains de plus grande taille moyenne étant par exemple au moins égale à celle des grains de plus petite taille moyenne.
D'autres-poudres notamment en céramique peuvent être utilisées, ayant sensiblement la même granulométrie, par exemple choisies parmi des poudres de carbure (autre que SiC), nitrure ou borure, des poudres de différentes natures pouvant être mélangées.
Le polymère précurseur de céramique est choisi en fonction de la nature du revêtement désiré. Dans le cas d'un revêtement en SiC, le polymère est choisi par exemple parmi le polycarbosilane (PCS) et Ie poiytitanocarbosilane (PTCS), D'autres polymères précurseurs de céramique sont utilisables, par exemple des silicones qui sont des précurseurs de SiC (ou SiC+C, avec carbone en excès), des polysilazanes qui, pyrolyses sous un gaz, permettent d'obtenir des résidus à base de SÎ3N4 et/ou de SiC, et des polyborazines, précurseurs de BN.
On notera que la céramique constitutive des charges solides et celle dont le polymère est précurseur sont de préférence, mais non nécessairement, de même nature.
Le solvant est déterminé en fonction du polymère précurseur de céramique utilisé. Dans le cas du PCS, par exemple, le solvant peut être du xylène. D'autres solvants sont utilisables pour d'autres polymères, par exemple l'heptane, l'hexane, le méthyléthylcétone ou Péthanoi pour des silicones.
La quantité de charge solide, par rapport à celle du polymère précurseur de céramique est choisie pour assurer un comblement satisfaisant de la porosité superficielle du matériau composite thermostructural, tout en permettant à la composition de pénétrer sur une certaine profondeur. Ainsi, la quantité en masse de charge solide est de préférence comprise entre 0,4 fois et 4 fois la quantité en masse de polymère précurseur de céramique. Cette plage permet en outre d'ajuster le taux de retrait du polymère précurseur de céramique lors de sa transformation.
La quantité de solvant utilisé est choisie pour conférer la viscosité appropriée à la composition liquide en vue de son application à la surface de la pièce.
A titre d'exemple, une composition typique pour une composition destinée à la formation d'un revêtement SiC peut être choisie dans les limites suivantes :
- Poudre de SiC (granulométrie moyenne comprise entre 5 et 50 microns) ; entre 2 et 7 parties en poids;
- PCS (précurseur de SiC) ; entre 1 et 3 parties en poids;
- Xylène (solvant du PCS) ; entre 2 et 5 parties en poids;
La composition liquide est appliquée sur la surface à traiter de Ia pièce (étape 50). L'application peut être simplement réalisée à la brosse, ou pinceau. On pourra utiliser d'autres méthodes, par exemple le pistollettage.
Après séchage (étape 60), par exemple à l'air chaud, pour éliminer le solvant, on procède à la réticulation du polymère précurseur de céramique (étape 70). La réticulation peut être réalisée par traitement thermique. Dans le cas par exemple du PCS, la température est progressivement élevée jusqu'à un palier d'environ 3500C.
Le polymère réticulé est soumis à un traitement thermique aux fins de céramisation (étape 80). Dans le cas du PCS, la transformation en SiC est réalisée en élevant progressivement la température jusqu'à un palier d'environ 9000C.
Plusieurs couches successives de composition liquide peuvent être appliquées. Après application de chaque couche, on procède de préférence au moins au séchage de la composition et à la réticulation du polymère précurseur de céramique. La céramisation peut être réalisée simultanément pour toutes les couches.
Bien entendu, les conditions de réticulation et de céramisation pourront être différentes avec d'autres précurseurs de céramiques, ces conditions ne présentant aucun caractère original.
On obtient alors un revêtement céramique comprenant une phase issue de la céramisation du précurseur de céramique et une charge solide. Ce revêtement comble les ondulations et les creux à la surface de la pièce. Toutefois, le revêtement céramique ainsi formé doit être stabilisé structurellement. En particulier, il est nécessaire d'assurer une liaison entre les grains de la charge solide en raison du retrait de la résine précurseur de céramique lors de sa transformation. En effet, lors du traitement thermique aux fins de céramisation, il se produit un retrait de matière au niveau du précurseur de céramique entraînant la fissuration ou l'effritement de la céramique. Les grains ne sont alors plus tous liés les uns avec les autres au sein d'un bloc de céramique continu.
A cet effet et conformément à l'invention, on procède au dépôt d'un revêtement vitreux réfractaîre sur Ie revêtement céramique dans les conditions décrites précédemment (étape 60). Le dépôt d'un revêtement vitreux permet, par la formation d'une matrice vitreuse, de lier les grains et/ou particules du revêtement céramique entre eux. Une telle imprégnation permet également d'accroître la tenue à l'usure de la pièce en CMC (en conditions de frottement homogène).
Le revêtement vitreux est formé de manière à compenser les irrégularités de surface sur le revêtement céramique, la quantité de revêtement vitreux étant choisie en fonction des irrégularités à compenser. La couche de revêtement vitreux présente une épaisseur qui peut être comprise entre 50 μm et 300 μm. La couche ainsi formée permet de lisser la surface du revêtement céramique et, par conséquent, celle de la pièce. Le revêtement vitreux de l'invention permet de réduire le niveau d'ondulations en surface de la pièce à des valeurs inférieures à 40 μm et le niveau de rugosité de surface à des valeurs inférieures à 1 μm. L'invention est applicable à différents types d'aubes de turbomachine, notamment des aubes de compresseur et de turbine de différents corps de turbines à gaz telles que celle illustrée par la figure 5.
L'aube 10 de la figure 5 comprend de façon en soi bien connue, une pale 20, un pied 30 formé par une partie de plus forte épaisseur, par exemple à section en forme de bulbe, prolongé par une échasse 32, une plateforme intérieure 40 située entre l'échasse 32 et la pale 20 et une plateforme extérieure ou talon 50 au voisinage de l'extrémité libre de la pale.

Claims

REVENDICATIONS
1. Procédé pour le lissage de surface d'une pièce en matériau composite à matrice céramique présentant une surface ondulée et rugueuse, caractérisé en ce qu'un revêtement vitreux réfractaire est en outre déposé sur Ia surface de la pièce, le revêtement vitreux contenant essentiellement de la silice, de l'alumine, de la baryte et de la chaux.
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre, avant le dépôt du revêtement vitreux sur la surface de la pièce, la formation d'un revêtement céramique réalisé par application sur la surface de la pièce d'une composition liquide contenant un polymère précurseur de céramique et une charge solide réfractaire, réticulation du polymère, et transformation du polymère réticulé en céramique par traitement thermique.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la pièce comprend un renfort en fibres de carbone densifié par une matrice de carbure de silicium.
4. Procédé selon la revendication 1 ou 2, caractérisé en ce que la pièce comprend un renfort en fibres de carbone densifié par une matrice à base de silicium.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le revêtement vitreux contient, en pourcentage massique, entre 55% et 70% de silice, entre 5% et 20% d'alumine, entre 5% et 15% de baryte et entre 5% et 10% de chaux.
6. Procédé selon la revendication 1 à 5, caractérisé en ce que le revêtement vitreux contient en outre au moins un composé supplémentaire choisi parmi au moins un oxyde alcalino-terreux et un oxyde alcalin.
7. Procédé selon la revendication 1 à 6, caractérisé en ce que Ie revêtement vitreux présente un coefficient de dilatation thermique variant au plus de ±0,5 ÎOΛIC1 par rapport au coefficient de dilatation thermique du matériau CMC de Ia pièce.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le revêtement vitreux présente une température de fusion supérieure ou égale à 13000C.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le revêtement vitreux est déposé sur la pièce par projection à la flamme oxyacétylénique ou projection plasma.
10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que Ie revêtement vitreux est déposé sur la pièce par enduction, un traitement thermique du revêtement déposé étant ensuite réalisé.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en que la pièce en matériau composite à matrice céramique est une aube de turbine à gaz.
12. Pièce en matériau composite thermostructural comportant un renfort fibreux en fibres réfractaires densifié par une matrice céramique, caractérisée en ce que la surface accessible de la pièce comporte un revêtement vitreux contenant essentiellement de la silice, de l'alumine, de la baryte et de la chaux.
13. Pièce selon la revendication 12, caractérisée en ce que le revêtement vitreux contient en outre au moins un composé supplémentaire choisi parmi au moins un oxyde alcalino-terreux et un oxyde alcalin.
14. Pièce selon la revendication 12 ou 13, caractérisée en ce qu'elle comporte en outre un revêtement céramique comprenant une phase céramique et une charge solide.
15. Pièce selon l'une quelconque des revendications 12 à 14, constituant une aube de turbine à gaz.
16. Turbomachine équipée d'une aube selon Ia revendication
15 ou fabriquée selon le procédé de la revendication 11.
PCT/FR2010/050606 2009-04-02 2010-03-31 Procede pour le lissage de la surface d'une piece en materiau cmc. WO2010112768A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2757387A CA2757387C (fr) 2009-04-02 2010-03-31 Procede pour le lissage de la surface d'une piece en materiau cmc.
US13/262,120 US8846218B2 (en) 2009-04-02 2010-03-31 Process for smoothing the surface of a part made of CMC material
JP2012502749A JP5678028B2 (ja) 2009-04-02 2010-03-31 Cmc材料で作製された部品の表面を平滑化する方法
RU2011143260/03A RU2523265C2 (ru) 2009-04-02 2010-03-31 Способ выравнивания поверхности детали, изготовленной из композиционного материала с керамической матрицей
BRPI1015247-4A BRPI1015247B1 (pt) 2009-04-02 2010-03-31 Método de alisamento da superfície de uma peça de material compósito de matriz cerâmica, peça fabricada de material compósito termoestrutural, e, turbomáquina
EP10717696.8A EP2414305B1 (fr) 2009-04-02 2010-03-31 Procede pour le lissage de la surface d'une piece en materiau cmc.
CN201080024064.5A CN102448910B (zh) 2009-04-02 2010-03-31 用于平滑由cmc材料制成的部件的表面的方法
KR1020117024803A KR101787766B1 (ko) 2009-04-02 2010-03-31 Cmc재료로 만든 부품 표면의 평활화 방법
US14/467,938 US9404185B2 (en) 2009-04-02 2014-08-25 Process for smoothing the surface of a part made of CMC material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952114 2009-04-02
FR0952114A FR2944010B1 (fr) 2009-04-02 2009-04-02 Procede pour le lissage de la surface d'une piece en materiau cmc

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/262,120 A-371-Of-International US8846218B2 (en) 2009-04-02 2010-03-31 Process for smoothing the surface of a part made of CMC material
US14/467,938 Division US9404185B2 (en) 2009-04-02 2014-08-25 Process for smoothing the surface of a part made of CMC material

Publications (1)

Publication Number Publication Date
WO2010112768A1 true WO2010112768A1 (fr) 2010-10-07

Family

ID=41202687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050606 WO2010112768A1 (fr) 2009-04-02 2010-03-31 Procede pour le lissage de la surface d'une piece en materiau cmc.

Country Status (10)

Country Link
US (2) US8846218B2 (fr)
EP (1) EP2414305B1 (fr)
JP (1) JP5678028B2 (fr)
KR (1) KR101787766B1 (fr)
CN (1) CN102448910B (fr)
BR (1) BRPI1015247B1 (fr)
CA (1) CA2757387C (fr)
FR (1) FR2944010B1 (fr)
RU (1) RU2523265C2 (fr)
WO (1) WO2010112768A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120308834A1 (en) * 2011-05-31 2012-12-06 Flandermeyer Brian K Article having vitreous monocoating
FR2979629A1 (fr) * 2011-09-06 2013-03-08 Snecma Propulsion Solide Procede de formation sur un substrat en cmc contenant du sic d'un revetement lisse d'aspect glace et piece en cmc munie d'un tel revetement
EP3054109A4 (fr) * 2013-09-30 2017-05-31 Mitsubishi Heavy Industries, Ltd. Procédé de fabrication d'élément pour machines à fluide et élément pour machines à fluide
EP3616906B1 (fr) * 2018-08-29 2023-12-06 Safran Nacelles Pièce en composite avec face externe lisse et son procédé de fabrication

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701591B2 (en) * 2011-10-12 2017-07-11 United Technologies Corporation Method for fabricating a ceramic material
JP6174839B2 (ja) * 2011-10-14 2017-08-02 株式会社Ihi セラミックス基複合部材およびその製造方法
WO2015053911A1 (fr) * 2013-10-11 2015-04-16 United Technologies Corporation Aube en cmc pourvue d'une queue d'aronde et d'une plateforme en céramique monolithique
FR3038624B1 (fr) 2015-07-08 2019-10-25 Safran Aircraft Engines Revetement de protection formant une barriere thermique, substrat recouvert d'un tel revetement, et piece de turbine a gaz comprenant un tel substrat
US10100656B2 (en) * 2015-08-25 2018-10-16 General Electric Company Coated seal slot systems for turbomachinery and methods for forming the same
KR101840532B1 (ko) * 2016-01-12 2018-03-20 주식회사 케이씨씨 세라믹 리플렉터용 유약 조성물
EP3241817B1 (fr) 2016-05-02 2021-01-27 Rolls-Royce High Temperature Composites Inc Formation d'une couche de surface sur un article composite à matrice céramique
EP3241815B1 (fr) 2016-05-02 2019-11-13 Rolls-Royce High Temperature Composites Inc Réduction de nodules de surface dans des composites à matrice céramique infiltrée fondue
US10358922B2 (en) 2016-11-10 2019-07-23 Rolls-Royce Corporation Turbine wheel with circumferentially-installed inter-blade heat shields
EP3388550A1 (fr) * 2017-04-13 2018-10-17 INNO HEAT GmbH Composant pour une turbomachine et procédé de fabrication d'un tel composant
US10794197B2 (en) 2017-06-15 2020-10-06 General Electric Company Coated turbine component and method for forming a component
US10745325B2 (en) 2017-12-18 2020-08-18 Rolls-Royce High Temperature Composites, Inc. Protective layer for a ceramic matrix composite article
US11034842B2 (en) 2018-12-14 2021-06-15 General Electric Company Coating for improved surface finish
US11724969B2 (en) * 2018-12-14 2023-08-15 General Electric Company Coating for improved surface finish
US11198651B2 (en) 2018-12-20 2021-12-14 Rolls-Royce High Temperature Composites, Inc. Surface layer on a ceramic matrix composite
FR3095645B1 (fr) 2019-05-03 2023-03-24 Safran Pièce en céramique ou CMC à base de silicium et procédé de réalisation d'une telle pièce
US12071380B2 (en) 2020-09-16 2024-08-27 Rolls-Royce High Temperature Composites, Inc. Method to fabricate a machinable ceramic matrix composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622751A (en) * 1991-12-30 1997-04-22 Societe Europeenne De Propulsion Method of protecting products of composite material against oxidizing and products protected thereby
FR2850649A1 (fr) * 2003-01-30 2004-08-06 Snecma Propulsion Solide Procede pour le traitement de surface d'une piece en materiau composite thermostructural et application au brasage de pieces en materiau composite thermostructural
FR2899226A1 (fr) * 2006-04-04 2007-10-05 Snecma Propulsion Solide Sa Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401888A1 (fr) 1977-09-06 1979-03-30 Europ Propulsion Piece poreuse carbonee densifiee in situ par depot chimique en phase vapeur de materiaux refractaires autres que le carbone et procede de fabrication
US5153070A (en) * 1990-08-01 1992-10-06 Corning Incorporated Coated refractory article and method
FR2668477B1 (fr) 1990-10-26 1993-10-22 Propulsion Ste Europeenne Materiau composite refractaire protege contre la corrosion, et procede pour son elaboration.
FR2732338B1 (fr) 1995-03-28 1997-06-13 Europ Propulsion Materiau composite protege contre l'oxydation par matrice auto-cicatrisante et son procede de fabrication
FR2742433B1 (fr) 1995-12-14 1998-03-13 Europ Propulsion Materiaux composites thermostructuraux avec renforts en fibres carbone ou revetues de carbone, ayant une resistance accrue a l'oxydation
FR2756277B1 (fr) 1996-11-28 1999-04-02 Europ Propulsion Materiau composite a matrice ceramique et renfort en fibres sic et procede pour sa fabrication
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
US6413578B1 (en) * 2000-10-12 2002-07-02 General Electric Company Method for repairing a thermal barrier coating and repaired coating formed thereby
US7090894B2 (en) * 2004-02-10 2006-08-15 General Electric Company Bondcoat for the application of TBC's and wear coatings to oxide ceramic matrix
US7160618B2 (en) * 2004-07-06 2007-01-09 Honeywell International Inc. Antioxidant system for carbon—carbon brake materials with enhanced resistance to humidity exposure
US20100255289A1 (en) * 2006-01-25 2010-10-07 Charles Lewinsohn Aluminosilicate-Based Oxide Composite Coating and Bond Coat for Silicon-Based Ceramic Substrates
CN101591196B (zh) * 2008-11-21 2012-07-18 中材高新材料股份有限公司 宽频陶瓷基复合材料用釉层材料及其制备方法
US8802225B2 (en) * 2011-05-31 2014-08-12 United Technologies Corporation Article having vitreous monocoating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622751A (en) * 1991-12-30 1997-04-22 Societe Europeenne De Propulsion Method of protecting products of composite material against oxidizing and products protected thereby
FR2850649A1 (fr) * 2003-01-30 2004-08-06 Snecma Propulsion Solide Procede pour le traitement de surface d'une piece en materiau composite thermostructural et application au brasage de pieces en materiau composite thermostructural
FR2899226A1 (fr) * 2006-04-04 2007-10-05 Snecma Propulsion Solide Sa Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120308834A1 (en) * 2011-05-31 2012-12-06 Flandermeyer Brian K Article having vitreous monocoating
US8802225B2 (en) * 2011-05-31 2014-08-12 United Technologies Corporation Article having vitreous monocoating
FR2979629A1 (fr) * 2011-09-06 2013-03-08 Snecma Propulsion Solide Procede de formation sur un substrat en cmc contenant du sic d'un revetement lisse d'aspect glace et piece en cmc munie d'un tel revetement
WO2013034838A1 (fr) 2011-09-06 2013-03-14 Herakles Procede de formation sur un substrat en materiau composite a matrice ceramique contenant du sic d'un revetement lisse d'aspect glace et piece en materiau composite a matrice ceramique munie d'un tel revetement
CN103827056A (zh) * 2011-09-06 2014-05-28 赫拉克勒斯公司 在由包含SiC的陶瓷基质复合材料制成的基材上形成平滑釉质涂层的方法,和由设置有所述涂层的陶瓷基质复合材料制成的部件
JP2014525392A (ja) * 2011-09-06 2014-09-29 エラクレス SiCを含むセラミックマトリクス複合材料で作られた基板上に、滑らかで光沢がかったコーティングを形成する方法、及びそのようなコーティングが設けられたセラミックマトリクス複合材料で作られた部品
EP3054109A4 (fr) * 2013-09-30 2017-05-31 Mitsubishi Heavy Industries, Ltd. Procédé de fabrication d'élément pour machines à fluide et élément pour machines à fluide
EP3616906B1 (fr) * 2018-08-29 2023-12-06 Safran Nacelles Pièce en composite avec face externe lisse et son procédé de fabrication

Also Published As

Publication number Publication date
FR2944010A1 (fr) 2010-10-08
US20150004324A1 (en) 2015-01-01
CA2757387A1 (fr) 2010-10-07
EP2414305B1 (fr) 2016-03-16
CN102448910B (zh) 2014-09-10
JP5678028B2 (ja) 2015-02-25
US9404185B2 (en) 2016-08-02
RU2523265C2 (ru) 2014-07-20
JP2012522714A (ja) 2012-09-27
RU2011143260A (ru) 2013-05-10
KR101787766B1 (ko) 2017-11-15
CA2757387C (fr) 2016-12-20
FR2944010B1 (fr) 2012-07-06
US8846218B2 (en) 2014-09-30
EP2414305A1 (fr) 2012-02-08
CN102448910A (zh) 2012-05-09
BRPI1015247B1 (pt) 2021-08-10
KR20110136871A (ko) 2011-12-21
BRPI1015247A2 (pt) 2020-10-13
US20120063912A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2414305B1 (fr) Procede pour le lissage de la surface d'une piece en materiau cmc.
EP2356085B1 (fr) Procede pour le lissage de la surface d'une piece en materiau cmc
EP3830056B1 (fr) Procédé de fabrication d'une piece en cmc
EP2785665B1 (fr) Procede de fabrication de piece en materiau cmc
EP3164373A1 (fr) Piece revêtue par un revêtement de surface et procedes associes
EP1587773B1 (fr) Procede pour le traitement de surface d une piece en materiau composite thermostructural et application au brasage de pieces en materiau composite thermostructural
EP3024801B1 (fr) Procédé de fabrication de pièces en matériau composite par imprégnation a basse température de fusion
EP1851180A1 (fr) Procede de fabrication de piece en materiau composite a matrice ceramique et piece ainsi obtenue
WO2014053751A1 (fr) Procede de fabrication d'une piece aerodynamique par surmoulage d'une enveloppe ceramique sur une preforme composite
FR3023212B1 (fr) Procede de fabrication d'une piece revetue par un revetement de surface comportant un alliage
EP0466603B1 (fr) Structures réfractaires refroidies et procédé pour leur fabrication
WO2014057205A1 (fr) Procede de traitement local d'une piece en materiau composite poreux
FR3141164A1 (fr) Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024064.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10717696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010717696

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2757387

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012502749

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024803

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011143260

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13262120

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015247

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1015247

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO INICIAL.

ENP Entry into the national phase

Ref document number: PI1015247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111003