WO2010111974A1 - Configuration method and apparatus for resource mapping indication information - Google Patents
Configuration method and apparatus for resource mapping indication information Download PDFInfo
- Publication number
- WO2010111974A1 WO2010111974A1 PCT/CN2010/071554 CN2010071554W WO2010111974A1 WO 2010111974 A1 WO2010111974 A1 WO 2010111974A1 CN 2010071554 W CN2010071554 W CN 2010071554W WO 2010111974 A1 WO2010111974 A1 WO 2010111974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bandwidth
- parameter
- bits
- indicate
- frequency partition
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
Definitions
- the present invention relates to the field of communications, and in particular, to a method and a device for configuring resource mapping indication information.
- a base station In a wireless communication system, a base station generally refers to a radio transceiver station capable of transmitting information through a mobile communication switching center and a terminal in a certain radio coverage area.
- the base station can communicate with the terminal through the uplink/downlink, where the downlink refers to the transmission direction of the base station to the terminal, and the uplink refers to the transmission direction of the terminal to the base station.
- a plurality of terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink.
- the transmitted data can be relayed between the base station and the terminal through the relay station.
- scheduling allocation of system radio resources is performed by a base station.
- the downlink resource allocation information used by the base station for downlink transmission and the uplink resource allocation information required for the terminal to perform uplink transmission may be given by the base station.
- Orthogonal Frequency Division Multiplexing OFDM
- OFDMA Orthogonal Frequency Division Multiple Address
- LTE Long Term Evolution
- UMB Ultra Mobile Broadband
- IEEE Institute for Electrical and Electronic Engineers 802.16m
- wireless resources Although it is also divided into frames for management, each OFDMA symbol includes a plurality of mutually orthogonal subcarriers, and the terminal usually occupies part of the subcarriers, thereby enabling partial frequency reuse (FFR).
- FFR partial frequency reuse
- the base station divides the available physical subcarriers into physical resource units (PRUs) in order to obtain the frequency diversity gain and the frequency selective scheduling gain. ), and then map physical resource units It is a Contiguous Resource Unit (CRU) and a Distributed Resource Unit (DRU) to improve transmission performance.
- the subcarriers in the continuous resource unit are continuous, and the resource elements are distributed.
- the subcarriers in the subcarrier are completely discontinuous or incompletely continuous; in addition, as the frequency resources become increasingly scarce, the base station needs to support multiple different bandwidths (for example, 5 MHz, 10 MHz or 20 MHz, and the system bandwidth can be different in some OFDM systems).
- the FFT points sometimes the system bandwidth is also called bandwidth) or multi-carrier operation to take advantage of different frequency resources and meet the needs of different operators.
- bandwidth the resource mapping process of the wireless communication system considering the OFDM or OFDMA technology will be complicated.
- the base station In order to reduce the indication signaling overhead of the resource mapping and optimize the system information management and transmission method, a reasonable resource mapping is needed.
- the base station In order to ensure the efficiency of the wireless communication system, the base station usually maps the physical radio resources into logical radio resources, for example, mapping physical subcarriers into logical resource units, and the base station implements scheduling of radio resources by scheduling logical resource units.
- the radio resource mapping is mainly based on the frame structure and resource structure of the wireless communication system
- the frame structure describes the control structure of the radio resource in the time domain
- the resource structure describes the radio resource in the Control structure in the frequency domain.
- the frame structure divides radio resources into different levels of units in the time domain, such as Superframes, Frames, Subframes, and Symbols, by setting different control channels (for example, broadcasting). Channel, unicast, and multicast channels, etc.) implement scheduling control.
- FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art.
- a radio resource is divided into super frames in a time domain, and each super frame includes 4 frames, and each frame includes 8 subframes.
- Each subframe is composed of 6 basic OFDMA symbols, and the actual system determines how many OFDMA symbols are included in each level unit in the frame structure according to factors such as bandwidth to be supported and/or cyclic prefix length of the OFDMA symbol; Setting a broadcast channel in the first downlink subframe in the superframe (because it is located in the superframe header, also called a superframe header) and transmitting system information such as resource mapping; and the system can also set unicast and / or multicast control channel to send scheduling control information such as resource allocation.
- the resource structure divides the available bandwidth in the frequency domain into multiple frequency partitions (Frequency Partitions, FP for short), and then the frequency.
- FIG. 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art. As shown in FIG. 2, available physical subcarriers of one subframe are divided into three frequency partitions, and each frequency partition is divided into continuous resources and distributed resource units, and continuous resources. The unit is used for frequency selective scheduling, and the distributed resource unit is used for frequency diversity scheduling.
- the resource mapping method generally needs to support 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz system bandwidth (referred to as bandwidth), and 5MHz, 7MHz, 8.75MHz when partial protection subcarriers are used to map PRUs without considering multi-carrier operation.
- bandwidth 5MHz, 7MHz, 8.75MHz
- the number of corresponding PRUs is 24, 48, 48, 48, and 96, and there is a corresponding relationship between the bandwidth and the number of PRUs. Therefore, the indication parameters of resource mapping under different system bandwidths are different.
- a system with a bandwidth of 5 MHz has 24 PRUs per subframe, and when 4 PRUs form a subband, there are up to 6 Subbands, and a 7 MHz, 8.75 MHz, or 10 MHz system has 48 PRUs. There are at most 12 Subbands.
- SAC Subband Allocation Count
- the 5MHz bandwidth system corresponds to the 512-point FFT transform
- the system bandwidth is greater than 5MHZ and less than or equal to 10MHZ
- the 7MHz, 8.75MHz and 10MHz bandwidth systems correspond to a 1024-point FFT transform with a system bandwidth greater than 10 MHz less than or equal to 20 MHz (eg, a 20 MHz bandwidth system) corresponding to a 2048-point FFT transform.
- Some of the bandwidth conditions described below also correspond to their corresponding system FFT points. For example, when referring to a 5 MHz bandwidth system, it can also represent a system using a 512-point FFT.
- the downlink resource mapping process usually includes: Subband Partitioning, Miniband Permutation, Frequency Partitioning, Continuous Resource Unit/ Contigous Resource Unit/Distributed Resource Unit Allocation (CRU/DRU Allocation) and Subcarrier Permutation;
- the uplink resource mapping process includes: Subband division, Miniband Permutation, Frequency Partitioning, contiguous resource unit/distributed resource unit allocation and Tile Permutation concerned
- Fig. 3 is a specific example of physical resource mapping in the case of a 5 MHz bandwidth, including a process of contiguous resource unit/distributed resource unit allocation.
- 4 is a schematic diagram of a subband division process of a wireless communication system according to a 5 MHz bandwidth of the related art
- FIG. 5 is a schematic diagram of a microstrip replacement process of a wireless communication system according to a related art
- FIG. 6 is a schematic diagram of a microstrip replacement process according to the related art. Schematic diagram of frequency partitioning of a wireless communication system with a 5 MHz bandwidth.
- PRUSB refers to the PRU for Subband
- PRU MB refers to the PRU for Miniband
- PPRUMB refers to the PRU through Miniband Permutation
- PRU FPi refers to the PRU that belongs to the i (ii > 0) frequency partition.
- the number of symbols on the time domain may be 5 or 7 due to cyclic prefix, superframe header, transition point, and control channel.
- Subband division that is, extracting a part of PRUs into Subbands in units of one Subband.
- the number of downlink subbands and the number of uplink subbands are respectively indicated by two parameters: Downlink Subband Allocation Count (referred to as DS AC) and Uplink Subband Allocation Count (USAC).
- DS AC Downlink Subband Allocation Count
- USAC Uplink Subband Allocation Count
- the base station uses DSAC to indicate Subband Partitioning, obtains PRU SB (blank portion in the figure), and maps the remaining portion to Miniband, as shown in the figure, PRU MB (the part of the padding in the figure).
- Start band replacement that is, map PRUs that are not mapped to Subband to Miniband.
- the number of downlink Subbands indicated by the DSAC is 3 in the 5 MHz bandwidth, 12 PRUs are mapped to the Miniband. As shown in Figure 5, the 12 PRUs are replaced. This step does not require additional parameter indications, which is done according to DSAC. Similarly, the upstream microstrip replacement is done according to the US AC.
- Frequency partitioning that is, dividing the divided Subband and the replaced Miniband into frequency bins. This step requires two parameters, one for indicating the number, size, and/or proportion of each frequency partition.
- the downlink and uplink are respectively configured by Downlink Frequency Partition Configuration (DFPC) and uplink frequency partition configuration (Uplink).
- Frequency Partition Configuration (UFPC for short) indication another parameter is used to indicate the number of Subbands in the frequency partition other than the first frequency partition (ie, FP.), and the downlink and uplink are respectively allocated by the downlink frequency partition subband ( Downlink Frequency Partition Subband Count (referred to as DFPSC) and Uplink Frequency Partition Subband Count (UFPSC).
- DFPSC Downlink Frequency Partition Subband Count
- UFPSC Uplink Frequency Partition Subband Count
- the size of the frequency partition other than the first frequency partition is equal to the number of subbands included, a certain redundancy reduction can be performed, and some impossible values are removed.
- the other frequency partition size is 0, and the frequency partitions of other frequency partitions are 0.
- the downlink frequency partition is indicated by the Downlink CRU Allocation Size (DC AS), and the uplink frequency partition is indicated by the Uplink CRU Allocation Size (UCAS). If the size of some frequency partitions is 0, you do not need to carry this parameter.
- DC AS Downlink CRU Allocation Size
- UAS Uplink CRU Allocation Size
- the size of some frequency partitions is 0, you do not need to carry this parameter.
- the system bandwidth is 5MHz
- the number of downlink Subbands indicated by DSAC is 3
- the size of the first frequency partition is 24 PRUs
- the size of other frequency partitions is 0,
- the number of CRUs of the first frequency partition is Schematic diagram of 12, where the blank portion on the last column indicates the CRU, the portion of the filled grid It means DRU.
- the DC AS or the UCAS may not be transmitted to further save the overhead.
- Subcarrier permutation or tile permutation that is, subcarrier replacement for PRUs mapped to DRUs in each frequency partition in the downlink subframe, and PRUs for mapping to DRUs in respective frequency partitions in the uplink subframe Perform a Tile replacement.
- CRUs and DRUs described herein refer to resource elements that have not yet passed through step (5).
- the Contiguous Logical Resource Unit (CLRU) and the Distributed Logical Resource Unit (DLRU) can be used without any ambiguity.
- CLRU and DLRU are simply referred to as CRU and DRU.
- FIG. 7 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth, and FIG. 7 shows 10 MHz (also included 7MHz, 8.75MHz)
- FPSi refers to the number of PRUs in the i (i > 0) frequency partitions, where the number of Subbands is 6, and there are 4 frequency partitions, each frequency partition size is For 12 PRUs, the first frequency partition contains 8 CRUs and 4 DRUs, and the other frequency partitions contain 4 CRUs and 8 DRUs.
- FIG. 8 is a schematic diagram of a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art, and FIG. 8 shows a case of a specific mapping in the case of a 20 M bandwidth, where UCAS SB1 refers to an i-th (i > 0) frequency partition.
- UCAS SB1 refers to an i-th (i > 0) frequency partition.
- the number of uplink sub-based CRU allocations, UCAS MB refers to the number of uplink Miniband-based CRU allocations in each frequency partition.
- the resource mapping indication information is sent by the base station to the terminal through the broadcast channel or the superframe, and the terminal determines the resource location of receiving and/or transmitting data according to the resource mapping indication information and the resource allocation information.
- the resource mapping indication information indicates the division and mapping of the frequency resources, and specifically includes the following information: downlink subband allocation number, uplink subband allocation number, downlink frequency partition configuration, uplink frequency partition configuration, downlink frequency partition subband allocation number, uplink The number of frequency partition subband allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of contiguous resource units based on Miniband.
- the present invention has been made in view of the problem that the number of bits required for indicating a resource mapping parameter is increased, the control channel overhead is large, and the system resources are wasted, which is flexible in setting the resource mapping indication parameter in the related art. For this reason, the main object of the present invention is A configuration scheme of resource mapping indication information is provided to solve at least one of the above problems.
- a method for configuring resource mapping indication information includes: indicating at least one parameter of the resource mapping by using a certain number of bits, wherein the number of bits used to indicate the parameter is determined according to the bandwidth, and the parameter is indicated for a plurality of different bandwidths.
- the number of bits required is partially identical or completely different from each other.
- a configuration apparatus for resource mapping indication information includes: an indication module, configured to indicate a parameter of the resource mapping by using a certain number of bits, where the number of bits used to indicate the parameter is determined according to the bandwidth, for a plurality of different bandwidths, The number of bits required to indicate this parameter is partially identical or completely different from each other.
- the number of bits used to indicate the parameter is set for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same or completely different, so that the physical resource mapping indication letter
- the number of bits used can be flexibly changed according to the bandwidth used by the system, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided, and the downlink control is saved without affecting the normal operation of the system. Overhead, which increases the efficiency of the system.
- FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art
- FIG. 2 is a schematic diagram showing a resource structure of a wireless communication system according to the related art
- 3 is a schematic diagram of a resource mapping process of a wireless communication system according to a 5 MHz bandwidth of the related art
- 4 is a schematic diagram of a subband division process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art
- FIG. 5 is a schematic diagram of a microstrip replacement process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art
- FIG. 6 is a schematic diagram of frequency partition division of a wireless communication system in the case of a 5 MHz bandwidth according to the related art
- FIG. 7 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth;
- Figure 8 is a diagram showing a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art
- FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention
- FIG. 10 is a configuration method of resource mapping indication information according to an embodiment of the present invention, using different numbers of bit indication parameters for a 5 MHz system bandwidth.
- FIG. 11 is a schematic diagram of application of signaling USAC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth;
- FIG. 12 is a schematic diagram of application of a signaling DFPC when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
- FIG. 13 is a schematic diagram of application of signaling UFPC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
- FIG. 14 is a schematic diagram of application of signaling DFPSC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
- 15 is a schematic diagram of application of signaling UFPSC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
- 16 is a schematic diagram of application of signaling DCAS SB1 when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
- 17 is a schematic diagram of application of signaling UCAS SB1 when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
- FIG. 18 is a schematic diagram of application of signaling DCAS MB when a resource mapping indication information configuration method according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth;
- 19 is a schematic diagram of application of signaling UCAS MB when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 5 MHz system bandwidth;
- 20 is a structural block diagram of a device for configuring resource mapping indication information according to an embodiment of the present invention
- 21 is a block diagram showing the structure of a first determining module according to an embodiment of the present invention.
- An embodiment of the present invention provides a configuration scheme of resource mapping indication information, where a certain number of bits are used to indicate at least one parameter of a resource mapping, where, for each bandwidth supported by the system, the number of bits used by the parameter is indicated, so that In the small bandwidth case, the number of bits used for parameter indication is less than that of the large bandwidth.
- the number of bits used by the physical resource mapping indication signaling is reduced, and the bandwidth used by the system can be flexibly without affecting the normal operation of the system. The change saves the downlink control overhead.
- an information element (Information Element, IE for short) or a message or a sub-packet that transmits the resource mapping indication information in the broadcast channel or the super-frame header is determined according to the system bandwidth, thereby improving the working efficiency of the system.
- the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and although the logical order is shown in the flowchart, in some In this case, the steps shown or described may be performed in a different order than the ones described herein.
- a method for configuring resource mapping indication information is provided.
- FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps: ⁇
- Step S902 Indicate, by using a certain number of bits, at least one parameter of the resource mapping, where the number of bits used to indicate the parameter is determined according to the bandwidth, and for a plurality of different bandwidths, the number of bits required to indicate the parameter is partially identical to each other or completely different.
- the number of bits used for each bandwidth configuration indication parameter supported by the system is such that the number of indicated indications in different bandwidths is not completely the same, so that the number of bits used by the physical resource mapping indication signaling can be determined according to the system.
- the bandwidth used is flexibly changed, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided.
- determining the number of bits used to indicate the parameter according to the bandwidth comprises: determining a number of FFT points of the system according to the bandwidth, and determining a number of bits used to indicate the parameter according to the number of FFT points.
- the bandwidth can be determined once the FFT point is determined, that is, the bandwidth can be corresponding to the corresponding FFT point, and the FFT point number is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed.
- the utility of this embodiment is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed.
- the resource mapping includes a downlink resource mapping and/or an uplink resource mapping, where the downlink resource mapping includes at least one of the following: subband division, microstrip replacement, frequency partition division, continuous resource unit/distributed resource unit allocation, and subcarrier replacement.
- the uplink resource mapping includes at least one of the following: Subband partitioning, microstrip permutation, frequency partition partitioning, continuous resource unit/distributed resource unit allocation, and
- the values of M, N, and P may be different, or two of them may be the same, and the other is different.
- embodiments of the present invention are not limited to three different bandwidths. If there are more than three different bandwidths, then the number of bits corresponding to the bandwidth is more than three, and the number of these bits may be different, or the number of bits in the part may be the same, and the remaining number of bits is different.
- the value of M is 1 or 2 or 3 or 4. These values belong to the range of values of the number of bits of the commonly used indication parameter, so this embodiment can be applied to most scenes indicating the number of bits of the parameter.
- the first bandwidth comprises: 5MHz (or a bandwidth corresponding to the 512-point FFT system), and the second bandwidth includes one of the following: 7MHz, 8.75MHz, 10MHz (or bandwidth corresponding to the 1024-point FFT system), the third bandwidth Including: 20MHz (or 2048 point FFT system corresponding bandwidth).
- 5MHz or a bandwidth corresponding to the 512-point FFT system
- the second bandwidth includes one of the following: 7MHz, 8.75MHz, 10MHz (or bandwidth corresponding to the 1024-point FFT system), the third bandwidth Including: 20MHz (or 2048 point FFT system corresponding bandwidth).
- the parameter in the resource mapping indication information includes at least one of the following: a downlink subband allocation number, an uplink subband allocation number, a downlink frequency partition configuration, an uplink frequency partition configuration, a downlink frequency partition subband allocation number, and an uplink frequency partition subroutine.
- the number of downlink subband allocations and/or the number of uplink subband allocations refers to: the number of subbands in the subband division, the downlink frequency partition configuration, and/or the uplink frequency partition configuration refers to the number of frequency partitions in the frequency partition division.
- each frequency partition, the downlink frequency partition subband allocation number, and/or the uplink frequency partition subband allocation number refer to the number of subbands in the frequency partition except the frequency partition 0 in the frequency partition, and the downlink continuous Number of resource unit allocations and/or allocation of uplink contiguous resource units
- the number refers to the number of contiguous resource unit allocations in each frequency partition
- the number of downlink contiguous resource units based on Miniband refers to the number of contiguous resource units based on Miniband in downlink frequency partition 0 and the number of contiguous resource units based on Miniband. It refers to the number of contiguous resource units based on Miniband in the uplink frequency partition 0, where the unit of the number is a sub-band or a micro-band or a physical resource unit.
- This embodiment further provides specific content of the number of downlink subband allocations and/or the number of uplink subband allocations, so that this embodiment can be used to indicate parameters having the above contents.
- the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible without affecting the normal operation of the system.
- the downlink control overhead is saved, thereby improving the working efficiency of the system.
- multiple indication signaling values of parameters eg, DSAC, USAC, etc.
- physical indications indicated by the indicated signaling values are shown by a plurality of tables (eg, subbands described below) The specific correspondence of the number). It should be understood that, for each table that appears in the following, the correspondence between the indication value of the parameter indication signal and the physical meaning indicated by the value of the indication signaling may be changed according to actual needs, and is not limited to the one shown in the table. Correspondence.
- the indication signaling uses the binary "0” to represent 0 in the table, the binary “1” to represent 1 in the table, and the 2bit to perform parameters.
- the indication signaling uses the binary "00” to represent 0 in the table, the binary "01” to represent 1 in the table, and the binary "10” to represent 2 in the table.
- the indication signaling uses binary "000” to represent 0 in the table, with binary " 00 ⁇ means 1 in the table, 2 in the table with binary "010", 3 in the table with binary "011", 4 in the table with binary "100", "101” in binary Represents 5 in the table, with the binary "110” for the 6 in the table, the binary "111” for the 7 in the table, and the 4bits for the parameter indication and the optional value of 16 for the indication.
- the system “0010” represents 2 in the table, the binary “001” indicates 3 in the table, the binary “0100” indicates 4 in the table, and the binary “010 ⁇ indicates 5 in the table, with binary "0110".
- FIG. 10 is a schematic diagram of application of signaling DSAC when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 5 MHz system bandwidth, as shown in FIG. 10, when DS AC values are different (That is, when the number of downlink Subbands indicated by the DSAC is different), the downlink Subband Partitioning process is different. It can be seen that when DSAC takes different values, the way the resources are mapped is different.
- the system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example.
- the configuration of DSAC is divided into three types of bandwidth. The first type is 5MHz, and the second type is 10MHz or 7MHz or 8.75. MHz, the third category is 20MHz.
- 1.1 Describes the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 5 ⁇ and the number of bits used by the DSAC is 2 bits.
- Table 1.1 takes ⁇ 0, 1, 2, 3 ⁇ , and other combinations are no longer - enumerated. It should be noted that n non-repeating elements from m different elements form a subset, regardless of the order of the elements, which is called no-recombination of n from m, and the total number of all possible combinations is used.
- the number of bits used to indicate DSAC parameters is 3bits.
- 3bits represents 8 different subband numbers, which can represent all the elements in the set A DSAC . As shown in Table 1.2.
- some of the elements in the set A DSAC may also be represented by 3 bits, and other cases are reserved or used to indicate other conditions, as shown in Table 1.3.
- 5 - 7 means that the parameters in the table are the same as the cases indicated by 5, 6, and 7. They are written together to simplify the table, and the other tables below are the same, and will not be repeated later.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DSAC parameters is 3bits;
- Table 1.4 takes ⁇ 0, 1, 2,3,4,5,6,7 ⁇ , other combinations than Table 1.4 are not listed.
- the number of bits used to indicate DSAC parameters is 4bits. 4bits represents 16 different Subband numbers, these 16 different The number of Subbands is sufficient to represent all elements in the set B DSAC . As shown in Table 1.5.
- some of the elements in the set B DSAC may also be represented by 4 bits, otherwise reserved or used to indicate other conditions, as shown in Table 1.6.
- the number of bits used to indicate the DSAC parameters is 4 bits.
- 4bits represents 16 different Subband numbers.
- Table 1.8 takes ⁇ 0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15 ⁇ , other combinations than Table 1.8 are not listed.
- the number of bits used to indicate the DSAC parameters is 5 bits.
- 5 bits represents 32 different subband numbers, and the number of these 32 different Subbands is sufficient to represent all elements in the set C DSAC . As shown in Table 1.9.
- some of the elements in the set C DSAC may also be represented by 5 bits, otherwise reserved or used to indicate other conditions, as shown in Table 1.10.
- the number of bits used to indicate the DSAC parameters for each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits used to indicate the parameters is identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits used to indicate DSAC parameters is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits; when the system bandwidth is 20MHz , indicating that the number of bits used by the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DSAC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated.
- the number of bits used is 3 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits; or other combinations.
- the corresponding tables may be different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 1.6; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. It is 4bits, but the corresponding table is Table 1.8.
- the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz
- the 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be considered.
- the system bandwidth can be 10MHz (can be 7MHz). Or 8.75MHz) and the system bandwidth is 20MHz
- the same DSAC value and corresponding relationship are used, which makes the device manufacturing simpler, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
- the system bandwidth is 5MHz
- the DSAC is indicated.
- the number of bits used for the parameter is 2 bits.
- the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz
- the number of bits used to indicate this parameter is 4 bits.
- Table 1.1 describes the mapping between the value of DSAC and the number of subbands when the system bandwidth is 5 MHz and the number of bits used by the DSAC is 2 bits. It is not mentioned here.
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating the DSAC needs 2bits, 3bits, 4bits, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., respectively, when the possible value of the DSAC is reduced, the redundant and unnecessary information indications are deleted, and the bit overhead is saved. And to ensure a certain flexibility.
- FIG. 11 is a schematic diagram of a method for configuring a resource mapping indication information according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 5 MHz system bandwidth, as shown in FIG. 11, when the values of USAC are different (ie, When the number of uplink Subbands indicated by USAC is different, the uplink Subband Partitioning process is different. It can be seen that when USAC takes different values, the way the resources are mapped is different.
- the system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example, and the three types of bandwidth are divided into the configuration of USAC.
- the first type is 5MHz
- the second type is 10MHz or 7MHz or 8.75.
- MHz the third category is 20MHz.
- the first type When the system bandwidth is 5MHz, the USAC parameter is similar to the DSAC configuration method in Embodiment 1, and the USAC can be represented by 2 or 3bits.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the USAC parameter is indicated. Similar to the DSAC configuration method in Embodiment 1, the USAC can be represented by 3 or 4 bits, and the third bandwidth: When the system bandwidth is 20 MHz, the USAC parameter is indicated to be similar to the DSAC configuration method in Embodiment 1, and the USAC can be represented by 4 or 5 bits. .
- the corresponding table of the above three cases is similar to the table of the example 1, and only the DSAC can be changed to the USAC. For the detailed method, refer to the embodiment 1, which is not repeated here.
- the number of bits used to indicate the USAC parameter under each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits used to indicate the parameter is mutually The points are the same or completely different. Because the design methods of USAC and DSAC are similar, the corresponding table is similar to the table of Example 1. Just change the DSAC to USAC. For detailed methods, see Example 1, and no longer .
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating the USAC needs 2bits, 3bits, 4bits, respectively, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., respectively, when the possible value of the USAC is reduced, the redundant and unnecessary information indications are deleted, and the bit overhead is saved. And to ensure a certain flexibility.
- DFPC Downstream frequency partition configuration
- the DFPC indicates the size and number of frequency partitions in the downlink subframe.
- 12 is a schematic diagram of application of signaling DFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 12, when the DFPC takes different values, the downlink frequency is shown in FIG. The Partitioning process is different. It can be seen that when DFPC takes different values, the way of resource mapping is different.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
- N PRU is the number of PRUs in one subframe.
- 5MHz, 7MHz, 8.75MHz, 10MHz, and 20MHz correspond to PN PRU, and another 1 J is 24, 48, 48, 48, and 96, but the method does not Subject to jt ⁇ F ⁇ .
- each frequency partition ratio (FP.: FPi : FP 2 : FP 3 ) in the following tables, for the occurrence of N1 : N2: N3 : N4 , where N1 to N4 can represent the actual frequency partition The number can also represent the proportional relationship between the frequency partitions.
- the first type When the system bandwidth is 5MHz, the number of bits used to indicate the DFPC parameter is 2bits. For 5MHz, the set of possible configurations for DFPC is A DFPC :
- 2bits represents 4 different frequency partition numbers and frequency partition sizes.
- Table 3.1 describes the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition.
- FPCT refers to the number of effective frequency partitions, and other combinations are no longer listed.
- the number of bits used to indicate the DFPC parameter is 3 bits.
- 3bits represents 8 different frequency partition numbers and frequency partition sizes.
- Table 3.2 describes the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are no longer listed.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPC parameter is 3bits.
- 3bits represents 8 different frequency partition numbers and frequency partition sizes.
- 3 bits can be used to indicate different frequency partition numbers and frequency partition sizes, but only some of the elements in the set B DFPC are taken, and other conditions are reserved or used to indicate other conditions, as shown in Table 3.6.
- Table 3.6
- the number of bits used to indicate the DFPC parameter is 4bits.
- 4bits represents 16 different frequency partition numbers and frequency partition sizes.
- the third category When the system bandwidth is 20MHz, the number of bits used to indicate the DFPC parameter is
- 3bits represents 8 different frequency partition numbers and frequency partition sizes.
- the number of bits used to indicate the DFPC parameter is 4bits.
- 4bits represents 16 different frequency partition numbers and frequency partition sizes.
- 4 bits can be used to indicate different frequency partition numbers and frequency partition sizes, but only some elements in the set C DFPC are taken, otherwise Reserved or used to indicate other conditions, as shown in Table 3.12.
- the number of bits used to indicate DFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate DFPC parameters is partially identical or completely different. For example, when the system bandwidth is 5MHz, the number of bits used to indicate the DFPC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 3bits; when the system bandwidth is 20MHz Indicates that the number of bits used by this parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits used is 3 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits; or other combinations.
- the corresponding tables may be the same or different.
- the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
- the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 3.8
- the system bandwidth is 20MHz
- the number of bits used by the parameter is indicated. 4bits, but the corresponding table is Table 3.13.
- the 20MHz case is similar. You can consider the characteristics of 10MHz (which can be 7MHz or 8.75MHz) and 20MHz. You can use the same DFPC when the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Values and correspondences make device manufacturing simpler, ie, the same table is used when the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPC parameter is 2 bits; and when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, the number of bits used to indicate the parameter is 4 bits. Table 3.1 above describes the configuration method in the case where the system bandwidth is 5 MHz and the number of bits used by the DFPC is 2 bits, which is not mentioned here.
- each table the relationship between the value of the DFPC and the meaning indicated by the value of the DFPC can be changed, and each table is an embodiment, as long as one table contains
- the values of the DFPC values are the same and are considered to be the same table, all within the scope of protection.
- Table 3.10 and Table 3.14 are both considered to be the same table, because the values of the DFPC contained in the two tables are the same meaning.
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating the DFPC needs 2bits, 3bits, 4bits, respectively, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations, when the possible value of DFPC is reduced, redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
- the UFPC indicates the size and number of frequency partitions in the uplink subframe.
- FIG. 13 is a schematic diagram of a method for configuring a resource mapping indication information according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, and FIG. 13 is a schematic diagram of the UFPC.
- the value of the upstream Frequency Partitioning process is different. It can be seen that when UFPC takes different values, the way of resource mapping is different.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. among them, ! ⁇ is the number of PRUs in a sub-frame.
- 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz correspond to ⁇ N PRU and 1 J is 24, 48, 48, 48 and 96, but this method is not subject to jt ⁇ F ⁇ .
- each frequency partition ratio (FP.: FPi : FP 2 : FP 3 ) in the following tables, for the occurrence of Nl : N2: N3: N4, where N1 to N4 can represent the actual frequency partition The number can also represent the proportional relationship between the frequency partitions.
- the first type When the system bandwidth is 5MHz, the UFPC parameter is similar to the DFPC configuration method in Embodiment 3.
- the UFPC can be represented by 2 or 3 bits.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the UFPC parameter is indicated. Similar to the DFPC configuration method in Embodiment 3, UFPC can be represented by 3 or 4 bits.
- the third type When the system bandwidth is 20 MHz, the UFPC parameter is similar to the DFPC configuration method in Embodiment 3.
- the UFPC can be represented by 3 or 4 bits. .
- the corresponding table of the above three cases is similar to the table of the embodiment 3, except that the 4 bar DFPC is changed to UFPC, and the detailed method can be referred to the embodiment 3, and the description is no longer repeated.
- the number of bits used to indicate UFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate UFPC parameters is partially identical or completely different.
- the UFPC parameter is similar to the DFPC configuration method in Embodiment 3, and the detailed method can be referred to in Embodiment 3, and is not described again here.
- the corresponding tables may be the same or different.
- the corresponding table is similar to the table of Embodiment 3, except that the 4 bar DFPC is changed to UFPC.
- Example 3 For detailed methods, see Example 3, and the jt ⁇ is no longer described.
- the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz
- the 10MHz can be 7MHz or 8.75MHz
- 20MHz features can be considered.
- the system bandwidth can be 10MHz (can be 7MHz). Or 8.75MHz) and the system bandwidth is 20MHz
- the same UFPC value and corresponding relationship are used, which makes the device manufacturing simpler, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Use the same form.
- the system bandwidth is 5MHz, 10MHz (may be 7MHz or 8.75MHz), and in the 20MHz system, the number of bits indicating the UFPC needs 2bits, respectively. 3bits, 4bits, or 2bits, 4bits, 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations, if the possible value of UFPC is reduced, delete Redundant and unnecessary information indication saves bit overhead and guarantees a certain flexibility.
- FIG. 14 is a schematic diagram of application of signaling DPFSC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention.
- DFPSC takes different values.
- the downstream Frequency Partitioning process is different. It can be seen that when DFPSC takes different values, the way of resource mapping is different.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
- the first type When the system bandwidth is 5MHz, the number of bits used to indicate the DFPSC parameters is IbitSo.
- Lbits represents the number of two different Subbands .
- Table 5.1 shows.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPSC parameter is 2bits.
- the number of bits used to indicate the DFPSC parameter is 3bits.
- Table 5.4 shows.
- the third category When the system bandwidth is 20MHz, the number of bits used to indicate the DFPSC parameters is
- 2bits represents the number of 4 different Subbands
- the number of these 4 different Subbands is taken from the set C DFPSC
- a total of C 9 4 126 combinations.
- Table 5.5 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the system bandwidth is 20 MHz and indicates that the number of bits used by DFPSC is 2 bits. Other combinations are not - ⁇ '] Lift
- the number of bits used to indicate the DFPSC parameter is 3 bits.
- Table 5.6 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 3 bits. Other combinations are not-listed.
- the number of bits used to indicate the DFPSC parameters is 4 bits.
- Table 5.7 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits.
- the number of bits used to indicate DFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate DFPSC parameters is partially identical or completely different. Case,
- the number of bits used to indicate the DFPSC parameters is lbits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 2bits; when the system bandwidth is 20MHz, the indication is The number of bits used in this parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPSC parameter is 1 bit; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is used to indicate the The number of bits is 2 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 2 bits; or other combinations.
- the corresponding tables may be the same or different.
- the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
- the number of bits used to indicate the parameter is 3bits, but the corresponding table is Table 5.4
- the system bandwidth is 20MHz
- the number of bits used by the parameter is indicated. It is 3bits, but the corresponding table is Table 5.6.
- the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz
- the number of bits used by the DFPSC is 3bits
- 20MHz can be used.
- UPSC Uplink frequency partition Subband number
- 15 is a schematic diagram of application of signaling UFPSC when a resource mapping indication information is configured in an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, as shown in FIG.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
- the first type when the system bandwidth is 5MHz, the UFPSC parameter is similar to the UFPSC configuration method in Embodiment 5.
- the UFPSC can be represented by 1 or 2 bits.
- the second type UFPSC parameter is indicated when the system bandwidth is 7MHz or 8.75MHz or 10MHz. Similar to the UFPSC configuration method in Embodiment 5, UFSPC can be represented by 2 or 3 bits, and the third type: When the system bandwidth is 20 MHz, the UFPSC parameter is similar to the UFPSC configuration method in Embodiment 5, and 2, 3 or 4 bits can be used. Represents UFSPC.
- the corresponding table of the above three cases is similar to the table of the embodiment 5, but the UFPSC can be changed to UFPSC. For the detailed method, refer to the embodiment 5, which is not repeated here.
- the number of bits used to indicate UFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate UFPSC parameters is partially identical or completely different.
- the UFPSC parameters are similar to the DFPSC configuration method in Embodiment 5. The detailed method can be seen in Embodiment 5, and is not described here.
- the 20 MHz table can be used when 3 bits are required to indicate UFPSC.
- the UFPSC parameters are similar to the DFPSC configuration method in Embodiment 5. For detailed methods, refer to Embodiment 5, which is not repeated here.
- DCASsBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units.
- 16 is a schematic diagram of application of signaling DCAS SB1 when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 16, when DCAS SBi takes different values. The downstream CRU/DRU Allocation process is different. It can be seen that when DCAS SB takes different values, the way of resource mapping is different.
- the following is an example of the system bandwidth of 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz, and divided into three types of bandwidth to explain the DCAS SB configuration, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
- the first type When the system bandwidth is 5MHz, the number of bits used to indicate the DC AS SB1 parameter is
- the number of bits used to indicate the DCAS SBi parameter is 3 bits.
- 3bits represents 8 different numbers and can represent all the values in the set ADCASSB!. As shown in Table 7.2 Shown.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS SBi parameter is 2bits.
- DCAS SBl can be used Any combination, for example, as shown in Table 7.3, other similar, is not listed.
- the number of bits used to indicate the DCAS SBi parameter is 3bits .
- 0 ⁇ 8 8 ! 31 can use any combination, for example, as shown in Table 7.4, other similar, not listed.
- the number of bits used to indicate the DCAS SBi parameter is 4bits .
- 4bits represents 16 different numbers, which can represent all the values in the set B DCASSBl . For example, as shown in Table 7.5.
- the third category When the system bandwidth is 20MHz, the number of bits used to indicate the DCAS SB1 parameter is
- DCAS SBi indicates the possible number of CRUs and I or DRUs in the i-th frequency partition in units of Subband:
- C DCASSBl ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20,21,22,23,24 ⁇
- DCAS SBi can use any combination. For example, Table 7.6, other similar, no longer - enumerated.
- the number of bits used to indicate the DCAS SB1 parameter is 4bits .
- DCAS SBi can use any combination. For example, as shown in Table 7.7, other similar, no longer - enumerated.
- the number of bits used to indicate the DCAS SB1 parameter is 5bits.
- 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in set C. For example, Table 7.8 shows.
- the number of bits used to indicate the DCAS SB1 parameter under each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the DCAS SB1 parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits used to indicate the DCAS SB1 parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits; the system bandwidth is 20MHz.
- the number of bits used to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DCAS SBi parameter is 1 bit; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication is The number of bits used by the parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 3 bits; or other combinations.
- the corresponding tables may be the same or different.
- the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
- the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 7.5
- the system bandwidth is 20MHz
- the number of bits used by the parameter is indicated. It is 4bits, but the corresponding table is Table 7.7.
- the same table means: Since the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered.
- the 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified.
- Bandwidth is 10MHz (can be 7MHz Or 8.75MHz) and the system bandwidth is 20MHz, the same DCAS SBi value and corresponding relationship, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, use the same table, for example , can be used in Table 7.7, or in accordance with the 20MHz configuration method. Or, generate it as follows:
- 5MHz can be used with 2MHz or 3bit for 10MHz (also 7MHz or 8.75MHz).
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating DCAS SBi needs 2bits, 3bits, 3bits , or 2bits, 3bits, respectively.
- UCASsBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units.
- 7 is a schematic diagram of application of signaling UCAS SB1 when a resource mapping indication information is configured according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, as shown in FIG. 17, when UCAS SBi takes different values.
- the uplink CRU/DRU Allocation process is different. It can be seen that when UCAS SB takes different values, the way of resource mapping is different.
- the system bandwidths are 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and are divided into three types of bandwidth to explain the UCAS SB configuration, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
- the first type When the system bandwidth is 5MHz, the UCAS SB1 parameter is similar to the DCAS SB configuration method in Embodiment 7, and the UCAS SB can be represented by 2 or 3 bits.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, The UCAS SBi parameter is similar to the DCAS SB configuration method in Embodiment 7, and UCAS SB can be represented by 2, 3 or 4 bits.
- the third type when the system bandwidth is 20 MHz, the UCAS SBi parameter is indicated and the DCAS SB configuration in Embodiment 7 is specified. The method is similar, and UCAS SB can be represented by 3, 4 or 5 bits.
- the number of bits used to indicate the UCAS SB1 parameter under each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the UCAS SB1 parameter is partially identical or completely different from each other.
- the UCAS SB parameters are similar to the DCAS SB configuration method in Embodiment 7, and the detailed method can be seen in Embodiment 7, and is not described again here.
- the corresponding tables may be the same or different.
- the corresponding table is similar to the table of the embodiment 7, except that the DCAS SB is changed to the UCAS SB .
- the same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered to be unified by 10MHz (can be 7MHz or 8.75MHz) and 20MHz, and the system bandwidth can be The value of the same UCAS SBi is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
- the same table is used, and the corresponding table is similar to the table of the embodiment 7, except that the DCASSB is changed to the UCAS SB . For the detailed method, refer to the embodiment 7, which is not repeated here.
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating the UCAS SBI needs 3bits, 4bits, 5bits, or lbits, 2bits, respectively. 3bits, or 3bits, 4bits, 4bits, or 3bits, 3bits, 4bits, or other combinations respectively.
- the possible value of UCAS SBI is reduced, redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
- DCASMB 4 ⁇ Miniband-based CRU allocation number
- the DCASMB indicates the number of Miniband-based CRUs in the 0th frequency partition in Minbits.
- FIG. 18 is a schematic diagram of an application method of signaling DCASMB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 18, DCAS MB takes different values. The downlink CRU/DRU Allocation process is different. It can be seen that when DCAS MB takes different values, the way of resource mapping is different.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS MB , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz.
- the third category is 20MHz.
- the first type When the system bandwidth is 5MHz, the number of bits used to indicate the DCAS MB parameter is
- the number of bits used to indicate the DCAS MB parameter is 5 bits.
- 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set A DCAS .
- Table 9.4 shows.
- the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS MB parameter is 4bits.
- the number of bits used to indicate the DCAS MB parameter is 6bits. 6bits represents 64 different numbers and can represent all the values in the set B DCASMB . For example, as shown in Table 9.7.
- the third category For 20MHz, the number of bits used to indicate the DCAS MB parameter is 4bits.
- the number of bits used by the DC AS to indicate the parameter is 5 bits.
- 5bits represents 32 different numbers, and these 32 different numbers are taken from the set C DCASMB , a total of C 97 32 combinations.
- DCAS should be able to use any combination. For example, as shown in Table 9.8, other similarities are not listed.
- the number of bits used by the DC AS to indicate the parameter is 7bits. 7bits represents 128 different numbers, which can represent all values in the collection CDCASMB except 0 or 1 or 95 or 96.
- the number of bits used to indicate the DCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the DCAS MB parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5 MHz, the number of bits used to indicate the DC AS MB parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits used to indicate the parameter is 4 bits; the system bandwidth is At 20MHz, the number of bits used to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits used to indicate the DCAS MB parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the indication The number of bits used in this parameter is 4 bits. When the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits, or other combinations.
- the corresponding tables may be the same or different.
- the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
- the number of bits used to indicate the parameter is 5bits, but the corresponding table is Table 9.6
- the system bandwidth is 20MHz
- the number of bits used by the parameter is indicated. It is 5bits, but the corresponding table is Table 9.8.
- the same table means: Since the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered.
- the 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified.
- the bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz
- the same DCAS MB value and corresponding relationship are used, that is, when the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz
- Use the same table for example, you can use one of the tables in 9.8, or generate it according to the configuration method at 20MHz. Or, generate it as follows:
- 10MHz (can be 7MHz or 20MHz FP 0 based on the total PRU
- 5MHz can be used with 10MHz (also 7MHz or 8.75MHz) with 3 bits or 4 bits or 5 bits.
- the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz).
- the number of bits indicating the DCAS MB needs 3bits, 4bits, 4bits, or 3bits, 4bits, respectively. 5bits, or 4bits, 5bits, 6bits, or 5bits, 6bits, 7bits or other combinations respectively, when the possible value of DCAS MB is reduced, the redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
- UCASMB indicates the Miniband-based frequency band in the 0th frequency partition in Miniband
- FIG. 19 is a schematic diagram of application of signaling UCAS MB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention, as shown in FIG. 19, when UCAS MB takes different values.
- the uplink CRU/DRU Allocation process is different. It can be seen that when UCAS MB takes different values, the way of resource mapping is different.
- the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS MB , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz.
- the third category is 20MHz.
- the first class when the system bandwidth is 5MHz, indicating similar DCAS UCAS MB parameters should be configured in the method of Example 9, may be 2, 3, 4 or 5bits represented UCAS MB, the second category: the system bandwidth is 8.75MHz or 7MHz or 10MHz, indicating UCAS MB MB parameters and the DCAS embodiment is similar to the configuration method in Example 9, with 4, 5 or 6bits represented UCAS MB, third category: for 20MHz, DCAS 9 indicates UCAS Example MB parameters should The configuration method is similar, and UCAS MB can be represented by 5 or 6 bits.
- the corresponding table of the above three cases is similar to the table of the embodiment 9, except that the DCAS should be changed to UCAS. For the detailed method, refer to the embodiment 9, which is not repeated here.
- the number of bits used to indicate the UCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the UCAS MB parameters is partially identical or completely different from each other.
- the UCAS parameters are similar to the DCAS configuration method in Embodiment 9. For detailed methods, refer to Embodiment 9, which is not repeated here.
- the corresponding tables may be the same or different.
- the UCAS MB parameter is similar to the DCAS configuration method in Embodiment 9. For the detailed method, refer to Embodiment 9, which is not repeated here.
- the same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered to be unified by 10MHz (can be 7MHz or 8.75MHz) and 20MHz, and the system bandwidth can be When 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the same UCAS MB value and corresponding relationship are used, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
- the UCASMB parameters are similar to the DCAS MB configuration method in Embodiment 9, and the detailed method can be seen in Embodiment 9, which is not repeated here.
- the possible value of UCAS MB is reduced, redundant and unnecessary information indications are deleted. , saves bit overhead and guarantees a certain flexibility.
- FIG. 20 is a structural block diagram of a device for configuring resource mapping knowledge information according to an embodiment of the present invention.
- the device includes: an indication module 202, configured to use a certain number.
- the bit indicates the parameter of the resource mapping, where the indication module 202 includes: a first determining module 204, configured to determine, according to the bandwidth, the parameter used to indicate the parameter Number of bits, for a number of different bandwidths, the number of bits required to indicate the parameter is partially identical or completely different from each other.
- the device allocates the number of bits used for indicating the parameter to each bandwidth supported by the system according to the bandwidth, so that the number of indicated indication bits in different bandwidths is not completely the same, so that the number of bits used by the physical resource mapping indication signaling can be used according to the system.
- the bandwidth is flexibly changed, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided.
- FIG. 21 is a structural block diagram of a first determining module according to an embodiment of the present invention.
- the first determining module 204 includes: a second determining module 212, configured to determine an FFT point number of the system according to a bandwidth; and a third determining module 214 coupled to the second determining
- the module 212 is configured to determine, according to the number of FFT points, the number of bits used to indicate the parameter.
- the bandwidth can be determined once the FFT point is determined, that is, the bandwidth can be corresponding to the corresponding FFT point, and the FFT point number is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed.
- the utility of the device since the bandwidth can be determined once the FFT point is determined, that is, the bandwidth can be corresponding to the corresponding FFT point, and the FFT point number is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed.
- the method for configuring the resource mapping indication information configures the number of bits used by the indicator for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same. Or completely different, the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible, thereby avoiding the problem of large control channel overhead in the related art, without affecting the normal system. Under the premise of operation, the downlink control overhead is saved, thereby improving the working efficiency of the system.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A configuration method and apparatus for resource mapping indication information are disclosed. The method includes that: at least one parameter of the resource mapping is indicated by using a number of bits, wherein the numbers of bits used for indicating the parameter are determined according to bandwidths (S902). The required numbers of bits for indicating the parameter are partly same or totally different with each other for a plurality of different bandwidths. The apparatus includes corresponding module for implementing the method. With the technical scheme of the present invention, by configuring the numbers of bits used for the indication parameter for every bandwidth supported by system, the number of bits used for a physical resource mapping indication signaling can be flexible changed according to the bandwidths used by the system, the number of bits for transmission can be reduced as much as possible, the problem of the large overhead of a control channel in related technology is avoided, the overhead of downlink control is saved on the premise of uninfluenced the normal operation of the system, so the working efficiency of the system can be improved.
Description
资源映射指示信息的配置方法及装置 技术领域 Method and device for configuring resource mapping indication information
本发明涉及通信领域,尤其涉及一种资源映射指示信息的配置方法及装 置。 The present invention relates to the field of communications, and in particular, to a method and a device for configuring resource mapping indication information.
背景技术 Background technique
在无线通信系统中,基站通常是指在一定的无线电覆盖区中能够通过移 动通信交换中心与终端进行信息传递的无线电收发信电台。 在实际应用中, 基站可以通过上 /下行链路与终端进行通信, 其中, 下行链路是指基站到终端 的传输方向, 而上行链路是指终端到基站的传输方向。 多个终端可以通过上 行链路同时向基站发送数据, 也可以通过下行链路同时从基站接收数据。 此 外, 在基站和终端之间可以通过中继站对传输的数据进行中继。 In a wireless communication system, a base station generally refers to a radio transceiver station capable of transmitting information through a mobile communication switching center and a terminal in a certain radio coverage area. In practical applications, the base station can communicate with the terminal through the uplink/downlink, where the downlink refers to the transmission direction of the base station to the terminal, and the uplink refers to the transmission direction of the terminal to the base station. A plurality of terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink. In addition, the transmitted data can be relayed between the base station and the terminal through the relay station.
在釆用基站实现无线资源调度控制的无线通信系统中,系统无线资源的 调度分配由基站完成。 例如, 可以由基站给出该基站进行下行传输时所使用 的下行资源分配信息以及终端进行上行传输时的所需使用的上行资源分配信 息等。 In a wireless communication system in which a base station implements radio resource scheduling control, scheduling allocation of system radio resources is performed by a base station. For example, the downlink resource allocation information used by the base station for downlink transmission and the uplink resource allocation information required for the terminal to perform uplink transmission may be given by the base station.
在基于正交频分复用 ( Orthogonal Frequency Division Multiplexing , 简 称为 OFDM ) 和正交频分多址 ( Orthogonal Frequency Division Multiple Address, 简称为 OFDMA )技术的通信系统中,例如,在长期演进( Long Term Evolution ,简称为 LTE )、超移动宽带( Ultra Mobile Broadband ,简称为 UMB ) 和电气和电子工程帀十办会 ( Institute for Electrical and Electronic Engineers , 简 称为 IEEE ) 802.16m等无线通信系统中, 无线资源虽然也被划分成帧进行 管理, 但每个 OFDMA符号都包含多个相互正交的子载波, 并且终端通常占 用部分子载波, 从而能够釆用部分频率复用 (Fractional Frequency Reuse, 简 称为 FFR ) 等技术来降低千扰, 提高覆盖; 其次, 由于无线信道环境变化频 繁, 基站为了获得频率分集增益和频率选择性调度增益, 将可用物理子载波 划分成物理资源单元(Physical Resource Unit, 简称为 PRU ), 进而将物理资 源单元映射为连续资源单元 ( Contiguous Resource Unit, 简称为 CRU ) 和分 布资源单元(Distributed Resource Unit, 简称为 DRU ), 以提高传输性能, 其 中, 连续资源单元中的子载波均是连续的, 而分布资源单元中的子载波是完 全不连续或不完全连续的; 此外, 随着频率资源日益稀少, 基站需要支持多 种不同带宽 (例如, 5MHz, 10MHz或 20MHz, 在有些 OFDM 系统中由系 统带宽可以对应不同的 FFT点数, 有时系统带宽又称带宽) 或多载波操作, 以利用不同的频率资源并满足不同运营商的需求。
可见, 考虑到 OFDM或 OFDMA技术的无线通信系统的资源映射过程 将会比较复杂, 为了降低其资源映射的指示信令开销, 优化系统信息管理和 传输方法, 需要进行合理的资源映射。 为了保障无线通信系统的效率, 基站 通常将物理的无线资源映射为逻辑的无线资源, 例如, 将物理子载波映射为 逻辑资源单元, 基站通过调度逻辑资源单元实现无线资源的调度。 In a communication system based on Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Address (OFDMA) technologies, for example, in Long Term Evolution (Long Term) Evolution, referred to as LTE), Ultra Mobile Broadband (UMB), and Institute for Electrical and Electronic Engineers (IEEE) 802.16m wireless communication systems, wireless resources Although it is also divided into frames for management, each OFDMA symbol includes a plurality of mutually orthogonal subcarriers, and the terminal usually occupies part of the subcarriers, thereby enabling partial frequency reuse (FFR). The technology is used to reduce the interference and improve the coverage. Secondly, due to the frequent changes of the wireless channel environment, the base station divides the available physical subcarriers into physical resource units (PRUs) in order to obtain the frequency diversity gain and the frequency selective scheduling gain. ), and then map physical resource units It is a Contiguous Resource Unit (CRU) and a Distributed Resource Unit (DRU) to improve transmission performance. The subcarriers in the continuous resource unit are continuous, and the resource elements are distributed. The subcarriers in the subcarrier are completely discontinuous or incompletely continuous; in addition, as the frequency resources become increasingly scarce, the base station needs to support multiple different bandwidths (for example, 5 MHz, 10 MHz or 20 MHz, and the system bandwidth can be different in some OFDM systems). The FFT points, sometimes the system bandwidth is also called bandwidth) or multi-carrier operation to take advantage of different frequency resources and meet the needs of different operators. It can be seen that the resource mapping process of the wireless communication system considering the OFDM or OFDMA technology will be complicated. In order to reduce the indication signaling overhead of the resource mapping and optimize the system information management and transmission method, a reasonable resource mapping is needed. In order to ensure the efficiency of the wireless communication system, the base station usually maps the physical radio resources into logical radio resources, for example, mapping physical subcarriers into logical resource units, and the base station implements scheduling of radio resources by scheduling logical resource units.
具体地, 对于基于 OFDM或 OFDMA的无线通信系统, 其无线资源映 射主要依据该无线通信系统的帧结构和资源结构, 帧结构描述无线资源在时 域上的控制结构, 资源结构描述了无线资源在频域上的控制结构。 帧结构将 无线资源在时域上划分为不同等级的单位,如超帧( Superframe;)、帧( Frame )、 子帧 (Subframe ) 和符号 (Symbol ), 通过设置不同的控制信道 (例如, 广 播信道、 单播和多播信道等) 实现调度控制。 Specifically, for a OFDM or OFDMA-based wireless communication system, the radio resource mapping is mainly based on the frame structure and resource structure of the wireless communication system, the frame structure describes the control structure of the radio resource in the time domain, and the resource structure describes the radio resource in the Control structure in the frequency domain. The frame structure divides radio resources into different levels of units in the time domain, such as Superframes, Frames, Subframes, and Symbols, by setting different control channels (for example, broadcasting). Channel, unicast, and multicast channels, etc.) implement scheduling control.
例如, 图 1 是根据相关技术的无线通信系统的帧结构示意图, 如图 1 所示, 无线资源在时域上划分为超帧, 每个超帧包含 4个帧, 每个帧包含 8 个子帧, 每个子帧由 6个基本的 OFDMA符号组成, 实际系统根据需要支持 的带宽和 /或 OFDMA 符号的循环前缀长度等因素确定帧结构中各个等级单 位中具体包含多少个 OFDMA符号; 此外, 系统可以在超帧中的第一个下行 子帧内设置广播信道 ( 由于位于超帧头部, 也称作超帧头 ( Superframe Header ) ) 并发送资源映射等系统信息; 且系统还可以设置单播和 /或多播性 质的控制信道发送资源分配等调度控制信息。 For example, FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art. As shown in FIG. 1, a radio resource is divided into super frames in a time domain, and each super frame includes 4 frames, and each frame includes 8 subframes. Each subframe is composed of 6 basic OFDMA symbols, and the actual system determines how many OFDMA symbols are included in each level unit in the frame structure according to factors such as bandwidth to be supported and/or cyclic prefix length of the OFDMA symbol; Setting a broadcast channel in the first downlink subframe in the superframe (because it is located in the superframe header, also called a superframe header) and transmitting system information such as resource mapping; and the system can also set unicast and / or multicast control channel to send scheduling control information such as resource allocation.
根据组网技术、 千扰抑制技术和业务类型等因素, 资源结构将频域上可 用的带宽分成多个频率分区 (Frequency Partition, 简称为 FP ), 进而将频率 According to the networking technology, the interference suppression technology, and the service type, the resource structure divides the available bandwidth in the frequency domain into multiple frequency partitions (Frequency Partitions, FP for short), and then the frequency.
2是根据相关技术的无线通信系统的资源结构示意图, 如图 2所示, 一个子 帧的可用物理子载波被分成 3个频率分区, 每个频率分区分为连续资源和分 布资源单元, 连续资源单元用于频率选择性调度, 而分布资源单元用于频率 分集调度。 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art. As shown in FIG. 2, available physical subcarriers of one subframe are divided into three frequency partitions, and each frequency partition is divided into continuous resources and distributed resource units, and continuous resources. The unit is used for frequency selective scheduling, and the distributed resource unit is used for frequency diversity scheduling.
资源映射方法一般需要支持 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz 系统带宽(简称带宽), 而在不考虑多载波操作过程中部分保护子载波用于映 射 PRU的情况时, 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz带宽下, 对 应的 PRU的数目为 24、 48、 48、 48和 96, 带宽和 PRU数存在 对应的 关系。因此,不同的系统带宽下资源映射的指示参数不同。例如,带宽为 5MHz 的系统每个子帧有 24个 PRU, 当 4个 PRU组成一个子带 ( Subband ) 时, 则最多有 6个 Subband, 而 7MHz、 8.75MHz或 10MHz系统有 48个 PRU,
则最多有 12 个 Subband , 对这两种系统就需要对子带分配数 ( Subband Allocation Count, 简称为 SAC )进行不同的设置以节省开销。 需要说明的是, 在某些 OFDM或 OFDMA通讯系统中 (例如啟波接入全球互通 ( Worldwide Interoperability for Microwave Access, 简称为 Wimax ) 16m通讯系统), 带 宽和系统的快速傅立叶变换 ( Fast Fourier Transformation , 简称为 FFT )点数 存在——对应的关系, 即, 只有知道系统的带宽, 就可以确定系统的 FFT点 数, 例如, 5MHz带宽系统对应的是 512点 FFT变换, 系统带宽大于 5MHZ 小于等于 10MHZ (例如, 7MHz、 8.75MHz和 10MHz带宽系统)对应的是 1024点 FFT变换, 系统带宽大于 10MHZ小于等于 20MHZ (例如, 20MHz 带宽系统) 对应的是 2048点 FFT变换。 下文中所述的某种带宽情况也对应 于其相应的系统 FFT点数, 例如, 提到 5MHZ带宽系统时, 也可以代表使用 512点 FFT的系统。 以下才艮据不同的带宽举例说明资源映射的实施方式: 下行资源映射过程通常包括: 子带划分( Subband Partitioning )、 微带置 换 ( Miniband Permutation )、 频率分区划分 ( Frequency Partitioning )、 连续资 源单元 /分布资源单元分 己 ( Contigous Resource Unit/Distributed Resource Unit Allocation , 简称为 CRU/DRU Allocation ) 和子载波置换 ( Subcarrier Permutation ); 上行资源映射过程中包括: 子带划分、 微带置换 ( Miniband Permutation ), 频率分区划分、 连续资源单元 /分布资源单元分配和 Tile置换 ( Tile Permutation )„ Subband由 N1个连续的 PRU组成, 例如 N1 = 4, 啟带 ( Miniband ) 由 N2个连续的 PRU组成, 例 口 N2 = 1。 The resource mapping method generally needs to support 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz system bandwidth (referred to as bandwidth), and 5MHz, 7MHz, 8.75MHz when partial protection subcarriers are used to map PRUs without considering multi-carrier operation. In the 10MHz and 20MHz bandwidths, the number of corresponding PRUs is 24, 48, 48, 48, and 96, and there is a corresponding relationship between the bandwidth and the number of PRUs. Therefore, the indication parameters of resource mapping under different system bandwidths are different. For example, a system with a bandwidth of 5 MHz has 24 PRUs per subframe, and when 4 PRUs form a subband, there are up to 6 Subbands, and a 7 MHz, 8.75 MHz, or 10 MHz system has 48 PRUs. There are at most 12 Subbands. For these two systems, Subband Allocation Count (SAC) needs to be set differently to save overhead. It should be noted that in some OFDM or OFDMA communication systems (for example, Worldwide Interoperability for Microwave Access (Wimax) 16m communication system), bandwidth and system Fast Fourier Transformation (Fast Fourier Transformation, Referred to as FFT) the number of points exists - the corresponding relationship, that is, only know the bandwidth of the system, you can determine the FFT points of the system. For example, the 5MHz bandwidth system corresponds to the 512-point FFT transform, and the system bandwidth is greater than 5MHZ and less than or equal to 10MHZ (for example The 7MHz, 8.75MHz and 10MHz bandwidth systems correspond to a 1024-point FFT transform with a system bandwidth greater than 10 MHz less than or equal to 20 MHz (eg, a 20 MHz bandwidth system) corresponding to a 2048-point FFT transform. Some of the bandwidth conditions described below also correspond to their corresponding system FFT points. For example, when referring to a 5 MHz bandwidth system, it can also represent a system using a 512-point FFT. The following describes the implementation of resource mapping according to different bandwidths: The downlink resource mapping process usually includes: Subband Partitioning, Miniband Permutation, Frequency Partitioning, Continuous Resource Unit/ Contigous Resource Unit/Distributed Resource Unit Allocation (CRU/DRU Allocation) and Subcarrier Permutation; The uplink resource mapping process includes: Subband division, Miniband Permutation, Frequency Partitioning, contiguous resource unit/distributed resource unit allocation and Tile Permutation „ Subband consists of N1 consecutive PRUs, for example, N1 = 4, and Miniband consists of N2 consecutive PRUs, for example, N2 = 1.
图 3是示出 5MHz带宽情况下了物理资源映射的具体实例,其中包括连 续资源单元 /分布资源单元分配的过程。图 4是艮据相关技术的 5MHz带宽情 况下无线通信系统的子带划分过程示意图, 图 5是根据相关技术的 5MHz带 宽情况下无线通信系统的微带置换过程示意图,图 6是根据相关技术的 5MHz 带宽情况下无线通信系统的频率分区划分示意图。 Fig. 3 is a specific example of physical resource mapping in the case of a 5 MHz bandwidth, including a process of contiguous resource unit/distributed resource unit allocation. 4 is a schematic diagram of a subband division process of a wireless communication system according to a 5 MHz bandwidth of the related art, and FIG. 5 is a schematic diagram of a microstrip replacement process of a wireless communication system according to a related art, and FIG. 6 is a schematic diagram of a microstrip replacement process according to the related art. Schematic diagram of frequency partitioning of a wireless communication system with a 5 MHz bandwidth.
如图 3所示, 描述了 5MHz OFDMA 系统的下行子帧资源映射过程。 PRUSB是指用于 Subband的 PRU, PRUMB是指用于 Miniband的 PRU, PPRUMB 是指经过 Miniband Permutation的 PRU, PRUFPi是指属于第 i ( i > 0 )频率分 区的 PRU。 其中, 5MHz系统的 FFT点数为 512, —个子帧内可用数据子载 波为 432个, 共分成 N=24个 PRU, 每个 PRU大小为 18x6, 即频 i或为 18个 载波, 时域为 6个符号, 由于循环前缀、 超帧头、 转换点和控制信道等原因, 时域上的符号数目可能为 5或 7。 As shown in FIG. 3, the downlink subframe resource mapping process of the 5 MHz OFDMA system is described. PRUSB refers to the PRU for Subband, PRU MB refers to the PRU for Miniband, PPRUMB refers to the PRU through Miniband Permutation, and PRU FPi refers to the PRU that belongs to the i (ii > 0) frequency partition. The FFT point number of the 5 MHz system is 512, and the number of available data subcarriers in the sub-frame is 432, which is divided into N=24 PRUs, each PRU size is 18x6, that is, frequency i or 18 carriers, and the time domain is 6 The number of symbols on the time domain may be 5 or 7 due to cyclic prefix, superframe header, transition point, and control channel.
以下以 5MHz带宽为例介绍物理资源映射的各个步 4聚:
( 1 ) 子带划分, 即, 以一个 Subband为单位抽取一部分 PRU映射为 Subband。 下行 Subband的个数和上行 Subband的个数分别由下行子带分配 数(Downlink Subband Allocation Count, 简称为 DS AC )和上行子带分配数 ( Uplink Subband Allocation Count, 简称为 USAC ) 两个参数指示。 以下行 5MHz带宽为例, 当 DSAC指示的下行 Subband的个数为 3时, 12个 PRU 被映射为 3 个 Subband。 如图 4 所示, 基站用 DSAC 来指示 Subband Partitioning,得到 PRUSB (图中的空白部分),将剩余的部分映射为 Miniband, 如图中的 PRUMB (图中的填充方格的部分)。 The following takes the 5MHz bandwidth as an example to introduce the various steps of physical resource mapping: (1) Subband division, that is, extracting a part of PRUs into Subbands in units of one Subband. The number of downlink subbands and the number of uplink subbands are respectively indicated by two parameters: Downlink Subband Allocation Count (referred to as DS AC) and Uplink Subband Allocation Count (USAC). For example, the following 5 MHz bandwidth is used. When the number of downlink Subbands indicated by the DSAC is 3, 12 PRUs are mapped to 3 Subbands. As shown in Figure 4, the base station uses DSAC to indicate Subband Partitioning, obtains PRU SB (blank portion in the figure), and maps the remaining portion to Miniband, as shown in the figure, PRU MB (the part of the padding in the figure).
( 2 ) 啟带置换, 即, 将没有映射为 Subband的 PRU映射为 Miniband。 在 5MHz带宽且 DSAC指示的下行 Subband的个数为 3时,有 12个 PRU映 射为 Miniband, 如图 5所示, 对这 12个 PRU进行置换。 该步骤不需要额外 参数指示, 根据 DSAC完成。 同样地, 上行微带置换根据 US AC完成。 (2) Start band replacement, that is, map PRUs that are not mapped to Subband to Miniband. When the number of downlink Subbands indicated by the DSAC is 3 in the 5 MHz bandwidth, 12 PRUs are mapped to the Miniband. As shown in Figure 5, the 12 PRUs are replaced. This step does not require additional parameter indications, which is done according to DSAC. Similarly, the upstream microstrip replacement is done according to the US AC.
( 3 ) 频率分区划分, 即, 将已划分了的 Subband和置换后的 Miniband 划分到各个频率分区。 该步骤需要两个参数, 一个参数用于指示各个频率分 区个数、 大小和 /或比例, 下行和上行分别通过下行频率分区配置(Downlink Frequency Partition Configuration,简称为 DFPC )和上行频率分区配置( Uplink Frequency Partition Configuration, 简称为 UFPC ) 指示; 另一个参数则用于 指示除第一个频率分区 (即 FP。) 以外的频率分区中 Subband的数目, 下行 和上行分别通过下行频率分区子带分配数 ( Downlink Frequency Partition Subband Count , 简称为 DFPSC ) 和上行频率分区子带分配数 ( Uplink Frequency Partition Subband Count, 简称为 UFPSC ) 指示。 在除第一个频率 分区以外的频率分区的大小和包含的 Subband的数目相等的条件下, 能够进 行一定的冗余删减, 去掉一些不可能的取值。 如图 6所示, 除第一个频率分 区大小为 24个 PRU, 其它频率分区大小为 0, 且其它频率分区 Subband数为 0的频率分区划分情况。 (3) Frequency partitioning, that is, dividing the divided Subband and the replaced Miniband into frequency bins. This step requires two parameters, one for indicating the number, size, and/or proportion of each frequency partition. The downlink and uplink are respectively configured by Downlink Frequency Partition Configuration (DFPC) and uplink frequency partition configuration (Uplink). Frequency Partition Configuration (UFPC for short) indication; another parameter is used to indicate the number of Subbands in the frequency partition other than the first frequency partition (ie, FP.), and the downlink and uplink are respectively allocated by the downlink frequency partition subband ( Downlink Frequency Partition Subband Count (referred to as DFPSC) and Uplink Frequency Partition Subband Count (UFPSC). Under the condition that the size of the frequency partition other than the first frequency partition is equal to the number of subbands included, a certain redundancy reduction can be performed, and some impossible values are removed. As shown in Figure 6, except for the first frequency partition size of 24 PRUs, the other frequency partition size is 0, and the frequency partitions of other frequency partitions are 0.
( 4 )连续资源单元 /分布资源单元分配, 即, 对每个频率分区单独进行 连续资源单元 /分布资源单元分配。下行频率分区通过下行连续资源单元分配 数目 ( Downlink CRU Allocation Size, 简称为 DC AS ) 指示, 上行频率分区 通过上行连续资源单元分配数目( Uplink CRU Allocation Size,简称为 UCAS ) 指示。 如果有些频率分区的大小为 0, 则可以不需要携带该参数。 如图 3所 示, 在系统带宽为 5MHz时, DSAC指示的下行 Subband的个数为 3 , 第一 个频率分区大小为 24个 PRU,其它频率分区大小为 0,第一个频率分区 CRU 数为 12的示意图, 其中最后一列上的空白部分表示 CRU, 填充方格的部分
则表示 DRU。 需要说明的是, 可以通过 1个比特指示是否将 Subband默认作 为 CRU, 而将 Miniband默认作为 DRU, 此时, 可以不发送 DC AS或 UCAS 进一步节省开销。 (4) Continuous resource unit/distributed resource unit allocation, that is, separate resource unit/distributed resource unit allocation is performed separately for each frequency partition. The downlink frequency partition is indicated by the Downlink CRU Allocation Size (DC AS), and the uplink frequency partition is indicated by the Uplink CRU Allocation Size (UCAS). If the size of some frequency partitions is 0, you do not need to carry this parameter. As shown in Figure 3, when the system bandwidth is 5MHz, the number of downlink Subbands indicated by DSAC is 3, the size of the first frequency partition is 24 PRUs, the size of other frequency partitions is 0, and the number of CRUs of the first frequency partition is Schematic diagram of 12, where the blank portion on the last column indicates the CRU, the portion of the filled grid It means DRU. It should be noted that, by using one bit, it is indicated whether the Subband is used as the CRU by default, and the Miniband is used as the DRU by default. In this case, the DC AS or the UCAS may not be transmitted to further save the overhead.
( 5 ) 子载波置换或 Tile置换, 即, 对下行子帧中各个频率分区中用于 映射为 DRU的 PRU进行子载波的置换, 对上行子帧中各个频率分区中用于 映射为 DRU的 PRU进行 Tile置换。 (5) Subcarrier permutation or tile permutation, that is, subcarrier replacement for PRUs mapped to DRUs in each frequency partition in the downlink subframe, and PRUs for mapping to DRUs in respective frequency partitions in the uplink subframe Perform a Tile replacement.
另外, 在这里所述的 CRU和 DRU指的是还没有经过步骤 ( 5 ) 的资源单 元。 而经过第 5步之后的称为连续還辑资源单元 ( Contiguous Logical Resource Unit, 简称为 CLRU )和分布還辑资源单元( Distributed Logical Resource Unit, 简称为 DLRU ), 在不引起歧义的情况下可以将 CLRU和 DLRU简称为 CRU 和 DRU。 Additionally, the CRUs and DRUs described herein refer to resource elements that have not yet passed through step (5). After the fifth step, the Contiguous Logical Resource Unit (CLRU) and the Distributed Logical Resource Unit (DLRU) can be used without any ambiguity. CLRU and DLRU are simply referred to as CRU and DRU.
为了更加清楚地说明其它带宽下资源映射的情况,图 7是根据相关技术 的 10MHz (可以为 7MHz或 8.75MHz )带宽情况下无线通信系统的资源映射 过程示意图, 图 7示出了 10MHz (也包括 7MHz、 8.75MHz ) 带宽时具体的 映射情况, FPSi是指第 i ( i > 0 ) 个频率分区中 PRU的数目, 其中, Subband 数为 6, 并且具有 4个频率分区, 每个频率分区大小为 12个 PRU, 第一个频 率分区包含 8个 CRU和 4个 DRU, 其它频率分区均包含 4个 CRU和 8个 DRU。 In order to more clearly explain the case of resource mapping under other bandwidths, FIG. 7 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth, and FIG. 7 shows 10 MHz (also included 7MHz, 8.75MHz) The specific mapping situation in bandwidth, FPSi refers to the number of PRUs in the i (i > 0) frequency partitions, where the number of Subbands is 6, and there are 4 frequency partitions, each frequency partition size is For 12 PRUs, the first frequency partition contains 8 CRUs and 4 DRUs, and the other frequency partitions contain 4 CRUs and 8 DRUs.
图 8是根据相关技术的 20MHz带宽情况下无线通信系统的资源映射过 程的示意图, 图 8示出了 20M带宽情况下的具体映射的情况, UCASSBl是指 第 i ( i > 0 ) 频率分区中上行基于 Subband的 CRU分配数目, UCASMB是指 各频率分区中上行基于 Miniband的 CRU分配数目。 8 is a schematic diagram of a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art, and FIG. 8 shows a case of a specific mapping in the case of a 20 M bandwidth, where UCAS SB1 refers to an i-th (i > 0) frequency partition. The number of uplink sub-based CRU allocations, UCAS MB refers to the number of uplink Miniband-based CRU allocations in each frequency partition.
通过以上描述可以看出, 在资源映射过程中, 当带宽确定后, 仍然需要 确定其它的一些参数 (例如, 需要确定 Subband数、 频率分区数、 每个频率 分区上的 Subband和 CRU数等)。 As can be seen from the above description, in the resource mapping process, after the bandwidth is determined, other parameters need to be determined (for example, the number of Subbands, the number of frequency partitions, the number of Subbands and CRUs on each frequency partition, etc.) need to be determined.
在通信系统中,资源映射指示信息都由基站通过广播信道或超帧头发送 给终端,终端才艮据资源映射指示信息和资源分配信息确定接收和 /或发送数据 的资源位置。 资源映射指示信息指示了频率资源的划分和映射, 具体可以包 括如下信息: 下行子带分配数、 上行子带分配数、 下行频率分区配置、 上行 频率分区配置、 下行频率分区子带分配数、 上行频率分区子带分配数、 下行 连续资源单元分配的数目 、 上行连续资源单元分配的数目 、 下行基于 Miniband的连续资源单元的数目、 上行基于 Miniband的连续资源单元的数 目。
由于具体的资源映射过程很多, 因此, 上述指示参数的设置具有较强的 灵活性, 但是这同时会导致指示这些参数所需要的比特 (bit )数增加, 进而 增加了在传输这些 bit 时的控制信道开销, 浪费大量信道资源。 针对相关技 术中资源映射参数指示以及传输的信道开销大、 浪费系统资源的问题, 目前 尚未提出有效的解决方案。 In the communication system, the resource mapping indication information is sent by the base station to the terminal through the broadcast channel or the superframe, and the terminal determines the resource location of receiving and/or transmitting data according to the resource mapping indication information and the resource allocation information. The resource mapping indication information indicates the division and mapping of the frequency resources, and specifically includes the following information: downlink subband allocation number, uplink subband allocation number, downlink frequency partition configuration, uplink frequency partition configuration, downlink frequency partition subband allocation number, uplink The number of frequency partition subband allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of contiguous resource units based on Miniband. Since the specific resource mapping process is many, the setting of the above indication parameters has strong flexibility, but at the same time, the number of bits required to indicate these parameters is increased, thereby increasing the control when transmitting these bits. Channel overhead, wasting a lot of channel resources. In view of the problem that the resource mapping parameter indication in the related art and the channel overhead of transmission are large and the system resources are wasted, an effective solution has not been proposed yet.
发明内容 Summary of the invention
针对相关技术中资源映射指示参数的设置灵活存在的指示资源映射参 数所需要的比特数增加以及传输时控制信道开销大、 浪费系统资源的问题而 提出本发明, 为此, 本发明的主要目的在于提供一种资源映射指示信息的配 置方案, 以解决上述问题的至少之一。 The present invention has been made in view of the problem that the number of bits required for indicating a resource mapping parameter is increased, the control channel overhead is large, and the system resources are wasted, which is flexible in setting the resource mapping indication parameter in the related art. For this reason, the main object of the present invention is A configuration scheme of resource mapping indication information is provided to solve at least one of the above problems.
才艮据本发明的一个方面, 提供一种资源映射指示信息的配置方法。 根据本发明的资源映射指示信息的配置方法包括:使用一定数目的比特 指示资源映射的至少一个参数, 其中, 根据带宽确定指示该参数所使用的比 特数, 对于多个不同的带宽, 指示该参数所需的比特数彼此部分相同或完全 不同。 According to an aspect of the present invention, a method for configuring resource mapping indication information is provided. The method for configuring resource mapping indication information according to the present invention includes: indicating at least one parameter of the resource mapping by using a certain number of bits, wherein the number of bits used to indicate the parameter is determined according to the bandwidth, and the parameter is indicated for a plurality of different bandwidths. The number of bits required is partially identical or completely different from each other.
根据本发明的另一个方面, 提供一种资源映射指示信息的配置装置。 根据本发明的资源映射指示信息的配置装置包括: 指示模块, 用于使用 一定数目的比特指示资源映射的参数, 其中, 根据带宽确定指示该参数所使 用的比特数, 对于多个不同的带宽, 指示该参数所需的比特数彼此部分相同 或完全不同。 According to another aspect of the present invention, a configuration apparatus for resource mapping indication information is provided. The device for configuring the resource mapping indication information according to the present invention includes: an indication module, configured to indicate a parameter of the resource mapping by using a certain number of bits, where the number of bits used to indicate the parameter is determined according to the bandwidth, for a plurality of different bandwidths, The number of bits required to indicate this parameter is partially identical or completely different from each other.
借助于本发明的上述技术方案,对于系统支持的每个带宽配置指示参数 所使用的比特数, 并且同一参数在不同带宽下的进行指示的比特数部分相同 或完全不同, 使得物理资源映射指示信令使用的比特数能够根据系统使用的 带宽灵活变化, 尽可能地减少传输的比特数, 避免了相关技术中控制信道开 销大的问题, 在不影响系统正常的运作的前提下, 节约了下行控制开销, 从 而提高了系统的工作效率。 With the above technical solution of the present invention, the number of bits used to indicate the parameter is set for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same or completely different, so that the physical resource mapping indication letter The number of bits used can be flexibly changed according to the bandwidth used by the system, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided, and the downlink control is saved without affecting the normal operation of the system. Overhead, which increases the efficiency of the system.
附图说明 DRAWINGS
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是根据相关技术的无线通信系统的帧结构示意图; The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention. In the drawings: FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art;
图 2是根据相关技术的无线通信系统的资源结构示意图; 2 is a schematic diagram showing a resource structure of a wireless communication system according to the related art;
图 3是才艮据相关技术的 5MHz带宽情况下无线通信系统的资源映射过程 示意图;
图 4是根据相关技术的 5MHz带宽情况下无线通信系统的子带划分过程 示意图; 3 is a schematic diagram of a resource mapping process of a wireless communication system according to a 5 MHz bandwidth of the related art; 4 is a schematic diagram of a subband division process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art;
图 5是根据相关技术的 5MHz带宽情况下无线通信系统的微带置换过程 示意图; 5 is a schematic diagram of a microstrip replacement process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art;
图 6是根据相关技术的 5MHz带宽情况下无线通信系统的频率分区划分 示意图; 6 is a schematic diagram of frequency partition division of a wireless communication system in the case of a 5 MHz bandwidth according to the related art;
图 7是才艮据相关技术的 10MHz (可以为 7MHz或 8.75MHz ) 带宽情况 下无线通信系统的资源映射过程示意图; 7 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth;
图 8是根据相关技术的 20MHz带宽情况下无线通信系统的资源映射过 程的示意图; Figure 8 is a diagram showing a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art;
图 9是 居本发明实施例的资源映射指示信息的配置方法的流程图; 图 10是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 DSAC的应用示意图; 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention; FIG. 10 is a configuration method of resource mapping indication information according to an embodiment of the present invention, using different numbers of bit indication parameters for a 5 MHz system bandwidth. Schematic diagram of the application of time signaling DSAC;
图 11是 居本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 USAC的应用示意图; 11 is a schematic diagram of application of signaling USAC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth;
图 12是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 DFPC的应用示意图; 12 is a schematic diagram of application of a signaling DFPC when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
图 13是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 UFPC的应用示意图; 13 is a schematic diagram of application of signaling UFPC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
图 14是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 DFPSC的应用示意图; 14 is a schematic diagram of application of signaling DFPSC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
图 15是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 UFPSC的应用示意图; 15 is a schematic diagram of application of signaling UFPSC when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
图 16是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 DCASSBl的应用示意图; 16 is a schematic diagram of application of signaling DCAS SB1 when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 10 MHz system bandwidth;
图 17是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 UCASSBl的应用示意图; 17 is a schematic diagram of application of signaling UCAS SB1 when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth;
图 18是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 DCASMB的应用示意图; 18 is a schematic diagram of application of signaling DCAS MB when a resource mapping indication information configuration method according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth;
图 19是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 UCASMB的应用示意图; 19 is a schematic diagram of application of signaling UCAS MB when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 5 MHz system bandwidth;
图 20 是 居本发明实施例的资源映射指示信息的配置装置的结构框 图;
图 21是根据本发明实施例的第一确定模块的结构框图。 20 is a structural block diagram of a device for configuring resource mapping indication information according to an embodiment of the present invention; 21 is a block diagram showing the structure of a first determining module according to an embodiment of the present invention.
具体实施方式 detailed description
本发明实施例提供了一种资源映射指示信息的配置方案,该方案使用一 定数目的比特指示资源映射的至少一个参数, 其中, 对于系统支持的每个带 宽配置指示参数所使用的比特数, 使得小带宽情况进行参数指示时釆用的比 特比大带宽时尽量少, 减小了物理资源映射指示信令使用的比特数, 能够在 不影响系统正常的运作的前提下, 根据系统使用的带宽灵活变化节约下行控 制开销。 即, 在广播信道或超帧头中发送资源映射指示信息的信息元素 ( Information Element, 简称为 IE ) 或者消息或者子包才艮据系统带宽确定, 从而提高系统的工作效率。 An embodiment of the present invention provides a configuration scheme of resource mapping indication information, where a certain number of bits are used to indicate at least one parameter of a resource mapping, where, for each bandwidth supported by the system, the number of bits used by the parameter is indicated, so that In the small bandwidth case, the number of bits used for parameter indication is less than that of the large bandwidth. The number of bits used by the physical resource mapping indication signaling is reduced, and the bandwidth used by the system can be flexibly without affecting the normal operation of the system. The change saves the downlink control overhead. That is, an information element (Information Element, IE for short) or a message or a sub-packet that transmits the resource mapping indication information in the broadcast channel or the super-frame header is determined according to the system bandwidth, thereby improving the working efficiency of the system.
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 It should be noted that the features in the embodiments and the embodiments in the present application may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
在以下实施例中,在附图的流程图示出的步 4聚可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 In the following embodiments, the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and although the logical order is shown in the flowchart, in some In this case, the steps shown or described may be performed in a different order than the ones described herein.
才艮据本发明实施例, 提供了一种资源映射指示信息的配置方法。 According to an embodiment of the present invention, a method for configuring resource mapping indication information is provided.
图 9是 居本发明实施例的资源映射指示信息的配置方法的流程图,如 图 9所示, 该方法包括以下步^^ FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps: ^^
步骤 S902, 使用一定数目的比特指示资源映射的至少一个参数, 其中, 根据带宽确定指示该参数所使用的比特数, 对于多个不同的带宽, 指示所述 参数所需的比特数彼此部分相同或完全不同。 Step S902: Indicate, by using a certain number of bits, at least one parameter of the resource mapping, where the number of bits used to indicate the parameter is determined according to the bandwidth, and for a plurality of different bandwidths, the number of bits required to indicate the parameter is partially identical to each other or completely different.
该实施例根据带宽对于系统支持的每个带宽配置指示参数所使用的比 特数, 使得不同带宽下的进行指示的比特数不完全相同, 进而使得物理资源 映射指示信令使用的比特数能够根据系统使用的带宽灵活变化, 尽可能地减 少传输的比特数, 避免了相关技术中控制信道开销大的问题。 In this embodiment, according to the bandwidth, the number of bits used for each bandwidth configuration indication parameter supported by the system is such that the number of indicated indications in different bandwidths is not completely the same, so that the number of bits used by the physical resource mapping indication signaling can be determined according to the system. The bandwidth used is flexibly changed, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided.
优选地, 根据带宽确定指示参数所使用的比特数包括: 根据带宽确定系 统的 FFT点数, 并根据 FFT点数确定指示参数所使用的比特数。 Preferably, determining the number of bits used to indicate the parameter according to the bandwidth comprises: determining a number of FFT points of the system according to the bandwidth, and determining a number of bits used to indicate the parameter according to the number of FFT points.
由于带宽一旦确定 FFT 点数就可以确定, 即带宽可以——对应相应的 FFT点数, 并且 FFT点数也是一种常用的系统参数, 釆用 FFT点数能够比较 容易地确定指示参数所使用的比特数, 增强了该实施例的实用性。 Since the bandwidth can be determined once the FFT point is determined, that is, the bandwidth can be corresponding to the corresponding FFT point, and the FFT point number is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed. The utility of this embodiment.
优选地, 资源映射包括下行资源映射和 /或上行资源映射, 其中, 下行 资源映射包括以下至少之一: 子带划分、 微带置换、 频率分区划分、 连续资 源单元 /分布资源单元分配和子载波置换; 上行资源映射包括以下至少之一:
子带划分、 微带置换、 频率分区划分、 连续资源单元 /分布资源单元分配和Preferably, the resource mapping includes a downlink resource mapping and/or an uplink resource mapping, where the downlink resource mapping includes at least one of the following: subband division, microstrip replacement, frequency partition division, continuous resource unit/distributed resource unit allocation, and subcarrier replacement. The uplink resource mapping includes at least one of the following: Subband partitioning, microstrip permutation, frequency partition partitioning, continuous resource unit/distributed resource unit allocation, and
Tile置换。 上述内容属于资源映射的常用步骤, 因此, 该实施例可以满足大 多数的资源映射的场景。 Tile replacement. The foregoing content is a common step of resource mapping. Therefore, this embodiment can satisfy most resource mapping scenarios.
优选地, 多个不同的带宽包括第一带宽、 第二带宽和第三带宽, 其中, 对于资源映射指示信息中的一个参数: 对应于第一带宽, 指示该参数所使用 的比特数为 M; 对应于第二带宽, 指示该参数所使用的比特数为 N; 对应于 第三带宽, 指示该参数所使用的比特数为 P, 其中, M、 N、 P的取值包括: N=M+1、 JL P=M+1 ; 或者, N=M+2、 且 P=M+2; 或者, N=M、 JL P=M+1; 或者, N=M、 且 P=M+2; 或者, N=M+1、 且 P=M+2; 或者, N=M+2、 且 P=M+3; 或者 N=M+1、 JL P=M+3 , 其中 M为大于 0的整数。 在该实施例中, M、 N、 P的取值可以都不相同, 也可以其中的两个相同, 另一个不相同。 另 夕卜, 本发明的实施例不限定为 3个不同的带宽。 如果不同的带宽多于 3个, 那么对应带宽的比特数也多于 3个, 这些比特数可以均不相同, 也可以其中 部分的比特数相同, 其余的比特数不相同。 Preferably, the plurality of different bandwidths include a first bandwidth, a second bandwidth, and a third bandwidth, where, for one parameter in the resource mapping indication information: corresponding to the first bandwidth, indicating that the number of bits used by the parameter is M; Corresponding to the second bandwidth, indicating that the number of bits used by the parameter is N; corresponding to the third bandwidth, indicating that the number of bits used by the parameter is P, where the values of M, N, and P include: N=M+ 1. JL P=M+1; or, N=M+2, and P=M+2; or, N=M, JL P=M+1; or, N=M, and P=M+2; Or, N=M+1, and P=M+2; or, N=M+2, and P=M+3; or N=M+1, JL P=M+3, where M is greater than 0 Integer. In this embodiment, the values of M, N, and P may be different, or two of them may be the same, and the other is different. In addition, embodiments of the present invention are not limited to three different bandwidths. If there are more than three different bandwidths, then the number of bits corresponding to the bandwidth is more than three, and the number of these bits may be different, or the number of bits in the part may be the same, and the remaining number of bits is different.
优选地, M的取值为 1或 2或 3或 4。 这些取值属于常用的指示参数的 比特数的取值范围, 因此该实施例能够适用于大多数的指示参数的比特数的 场景中。 Preferably, the value of M is 1 or 2 or 3 or 4. These values belong to the range of values of the number of bits of the commonly used indication parameter, so this embodiment can be applied to most scenes indicating the number of bits of the parameter.
优选地, 第一带宽包括: 5MHz (或称 512点 FFT系统对应的带宽), 第二带宽包括以下之一: 7MHz、 8.75MHz, 10MHz (或称 1024点 FFT系统 对应的带宽)、 第三带宽包括: 20MHz (或称 2048点 FFT系统对应的带宽)。 这些带宽属于常用的带宽范围, 因此该实施例可以满足大多数的带宽应用。 Preferably, the first bandwidth comprises: 5MHz (or a bandwidth corresponding to the 512-point FFT system), and the second bandwidth includes one of the following: 7MHz, 8.75MHz, 10MHz (or bandwidth corresponding to the 1024-point FFT system), the third bandwidth Including: 20MHz (or 2048 point FFT system corresponding bandwidth). These bandwidths are a common bandwidth range, so this embodiment can satisfy most bandwidth applications.
优选地, 资源映射指示信息中的参数包括以下至少之一: 下行子带分配 数、 上行子带分配数、 下行频率分区配置、 上行频率分区配置、 下行频率分 区子带分配数、 上行频率分区子带分配数、 下行连续资源单元分配的数目、 上行连续资源单元分配的数目、 下行基于 Miniband的连续资源单元的数目、 上行基于 Miniband的连续资源单元的数目。 Preferably, the parameter in the resource mapping indication information includes at least one of the following: a downlink subband allocation number, an uplink subband allocation number, a downlink frequency partition configuration, an uplink frequency partition configuration, a downlink frequency partition subband allocation number, and an uplink frequency partition subroutine. The number of allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of contiguous resource units based on Miniband.
这些参数属于常用的参数,因此该实施例可以满足大多数的指示参数的 应用场景。 These parameters are common parameters, so this embodiment can satisfy most of the application scenarios indicating parameters.
优选地, 下行子带分配数和 /或上行子带分配数是指: 子带划分中子带 的数目、下行频率分区配置和 /或上行频率分区配置是指频率分区划分中频率 分区的个数和 /或各个频率分区的大小或比例、 下行频率分区子带分配数和 / 或上行频率分区子带分配数均是指频率分区中除频率分区 0以外的频率分区 中子带的数目、下行连续资源单元分配的数目和 /或上行连续资源单元分配的
数目均是指每个频率分区中连续资源单元分配的数目、 下行基于 Miniband 的连续资源单元的数目是指下行频率分区 0中基于 Miniband的连续资源单元 的数目、上行基于 Miniband的连续资源单元的数目是指上行频率分区 0中基 于 Miniband的连续资源单元的数目, 其中, 数目的单位为子带或微带或物理 资源单元。 Preferably, the number of downlink subband allocations and/or the number of uplink subband allocations refers to: the number of subbands in the subband division, the downlink frequency partition configuration, and/or the uplink frequency partition configuration refers to the number of frequency partitions in the frequency partition division. And/or the size or proportion of each frequency partition, the downlink frequency partition subband allocation number, and/or the uplink frequency partition subband allocation number refer to the number of subbands in the frequency partition except the frequency partition 0 in the frequency partition, and the downlink continuous Number of resource unit allocations and/or allocation of uplink contiguous resource units The number refers to the number of contiguous resource unit allocations in each frequency partition, and the number of downlink contiguous resource units based on Miniband refers to the number of contiguous resource units based on Miniband in downlink frequency partition 0 and the number of contiguous resource units based on Miniband. It refers to the number of contiguous resource units based on Miniband in the uplink frequency partition 0, where the unit of the number is a sub-band or a micro-band or a physical resource unit.
该实施例进一步提供了下行子带分配数和 /或上行子带分配数的具体内 容, 使该实施例可以用于指示具有上述内容的参数。 This embodiment further provides specific content of the number of downlink subband allocations and/or the number of uplink subband allocations, so that this embodiment can be used to indicate parameters having the above contents.
通过本发明实施例提供的技术方案,能够使物理资源映射指示信令使用 的比特数能够根据系统使用的带宽灵活变化, 尽可能地减少传输的比特数, 在不影响系统正常的运作的前提下节约下行控制开销, 从而提高系统的工作 效率。 With the technical solution provided by the embodiment of the present invention, the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible without affecting the normal operation of the system. The downlink control overhead is saved, thereby improving the working efficiency of the system.
下面将结合具体的实例详细描述对应于不同带宽情况下指示同一参数 的比特数的各种实例。 Various examples of the number of bits indicating the same parameter corresponding to different bandwidths will be described in detail below with reference to specific examples.
在下文描述中, 通过多个表格示出了参数 (例如, DSAC、 USAC等) 的多个指示信令取值与指示信令取值所指示的物理含义 (例如, 下文中所述 的子带数) 的具体对应情况。 应当理解, 对于下文中出现的每个表格, 才艮据 实际需要, 参数的指示信令取值与指示信令取值所指示的物理含义的对应关 系可以改变, 并不局限于表格中所示的对应关系。 In the following description, multiple indication signaling values of parameters (eg, DSAC, USAC, etc.) and physical indications indicated by the indicated signaling values are shown by a plurality of tables (eg, subbands described below) The specific correspondence of the number). It should be understood that, for each table that appears in the following, the correspondence between the indication value of the parameter indication signal and the physical meaning indicated by the value of the indication signaling may be changed according to actual needs, and is not limited to the one shown in the table. Correspondence.
在下文所示出的表格中, 具体给出了通过 lbit、 2bits、 3bits、 4bits等多 种方式进行参数指示的情况。 例如, 在釆用 lbit且可选值有两个的情况下, 指示信令用二进制的 "0" 表示表格中的 0, 用二进制的 " 1" 表示表格中的 1; 在釆用 2bit进行参数指示且可选值有 4个的情况下, 指示信令用二进制 的 "00" 表示表格中的 0, 用二进制的 "01" 表示表格中的 1 , 用二进制的 " 10" 表示表格中的 2, 用二进制的 " 11" 表示表格中的 3; 在釆用 3bits进 行参数指示且可选值有 8 个的情况下, 指示信令用二进制的 "000" 表示表 格中的 0, 用二进制的 "00 Γ 表示表格中的 1 , 用二进制的 "010" 表示表 格中的 2, 用二进制的 "011" 表示表格中的 3 , 用二进制的 " 100" 表示表格 中的 4, 用二进制的 " 101" 表示表格中的 5 , 用二进制的 " 110" 表示表格中 的 6, 用二进制的 " 111" 表示表格中的 7; 在釆用 4bits进行参数指示且可选 值有 16个的情况下, 指示信令用二进制的 "0000" 表示表格中的 0, 用二进 制的 "0001" 表示表格中的 1 , 用二进制的 "0010" 表示表格中的 2, 用二 进制的 "001Γ 表示表格中的 3 , 用二进制的 "0100" 表示表格中的 4, 用二 进制的 "010Γ 表示表格中的 5 , 用二进制的 "0110" 表示表格中的 6, 用二
进制的 "0111" 表示表格中的 7, 用二进制的 " 1000" 表示表格中的 8, 用二 进制的 " 1001" 表示表格中的 9, 用二进制的 " 1010" 表示表格中的 10, 用 二进制的 " 1011" 表示表格中的 11 , 用二进制的 " 1100" 表示表格中的 12, 用二进制的 " 1101"表示表格中的 13 , 用二进制的 " 1110"表示表格中的 14, 用二进制的 " 1111" 表示表格中的 15。 In the table shown below, the case where parameter indication is performed by various methods such as lbit, 2bits, 3bits, and 4bits is specifically given. For example, in the case of using lbit and having two optional values, the indication signaling uses the binary "0" to represent 0 in the table, the binary "1" to represent 1 in the table, and the 2bit to perform parameters. In the case where there are 4 indications and optional values, the indication signaling uses the binary "00" to represent 0 in the table, the binary "01" to represent 1 in the table, and the binary "10" to represent 2 in the table. Use binary "11" to indicate 3 in the table; in the case where 3 bits are used for parameter indication and there are 8 optional values, the indication signaling uses binary "000" to represent 0 in the table, with binary " 00 Γ means 1 in the table, 2 in the table with binary "010", 3 in the table with binary "011", 4 in the table with binary "100", "101" in binary Represents 5 in the table, with the binary "110" for the 6 in the table, the binary "111" for the 7 in the table, and the 4bits for the parameter indication and the optional value of 16 for the indication. Let the binary "0000" be used to represent 0 in the table, and the binary "0001" to represent 1 in the table. The system "0010" represents 2 in the table, the binary "001" indicates 3 in the table, the binary "0100" indicates 4 in the table, and the binary "010Γ indicates 5 in the table, with binary "0110". " indicates 6 in the table, with two The binary "0111" represents 7 in the table, the binary "1000" represents the 8 in the table, the binary "1001" represents the 9 in the table, and the binary "1010" represents the 10 in the table, with the binary "1011" represents 11 in the table, with the binary "1100" for the 12 in the table, the binary "1101" for the 13 in the table, and the binary "1110" for the 14 in the table, for the binary"1111" means 15 in the table.
另外, 在某些情况下, 由于有些取值不可能或不常出现, 可以将某些情况 下的表格的某些部分设成保留, 如表 1.9和表 3.13 , 尽管 n比特指示信息可以 指示 2n种组合, 即将保留的位置填上实际取值, 但是某些取值的用处不大, 所 以将一部分取值设成保留。 这种方法对其他的指示信息表格也同样适用。 下行子带分配数的配置方法 In addition, in some cases, because some values are unlikely or infrequent, some parts of the table may be reserved in some cases, as shown in Table 1.9 and Table 3.13, although the n-bit indication may indicate 2 n combinations, the location to be reserved is filled with the actual value, but some values are of little use, so a part of the value is set to be reserved. This method also applies to other forms of instructional information. Configuration method of downlink subband allocation number
实施例 1 Example 1
图 10是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 DSAC的应用示意图,如图 10 所示, DS AC取值不同时 (即, DSAC指示的下行 Subband的个数不同时), 下行 Subband Partitioning过程是不同的。 可见当 DSAC取不同值时, 资源映 射的方式也不同。 FIG. 10 is a schematic diagram of application of signaling DSAC when a resource mapping indication information configuration method according to an embodiment of the present invention uses different numbers of bit indication parameters for a 5 MHz system bandwidth, as shown in FIG. 10, when DS AC values are different (That is, when the number of downlink Subbands indicated by the DSAC is different), the downlink Subband Partitioning process is different. It can be seen that when DSAC takes different values, the way the resources are mapped is different.
下面以系统带宽为 5MHz、 10MHz (也可以为 7MHz 或 8.75MHz )、 20MHz为例,分为三类带宽对 DSAC的配置情况进行说明,第一类为 5MHz, 第二类为 10MHz或 7MHz或 8.75MHz, 第三类为 20MHz。 The system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example. The configuration of DSAC is divided into three types of bandwidth. The first type is 5MHz, and the second type is 10MHz or 7MHz or 8.75. MHz, the third category is 20MHz.
第一类:系统带宽为 5MHz时,指示 DSAC参数所使用的比特数为 2bits; 对于 5MHz, Subband数目的可能取值集合为 ADSAC = {0, 1,2,3,4,5,6}。 1.1描述了系统带宽为 5ΜΗζ ,且指示 DSAC所使用的比特数为 2bits时, DSAC 的取值与 Subband数目的对应关系。 2bits表示 4种不同的 Subband数目, 这 4种不同的 Subband数目取自 5MHz时 Subband数目的可能取值集合 ADSAC , 共 C7 4 = 35种组合。 例如, 表 1.1取了 {0, 1,2,3} , 其它组合不再——列举。 需 要说明, 从 m个不同元素中取 n个不重复的元素组成一个子集, 而不考虑其 元素的顺序, 称为从 m个中取 n个的无重组合, 所有可能的组合的总数用The first type: when the system bandwidth is 5MHz, the number of bits used to indicate the DSAC parameters is 2bits; for 5MHz, the possible value set of the number of Subbands is A DSAC = {0, 1, 2, 3, 4, 5, 6} . 1.1 Describes the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 5ΜΗζ and the number of bits used by the DSAC is 2 bits. 2bits represents the number of four different Subbands. The number of these four different Subbands is taken from the possible value set of the number of Subbands at 5MHz, A DSAC , and a total of C 7 4 = 35 combinations. For example, Table 1.1 takes {0, 1, 2, 3}, and other combinations are no longer - enumerated. It should be noted that n non-repeating elements from m different elements form a subset, regardless of the order of the elements, which is called no-recombination of n from m, and the total number of all possible combinations is used.
Cm"表示。 Cm" indicates.
或者: 系统带宽为 5MHz时, 指示 DSAC参数所使用的比特数为 3bits。
3bits表示 8种不同的 Subband数目,这 8种不同的 Subband数目能够表示集 合 ADSAC中的所有元素。 如表 1.2所示。 Or: When the system bandwidth is 5MHz, the number of bits used to indicate DSAC parameters is 3bits. 3bits represents 8 different subband numbers, which can represent all the elements in the set A DSAC . As shown in Table 1.2.
表 1.2 Table 1.2
有些情况下, 也可以用 3比特表示集合 ADSAC中的部分元素, 其他情况 保留或用作指示其它情况,如表 1.3所示。其中 5 - 7表示表格中的参数为 5、 6、 7表示的情况一样, 写在一起以简化表格, 下文中其他表格也一样, 以后 不再——赘述。 In some cases, some of the elements in the set A DSAC may also be represented by 3 bits, and other cases are reserved or used to indicate other conditions, as shown in Table 1.3. Among them, 5 - 7 means that the parameters in the table are the same as the cases indicated by 5, 6, and 7. They are written together to simplify the table, and the other tables below are the same, and will not be repeated later.
表 1.3 Table 1.3
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DSAC参 数所使用的比特数为 3bits; The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DSAC parameters is 3bits;
对于 7MHz或 8.75MHz或 10MHz, Subband数目的可能取值集合为 BDSAC = {0, 1,2,3,4,5,6,7,8,9, 10, 11, 12}„ 表 1.4 4笛述了系统带宽为 10MHz (也 可以为 7MHz或 8.75MHz ),且指示 DSAC所使用的比特数为 3bits的情况下, DSAC的取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数 目, 这 8种不同的 Subband数目取自 10MHz (也可以为 7MHz或 8.75MHz ) 时 Subband数目的可能取值集合 BDSAC, 共 C13 8 = 1287种组合。 例如, 表 1.4 取了 {0, 1,2,3,4,5,6,7} , 除表 1.4以外的其它组合不再 列举。 For 7MHz or 8.75MHz or 10MHz, the possible set of values for the number of Subbands is BDSAC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} „ Table 1.4 2 flute The relationship between the DSAC value and the number of Subbands in the case where the system bandwidth is 10 MHz (which may be 7 MHz or 8.75 MHz) and indicates that the number of bits used by the DSAC is 3 bits. 3 bits represents 8 different subband numbers. The number of these different subbands is taken from 10MHz (also 7MHz or 8.75MHz). The possible value set of Subband number is B DSAC , and a total of C 13 8 = 1287 combinations. For example, Table 1.4 takes {0, 1, 2,3,4,5,6,7}, other combinations than Table 1.4 are not listed.
表 1.4 Table 1.4
或者: 系统带宽为 10MHz或 7MHz或 8.75MHz时, 指示 DSAC参数 所使用的比特数为 4bits。 4bits表示 16种不同的 Subband数目, 这 16种不同
的 Subband数目足够表示集合 BDSAC中的所有元素。 如表 1.5所示。 Or: When the system bandwidth is 10MHz or 7MHz or 8.75MHz, the number of bits used to indicate DSAC parameters is 4bits. 4bits represents 16 different Subband numbers, these 16 different The number of Subbands is sufficient to represent all elements in the set B DSAC . As shown in Table 1.5.
表 1.5 Table 1.5
有些情况下, 也可以用 4比特表示集合 BDSAC中的部分元素, 其他情况 保留或用作指示其它情况, 如表 1.6所示。 In some cases, some of the elements in the set B DSAC may also be represented by 4 bits, otherwise reserved or used to indicate other conditions, as shown in Table 1.6.
表 1.6 Table 1.6
第三带宽: 系统带宽为 20MHz时, 指示 DSAC参数所使用的比特数为 Third bandwidth: When the system bandwidth is 20MHz, the number of bits used to indicate the DSAC parameters is
3bits。 3bits.
对于 20MHz , Subband数目的可能取值集合为 CDSAC = {0, 1,2,3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20,21,22,23,24}„ 表 1.7 描述了系统带宽为 20MHz , 且指示 DSAC所使用的比特数为 3bits的情况下, DSAC的取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数目, 这 8种不同 的 Subband数目取自 20MHz时 Subband数目的可能取值集合 CDSAC ,共 C25 8 = 1081575种组合, 例如, 表 1.7取了 {0,2,3,4,6,8,9, 12} , 除表 1.7以夕卜的其 它组合不再 列举。 For 20MHz, the possible set of values for the number of Subbands is C DSAC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19, 20, 21, 22, 23, 24} „ Table 1.7 describes the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 20 MHz and the number of bits used by the DSAC is 3 bits. 3bits represents 8 different subband numbers. The 8 different subband numbers are taken from the possible value set of the Subband number C DSAC at 20MHz, and a total of C 25 8 = 1081575 combinations. For example, Table 1.7 takes {0, 2, 3, 4, 6, 8, 9, 12}, except for Table 1.7, other combinations are not listed.
表 1.7 Table 1.7
或者,系统带宽为 20MHz时,指示 DSAC参数所使用的比特数为 4bits。 4bits表示 16种不同的 Subband数目,这 16种不同的 Subband数目取自集合 CDSAC , 共 C25 16 = 2042975 种组合, 例如, 表 1.8 取了 {0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14, 15}, 除表 1.8以外的其它组合不再 列举。 Or, when the system bandwidth is 20 MHz, the number of bits used to indicate the DSAC parameters is 4 bits. 4bits represents 16 different Subband numbers. The 16 different Subband numbers are taken from the aggregate CDSAC, and a total of C 25 16 = 2042975 combinations. For example, Table 1.8 takes {0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15}, other combinations than Table 1.8 are not listed.
表 1.8 Table 1.8
或者,系统带宽为 20MHz时,指示 DSAC参数所使用的比特数为 5bits。 5bits表示 32种不同的 Subband数目,这 32种不同的 Subband数目足够表示 集合 CDSAC中的所有元素。 如表 1.9所示。 Or, when the system bandwidth is 20 MHz, the number of bits used to indicate the DSAC parameters is 5 bits. 5 bits represents 32 different subband numbers, and the number of these 32 different Subbands is sufficient to represent all elements in the set C DSAC . As shown in Table 1.9.
表 1.9 Table 1.9
有些情况下, 也可以用 5比特表示集合 CDSAC中的部分元素, 其他情况 保留或用作指示其它情况, 如表 1.10所示。
表 1. 10 In some cases, some of the elements in the set C DSAC may also be represented by 5 bits, otherwise reserved or used to indicate other conditions, as shown in Table 1.10. Table 1. 10
对于各个带宽下指示 DSAC 参数所使用的比特数可以从上述方法中确 定, 但对于系统支持的多个不同带宽, 指示所述参数所使用的比特数彼此部 分相同或完全不同。 例如, 系统带宽为 5MHz时, 指示 DSAC参数所使用的 比特数为 3bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指 示该参数所使用的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所使 用的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DSAC参数所使用的 比特数为 2bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指 示该参数所使用的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所使 用的比特数为 4bits; 或者其他组合。 The number of bits used to indicate the DSAC parameters for each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits used to indicate the parameters is identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits used to indicate DSAC parameters is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits; when the system bandwidth is 20MHz , indicating that the number of bits used by the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DSAC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits used is 3 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits; or other combinations.
需要说明的是, 在这种方法中, 即使两个不同的带宽使用了相同的比特 数指示 DSAC参数,但对应的表格也可以是不同的。例如,系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特数为 4bits, 但 对应的表格为表 1.6; 系统带宽为 20MHz时, 指示该参数所使用的比特数为 4bits , 但对应的表格为表 1.8。 It should be noted that in this method, even if two different bandwidths use the same number of bits to indicate the DSAC parameters, the corresponding tables may be different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 1.6; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. It is 4bits, but the corresponding table is Table 1.8.
由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 DSAC的取值及对应关系, 从而使得设 备制造更加简单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时釆用相同的表格。例如,系统带宽为 5MHz时,指示 DSAC
参数所使用的比特数为 2bits; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所使用的比特数为 4bits。 Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be considered. The system bandwidth can be 10MHz (can be 7MHz). Or 8.75MHz) and the system bandwidth is 20MHz, the same DSAC value and corresponding relationship are used, which makes the device manufacturing simpler, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Use the same form. For example, when the system bandwidth is 5MHz, the DSAC is indicated. The number of bits used for the parameter is 2 bits. When the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, the number of bits used to indicate this parameter is 4 bits.
表 1.1描述了系统带宽为 5MHz,且指示 DSAC所使用的比特数为 2bits 的情况下, DSAC的取值与 Subband数目的对应关系, 这里不再赞述。 Table 1.1 describes the mapping between the value of DSAC and the number of subbands when the system bandwidth is 5 MHz and the number of bits used by the DSAC is 2 bits. It is not mentioned here.
系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 DSAC所使用的比特数为 4bits的情况下,可以都釆用 20MHz在需要 4bits 指示 DSAC时的表格之一,例如,都是用表 1.8确定 DSAC的取值与 Subband 数目的对应关系。 When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits used by the DSAC is 4bits, you can use 20MHz in one of the tables that require 4bits to indicate DSAC, for example, Table 1.8 is used to determine the correspondence between the value of DSAC and the number of Subbands.
通过上述实例 1 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 DSAC的比特数分别需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合时, 在 DSAC的可能取值减 少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了 一定的灵活性。 Through the above example 1, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating the DSAC needs 2bits, 3bits, 4bits, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., respectively, when the possible value of the DSAC is reduced, the redundant and unnecessary information indications are deleted, and the bit overhead is saved. And to ensure a certain flexibility.
上行子带分配数的配置方法 Configuration method of uplink subband allocation number
实施例 2 Example 2
图 11是 居本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽釆用不同数量的比特指示参数时信令 USAC的应用示意图,如图 11 所示, USAC取值不同时 (即, USAC指示的上行 Subband的个数不同时), 上行 Subband Partitioning过程是不同的。 可见当 USAC取不同值时, 资源映 射的方式也不同。 11 is a schematic diagram of a method for configuring a resource mapping indication information according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 5 MHz system bandwidth, as shown in FIG. 11, when the values of USAC are different (ie, When the number of uplink Subbands indicated by USAC is different, the uplink Subband Partitioning process is different. It can be seen that when USAC takes different values, the way the resources are mapped is different.
下面以系统带宽为 5MHz、 10MHz (也可以为 7MHz 或 8.75MHz )、 20MHz为例,分为三类带宽对 USAC的配置情况进行说明,第一类为 5MHz, 第二类为 10MHz或 7MHz或 8.75MHz, 第三类为 20MHz。 The system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example, and the three types of bandwidth are divided into the configuration of USAC. The first type is 5MHz, and the second type is 10MHz or 7MHz or 8.75. MHz, the third category is 20MHz.
第一类: 系统带宽为 5MHz时,指示 USAC参数与实施例 1中的 DSAC 配置方法类似, 可以用 2或 3bits表示 USAC, 第二类: 系统带宽为 7MHz 或 8.75MHz或 10MHz时,指示 USAC参数与实施例 1中的 DSAC配置方法 类似, 可以用 3或 4bits表示 USAC, 第三带宽: 系统带宽为 20MHz时, 指 示 USAC参数与实施例 1 中的 DSAC配置方法类似, 可以用 4或 5bits表示 USAC。 上述 3种情况相应的表格也和实例 1的表格类似, 只需把 DSAC改 成 USAC即可, 详细方法可以参见实施例 1 , 在此不再——赘述。 The first type: When the system bandwidth is 5MHz, the USAC parameter is similar to the DSAC configuration method in Embodiment 1, and the USAC can be represented by 2 or 3bits. The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the USAC parameter is indicated. Similar to the DSAC configuration method in Embodiment 1, the USAC can be represented by 3 or 4 bits, and the third bandwidth: When the system bandwidth is 20 MHz, the USAC parameter is indicated to be similar to the DSAC configuration method in Embodiment 1, and the USAC can be represented by 4 or 5 bits. . The corresponding table of the above three cases is similar to the table of the example 1, and only the DSAC can be changed to the USAC. For the detailed method, refer to the embodiment 1, which is not repeated here.
对于各个带宽下指示 USAC 参数所使用的比特数可以从上述方法中确 定, 但对于系统支持的多个不同带宽, 指示所述参数所使用的比特数彼此部
分相同或完全不同, 由于 USAC和 DSAC的设计方法相似, 相应的表格也和 实例 1的表格类似, 只需把 DSAC改成 USAC即可, 详细方法可以参见实例 1 , 在此不再——赘述。 The number of bits used to indicate the USAC parameter under each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits used to indicate the parameter is mutually The points are the same or completely different. Because the design methods of USAC and DSAC are similar, the corresponding table is similar to the table of Example 1. Just change the DSAC to USAC. For detailed methods, see Example 1, and no longer .
由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 由于 USAC和 DSAC的设计方法相似, 相应的表格也 和实例 1的表格类似, 只需把 DSAC改成 USAC即可, 详细方法可以参见实 例 1 , 在此不再——赞述。 Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the 10MHz (which can be 7MHz or 8.75MHz) and 20MHz features can be considered. Because the design methods of USAC and DSAC are similar, corresponding The table is similar to the table in Example 1. Just change the DSAC to USAC. For detailed methods, see Example 1, and no longer - praise.
通过上述实例 2 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 USAC的比特数分别需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 5bits等组合时, 在 USAC的可能取值减 少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了 一定的灵活性。 Through the above example 2, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating the USAC needs 2bits, 3bits, 4bits, respectively, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., respectively, when the possible value of the USAC is reduced, the redundant and unnecessary information indications are deleted, and the bit overhead is saved. And to ensure a certain flexibility.
下行频率分区配置 (DFPC)的配置方法 Downstream frequency partition configuration (DFPC) configuration method
实施例 3 Example 3
DFPC指示了下行子帧中的频率分区的大小和数目。 图 12是根据本发 明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数 量的比特指示参数时信令 DFPC的应用示意图, 如图 12所示, DFPC取不同 值时, 下行 Frequency Partitioning过程是不同的。 可见当 DFPC取不同值时, 资源映射的方式也不同。 The DFPC indicates the size and number of frequency partitions in the downlink subframe. 12 is a schematic diagram of application of signaling DFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 12, when the DFPC takes different values, the downlink frequency is shown in FIG. The Partitioning process is different. It can be seen that when DFPC takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DFPC的配置情况进行说明, 第一类为 5MHz , 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 其中, NPRU是一个子 帧上的 PRU数, 一般情况下, 5MHz、 7MHz、 8.75MHz 、 10MHz和 20MHz 对应 ό NPRU分另1 J为 24、 48、 48、 48和 96 , 但本方法不受 jt匕 F艮 。 并且, 在 下述各表格中的各频率分区比例 (FP。: FPi : FP2: FP3 ) 表达式中, 对于出 现的 Nl : N2: N3 : N4 , 其中, N1至 N4可以表示频率分区的实际个数, 也 可以表示各频率分区之间的比例关系。 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. Wherein, N PRU is the number of PRUs in one subframe. In general, 5MHz, 7MHz, 8.75MHz, 10MHz, and 20MHz correspond to PN PRU, and another 1 J is 24, 48, 48, 48, and 96, but the method does not Subject to jt匕F艮. And, in the expression of each frequency partition ratio (FP.: FPi : FP 2 : FP 3 ) in the following tables, for the occurrence of N1 : N2: N3 : N4 , where N1 to N4 can represent the actual frequency partition The number can also represent the proportional relationship between the frequency partitions.
第一类:系统带宽为 5MHz时,指示 DFPC参数所使用的比特数为 2bits。 对于 5MHz, DFPC的可能配置的集合为 ADFPC: The first type: When the system bandwidth is 5MHz, the number of bits used to indicate the DFPC parameter is 2bits. For 5MHz, the set of possible configurations for DFPC is A DFPC :
{ ( 1个频率分区, 频率分区的大小为 NPRU ), ( 3个频率分区, 每个频率分区 的大小为 NPRU* l/3 ), ( 4个频率分区,且FPS。 = NpRU*3/24 , FPS1 = FPS2 = FPS3
= NPRU*7/24 ), ( 4个频率分区, 且 FPSo = Νρκυ*6/24, FPSi = FPS2 = FPS3 ={ (1 frequency partition, frequency partition size is N PRU ), (3 frequency partitions, each frequency partition size is N PRU * l/3 ), (4 frequency partitions, and FPS. = Np RU * 3/24 , FPS 1 = FPS 2 = FPS 3 = NPRU*7/24 ), (4 frequency partitions, and FPSo = Νρκυ*6/24, FPSi = FPS 2 = FPS 3 =
NPRU*1/4 ), ( 4 个频率分区, 且 FPS0 = = NPRU*9/24, FPSi = FPS2 = FPS3 =NPRU*1/4), (4 frequency partitions, and FPS 0 = = NPRU*9/24, FPSi = FPS 2 = FPS 3 =
NPRU*5/24 ), (4 个频率分区, 且 FPSo = NPRU*l/2, FPSi = FPS2 = FPS3 =NPRU*5/24), (4 frequency partitions, and FPSo = N PRU *l/2, FPSi = FPS 2 = FPS 3 =
NPRU*1/6 ), ( 4 个频率分区, 且 FPS0 = NPRU* 15/24, FPSi = FPS2 = FPS3 =NPRU*1/6), (4 frequency partitions, and FPS 0 = NPRU* 15/24, FPSi = FPS 2 = FPS 3 =
NPRU*1/8 ), ( 4 个频率分区, 且 FPS。 = NPRU* 18/24, FPSi = FPS2 = FPS3 =NPRU*1/8), (4 frequency partitions, and FPS. = NPRU* 18/24, FPSi = FPS 2 = FPS 3 =
NPRU*1/12 ), (4 个频率分区, 且 FPS0 = NPRU*21/24, FPSi = FPS2 = FPS3 =NPRU*1/12), (4 frequency partitions, and FPS 0 = NPRU*21/24, FPSi = FPS 2 = FPS 3 =
NPRU*l/24 ) }。 N PRU *l/24 ) }.
2bits表示 4种不同的频率分区数目和频率分区大小, 这 4种不同的频 率分区数目和频率分区大小取自集合 ADFPC, 共 C9 4 = 126种组合。 例如, 表 3.1描述了 DFPC的取值与频率分区数目和频率分区大小的对应关系, 其中, FPCT是指有效频率分区数, 其它组合不再——列举。 2bits represents 4 different frequency partition numbers and frequency partition sizes. The 4 different frequency partition numbers and frequency partition sizes are taken from the set A DFPC , and a total of C 9 4 = 126 combinations. For example, Table 3.1 describes the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. FPCT refers to the number of effective frequency partitions, and other combinations are no longer listed.
表 3.1 Form 3.1
或者, 系统带宽为 5MHz时, 指示 DFPC参数所使用的比特数为 3bits。 3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频率分区 数目和频率分区大小取自 ADFPC,共 C9 8 = 9种组合。例如,表 3.2描述了 DFPC 的取值与频率分区数目和频率分区大小的对应关系,其它组合不再——列举。 Or, when the system bandwidth is 5MHz, the number of bits used to indicate the DFPC parameter is 3 bits. 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from A DFPC with a total of C 9 8 = 9 combinations. For example, Table 3.2 describes the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are no longer listed.
表 3.2 Table 3.2
或者, 尽管 3bits能够表示 8种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 ADFPC, 选出经常使 用的频率分区大小来表示, 比 口, 5种、 6种或 7种, 共 C9 5 = 126种组合、 C9 6 = 84种组合、 C9 7 = 36种组合。 例如, 表 3.3所示, 其它组合不再——列 举。 Or, although 3bits can represent 8 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from A DFPC to indicate the ratio. 5, 6 or 7 combinations, total C 9 5 = 126 combinations, C 9 6 = 84 combinations, C 9 7 = 36 combinations. For example, as shown in Table 3.3, other combinations are no longer listed.
表 3.3 Table 3.3
有些情况下, 可以加入集合 ADFPC以外其他的频率分区配置, 其他情况 保留或用作指示其它情况, 如表 3.4所示: In some cases, you can join other frequency partition configurations other than the set A DFPC , and other conditions are reserved or used to indicate other conditions, as shown in Table 3.4:
表 3.4 Table 3.4
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DFPC参数 所使用的比特数为 3bits。 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPC parameter is 3bits.
DFPC的可能配置的集合为 BDFPC = The set of possible configurations for DFPC is B DFPC =
{ ( 1 个频率分区, 频率分区的大小为 NPRU ), ( 3 个频率分区, 且每个
频率分区的大小为 NPRU*l/3 ), (4 个频率分区, 且 FPS。 = NPRU*3/48, FPSi = FPS2 = FPS3 = NPRU*5/16 ), (4 个频率分区, 且 FPS0 = NPRU*6/48, FPSi ={ (1 frequency partition, frequency partition size is N PRU ), (3 frequency partitions, and each The size of the frequency partition is N PRU *l/3 ), (4 frequency partitions, and FPS. = N PRU *3/48, FPSi = FPS 2 = FPS 3 = NPRU*5/16), (4 frequency partitions) , and FPS 0 = N PRU *6/48, FPSi =
FPS2 = FPS3 = NPRU*7/24 ), ( 4个频率分区, 且 FPS0 = NPRU*9/48, FPSi = FPS2 = FPS3 = NPRU* 13/48 ), (4 个频率分区, 且 FPS0 = NPRU* 12/48, FPSi = FPS2 = FPS3 = NPRU*l/4 ), (4 个频率分区, 且 FPSo = NPRU*15/48, FPSi = FPS2 =FPS 2 = FPS 3 = NPRU*7/24 ), (4 frequency partitions, and FPS 0 = N PRU *9/48, FPSi = FPS 2 = FPS 3 = N PRU * 13/48 ), (4 frequencies Partition, and FPS 0 = N PRU * 12/48, FPSi = FPS 2 = FPS 3 = N PRU *l/4 ), (4 frequency partitions, and FPSo = N PRU *15/48, FPSi = FPS 2 =
FPS3 = NPRU* 11/48 ), (4 个频率分区, 且 FPS0 = NPRU* 18/48, FPSi = FPS2 =FPS 3 = N PRU * 11/48 ), (4 frequency partitions, and FPS 0 = N PRU * 18/48, FPSi = FPS 2 =
FPS3 = NPRU*5/24 ), ( 4个频率分区,且 FPS。 = NPRU*21/48, FPSi = FPS2 = FPS3 = NPRU*3/16 ), ( 4 个频率分区, JL FPSo = NPRU*24/48, FPSi = FPS2 = FPS3 FPS 3 = NPRU*5/24 ), (4 frequency partitions, and FPS. = N PRU *21/48, FPSi = FPS 2 = FPS 3 = NPRU*3/16), (4 frequency partitions, JL FPSo = NPRU*24/48, FPSi = FPS 2 = FPS 3
= NPRU*l/6 ), (4 个频率分区, 且 FPSo = NPRU*27/48, FPSi = FPS2 = FPS3 == N PRU *l/6 ), (4 frequency partitions, and FPSo = NPRU*27/48, FPSi = FPS 2 = FPS 3 =
NPRU*7/48 ), (4 个频率分区, 且 FPSo = NPRU*30/48, FPSi = FPS2 = FPS3 =NPRU*7/48), (4 frequency partitions, and FPSo = NPRU*30/48, FPSi = FPS 2 = FPS 3 =
NPRU*l/8 ), ( 4 个频率分区, 且 FPS0 = = NPRU*33/48, FPSi = FPS2 = FPS3 =N PRU *l/8 ), ( 4 frequency partitions, and FPS 0 = = NPRU*33/48, FPSi = FPS 2 = FPS 3 =
NPRU*5/48 ), (4 个频率分区, 且 FPSo = NPRU*36/48, FPSi = FPS2 = FPS3 =NPRU*5/48), (4 frequency partitions, and FPSo = NPRU*36/48, FPSi = FPS 2 = FPS 3 =
NPRU*1/12 ), (4 个频率分区, 且 FPSo = NPRU*39/48, FPSi = FPS2 = FPS3 =NPRU*1/12), (4 frequency partitions, and FPSo = NPRU*39/48, FPSi = FPS 2 = FPS 3 =
NPRU*1/16 ), (4 个频率分区, 且 FPSo = NPRU*42/48, FPSi = FPS2 = FPS3 =NPRU*1/16), (4 frequency partitions, and FPSo = N PRU *42/48, FPSi = FPS 2 = FPS 3 =
NPRU*1/24 ) , (4 个频率分区, 且 FPSo = Νρκυ*45/48, FPSi = FPS2 = FPS3 =NPRU*1/24), (4 frequency partitions, and FPSo = Νρκυ*45/48, FPSi = FPS 2 = FPS 3 =
NPRU*l/48 ) }。 N PRU *l/48 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 BDFPC, 共 C17 8 = 24310种组合。 例如, 表 3.5所示, 其它不再——列举。 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set B DFPC , and a total of C 17 8 = 24310 combinations. For example, as shown in Table 3.5, others are no longer - enumerated.
表 3.5 Table 3.5
有些情况下, 可以用 3bit表示不同的频率分区数目和频率分区大小,但 只取集合 BDFPC中的部分元素, 其他情况保留或用作指示其它情况, 如表 3.6 所示。
表 3.6
In some cases, 3 bits can be used to indicate different frequency partition numbers and frequency partition sizes, but only some of the elements in the set B DFPC are taken, and other conditions are reserved or used to indicate other conditions, as shown in Table 3.6. Table 3.6
有些情况下, 可以加入集合 BDFPC以外其他的频率分区配置, 如表 3.7 所示: In some cases, you can join other frequency partition configurations other than the set B DFPC , as shown in Table 3.7:
表 3.7 Table 3.7
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DFPC参数所 使用的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分区数目和频率分区大小取自集合 BDFPC , 共 C17 16 = 17 种组合。 例如, 如表 3.8所示。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set B DFPC , and a total of C 17 16 = 17 combinations. For example, as shown in Table 3.8.
表 3.8 Table 3.8
2 3: 15: 15: 15 4 NPRU * 3/48 NPRU * 15/482 3: 15: 15: 15 4 NPRU * 3/48 NPRU * 15/48
3 6: 14: 14: 14 4 NPRU * 6/48 NPRU * 14/483 6: 14: 14: 14 4 NPRU * 6/48 NPRU * 14/48
4 9: 13: 13: 13 4 NPRU * 9/48 NPRU * 13/484 9: 13: 13: 13 4 NPRU * 9/48 NPRU * 13/48
5 12: 12: 12: 12 4 NPRU * 12/48 NPRU * 12/485 12: 12: 12: 12 4 NPRU * 12/48 NPRU * 12/48
6 15: 11: 11: 11 4 NPRU * 15/48 NPRU * 11/486 15: 11: 11: 11 4 NPRU * 15/48 NPRU * 11/48
7 18: 10: 10: 10 4 NPRU * 18/48 NPRU * 10/487 18: 10: 10: 10 4 NPRU * 18/48 NPRU * 10/48
8 21: 9: 9: 9 4 NPRU * 21/48 NPRU * 9/488 21: 9: 9: 9 4 NPRU * 21/48 NPRU * 9/48
9 24: 8: 8: 8 4 NPRU * 24/48 NPRU * 8/489 24: 8: 8: 8 4 NPRU * 24/48 NPRU * 8/48
10 27: 7: 7: 7 4 NPRU * 27/48 NPRU * 7/4810 27: 7: 7: 7 4 NPRU * 27/48 NPRU * 7/48
11 30: 6: 6: 6 4 NPRU * 30/48 NPRU * 6/4811 30: 6: 6: 6 4 NPRU * 30/48 NPRU * 6/48
12 33: 5: 5: 5 4 NPRU * 33/48 NPRU * 5/4812 33: 5: 5: 5 4 NPRU * 33/48 NPRU * 5/48
13 36: 4: 4: 4 4 NPRU * 36/48 NPRU * 4/4813 36: 4: 4: 4 4 NPRU * 36/48 NPRU * 4/48
14 39: 3: 3: 3 4 NPRU * 39/48 NPRU * 3/4814 39: 3: 3: 3 4 NPRU * 39/48 NPRU * 3/48
15 42: 2: 2: 2 4 NPRU * 42/48 NPRU * 2/48 或者, 尽管 4bits能够表示 16种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 BDFPC选出经常使用 的频率分区大小来表示, 比如, 12种、 13种、 14种或 15种, 共 17 12 = 6188 种组合、 C17 13 = 2380种组合、 C17 14 = 680种组合、 C17 15 = 136种组合。 例如, 表 3.9所示, 其它组合不再——列举。 15 42: 2: 2: 2 4 NPRU * 42/48 NPRU * 2/48 Or, although 4bits can represent 16 different frequency partition numbers and frequency partition sizes, some frequency partition sizes are basically not used, so The frequency partition size that is frequently used can be selected from B DFPC to represent, for example, 12, 13, 14 or 15 types, a total of 17 12 = 6188 combinations, C 17 13 = 2380 combinations, C 17 14 = 680 Combination, C 17 15 = 136 combinations. For example, as shown in Table 3.9, other combinations are no longer listed.
表 3.9 Table 3.9
11 33: 5: 5: 5 4 NPRU * 33/48 NPRU * 5/4811 33: 5: 5: 5 4 NPRU * 33/48 NPRU * 5/48
12 36: 4: 4: 4 4 NPRU * 36/48 NPRU * 4/4812 36: 4: 4: 4 4 NPRU * 36/48 NPRU * 4/48
13-15 保留 保留 保留 保留 13-15 reservations reservations reservations reservations
第三类: 系统带宽为 20MHz 时, 指示 DFPC 参数所使用的比特数为 The third category: When the system bandwidth is 20MHz, the number of bits used to indicate the DFPC parameter is
3bits。 3bits.
DFPC的可能配置的集合为 CDFPC = The set of possible configurations for DFPC is C DFPC =
{ ( 1个频率分区, 频率分区的大小为 NPRU ), (3个频率分区, 且每个频率分 区的大 J、为 NPRU*l/3), (4 个频率分区, 且 FPSo = NPRU*3/96, FPSi = FPS{ (1 frequency partition, frequency partition size is N PRU ), (3 frequency partitions, and large J for each frequency partition, N PRU *l/3), (4 frequency partitions, and FPSo = NPRU *3/96, FPSi = FPS
= FPS3 = NPRU*31/96 ), (4 个频率分区, 且 FPSo = NPRU*6/96, FPSi = FPS= FPS 3 = NPRU*31/96 ), (4 frequency partitions, and FPSo = N PRU *6/96, FPSi = FPS
= FPS3 = NPRU*30/96 ), ( 4 个频率分区, 且 FPSo = Νρκυ*9/96, FPSi = FPS= FPS 3 = NPRU*30/96 ), ( 4 frequency partitions, and FPSo = Νρκυ*9/96, FPSi = FPS
= FPS3 = NPRU*29/96 ), (4 个频率分区, 且 FPS0 = NPRU* 12/96, FPSi = FPS= FPS 3 = NPRU*29/96 ), (4 frequency partitions, and FPS 0 = NPRU* 12/96, FPSi = FPS
= FPS3 = NPRU*28/96 ), (4 个频率分区, 且 FPS0 = NPRU* 15/96, FPSi = FPS= FPS 3 = NPRU*28/96 ), (4 frequency partitions, and FPS 0 = NPRU* 15/96, FPSi = FPS
= FPS3 = NPRU*27/96 ), (4 个频率分区, 且 FPS0 = NPRU* 18/96, FPSi = FPS= FPS 3 = NPRU*27/96 ), (4 frequency partitions, and FPS 0 = NPRU* 18/96, FPSi = FPS
= FPS3 = NPRU*26/96 ), (4 个频率分区, 且 FPS0 = NPRU*21/96, FPSi = FPS= FPS 3 = NPRU*26/96 ), (4 frequency partitions, and FPS 0 = NPRU*21/96, FPSi = FPS
= FPS3 = NPRU*25/96 ), (4 个频率分区, 且 FPS0 = NPRU*24/96, FPSi = FPS= FPS 3 = NPRU*25/96 ), (4 frequency partitions, and FPS 0 = NPRU*24/96, FPSi = FPS
= FPS3 = NPRU*24/96 ), (4 个频率分区, 且 FPS0 = NPRU*27/96, FPSi = FPS= FPS 3 = NPRU*24/96 ), (4 frequency partitions, and FPS 0 = NPRU*27/96, FPSi = FPS
= FPS3 = NPRU*23/96 ), (4 个频率分区, 且 FPS0 = NPRU*30/96, FPSi = FPS= FPS 3 = NPRU*23/96 ), (4 frequency partitions, and FPS 0 = NPRU*30/96, FPSi = FPS
= FPS3 = NPRU*22/96 ), (4 个频率分区, 且 FPS0 = NPRU*33/96, FPSi = FPS= FPS 3 = NPRU*22/96 ), (4 frequency partitions, and FPS 0 = NPRU*33/96, FPSi = FPS
= FPS3 = NPRU*21/96 ), (4 个频率分区, 且 FPS0 = NPRU*36/96, FPSi = FPS= FPS 3 = NPRU*21/96 ), (4 frequency partitions, and FPS 0 = NPRU*36/96, FPSi = FPS
= FPS3 = NPRU*20/96 ), (4 个频率分区, 且 FPS0 = NPRU*39/96, FPSi = FPS= FPS 3 = NPRU*20/96 ), (4 frequency partitions, and FPS 0 = NPRU*39/96, FPSi = FPS
= FPS3 = NPRU* 19/96 ), (4 个频率分区, 且 FPS0 = NPRU*42/96, FPSi = FPS= FPS 3 = NPRU* 19/96 ), (4 frequency partitions, and FPS 0 = NPRU*42/96, FPSi = FPS
= FPS3 = NPRU* 18/96 ), (4 个频率分区, 且 FPS0 = NPRU*45/96, FPSi = FPS= FPS 3 = NPRU* 18/96 ), (4 frequency partitions, and FPS 0 = NPRU*45/96, FPSi = FPS
= FPS3 = NPRU* 17/96 ), (4 个频率分区, 且 FPS0 = NPRU*48/96, FPSi = FPS= FPS 3 = NPRU* 17/96 ), (4 frequency partitions, and FPS 0 = NPRU*48/96, FPSi = FPS
= FPS3 = NPRU* 16/96 ), (4 个频率分区, 且 FPS0 = NPRU* 51/96, FPSi = FPS= FPS 3 = NPRU* 16/96 ), (4 frequency partitions, and FPS 0 = NPRU* 51/96, FPSi = FPS
= FPS3 = NPRU* 15/96 ), (4 个频率分区, 且 FPS0 = NPRU* 54/96, FPSi = FPS= FPS 3 = NPRU* 15/96 ), (4 frequency partitions, and FPS 0 = NPRU* 54/96, FPSi = FPS
= FPS3 = NPRU* 14/96 ), (4 个频率分区, 且 FPS0 = NPRU*57/96, FPSi = FPS= FPS 3 = NPRU* 14/96 ), (4 frequency partitions, and FPS 0 = NPRU*57/96, FPSi = FPS
= FPS3 = NPRU* 13/96 ), (4 个频率分区, 且 FPS0 = NPRU*60/96, FPSi = FPS= FPS 3 = NPRU* 13/96 ), (4 frequency partitions, and FPS 0 = NPRU*60/96, FPSi = FPS
= FPS3 = NPRU* 12/96 ), (4 个频率分区, 且 FPS0 = NPRU*63/96, FPSi = FPS= FPS 3 = NPRU* 12/96 ), (4 frequency partitions, and FPS 0 = NPRU*63/96, FPSi = FPS
= FPS3 = NPRU* H/96), ( 4 个频率分区, 且 FPS0 = NPRU*66/96, FPSi = FPS= FPS 3 = NPRU* H/96), (4 frequency partitions, and FPS 0 = NPRU*66/96, FPSi = FPS
= FPS3 = NPRU* 10/96 ), (4 个频率分区, 且 FPS0 = NPRU*69/96, FPSi = FPS= FPS 3 = NPRU* 10/96 ), (4 frequency partitions, and FPS 0 = NPRU*69/96, FPSi = FPS
= FPS3 = NPRU*9/96 ), (4 个频率分区, 且 FPS0 = NPRU*72/96, FPSi = FPS= FPS 3 = NPRU*9/96 ), (4 frequency partitions, and FPS 0 = NPRU*72/96, FPSi = FPS
= FPS3 = NPRU* 8/96 ), (4 个频率分区, 且 FPS0 = NPRU*75/96, FPSi = FPS
= FPS3 = NPRU*7/96 ), ( 4 个频率分区, 且 FPSo = NPRU*78/96, FPSi = FPS= FPS 3 = NPRU* 8/96 ), (4 frequency partitions, and FPS 0 = NPRU*75/96, FPSi = FPS = FPS 3 = NPRU*7/96 ), (4 frequency partitions, and FPSo = N PRU *78/96, FPSi = FPS
= FPS3 = NPRU*6/96 ), ( 4 个频率分区, 且 FPSo = NPRU*81/96 , FPSi = FPS= FPS 3 = NPRU*6/96 ), (4 frequency partitions, and FPSo = NPRU*81/96, FPSi = FPS
= FPS3 = NPRU*5/96 ), ( 4 个频率分区, 且 FPSo = NPRU* 84/96 , FPSi = FPS= FPS 3 = NPRU*5/96 ), (4 frequency partitions, and FPSo = NPRU* 84/96, FPSi = FPS
= FPS3 = NPRU*4/96 ), ( 4 个频率分区, 且 FPSo = NPRU* 87/96, FPSi = FPS= FPS 3 = NPRU*4/96 ), (4 frequency partitions, and FPSo = NPRU* 87/96, FPSi = FPS
= FPS3 = NPRU*3/96 ), ( 4 个频率分区, 且 FPSo = NPRU*90/96, FPSi = FPS= FPS 3 = NPRU*3/96 ), (4 frequency partitions, and FPSo = N PRU *90/96, FPSi = FPS
= FPS3 = NPRU*2/96 ), ( 4 个频率分区, 且 FPSo = NPRU*93/96 , FPSi = FPS= FPS 3 = NPRU*2/96 ), (4 frequency partitions, and FPSo = N PRU *93/96 , FPSi = FPS
= FPS3 = NPRU* l/96 ) }。 = FPS 3 = N PRU * l/96 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 CDFPC, 共 C33 8 = 13884156种组合。 可 以釆用任意一种组合指示 DFPC取值与频率分区数目和频率分区大小的对应 关系, 例如, 表 3.10所示, 其它组合不 列举。 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set C DFPC , a total of C 33 8 = 13884156 combinations. Any combination can be used to indicate the correspondence between the DFPC value and the number of frequency partitions and the size of the frequency partition. For example, as shown in Table 3.10, other combinations are not listed.
表 3.10 Table 3.10
或者, 系统带宽为 20MHz时,指示 DFPC参数所使用的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分 区数目和频率分区大小取自集合 CDFPC, 共 C33 16 = 1166803110种组合。 可以 釆用任意一种组合指示 DFPC取值与频率分区数目和频率分区大小的对应关 系, 例如, 表 3.11所示, 其它组合不 列举。 Or, when the system bandwidth is 20MHz, the number of bits used to indicate the DFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set C DFPC , a total of C 33 16 = 1166803110 combinations. Any combination can be used to indicate the correspondence between the DFPC value and the number of frequency partitions and the size of the frequency partition. For example, as shown in Table 3.11, other combinations are not listed.
表 3.11 Table 3.11
4 18: 26: 26: 26 4 NPRU * 18/96 NPRU * 26/964 18: 26: 26: 26 4 NPRU * 18/96 NPRU * 26/96
5 21: 25: 25: 25 4 NPRU * 21/96 NPRU * 25/965 21: 25: 25: 25 4 NPRU * 21/96 NPRU * 25/96
6 24: 24: 24: 24 4 NPRU * 24/96 NPRU * 24/966 24: 24: 24: 24 4 NPRU * 24/96 NPRU * 24/96
7 27: 23: 23: 23 4 NPRU * 27/96 NPRU * 23/967 27: 23: 23: 23 4 NPRU * 27/96 NPRU * 23/96
8 30: 22: 22: 22 4 NPRU * 30/96 NPRU * 22/968 30: 22: 22: 22 4 NPRU * 30/96 NPRU * 22/96
9 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/969 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/96
10 42: 18: 18: 18 4 NPRU * 42/96 NPRU * 18/9610 42: 18: 18: 18 4 NPRU * 42/96 NPRU * 18/96
11 48: 16: 16: 16 4 NPRU * 48/96 NPRU * 16/9611 48: 16: 16: 16 4 NPRU * 48/96 NPRU * 16/96
12 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/9612 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/96
13 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/9613 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/96
14 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/9614 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96
15 72: 8: 8: 8 4 NPRU * 72/96 NPRU * 8/96 有些情况下, 可以用 4bit表示不同的频率分区数目和频率分区大小,但 只取集合 CDFPC中的部分元素,其他情况保留或用作指示其它情况,如表 3.12 所示。 15 72: 8: 8: 8 4 NPRU * 72/96 NPRU * 8/96 In some cases, 4bits can be used to indicate different frequency partition numbers and frequency partition sizes, but only some elements in the set C DFPC are taken, otherwise Reserved or used to indicate other conditions, as shown in Table 3.12.
表 3.12 Table 3.12
有些情况下, 可以加入集合 BDFPC以外其他的频率分区配置, 如表 3.13 所示: In some cases, you can join other frequency partition configurations other than the set B DFPC , as shown in Table 3.13:
对于各个带宽下指示 DFPC 参数所使用的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 DFPC参数所使用的比特数彼此部分相同或完 全不同。例如,系统带宽为 5MHz时,指示 DFPC参数所使用的比特数为 3bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的 比特数为 3bits; 系统带宽为 20MHz时,指示该参数所使用的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所使用的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特 数为 3bits; 系统带宽为 20MHz时, 指示该参数所使用的比特数为 4bits; 或 者其他组合。 The number of bits used to indicate DFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate DFPC parameters is partially identical or completely different. For example, when the system bandwidth is 5MHz, the number of bits used to indicate the DFPC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 3bits; when the system bandwidth is 20MHz Indicates that the number of bits used by this parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits used is 3 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits; or other combinations.
需要指出: 在上述 DFPC的配置方法中, 当两个不同的带宽使用了相同 的比特数指示 DFPC参数, 对应的表格可以相同或不同。 例如, 系统带宽为 10MHz(也可以为 7MHz或 8.75MHz )时,指示该参数所使用的比特数为 4bits, 但对应的表格为表 3.8; 系统带宽为 20MHz时, 指示该参数所使用的比特数 为 4bits , 但对应的表格为表 3. 13。 It should be noted that in the above DFPC configuration method, when two different bandwidths use the same number of bits to indicate DFPC parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 3.8; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. 4bits, but the corresponding table is Table 3.13.
由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is
20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 DFPC的取值及对应关系, 从而使得设 备制造更加简单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时釆用相同的表格。例如,系统带宽为 5MHz时,指示 DFPC 参数所使用的比特数为 2bits; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所使用的比特数为 4bits。
同上表 3.1描述了系统带宽为 5MHz , 且指示 DFPC所使用的比特数为 2bits的情况下的配置方法, 这里不再赞述。 The 20MHz case is similar. You can consider the characteristics of 10MHz (which can be 7MHz or 8.75MHz) and 20MHz. You can use the same DFPC when the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Values and correspondences make device manufacturing simpler, ie, the same table is used when the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPC parameter is 2 bits; and when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, the number of bits used to indicate the parameter is 4 bits. Table 3.1 above describes the configuration method in the case where the system bandwidth is 5 MHz and the number of bits used by the DFPC is 2 bits, which is not mentioned here.
系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 DFPC所使用的比特数为 4bits的情况下,可以都釆用 20MHz在需要 4bits 指示 DFPC时的表格之一, 例如, 都是用表 3.13。 When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits used by the DFPC is 4bits, you can use 20MHz in one of the tables when 4bits is required to indicate DFPC. For example, It is used in Table 3.13.
另外, 需要指出: 在上述 DFPC的配置方法中, 针对每一个表, DFPC 的值与 DFPC的值指示的意义中间的关系是可以变化的, 每一个表格均是一 个实施例, 只要一个表中包含的 DFPC的值指示的意义是相同的, 均被视为 相同的表, 都在保护范围之内。 例如, 表 3.10与表 3.14均视为相同的表, 因为两个表中包含的 DFPC的值是指示的意义是相同的。 In addition, it should be pointed out that in the above DFPC configuration method, for each table, the relationship between the value of the DFPC and the meaning indicated by the value of the DFPC can be changed, and each table is an embodiment, as long as one table contains The values of the DFPC values are the same and are considered to be the same table, all within the scope of protection. For example, Table 3.10 and Table 3.14 are both considered to be the same table, because the values of the DFPC contained in the two tables are the same meaning.
表 3.14 Table 3.14
通过上述实例 3 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 DFPC的比特数分别需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合或者其它组合时, 在 DFPC的 可能取值减少的情况下,删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 Through the above example 3, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating the DFPC needs 2bits, 3bits, 4bits, respectively, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations, when the possible value of DFPC is reduced, redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
上行频率分区配置 (UFPC)的配置方法 Uplink frequency partition configuration (UFPC) configuration method
实施例 4 Example 4
UFPC指示了上行子帧中的频率分区的大小和数目。 图 13是根据本发 明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数 量的比特指示参数时信令 UFPC的应用示意图, 如图 13所示, UFPC取不同
值时, 上行 Frequency Partitioning过程是不同的。 可见当 UFPC取不同值时, 资源映射的方式也不同。 The UFPC indicates the size and number of frequency partitions in the uplink subframe. FIG. 13 is a schematic diagram of a method for configuring a resource mapping indication information according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, and FIG. 13 is a schematic diagram of the UFPC. The value of the upstream Frequency Partitioning process is different. It can be seen that when UFPC takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UFPC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 其中, !^ 是一个子 帧上的 PRU数, 一般情况下, 5MHz、 7MHz、 8.75MHz 、 10MHz和 20MHz 对应 ό NPRU分另1 J为 24、 48、 48、 48和 96, 但本方法不受 jt匕 F艮 。 并且, 在 下述各表格中的各频率分区比例 (FP。: FPi : FP2: FP3 ) 表达式中, 对于出 现的 Nl : N2: N3: N4, 其中, N1至 N4可以表示频率分区的实际个数, 也 可以表示各频率分区之间的比例关系。 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. among them, ! ^ is the number of PRUs in a sub-frame. In general, 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz correspond to όN PRU and 1 J is 24, 48, 48, 48 and 96, but this method is not subject to jt匕F艮. And, in the expression of each frequency partition ratio (FP.: FPi : FP 2 : FP 3 ) in the following tables, for the occurrence of Nl : N2: N3: N4, where N1 to N4 can represent the actual frequency partition The number can also represent the proportional relationship between the frequency partitions.
第一类: 系统带宽为 5MHz时, 指示 UFPC参数与实施例 3中的 DFPC 配置方法类似, 可以用 2或 3bits表示 UFPC, 第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UFPC参数与实施例 3 中的 DFPC配置方法类 似,可以用 3或 4bits表示 UFPC,第三类: 系统带宽为 20MHz时,指示 UFPC 参数与实施例 3中的 DFPC配置方法类似, 可以用 3或 4bits表示 UFPC。 上 述 3种情况相应表格也和实施例 3的表格类似, 只是 4巴 DFPC改成 UFPC即 可, 详细方法可以参见实施例 3 , 在 匕不再——赘述。 The first type: When the system bandwidth is 5MHz, the UFPC parameter is similar to the DFPC configuration method in Embodiment 3. The UFPC can be represented by 2 or 3 bits. The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the UFPC parameter is indicated. Similar to the DFPC configuration method in Embodiment 3, UFPC can be represented by 3 or 4 bits. The third type: When the system bandwidth is 20 MHz, the UFPC parameter is similar to the DFPC configuration method in Embodiment 3. The UFPC can be represented by 3 or 4 bits. . The corresponding table of the above three cases is similar to the table of the embodiment 3, except that the 4 bar DFPC is changed to UFPC, and the detailed method can be referred to the embodiment 3, and the description is no longer repeated.
对于各个带宽下指示 UFPC 参数所使用的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 UFPC参数所使用的比特数彼此部分相同或完 全不同。 UFPC参数与实施例 3 中的 DFPC配置方法类似、, 详细方法可以参 见实施例 3 , 在此不再——赘述。 The number of bits used to indicate UFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate UFPC parameters is partially identical or completely different. The UFPC parameter is similar to the DFPC configuration method in Embodiment 3, and the detailed method can be referred to in Embodiment 3, and is not described again here.
需要指出: 在上述 UFPC的配置方法中, 当两个不同的带宽使用了相同 的比特数指示 UFPC参数, 对应的表格可以相同或不同。 相应表格也和实施 例 3的表格类似, 只是 4巴 DFPC改成 UFPC即可, 详细方法可以参见实施例 3 , 在 jt匕不再——赘述。 It should be pointed out that in the above UFPC configuration method, when two different bandwidths use the same number of bits to indicate UFPC parameters, the corresponding tables may be the same or different. The corresponding table is similar to the table of Embodiment 3, except that the 4 bar DFPC is changed to UFPC. For detailed methods, see Example 3, and the jt匕 is no longer described.
由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 UFPC的取值及对应关系, 从而使得设 备制造更加简单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时釆用相同的表格。 Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be considered. The system bandwidth can be 10MHz (can be 7MHz). Or 8.75MHz) and the system bandwidth is 20MHz, the same UFPC value and corresponding relationship are used, which makes the device manufacturing simpler, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Use the same form.
通过上述实例 4, 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 UFPC的比特数分别需要 2bits、
3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合或者其它组合时, 在 UFPC的 可能取值减少的情况下,删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 Through the above example 4, it can be seen that the system bandwidth is 5MHz, 10MHz (may be 7MHz or 8.75MHz), and in the 20MHz system, the number of bits indicating the UFPC needs 2bits, respectively. 3bits, 4bits, or 2bits, 4bits, 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations, if the possible value of UFPC is reduced, delete Redundant and unnecessary information indication saves bit overhead and guarantees a certain flexibility.
下行频率分区 Subband ¾ ( DFPSC ) 的配置方法 Downstream frequency partitioning Subband 3⁄4 ( DFPSC ) configuration method
实施例 5 Example 5
图 14是才艮据本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 DFPSC 的应用示意图, 如图 14所示, DFPSC取不同的值时, 下行 Frequency Partitioning过程是不同的。 可见当 DFPSC取不同值时, 资源映射的方式也不同。 14 is a schematic diagram of application of signaling DPFSC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 14, when DFPSC takes different values. The downstream Frequency Partitioning process is different. It can be seen that when DFPSC takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DFPSC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
第一类: 系统带宽为 5MHz 时, 指示 DFPSC 参数所使用的比特数为 IbitSo The first type: When the system bandwidth is 5MHz, the number of bits used to indicate the DFPSC parameters is IbitSo.
对于 5MHz , DFPSC 的可能指示的 Subband 的数目 集合为: ADFPSC={0, 1,2}。 lbits表示 2种不同的 Subband的数, 这 2种不同的 Subband 的数取自集合 ADFPSC, 共 C3 2 = 3种组合。 例如, 表 5.1所示。 For 5MHz, the set of possible Subbands for DFPSC is: A DFPSC = {0, 1, 2}. Lbits represents the number of two different Subbands . The number of these two different Subbands is taken from the set A DFPSC and the total C 3 2 = 3 combinations. For example, Table 5.1 shows.
或者,系统带宽为 5MHz时,指示 DFPSC参数所使用的比特数为 2bits。 ^口表 5.2所示。 Or, when the system bandwidth is 5MHz, the number of bits used to indicate the DFPSC parameter is 2bits. ^ Table 5.2 is shown.
第二类: 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 DFPSC参 数所使用的比特数为 2bits。 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPSC parameter is 2bits.
对于 7MHz或 8.75MHz 或 10MHz, DFPSC的可能指示的 Subband的 数目集合为: BDFPSC={0, 1,2,3,4}。 2bits表示 4种不同的 Subband的数, 这 4 种不同的 Subband的数取自集合 BDFPSC, 共 C5 4 = 5种组合。 例如, 表 5.3所
表 5.3
For 7MHz or 8.75MHz or 10MHz, the set of possible Subbands for DFPSC is: B DFPSC = {0, 1, 2, 3, 4}. 2bits represents the number of 4 different Subbands , the number of these 4 different Subbands is taken from the set B DFPSC , and a total of C 5 4 = 5 combinations. For example, Table 5.3 Table 5.3
或者, 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 DFPSC参数 所使用的比特数为 3bits。 DFPSC的取值与其对应的频率分区的 Subband数 目的对应关系。 例如, 表 5.4所示。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DFPSC parameter is 3bits. The correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition. For example, Table 5.4 shows.
表 5.4 Table 5.4
第三类: 系统带宽为 20MHz时, 指示 DFPSC参数所使用的比特数为 The third category: When the system bandwidth is 20MHz, the number of bits used to indicate the DFPSC parameters is
2bits» 2bits»
对于 20MHz , DFPSC 的可能指示的 Subband 的数目 集合为: CDFPSC={0, 1,2,3,4,5,6,7,8}。 2bits表示 4种不同的 Subband的数, 这 4种不同 的 Subband的数取自集合 CDFPSC , 共 C9 4 = 126种组合。 例如, 表 5.5描述了 系统带宽为 20MHz时, 且指示 DFPSC所使用的比特数为 2bits的情况下, DFPSC的取值与其对应的频率分区的 Subband数目的对应关系,其它组合不 ——歹'】举„ For 20MHz, the set of possible Subbands for DFPSC is: C DFPSC = {0, 1, 2, 3, 4, 5, 6, 7, 8}. 2bits represents the number of 4 different Subbands , the number of these 4 different Subbands is taken from the set C DFPSC , and a total of C 9 4 = 126 combinations. For example, Table 5.5 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the system bandwidth is 20 MHz and indicates that the number of bits used by DFPSC is 2 bits. Other combinations are not -歹'] Lift
或者,系统带宽为 20MHz时,指示 DFPSC参数所使用的比特数为 3bits。 3bits表示 8种不同的 Subband的数, 这 4种不同的 Subband的数取自集合 CDFPSC 共 C9 8 = 9种组合。 例如, 表 5.6描述了比特数为 3bits时, DFPSC 的取值与其对应的频率分区的 Subband数目的对应关系, 其它组合不——列 举。 Or, when the system bandwidth is 20 MHz, the number of bits used to indicate the DFPSC parameter is 3 bits. 3bits represents the number of 8 different Subbands, and the number of these 4 different Subbands is taken from the set CDFPSC total C 9 8 = 9 combinations. For example, Table 5.6 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 3 bits. Other combinations are not-listed.
表 5.6 Table 5.6
或者,系统带宽为 20MHz时,指示 DFPSC参数所使用的比特数为 4bits。 例如, 表 5.7描述了比特数为 4bits时, DFPSC的取值与其对应的频率分区 的 Subband数目的对应关系。 Or, when the system bandwidth is 20 MHz, the number of bits used to indicate the DFPSC parameters is 4 bits. For example, Table 5.7 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits.
表 5.7 Table 5.7
对于各个带宽下指示 DFPSC参数所使用的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 DFPSC 参数所使用的比特数彼此部分相同或 完全不同。 例 口, The number of bits used to indicate DFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate DFPSC parameters is partially identical or completely different. Case,
系统带宽为 5MHz时, 指示 DFPSC参数所使用的比特数为 lbits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特 数为 2bits; 系统带宽为 20MHz时, 指示该参数所使用的比特数为 3bits; 或 者, 系统带宽为 5MHz时, 指示 DFPSC参数所使用的比特数为 lbits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特 数为 2bits; 系统带宽为 20MHz时, 指示该参数所使用的比特数为 2bits; 或 者其他组合。 When the system bandwidth is 5MHz, the number of bits used to indicate the DFPSC parameters is lbits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 2bits; when the system bandwidth is 20MHz, the indication is The number of bits used in this parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DFPSC parameter is 1 bit; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is used to indicate the The number of bits is 2 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 2 bits; or other combinations.
需要指出: 在上述 DFPSC的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 DFPSC 参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特数 为 3bits, 但对应的表格为表 5.4; 系统带宽为 20MHz时, 指示该参数所使用 的比特数为 3bits , 但对应的表格为表 5.6。 It should be noted that in the above DFPSC configuration method, when two different bandwidths use the same number of bits to indicate DFPSC parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 3bits, but the corresponding table is Table 5.4; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. It is 3bits, but the corresponding table is Table 5.6.
再例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz 时, 且指示 DFPSC所使用的比特数为 3bits的情况下, 可以都釆用 20MHz 在需要 3bits指示 DFPSC时的表格之一, 例如, 都是用表 5.6。 For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits used by the DFPSC is 3bits, 20MHz can be used. One of the tables when 3bits is required to indicate DFPSC is used. For example, all use Table 5.6.
另夕卜, 需要指出: 在上述 DFPSC的配置方法中,针对每一个表, DFPSC 的值与 DFPSC 的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 DFPSC 的值是指示的意义是相同的, 均 被视为相同的表, 都在保护范围之内。 例如, 表 5.8与表 5.6均视为相同的 表, 因为两个表中包含的 DFPSC的值是指示的意义是相同的。
表 5.8 In addition, it should be pointed out that in the above-mentioned DFPSC configuration method, for each table, the relationship between the value of DFPSC and the meaning indicated by the value of DFPSC can be changed, and each table is an embodiment, as long as one table The values of the DFPCS contained in the indications are the same and are considered to be the same table, all within the scope of protection. For example, Table 5.8 and Table 5.6 are both considered to be the same table, because the values of the DFPSCs contained in the two tables are the same meaning. Table 5.8
通过上述实例 5 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 DFPSC的比特数分另1 J需要 lbits、 2bits、 2bits, 或者分别需要 2bits、 3bits、 3bits, 或者分别需要 2bits、 3bits、 4bits或者其它组合时, 在 DFPSC的可能取值减少的情况下, 删减了冗余和 不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 By the above-described example 5, it can be seen, the system bandwidths of 5MHz, 10MHz (7MHz or may be of 8.75 MHz), when the 20MHz system indicating the number of bits of the other points 1 J DFPSC need lbits, 2bits, 2bits, or separately required 2Bits, 3bits, 3bits, or 2bits, 3bits, 4bits or other combinations respectively, when the possible value of DFPCS is reduced, the redundancy and unnecessary information indication are deleted, the bit overhead is saved, and a certain amount is guaranteed. flexibility.
上行频率分区 Subband数(UFPSC ) 的配置方法 Uplink frequency partition Subband number (UFPSC) configuration method
实施例 6 Example 6
图 15是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 UFPSC 的应用示意图, 如图 15 is a schematic diagram of application of signaling UFPSC when a resource mapping indication information is configured in an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, as shown in FIG.
15所示, UFPSC取不同的值时, 上行 Frequency Partitioning过程是不同的。 可见当 UFPSC取不同值时, 资源映射的方式也不同。 As shown in Figure 15, when the UFPSC takes different values, the uplink Frequency Partitioning process is different. It can be seen that when UFPSC takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UFPSC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
第一类:系统带宽为 5MHz时,指示 UFPSC参数与实施例 5中的 UFPSC 配置方法类似, 可以用 1或 2bits表示 UFPSC, 第二类: 系统带宽为 7MHz 或 8.75MHz 或 10MHz时,指示 UFPSC参数与实施例 5中的 UFPSC配置方 法类似, 可以用 2或 3bits表示 UFSPC, 第三类: 系统带宽为 20MHz时, 指 示 UFPSC参数与实施例 5中的 UFPSC配置方法类似, 可以用 2、 3或 4bits 表示 UFSPC。上述 3种情况相应表格也和实施例 5的表格类似,只是把 UFPSC 改成 UFPSC即可, 详细方法可以参见实施例 5 , 在此不再——赘述。 The first type: when the system bandwidth is 5MHz, the UFPSC parameter is similar to the UFPSC configuration method in Embodiment 5. The UFPSC can be represented by 1 or 2 bits. The second type: UFPSC parameter is indicated when the system bandwidth is 7MHz or 8.75MHz or 10MHz. Similar to the UFPSC configuration method in Embodiment 5, UFSPC can be represented by 2 or 3 bits, and the third type: When the system bandwidth is 20 MHz, the UFPSC parameter is similar to the UFPSC configuration method in Embodiment 5, and 2, 3 or 4 bits can be used. Represents UFSPC. The corresponding table of the above three cases is similar to the table of the embodiment 5, but the UFPSC can be changed to UFPSC. For the detailed method, refer to the embodiment 5, which is not repeated here.
对于各个带宽下指示 UFPSC参数所使用的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 UFPSC 参数所使用的比特数彼此部分相同或 完全不同。 UFPSC参数与实施例 5中的 DFPSC配置方法类似, 详细方法可 以参见实施例 5 , 在此不再——赘述。 The number of bits used to indicate UFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate UFPSC parameters is partially identical or completely different. The UFPSC parameters are similar to the DFPSC configuration method in Embodiment 5. The detailed method can be seen in Embodiment 5, and is not described here.
需要指出: 在上述 UFPSC的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 UFPSC参数, 对应的表格可以相同或不同。 UFPSC参数与
实施例 5中的 DFPSC配置方法类似, 详细方法可以参见实施例 5 , 在此不再It should be noted that in the above UFPSC configuration method, when two different bandwidths use the same number of bits to indicate UFPSC parameters, the corresponding tables may be the same or different. UFPSC parameters and The DFPSC configuration method in Embodiment 5 is similar. For detailed methods, refer to Embodiment 5, and no longer
——赘述。 - Narration.
再例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz 时, 且指示 UFPSC所使用的比特数为 3bits的情况下, 可以都釆用 20MHz 在需要 3bits指示 UFPSC时的表格之一, UFPSC参数与实施例 5中的 DFPSC 配置方法类似, 详细方法可以参见实施例 5 , 在此不再——赘述。 For example, when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, and the number of bits used by the UFPSC is 3 bits, the 20 MHz table can be used when 3 bits are required to indicate UFPSC. The UFPSC parameters are similar to the DFPSC configuration method in Embodiment 5. For detailed methods, refer to Embodiment 5, which is not repeated here.
通过上述实例 6, 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时, 指示 UFPSC的比特数分另1 J需要 lbits、 2bits、 2bits, 或者分别需要 2bits、 3bits、 3bits, 或者分别需要 2bits、 3bits、 4bits或者其它组合时, 在 UFPSC的可能取值减少的情况下, 删减了冗余和 不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 6 by the above examples, it can be seen, the system bandwidths of 5MHz, 10MHz (7MHz or may be of 8.75 MHz), when the 20MHz system indicating the number of bits of the other points 1 J UFPSC need lbits, 2bits, 2bits, or separately required 2Bits, 3bits, 3bits, or 2bits, 3bits, 4bits, or other combinations, when the possible value of UFPSC is reduced, redundant and unnecessary information indications are deleted, which saves bit overhead and guarantees certain flexibility.
下4亍基于 Subband的 CRU分配数 ( DCASSB ) 的配置方法 The next 4亍 Subband-based CRU allocation number (DCAS SB ) configuration method
实施例 7 Example 7
DCASsBi以 Subband为单位指示了第 i ( i > 0 ) 个频率分区中 CRU和 / 或 DRU的数目。 图 16是根据本发明实施例的资源映射指示信息的配置方法 对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 DCASSBl的应用 示意图, 如图 16所示, DCASSBi取不同的值时, 下行 CRU/DRU Allocation 过程是不同的。 可见当 DCASSB取不同值时, 资源映射的方式也不同。 DCASsBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units. 16 is a schematic diagram of application of signaling DCAS SB1 when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 16, when DCAS SBi takes different values. The downstream CRU/DRU Allocation process is different. It can be seen that when DCAS SB takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DCASSB 配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 The following is an example of the system bandwidth of 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz, and divided into three types of bandwidth to explain the DCAS SB configuration, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
第一类: 系统带宽为 5MHz 时, 指示 DC ASSBl参数所使用的比特数为The first type: When the system bandwidth is 5MHz, the number of bits used to indicate the DC AS SB1 parameter is
2bits» 2bits»
对于 5MHz, DCASsBi以 Subband为单位指示了第 i个频率分区中 CRU 和 /或 DRU的数目可能的数目集合为: ADCASSBi= {0, 1,2,3,4,5,6}。 2bits表示 4 个不同的数目, 这 4个不同的数目取自集合 ADCASSBl, 共 C7 4 = 35种组合。 DCASSBi可以釆用任意一种组合例如, 表 7.1 所示, 其它类似, 不再——列 举。 For 5 MHz, DCASsBi indicates, in Subband, the possible number of CRUs and/or DRUs in the i-th frequency partition as: A DCASSBi = {0, 1, 2, 3, 4, 5, 6}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set A DCASSBl , a total of C 7 4 = 35 combinations. DCAS SBi can use any combination, for example, as shown in Table 7.1, other similar, no longer - enumerated.
或者,系统带宽为 5MHz时,指示 DCASSBi参数所使用的比特数为 3bits。Or, when the system bandwidth is 5MHz, the number of bits used to indicate the DCAS SBi parameter is 3 bits.
3bits表示 8个不同的数目, 可以表示集合 ADCASSB!中所有的数值。 如表 7.2
所示。 3bits represents 8 different numbers and can represent all the values in the set ADCASSB!. As shown in Table 7.2 Shown.
表 7.2 Table 7.2
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi 参数所使用的比特数为 2bits。 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS SBi parameter is 2bits.
对于 7MHz或 8.75MHz或 10MHz, DCASSBi以 Subband为单位指示了 第 i 个频率分区中 CRU 和 /或 DRU 的数目可能的数目集合为: BDCASSBl= {0, 1,2,3,4,5,6,7,8,9, 10, 11, 12}„ 2bits表示 4个不同的数目, 这 4个不同的数目 取自集合 BDCASSBl, 共 C13 4 = 715种组合。 DCASSBl可以釆用任意一种组合。 例如, 表 7.3所示, 其它类似, 不再 列举。 For 7MHz or 8.75MHz or 10MHz, the DCAS SBi indicates the possible number of CRUs and/or DRUs in the i-th frequency partition in Subband: B DCASSBl = {0, 1, 2, 3, 4, 5 ,6,7,8,9, 10, 11, 12}„ 2bits means 4 different numbers, these 4 different numbers are taken from the set B DCASSBl , a total of C 13 4 = 715 combinations. DCAS SBl can be used Any combination, for example, as shown in Table 7.3, other similar, is not listed.
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi参数 所使用的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自 集合 BDCASSBl, 共 C13 8 = 1287种组合。 0〇 88!31可以釆用任意一种组合例如, 表 7.4所示, 其它类似, 不再 列举。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS SBi parameter is 3bits . 3bits represents 8 different numbers, these 8 different numbers are taken from the set B DCASSBl , a total of C 13 8 = 1287 combinations. 0〇8 8 ! 31 can use any combination, for example, as shown in Table 7.4, other similar, not listed.
表 7.4 Table 7.4
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi参数 所使用的比特数为 4bits。4bits表示 16个不同的数目,可以表示集合 BDCASSBl, 中所有的数值。 例如, 如表 7.5所示。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS SBi parameter is 4bits . 4bits represents 16 different numbers, which can represent all the values in the set B DCASSBl . For example, as shown in Table 7.5.
2 2 9 9 2 2 9 9
3 3 10 10 3 3 10 10
4 4 11 11 4 4 11 11
5 5 12 12 5 5 12 12
6 6 13- 15 保留 6 6 13- 15 Reserved
第三类: 系统带宽为 20MHz时, 指示 DCASSBl参数所使用的比特数为The third category: When the system bandwidth is 20MHz, the number of bits used to indicate the DCAS SB1 parameter is
3bits。 3bits.
对于 20MHz , DCASSBi以 Subband为单位指示了第 i个频率分区中 CRU 和 I或 DRU 的 数 目 可 能 的 数 目 集 合 为 : CDCASSBl= {0, 1,2,3, 4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20,21,22,23,24}„ 3bits表示 8个不同 的数目, 这 8个不同的数目取自集合 CDCASSBl , 共 C25 8 = 1081575种组合。 DCASSBi可以釆用任意一种组合。 例如, 表 7.6所示, 其它类似, 不再—— 列举。 For 20MHz, DCAS SBi indicates the possible number of CRUs and I or DRUs in the i-th frequency partition in units of Subband: C DCASSBl = {0, 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20,21,22,23,24}„ 3bits means 8 different numbers, these 8 different numbers are taken Self-collecting C DCASSBl , a total of C 25 8 = 1081575 combinations. DCAS SBi can use any combination. For example, Table 7.6, other similar, no longer - enumerated.
表 7.6 Table 7.6
或者, 系统带宽为 20MHz 时, 指示 DCASSBl参数所使用的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 CDCASSBl , 共 C25 16 = 2042975 种组合。 DCASSBi可以釆用任意一种组合。 例如, 表 7.7 所示, 其它类似, 不再——列举。 Or, when the system bandwidth is 20MHz, the number of bits used to indicate the DCAS SB1 parameter is 4bits . 4bits represents 16 different numbers, these 16 different numbers are taken from the set C DCASSBl , a total of C 25 16 = 2042975 combinations. DCAS SBi can use any combination. For example, as shown in Table 7.7, other similar, no longer - enumerated.
表 7.7 Table 7.7
或者, 系统带宽为 20MHz 时, 指示 DCASSBl参数所使用的比特数为
5bits。 5bits表示 32个不同的数目,这 32个不同的数目可以表示集合 C 中所有的数值。 例如, 表 7.8所示。 Or, when the system bandwidth is 20MHz, the number of bits used to indicate the DCAS SB1 parameter is 5bits. 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in set C. For example, Table 7.8 shows.
表 7.8 Table 7.8
对于各个带宽下指示 DCASSBl参数所使用的比特数可以从上述方法中 确定, 但对于不同的带宽, 指示 DCASSBl参数所使用的比特数彼此部分相同 或完全不同。 例如, 系统带宽为 5MHz时, 指示 DCASSBl参数所使用的比特 数为 3bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指示该 参数所使用的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所使用的 比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所使用的比 特数为 lbits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指示 该参数所使用的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所使用 的比特数为 3bits; 或者其他组合。 The number of bits used to indicate the DCAS SB1 parameter under each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the DCAS SB1 parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits used to indicate the DCAS SB1 parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits; the system bandwidth is 20MHz. The number of bits used to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DCAS SBi parameter is 1 bit; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication is The number of bits used by the parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 3 bits; or other combinations.
需要指出: 在上述 DCASSB 配置方法中, 当两个不同的带宽使用了相 同的比特数指示 DCASSBl参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特数 为 4bits , 但对应的表格为表 7.5 ; 系统带宽为 20MHz时, 指示该参数所使用 的比特数为 4bits , 但对应的表格为表 7.7。 It should be noted that in the above DCAS SB configuration method, when two different bandwidths use the same number of bits to indicate the DCAS SB1 parameter, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 4bits, but the corresponding table is Table 7.5; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. It is 4bits, but the corresponding table is Table 7.7.
相同的表格是指: 由于系统带宽为 1 OMHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz
或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 DCASSBi的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时釆用相同的表格, 例如, 可以釆用表 7.7 , 或者按照 20MHz时的配置方法 产生。 或者, 按照下面的方法产生: The same table means: Since the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered. The 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified. Bandwidth is 10MHz (can be 7MHz Or 8.75MHz) and the system bandwidth is 20MHz, the same DCAS SBi value and corresponding relationship, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, use the same table, for example , can be used in Table 7.7, or in accordance with the 20MHz configuration method. Or, generate it as follows:
表 7.9 Table 7.9
此夕卜, 5MHz可以与 10MHz (也可以为 7MHz或 8.75MHz ) 均釆用 2 比特或 3比特。 In addition, 5MHz can be used with 2MHz or 3bit for 10MHz (also 7MHz or 8.75MHz).
另外,需要指出:在上述 DCASSBl的配置方法中,针对每一个表, DCASSBl 的值与 DCASSBl的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 DCASSB 值是指示的意义是相同的, 均 被视为相同的表, 都在保护范围之内。 Further, to be noted: In the configuration above DCAS SBl, the relationship between the intermediate meaning indicated for each table value with DCAS SBl the DCAS SBl is to be changed, each form are one embodiment, as long as a The DCAS SB values included in the table are the same meanings and are considered to be the same table, all within the scope of protection.
通过上述实例 7 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时,指示 DCASSBi的比特数分别需要 2bits、 3bits、 3bits, 或者分别需要 2bits、 3bits、 4bits , 或者分别需要 3bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 5bits或者其他组合时, 在 DCASSBi的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。
上4亍基于 Subband的 CRU分配数 ( UCASSB ) 的配置方法 Through the above example 7, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating DCAS SBi needs 2bits, 3bits, 3bits , or 2bits, 3bits, respectively. 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits or other combinations respectively, when the possible value of DCAS SBi is reduced, the redundancy and unnecessary information indication are deleted, saving Bit overhead, and guarantees a certain flexibility. Top 4 Sub Subband-based CRU allocation number ( UCAS SB ) configuration method
实施例 8 Example 8
UCASsBi以 Subband为单位指示了第 i ( i > 0 ) 个频率分区中 CRU和 / 或 DRU的数目。 图 7是根据本发明实施例的资源映射指示信息的配置方法 对于 10MHz 系统带宽釆用不同数量的比特指示参数时信令 UCASSBl的应用 示意图, 如图 17所示, UCASSBi取不同的值时, 上行 CRU/DRU Allocation 过程是不同的。 可见当 UCASSB取不同值时, 资源映射的方式也不同。 UCASsBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units. 7 is a schematic diagram of application of signaling UCAS SB1 when a resource mapping indication information is configured according to an embodiment of the present invention, when a different number of bit indication parameters are used for a 10 MHz system bandwidth, as shown in FIG. 17, when UCAS SBi takes different values. The uplink CRU/DRU Allocation process is different. It can be seen that when UCAS SB takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UCASSB 配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 The system bandwidths are 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and are divided into three types of bandwidth to explain the UCAS SB configuration, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
第一类: 系统带宽为 5MHz 时, 指示 UCASSBl参数与实施例 7 中的 DCASSB配置方法类似, 可以用 2或 3bits表示 UCASSB, 第二类: 系统带宽 为 7MHz或 8.75MHz或 10MHz时,指示 UCASSBi参数与实施例 7中的 DCASSB 配置方法类似,可以用 2、3或 4bits表示 UCASSB,第三类:系统带宽为 20MHz 时, 指示 UCASSBi参数与实施例 7中的 DCASSB配置方法类似, 可以用 3、 4 或 5bits表示 UCASSB。 上述 3种情况相应表格也和实施例 7的表格类似, 只 是把 DCASSB改成 UCASSB即可, 详细方法可以参见实施例 7, 在此不再一 一赘述。 The first type: When the system bandwidth is 5MHz, the UCAS SB1 parameter is similar to the DCAS SB configuration method in Embodiment 7, and the UCAS SB can be represented by 2 or 3 bits. The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, The UCAS SBi parameter is similar to the DCAS SB configuration method in Embodiment 7, and UCAS SB can be represented by 2, 3 or 4 bits. The third type: when the system bandwidth is 20 MHz, the UCAS SBi parameter is indicated and the DCAS SB configuration in Embodiment 7 is specified. The method is similar, and UCAS SB can be represented by 3, 4 or 5 bits. The foregoing 3 conditions corresponding tables and table also similar to Example 7, except the DCAS SB UCAS SB can be changed, reference may be made in detail the method of Example 7, which is not detailed herein.
对于各个带宽下指示 UCASSBl参数所使用的比特数可以从上述方法中 确定, 但对于不同的带宽, 指示 UCASSBl参数所使用的比特数彼此部分相同 或完全不同。 UCASSB参数与实施例 7 中的 DCASSB配置方法类似, 详细方 法可以参见实施例 7, 在此不再——赘述。 The number of bits used to indicate the UCAS SB1 parameter under each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the UCAS SB1 parameter is partially identical or completely different from each other. The UCAS SB parameters are similar to the DCAS SB configuration method in Embodiment 7, and the detailed method can be seen in Embodiment 7, and is not described again here.
需要指出: 在上述 UCASSB 配置方法中, 当两个不同的带宽使用了相 同的比特数指示 UCASSBi参数, 对应的表格可以相同或不同。 相应表格也和 实施例 7的表格类似, 只是把 DCASSB改成 UCASSB即可, 详细方法可以参 见实施例 7, 在此不再——赘述。 It should be noted that in the above UCAS SB configuration method, when two different bandwidths use the same number of bits to indicate the UCAS SBi parameter, the corresponding tables may be the same or different. The corresponding table is similar to the table of the embodiment 7, except that the DCAS SB is changed to the UCAS SB . For the detailed method, refer to the embodiment 7, which is not repeated here.
相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 UCASSBi的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时釆用相同的表格, 相应表格也和实施例 7的表格类似, 只是把 DCASSB改 成 UCASSB即可, 详细方法可以参见实施例 7, 在此不再——赘述。
通过上述实例 8, 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时,指示 UCASSBI的比特数分别需要 3bits、 4bits、 5bits, 或者分别需要 lbits、 2bits、 3bits, 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 3bits、 4bits或者其他组合时, 在 UCASSBI的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered to be unified by 10MHz (can be 7MHz or 8.75MHz) and 20MHz, and the system bandwidth can be The value of the same UCAS SBi is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same table is used, and the corresponding table is similar to the table of the embodiment 7, except that the DCASSB is changed to the UCAS SB . For the detailed method, refer to the embodiment 7, which is not repeated here. Through the above example 8, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating the UCAS SBI needs 3bits, 4bits, 5bits, or lbits, 2bits, respectively. 3bits, or 3bits, 4bits, 4bits, or 3bits, 3bits, 4bits, or other combinations respectively. When the possible value of UCAS SBI is reduced, redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
下4亍基于 Miniband的 CRU分配数 ( DCASMB ) 的配置方法 The configuration method of the following 4亍 Miniband-based CRU allocation number (DCASMB)
实施例 9 Example 9
DCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的 CRU的数目。 图 18是才艮据本发明实施例的资源映射指示信息的配置方法对 于 5MHz系统带宽釆用不同数量的比特指示参数时信令 DCASMB的应用示意 图, 如图 18所示, DCASMB取不同的值时, 下行 CRU/DRU Allocation过程 是不同的。 可见当 DCASMB取不同值时, 资源映射的方式也不同。 The DCASMB indicates the number of Miniband-based CRUs in the 0th frequency partition in Minbits. FIG. 18 is a schematic diagram of an application method of signaling DCASMB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 18, DCAS MB takes different values. The downlink CRU/DRU Allocation process is different. It can be seen that when DCAS MB takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DCASMB的配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS MB , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz. The third category is 20MHz.
第一类: 系统带宽为 5MHz时, 指示 DCASMB参数所使用的比特数为The first type: When the system bandwidth is 5MHz, the number of bits used to indicate the DCAS MB parameter is
2bits» 2bits»
对于 5MHz, DCASMB以 Miniband为单位指示了第 0个频率分区中基 于 Miniband的 CRU的数目可能的数目集合为: ADCASMB= {0至 24的闭区间 上的所有整数 }。 2bits 表示 4 个不同的数目, 这 4 个不同的数目取自集合 ADCASMB, 共 C25 4 = 12650种组合。 DCAS應可以釆用任意一种组合, 例如, 表 9.1所示, 其它类似, 不再 列举。 For 5 MHz, the DCAS MB indicates, in Miniband, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: A DCASMB = {0 to 24 all integers on the closed interval}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set ADCASMB, a total of C 25 4 = 12650 combinations. DCAS should be able to use any combination, for example, as shown in Table 9.1, other similar, not listed.
表 9.1 Table 9.1
或者,系统带宽为 5MHz时,指示 DCASMB参数所使用的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自集合 ADCASMB , 共 C25 8 = 1081575种组合。 DCAS應可以釆用任意一种组合, 例如, 表 9.2所示, 其它 类似, 不再 列举。
表 9.2 Or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DCAS MB parameter is 3 bits. 3bits represents 8 different numbers, these 8 different numbers are taken from the set A DCASMB , a total of C 25 8 = 1081575 combinations. DCAS should be able to use any combination, for example, as shown in Table 9.2, other similar, not listed. Table 9.2
或者,系统带宽为 5MHz时,指示 DCASMB参数所使用的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 ADCASMB , 共 C25 16 = 2042975种组合。 DCASMB可以釆用任意一种组合, 例如, 表 9.3所示, 其 它类似, 不再 列举。 Or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DCAS MB parameter is 4 bits. 4bits represents 16 different numbers, these 16 different numbers are taken from the set A DCASMB , a total of C 25 16 = 2042975 combinations. DCAS MB can use any combination, for example, as shown in Table 9.3, other similar, and will not be enumerated.
表 9.3 Table 9.3
或者,系统带宽为 5MHz时,指示 DCASMB参数所使用的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目可以表示集合 ADCAS 中所 有的数值。 例如, 表 9.4所示。 Or, when the system bandwidth is 5 MHz, the number of bits used to indicate the DCAS MB parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set A DCAS . For example, Table 9.4 shows.
表 9.4 Table 9.4
FPo中基于 Miniband FPo中基于 Miniband FPo based on Miniband FPo based on Miniband
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目 Number of CRUs Number of CRUs
0 0 13 13 0 0 13 13
1 1 14 14 1 1 14 14
2 2 15 15 2 2 15 15
3 3 16 16 3 3 16 16
4 4 17 17 4 4 17 17
5 5 18 18 5 5 18 18
6 6 19 19
7 7 20 20 6 6 19 19 7 7 20 20
8 8 21 21 8 8 21 21
9 9 22 22 9 9 22 22
10 10 23 23 10 10 23 23
11 11 24 24 11 11 24 24
12 12 25-31 保留 12 12 25-31 Reserved
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB 参数所使用的比特数为 4bits。 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS MB parameter is 4bits.
对于 7MHz或 8.75MHz或 10MHz , DCASMB以 Miniband为单位指示了 第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: BDCASMB= {0至 48的闭区间上的所有整数}。 4bits表示 16个不同的数目, 这 16个不同 的数目取自集合 BDCA誦, 共 C49 16 = 3348108992991 种组合。 DCASMB可以 釆用任意一种组合, 例如, 表 9.5所示, 其它类似, 不再——列举。 For 7 MHz or 8.75 MHz or 10 MHz, the DCASMB indicates, in Miniband, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: B DCASMB = {0 to 48 for all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B DCA诵, a total of C 49 16 = 3348108992991 combinations. DCAS MB can use any combination, for example, as shown in Table 9.5, other similar, no longer - enumerated.
表 9.5 Table 9.5
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB参 数所使用的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目 取自集合 BDCASMB , 共 C49 32 = 6499270398159 种组合。 DCAS應可以釆用任 意一种组合, 例如, 表 9.6所示, 其它类似, 不再 列举。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS MB parameter is 5bits. 5bits represents 32 different numbers, these 32 different numbers are taken from the set B DCASMB , a total of C 49 32 = 6499270398159 combinations. DCAS should be able to use any combination, for example, as shown in Table 9.6, other similar, not listed.
表 9.6 Table 9.6
FPo中基于 Miniband FPo中基于 Miniband FPo based on Miniband FPo based on Miniband
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目 Number of CRUs Number of CRUs
0 0 16 16 0 0 16 16
1 1 17 17 1 1 17 17
2 2 18 18 2 2 18 18
3 3 19 19
5 5 21 21 3 3 19 19 5 5 21 21
6 6 22 22 6 6 22 22
7 7 23 23 7 7 23 23
8 8 24 24 8 8 24 24
9 9 25 25 9 9 25 25
10 10 26 26 10 10 26 26
11 11 27 27 11 11 27 27
12 12 28 28 12 12 28 28
13 13 29 29 13 13 29 29
14 14 30 30 14 14 30 30
15 15 31 31 15 15 31 31
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB参 数所使用的比特数为 6bits。 6bits 表示 64 个不同的数目, 可以表示集合 BDCASMB中所有的数值。 例如, 如表 9.7所示。 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits used to indicate the DCAS MB parameter is 6bits. 6bits represents 64 different numbers and can represent all the values in the set B DCASMB . For example, as shown in Table 9.7.
表 9.7 Table 9.7
19 19 44 44 19 19 44 44
20 20 45 45 20 20 45 45
21 21 46 46 21 21 46 46
22 22 47 47 22 22 47 47
23 23 48 48 23 23 48 48
24 24 49-63 保留 24 24 49-63 Reserved
第三类: 对于 20MHz, 指示 DCASMB参数所使用的比特数为 4bits。The third category: For 20MHz, the number of bits used to indicate the DCAS MB parameter is 4bits.
DCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: CDCASMB= {0至 96的闭区间上的所有整数}。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 BDCASMB , 共 C97 16 = 7930673 10934425856种组合。 DCAS應可以釆用任意一种组合, 例如, 表 9.5 , 其它类似, 不再 列举。 The DCASMB indicates, in Minpots, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: C DCASMB = {0 to 96 all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B DCASMB , a total of C 97 16 = 7930673 10934425856 combinations. DCAS should be able to use any combination, for example, Table 9.5, other similar, no longer listed.
或者, 系统带宽为 20MHz 时, 指示 DC AS應 参数所使用的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目取自集合 CDCASMB , 共 C97 32种组合。 DCAS應可以釆用任意一种组合。 例如, 表 9.8所示, 其它 类似, 不再 列举。 Or, when the system bandwidth is 20MHz, the number of bits used by the DC AS to indicate the parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers are taken from the set C DCASMB , a total of C 97 32 combinations. DCAS should be able to use any combination. For example, as shown in Table 9.8, other similarities are not listed.
表 9.8 Table 9.8
或者, 系统带宽为 20MHz 时, 指示 DC AS應 参数所使用的比特数为 bits。 6bits表示 64个不同的数目,这 64个不同的数目可以表示集合 CDCASMB 中所有的数值。 例如, 表 9.9所示。 Or, when the system bandwidth is 20MHz, it indicates that the number of bits used by the DC AS parameter is bits. 6bits represents 64 different numbers, and these 64 different numbers can represent all the values in the set CDCASMB. For example, Table 9.9 shows.
表 9.9 Table 9.9
30 30 62 62 30 30 62 62
31 31 63 63 31 31 63 63
或者, 系统带宽为 20MHz 时, 指示 DC AS應 参数所使用的比特数为 7bits。 7bits 表示 128 个不同的数目, 这 128 个不同的数目可以表示集合 CDCASMB中除 0或 1或 95或者 96外所有的数值。 Or, when the system bandwidth is 20MHz, the number of bits used by the DC AS to indicate the parameter is 7bits. 7bits represents 128 different numbers, which can represent all values in the collection CDCASMB except 0 or 1 or 95 or 96.
对于各个带宽下指示 DCASMB参数所使用的比特数可以从上述方法中 确定, 但对于不同的带宽, 指示 DCASMB参数所使用的比特数彼此部分相同 或完全不同。 例如, 系统带宽为 5MHz时, 指示 DC ASMB参数所使用的比特 数为 3bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指示该 参数所使用的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所使用的 比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所使用的比 特数为 3bits; 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ) 时, 指示 该参数所使用的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所使用 的比特数为 4bits, 或者其他组合。 The number of bits used to indicate the DCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the DCAS MB parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5 MHz, the number of bits used to indicate the DC AS MB parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits used to indicate the parameter is 4 bits; the system bandwidth is At 20MHz, the number of bits used to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits used to indicate the DCAS MB parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the indication The number of bits used in this parameter is 4 bits. When the system bandwidth is 20 MHz, the number of bits used to indicate the parameter is 4 bits, or other combinations.
需要指出: 在上述 DCAS應 的配置方法中, 当两个不同的带宽使用了 相同的比特数指示 DCASMB参数, 对应的表格可以相同或不同。 例如, 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所使用的比特 数为 5bits , 但对应的表格为表 9.6; 系统带宽为 20MHz时, 指示该参数所使 用的比特数为 5bits, 但对应的表格为表 9.8。 It should be pointed out that in the above configuration method of DCAS, when two different bandwidths use the same number of bits to indicate the DCAS MB parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits used to indicate the parameter is 5bits, but the corresponding table is Table 9.6; when the system bandwidth is 20MHz, the number of bits used by the parameter is indicated. It is 5bits, but the corresponding table is Table 9.8.
相同的表格是指: 由于系统带宽为 1 OMHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 DCASMB的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时釆用相同的表格, 例如, 可以釆用表 9.8中的一个, 或者按照 20MHz时的 配置方法产生。 或者, 按照下面的方法产生: The same table means: Since the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered. The 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified. When the bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the same DCAS MB value and corresponding relationship are used, that is, when the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz Use the same table, for example, you can use one of the tables in 9.8, or generate it according to the configuration method at 20MHz. Or, generate it as follows:
表 9.10 Table 9.10
10MHz ( 可以为 7MHz 或 20MHzFP0 中 基 于 占 PRU总 10MHz (can be 7MHz or 20MHz FP 0 based on the total PRU
DCASMB 8.75MHz )FP。中基于 Miniband Miniband的 CRU的数 数的比例 DCASMB 8.75MHz) FP. Proportion of the number of CRUs based on Miniband Miniband
的 CRU的数目 目 Number of CRUs
0 0/48 0 0 0 0/48 0 0
1 1/48 1 2 1 1/48 1 2
2 2/48 2 4
4 4/48 4 8 2 2/48 2 4 4 4/48 4 8
5 5/48 5 10 5 5/48 5 10
6 6/48 6 12 6 6/48 6 12
7 7/48 7 14 7 7/48 7 14
8 8/48 8 16 8 8/48 8 16
9 9/48 9 18 9 9/48 9 18
10 10/48 10 20 10 10/48 10 20
11 11/48 11 22 11 11/48 11 22
12 12/48 12 24 12 12/48 12 24
13 13/48 13 26 13 13/48 13 26
14 14/48 14 28 14 14/48 14 28
15 15/48 15 30 15 15/48 15 30
此夕卜, 5MHz可以与 10MHz (也可以为 7MHz或 8.75MHz ) 均釆用 3 比特或 4比特或者 5比特。 In addition, 5MHz can be used with 10MHz (also 7MHz or 8.75MHz) with 3 bits or 4 bits or 5 bits.
另外, 需要指出: 在上述 DCAS應 的配置方法中, 针对每一个表, DCASMB的值与 DCASMB的值指示的意义中间的关系是可以变化的, 每一个 表格均是一个实施例, 只要一个表中包含的 DCASMB的值是指示的意义是相 同的, 均被视为相同的表, 都在保护范围之内。 In addition, it should be pointed out that: In the above configuration method of DCAS, the relationship between the value of DCASMB and the meaning of the value indicated by DCAS MB can be changed for each table, and each table is an embodiment, as long as one table The values of the DCAS MB included in the indications are the same meaning, and are considered to be the same table, all within the scope of protection.
通过上述实例 9 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时,指示 DCASMB的比特数分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits , 或者分别需要 4bits、 5bits、 6bits, 或者分别需要 5bits、 6bits、 7bits或者其他组合时, 在 DCASMB的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 Through the above example 9, it can be seen that the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz). In the 20MHz system, the number of bits indicating the DCAS MB needs 3bits, 4bits, 4bits, or 3bits, 4bits, respectively. 5bits, or 4bits, 5bits, 6bits, or 5bits, 6bits, 7bits or other combinations respectively, when the possible value of DCAS MB is reduced, the redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility.
上4亍基于 Miniband的 CRU分配数 ( UCASMB ) 的配置方法 Top 4 Mini Miniband-based CRU allocation number ( UCASMB ) configuration method
实施例 10 Example 10
UCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的 UCASMB indicates the Miniband-based frequency band in the 0th frequency partition in Miniband
CRU的数目。 图 19是根据本发明实施例的资源映射指示信息的配置方法对 于 5MHz系统带宽釆用不同数量的比特指示参数时信令 UCASMB的应用示意 图, 如图 19所示, UCASMB取不同的值时, 上行 CRU/DRU Allocation过程 是不同的。 可见当 UCASMB取不同值时, 资源映射的方式也不同。 The number of CRUs. FIG. 19 is a schematic diagram of application of signaling UCAS MB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention, as shown in FIG. 19, when UCAS MB takes different values. The uplink CRU/DRU Allocation process is different. It can be seen that when UCAS MB takes different values, the way of resource mapping is different.
下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UCASMB的配置情况进行说明, 第一类为 5MHz , 第 二类为 7MHz或 8.75MHz或 10MHz , 第三类为 20MHz。
第一类: 系统带宽为 5MHz 时, 指示 UCASMB参数与实施例 9 中的 DCAS應配置方法类似, 可以用 2、 3、 4或 5bits表示 UCASMB , 第二类: 系 统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASMB参数与实施例 9中 的 DCASMB配置方法类似, 可以用 4、 5或 6bits表示 UCASMB , 第三类: 对 于 20MHz, 指示 UCAS應参数与实施例 9中的 DCASMB配置方法类似, 可 以用 5或 6bits表示 UCASMB。上述 3种情况相应表格也和实施例 9的表格类 似, 只是把 DCAS應改成 UCAS應即可, 详细方法可以参见实施例 9 , 在此 不再——赘述 The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS MB , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz. The third category is 20MHz. The first class: when the system bandwidth is 5MHz, indicating similar DCAS UCAS MB parameters should be configured in the method of Example 9, may be 2, 3, 4 or 5bits represented UCAS MB, the second category: the system bandwidth is 8.75MHz or 7MHz or 10MHz, indicating UCAS MB MB parameters and the DCAS embodiment is similar to the configuration method in Example 9, with 4, 5 or 6bits represented UCAS MB, third category: for 20MHz, DCAS 9 indicates UCAS Example MB parameters should The configuration method is similar, and UCAS MB can be represented by 5 or 6 bits. The corresponding table of the above three cases is similar to the table of the embodiment 9, except that the DCAS should be changed to UCAS. For the detailed method, refer to the embodiment 9, which is not repeated here.
对于各个带宽下指示 UCASMB参数所使用的比特数可以从上述方法中 确定, 但对于不同的带宽, 指示 UCASMB参数所使用的比特数彼此部分相同 或完全不同。 UCAS應参数与实施例 9中的 DCAS應配置方法类似, 详细方 法可以参见实施例 9, 在此不再——赘述。 The number of bits used to indicate the UCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits used to indicate the UCAS MB parameters is partially identical or completely different from each other. The UCAS parameters are similar to the DCAS configuration method in Embodiment 9. For detailed methods, refer to Embodiment 9, which is not repeated here.
需要指出: 在上述 UCAS應 的配置方法中, 当两个不同的带宽使用了 相同的比特数指示 UCASMB参数, 对应的表格可以相同或不同。 UCASMB参 数与实施例 9中的 DCAS應配置方法类似, 详细方法可以参见实施例 9 , 在 此不再——赘述。 It should be noted that in the above UCAS configuration method, when two different bandwidths use the same number of bits to indicate the UCAS MB parameter, the corresponding tables may be the same or different. The UCAS MB parameter is similar to the DCAS configuration method in Embodiment 9. For the detailed method, refer to Embodiment 9, which is not repeated here.
相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑将 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以将系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时釆用相同的 UCASMB的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时釆用相同的表格, UCASMB参数与实施例 9中的 DCASMB配置方法类似, 详细方法可以参见实施例 9, 在此不再——赘述。 The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the similarity can be considered to be unified by 10MHz (can be 7MHz or 8.75MHz) and 20MHz, and the system bandwidth can be When 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the same UCAS MB value and corresponding relationship are used, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. Using the same table, the UCASMB parameters are similar to the DCAS MB configuration method in Embodiment 9, and the detailed method can be seen in Embodiment 9, which is not repeated here.
通过上述实施例, 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz ), 20MHz系统时,指示 UCASMB的比特数分另1 J需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits , 或者分别需要 4bits、 5bits、 6bits, 或者分别需要 5bits、 6bits、 7bits或者其他组合时, 在 UCASMB的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 By the above-described embodiments, it can be seen, the system bandwidths of 5MHz, 10MHz (7MHz or may be of 8.75 MHz) when the system is 20MHz, the number of bits of the other points indicated UCAS MB requires 1 J 3bits,, 4bits, 4bits, are or need 3bits 4bits, 5bits, or 4bits, 5bits, 6bits, or 5bits, 6bits, 7bits, or other combinations, respectively. When the possible value of UCAS MB is reduced, redundant and unnecessary information indications are deleted. , saves bit overhead and guarantees a certain flexibility.
本发明实施例还提供了一种资源映射指示信息的配置装置, 图 20是根 据本发明实施例的资源映射知识信息的配置装置的结构框图, 该装置包括: 指示模块 202 , 用于使用一定数目的比特指示资源映射的参数, 其中, 指示 模块 202 包括: 第一确定模块 204 , 用于根据带宽确定指示该参数所使用的
比特数, 对于多个不同的带宽, 指示该参数所需的比特数彼此部分相同或完 全不同。 The embodiment of the present invention further provides a device for configuring resource mapping indication information, and FIG. 20 is a structural block diagram of a device for configuring resource mapping knowledge information according to an embodiment of the present invention. The device includes: an indication module 202, configured to use a certain number. The bit indicates the parameter of the resource mapping, where the indication module 202 includes: a first determining module 204, configured to determine, according to the bandwidth, the parameter used to indicate the parameter Number of bits, for a number of different bandwidths, the number of bits required to indicate the parameter is partially identical or completely different from each other.
该装置根据带宽对于系统支持的每个带宽配置指示参数所使用的比特 数, 使得不同带宽下的进行指示的比特数不完全相同, 进而使得物理资源映 射指示信令使用的比特数能够根据系统使用的带宽灵活变化, 尽可能地减少 传输的比特数, 避免了相关技术中控制信道开销大的问题。 The device allocates the number of bits used for indicating the parameter to each bandwidth supported by the system according to the bandwidth, so that the number of indicated indication bits in different bandwidths is not completely the same, so that the number of bits used by the physical resource mapping indication signaling can be used according to the system. The bandwidth is flexibly changed, the number of transmitted bits is reduced as much as possible, and the problem of large control channel overhead in the related art is avoided.
图 21是根据本发明实施例的第一确定模块的结构框图, 第一确定模块 204包括: 第二确定模块 212 , 用于根据带宽确定系统的 FFT点数; 第三确 定模块 214耦合至第二确定模块 212 , 用于根据 FFT点数确定指示该参数所 使用的比特数。 FIG. 21 is a structural block diagram of a first determining module according to an embodiment of the present invention. The first determining module 204 includes: a second determining module 212, configured to determine an FFT point number of the system according to a bandwidth; and a third determining module 214 coupled to the second determining The module 212 is configured to determine, according to the number of FFT points, the number of bits used to indicate the parameter.
由于带宽一旦确定 FFT 点数就可以确定, 即带宽可以——对应相应的 FFT点数, 并且 FFT点数也是一种常用的系统参数, 釆用 FFT点数能够比较 容易地确定指示参数所使用的比特数, 增强了该装置的实用性。 Since the bandwidth can be determined once the FFT point is determined, that is, the bandwidth can be corresponding to the corresponding FFT point, and the FFT point number is also a commonly used system parameter, and the number of bits used to indicate the parameter can be relatively easily determined by using the FFT point number, and the enhancement is performed. The utility of the device.
综上所述, 借助于本发明提供的资源映射指示信息的配置方法, 对于系 统支持的每个带宽配置指示参数所使用的比特数, 并且同一参数在不同带宽 下的进行指示的比特数部分相同或完全不同, 使得物理资源映射指示信令使 用的比特数能够根据系统使用的带宽灵活变化,尽可能地减少传输的比特数, 避免了相关技术中控制信道开销大的问题, 在不影响系统正常的运作的前提 下节约下行控制开销, 从而提高系统的工作效率。 In summary, the method for configuring the resource mapping indication information provided by the present invention configures the number of bits used by the indicator for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same. Or completely different, the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible, thereby avoiding the problem of large control channel overhead in the related art, without affecting the normal system. Under the premise of operation, the downlink control overhead is saved, thereby improving the working efficiency of the system.
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
The above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.
Claims
1. 一种资源映射指示信息的配置方法, 其特征在于, 包括: A method for configuring resource mapping indication information, which is characterized by:
使用一定数目的比特指示资源映射的至少一个参数, 其中, 根据带 宽确定指示所述参数所使用的比特数, 对于多个不同的带宽, 指示所述 参数所需的比特数彼此部分相同或完全不同。 Determining at least one parameter of the resource mapping using a certain number of bits, wherein the number of bits used to indicate the parameter is determined according to the bandwidth, and for a plurality of different bandwidths, the number of bits required to indicate the parameter is partially identical or completely different from each other .
2. 根据权利要求 1所述的方法, 其特征在于, 根据带宽确定指示所述参数 所使用的比特数包括: 2. The method according to claim 1, wherein determining the number of bits used to indicate the parameter according to the bandwidth comprises:
根据带宽确定系统的 FFT点数, 并根据所述 FFT点数确定指示所 述参数所使用的比特数。 The number of FFT points of the system is determined based on the bandwidth, and the number of bits used to indicate the parameter is determined based on the number of FFT points.
3. 根据权利要求 1所述的方法, 其特征在于, 所述资源映射包括下行资源 映射和 /或上行资源映射, 其中, 所述下行资源映射包括以下至少之一: 子带划分、 微带置换、 频率分区划分、 连续资源单元 /分布资源单元分配 和子载波置换; 所述上行资源映射包括以下至少之一: 子带划分、 微带 置换、 频率分区划分、 连续资源单元 /分布资源单元分配和 Tile置换。 The method according to claim 1, wherein the resource mapping includes a downlink resource mapping and/or an uplink resource mapping, where the downlink resource mapping includes at least one of the following: subband division, microstrip replacement , frequency partition division, contiguous resource unit/distributed resource unit allocation, and subcarrier permutation; the uplink resource mapping includes at least one of the following: subband division, microstrip replacement, frequency partition division, continuous resource unit/distributed resource unit allocation, and Tile Replacement.
4. 根据权利要求 1所述的方法, 其特征在于, 所述不同的带宽包括第一带 宽、 第二带宽和第三带宽, 其中, 对于所述资源映射的一个参数: 对应 于所述第一带宽, 指示该参数所使用的比特数为 M; 对应于所述第二带 宽, 指示该参数所使用的比特数为 N; 对应于所述第三带宽, 指示该参 数所使用的比特数为 P, 并且, M、 N、 P的取值彼此部分相同或完全不 同。 The method according to claim 1, wherein the different bandwidth comprises a first bandwidth, a second bandwidth, and a third bandwidth, wherein: one parameter for the resource mapping: corresponding to the first Bandwidth, indicating the number of bits used by the parameter is M; corresponding to the second bandwidth, indicating that the number of bits used by the parameter is N; corresponding to the third bandwidth, indicating the number of bits used by the parameter is P And, the values of M, N, and P are partially identical or completely different from each other.
5. 根据权利要求 4所述的方法, 其特征在于, 所述 M、 N、 P的取值彼此 部分相同是指: The method according to claim 4, wherein the values of the M, N, and P are partially identical to each other:
N=M+1、 且 P=M+1 ; 或者, N=M+2、 且 P=M+2; 或者, N=M、 JL P=M+1; 或者, N=M、 JL P=M+2, 其中 M为大于 0的整数。 N=M+1, and P=M+1; or, N=M+2, and P=M+2; or, N=M, JL P=M+1; or, N=M, JL P= M+2, where M is an integer greater than zero.
6. 根据权利要求 4所述的方法, 其特征在于, 所述 M、 N、 P的取值彼此 完全不同是指: The method according to claim 4, wherein the values of the M, N, and P are completely different from each other:
N=M+1、 JL P=M+2; 或者 N=M+2、 JL P=M+3 , 或者 N=M+1、 且 P=M+3 , 其中 M为大于 0的整数。 N=M+1, JL P=M+2; or N=M+2, JL P=M+3, or N=M+1, and P=M+3, where M is an integer greater than zero.
7. 根据权利要求 4至 6中任一项所述的方法, 其特征在于, M的取值为 1 或 2或 3或 4。 The method according to any one of claims 4 to 6, characterized in that the value of M is 1 or 2 or 3 or 4.
8. 根据权利要求 4至 6中任一项所述的方法, 其特征在于, The method according to any one of claims 4 to 6, characterized in that
所述第一带宽包括: 5MHz, 所述第二带宽包括以下之一: 7MHz、 8.75MHz, 10MHz、 所述第三带宽包括: 20MHz。
The first bandwidth includes: 5 MHz, and the second bandwidth includes one of the following: 7 MHz, 8.75 MHz, 10 MHz, and the third bandwidth includes: 20 MHz.
9. 根据权利要求 1所述的方法, 其特征在于, 所述资源映射的参数包括以 下至少之一: 下行子带分配数、 上行子带分配数、 下行频率分区配置、 上行频率分区配置、 下行频率分区子带分配数、 上行频率分区子带分配 数、 下行连续资源单元分配的数目、 上行连续资源单元分配的数目、 下 行基于啟带 Miniband的连续资源单元的数目、 上行基于 Miniband的连 续资源单元的数目。 The method according to claim 1, wherein the parameter of the resource mapping comprises at least one of the following: a downlink subband allocation number, an uplink subband allocation number, a downlink frequency partition configuration, an uplink frequency partition configuration, and a downlink. Frequency partition subband allocation number, uplink frequency partition subband allocation number, downlink contiguous resource unit allocation number, uplink contiguous resource unit allocation number, downlink continuation resource unit based on priming miniband, and uplink miniband contiguous resource unit Number of.
10. 根据权利要求 9所述的方法, 其特征在于, 所述下行子带分配数和 /或所 述上行子带分配数是指子带划分中子带的数目; 所述下行频率分区配置 和 /或所述上行频率分区配置是指频率分区划分中频率分区的个数和 /或 各个频率分区的大小或比例; 所述下行频率分区子带分配数和 /或所述上 行频率分区子带分配数是指频率分区中除频率分区 0以外的频率分区中 子带的数目; 所述下行连续资源单元分配的数目和 /或所述上行连续资源 单元分配的数目是指每个频率分区中连续资源单元分配的数目; 所述下 行基于 Miniband 的连续资源单元的数目是指下行频率分区 0 中基于 Miniband的连续资源单元的数目;所述上行基于 Miniband的连续资源单 元的数目是指上行频率分区 0中基于 Miniband的连续资源单元的数目, 其中, 数目的单位为子带或啟带或物理资源单元。 The method according to claim 9, wherein the downlink subband allocation number and/or the uplink subband allocation number refers to the number of subbands in the subband division; the downlink frequency partition configuration and And the uplink frequency partition configuration refers to the number of frequency partitions in the frequency partition division and/or the size or proportion of each frequency partition; the downlink frequency partition subband allocation number and/or the uplink frequency partition subband allocation The number refers to the number of sub-bands in the frequency partition except frequency partition 0; the number of downlink contiguous resource unit allocations and/or the number of uplink contiguous resource unit allocations refers to consecutive resources in each frequency partition The number of contiguous resource units based on the Miniband refers to the number of contiguous resource units based on the Miniband in the downlink frequency partition 0; the number of consecutive contiguous resource units based on the Miniband refers to the uplink frequency partition 0. The number of consecutive resource elements based on Miniband, where the number of units is subband or start band or physical resource unit .
11. 一种资源映射指示信息的配置装置, 其特征在于, 包括: An apparatus for configuring resource mapping indication information, including:
指示模块, 用于使用一定数目的比特指示资源映射的至少一个参 数, 其中, 所述指示模块还包括: 第一确定模块, 用于根据带宽确定指 示所述参数所使用的比特数, 对于多个不同的带宽, 指示所述参数所需 的比特数彼此部分相同或完全不同。 The indication module is configured to indicate at least one parameter of the resource mapping by using a certain number of bits, where the indication module further includes: a first determining module, configured to determine, according to the bandwidth, a number of bits used to indicate the parameter, for multiple For different bandwidths, the number of bits required to indicate the parameters is partially identical or completely different from each other.
12. 根据权利要求 11所述的装置, 其特征在于, 所述第一确定模块包括: 第二确定模块, 用于根据带宽确定系统的 FFT点数; 第三确定模块, 用于根据所述 FFT 点数确定指示所述参数所使用 的比特数。
The device according to claim 11, wherein the first determining module comprises: a second determining module, configured to determine an FFT point number of the system according to the bandwidth; and a third determining module, configured to determine, according to the FFT point The number of bits used to indicate the parameter is determined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910130558.0 | 2009-04-03 | ||
CN 200910130558 CN101854727B (en) | 2009-04-03 | 2009-04-03 | Method for configuring resource mapping indication information |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010111974A1 true WO2010111974A1 (en) | 2010-10-07 |
Family
ID=42805923
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/073922 WO2010111859A1 (en) | 2009-04-03 | 2009-09-14 | Method for configuring resource mapping indication information |
PCT/CN2010/071554 WO2010111974A1 (en) | 2009-04-03 | 2010-04-02 | Configuration method and apparatus for resource mapping indication information |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/073922 WO2010111859A1 (en) | 2009-04-03 | 2009-09-14 | Method for configuring resource mapping indication information |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101854727B (en) |
WO (2) | WO2010111859A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110461014A (en) * | 2013-03-28 | 2019-11-15 | 华为技术有限公司 | Bandwidth allocation methods, device, user equipment and base station |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801675B (en) * | 2011-05-25 | 2014-10-08 | 华为技术有限公司 | Method and system for transmitting indication information as well as method for receiving indication information and equipment |
US10756838B2 (en) | 2016-08-02 | 2020-08-25 | Nec Corporation | Methods and apparatuses for numerology multiplexing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101123805A (en) * | 2006-08-11 | 2008-02-13 | 华为技术有限公司 | Orthogonal frequency division multiplexing access system and its device, transmission method and terminal |
CN101127719A (en) * | 2007-09-27 | 2008-02-20 | 中兴通讯股份有限公司 | Indication method for wireless resource allocation of LTE system |
WO2008084422A2 (en) * | 2007-01-04 | 2008-07-17 | Nokia Corporation | Allocation of time-frequency resources to a control channel |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101346959A (en) * | 2005-10-27 | 2009-01-14 | 高通股份有限公司 | Method and apparatus for achieving flexible bandwidth using variable guard bands |
JP4918841B2 (en) * | 2006-10-23 | 2012-04-18 | 富士通株式会社 | Encoding system |
CN101242625B (en) * | 2007-02-06 | 2011-08-03 | 华为技术有限公司 | A method, system and device for control channel resource mapping |
GB2451510A (en) * | 2007-08-02 | 2009-02-04 | Nec Corp | Signalling of dynamic allocation of subcarriers in OFDM systems |
-
2009
- 2009-04-03 CN CN 200910130558 patent/CN101854727B/en not_active Expired - Fee Related
- 2009-09-14 WO PCT/CN2009/073922 patent/WO2010111859A1/en active Application Filing
-
2010
- 2010-04-02 WO PCT/CN2010/071554 patent/WO2010111974A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101123805A (en) * | 2006-08-11 | 2008-02-13 | 华为技术有限公司 | Orthogonal frequency division multiplexing access system and its device, transmission method and terminal |
WO2008084422A2 (en) * | 2007-01-04 | 2008-07-17 | Nokia Corporation | Allocation of time-frequency resources to a control channel |
CN101127719A (en) * | 2007-09-27 | 2008-02-20 | 中兴通讯股份有限公司 | Indication method for wireless resource allocation of LTE system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110461014A (en) * | 2013-03-28 | 2019-11-15 | 华为技术有限公司 | Bandwidth allocation methods, device, user equipment and base station |
CN110461014B (en) * | 2013-03-28 | 2024-03-15 | 华为技术有限公司 | Bandwidth allocation method, device, user equipment and base station |
US12022446B2 (en) | 2013-03-28 | 2024-06-25 | Huawei Technologies Co., Ltd. | Bandwidth allocation method and apparatus, user equipment, and base station |
Also Published As
Publication number | Publication date |
---|---|
CN101854727B (en) | 2013-02-27 |
WO2010111859A1 (en) | 2010-10-07 |
CN101854727A (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10045392B2 (en) | Signaling for flexible carrier aggregation | |
EP2384041B1 (en) | System information transmission method | |
JP5349601B2 (en) | Method and apparatus for allocating resources for multicast and / or broadcast service data in a wireless communication system | |
KR101304114B1 (en) | Resource mapping method of control channels | |
JP5073101B2 (en) | Method and apparatus for allocating resources for multicast and / or broadcast service data in a wireless communication system | |
WO2018149165A1 (en) | Methods and systems for numerology determination of wireless communication systems | |
WO2022002206A1 (en) | Ppdu transmission method and related device | |
CN101374017B (en) | Method for distributing physical resource blocks based on OFDM system | |
CN107113829B (en) | Method and apparatus for allocating radio resources according to resource allocation setting in W L AN | |
WO2010009679A1 (en) | Method for sub-channelizing and resource mapping of wireless resources | |
WO2011079525A1 (en) | Method and apparatus for allocating downlink resources and implementing downlink data reception | |
CN117176309A (en) | Apparatus and method for discontinuous multiple resource units in a wireless network | |
WO2021017995A1 (en) | Control information transmission method and apparatus | |
CN101820584A (en) | Method and device for dividing and mapping resources | |
CN106688261A (en) | Resource allocation method, transmitting terminal device, and receiving terminal device | |
JP2012525809A (en) | Radio resource allocation method and apparatus in orthogonal frequency division multiplexing communication system | |
WO2011087242A2 (en) | Method and apparatus for allocating resources for enhanced multicast broadcast service data in wireless communication system | |
WO2010111974A1 (en) | Configuration method and apparatus for resource mapping indication information | |
WO2010051704A1 (en) | Method for mapping resource cells | |
KR101558568B1 (en) | Method of allocating resource region for mitigating intercell interference | |
CN101330484B (en) | Method for distributing mixed resource base on OFDM system and denoting signaling of the system | |
CN101925120B (en) | Resource mapping indication information configuring methods | |
CN102056083B (en) | Resource allocation methods and base station | |
WO2011113277A1 (en) | Resource mapping method and base station | |
CN102415122A (en) | Method for mapping subband/miniband in wireless communication system and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758076 Country of ref document: EP Kind code of ref document: A1 |