WO2010112098A1 - Device for monitoring a monitoring area for the presence of one or more objects - Google Patents

Device for monitoring a monitoring area for the presence of one or more objects Download PDF

Info

Publication number
WO2010112098A1
WO2010112098A1 PCT/EP2010/000354 EP2010000354W WO2010112098A1 WO 2010112098 A1 WO2010112098 A1 WO 2010112098A1 EP 2010000354 W EP2010000354 W EP 2010000354W WO 2010112098 A1 WO2010112098 A1 WO 2010112098A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
monitoring
measuring
reflector
coding
Prior art date
Application number
PCT/EP2010/000354
Other languages
German (de)
French (fr)
Inventor
Gilbert Egger
Original Assignee
I.L.E.E. Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.L.E.E. Ag filed Critical I.L.E.E. Ag
Publication of WO2010112098A1 publication Critical patent/WO2010112098A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/10Detecting linear movement
    • G01D2205/14Detecting linear movement by converting the linear movement into a rotary movement

Definitions

  • the invention relates to a simply constructed, area-wide reflection barrier with a surveying and localization function.
  • a scanner and a method for operating the scanner are the subject of DE 10 2005 002 190 B4.
  • DE 695 31 462 T2 (EP 0 875 728 B1) and DE 695 18 953 T2 (EP 0 689 032 B1) disclose a surveying system in which the reflecting object transmits the laser beam and makes it diffuse.
  • a position control device for controlling an emitting position of the laser beam is incorporated.
  • a rotating laser radiation system is considered in more detail in DE 694 11 102 T2 (EP 0 643 283 B1).
  • Retro-reflecting fabrics include reflective tapes, reflective fabrics or even reflective colors, which show a normal supervisory color in daylight, but have the character of a reflective fabric when illuminated with artificial light.
  • Such films are known inter alia from CA 2 376 812 C, DE 10 2007 009 013 A1, DE 10 2007 006 405 A1 and DE 10 2004 025 325 A1.
  • the device proposed in DE 10 2008 053 881.7 uses inter alia for determining an angle with respect to the object to be detected, an angle sensor.
  • the invention has the object to provide a further device that allows in a simple manner not only the localization, but also a measurement of an object in space and / or level.
  • the invention is based on the idea to incorporate in the (measuring) device with at least one laser or measuring system and a catadioptric reflector a reference or coding, whereby in addition to a simpler location of an object located in the measuring space an initial and final position of the measuring path itself can be defined.
  • the laser or measuring system itself is preferably accommodated in a housing in which a radiation source, light sensors and a light deflection unit connected to a motor can also be located.
  • the reference or coding is mounted in or in front of a catadioptric reflector or reflector foil which delimits the monitored area or is integrated in the system housing.
  • an otherwise required angle sensor can be omitted in a simplest embodiment.
  • the catadioptric reflector or the film or a reflective tape can be integrated into the system housing in such a way that an exit (angular segment) of the light or laser beam is already predefined.
  • one or more catadioptric reflector or catadioptric reflector foils bounding the measuring surface is provided, which is provided with the reference, coding etc. on or in front of the reflector / foil.
  • the reflector can be arranged half round the measuring surface, other attachments are also possible.
  • a coded reference or measurement object is integrated into the device, which can be statically positioned or dynamically moved.
  • a reference object is likewise provided with a reference or coding, but preferably in the longitudinal direction on the (in front of) the object (s).
  • a three-dimensional position determination of the reference object itself can then be carried out, for example for determining the position of a robot arm in space. It is understood that in this case, the information for monitoring and readjustment of the local position specification of such a reference object can be used.
  • the device By the device a structurally simple device for detection, localization, dimensioning and thus for measuring the position of an object in three spatial levels and a simple retrofitting (assembly / disassembly) is also proposed on site.
  • FIG. 1 is a schematic diagram of a reflector system
  • a measuring apparatus 100 comprising a radiation source 1 for generating a collimated or focused light beam 2.
  • a radiation source 1 for generating a collimated or focused light beam 2.
  • a motor 5 drives the light deflection unit 4, for example a mirror, a prism or other optical system of the same action or function such that the deflected light beam 2 has a surface 101 (measuring area) transverse to the axis of rotation of the motor 5 and the mirror 4 sweeps.
  • the radiation source 1 and the mirror 4 are preferably arranged annularly around the beam 2 Sensors 3.
  • a semi-circular catadiopreflector 9 delimits the measuring area (monitoring area) 101.
  • the operation of the measurement for the presence of an object 8 in the monitoring area 101 is as follows:
  • the light beam 2 scans the boundary, the reflector 9, from.
  • the catadioptric reflector 9 When the catadioptric reflector 9 is struck by the light beam 2, it throws most of the light beam 2 slightly divergent back in the direction of origin.
  • the reflected light 7 is directed to the light sensors 3 via the rotating mirror 4.
  • the light sensors 3 provide an electrical signal corresponding to the reflectance, which represents the actual state (without object 8). If now the light beam 2 between mirror 4 and reflector 9 is interrupted, disturbed or attenuated by an object 8, the electrical signal generated by the light sensors 3 changes over the actual state in the area - namely the presence of the object 8.
  • an angle sensor 6 can be integrated, whereby in addition to the detection and an angle measurement can be realized.
  • the angle sensor 6 supplies the information regarding the position of the mirror 4 and the deflected light beam 2 with respect to the object 8.
  • the evaluation is then carried out in conjunction with the information relating to an interruption, disturbance or attenuation of the light beam 2.
  • the integration of a reference (or coding) 10 is provided in a further embodiment.
  • the angular evaluation of the object position can then take place via the knowledge of the rotational frequency and angular velocity of the light deflection unit 4 and thus the duration of the interruption, disturbance or attenuation.
  • the reference 10 is preferably located in the space in front of or on the reflector 9. By means of this reference 10, the relative start and / or end position of the object 8 can be defined.
  • an initial reference point is defined, ie the beginning of the measurement.
  • the laser or light beam 2 rotates, for example, with a rotational frequency of 1 Hz, resulting in an angular velocity of 360 ° per second (7s).
  • start time A and end time E the times of the interruption
  • start / end time the times of the interruption
  • the angular velocity (7s) * time (start / end) gives the angle (°).
  • a plurality of reference points can be provided, wherein after the initial reference point each additional reference point is assigned a specific angle starting from the initial reference point (coded) and stored in a memory.
  • the laser beam 2 rotates and counts the points, so that a defined initial angle value is available when the interruption begins, etc., due to an object 8 present in the beam path.
  • a second angle value results again when the end of the object is reached. This can be determined depending on an end reference point. From both information can then determine the angular range in which the object is located.
  • Other evaluation options are also possible.
  • the measurement can be improved, there are several overlapping information.
  • overlapping the measuring surfaces 101, 102 a more precise position and dimension of the outer contours of the object 8 can be determined via the triangulation described above (FIG. 3).
  • FIGS. 4 to 6 likewise builds on a doubling or multiplication of the structure shown in FIG.
  • a so-called reference object 12 is provided with a reference or coding 10 on the reflection film 9.
  • This is used as a dynamic reference object in the intersection of the measurement planes 101, 102 and can be statically positioned or move dynamically. It is recorded in two dimensions and, for example, located using the already described triangulation (X-Y axes).
  • a reflector 9 delimiting the measuring surfaces 101, 102 is dispensed with (see FIGS. 4-6), such a film can be incorporated into the system housing (not shown) in the plane of the rotating mirror 4 / emerging light 2.
  • an opening is released in the system housing, the width of which can be predetermined. The rest is as described.
  • the position of the reference object 12 (at right angles) relative to the measurement plane 101, 102, ie along the Z-axis, can be determined.
  • the third dimension (Z-axis) can thus be relative to the measurement plane (XY) are determined (Fig. 4, Fig. 5). This is done by counting the coding 10 and the reflective foil sections 9 located therebetween in the longitudinal axis on the mobile reference object 12, so that the position of the Z-axis can be determined at several points during the displacement of the reference object 12.
  • the light beam 2 is reflected by the reflection foil 9, not in Fig. 4. Based on the number of transitions, the detection, localization and measurement of the reference object 12 in 3-dimensional space can then be carried out.
  • the reference object 12 has a cylindrical mirror 11 integrated into the housing 15, which, as is known, only reflects the light 2 back to the starting point as a light beam 13, when the light 2 impinges perpendicular to the mirror 11. It can thus be determined whether the Z axis of the reference object 12 is oriented perpendicular to the two measuring systems 20.
  • the aforementioned variants can be used for measuring and / or calibrating machines and robots of any kind, for collision monitoring in machines of any kind and for door monitoring even in elevators, property protection and alarm systems of all kinds and access control.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention relates primarily to a device (100) for monitoring a monitoring area (101, 102) at least for the presence of one or more objects (8, 12), comprising at least one measuring system (20) having at least one beam source (1) for generating a beam (2), such as a laser or light beam, and at least one light sensor, that can be mounted in a system housing. A light diverting unit (4) is operationally connected to a motor (5) and is rotated by the same about a common axis. In order to determine the duration of an interruption, disturbance, or weakening caused by the presence of the object (8) solely based on knowledge of the rotary frequency and angular speed of the light diverting unit (4), and thus to be able to implement an angle analysis for detecting the position of the object location, a reference or coding (10) is integrated that can be mounted in or in front of a catadioptrical reflector or reflector film (9) adjacent to the monitoring area (101, 102) or integrated in the system housing.

Description

BESCHREIBUNG DESCRIPTION
Vorrichtung zur Überwachung eines Überwachungsbereiches auf das Vorhandensein eines oder mehrerer ObjekteDevice for monitoring a surveillance area for the presence of one or more objects
Die Erfindung betrifft eine einfach aufgebaute, flächendeckende Reflexionsschranke mit einer Vermessungs- als auch Lokalisierungsfunktion.The invention relates to a simply constructed, area-wide reflection barrier with a surveying and localization function.
Aus der DE 20 2005 020 705 U1 ist eine Vorrichtung zum Vermessen und / oder Bearbeiten von dreidimensionalen Objekten mittels Lichtstrahlen bekannt. Selbiges Technikgebiet betrifft auch die DE 10 2006 062 447 A1.From DE 20 2005 020 705 U1 a device for measuring and / or processing of three-dimensional objects by means of light beams is known. The same technical field also relates to DE 10 2006 062 447 A1.
Ein Scanner und ein Verfahren zum Betreiben des Scanners sind Gegenstand der DE 10 2005 002 190 B4.A scanner and a method for operating the scanner are the subject of DE 10 2005 002 190 B4.
Die DE 695 31 462 T2 (EP 0 875 728 B1) als auch die DE 695 18 953 T2 (EP 0 689 032 B1), offenbaren ein Vermessungssystem, bei welchem das reflektierende Objekt den Laserstrahl durchlässt und diffus macht. Zudem ist eine Positionssteuereinrichtung zum Steuern einer emittierenden Position des Laserstrahls eingebunden.DE 695 31 462 T2 (EP 0 875 728 B1) and DE 695 18 953 T2 (EP 0 689 032 B1) disclose a surveying system in which the reflecting object transmits the laser beam and makes it diffuse. In addition, a position control device for controlling an emitting position of the laser beam is incorporated.
Ein rotierendes Laser-Strahlungssystem wird in der DE 694 11 102 T2 (EP 0 643 283 B1) näher betrachtet.A rotating laser radiation system is considered in more detail in DE 694 11 102 T2 (EP 0 643 283 B1).
Bereits die nicht veröffentlichte DE 10 2008 053 881.7 beschäftigt sich mit dem Vermessen eines Objektes unter Nutzung einer Reflektionsschranke, die das Prinzip der Retro-Reflek- tion anwendet. Dieses Prinzip basiert darauf, dass spiegelnde und brechende Elemente (= katadioptrische Elemente) das Licht umkehren und es in Richtung der Lichtquelle zurücksenden. Erreicht werden kann diese Art der Reflexion mit Hilfe einer großen Anzahl sehr kleiner katadioptrischer Teile (z. B. halb verspiegelter Glaskugeln). Retro-reflektierende Stoffe sind u. a. Reflexfolien, Reflexgewebe oder auch Reflexfarben, die bei Tageslicht eine normale Aufsichtfarbe zeigen, bei Anleuchtung mit künstlichem Licht jedoch den Charakter eines Reflexstoffes aufweisen. Derartige Folien sind u. a. aus der CA 2 376 812 C, DE 10 2007 009 013 A1 , DE 10 2007 006 405 A1 sowie DE 10 2004 025 325 A1 bekannt. Die in der DE 10 2008 053 881.7 vorgeschlagene Vorrichtung verwendet unter anderem zur Bestimmung eines Winkels bezogen auf das zu detektierende Objekt einen Winkelsensor.Already the unpublished DE 10 2008 053 881.7 deals with the measurement of an object using a reflection barrier, which applies the principle of retro-reflection. This principle is based on the fact that reflective and refractive elements (= catadioptric elements) reverse the light and send it back in the direction of the light source. This type of reflection can be achieved with the help of a large number of very small catadioptric parts (eg semi-mirrored glass spheres). Retro-reflecting fabrics include reflective tapes, reflective fabrics or even reflective colors, which show a normal supervisory color in daylight, but have the character of a reflective fabric when illuminated with artificial light. Such films are known inter alia from CA 2 376 812 C, DE 10 2007 009 013 A1, DE 10 2007 006 405 A1 and DE 10 2004 025 325 A1. The device proposed in DE 10 2008 053 881.7 uses inter alia for determining an angle with respect to the object to be detected, an angle sensor.
Aufbauend auf diese Idee stellt sich die Erfindung die Aufgabe, eine weitere Vorrichtung anzugeben, die in einfacher Art und Weise nicht nur das Lokalisieren, sondern auch ein Vermessen eines Objektes in Raum und / oder Ebene ermöglicht.Based on this idea, the invention has the object to provide a further device that allows in a simple manner not only the localization, but also a measurement of an object in space and / or level.
Gelöst wird die Aufgabe durch die Merkmale des Patentanspruchs 1. Unteransprüche enthalten bevorzugte Ausführungsformen.The object is achieved by the features of claim 1. Subclaims contain preferred embodiments.
Der Erfindung liegt die Idee zugrunde, in die (Mess-) Vorrichtung mit wenigstens einem Laser- bzw. Messsystem und einem katadioptrischen Reflektor eine Referenz oder Codierung einzubinden, wodurch neben einer einfacheren Ortsbestimmung eines im Messraum befindlichen Objektes eine Anfangs- und Endposition des Messweges selbst definiert werden kann. So kann bereits allein durch die Kenntnis der Drehfrequenz und der Winkelgeschwindigkeit der Lichtablenkeinheit eine Winkelauswertung zur Positionserkennung der Objektlage realisiert werden.The invention is based on the idea to incorporate in the (measuring) device with at least one laser or measuring system and a catadioptric reflector a reference or coding, whereby in addition to a simpler location of an object located in the measuring space an initial and final position of the measuring path itself can be defined. Thus, by knowing the rotational frequency and the angular velocity of the light deflection unit alone, an angle evaluation for position detection of the object position can be realized.
Das Laser- bzw. Messsystem selbst ist bevorzugt in einem Gehäuse untergebracht, in dem sich auch eine Strahlenquelle, Lichtsensoren und eine Lichtablenkeinheit, verbunden mit einem Motor, befinden können.The laser or measuring system itself is preferably accommodated in a housing in which a radiation source, light sensors and a light deflection unit connected to a motor can also be located.
Die Referenz oder Codierung ist in bzw. vor einem, den Überwachungsbereich begrenzenden oder im Systemgehäuse integrierten katadioptrischen Reflektor bzw. Reflektorfolie angebracht. Damit kann in einer einfachsten Ausführung ein sonst benötigter Winkelsensor entfallen. Aufbauend auf dieser Idee kann der katadioptrische Reflektor bzw. die Folie oder ein Reflektorband in das Systemgehäuse derart eingebunden werden, dass ein Austritt (Winkelsegment) des Licht- bzw. Laserstrahls bereits vordefiniert wird.The reference or coding is mounted in or in front of a catadioptric reflector or reflector foil which delimits the monitored area or is integrated in the system housing. Thus, an otherwise required angle sensor can be omitted in a simplest embodiment. Based on this idea, the catadioptric reflector or the film or a reflective tape can be integrated into the system housing in such a way that an exit (angular segment) of the light or laser beam is already predefined.
In einer ersten Variante sind ein (oder mehrere) die Messfläche begrenzende/r katadioptri- scher Reflektor bzw. katadioptrische Reflektorfolien vorgesehen, der / die mit der Referenz, Codierung etc. auf oder vor dem Reflektor / der Folie versehen ist. Der Reflektor kann dabei halbrund um die Messfläche angeordnet sein, andere Anbringungen sind ebenfalls möglich.In a first variant, one or more catadioptric reflector or catadioptric reflector foils bounding the measuring surface is provided, which is provided with the reference, coding etc. on or in front of the reflector / foil. The reflector can be arranged half round the measuring surface, other attachments are also possible.
Die Einbindung einer derartigen Referenz bzw. Codierung macht eine einfache (rechnerische) Auswertung der örtlichen Lage und Dimensionierung des Objektes möglich. Ausreichend sind die Kenntnis der Drehfrequenz und der Winkelgeschwindigkeit der Lichtablenkeinheit 4 und die Messung der Dauer der Unterbrechung, Störung oder Abschwächung des Strahls.The inclusion of such a reference or coding makes a simple (mathematical) evaluation of the local situation and dimensioning of the object possible. Sufficient are the knowledge of the rotational frequency and the angular velocity of the light deflection unit 4 and the measurement of the duration of the interruption, disturbance or attenuation of the beam.
In Weiterführung wird in einer weiteren Variante ein codiertes Referenz- oder Messobjekt in die Vorrichtung integriert, das statisch positioniert oder dynamisch bewegt werden kann. Ein solches Referenzobjekt wird ebenfalls mit einer Referenz oder Codierung versehen, hierbei jedoch bevorzugt in Längsrichtung am (vor dem) Objekt/es. Mit dieser Anordnung kann dann eine dreidimensionale Lagebestimmung des Referenzobjektes selbst durchgeführt werden, beispielsweise zur Bestimmung der Lage eines Roboterarms im Raum. Es versteht sich, dass in diesem Fall die Informationen zur Überwachung und Nachregelung der örtlichen Lagevorgabe eines derartigen Referenzobjektes genutzt werden können.In a further variant, in a further variant, a coded reference or measurement object is integrated into the device, which can be statically positioned or dynamically moved. Such a reference object is likewise provided with a reference or coding, but preferably in the longitudinal direction on the (in front of) the object (s). With this arrangement, a three-dimensional position determination of the reference object itself can then be carried out, for example for determining the position of a robot arm in space. It is understood that in this case, the information for monitoring and readjustment of the local position specification of such a reference object can be used.
Durch die Vorrichtung wird eine konstruktiv einfache Vorrichtung für eine Detektion, Lokalisierung, Dimensionierung und somit für ein Vermessen der Position eines Objektes in drei Raumebenen sowie eine einfache Nachrüstung (Montage / Demontage) auch vor Ort vorgeschlagen.By the device a structurally simple device for detection, localization, dimensioning and thus for measuring the position of an object in three spatial levels and a simple retrofitting (assembly / disassembly) is also proposed on site.
Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden. Es zeigt:Reference to an embodiment with drawing, the invention will be explained in more detail. It shows:
Fig. 1 eine Prinzipdarstellung eines Reflektorsystems,1 is a schematic diagram of a reflector system,
Fig. 2 eine weitere Variante mit einer im Reflektor eingebundenen Referenz,2 shows a further variant with a reference incorporated in the reflector,
Fig. 3 eine weitere Messanordnung mit zwei Lasersystemen,3 shows a further measuring arrangement with two laser systems,
Fig. 4 bis 6 eine Messanordnung mit einem codierten Referenz- bzw. Messobjekt.4 to 6 a measuring arrangement with a coded reference or measuring object.
Fig. 1 zeigt das Grundprinzip einer Messvorrichtung 100, bestehend aus einer Strahlenquelle 1 zum Erzeugen eines kollimierten oder fokussierten Lichtstrahls 2. Mit 3 sind Lichtsensoren (zumindest einer) und mit 4 eine rotierende, in 45° angeordnete Lichtablenkeinheit gekennzeichnet. Ein Motor 5 treibt die Lichtablenkeinheit 4, beispielsweise ein Spiegel, ein prisma oder anderes optisches System selbiger Wirkung bzw. Funktion derart an, dass der umgelenkte Lichtstrahl 2 eine Fläche 101 (Messfläche bzw. Überwachungsbereich) quer zur Drehachse des Motors 5 und des Spiegels 4 überstreicht. Zwischen der Strahlenquelle 1 und dem Spiegel 4 befinden sich die vorzugsweise ringförmig um den Strahl 2 angeordneten Sensoren 3. Ein beispielsweise halbrunder katadiopfrischer Reflektor 9 begrenzt hierbei die Messfläche (den Überwachungsbereich) 101.1 shows the basic principle of a measuring apparatus 100, comprising a radiation source 1 for generating a collimated or focused light beam 2. With 3 light sensors (at least one) and 4 with a rotating, arranged at 45 ° light deflection unit are marked. A motor 5 drives the light deflection unit 4, for example a mirror, a prism or other optical system of the same action or function such that the deflected light beam 2 has a surface 101 (measuring area) transverse to the axis of rotation of the motor 5 and the mirror 4 sweeps. Between the radiation source 1 and the mirror 4 are preferably arranged annularly around the beam 2 Sensors 3. Here, for example, a semi-circular catadiopreflector 9 delimits the measuring area (monitoring area) 101.
Die Funktionsweise der Messung für das Vorhandensein eines Objektes 8 im Überwachungsbereich 101 ist dabei wie folgt:The operation of the measurement for the presence of an object 8 in the monitoring area 101 is as follows:
Der Lichtstrahl 2 tastet die Begrenzung, den Reflektor 9, ab. Wenn der katadioptrische Reflektor 9 vom Lichtstrahl 2 getroffen wird, wirft dieser den größten Teil des Lichtstrahls 2 leicht divergiert in die Herkunftsrichtung zurück. Das zurückgeworfene Licht 7 wird über den rotierenden Spiegel 4 auf die Lichtsensoren 3 geleitet. Die Lichtsensoren 3 liefern ein dem Reflexionsgrad entsprechendes elektrisches Signal, das den Ist- Zustand (ohne Objekt 8) darstellt. Wird nun der Lichtstrahl 2 zwischen Spiegel 4 und Reflektor 9 durch ein Objekt 8 unterbrochen, gestört oder abgeschwächt, ändert sich das von den Lichtsensoren 3 generierte elektrische Signal über den Ist- Zustand in dem Bereich - nämlich das Vorhandensein des Objektes 8.The light beam 2 scans the boundary, the reflector 9, from. When the catadioptric reflector 9 is struck by the light beam 2, it throws most of the light beam 2 slightly divergent back in the direction of origin. The reflected light 7 is directed to the light sensors 3 via the rotating mirror 4. The light sensors 3 provide an electrical signal corresponding to the reflectance, which represents the actual state (without object 8). If now the light beam 2 between mirror 4 and reflector 9 is interrupted, disturbed or attenuated by an object 8, the electrical signal generated by the light sensors 3 changes over the actual state in the area - namely the presence of the object 8.
In einer Variante nach Fig. 3 kann selbstverständlich ein Winkelsensor 6 eingebunden werden, wodurch neben der Detektion auch eine Winkelmessung realisiert werden kann. Der Winkelsensor 6 liefert die Information bezüglich der Stellung des Spiegels 4 und dem umgelenkten Lichtstrahl 2 bezogen auf das Objekt 8. Die Auswertung erfolgt dann in Verbindung der Information bezüglich einer Unterbrechung, Störung oder Abschwächung des Lichtstrahls 2.In a variant of FIG. 3, of course, an angle sensor 6 can be integrated, whereby in addition to the detection and an angle measurement can be realized. The angle sensor 6 supplies the information regarding the position of the mirror 4 and the deflected light beam 2 with respect to the object 8. The evaluation is then carried out in conjunction with the information relating to an interruption, disturbance or attenuation of the light beam 2.
Zur möglichen Einsparung des Winkelsensors 6 ist in einer weiteren Ausführungsform die Einbindung einer Referenz (oder Codierung) 10 vorgesehen. Die Winkelauswertung zur Objektlage kann dann über die Kenntnis der Drehfrequenz und Winkelgeschwindigkeit der Lichtablenkeinheit 4 und damit die Dauer der Unterbrechung, Störung oder Abschwächung erfolgen. Die Referenz 10 befindet sich vorzugsweise im Raum vor oder auf dem Reflektor 9. Mit Hilfe dieser Referenz 10 kann die relative Anfangs- und / oder Endposition des Objektes 8 definiert werden.For possible saving of the angle sensor 6, the integration of a reference (or coding) 10 is provided in a further embodiment. The angular evaluation of the object position can then take place via the knowledge of the rotational frequency and angular velocity of the light deflection unit 4 and thus the duration of the interruption, disturbance or attenuation. The reference 10 is preferably located in the space in front of or on the reflector 9. By means of this reference 10, the relative start and / or end position of the object 8 can be defined.
In einer einfachen Ausführung wird also ein Anfangsreferenzpunkt festgelegt, d. h., der Messbeginn. Der Laser- bzw. Lichtstrahl 2 rotiert beispielsweise mit einer Drehfrequenz von 1Hz, woraus sich eine Winkelgeschwindigkeit von 360° pro Sekunde (7s) ergibt. Wenn das Objekt 8 den Lichtstrahl 2 unterbricht, werden die Zeiten der Unterbrechung (Anfangszeit A und Endzeit E) gemessen und das Winkelsegment über diese gemessene Zeit errechnet. Die Winkelgeschwindigkeit (7s) * Zeit (Anfang/ Ende) ergibt den Winkel (°). Wird der Beginn (Anfang) des Objektes nach 0,1s (vom Referenzpunkt) und das Ende nach 0,15 s (vom gleichen Referenzpunkt) gemessen, lässt sich daraus schlussfolgern, dass das Objekt beispielsweise zwischen 36° und 54° gemessen von dem Anfangsreferenzpunkt / der Codierung befindet.In a simple embodiment, therefore, an initial reference point is defined, ie the beginning of the measurement. The laser or light beam 2 rotates, for example, with a rotational frequency of 1 Hz, resulting in an angular velocity of 360 ° per second (7s). When the object 8 interrupts the light beam 2, the times of the interruption (start time A and end time E) are measured and the angle segment is calculated over this measured time. The angular velocity (7s) * time (start / end) gives the angle (°). Will the beginning (Beginning) of the object after 0.1s (from the reference point) and the end measured after 0.15s (from the same reference point), it can be concluded that the object is, for example, between 36 ° and 54 ° measured from the initial reference point / coding located.
Alternativ können mehrere Referenzpunkte vorgesehen werden, wobei nach dem Anfangsreferenzpunkt jedem weiteren Referenzpunkt ein bestimmter Winkel ausgehend vom Anfangsreferenzpunkt zugeordnet (codiert) und in einem Speicher hinterlegt wird. Der Laserstrahl 2 rotiert und zählt die Punkte, so dass mit Beginn der Unterbrechung etc. durch ein im Strahlengang vorhandenes Objekt 8 ein definierter Winkelanfangswert zur Verfügung steht. Ein zweiter Winkelwert ergibt sich dann wieder, wenn das Objektende erreicht wird. Dieser kann in Abhängigkeit eines Endreferenzpunktes bestimmt werden. Aus beiden Informationen lässt sich dann der Winkelbereich ermitteln, in dem sich das Objekt befindet. Andere Auswertemöglichkeiten sind ebenfalls möglich.Alternatively, a plurality of reference points can be provided, wherein after the initial reference point each additional reference point is assigned a specific angle starting from the initial reference point (coded) and stored in a memory. The laser beam 2 rotates and counts the points, so that a defined initial angle value is available when the interruption begins, etc., due to an object 8 present in the beam path. A second angle value results again when the end of the object is reached. This can be determined depending on an end reference point. From both information can then determine the angular range in which the object is located. Other evaluation options are also possible.
Durch eine Verdoppelung oder Vervielfachung (Redundanz) des vorgenannten Aufbaus kann die Messung verbessert werden, es ergeben sich mehrere überschneidende Informationen. Durch das Überschneiden der Messflächen 101 , 102 kann eine genauere Position und Dimension der Außenkonturen des Objektes 8 über die oben beschriebene Triangulation bestimmt werden (Fig. 3).By duplication or multiplication (redundancy) of the aforementioned structure, the measurement can be improved, there are several overlapping information. By overlapping the measuring surfaces 101, 102, a more precise position and dimension of the outer contours of the object 8 can be determined via the triangulation described above (FIG. 3).
Die Ausführung nach Fig. 4 bis 6 baut ebenfalls auf eine Verdoppelung oder Vervielfachung des in Fig. 2 dargestellten Aufbaus auf. Hierbei ist jedoch ein sogenanntes Referenzobjekt 12 mit einer Referenz bzw. Codierung 10 auf der Reflexionsfolie 9 versehen. Dieses wird als dynamisches Referenzobjekt in der Schnittmenge der Messebenen 101 , 102 genutzt und kann statisch positioniert sein oder sich dynamisch bewegen. Es wird zweidimensional er- fasst und beispielsweise über die bereits beschriebene Triangulation geortet (X-Y Achsen).The embodiment according to FIGS. 4 to 6 likewise builds on a doubling or multiplication of the structure shown in FIG. In this case, however, a so-called reference object 12 is provided with a reference or coding 10 on the reflection film 9. This is used as a dynamic reference object in the intersection of the measurement planes 101, 102 and can be statically positioned or move dynamically. It is recorded in two dimensions and, for example, located using the already described triangulation (X-Y axes).
Wird auf einen, die Messflächen 101 , 102 begrenzenden Reflektor 9 verzichtet (siehe Fig. 4- 6), kann eine derartige Folie in das Systemgehäuse (nicht weiter dargestellt) in der Ebene des rotierenden Spiegels 4 / austretenden Lichtes 2 eingebunden werden. Für den gezielten Lichtaustritt wird dann eine Öffnung (nicht näher dargestellt) im Systemgehäuse freigelassen, dessen Breite vorbestimmbar ist. Der Rest ist wie beschrieben.If a reflector 9 delimiting the measuring surfaces 101, 102 is dispensed with (see FIGS. 4-6), such a film can be incorporated into the system housing (not shown) in the plane of the rotating mirror 4 / emerging light 2. For the targeted light emission then an opening (not shown in detail) is released in the system housing, the width of which can be predetermined. The rest is as described.
Des Weiteren lässt sich die Position des Referenzobjektes 12 (rechtwinklig) zur Messebene 101 , 102, also längs der Z-Achse bestimmen. Durch ein Ein- und Austauchen des Referenzobjektes 12 in die Messebenen 101 , 102 kann somit die dritte Dimension (Z-Achse) relativ zur Messebene (X-Y) bestimmt werden (Fig. 4, Fig. 5). Dies erfolgt durch Auszählen der Codierung 10 und den dazwischen befindlichen Reflexfolienabschnitten 9 in der Längsachse am mobilen Referenzobjekt 12, so dass die Position der Z-Achse beim Verschieben des Referenzobjektes 12 an mehreren Stellen ermittelbar wird. In Fig. 5 wird der Lichtstrahl 2 durch die Reflexionsfolie 9 zurückgeworfen, in Fig. 4 nicht. Anhand der Anzahl der Übergänge kann dann die Detektion, Lokalisierung und Vermessung des Referenzobjektes 12 im 3 di- mensionalen Raum vorgenommen werden.Furthermore, the position of the reference object 12 (at right angles) relative to the measurement plane 101, 102, ie along the Z-axis, can be determined. By immersing the reference object 12 in and out of the measurement planes 101, 102, the third dimension (Z-axis) can thus be relative to the measurement plane (XY) are determined (Fig. 4, Fig. 5). This is done by counting the coding 10 and the reflective foil sections 9 located therebetween in the longitudinal axis on the mobile reference object 12, so that the position of the Z-axis can be determined at several points during the displacement of the reference object 12. In Fig. 5, the light beam 2 is reflected by the reflection foil 9, not in Fig. 4. Based on the number of transitions, the detection, localization and measurement of the reference object 12 in 3-dimensional space can then be carried out.
Fig. 6 zeigt eine Möglichkeit der Kalibrierung bzw. Kontrolle der Neigung der Z-Achse des Referenzobjektes 12. Dazu besitzt das Referenzobjekt 12 einen in das Gehäuse 15 eingebundenen Zylinderspiegel 11 , der bekanntlich nur dann das Licht 2 als Lichtstrahl 13 auf den Ausgangspunkt zurückwirft, wenn das Licht 2 senkrecht auf den Spiegel 11 auftrifft. Damit kann ermittelt werden, ob die Z-Achse des Referenzobjektes 12 senkrecht zu den beiden Messsystemen 20 ausgerichtet ist.6 shows a possibility of calibrating or checking the inclination of the Z-axis of the reference object 12. For this purpose, the reference object 12 has a cylindrical mirror 11 integrated into the housing 15, which, as is known, only reflects the light 2 back to the starting point as a light beam 13, when the light 2 impinges perpendicular to the mirror 11. It can thus be determined whether the Z axis of the reference object 12 is oriented perpendicular to the two measuring systems 20.
Die vorgenannten Varianten können zum Messen und / oder Kalibrieren von Maschinen und Robotern jeglicher Art, zur Kollisionsüberwachung bei Maschinen jeglicher Art sowie zur Türüberwachung auch bei Aufzügen, Objektschutz und Alarmsystemen aller Art und Zutrittsüberwachung genutzt werden. The aforementioned variants can be used for measuring and / or calibrating machines and robots of any kind, for collision monitoring in machines of any kind and for door monitoring even in elevators, property protection and alarm systems of all kinds and access control.

Claims

PATENTANSPRÜCHE
1. Vorrichtung (100) zur Überwachung eines Überwachungsbereiches (101 , 102) zumindest auf das Vorhandensein eines oder mehrer Objekte(s) (8, 12), umfassendA device (100) for monitoring a surveillance area (101, 102) at least for the presence of one or more objects (8, 12)
- wenigstens ein Messsystem (20) mit wenigstens einer Strahlenquelle (1) zur Erzeugung eines Strahles (2), wie Laser- oder Lichtstrahl, und wenigstens einen Lichtsensor (3), die in einem Systemgehäuse untergebracht sein können, sowie- At least one measuring system (20) with at least one radiation source (1) for generating a beam (2), such as laser or light beam, and at least one light sensor (3), which may be housed in a system housing, and
- eine Lichtablenkeinheit (4), die in Wirkverbindung mit einem Motor (5) steht und durch diesen um eine Achse rotieren kann, dadurch gekennzeichnet, dass- A light deflecting unit (4), which is in operative connection with a motor (5) and can rotate about it about an axis, characterized in that
- eine Referenz oder Codierung (10) eingebunden ist, die in bzw. vor einem, den Überwachungsbereich (101 , 102) begrenzenden oder im Systemgehäuse integrierten katadioptrischen Reflektor bzw. Reflektorfolie (9) angebracht sein kann, so dass mittels der Kenntnis der Drehfrequenz und der Winkelgeschwindigkeit der Lichtablenkeinheit (4) die Dauer einer Unterbrechung, Störung oder Abschwächung bedingt durch das Vorhandensein des Objekts (8) bestimmt und damit eine Winkelauswertung zur Positionserkennung der Objektlage erfolgen kann.- A reference or coding (10) is incorporated, which can be mounted in or before a, the monitoring area (101, 102) or integrated in the system housing catadioptric reflector or reflector foil (9), so that by means of knowledge of the rotational frequency and the angular velocity of the light deflecting unit (4) determines the duration of an interruption, disturbance or attenuation due to the presence of the object (8) and thus an angle evaluation for position detection of the object position can take place.
2. Vorrichtung (100) zur Überwachung eines Überwachungsbereiches (101 , 102) zumindest auf das Vorhandensein eines oder mehrer Objekte(s) (8, 12), umfassend2. Device (100) for monitoring a surveillance area (101, 102) at least for the presence of one or more objects (s) (8, 12)
- wenigstens ein Messsystem (20) mit wenigstens einer Strahlenquelle (1) zur Erzeugung eines Strahles (2), wie Laser- oder Lichtstrahl, und wenigstens einen Lichtsensor (3), die in einem Systemgehäuse untergebracht sein können, sowie- At least one measuring system (20) with at least one radiation source (1) for generating a beam (2), such as laser or light beam, and at least one light sensor (3), which may be housed in a system housing, and
- eine Lichtablenkeinheit (4), die in Wirkverbindung mit einem Motor (5) steht und durch diesen um eine Achse rotieren kann, dadurch gekennzeichnet, dass ein Referenzobjekt (12) mit einer Referenz bzw. Codierung (10) versehen eingebunden ist, so dass durch ein Ein- und Austauchen des Referenzobjektes (12) im Überwachungsbereich (101 , 102) eine Messung der Z-Achse relativ zur Messebene (X-Y) erfolgen kann.- A light deflection unit (4), which is in operative connection with a motor (5) and can rotate about an axis, characterized in that a reference object (12) is provided with a reference or coding (10) is integrated, so that a measurement of the Z-axis relative to the measuring plane (XY) can take place by immersing the reference object (12) in the monitoring area (101, 102).
3. Vorrichtung in einer Kombination nach Anspruch 1 und 2.3. Device in a combination according to claim 1 and 2.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Winkelsensor (6) vorgesehen ist, der funktional mit der Lichtablenkeinheit (4) und dem Motor (5) verbunden ist. 4. Device according to one of claims 1 to 3, characterized in that an angle sensor (6) is provided, which is operatively connected to the light deflecting unit (4) and the motor (5).
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lichtablenkeinheit (4) ein in 45° angeordneter Spiegel, Prisma oder anderes optisches Element ist.5. Apparatus according to claim 1 or 2, characterized in that the light deflecting unit (4) is arranged at 45 ° mirror, prism or other optical element.
6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass zur Kontrolle der Neigung und / oder Kalibrierung des Referenzobjektes (12) ein Zylinderspiegel (11) vorgesehen ist.6. Device according to one of claims 2 to 5, characterized in that for controlling the inclination and / or calibration of the reference object (12), a cylinder mirror (11) is provided.
7. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 6 zum Messen und / oder Kalibrieren von Maschinen und Robotern jeglicher Art.7. Use of the device according to one of claims 1 to 6 for measuring and / or calibrating machines and robots of any kind.
8. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 6 zur Kollisionsüberwachung bei Maschinen jeglicher Art.8. Use of the device according to one of claims 1 to 6 for collision monitoring in machines of any kind.
9. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 6 zur Türüberwachung auch bei Aufzügen, Objektschutz und Alarmsystemen aller Art sowie Zutrittsüberwachung. 9. Use of the device according to one of claims 1 to 6 for door monitoring even in elevators, property protection and alarm systems of all kinds and access control.
PCT/EP2010/000354 2009-04-03 2010-01-21 Device for monitoring a monitoring area for the presence of one or more objects WO2010112098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016146.5 2009-04-03
DE102009016146A DE102009016146A1 (en) 2009-04-03 2009-04-03 Device for monitoring a surveillance area for the presence of one or more objects

Publications (1)

Publication Number Publication Date
WO2010112098A1 true WO2010112098A1 (en) 2010-10-07

Family

ID=42115863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000354 WO2010112098A1 (en) 2009-04-03 2010-01-21 Device for monitoring a monitoring area for the presence of one or more objects

Country Status (2)

Country Link
DE (1) DE102009016146A1 (en)
WO (1) WO2010112098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341608A1 (en) * 2020-04-30 2021-11-04 Denso Wave Incorporated Laser distance measuring device and object detection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054131A1 (en) 2010-12-10 2012-06-14 Rheinmetall Waffe Munition Gmbh Passive self-protection for vehicles, in particular for flying objects, and objects with at least one window
DE102010054130A1 (en) 2010-12-10 2012-06-14 Rheinmetall Waffe Munition Gmbh Protective equipment for security forces

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321990A1 (en) * 1983-06-18 1984-12-20 Nestle & Fischer, 7295 Dornstetten LASER OPTICAL MEASURING SYSTEM
US5589939A (en) * 1993-12-28 1996-12-31 Nikon Corporation Laser surveying system
EP0643283B1 (en) 1993-09-09 1998-06-17 Kabushiki Kaisha Topcon Laser rotary irradiation system with object reflector
EP0689032B1 (en) 1994-06-21 2000-09-27 Kabushiki Kaisha Topcon Surveying system
DE10216405A1 (en) * 2002-04-12 2003-10-30 Fraunhofer Ges Forschung Device for generating a three-dimensional environment image
DE10239940A1 (en) * 2002-08-30 2004-03-25 Sick Ag Light barrier or light grid
CA2376812C (en) 1999-07-07 2005-05-17 3M Innovative Properties Company Rear projection screen using internal reflection and its production
DE102004025325A1 (en) 2004-05-19 2005-12-08 Erich Utsch Ag Retroreflecting sheet for vehicle license plate, has reflection layer sections directly applied to the surface of transparent balls so that balls are part-reflective
DE202005020705U1 (en) 2005-01-27 2006-06-14 SOLITON Laser- und Meßtechnik GmbH Device for measuring or processing of objects with three-dimensional structure has object or reference level, which is provided, on which object that is to be measured or to be processed can be positioned
DE102005002190B4 (en) 2005-01-17 2007-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Scanner and method for operating a scanner
EP1936399A2 (en) * 2006-12-20 2008-06-25 CSL Surveys (Stevenage) limited Profiling device
EP1939650A2 (en) * 2006-12-28 2008-07-02 Hokuyo Automatic Co., Ltd. Optical window contamination detecting device for optical apparatus
DE102006062447A1 (en) 2006-12-28 2008-07-03 Chronos Vision Gmbh Object's i.e. vehicle tire, three-dimensional surface recording method, involves moving light rays projecting on surface of object by prism parallel to its ray axis so that light rays overcoat surface under constant angle of inclination
DE102007006405A1 (en) 2007-02-05 2008-08-07 Imos Gubela Gmbh Reflector with a trapezoidal reflection and method for light fine scanning to detect an object
DE102007009013A1 (en) 2007-02-23 2008-08-28 Osram Gesellschaft mit beschränkter Haftung Reflector has retroreflector and filter unit upstream of retroreflector, which is permeable to light within certain wavelength area and is non-permeable to light of other wavelength area

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565686A (en) * 1993-09-07 1996-10-15 Laser Score, Inc. Method and apparatus for detecting the presence and location of objects in a field via scanned optical beams
DE19652440C2 (en) * 1996-12-17 2000-09-14 Leuze Electronic Gmbh & Co Optoelectronic device
US7502126B2 (en) * 2005-11-18 2009-03-10 Pitney Bowes Inc. Optical position/motion tracking system
DE102006022717A1 (en) * 2006-05-12 2007-11-15 Büromat IT Systeme Zwickau GmbH Device and method for recognizing objects
DE102008053881A1 (en) 2008-10-30 2010-05-12 I.L.E.E. Ag Industrial Laser And Electronic Engineering Reflection barrier with surveying and / or localization function

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321990A1 (en) * 1983-06-18 1984-12-20 Nestle & Fischer, 7295 Dornstetten LASER OPTICAL MEASURING SYSTEM
EP0643283B1 (en) 1993-09-09 1998-06-17 Kabushiki Kaisha Topcon Laser rotary irradiation system with object reflector
DE69411102T2 (en) 1993-09-09 1999-03-25 Kabushiki Kaisha Topcon, Tokio/Tokyo Laser rotation system with an object reflector
US5589939A (en) * 1993-12-28 1996-12-31 Nikon Corporation Laser surveying system
DE69531462T2 (en) 1994-06-21 2004-03-25 Kabushiki Kaisha Topcon surveying system
DE69518953T2 (en) 1994-06-21 2001-04-26 Kabushiki Kaisha Topcon, Tokio/Tokyo Surveying system
EP0875728B1 (en) 1994-06-21 2003-08-06 Kabushiki Kaisha Topcon Surveying system
EP0689032B1 (en) 1994-06-21 2000-09-27 Kabushiki Kaisha Topcon Surveying system
CA2376812C (en) 1999-07-07 2005-05-17 3M Innovative Properties Company Rear projection screen using internal reflection and its production
DE10216405A1 (en) * 2002-04-12 2003-10-30 Fraunhofer Ges Forschung Device for generating a three-dimensional environment image
DE10239940A1 (en) * 2002-08-30 2004-03-25 Sick Ag Light barrier or light grid
DE102004025325A1 (en) 2004-05-19 2005-12-08 Erich Utsch Ag Retroreflecting sheet for vehicle license plate, has reflection layer sections directly applied to the surface of transparent balls so that balls are part-reflective
DE102005002190B4 (en) 2005-01-17 2007-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Scanner and method for operating a scanner
DE202005020705U1 (en) 2005-01-27 2006-06-14 SOLITON Laser- und Meßtechnik GmbH Device for measuring or processing of objects with three-dimensional structure has object or reference level, which is provided, on which object that is to be measured or to be processed can be positioned
EP1936399A2 (en) * 2006-12-20 2008-06-25 CSL Surveys (Stevenage) limited Profiling device
EP1939650A2 (en) * 2006-12-28 2008-07-02 Hokuyo Automatic Co., Ltd. Optical window contamination detecting device for optical apparatus
DE102006062447A1 (en) 2006-12-28 2008-07-03 Chronos Vision Gmbh Object's i.e. vehicle tire, three-dimensional surface recording method, involves moving light rays projecting on surface of object by prism parallel to its ray axis so that light rays overcoat surface under constant angle of inclination
DE102007006405A1 (en) 2007-02-05 2008-08-07 Imos Gubela Gmbh Reflector with a trapezoidal reflection and method for light fine scanning to detect an object
DE102007009013A1 (en) 2007-02-23 2008-08-28 Osram Gesellschaft mit beschränkter Haftung Reflector has retroreflector and filter unit upstream of retroreflector, which is permeable to light within certain wavelength area and is non-permeable to light of other wavelength area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341608A1 (en) * 2020-04-30 2021-11-04 Denso Wave Incorporated Laser distance measuring device and object detection system

Also Published As

Publication number Publication date
DE102009016146A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
EP2237065B1 (en) Optical sensor according to the time-of-flight principle
DE4340756C5 (en) Laser range finding device
EP2237063B1 (en) Optical sensor according to the time-of-flight principle
EP1378763B1 (en) Laser scanning apparatus with function monitoring
DE102008032216A1 (en) Device for detecting the presence of an object in space
DE4219260C2 (en) Photoelectric device with a test object
EP1788467A2 (en) Safety device
EP3012663B1 (en) Security system for securing the surroundings of an object
DE9321155U1 (en) Laser distance determination device
DE4137068A1 (en) Integrated optical multiple distance sensor for object position detection in vehicle - has rows or arrays of position sensitive diodes and LEDs or laser diodes, with transmission and reception lenses
EP3163322B1 (en) Laser scanner and method for testing its functional capability
DE3116253A1 (en) ARRANGEMENT FOR CHECKING DIMENSION ACCURACY AND / OR MEASURING DIMENSIONS ON LARGE OBJECTS
EP3388857B1 (en) Laser scanner and method for testing its functional capability
EP3862780B1 (en) Safety laser scanner and method for front screen monitoring
DE3531615A1 (en) DEVICE FOR DETECTING AND MONITORING CHANGES IN THE POSITION OF SHAFTS
EP0510137B1 (en) Opto-electrical measuring process for determining cross-sectional dimensions especially of elongated objects with reference to at least one straight line at the cross-sectional periphery touching it at at least two points, and device for implementing the process
WO2010112098A1 (en) Device for monitoring a monitoring area for the presence of one or more objects
DE10041182C2 (en) Optoelectronic device
EP2631668B1 (en) Optical system and test procedure for testing the functionality of an optical system
DE202009015194U1 (en) security scanners
EP3623849B1 (en) Optical sensor
DE19707418C2 (en) Optoelectronic device
DE19652441C2 (en) Optoelectronic device
EP3415951B1 (en) Optical sensor
EP2515143A1 (en) Method for securely detecting and positioning objects and safety device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10704897

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10704897

Country of ref document: EP

Kind code of ref document: A1