WO2010111859A1 - Method for configuring resource mapping indication information - Google Patents

Method for configuring resource mapping indication information Download PDF

Info

Publication number
WO2010111859A1
WO2010111859A1 PCT/CN2009/073922 CN2009073922W WO2010111859A1 WO 2010111859 A1 WO2010111859 A1 WO 2010111859A1 CN 2009073922 W CN2009073922 W CN 2009073922W WO 2010111859 A1 WO2010111859 A1 WO 2010111859A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
bits
indicate
system bandwidth
bits required
Prior art date
Application number
PCT/CN2009/073922
Other languages
French (fr)
Chinese (zh)
Inventor
宁丁
关艳峰
刘向宇
刘颖
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010111859A1 publication Critical patent/WO2010111859A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • a base station generally refers to a radio transceiver station capable of transmitting information through a mobile communication switching center and a terminal in a certain radio coverage area.
  • the base station can communicate with the terminal through the uplink/downlink, where the downlink refers to the transmission direction of the base station to the terminal, and the uplink refers to the transmission direction of the terminal to the base station.
  • a plurality of terminals may simultaneously transmit data to the base station through the uplink, or may simultaneously receive data from the base station through the downlink.
  • the transmitted data can be relayed between the base station and the terminal through the relay station.
  • scheduling allocation of system radio resources is performed by a base station.
  • the downlink resource allocation information used by the base station for downlink transmission and the uplink resource allocation information required for the terminal to perform uplink transmission may be given by the base station.
  • the base station when scheduling a radio resource of an air interface, the base station usually uses one radio frame as a scheduling period, and divides the radio resource into several radio resource units (for example, one time slot or one codeword can be used as A resource unit is scheduled, and the base station provides data or multimedia services to the terminals it covers by scheduling the radio resource unit.
  • the base station divides the radio resources at each frequency point into a period of 4.615 ms.
  • Time Division Multiple Address (TDMA) radio frame each radio frame contains 8 time slots, one time slot transmits a full rate channel, or transmits two half rate channels, and can also be used To achieve low-speed data services;
  • TDMA Time Division Multiple Address
  • the 2.5-generation wireless communication system for example, in the General Packet Radio Service (GPRS)
  • GPRS General Packet Radio Service
  • the introduction of fixed-slot-based packet switching can continue to enhance data services
  • the base station can also vacate the radio resources of the air interface.
  • each 10ms contains 14 regular time slots and 6 special time slots.
  • the regular time slots are used to transmit specific services and signaling.
  • the base stations distinguish users by different code words.
  • GSM and TD-SCDMA systems mainly use TDMA and
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Address
  • LTE Long Term Evolution
  • UMB Ultra Mobile Broadband
  • IEEE 802.16m radio resources are also divided into frames for management, but each OFDMA symbol ⁇ A plurality of mutually orthogonal subcarriers are included, and the terminal usually occupies a part of subcarriers, so that techniques such as Fractional Frequency Reuse (FFR) can be used to reduce interference and improve coverage.
  • FFR Fractional Frequency Reuse
  • the base station divides the available physical subcarriers into physical resource units (PTUs), and then maps physical resource units into contiguous resource units ( Contiguous Resource Unit, called CRU) and distributed resource unit (Distribu) a ted Resource Unit (referred to as DRU) to improve transmission performance, wherein subcarriers in consecutive resource units are continuous, and subcarriers in distributed resource units are completely discontinuous or incompletely continuous;
  • PTUs physical resource units
  • CRU Contiguous Resource Unit
  • DRU distributed resource unit
  • a ted Resource Unit referred to as DRU
  • base stations need to support multiple different bandwidths (eg, 5 MHz, 10 MHz, or 20 MHz) or multi-carrier operation to take advantage of different frequency resources and meet the needs of different operators.
  • the resource mapping process of the OFDM or OFDMA-based wireless communication system is more complicated, so that the instruction signaling overhead for controlling the resource mapping process is large, and the terminal parses the resource allocation information of the base station to determine its receiving and transmitting data.
  • the complexity of the process of physical resource location increases. It can be seen that the resource mapping process of the wireless communication system considering OFDM or OFDMA technology will be complicated. In order to reduce the indication signaling overhead of the resource mapping and optimize the system information management and transmission method, a reasonable resource mapping is needed.
  • the base station In order to ensure the efficiency of the wireless communication system, the base station usually maps the physical radio resources into logical radio resources, for example, mapping physical subcarriers into logical resource units, and the base station implements scheduling of radio resources by scheduling logical resource units.
  • FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art. As shown in FIG.
  • a radio resource is divided into super frames in a time domain, and each super frame includes 4 frames, and each frame includes 8 subframes.
  • the subframe is composed of 6 basic OFDMA symbols, and the actual system determines how many OFDMA symbols are included in each level unit in the frame structure according to factors such as the bandwidth to be supported and/or the cyclic prefix length of the OFDMA symbol;
  • a broadcast channel is set in the first downlink subframe in the superframe (because it is located in the superframe header, also called a superframe header) and system information such as resource mapping is sent; and the system can also set unicast and/or Or the multicast control channel transmits scheduling control information such as resource allocation.
  • the resource structure divides the available bandwidth in the frequency domain into multiple frequency partitions (Frequency Partitions, called FPs), and then divides the frequency resources in the frequency partition into consecutive resource units. And/or distributed resource units for scheduling.
  • FIG. 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art. As shown in FIG. 2, available physical subcarriers of one subframe are divided into three frequency partitions, and each frequency partition is divided into continuous resources and distribution. The resource unit, the continuous resource unit is used for frequency selective scheduling, and the distributed resource unit is used for frequency diversity scheduling.
  • the resource mapping method 1 1 needs to support 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz system bandwidth (barrel bandwidth), and 5 MHz, when partial protection subcarriers are used to map PRUs without considering multi-carrier operation.
  • the number of corresponding PRUs is 24, 48, 48, 48 and 96. Therefore, the indication parameters of resource mapping are different under different system bandwidths. For example, a system with a bandwidth of 5 MHz has 24 PRUs per subframe. When 4 PRUs form a subband, there are up to 6 Subbands, while in a 7 MHz, 8.75 MHz, or 10 MHz system, there are 48 PRUs.
  • the Subband Allocation Count (SAC) is set differently to save overhead.
  • FIG. 3 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 5 MHz bandwidth. As shown in FIG. 3, a downlink subframe resource mapping process of a 5 MHz OFDMA system is described.
  • the PRU SB refers to the PRU for the Subband
  • the PRU MB refers to the PRU for the Miniband
  • the PPRU MB refers to the PRU through the Miniband Permutation
  • the PRUpPi refers to the PRU that belongs to the i (ii > 0) frequency partition.
  • the following takes the 5MHz bandwidth as an example to describe the steps of physical resource mapping: (1) Subband division, that is, extracting a part of the PRU mapping in units of one Subband
  • the number of downlink Subbands and the number of uplink Subbands are indicated by two parameters: Downlink Subband Allocation Count (Downlink Subband Allocation Count) and Uplink Subband Allocation Count (USAC). .
  • Downlink Subband Allocation Count Downlink Subband Allocation Count
  • UBC Uplink Subband Allocation Count
  • the base station uses DSAC to indicate Subband Partitioning, and obtains PRU SB (the unshaded portion in the figure), and the remaining Partially mapped to Miniband, as shown in the figure PRU MB (shaded in the figure).
  • FIG. 5 is a schematic diagram of the encapsulation replacement process of the wireless communication system according to the related art 5 MHz bandwidth, as shown in FIG. , Replace the 12 PRUs. This step does not require additional parameter indications, which are done according to DSAC. Similarly, the upstream microstrip replacement is done according to USAC.
  • Frequency partitioning that is, dividing the divided Subband and the replaced Miniband into respective frequency partitions.
  • This step requires two parameters, one for indicating the number, size, and/or proportion of each frequency partition, and the downlink and uplink are configured by Downlink Frequency Partition Configuration (Downlink Frequency Partition Configuration) and Upstream Frequency Partition Configuration ( Uplink Frequency Partition Configuration, the cartridge is called UFPC) indication; another parameter is used to indicate the number of Subbands in the frequency partition except the first frequency partition (ie FP.), and the downlink and uplink are respectively allocated by the downlink frequency partition subband.
  • Downlink Frequency Partition Configuration Downlink Frequency Partition Configuration
  • Upstream Frequency Partition Configuration Uplink Frequency Partition Configuration
  • UFPC Uplink Frequency Partition Configuration
  • DFPSC Downlink Frequency Partition Subband Count
  • UDCSC Uplink Frequency Partition Subband Count
  • DFPSC Downlink Frequency Partition Subband Count
  • UFCSC Uplink Frequency Partition Subband Count
  • the size of the frequency partition other than the first frequency partition is equal to the number of Subbands included, a certain redundancy reduction can be performed, and some impossible values are removed.
  • 6 is a schematic diagram of frequency partition division of a wireless communication system according to the related art with a 5 MHz bandwidth. As shown in FIG. 6, except that the first frequency partition size is 24 PRUs, the other frequency partition sizes are 0, and other frequency partitions Subband. The frequency partition division of the number 0.
  • the downlink frequency partition is indicated by the number of downlink contiguous resource units (Downlink CRU Allocation Size, referred to as DCAS), and the uplink frequency partition is indicated by the number of uplink contiguous resource units (Uplink CRU Allocation Size, called UCAS). If the size of some frequency partitions is 0, you do not need to carry this parameter.
  • DCAS Downlink CRU Allocation Size
  • UCAS Uplink CRU Allocation Size
  • the size of the first frequency partition is 24 PRUs
  • the size of other frequency partitions is 0
  • the number of CRUs of the first frequency partition is A schematic diagram of 12, where the unshaded portion of the last column represents the CRU and the shadow represents the DRU. It should be noted that one bit can be used to indicate whether the Subband is used as the CRU by default, and the Miniband is used as the DRU by default. In this case, the overhead can be further saved without sending DCAS or UCAS.
  • Subcarrier permutation or tile permutation that is, subcarrier replacement for PRUs mapped to DRUs in each frequency partition in the downlink subframe, and PRUs for mapping to DRUs in respective frequency partitions in the uplink subframe Perform a Tile replacement.
  • the CRU and DRU described herein refer to resource units that have not yet passed through step (5). After the fifth step, it is called Contiguous Logical Resource Unit (CLRU) and Distributed Logical Resource Unit (DLRU), without causing ambiguity.
  • ⁇ 1 CLRU and can be referred to as a CRU DLRU cylinder and DRU.
  • FIG. 3 is a specific example of physical resource mapping in the case of a 5 MHz bandwidth, including a process of contiguous resource unit/distributed resource unit allocation.
  • 4 to 6 show subband division to frequency division The process of partitioning, in order to more clearly explain the situation of resource mapping under other bandwidths
  • FIG. 7 is a schematic diagram of the resource mapping process of the wireless communication system according to the related technology of 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth. 7 shows the specific mapping situation when the bandwidth is 10MHz (including 7MHz, 8.75MHz).
  • FPSi refers to the number of PRUs in the i (i > 0) frequency partitions, where the number of Subbands is 6, and there are 4 frequencies.
  • each frequency partition size is 12 PRUs
  • the first frequency partition contains 8 CRUs and 4 DRUs
  • the other frequency partitions contain 4 CRUs and 8 DRUs.
  • 8 is a schematic diagram of a resource mapping process of a wireless communication system according to a 20 MHz bandwidth of the related art, and FIG. 8 shows a specific mapping situation in a case of a 20 M bandwidth
  • UCAS SBi refers to an i-th (i > 0) frequency.
  • the number of uplink sub-band-based CRU allocations in the partition, and UCAS MB refers to the number of uplink Miniband-based CRU allocations in each frequency partition.
  • the resource mapping indication information is sent by the base station to the terminal through the broadcast channel or the superframe, and the terminal determines the resource location of receiving and/or transmitting data according to the resource mapping indication information and the resource allocation information.
  • the resource mapping indication information indicates the division and mapping of the frequency resources, and specifically includes the following information: downlink subband allocation number, uplink subband allocation number, downlink frequency partition configuration, uplink frequency partition configuration, downlink frequency partition subband allocation number, uplink The number of frequency partition subband allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of contiguous resource units based on Miniband. Since the specific resource mapping process is many, the setting of the above indication parameters has strong flexibility, but at the same time, the number of bits required to indicate these parameters is increased, thereby increasing the control channel overhead when transmitting these bits. A lot of channel resources are wasted.
  • the present invention has been made in view of the problem of an increase in the number of bits required to indicate a resource mapping parameter and a large control channel overhead during transmission, which wastes system resources, in which the setting of resource mapping indication parameters in the related art is flexible, and the main problem of the present invention is The purpose is to provide a configuration scheme of resource mapping indication information to solve at least one of the above problems. According to an aspect of the present invention, a method for configuring resource mapping indication information is provided.
  • the method for configuring the resource mapping indication information according to the present invention includes: indicating at least one parameter of the resource mapping, and determining a number of bits required to indicate the parameter according to the bandwidth; wherein, for a plurality of different bandwidths, indicating the The number of bits required for the parameters is partially identical or completely different from each other.
  • FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art
  • FIG. 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art
  • FIG. 3 is a case of a 5 MHz bandwidth according to the related art.
  • FIG. 4 is a schematic diagram of a subband division process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art
  • FIG. 5 is a replacement process of a wireless communication system in a case of a 5 MHz bandwidth according to the related art
  • FIG. 6 is a schematic diagram of frequency partition division of a wireless communication system according to a related art 5 MHz bandwidth
  • FIG. 7 is a resource mapping process of a wireless communication system according to a related technology of 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth
  • FIG. 8 is a schematic diagram of a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art
  • FIG. 8 is a schematic diagram of a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art
  • FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention
  • FIG. 10 is a configuration method of resource mapping indication information according to an embodiment of the present invention, using different numbers of bit indications for a 5 MHz system bandwidth.
  • FIG. 11 is a schematic diagram of application of signaling USAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention;
  • FIG. The configuration method of the resource mapping indication information in the embodiment of the present invention is a schematic diagram of the application of the signaling DFPC when a different number of bit indication parameters are used for the 10 MHz system bandwidth.
  • FIG. 13 is a configuration method of the resource mapping indication information in the embodiment of the present invention.
  • FIG. 14 is a schematic diagram of application of signaling UFPC when a different number of bits are used to indicate a parameter;
  • FIG. 14 is a schematic diagram of application of signaling DPFSC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention;
  • FIG. 15 is a resource mapping indication in an embodiment of the present invention;
  • FIG. 16 is a schematic diagram of the configuration of the resource mapping indication information in the embodiment of the present invention.
  • the method for configuring the resource mapping indication information in the embodiment of the present invention uses a different number of bit indication parameters for the 10 MHz system bandwidth.
  • FIG. 1 Schematic diagram of the application of time signaling DCASssi.
  • FIG. 17 is a schematic diagram of application of signaling UCASssi when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth.
  • FIG. 18 is a schematic diagram of application of signaling DCASMB when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth.
  • FIG. 19 is a schematic diagram of application of signaling UCAS MB when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth.
  • the present invention provides a solution to the problem that the number of bits required to indicate a resource mapping parameter is increased, and the control channel overhead is large, and system resources are wasted.
  • a configuration scheme of resource mapping indication information, and a processing principle of the scheme As follows: At least one parameter indicating the resource mapping, the number of bits required to indicate the parameter for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same or completely different, so that the small bandwidth is performed. The number of bits used in the parameter indication is less than that of the large bandwidth.
  • the information element (Information Element, referred to as IE) of the resource mapping indication information is transmitted in the broadcast channel or the superframe header, or the message or the sub-packet is determined according to the system bandwidth, thereby improving the working efficiency of the system.
  • FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps: Step S902, indicating at least one parameter of a resource mapping process, according to a bandwidth determination indication.
  • the number of bits required by the parameter, the parameter includes at least one of the following: a downlink subband allocation number, an uplink subband allocation number, a downlink frequency partition configuration, an uplink frequency partition configuration, a downlink frequency partition subband allocation number, and an uplink frequency partition.
  • the different bandwidths (the bandwidth may be the system bandwidth), the number of bits required to indicate the parameters are partially identical or completely different from each other.
  • the multiple bandwidths may include the first bandwidth, the second bandwidth, and the third bandwidth, where One parameter in the indication information: corresponding to the first bandwidth, indicating The number of bits required for the parameter is M; corresponding to the second bandwidth, the number of bits required to indicate the parameter is N; corresponding to the third bandwidth, the number of bits required to indicate the parameter is P, and, M, N, The values of P are partially the same or completely different from each other.
  • the first bandwidth includes: 5 MHz
  • the second bandwidth includes one of the following: 7 MHz, 8.75 MHz, 10 MHz
  • the third bandwidth includes: 20 MHz. It should be noted that for the 40MHz bandwidth, the required parameters are indicated.
  • the number of bits may be X, X+1 or X+2, where X is the number of bits required to indicate a parameter when the bandwidth is 20 MHz.
  • the specific indication manner is as follows:
  • the number of bits indicating the number of downlink subband allocations in the system is the same as or different from the number of bits indicating the number of uplink subband allocations; indicating the number of bits in the downlink frequency partition configuration and indicating the uplink frequency partition in the system
  • the number of configured bits is the same or different;
  • the number of bits indicating the number of downlink frequency subband allocations in the system is the same as or different from the number of bits indicating the number of uplink frequency partition subband allocations; indicating the number of downlink continuous resource unit allocations in the system
  • the number of bits is the same as or different from the number of bits indicating the number of uplink contiguous resource unit allocations.
  • the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible without affecting the normal operation of the system.
  • the downlink control overhead is saved, thereby improving the working efficiency of the system.
  • Various examples of the number of bits indicating the same parameter corresponding to different bandwidths will be described in detail below with reference to specific examples.
  • multiple indication signaling values of parameters eg, DSAC, USAC, etc.
  • physical indications indicated by the indicated signaling values are shown by a plurality of tables (eg, subbands described below) The specific correspondence of the number).
  • the correspondence between the indication value of the parameter indication signal and the physical meaning indicated by the value of the indication signaling may be changed according to actual needs, and is not limited to the correspondence shown in the table. relationship.
  • the case where parameter indication is performed by various methods such as lbit, 2bits, 3bits, and 4bits is specifically given.
  • the indication signaling uses a binary "0" to represent 0 in the table, a binary “1” to represent 1 in the table, and 2 bits for parameter indication and
  • the indication signaling uses the binary "00” to represent 0 in the table, and the binary "01” to represent 1 in the table.
  • the system “10” indicates 2 in the table, and the binary "11” indicates 3 in the table.
  • the indication signaling is represented by a binary "000".
  • the indication signaling uses the binary "0000” to represent 0 in the table, the binary "0001” to represent 1 in the table, the binary "0010” to represent 2 in the table, and the binary "0011".
  • FIG. 10 is a schematic diagram of application of signaling DSAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to the method for configuring resource mapping indication information according to an embodiment of the present invention, as shown in FIG.
  • the downlink Subband Partitioning process is different.
  • the system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example.
  • the configuration of DSAC is divided into three types of bandwidth. The first type is 5MHz, and the second type is 10MHz or 7MHz or 8.75. MHz, the third category is 20MHz.
  • Table 1.8 describes the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 5 MHz and the number of bits required for DSAC is 2 bits.
  • Table 1.1 takes ⁇ 0, 1, 2, 3 ⁇ , and other combinations are not listed one by one. It should be noted that n non-repeating elements from m different elements form a subset, regardless of the order of the elements, which is called no-recombination of n from m, and the total number of all possible combinations is used. C m n is expressed. Table 1.1
  • the number of bits required to indicate the DSAC parameters is 3bits.
  • 3bits represents the number of 8 different Subbands, which can represent all the elements in the set A DSAC . As shown in Table 1.9. Table 1.9
  • Tables 1.10 through 1.22 describe the relationship between the value of DSAC and the number of Subbands when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and the number of bits required for DSAC is 3bits.
  • 3bits represents 8 different subband numbers. The 8 different Subband numbers are taken from 1 OMHz (also 7MHz or 8.75MHz).
  • Table 1.10 takes ⁇ 0,1,2,3,4,5,6,7 ⁇ , and other combinations than Tables 1.10 through 1.22 are no longer listed.
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • 3 3 7 8 DSAC corresponds to Subband number DSAC corresponding Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • the number of bits required to indicate the DSAC parameters is 4bits.
  • 4bits represents 16 different subband numbers.
  • Table 1.28 takes ⁇ 0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15 ⁇ , other combinations than Table 1.28 to Table 1.40 are not listed.
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • DSAC corresponds to Subband number
  • the number of bits required to indicate the DSAC parameters is 5bits. 5bits represents 32 different subband numbers, and the number of these 32 different Subbands is sufficient to represent all elements in the set C DSAC . As shown in Table 1.41. Table 1.41
  • DSAC corresponds to Subband number
  • the number of bits required to indicate the DSAC parameters for each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits required to indicate the parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is 20MHz. When the system bandwidth is 5 MHz, the number of bits required to indicate the DSAC parameter is 2 bits.
  • the required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DSAC parameter is 2 bits; the system bandwidth is 10 MHz (also When 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or, when the system bandwidth is 5MHz, the DSAC parameter is required.
  • the number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz , the number of bits required to indicate this parameter is 4 bits. It should be noted that in this method, even if two different bandwidths use the same number of bits to indicate the DSAC parameters, the corresponding tables may be different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits, but The table should be Table 1.23; when the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 4bits, but the corresponding table is Table 1.39. Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The same DSAC value and correspondence can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, which makes the device manufacturing more powerful.
  • the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the number of bits required to indicate the DSAC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits.
  • the corresponding relationship between the value of the DSAC and the number of Subbands in the case where the system bandwidth is 5 MHz and the number of bits required for the DSAC is 2 bits is as described above.
  • FIG. 11 is a schematic diagram of the application of signaling USAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to the configuration method of the resource mapping indication information according to the embodiment of the present invention, as shown in FIG. 11 . As shown, when the values of USAC are different (that is, when the number of downlink Subbands indicated by USAC is different), the downlink Subband Partitioning process is different.
  • the system bandwidth (or the bandwidth called the bandwidth) is 5MHz, 10MHz (also 7MHz or 8.75MHz), and 20MHz is taken as an example.
  • the configuration of the USC is described in three types of bandwidth.
  • the first type is 5MHz, the second.
  • the class is 10MHz or 7MHz or 8.75MHz, and the third class is 20MHz.
  • the first type: When the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 2bits; for 5MHz, the possible value set of the number of Subbands is A USAC ⁇ 0,1,2,3,4,5,6 ⁇ plausible 2.1 to Table 2.8 describe the relationship between the value of USAC and the number of Subbands when the system bandwidth is 5MHz and indicates the number of bits required by USAC is 2bits.
  • 2bits indicates the number of 4 different Subbands, these 4 different Subbands
  • Table 2.1 takes ⁇ 0, 1, 2, 3 ⁇ , and other combinations are not listed one by one. , taking n non-repeating elements from m different elements to form a subset, regardless of the order of its elements, called no-recombination of n from m, the total number of all possible combinations using C m n indicates.
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the USAC parameter is 3bits; for 7MHz or 8.75MHz or 10MHz, the possible value set of the number of Subbands is
  • BUSAC ⁇ 0, 1,2,3,4,5,6,7,8,9, 10,11, 12 ⁇
  • Table 2.10 to Table 2.22 describe the system bandwidth as 10MHz (also 7MHz or 8.75MHz) And indicate the correspondence between the value of USAC and the number of Subbands when the number of bits required by USAC is 3 bits. 3bits indicates the number of 8 different Subbands, and the number of these 8 different Subbands is taken from 1 OMHz (may also be A possible set of values for the number of Subbands at 7 MHz or 8.75 MHz)
  • Table 2.10 takes ⁇ 0,1,2,3,4,5,6,7 ⁇ , and other combinations than Table 2.10 to Table 2.22 are not listed.
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • the number of bits required to indicate the USAC parameter is 4bits.
  • 4bits represents 16 different Subband numbers.
  • Table 2.28 takes ⁇ 0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15 ⁇ , other combinations than Table 2.28 to Table 2.40 are not listed.
  • USAC corresponds to Subband number USAC corresponding Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • USAC corresponds to Subband number USAC corresponds to Subband number
  • the number of bits required to indicate the USAC parameter at each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits required to indicate the parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is 20MHz. When the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 2 bits; when the system bandwidth is 10 MHz (which may also be 7 MHz or 8.75 MHz), the parameter is indicated.
  • the required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 2 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameter is required.
  • the number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate this parameter is 4 bits. It should be noted that in this method, even if two different bandwidths use the same number of bits to indicate the USAC parameter, the corresponding table may be different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 2.23; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 2.39.
  • the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The same USAC value and correspondence can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, which makes the device manufacturing more powerful.
  • the same table is used, ie, the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the number of bits required to indicate the USAC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits.
  • the corresponding relationship between the value of USAC and the number of Subbands in the case where the system bandwidth is 5 MHz and the number of bits required for the USAC is 2 bits is as described above, and is not described here.
  • DFPC Downlink Frequency Partition Configuration
  • Example 3 The DFPC indicates the size and number of frequency partitions in the downlink subframe. 12 is a schematic diagram of application of signaling DFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 12, when DFPC takes different values, downlink Frequency Partitioning The process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
  • N PRU is the number of PRUs in one subframe, and in the case of ⁇ :, the Np RUs corresponding to 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz are 24, 48, 48, 48, and 96, respectively, but the method is not Jtb limit.
  • each frequency partition ratio (FP.: FP i : FP 2 : FP 3 ) in the following tables, for the occurrence of N1 : N2: N3 : N4, where N1 to N4 can represent frequency partitioning
  • the actual number can also represent the proportional relationship between the frequency partitions.
  • the first type When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits. For 5MHz, the set of possible configurations for DFPC is A DFPC :
  • 2bits represents 4 different frequency partition numbers and frequency partition sizes.
  • Table 3.1 ⁇ Table 3.3 describe the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition.
  • FPCT refers to the number of effective frequency partitions, and other combinations are no longer - enumerated.
  • the number of bits required to indicate the DFPC parameter is 3 bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • Table 3.4 ⁇ Table 3.5 describe the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are not listed. Table 3.4
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DFPC parameter is 3bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • Table 3.9 ⁇ Table 3.11, others are no longer - enumerated.
  • Table 3.9
  • the number of bits required to indicate the DFPC parameter is 4bits.
  • 4bits represents 16 different frequency partition numbers and frequency partition sizes.
  • the third category When the system bandwidth is 20MHz, the number of bits required to indicate the DFPC parameter is 3bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • the number of bits required to indicate the DFPC parameter is 4bits.
  • 4bits represents 16 different frequency partition numbers and frequency partition sizes.
  • the number of bits required to indicate the DFPC parameter is 5bits.
  • 5bits represents 32 different frequency partition numbers and frequency partition sizes.
  • Table 3.20
  • the number of bits required to indicate DFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate DFPC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz , the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated.
  • the number of bits required is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameter is required.
  • the number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20
  • the number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 3 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter 4 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 4bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits; or When the system bandwidth is
  • the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate this parameter is 4bits
  • the corresponding table is Table 3.13
  • the system bandwidth is 20MHz
  • the number of bits required to indicate the parameter is 4bits, but corresponding
  • the table is shown in Table 3.18.
  • the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The value of the same DFPC and the corresponding relationship can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, so that the device manufacturing is stronger.
  • the same table is used, ie, the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the number of bits required to indicate the DFPC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits.
  • Tables 3.1 to 3.3 above describe the configuration method in the case where the system bandwidth is 5 MHz and the number of bits required for the DFPC is 2 bits, which is not mentioned here.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required to indicate DFPC is 4bits
  • each table the relationship between the value of the DFPC and the meaning indicated by the value of the DFPC can be changed, and each table is an embodiment, as long as one table
  • the values of the DFPCs contained in the indications are the same and are considered to be the same table, all within the scope of protection.
  • Table 3.23 and Table 3.15 are both considered to be the same table, because the values of the DFPCs contained in the two tables are the same meaning.
  • FIG. 13 is a schematic diagram of application of signaling UFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention.
  • the uplink frequency partitioning is performed. The process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
  • N PRU is the number of PRUs in one subframe, and in the case of ⁇ :, the N PRUs corresponding to 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz are 24, 48, 48, 48, and 96, respectively, but the method is not This limit.
  • 2bits represents 4 different frequency partition numbers and frequency partition sizes.
  • Table 4.1 ⁇ Table 4.3 describe the correspondence between the value of UFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are no longer - enumerated.
  • the number of bits required to indicate the UFPC parameter is 3 bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • Table 4.4 ⁇ Table 4.5 describe the correspondence between the value of UFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are not listed. Table 4.4
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UFPC parameter is 3bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • Table 4.9 to Table 4.11, others are no longer - enumerated.
  • the number of bits required to indicate the UFPC parameter is 4bits.
  • 4bits represents 16 different frequency partition numbers and frequency partition sizes.
  • the third category When the system bandwidth is 20MHz, the number of bits required to indicate the UFPC parameter is 3bits.
  • 3bits represents 8 different frequency partition numbers and frequency partition sizes.
  • the number of bits required to indicate the UFPC parameter is 4bits.
  • 4bits represents 16 different frequency partition numbers and frequency partition sizes.
  • Any combination of UFPC values and the number of frequency partitions and the size of the frequency partition may be indicated by any combination, as shown in Table 4.18 to Table 4.19, and other combinations are not listed. Table 4.18
  • the number of bits required to indicate the UFPC parameter is 5bits.
  • 5bits represents 32 different frequency partition numbers and frequency partition sizes.
  • the number of bits required to indicate UFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate UFPC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz , the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated.
  • the number of bits required is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 2bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 2 bits;
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz , the number of bits required to indicate the UFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate this parameter is 4bits; when
  • the number of bits is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 3bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 3 bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth
  • the number of bits is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 4 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 4bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz) When the number of bits required to indicate the parameter is 5 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits.
  • the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 4.13
  • the system bandwidth is 20MHz
  • the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 4.18.
  • the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The value of the same UFPC and the corresponding relationship can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, so that the device manufacturing is stronger.
  • the same table is used, ie, the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the number of bits required to indicate the UFPC parameter is 2 bits; and when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, the number of bits required to indicate the parameter is 4 bits.
  • Tables 4.1 to 4.3 above describe the configuration method in the case where the system bandwidth is 5 MHz and the number of bits required for the UFPC is 2 bits, which is not mentioned here.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required to indicate UFPC is 4bits
  • FIG. 14 is a schematic diagram of the application of the resource mapping indication information in the embodiment of the present invention, when a different number of bit indication parameters are used for the 10 MHz system bandwidth, as shown in the figure.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
  • the first type When the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameters is lbits.
  • the set of possible Subbands of DFPSC is:
  • Table 5.1 to Table 5.3 are shown. Table 5.1
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi (i>0) corresponds to Subband number DFPSC FPi (i>0) corresponds to Subband number 0 1 1 2 Table 5.3
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi (i>0) corresponds to Subband number
  • DFPSC FPi (i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • the third category When the system bandwidth is 20MHz, the number of bits required to indicate the DFPSC parameters is 2 bits.
  • Table 5.11 to Table 5.14 describe the case where the system bandwidth is 20 MHz and the number of bits required to indicate DFPSC is 2 bits, DFPSC Correspondence between the value and the number of Subbands of its corresponding frequency partition, other combinations are not - enumerated. Table 5.11
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • the number of bits required to indicate the DFPSC parameter is 3 bits.
  • Table 5.15 to Table 5.17 describe the correspondence between the value of DFPSC and the number of Subbands of the corresponding frequency partition when the number of bits is 3 bits, and other combinations are not - ⁇ '".
  • DFPSC FPi(i>0) corresponds to Subband number
  • DFPSC FPi(i>0) corresponds to Subband number
  • the number of bits required to indicate the DFPCS parameter is 4bits.
  • Table 5.18 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits. Table 5.18
  • the number of bits required to indicate the DFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DFPSC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 2 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; When 10MHz (also 7MHz or 8.75MHz), the number of
  • the number of bits required for the parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the required ratio of the parameter is indicated.
  • the special number is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; the system bandwidth is 10MHz (may also be 7MHz or 8.75) In MHz, the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter
  • the number of bits required to indicate this parameter is 2bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or, the system bandwidth is 5MHz
  • the number of bits required to indicate the DFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 2 bits; when the system bandwidth is 20 MHz, the parameter is required.
  • the number of bits is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameters are indicated.
  • the number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 2 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter 2bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 4bits.
  • the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 3bits, but the corresponding table is Table 5.10
  • the system bandwidth is 20MHz
  • the number of bits required to indicate the parameter It is 3bits, but the corresponding table is Table 5.15.
  • the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz
  • the number of bits required to indicate DPFSC is 3 bits
  • one of the tables at 20 MHz when 3 bits is required to indicate DFPSC can be used, for example.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz.
  • the first type When the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is lbits. For 5MHz, the number of possible Subbands for UFPSC is:
  • Table 6.1 to Table 6.3 are shown.
  • Table 6.1 UFPSC FPi (i>0) corresponds to Subband number
  • UFPSC FPi (i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • the third category When the system bandwidth is 20MHz, the number of bits required to indicate the UFPSC parameter is 2 bits.
  • Table 6.11 to Table 6.14 describe the UFPSC when the system bandwidth is 20 MHz and the number of bits required to indicate UFPSC is 2 bits. Correspondence between the value and the number of Subbands of its corresponding frequency partition, other combinations are not - enumerated. Table 6.11 1 1 3 3 Table 6.12
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • UFPSC FPi(i>0) corresponds to Subband number
  • the number of bits required to indicate the UFPSC parameter is 4bits.
  • Table 6.18 describes the correspondence between the value of UFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits. Table 6.18
  • the number of bits required to indicate UFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate UFPSC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate the parameter is 2 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required
  • the required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the UFPSC parameter is required.
  • the number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3b. Or; when the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication is The number of bits required for the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 2 bits; the system bandwidth
  • the required number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the required parameter is required. Special number 4bits.
  • the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 3bits, but the corresponding table is Table 6.10. When the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 3bits, but the corresponding table is Table 6.15.
  • DCAS SBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units.
  • 16 is a schematic diagram of application of signaling DCASssi when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 16, when DCAS SBi takes different values, the downlink is performed. The CRU/DRU Allocation process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS SBi , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz.
  • the third category is 20MHz.
  • the DCAS SBi may be in any combination, for example, one of Tables 7.1 to 7.6, and the like, and is not listed. Table 7.1
  • Table 7.6 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3 bits. 3bits represents 8 different numbers, which can represent all the values in the set AocAsssi. As shown in Table 7.7. Table 7.7
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits.
  • DCAS SBi can be used in any combination. For example, one of the tables shown in Table 7.8 to Table 7.9, other similar, no longer - enumerated. Table 7.8
  • DCAS SBi can be used in any combination, for example, one of Tables 7.10 to 7.13, and the like, no longer - no longer listed. Table 7.10 0 0 4 4
  • the number of bits required to indicate the DCAS SBi parameter is 4bits .
  • 4bits represents 16 different numbers, which can represent all the values in the set B DCASSBi . For example, as shown in Table 7.14. Table 7.14
  • DCAS SBl FPi (i ⁇ 0) corresponds to the number of CRUs
  • DCAS SBl FPi (i ⁇ 0) corresponds to the number of CRUs
  • DCAS SBi can be used in any combination. For example, one of the tables shown in Table 7.22 to Table 7.25, other similar, no longer - enumerated. Table 7.22 DCAS SBl FPi (i>0) corresponds to CRU number DCAS SBl FPi (i>0) corresponds to CRU number
  • the number of bits required to indicate the DCAS SBi parameter is 5 bits.
  • 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set C DCASSBi . For example, as shown in Table 7.26. Table 7.26
  • the number of bits required to indicate the DCAS SBi parameter for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DCAS SBi parameter is partially identical or completely different from each other.
  • the system bandwidth is 5MHz
  • the number of bits required to indicate the DCAS SBi parameter is 2bits
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 2bits
  • the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 3 bits; or
  • the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; when the system bandwidth is 20MHz,
  • the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 2 bits; when the system bandwidth is 10 MHz (
  • the required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 2 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the DCAS SBi parameter is indicated.
  • the required number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 Or; when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; System bandwidth When the frequency is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), The number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 3 bits; when the system
  • the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate this parameter is 4bits, but the corresponding table is Table 7.14
  • the system bandwidth is 20MHz
  • the number of bits required to indicate the parameter It is 4bits, but the corresponding table is Table 7.23.
  • Jt ⁇ , 5MHz can be 7MHz or 8.75MHz with 10MHz) Both use 2 bits or 3 bits.
  • DCAS SBi for each table, the relationship between the value of DCASsBi and the meaning indicated by the value of DCAS SBi can be changed, and each table is an embodiment, as long as one table
  • the values of DCAS SBi contained in the indications are the same meaning and are considered to be the same table, ⁇ P is within the scope of protection.
  • UCAS SBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units.
  • 17 is a schematic diagram of application of signaling UCAS SBi when a method for configuring resource mapping indication information uses different numbers of bit indication parameters for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 17, when UCAS SBi takes different values, The upstream CRU/DRU Allocation process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS SBi , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz.
  • the third category is 20MHz.
  • UCAS SBi may be in any combination, for example, one of Table 8.1 to Table 8.6, and the like, which are not listed. Table 8.1
  • UCASsBi FPi(i>0) corresponds to the number of CRUs
  • UCASsBi FPi(i ⁇ 0) corresponds to the number of CRUs
  • the number of bits required to indicate the UCAS SBi parameter is 3 bits.
  • 3bits represents 8 different numbers, which can represent all the values in the set A UCASSBi . As shown in Table 8.7. Table 8.7
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS SBi parameter is 2bits.
  • UCAS Sbi can be used in any combination. For example, one of the tables shown in Table 8.8 to Table 8.9, other similar, no longer - enumerated. Table 8.8 UCAS SBl FPi (i> 0) corresponding to the number of CRU UCAS SBl FPi (i ⁇ 0) corresponding to the number of CRU
  • UCAS SBi can be used in any combination, for example, one of Tables 8.10 to 8.13, and the like, no longer - no longer listed. Table 8.10
  • UCASsBi FPi (i ⁇ 0) corresponds to the number of CRUs
  • UCASsBi FPi (i ⁇ 0) corresponds to the number of CRUs
  • the number of bits required to indicate the UCAS SBi parameter is 4bits .
  • 4bits represents 16 different numbers, which can represent all the values in the set B UCASSBi . For example, as shown in Table 8.14. Table 8.14
  • the third category When the system bandwidth is 20MHz, the number of bits required to indicate the UCAS SBi parameter is
  • the UCAS SBi indicates the possible number of CRUs and I or DRUs in the i-th frequency partition in units of Subband:
  • C UCASSBi ⁇ 0,1,2,3, 4,5,6,7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 ⁇ .
  • UCAS SBi can be used in any combination. For example, one of Table 8.15 to Table 8.21, other similar, is not listed. Table 8.15
  • UCAS SBl FPi (i>0) corresponds to the CRU number
  • UCAS SBl FPi (i>0) corresponds to the number of CRUs
  • UCAS SBi can be used in any combination. For example, one of Table 8.22 to Table 8.25, other similar, no longer - enumerated. Table 8.22
  • the number of bits required to indicate the UCAS SBi parameter is 5 bits.
  • 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set C UCASSBi . For example, as shown in Table 8.26. Table 8.26
  • the number of bits required to indicate the UCAS SBi parameter for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the UCAS SBi parameter is partially identical or completely different from each other.
  • the system bandwidth is 5MHz
  • the number of bits required to indicate the UCAS SBi parameter is 2bits
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 2bits
  • the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits
  • the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz)
  • the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits;
  • 10MHz also
  • the number of bits required for the SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the ratio required for the parameter is indicated.
  • the special number is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits.
  • the system bandwidth is 20MHz
  • the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 2bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the system bandwidth is 20MHz
  • the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits ; the system bandwidth is 10MHz (it can also be 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, the system bandwidth When the frequency is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz
  • the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 8.14
  • the system bandwidth is 20MHz
  • the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 8.23.
  • the same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ⁇ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ⁇ )
  • the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the same UCAS SBi value and corresponding relationship are used, that is, the system bandwidth is 1 OMHz (can be 7MHz or 8.75MHz) and the system bandwidth is The same table is used at 20 MHz. For example, one of Table 8.22 to Table 8.25 can be used, or it can be generated according to the configuration method at 20 MHz. Alternatively, generate as follows: Table 8.27
  • PRU total 10MHz (can be 7MHz or 20MHzFPi (i>0)
  • UCAS SBI 15 15/48 15 30 jt ⁇
  • 5MHz can be used with 10MHz (A can be 7MHz or 8.75MHz) with 2 bits or 3 bits.
  • UCAS SBI's for each table, the relationship between the intermediate significance indicated by the value UCAS SBI value and UCAS SBI can vary, each form are one embodiment, as long as a The values of the UCAS SBI contained in the table are the same meanings, and are considered to be the same table, ⁇ P is within the scope of protection.
  • DCASMB Downlink MiniC-based CRU Allocation Number
  • the number of CRUs. 18 is a schematic diagram of application of signaling DCAS MB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 18, when DCAS MB takes different values, The downstream CRU/DRU Allocation process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS MB .
  • the first type is 5MHz.
  • the second type is 7MHz or 8.75MHz or 10MHz, and the third type is 20MHz.
  • the first type The number of bits required to indicate the DCAS MB parameter is 2 bits.
  • the DCAS MB can be any combination, for example, one of the tables shown in Table 9.1 to Table 9.3, and the like, no longer - enumerated. Table 9.1
  • the DCAS MB can be any combination, for example, one of Table 9.4 to Table 9.11, and the like, no longer - enumerated. Table 9.4
  • the DCAS MB can be any combination, for example, one of the types shown in Table 9.12 to Table 9.15, other similar, no longer - enumerated. Table 9.12
  • the number of bits required to indicate the DCAS MB parameter is 5 bits.
  • 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set ADCASMB.
  • Table 9.16 shows. Table 9.16
  • the DCAS MB can be any combination, for example, one of the types shown in Table 9.17 to Table 9.20, and the like, no longer - ⁇ '". Table 9.17 FPo based on Miniband based on Miniband FPo
  • the DCAS MB can be any combination, for example, one of the types shown in Table 9.21, and the like, which are not listed. Table 9.21
  • the number of bits required to indicate the DCAS MB parameter is 6bits.
  • 6bits means 64 different numbers, which can represent the set B DCASMB All the values in it. For example, as shown in Table 9.22. Table 9.22
  • the DCAS MB can be any combination, for example, one of the types shown in Table 9.17 to Table 9.20, other similar, no longer - enumerated. Alternatively, when the system bandwidth is 20 MHz, the number of bits required to indicate the DCAS MB parameter is 5 bits.
  • DCAS MB 5bits represents 32 different numbers, and these 32 different numbers are taken from the set C DCASMB , a total of C 97 32 combinations.
  • DCAS MB can be any combination. For example, one of the tables shown in Table 9.23 to Table 9.25, other similar, no longer - enumerated. Table 9.23
  • the number of bits required to indicate the DCAS MB parameter is 6 bits. 6bits represents 64 different numbers, and these 64 different numbers can represent all the values in the set CDCASMB. For example, Table 9.26 shows. Table 9.26
  • the number of bits required to indicate the DCAS MB parameter is 7bits. 7bits represents 128 different numbers, and these 128 different numbers can represent all values in the set C DCASMB except 0 or 1 or 95 or 96.
  • the number of bits required to indicate the DCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DCAS MB parameters is partially identical or completely different from each other.
  • the number of bits required to indicate the DCAS MB parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is At 20MHz, the number of bits required to indicate this parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the indication The number of bits required for this parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 3 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, DCAS is indicated.
  • the system bandwidth is 10MHz (may be a 7MHz or 8.75MHz), indicating the number of bits required parameters 5bits; system bandwidth is 20MHz, required for the parameter bit indicates Is 5bits; Alternatively, when the system bandwidth is 5MHz, indicating the number of bits required DCAS MB parameters 4bits; when the system bandwidth is 10MHz (or may be a 7MHz of 8.75 MHz), indicating the number of bits required parameters 4bits; system When the bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 4bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) , the number of bits required to indicate the parameter is 5 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 4 bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz
  • the number of bits is 6 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 5 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 6 bits. When the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 7bits. It should be noted that in the above configuration method of DCAS MB , when two different bandwidths use the same number of bits to indicate DCAS MB parameters, the corresponding tables may be the same or different.
  • the system bandwidth is 10MHz (also 7MHz or 8.75MHz)
  • the number of bits required to indicate the parameter is 5bits, but the corresponding table is Table 9.21
  • the system bandwidth is 20MHz
  • the number of bits required for the parameter is indicated. It is 5bits, but the corresponding table is Table 9.25.
  • the same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ⁇ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ⁇ )
  • the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the same DCAS MB value and corresponding relationship are used, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz.
  • the same table is used, for example, one of Table 9.23 to Table 9.25 can be used, or it can be generated according to the configuration method at 20 MHz. Alternatively, generate it as follows: Table 9.27
  • 10MHz (can be 7MHz or 20MHz FP 0 based on the total PRU
  • 15 15/48 15 30 jt ⁇ 5MHz can be 3 bits or 4 bits or 5 bits with 10MHz (A can be 7MHz or 8.75MHz).
  • DCAS MB configuration process for each table, the relationship between the intermediate meaning DCAS MB value with the DCAS MB values indicated may be varied, each form are one embodiment, as long as a The values of the DCAS MB included in the table are the same meanings, and are considered to be the same table, all within the scope of protection.
  • FIG. 19 is a schematic diagram of application of signaling UCAS MB when a method for configuring resource mapping indication information uses a different number of bit indication parameters for a 5 MHz system bandwidth according to an embodiment of the present invention.
  • the uplink CRU/DRU Allocation process is different.
  • the system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS MB .
  • the first type is 5MHz, and the second type is 7MHz or 8.75MHz or 10MHz.
  • the third category is 20MHz.
  • the first type The number of bits required to indicate the UCAS MB parameter is 2 bits.
  • UCAS MB can be any combination, for example, one of the tables shown in Table 10.1 to Table 10.3, other similar, no longer - enumerated. Table 10.1
  • UCAS MB can be any combination, for example, one of Table 10.4 to Table 10.1 1 , other similar, no longer - enumerated. Table 10.4
  • UCAS MB can be any combination, for example, one of the tables shown in Table 10.12 to Table 10.15, other similar, no longer - enumerated. Table 10.12
  • the number of bits required to indicate the UCAS MB parameter is 5 bits.
  • 5 bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set AUCASMB.
  • Table 10.16 shows. Table 10.16
  • the second type When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS MB parameter is 4bits.
  • UCAS MB can be used in any combination, for example, one of Tables 10.17 to 10.20, and the like, and is not listed. Table 10.17 FPo based on Miniband based on Miniband FPo

Abstract

A method for configuring resource mapping indication information is disclosed by the present invention, the method includes: indicating at least one parameter of resource mapping, and determining the number of bits required for indicating the parameter according to bandwidths; wherein, for a plurality of different bandwidths, the numbers of bits required for indicating the parameter are partially same or totally different with each other. By means of the technical solutions of the present invention, the number of bits required for indicating parameter is configured for every bandwidth supported by the system, and the numbers of bits for indicating the same parameter under different bandwidths are partially same or totally different, it enables the number of bits used by a physical resource mapping indication signaling to be varied flexibly according to the bandwidth used by the system, reduces the transmitted number of bits as much as possible, avoids the heavy overhead question of a control channel in correlative technique, saves downlink control overhead in the case of not influencing normal operation of the system and thus improves work efficiency of the system.

Description

资源映射指示信息的配置方法  Resource mapping indication information configuration method
技术领域 本发明涉及通信领域 , 尤其涉及一种资源映射指示信息的配置方法。 背景技术 在无线通信系统中,基站通常是指在一定的无线电覆盖区中能够通过移 动通信交换中心与终端进行信息传递的无线电收发信电台。 在实际应用中, 基站可以通过上 /下行链路与终端进行通信, 其中, 下行链路是指基站到终端 的传输方向, 而上行链路是指终端到基站的传输方向。 并且, 多个终端可以 通过上行链路同时向基站发送数据, 也可以通过下行链路同时从基站接收数 据。 此外, 在基站和终端之间可以通过中继站对传输的数据进行中继。 在采用基站实现无线资源调度控制的无线通信系统中,系统无线资源的 调度分配由基站完成。 例如, 可以由基站给出该基站进行下行传输时所使用 的下行资源分配信息以及终端进行上行传输时的所需使用的上行资源分配信 息等。 在商用的无线通信系统中, 基站在调度空口的无线资源时, 通常以一个 无线帧作为一个调度周期, 并将无线资源分成若干个无线资源单元 (例如, 可以将一个时隙或一个码字作为一个资源单元) 进行调度, 基站通过调度无 线资源单元向其覆盖的终端提供数据或多媒体服务。 具体地 , 在第二代无线通信系统(例如 , 在全球移动通信系统( Global System for Mobile communication, 筒称为 GSM ) ) 中, 基站将每个频点上的 无线资源分成以 4.615ms为周期的时分多址( Time Division Multiple Address, 筒称为 TDMA )无线帧 , 每个无线帧包含 8个时隙 , 一个时隙传送一个全速 率的话路、 或者传输两个半速率的话路, 并且也可以用于实现低速的数据业 务;在 2.5代无线通信系统(例如,在通用无线分组月 务( General Packet Radio Service, 筒称为 GPRS ) ) 中, 通过引入基于固定时隙的分组交换能够继续提 升数据业务的速率; 而在第三代无线通信系统 (例如, 在时分同步码分多址 ( Time-Division Synchronous Code Division Multiple Address , 筒称为 TD-SCDMA ) 中, 基站同样可以^)夺空口的无线资源分成以 10ms为周期的无 线帧 , 每个 10ms包含 14个常规时隙和 6个特殊时隙, 常规时隙用于传输具 体的业务和信令, 在每个常规时隙上, 基站通过不同的码字来区分用户。 通过以上描述可以看出 , GSM和 TD-SCDMA系统主要采用 TDMA和The present invention relates to the field of communications, and in particular, to a method for configuring resource mapping indication information. BACKGROUND OF THE INVENTION In a wireless communication system, a base station generally refers to a radio transceiver station capable of transmitting information through a mobile communication switching center and a terminal in a certain radio coverage area. In practical applications, the base station can communicate with the terminal through the uplink/downlink, where the downlink refers to the transmission direction of the base station to the terminal, and the uplink refers to the transmission direction of the terminal to the base station. Moreover, a plurality of terminals may simultaneously transmit data to the base station through the uplink, or may simultaneously receive data from the base station through the downlink. In addition, the transmitted data can be relayed between the base station and the terminal through the relay station. In a wireless communication system in which a base station implements radio resource scheduling control, scheduling allocation of system radio resources is performed by a base station. For example, the downlink resource allocation information used by the base station for downlink transmission and the uplink resource allocation information required for the terminal to perform uplink transmission may be given by the base station. In a commercial wireless communication system, when scheduling a radio resource of an air interface, the base station usually uses one radio frame as a scheduling period, and divides the radio resource into several radio resource units (for example, one time slot or one codeword can be used as A resource unit is scheduled, and the base station provides data or multimedia services to the terminals it covers by scheduling the radio resource unit. Specifically, in the second generation wireless communication system (for example, in the Global System for Mobile communication (GSM), the base station divides the radio resources at each frequency point into a period of 4.615 ms. Time Division Multiple Address (TDMA) radio frame, each radio frame contains 8 time slots, one time slot transmits a full rate channel, or transmits two half rate channels, and can also be used To achieve low-speed data services; in the 2.5-generation wireless communication system (for example, in the General Packet Radio Service (GPRS), the introduction of fixed-slot-based packet switching can continue to enhance data services In the third-generation wireless communication system (for example, in Time-Division Synchronous Code Division Multiple Address (TD-SCDMA), the base station can also vacate the radio resources of the air interface. Divided into no cycles of 10ms Line frames, each 10ms contains 14 regular time slots and 6 special time slots. The regular time slots are used to transmit specific services and signaling. On each regular time slot, the base stations distinguish users by different code words. As can be seen from the above description, GSM and TD-SCDMA systems mainly use TDMA and
/或 CDMA技术, 这些技术基于时隙和码字进行资源映射和资源分配, 处理 过程比较筒单。 在基于正交频分复用 ( Orthogonal Frequency Division Multiplexing , 筒 称为 OFDM ) 和正交频分多址 ( Orthogonal Frequency Division Multiple Address, 筒称为 OFDMA )技术的通信系统中,例如,在长期演进( Long Term Evolution,筒称为 LTE )、超移动宽带( Ultra Mobile Broadband,筒称为 UMB ) 和 IEEE 802.16m等无线通信系统中 , 无线资源虽然也被划分成帧进行管理, 但每个 OFDMA符号 卩包含多个相互正交的子载波, 并且终端通常占用部分 子载波, 从而能够采用部分频率复用 (Fractional Frequency Reuse, 筒称为 FFR ) 等技术来降低干扰, 提高覆盖; 其次, 由于无线信道环境变化频繁, 基站为了获得频率分集增益和频率选择性调度增益, 将可用物理子载波划分 成物理资源单元 ( Physical Resource Unit , 筒称为 PRU ) , 进而^)夺物理资源单 元映射为连续资源单元 ( Contiguous Resource Unit, 筒称为 CRU ) 和分布资 源单元 ( Distributed Resource Unit, 筒称为 DRU ), 以提高传输性能 , 其中, 连续资源单元中的子载波均连续的, 而分布资源单元中的子载波是完全不连 续或不完全连续的; 此外, 随着频率资源日益稀少, 基站需要支持多种不同 带宽 (例如, 5 MHz, 10MHz或 20MHz )或多载波操作, 以利用不同的频率 资源并满足不同运营商的需求。 由于以上原因 , 基于 OFDM或 OFDMA技术的无线通信系统的资源映 射过程更加复杂, 从而导致用于控制资源映射过程的指示信令开销较大, 终 端解析基站的资源分配信息以确定其接收和发送数据的物理资源位置的过程 的复杂度增加。 可见 , 考虑到 OFDM或 OFDMA技术的无线通信系统的资源映射过程 将会比较复杂, 为了降^^其资源映射的指示信令开销, 优化系统信息管理和 传输方法, 需要进行合理的资源映射。 为了保障无线通信系统的效率, 基站 通常将物理的无线资源映射为逻辑的无线资源, 例如, 将物理子载波映射为 逻辑资源单元, 基站通过调度逻辑资源单元实现无线资源的调度。 具体地 , 对于基于 OFDM或 OFDMA的无线通信系统 , 其无线资源映 射主要依据该无线通信系统的帧结构和资源结构 , 帧结构描述无线资源在时 域上的控制结构, 资源结构描述了无线资源在频域上的控制结构。 帧结构将 无线资源在时域上划分为不同等级的单位,如超帧( Superframe )、帧( Frame )、 子帧 (Subframe ) 和符号 (Symbol ) , 通过设置不同的控制信道(例如, 广 播信道、 单播和多播信道等) 实现调度控制。 例如, 图 1 是根据相关技术的无线通信系统的帧结构示意图, 如图 1 所示, 无线资源在时域上划分为超帧, 每个超帧包含 4个帧, 每个帧包含 8 个子帧 , 子帧由 6个基本的 OFDMA符号组成 , 实际系统根据需要支持的带 宽和 /或 OFDMA 符号的循环前缀长度等因素确定帧结构中各个等级单位中 具体包含多少个 OFDMA符号; 此外, 系统可以在超帧中的第一个下行子帧 内设置广播信道 (由于位于超帧头部 , 也称作超帧头 ( Superframe Header ) ) 并发送资源映射等系统信息;且系统还可以设置单播和 /或多播性质的控制信 道发送资源分配等调度控制信息。 根据组网技术、 干扰抑制技术和业务类型等因素, 资源结构将频域上可 用的带宽分成多个频率分区 (Frequency Partition, 筒称为 FP ), 进而将频率 分区内的频率资源分成连续资源单元和 /或分布资源单元进行调度。 例如, 图 2是才艮据相关技术的无线通信系统的资源结构示意图, 如图 2所示, 一个子 帧的可用物理子载波被分成 3个频率分区 , 每个频率分区分为连续资源和分 布资源单元, 连续资源单元用于频率选择性调度, 而分布资源单元用于频率 分集调度。 资源映射方法一^ 1需要支持 5 MHz, 7MHz、 8.75MHz、 10MHz和 20MHz 系统带宽(筒称带宽), 而在不考虑多载波操作过程中部分保护子载波用于映 射 PRU的情况时, 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz带宽下, 对 应的 PRU的数目为 24、 48、 48、 48和 96 , 因此, 不同的系统带宽下资源映 射的指示参数不同。 例如, 带宽为 5MHz的系统每个子帧有 24个 PRU, 当 4个 PRU组成一个子带 ( Subband ) 时 , 则最多有 6个 Subband, 而 7MHz、 8.75MHz或 10MHz系统有 48个 PRU, 则最多有 12个 Subband, 对这两种 系统就需要对子带分配数 ( Subband Allocation Count, 筒称为 SAC ) 进行不 同的设置以节省开销。 以下才艮据不同的带宽举例说明资源映射的实施方式: 下行资源映射过程通常包括: 子带划分 ( Subband Partitioning )、 ^啟带置 换 ( Miniband Permutation )、 频率分区戈1 J分( Frequency Partitioning )、 连续资 源单元 /分布资源单元分酉己 ( Contigous Resource Unit/Distributed Resource Unit Allocation , 筒称为 CRU/DRU Allocation ) 和子载波置换 ( Subcarrier Permutation ); 上行资源映射过程中包括: 子带划分、 啟带置换、 频率分区划 分、连续资源单元 /分布资源单元分配和 Tile置换( Tile Permutation )。 Subband 由 N1个连续的 PRU组成, 例如 N1 = 4 , 啟带 ( Miniband ) 由 N2个连续的 PRU组成, 例如 N2 = 1。 具体的 , 图 3是才艮据相关技术的 5MHz带宽情况下 无线通信系统的资源映射过程示意图, 如图 3所示, 描述了 5MHz OFDMA 系统的下行子帧资源映射过程。 PRUSB是指用于 Subband 的 PRU, PRUMB 是指用于 Miniband的 PRU, PPRUMB是指经过 Miniband Permutation的 PRU, PRUpPi是指属于第 i ( i > 0 )频率分区的 PRU。 其中 , 5MHz系统的快速傅里 叶变换(Fast Fourier Transformation, 筒称为 FFT ) 点数为 512 , —个子帧内 可用数据子载波为 432个, 共分成 N=24个 PRU, 每个 PRU大小为 18x6 , 即频域为 18个载波, 时域为 6个符号, 由于循环前缀、 超帧头、 转换点和 控制信道等原因 , 时域上的符号数目可能为 5或 7。 以下以 5MHz带宽为例介绍物理资源映射的各个步骤: ( 1 ) 子带划分, 即, 以一个 Subband为单位抽取一部分 PRU映射为/ or CDMA technology, these technologies based on time slots and codewords for resource mapping and resource allocation, the processing process is relatively simple. In a communication system based on Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Address (OFDMA) technologies, for example, in long-term evolution ( In the wireless communication systems of Long Term Evolution, called LTE), Ultra Mobile Broadband (UMB) and IEEE 802.16m, radio resources are also divided into frames for management, but each OFDMA symbol 卩A plurality of mutually orthogonal subcarriers are included, and the terminal usually occupies a part of subcarriers, so that techniques such as Fractional Frequency Reuse (FFR) can be used to reduce interference and improve coverage. Second, due to the wireless channel environment. In order to obtain frequent frequency diversity gain and frequency selective scheduling gain, the base station divides the available physical subcarriers into physical resource units (PTUs), and then maps physical resource units into contiguous resource units ( Contiguous Resource Unit, called CRU) and distributed resource unit (Distribu) a ted Resource Unit (referred to as DRU) to improve transmission performance, wherein subcarriers in consecutive resource units are continuous, and subcarriers in distributed resource units are completely discontinuous or incompletely continuous; As frequency resources become increasingly scarce, base stations need to support multiple different bandwidths (eg, 5 MHz, 10 MHz, or 20 MHz) or multi-carrier operation to take advantage of different frequency resources and meet the needs of different operators. For the above reasons, the resource mapping process of the OFDM or OFDMA-based wireless communication system is more complicated, so that the instruction signaling overhead for controlling the resource mapping process is large, and the terminal parses the resource allocation information of the base station to determine its receiving and transmitting data. The complexity of the process of physical resource location increases. It can be seen that the resource mapping process of the wireless communication system considering OFDM or OFDMA technology will be complicated. In order to reduce the indication signaling overhead of the resource mapping and optimize the system information management and transmission method, a reasonable resource mapping is needed. In order to ensure the efficiency of the wireless communication system, the base station usually maps the physical radio resources into logical radio resources, for example, mapping physical subcarriers into logical resource units, and the base station implements scheduling of radio resources by scheduling logical resource units. Specifically, for a wireless communication system based on OFDM or OFDMA, its wireless resource map The shot is mainly based on the frame structure and resource structure of the wireless communication system, the frame structure describes the control structure of the radio resource in the time domain, and the resource structure describes the control structure of the radio resource in the frequency domain. The frame structure divides the radio resources into different levels of units in the time domain, such as a superframe, a frame, a subframe, and a symbol, by setting different control channels (for example, a broadcast channel). , unicast and multicast channels, etc.) Implement scheduling control. For example, FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art. As shown in FIG. 1, a radio resource is divided into super frames in a time domain, and each super frame includes 4 frames, and each frame includes 8 subframes. The subframe is composed of 6 basic OFDMA symbols, and the actual system determines how many OFDMA symbols are included in each level unit in the frame structure according to factors such as the bandwidth to be supported and/or the cyclic prefix length of the OFDMA symbol; A broadcast channel is set in the first downlink subframe in the superframe (because it is located in the superframe header, also called a superframe header) and system information such as resource mapping is sent; and the system can also set unicast and/or Or the multicast control channel transmits scheduling control information such as resource allocation. According to factors such as networking technology, interference suppression technology, and service type, the resource structure divides the available bandwidth in the frequency domain into multiple frequency partitions (Frequency Partitions, called FPs), and then divides the frequency resources in the frequency partition into consecutive resource units. And/or distributed resource units for scheduling. For example, FIG. 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art. As shown in FIG. 2, available physical subcarriers of one subframe are divided into three frequency partitions, and each frequency partition is divided into continuous resources and distribution. The resource unit, the continuous resource unit is used for frequency selective scheduling, and the distributed resource unit is used for frequency diversity scheduling. The resource mapping method 1 1 needs to support 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz system bandwidth (barrel bandwidth), and 5 MHz, when partial protection subcarriers are used to map PRUs without considering multi-carrier operation. Under the 7MHz, 8.75MHz, 10MHz and 20MHz bandwidths, the number of corresponding PRUs is 24, 48, 48, 48 and 96. Therefore, the indication parameters of resource mapping are different under different system bandwidths. For example, a system with a bandwidth of 5 MHz has 24 PRUs per subframe. When 4 PRUs form a subband, there are up to 6 Subbands, while in a 7 MHz, 8.75 MHz, or 10 MHz system, there are 48 PRUs. There are 12 Subbands. For these two systems, the Subband Allocation Count (SAC) is set differently to save overhead. The following was Gen according to the different bandwidths illustrated embodiment resource mapping: the downlink resource mapping process generally includes: a sub-band division (Subband Partitioning), ^ evident band substitutions (Miniband Permutation), frequency partition Ge 1 J min (Frequency Partitioning), Contigous Resource Unit/Distributed Resource Unit Allocation, the cylinder is called CRU/DRU Allocation) and subcarrier permutation; the uplink resource mapping process includes: subband division, start band permutation, frequency partition division, continuous resource unit/distributed resource unit allocation, and tile replacement ( Permutation). The Subband consists of N1 consecutive PRUs, for example N1 = 4, and the Miniband consists of N2 consecutive PRUs, for example N2 = 1. Specifically, FIG. 3 is a schematic diagram of a resource mapping process of a wireless communication system according to a related art 5 MHz bandwidth. As shown in FIG. 3, a downlink subframe resource mapping process of a 5 MHz OFDMA system is described. The PRU SB refers to the PRU for the Subband, the PRU MB refers to the PRU for the Miniband, the PPRU MB refers to the PRU through the Miniband Permutation, and the PRUpPi refers to the PRU that belongs to the i (ii > 0) frequency partition. Among them, the Fast Fourier Transformation (called FFT) points of the 5MHz system is 512, and there are 432 available data subcarriers in a sub-frame, which are divided into N=24 PRUs, and each PRU is 18x6. That is, the frequency domain is 18 carriers and the time domain is 6 symbols. The number of symbols in the time domain may be 5 or 7 due to cyclic prefix, superframe header, transition point and control channel. The following takes the 5MHz bandwidth as an example to describe the steps of physical resource mapping: (1) Subband division, that is, extracting a part of the PRU mapping in units of one Subband
Subband。 下行 Subband的个数和上行 Subband的个数分别由下行子带分配 数 ( Downlink Subband Allocation Count, 筒称为 DSAC )和上行子带分配数 ( Uplink Subband Allocation Count, 筒称为 USAC ) 两个参数指示。 以下行 5MHz带宽为例, 当 DSAC指示的下行 Subband的个数为 3时, 12个 PRU 被映射为 3个 Subband。 图 4是根据相关技术的 5MHz带宽情况下无线通信 系统的子带划分过程示意图, 如图 4 所示, 基站用 DSAC 来指示 Subband Partitioning , 得到 PRUSB ( 图中的无阴影部分), 将剩余的部分映射为 Miniband, 如图中的 PRUMB (图中的阴影部分)。 Subband. The number of downlink Subbands and the number of uplink Subbands are indicated by two parameters: Downlink Subband Allocation Count (Downlink Subband Allocation Count) and Uplink Subband Allocation Count (USAC). . For example, the following 5 MHz bandwidth is used. When the number of downlink Subbands indicated by the DSAC is 3, 12 PRUs are mapped to 3 Subbands. 4 is a schematic diagram of a subband division process of a wireless communication system according to the related art with a 5 MHz bandwidth. As shown in FIG. 4, the base station uses DSAC to indicate Subband Partitioning, and obtains PRU SB (the unshaded portion in the figure), and the remaining Partially mapped to Miniband, as shown in the figure PRU MB (shaded in the figure).
( 2 ) 啟带置换, 即, 将没有映射为 Subband的 PRU映射为 Miniband。 在 5MHz带宽且 DSAC指示的下行 Subband的个数为 3时,有 12个 PRU映 射为 Miniband, 图 5是根据相关技术的 5MHz带宽情况下无线通信系统的啟 带置换过程示意图, 如图 5所示, 对这 12个 PRU进行置换。 该步骤不需要 额外参数指示, 根据 DSAC完成。 同样地, 上行微带置换根据 USAC完成。 (2) Start band replacement, that is, map PRUs that are not mapped to Subband to Miniband. When the number of downlink subbands indicated by the DSAC is 3, 12 PRUs are mapped to Miniband. FIG. 5 is a schematic diagram of the encapsulation replacement process of the wireless communication system according to the related art 5 MHz bandwidth, as shown in FIG. , Replace the 12 PRUs. This step does not require additional parameter indications, which are done according to DSAC. Similarly, the upstream microstrip replacement is done according to USAC.
( 3 ) 频率分区划分, 即, 将已划分了的 Subband和置换后的 Miniband 划分到各个频率分区。 该步骤需要两个参数, 一个参数用于指示各个频率分 区个数、 大小和 /或比例, 下行和上行分别通过下行频率分区配置( Downlink Frequency Partition Configuration,筒称为 DFPC )和上行频率分区配置( Uplink Frequency Partition Configuration, 筒称为 UFPC ) 指示; 另一个参数则用于 指示除第一个频率分区 (即 FP。) 以外的频率分区中 Subband的数目, 下行 和上行分别通过下行频率分区子带分配数 ( Downlink Frequency Partition Subband Count , 筒称为 DFPSC ) 和上行频率分区子带分配数 ( Uplink Frequency Partition Subband Count, 筒称为 UFPSC )指示。 在除第一个频率 分区以外的频率分区的大小和包含的 Subband的数目相等的条件下, 能够进 行一定的冗余删减, 去掉一些不可能的取值。 图 6是根据相关技术的 5MHz 带宽情况下无线通信系统的频率分区划分示意图, 如图 6所示, 除第一个频 率分区大小为 24个 PRU, 其它频率分区大小为 0, 且其它频率分区 Subband 数为 0的频率分区划分情况。 (3) Frequency partitioning, that is, dividing the divided Subband and the replaced Miniband into respective frequency partitions. This step requires two parameters, one for indicating the number, size, and/or proportion of each frequency partition, and the downlink and uplink are configured by Downlink Frequency Partition Configuration (Downlink Frequency Partition Configuration) and Upstream Frequency Partition Configuration ( Uplink Frequency Partition Configuration, the cartridge is called UFPC) indication; another parameter is used to indicate the number of Subbands in the frequency partition except the first frequency partition (ie FP.), and the downlink and uplink are respectively allocated by the downlink frequency partition subband. (Downlink Frequency Partition Subband Count, referred to as DFPSC) and Uplink Frequency Partition Subband Count (UFCSC). Under the condition that the size of the frequency partition other than the first frequency partition is equal to the number of Subbands included, a certain redundancy reduction can be performed, and some impossible values are removed. 6 is a schematic diagram of frequency partition division of a wireless communication system according to the related art with a 5 MHz bandwidth. As shown in FIG. 6, except that the first frequency partition size is 24 PRUs, the other frequency partition sizes are 0, and other frequency partitions Subband. The frequency partition division of the number 0.
( 4 )连续资源单元 /分布资源单元分配, 即, 对每个频率分区单独进行 连续资源单元 /分布资源单元分配。下行频率分区通过下行连续资源单元分配 数目 (Downlink CRU Allocation Size, 筒称为 DCAS ) 指示, 上行频率分区 通过上行连续资源单元分配数目(Uplink CRU Allocation Size,筒称为 UCAS ) 指示。 如果有些频率分区的大小为 0, 则可以不需要携带该参数。 如图 3所 示, 在系统带宽为 5MHz时, DSAC指示的下行 Subband的个数为 3 , 第一 个频率分区大小为 24个 PRU,其它频率分区大小为 0,第一个频率分区 CRU 数为 12 的示意图, 其中最后一列上的无阴影部分表示 CRU, 阴影则表示 DRU。需要说明的是,可以通过 1个比特指示是否将 Subband默认作为 CRU, 而将 Miniband默认作为 DRU , 此时, 可以不发送 DCAS或 UCAS进一步节 省开销。 (4) Continuous resource unit/distributed resource unit allocation, that is, separate resource unit/distributed resource unit allocation for each frequency partition. The downlink frequency partition is indicated by the number of downlink contiguous resource units (Downlink CRU Allocation Size, referred to as DCAS), and the uplink frequency partition is indicated by the number of uplink contiguous resource units (Uplink CRU Allocation Size, called UCAS). If the size of some frequency partitions is 0, you do not need to carry this parameter. As shown in Figure 3, when the system bandwidth is 5MHz, the number of downlink Subbands indicated by DSAC is 3, the size of the first frequency partition is 24 PRUs, the size of other frequency partitions is 0, and the number of CRUs of the first frequency partition is A schematic diagram of 12, where the unshaded portion of the last column represents the CRU and the shadow represents the DRU. It should be noted that one bit can be used to indicate whether the Subband is used as the CRU by default, and the Miniband is used as the DRU by default. In this case, the overhead can be further saved without sending DCAS or UCAS.
( 5 ) 子载波置换或 Tile置换, 即 , 对下行子帧中各个频率分区中用于 映射为 DRU的 PRU进行子载波的置换 , 对上行子帧中各个频率分区中用于 映射为 DRU的 PRU进行 Tile置换。 另夕卜, 在这里所述的 CRU和 DRU指的是还没有经过步骤( 5 ) 的资源单 元。 而经过第 5步之后的称为连续還辑资源单元 ( Contiguous Logical Resource Unit, 筒称为 CLRU )和分布還辑资源单元( Distributed Logical Resource Unit, 筒称为 DLRU ), 在不引起歧义的情况下可以^1 CLRU和 DLRU筒称为 CRU 和 DRU。 图 3是示出 5MHz带宽情况下了物理资源映射的具体实例,其中包括连 续资源单元 /分布资源单元分配的过程。 图 4至图 6示出了子带划分至频率分 区划分的处理过程, 为了更加清楚地说明其它带宽下资源映射的情况, 图 7 是才艮据相关技术的 10MHz (可以为 7MHz或 8.75MHz )带宽情况下无线通信 系统的资源映射过程示意图, 图 7示出了 10MHz (也包括 7MHz、 8.75MHz ) 带宽时具体的映射情况, FPSi是指第 i ( i > 0 ) 个频率分区中 PRU的数目, 其中, Subband数为 6, 并且具有 4个频率分区, 每个频率分区大小为 12个 PRU, 第一个频率分区包含 8个 CRU和 4个 DRU, 其它频率分区均包含 4 个 CRU和 8个 DRU。 图 8是才艮据相关技术的 20MHz带宽情况下无线通信 系统的资源映射过程的示意图,图 8示出了 20M带宽情况下的具体映射的情 况, UCASSBi是指第 i ( i > 0 ) 频率分区中上行基于 Subband的 CRU分配数 目, UCASMB是指各频率分区中上行基于 Miniband的 CRU分配数目。 通过以上描述可以看出, 在资源映射过程中, 当带宽确定后, 仍然需要 确定其它的一些参数(例如, 需要确定 Subband数、 频率分区数、 每个频率 分区上的 Subband和 CRU数等)。 在通信系统中,资源映射指示信息都由基站通过广播信道或超帧头发送 给终端 ,终端才艮据资源映射指示信息和资源分配信息确定接收和 /或发送数据 的资源位置。 资源映射指示信息指示了频率资源的划分和映射, 具体可以包 括如下信息: 下行子带分配数、 上行子带分配数、 下行频率分区配置、 上行 频率分区配置、 下行频率分区子带分配数、 上行频率分区子带分配数、 下行 连续资源单元分配的数目 、 上行连续资源单元分配的数目 、 下行基于 Miniband的连续资源单元的数目、 上行基于 Miniband的连续资源单元的数 。 由于具体的资源映射过程很多, 因此, 上述指示参数的设置具有较强的 灵活性, 但是这同时会导致指示这些参数所需要的 bit数增加, 进而增加了 在传输这些 bit 时的控制信道开销, 浪费大量信道资源。 针对相关技术中资 源映射参数指示以及传输的信道开销大、 浪费系统资源的问题, 目前尚未提 出有效的解决方案。 发明内容 针对相关技术中资源映射指示参数的设置灵活存在的指示资源映射参 数所需要的比特数增加以及传输时控制信道开销大、 浪费系统资源的问题而 提出本发明, 为此, 本发明的主要目的在于提供一种资源映射指示信息的配 置方案, 以解决上述问题的至少之一。 才艮据本发明的一个方面, 提供一种资源映射指示信息的配置方法。 才艮据本发明的资源映射指示信息的配置方法包括:指示资源映射的至少 一个参数, 才艮据带宽确定指示所述参数所需的比特数; 其中, 对于多个不同 的带宽, 指示所述参数所需的比特数彼此部分相同或完全不同。 借助于本发明的上述至少一个技术方案,对于系统支持的每个带宽配置 指示参数所需的比特数, 并且同一参数在不同带宽下的进行指示的比特数部 分相同或完全不同 , 使得物理资源映射指示信令使用的比特数能够根据系统 使用的带宽灵活变化, 尽可能地减少传输的比特数, 避免了相关技术中控制 信道开销大的问题,在不影响系统正常的运作的前提下, 节约下行控制开销, 从而提高系统的工作效率。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明 , 并不构成对本发明的限制。 在附图中: 图 1是才艮据相关技术的无线通信系统的帧结构示意图; 图 2是才艮据相关技术的无线通信系统的资源结构示意图; 图 3是根据相关技术的 5MHz带宽情况下无线通信系统的资源映射过程 示意图; 图 4是根据相关技术的 5MHz带宽情况下无线通信系统的子带划分过程 示意图; 图 5是根据相关技术的 5MHz带宽情况下无线通信系统的 ^啟带置换过程 示意图; 图 6是根据相关技术的 5MHz带宽情况下无线通信系统的频率分区划分 示意图; 图 7是才艮据相关技术的 10MHz (可以为 7MHz或 8.75MHz ) 带宽情况 下无线通信系统的资源映射过程示意图; 图 8是根据相关技术的 20MHz带宽情况下无线通信系统的资源映射过 程的示意图; 图 9是才艮据本发明实施例的资源映射指示信息的配置方法的流程图; 图 10是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 DSAC的应用示意图; 图 11是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 USAC的应用示意图; 图 12是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 DFPC的应用示意图; 图 13是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 UFPC的应用示意图; 图 14是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 DFPSC的应用示意图; 图 15是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 UFPSC的应用示意图; 图 16是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 DCASssi的应用示意图。 图 17是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 UCASssi的应用示意图。 图 18是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 DCASMB的应用示意图。 图 19是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 UCASMB的应用示意图。 具体实施方式 功能相克述 考虑到相关技术中资源映射指示参数的设置灵活存在的指示资源映射 参数所需要的比特数增加以及传输时控制信道开销大、浪费系统资源的问题, 本发明实施例提供了一种资源映射指示信息的配置方案, 该方案的处理原则 如下: 指示资源映射的至少一个参数, 对于系统支持的每个带宽配置指示参 数所需的比特数, 并且同一参数在不同带宽下的进行指示的比特数部分相同 或完全不同 ,使得小带宽情况进行参数指示时采用的比特比大带宽时尽量少 , 减小了物理资源映射指示信令使用的比特数, 能够在不影响系统正常的运作 的前提下, 根据系统使用的带宽灵活变化节约下行控制开销。 即, 在广播信 道或超帧头中发送资源映射指示信息的信息元素( Information Element, 筒称 为 IE ) 或者消息或者子包根据系统带宽确定 , 从而提高系统的工作效率。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在以下实施例中,在附图的流程图示出的步骤可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下 , 可以以不同于此处的顺序执行所示出或描述的步骤。 方法实施例 才艮据本发明实施例 , 提供了一种资源映射指示信息的配置方法。 图 9是根据本发明实施例的资源映射指示信息的配置方法的流程图 ,如 图 9所示, 该方法包括以下步骤: 步骤 S902, 指示资源映射过程的至少一个参数, 才艮据带宽确定指示所 述参数所需的比特数, 该参数包括以下至少之一: 下行子带分配数、 上行子 带分配数、 下行频率分区配置、 上行频率分区配置、 下行频率分区子带分配 数、 上行频率分区子带分配数、 下行连续资源单元分配的数目、 上行连续资 源单元分配的数目、 下行基于 Miniband 的连续资源单元的数目、 上行基于 Miniband的连续资源单元的数目; 步骤 S904, 对于系统支持的多个不同带宽 (该带宽可以是系统带宽), 指示参数所需的比特数彼此部分相同或完全不同, 具体地, 该多个带宽可以 包括第一带宽、 第二带宽和第三带宽, 其中, 对于资源指示信息中的一个参 数: 对应于第一带宽, 指示该参数所需的比特数为 M; 对应于第二带宽, 指 示该参数所需的比特数为 N; 对应于第三带宽, 指示该参数所需的比特数为 P, 并且, M、 N、 P的取值彼此部分相同或完全不同, 优选地, 上述第一带 宽包括: 5 MHz, 第二带宽包括以下之一: 7MHz、 8.75MHz、 10MHz、 第三 带宽包括: 20MHz。 需要说明的是, 对于 40MHz 的带宽, 指示参数所需的 比特数可以为 X个, X+1或 X+2 , 其中, X为带宽是 20MHz时指示参数所 需要的比特数。 其中, M、 N、 P的取值彼 jt匕部分相同是指: N=M+1、 JL P=M+1 ; 或者, N=M+2、 且 P=M+2; 或者, N=M、 且 P=M+1 ; 或者, N=M、 且 P=M+2, 其中 M为大于 0的整数, 优选地, M的取值为 1或 2或 3或 4。 其中, M、 N、 P的取值彼此完全不同是指: N=M+1、 且 P=M+2; 或者 N=M+2、 且 Ρ=Μ+3 , 或者 N=M+1、 且 Ρ=Μ+3 , 其中 M为大于 0的整数, 优选地, M的取值为 1或 2或 3或 4。 并且, 具体的指示方式如下: 在系统中指示下行子带分配数的比特数与 指示上行子带分配数的比特数相同或不同; 在系统中指示下行频率分区配置 的比特数与指示上行频率分区配置的比特数相同或不同; 在系统中指示下行 频率分区子带分配数的比特数与指示上行频率分区子带分配数的比特数相同 或不同; 在系统中指示下行连续资源单元分配的数目的比特数与指示上行连 续资源单元分配的数目的比特数相同或不同。 通过本发明实施例提供的技术方案,能够使物理资源映射指示信令使用 的比特数能够根据系统使用的带宽灵活变化, 尽可能地减少传输的比特数, 在不影响系统正常的运作的前提下节约下行控制开销, 从而提高系统的工作 效率。 下面将结合具体的实例详细描述对应于不同带宽情况下指示同一参数 的比特数的各种实例。 在下文描述中 , 通过多个表格示出了参数 (例如, DSAC、 USAC等) 的多个指示信令取值与指示信令取值所指示的物理含义 (例如, 下文中所述 的子带数) 的具体对应情况。 应当理解, 对于下文中出现的每个表格, 根据 实际需要, 参数的指示信令取值与指示信令取值所指示的物理含义的对应关 系可以改变, 并不局限于表格中所示的对应关系。 在下文的描述所示出的表格中,具体给出了通过 lbit、 2bits、 3bits、 4bits 等多种方式进行参数指示的情况。 例如, 在采用 Ibit JL可选值有两个的情况 下, 指示信令用二进制的 "0" 表示表格中的 0, 用二进制的 "1 " 表示表格 中的 1 ; 在采用 2bit进行参数指示且可选值有 4个的情况下, 指示信令用二 进制的 "00" 表示表格中的 0, 用二进制的 "01" 表示表格中的 1 , 用二进 制的 "10" 表示表格中的 2, 用二进制的 "11" 表示表格中的 3; 在采用 3bits 进行参数指示且可选值有 8 个的情况下, 指示信令用二进制的 "000" 表示 表格中的 0, 用二进制的 "001" 表示表格中的 1, 用二进制的 "010" 表示 表格中的 2, 用二进制的 "011" 表示表格中的 3, 用二进制的 "100" 表示表 格中的 4, 用二进制的 "101" 表示表格中的 5, 用二进制的 "110" 表示表格 中的 6, 用二进制的 "111" 表示表格中的 7; 在采用 4bits进行参数指示且可 选值有 16个的情况下, 指示信令用二进制的 "0000" 表示表格中的 0, 用二 进制的 "0001" 表示表格中的 1, 用二进制的 "0010" 表示表格中的 2, 用 二进制的 "0011" 表示表格中的 3, 用二进制的 "0100" 表示表格中的 4, 用 二进制的 "0101" 表示表格中的 5, 用二进制的 "0110" 表示表格中的 6, 用 二进制的 "0111" 表示表格中的 7, 用二进制的 "1000" 表示表格中的 8, 用 二进制的 "1001" 表示表格中的 9, 用二进制的 "1010" 表示表格中的 10, 用二进制的 "1011"表示表格中的 11, 用二进制的 "1100"表示表格中的 12, 用二进制的 "1101"表示表格中的 13, 用二进制的 "1110"表示表格中的 14, 用二进制的 "1111" 表示表格中的 15。 另夕卜, 在某些情况下, 由于有些取值不可能或不常出现, 可以将某些情况 下的表格的某些部分设成保留, 如表 1.9和表 3.14, 尽管 n比特指示信息可以 指示 2n种组合, 即将保留的位置填上实际取值, 但是某些取值的用处不大, 所 以将一部分取值设成保留。 这种方法对其他的指示信息表格也同样适用。 下行子带分配数的配置方法 实例 1 图 10是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 DSAC的应用示意图,如图 10 所示 , DSAC取值不同时 (即, DSAC指示的下行 Subband的个数不同时), 下行 Subband Partitioning过程是不同的。 下面以系统带宽为 5MHz、 10MHz (也可以为 7MHz 或 8.75MHz )、 20MHz为例,分为三类带宽对 DSAC的配置情况进行说明 ,第一类为 5MHz, 第二类为 10MHz或 7MHz或 8.75MHz, 第三类为 20MHz。 第一类: 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 2bits; 对于 5MHz, Subband数目的可能取值集合为 ADSAC = {0,1,2,3,4,5,6}。 1.1至表 1.8描述了系统带宽为 5MHz, 且指示 DSAC所需的比特数为 2bits 时 , DSAC的取值与 Subband数目的对应关系。 2bits表示 4种不同的 Subband 数目, 这 4种不同的 Subband数目取自 5MHz时 Subband数目的可能取值集 合 ADSAC, 共 C7 4 = 35种组合。 例如, 表 1.1取了 {0,1,2,3} , 其它组合不再一 一列举。 需要说明, 从 m个不同元素中取 n个不重复的元素组成一个子集, 而不考虑其元素的顺序, 称为从 m个中取 n个的无重组合, 所有可能的组合 的总数用 Cm n表示。 表 1.1 (5) Subcarrier permutation or tile permutation, that is, subcarrier replacement for PRUs mapped to DRUs in each frequency partition in the downlink subframe, and PRUs for mapping to DRUs in respective frequency partitions in the uplink subframe Perform a Tile replacement. In addition, the CRU and DRU described herein refer to resource units that have not yet passed through step (5). After the fifth step, it is called Contiguous Logical Resource Unit (CLRU) and Distributed Logical Resource Unit (DLRU), without causing ambiguity. ^ 1 CLRU and can be referred to as a CRU DLRU cylinder and DRU. FIG. 3 is a specific example of physical resource mapping in the case of a 5 MHz bandwidth, including a process of contiguous resource unit/distributed resource unit allocation. 4 to 6 show subband division to frequency division The process of partitioning, in order to more clearly explain the situation of resource mapping under other bandwidths, FIG. 7 is a schematic diagram of the resource mapping process of the wireless communication system according to the related technology of 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth. 7 shows the specific mapping situation when the bandwidth is 10MHz (including 7MHz, 8.75MHz). FPSi refers to the number of PRUs in the i (i > 0) frequency partitions, where the number of Subbands is 6, and there are 4 frequencies. Partition, each frequency partition size is 12 PRUs, the first frequency partition contains 8 CRUs and 4 DRUs, and the other frequency partitions contain 4 CRUs and 8 DRUs. 8 is a schematic diagram of a resource mapping process of a wireless communication system according to a 20 MHz bandwidth of the related art, and FIG. 8 shows a specific mapping situation in a case of a 20 M bandwidth, and UCAS SBi refers to an i-th (i > 0) frequency. The number of uplink sub-band-based CRU allocations in the partition, and UCAS MB refers to the number of uplink Miniband-based CRU allocations in each frequency partition. As can be seen from the above description, in the resource mapping process, after the bandwidth is determined, other parameters need to be determined (for example, the number of Subbands, the number of frequency partitions, the number of Subbands and CRUs on each frequency partition, etc.) need to be determined. In the communication system, the resource mapping indication information is sent by the base station to the terminal through the broadcast channel or the superframe, and the terminal determines the resource location of receiving and/or transmitting data according to the resource mapping indication information and the resource allocation information. The resource mapping indication information indicates the division and mapping of the frequency resources, and specifically includes the following information: downlink subband allocation number, uplink subband allocation number, downlink frequency partition configuration, uplink frequency partition configuration, downlink frequency partition subband allocation number, uplink The number of frequency partition subband allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of contiguous resource units based on Miniband. Since the specific resource mapping process is many, the setting of the above indication parameters has strong flexibility, but at the same time, the number of bits required to indicate these parameters is increased, thereby increasing the control channel overhead when transmitting these bits. A lot of channel resources are wasted. In view of the problem that the resource mapping parameter indication in the related art and the channel overhead of transmission are large and the system resources are wasted, an effective solution has not been proposed yet. SUMMARY OF THE INVENTION The present invention has been made in view of the problem of an increase in the number of bits required to indicate a resource mapping parameter and a large control channel overhead during transmission, which wastes system resources, in which the setting of resource mapping indication parameters in the related art is flexible, and the main problem of the present invention is The purpose is to provide a configuration scheme of resource mapping indication information to solve at least one of the above problems. According to an aspect of the present invention, a method for configuring resource mapping indication information is provided. The method for configuring the resource mapping indication information according to the present invention includes: indicating at least one parameter of the resource mapping, and determining a number of bits required to indicate the parameter according to the bandwidth; wherein, for a plurality of different bandwidths, indicating the The number of bits required for the parameters is partially identical or completely different from each other. With the above at least one technical solution of the present invention, the number of bits required to indicate the parameter is configured for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same or completely different, so that physical resource mapping is performed. The number of bits used for indicating signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible, thereby avoiding the problem of large control channel overhead in the related art, and saving the downlink without affecting the normal operation of the system. Control overhead, thereby increasing the efficiency of the system. The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention. In the drawings: FIG. 1 is a schematic diagram of a frame structure of a wireless communication system according to the related art; FIG. 2 is a schematic diagram of a resource structure of a wireless communication system according to the related art; FIG. 3 is a case of a 5 MHz bandwidth according to the related art. Schematic diagram of a resource mapping process of a wireless communication system; FIG. 4 is a schematic diagram of a subband division process of a wireless communication system in the case of a 5 MHz bandwidth according to the related art; FIG. 5 is a replacement process of a wireless communication system in a case of a 5 MHz bandwidth according to the related art FIG. 6 is a schematic diagram of frequency partition division of a wireless communication system according to a related art 5 MHz bandwidth; FIG. 7 is a resource mapping process of a wireless communication system according to a related technology of 10 MHz (which may be 7 MHz or 8.75 MHz) bandwidth; FIG. 8 is a schematic diagram of a resource mapping process of a wireless communication system in the case of a 20 MHz bandwidth according to the related art; FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention; FIG. 10 is a configuration method of resource mapping indication information according to an embodiment of the present invention, using different numbers of bit indications for a 5 MHz system bandwidth. FIG. 11 is a schematic diagram of application of signaling USAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention; FIG. The configuration method of the resource mapping indication information in the embodiment of the present invention is a schematic diagram of the application of the signaling DFPC when a different number of bit indication parameters are used for the 10 MHz system bandwidth. FIG. 13 is a configuration method of the resource mapping indication information in the embodiment of the present invention. FIG. 14 is a schematic diagram of application of signaling UFPC when a different number of bits are used to indicate a parameter; FIG. 14 is a schematic diagram of application of signaling DPFSC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to a method for configuring resource mapping indication information according to an embodiment of the present invention; FIG. 15 is a resource mapping indication in an embodiment of the present invention; FIG. 16 is a schematic diagram of the configuration of the resource mapping indication information in the embodiment of the present invention. The method for configuring the resource mapping indication information in the embodiment of the present invention uses a different number of bit indication parameters for the 10 MHz system bandwidth. Schematic diagram of the application of time signaling DCASssi. FIG. 17 is a schematic diagram of application of signaling UCASssi when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 10 MHz system bandwidth. FIG. 18 is a schematic diagram of application of signaling DCASMB when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth. FIG. 19 is a schematic diagram of application of signaling UCAS MB when a method for configuring resource mapping indication information according to an embodiment of the present invention uses a different number of bit indication parameters for a 5 MHz system bandwidth. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a solution to the problem that the number of bits required to indicate a resource mapping parameter is increased, and the control channel overhead is large, and system resources are wasted. A configuration scheme of resource mapping indication information, and a processing principle of the scheme As follows: At least one parameter indicating the resource mapping, the number of bits required to indicate the parameter for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same or completely different, so that the small bandwidth is performed. The number of bits used in the parameter indication is less than that of the large bandwidth. The number of bits used by the physical resource mapping indication signaling is reduced, and the downlink control overhead can be saved according to the flexible bandwidth change of the system without affecting the normal operation of the system. . That is, the information element (Information Element, referred to as IE) of the resource mapping indication information is transmitted in the broadcast channel or the superframe header, or the message or the sub-packet is determined according to the system bandwidth, thereby improving the working efficiency of the system. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. In the following embodiments, the steps illustrated in the flowchart of the drawings may be performed in a computer system such as a set of computer executable instructions, and although the logical order is illustrated in the flowchart, in some cases The steps shown or described may be performed in an order different from that herein. Method Embodiments According to an embodiment of the present invention, a method for configuring resource mapping indication information is provided. FIG. 9 is a flowchart of a method for configuring resource mapping indication information according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps: Step S902, indicating at least one parameter of a resource mapping process, according to a bandwidth determination indication. The number of bits required by the parameter, the parameter includes at least one of the following: a downlink subband allocation number, an uplink subband allocation number, a downlink frequency partition configuration, an uplink frequency partition configuration, a downlink frequency partition subband allocation number, and an uplink frequency partition. The number of subband allocations, the number of downlink contiguous resource unit allocations, the number of uplink contiguous resource unit allocations, the number of downlink contiguous resource units based on Miniband, and the number of uplink contiguous resource units based on Miniband; Step S904, multiple supported by the system The different bandwidths (the bandwidth may be the system bandwidth), the number of bits required to indicate the parameters are partially identical or completely different from each other. Specifically, the multiple bandwidths may include the first bandwidth, the second bandwidth, and the third bandwidth, where One parameter in the indication information: corresponding to the first bandwidth, indicating The number of bits required for the parameter is M; corresponding to the second bandwidth, the number of bits required to indicate the parameter is N; corresponding to the third bandwidth, the number of bits required to indicate the parameter is P, and, M, N, The values of P are partially the same or completely different from each other. Preferably, the first bandwidth includes: 5 MHz, and the second bandwidth includes one of the following: 7 MHz, 8.75 MHz, 10 MHz, and the third bandwidth includes: 20 MHz. It should be noted that for the 40MHz bandwidth, the required parameters are indicated. The number of bits may be X, X+1 or X+2, where X is the number of bits required to indicate a parameter when the bandwidth is 20 MHz. Wherein, the values of M, N, and P are the same as the part of jt匕: N=M+1, JL P=M+1; or, N=M+2, and P=M+2; or, N= M, and P = M+1; or, N = M, and P = M + 2, where M is an integer greater than 0, preferably, M is 1 or 2 or 3 or 4. Wherein, the values of M, N, and P are completely different from each other: N=M+1, and P=M+2; or N=M+2, and Ρ=Μ+3, or N=M+1, And Ρ=Μ+3, where M is an integer greater than 0, preferably, M is 1 or 2 or 3 or 4. The specific indication manner is as follows: The number of bits indicating the number of downlink subband allocations in the system is the same as or different from the number of bits indicating the number of uplink subband allocations; indicating the number of bits in the downlink frequency partition configuration and indicating the uplink frequency partition in the system The number of configured bits is the same or different; the number of bits indicating the number of downlink frequency subband allocations in the system is the same as or different from the number of bits indicating the number of uplink frequency partition subband allocations; indicating the number of downlink continuous resource unit allocations in the system The number of bits is the same as or different from the number of bits indicating the number of uplink contiguous resource unit allocations. With the technical solution provided by the embodiment of the present invention, the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible without affecting the normal operation of the system. The downlink control overhead is saved, thereby improving the working efficiency of the system. Various examples of the number of bits indicating the same parameter corresponding to different bandwidths will be described in detail below with reference to specific examples. In the following description, multiple indication signaling values of parameters (eg, DSAC, USAC, etc.) and physical indications indicated by the indicated signaling values are shown by a plurality of tables (eg, subbands described below) The specific correspondence of the number). It should be understood that, for each table that appears in the following, the correspondence between the indication value of the parameter indication signal and the physical meaning indicated by the value of the indication signaling may be changed according to actual needs, and is not limited to the correspondence shown in the table. relationship. In the table shown in the following description, the case where parameter indication is performed by various methods such as lbit, 2bits, 3bits, and 4bits is specifically given. For example, in the case where there are two Ibit JL optional values, the indication signaling uses a binary "0" to represent 0 in the table, a binary "1" to represent 1 in the table, and 2 bits for parameter indication and In the case where there are 4 optional values, the indication signaling uses the binary "00" to represent 0 in the table, and the binary "01" to represent 1 in the table. The system "10" indicates 2 in the table, and the binary "11" indicates 3 in the table. In the case where 3 bits are used for parameter indication and there are 8 optional values, the indication signaling is represented by a binary "000". 0 in the table, with the binary "001" for the 1 in the table, the binary "010" for the 2 in the table, the binary "011" for the 3 in the table, and the binary "100" for the table. 4, with binary "101" for 5 in the table, binary "110" for 6 in the table, binary "111" for 7 in the table; 4bits for parameter indication and optional values In the case of 16 cases, the indication signaling uses the binary "0000" to represent 0 in the table, the binary "0001" to represent 1 in the table, the binary "0010" to represent 2 in the table, and the binary "0011". " represents 3 in the table, with the binary "0100" for the 4 in the table, the binary "0101" for the 5 in the table, the binary "0110" for the 6 in the table, and the binary "0111" for the binary. 7 in the table, with the binary "1000" for the 8 in the table, and the binary "1001" for the 9 in the table. Use the binary "1010" to represent 10 in the table, the binary "1011" to represent 11 in the table, the binary "1100" to represent 12 in the table, and the binary "1101" to represent 13 in the table. "1110" represents 14 in the table, and binary "1111" represents 15 in the table. In addition, in some cases, because some values are unlikely or infrequent, some parts of the table may be reserved in some cases, as shown in Table 1.9 and Table 3.14, although n-bit indications may Indicates 2 n combinations, and the position to be reserved is filled with the actual value, but some values are not useful, so some values are set to be reserved. This method also applies to other forms of instructional information. Example for Configuring the Number of Downstream Subband Allocations FIG. 10 is a schematic diagram of application of signaling DSAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to the method for configuring resource mapping indication information according to an embodiment of the present invention, as shown in FIG. As shown in the figure, when the DSAC values are different (that is, when the number of downlink Subbands indicated by the DSAC is different), the downlink Subband Partitioning process is different. The system bandwidth is 5MHz, 10MHz (also 7MHz or 8.75MHz), 20MHz as an example. The configuration of DSAC is divided into three types of bandwidth. The first type is 5MHz, and the second type is 10MHz or 7MHz or 8.75. MHz, the third category is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameters is 2bits; for 5MHz, the possible value set of the number of Subbands is A DSAC = {0,1,2,3,4,5,6} . 1.1 to Table 1.8 describes the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 5 MHz and the number of bits required for DSAC is 2 bits. 2bits represents the number of four different Subbands. The number of these four different Subbands is taken from the possible set of the number of Subbands at 5MHz, A DSAC , and a total of C 7 4 = 35 combinations. For example, Table 1.1 takes {0, 1, 2, 3}, and other combinations are not listed one by one. It should be noted that n non-repeating elements from m different elements form a subset, regardless of the order of the elements, which is called no-recombination of n from m, and the total number of all possible combinations is used. C m n is expressed. Table 1.1
Figure imgf000014_0001
表 1.7
Figure imgf000014_0001
Table 1.7
Figure imgf000015_0001
Figure imgf000015_0001
或者: 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 3bits。 3bits表示 8种不同的 Subband数目, 这 8种不同的 Subband数目能够表示集 合 ADSAC中的所有元素。 如表 1.9所示。 表 1.9 Or: When the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameters is 3bits. 3bits represents the number of 8 different Subbands, which can represent all the elements in the set A DSAC . As shown in Table 1.9. Table 1.9
Figure imgf000015_0002
Figure imgf000015_0002
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DSAC参 数所需的比特数为 3bits; 对于 7MHz或 8.75MHz或 10MHz, Subband数目的可能取值集合为 BDSAC = {0,1,2,3,4,5,6,7,8,9,10,11,12}。 表 1.10 至表 1.22 描述了系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ), 且指示 DSAC所需的比特数为 3bits 的情况下 , DSAC的取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数目, 这 8种不同的 Subband数目取自 1 OMHz (也可以为 7MHz或 8.75MHz ) 时 Subband数目的可能取值集合 BDSAC, 共 C13 8 = 1287种组合。 例如, 表 1.10取了 {0,1,2,3,4,5,6,7} , 除表 1.10至表 1.22以外的其它组合不 再 列举。 表 1.10
Figure imgf000015_0003
2 2 6 6
The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DSAC parameters is 3bits; for 7MHz or 8.75MHz or 10MHz, the possible value set of the number of Subbands is B DSAC = {0,1, 2,3,4,5,6,7,8,9,10,11,12}. Tables 1.10 through 1.22 describe the relationship between the value of DSAC and the number of Subbands when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and the number of bits required for DSAC is 3bits. 3bits represents 8 different subband numbers. The 8 different Subband numbers are taken from 1 OMHz (also 7MHz or 8.75MHz). The possible value set of Subband number is B DSAC , and C 13 8 = 1287 combinations. For example, Table 1.10 takes {0,1,2,3,4,5,6,7}, and other combinations than Tables 1.10 through 1.22 are no longer listed. Table 1.10
Figure imgf000015_0003
2 2 6 6
3 3 7 7 表 1.11  3 3 7 7 Table 1.11
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 7  2 2 6 7
3 3 7 9 表 1.12  3 3 7 9 Table 1.12
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 5 0 0 4 5
1 1 5 7  1 1 5 7
2 2 6 9  2 2 6 9
3 3 7 11 表 1.13  3 3 7 11 Table 1.13
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 8 表 1.14  3 3 7 8 Table 1.14
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 7  2 2 6 7
3 3 7 8 表 1.15  3 3 7 8 Table 1.15
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 8 DSAC 对应 Subband数 DSAC 对应 Subband数3 3 7 8 DSAC corresponds to Subband number DSAC corresponding Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 8  2 2 6 8
3 3 7 9 表 1.17  3 3 7 9 Table 1.17
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 10  2 2 6 10
3 3 7 12 表 1.18  3 3 7 12 Table 1.18
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 9 表 1.19  3 3 7 9 Table 1.19
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 9  2 2 6 9
3 3 7 12 表 1.20  3 3 7 12 Table 1.20
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 1 4 5 0 1 4 5
1 2 5 6  1 2 5 6
2 3 6 7  2 3 6 7
3 4 7 8 表 1.21  3 4 7 8 Table 1.21
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 6 1 1 5 8 0 0 4 6 1 1 5 8
2 2 6 10  2 2 6 10
3 4 7 12 表 1.22  3 4 7 12 Table 1.22
DSAC 对应 Subband数 DSAC 对应 Subband数  DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 4 6  0 0 4 6
1 2 5 8  1 2 5 8
2 3 6 10  2 3 6 10
3 4 7 12 或者: 系统带宽为 10MHz或 7MHz或 8.75MHz时, 指示 DSAC参数 所需的比特数为 4bits。 4bits表示 16种不同的 Subband数目, 这 16种不同的 Subband数目足够表示集合 BDSAC中的所有元素。 如表 1.23所示。 表 1.23 3 4 7 12 OR: When the system bandwidth is 10MHz or 7MHz or 8.75MHz, the number of bits required to indicate the DSAC parameters is 4bits. 4bits represents 16 different subband numbers, which are sufficient to represent all elements in the set B DSAC . As shown in Table 1.23. Table 1.23
Figure imgf000018_0001
Figure imgf000018_0001
第三带宽: 系统带宽为 20MHz 时, 指示 DSAC 参数所需的比特数为 Third Bandwidth: When the system bandwidth is 20MHz, the number of bits required to indicate the DSAC parameter is
3bits。 对于 20MHz, Subband数目的可能取值集合为 CDSAC = {0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}。 表 1.24至表 1.27描述了系 统带宽为 20MHz, 且指示 DSAC所需的比特数为 3bits的情况下, DSAC的 取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数目, 这 8 种不同的 Subband数目取自 20MHz时 Subband数目的可能取值集合 CDSAC, 共 C25 8 = 1081575种组合, 例如, 表 1.24取了 {0,2,3,4,6,8,9,12} , 除表 1.24 至表 1.27以外的其它组合不再——列举。 表 1.24 3bits. For 20MHz, the possible set of values for the number of Subbands is C DSAC = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 18, 19, 20, 21, 22, 23, 24}. Table 1.24 to Table 1.27 describe the correspondence between the value of DSAC and the number of Subbands when the system bandwidth is 20 MHz and the number of bits required for DSAC is 3 bits. 3bits represents 8 different subband numbers. The 8 different subband numbers are taken from the possible value set of the number of Subbands at 20MHz C DSAC , and a total of C 25 8 = 1081575 combinations. For example, Table 1.24 takes {0, 2, 3,4,6,8,9,12}, except for Tables 1.24 to 1.27, no longer - enumerated. Table 1.24
Figure imgf000019_0001
Figure imgf000019_0001
表 1.25  Table 1.25
Figure imgf000019_0002
Figure imgf000019_0002
表 1.26  Table 1.26
Figure imgf000019_0003
Figure imgf000019_0003
表 1.27  Table 1.27
Figure imgf000019_0004
Figure imgf000019_0004
或者 , 系统带宽为 20MHz时 , 指示 DSAC参数所需的比特数为 4bits。 4bits表示 16种不同的 Subband数目, 这 16种不同的 Subband数目取自集合 CDSAC , 共 C25 16 = 2042975 种组合, 例如, 表 1.28 取了 {0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14, 15}, 除表 1.28至表 1.40以外的其它组合不再 列举。 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the DSAC parameters is 4bits. 4bits represents 16 different subband numbers. The 16 different Subband numbers are taken from the set CDSAC, and a total of C 25 16 = 2042975 combinations. For example, Table 1.28 takes {0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15}, other combinations than Table 1.28 to Table 1.40 are not listed.
表 1.28
Figure imgf000019_0005
2 2 10 10
Table 1.28
Figure imgf000019_0005
2 2 10 10
3 3 11 11  3 3 11 11
4 4 12 12  4 4 12 12
5 5 13 13  5 5 13 13
6 6 14 14  6 6 14 14
7 7 15 15 表 1.29  7 7 15 15 Table 1.29
Figure imgf000020_0001
Figure imgf000020_0001
表 1.30  Table 1.30
Figure imgf000020_0002
Figure imgf000020_0002
表 1.31  Table 1.31
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 15  5 5 13 15
6 6 14 18 表 1.32 6 6 14 18 Table 1.32
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 16  5 5 13 16
6 6 14 18  6 6 14 18
7 7 15 20 表 1.33  7 7 15 20 Table 1.33
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 15  5 5 13 15
6 6 14 18  6 6 14 18
7 7 15 21 表 1.34  7 7 15 21 Table 1.34
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 13  4 4 12 13
5 5 13 15  5 5 13 15
6 6 14 18  6 6 14 18
7 7 15 21 表 1.35  7 7 15 21 Table 1.35
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 8 1 1 9 9 0 0 8 8 1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 15  4 4 12 15
5 5 13 18  5 5 13 18
6 6 14 21  6 6 14 21
7 7 15 24 表 1.36  7 7 15 24 Table 1.36
Figure imgf000022_0001
Figure imgf000022_0001
表 1.37  Table 1.37
Figure imgf000022_0002
Figure imgf000022_0002
表 1.38  Table 1.38
DSAC 对应 Subband数 DSAC 对应 Subband数 DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 8 10 0 0 8 10
1 3 9 11  1 3 9 11
2 4 10 12  2 4 10 12
3 5 11 13  3 5 11 13
4 6 12 14  4 6 12 14
5 7 13 15 6 8 14 16 5 7 13 15 6 8 14 16
7 9 15 18 表 1.39  7 9 15 18 Table 1.39
Figure imgf000023_0001
Figure imgf000023_0001
表 1.40  Table 1.40
Figure imgf000023_0002
Figure imgf000023_0002
或者 , 系统带宽为 20MHz时 , 指示 DSAC参数所需的比特数为 5bits。 5bits表示 32种不同的 Subband数目, 这 32种不同的 Subband数目足够表示 集合 CDSAC中的所有元素。 如表 1.41所示。 表 1.41 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the DSAC parameters is 5bits. 5bits represents 32 different subband numbers, and the number of these 32 different Subbands is sufficient to represent all elements in the set C DSAC . As shown in Table 1.41. Table 1.41
DSAC 对应 Subband数 DSAC 对应 Subband数  DSAC corresponds to Subband number DSAC corresponds to Subband number
0 0 16 16  0 0 16 16
1 1 17 17  1 1 17 17
2 2 18 18  2 2 18 18
3 3 19 19  3 3 19 19
4 4 20 20  4 4 20 20
5 5 21 21  5 5 21 21
6 6 22 22 8 8 24 24 6 6 22 22 8 8 24 24
9 9 25 保留  9 9 25 Reserved
10 10 26 保留  10 10 26 Reserved
11 11 27 保留  11 11 27 Reserved
12 12 28 保留  12 12 28 Reserved
13 13 29 保留  13 13 29 Reserved
14 14 30 保留  14 14 30 Reserved
15 15 31 保留 对于各个带宽下指示 DSAC参数所需的比特数可以从上述方法中确定, 但对于系统支持的多个不同带宽, 指示所述参数所需的比特数彼此部分相同 或完全不同。 例 口, 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DSAC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits。 需要说明的是, 在这种方法中, 即使两个不同的带宽使用了相同的比特 数指示 DSAC参数,但对应的表格也可以是不同的。例如,系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits, 但对 应的表格为表 1.23;系统带宽为 20MHz时,指示该参数所需的比特数为 4bits, 但对应的表格为表 1.39。 由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 DSAC的取值及对应关系, 从而使得设 备制造更力。筒单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时采用相同的表格。例如,系统带宽为 5MHz时,指示 DSAC 参数所需的比特数为 2bits ; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所需的比特数为 4bits。 同上表 1.1至表 1.8描述了系统带宽为 5MHz, 且指示 DSAC所需的比 特数为 2bits的情况下, DSAC的取值与 Subband数目的对应关系, 这里不再 赘述。 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 DSAC所需的比特数为 4bits的情况下, 可以 卩采用 20MHz在需要 4bits 指示 DSAC时的表格之一, 例如, 都是用表 1.28或者表 1.29确定 DSAC的 取值与 Subband数目的对应关系。 通过上述实例 1 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 DSAC的比特数分别需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合时, 在 DSAC的可能取值减 少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了 一定的灵活性。 上行子带分配数的配置方法 实例 2 图 11是才艮据本发明实施例的资源映射指示信息的配置方法对于 5MHz 系统带宽采用不同数量的比特指示参数时信令 USAC的应用示意图,如图 11 所示 , USAC取值不同时 (即, USAC指示的下行 Subband的个数不同时), 下行 Subband Partitioning过程是不同的。 下面以系统带宽 (或筒称为带宽) 为 5MHz、 10MHz (也可以为 7MHz 或 8.75MHz )、 20MHz为例 , 分为三类带宽对 USAC的配置情况进行说明 , 第一类为 5MHz, 第二类为 10MHz或 7MHz或 8.75MHz, 第三类为 20MHz。 第一类: 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 2bits; 对于 5MHz, Subband数目的可能取值集合为 AUSAC = {0,1,2,3,4,5,6}„ 2.1至表 2.8描述了系统带宽为 5MHz, 且指示 USAC所需的比特数为 2bits 时 , USAC的取值与 Subband数目的对应关系。 2bits表示 4种不同的 Subband 数目, 这 4种不同的 Subband数目取自 5MHz时 Subband数目的可能取值集 合 AUSAC, 共 C7 4 = 35种组合。 例如, 表 2.1取了 {0,1,2,3} , 其它组合不再一 一列举。 需要说明, 从 m个不同元素中取 n个不重复的元素组成一个子集, 而不考虑其元素的顺序, 称为从 m个中取 n个的无重组合, 所有可能的组合 的总数用 Cm n表示。 表 2.1 15 15 31 The number of bits required to indicate the DSAC parameters for each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits required to indicate the parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is 20MHz. When the system bandwidth is 5 MHz, the number of bits required to indicate the DSAC parameter is 2 bits. When the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) The required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DSAC parameter is 2 bits; the system bandwidth is 10 MHz (also When 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or, when the system bandwidth is 5MHz, the DSAC parameter is required. The number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz , the number of bits required to indicate this parameter is 4 bits. It should be noted that in this method, even if two different bandwidths use the same number of bits to indicate the DSAC parameters, the corresponding tables may be different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits, but The table should be Table 1.23; when the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 4bits, but the corresponding table is Table 1.39. Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The same DSAC value and correspondence can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, which makes the device manufacturing more powerful. The same table is used, ie, the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DSAC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits. The corresponding relationship between the value of the DSAC and the number of Subbands in the case where the system bandwidth is 5 MHz and the number of bits required for the DSAC is 2 bits is as described above. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required to indicate DSAC is 4bits, you can use 20MHz in one of the tables that require 4bits to indicate DSAC, for example, Use Table 1.28 or Table 1.29 to determine the correspondence between the value of DSAC and the number of Subbands. Through the above example 1, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the DSAC needs 2bits, 3bits, 4bits, respectively, or 2bits, 4bits, 4bits respectively. , or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., respectively, when the possible value of the DSAC is reduced, the redundant and unnecessary information indications are deleted, and the bit overhead is saved. And to ensure a certain flexibility. Example for Configuring the Number of Uplink Subband Allocations FIG. 11 is a schematic diagram of the application of signaling USAC when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to the configuration method of the resource mapping indication information according to the embodiment of the present invention, as shown in FIG. 11 . As shown, when the values of USAC are different (that is, when the number of downlink Subbands indicated by USAC is different), the downlink Subband Partitioning process is different. In the following, the system bandwidth (or the bandwidth called the bandwidth) is 5MHz, 10MHz (also 7MHz or 8.75MHz), and 20MHz is taken as an example. The configuration of the USC is described in three types of bandwidth. The first type is 5MHz, the second. The class is 10MHz or 7MHz or 8.75MHz, and the third class is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 2bits; for 5MHz, the possible value set of the number of Subbands is A USAC = {0,1,2,3,4,5,6} „ 2.1 to Table 2.8 describe the relationship between the value of USAC and the number of Subbands when the system bandwidth is 5MHz and indicates the number of bits required by USAC is 2bits. 2bits indicates the number of 4 different Subbands, these 4 different Subbands The number of possible values from the number of Subbands at 5 MHz is A USAC , and C 7 4 = 35 combinations. For example, Table 2.1 takes {0, 1, 2, 3}, and other combinations are not listed one by one. , taking n non-repeating elements from m different elements to form a subset, regardless of the order of its elements, called no-recombination of n from m, the total number of all possible combinations using C m n indicates. Table 2.1
Figure imgf000026_0001
0 0 2 3
Figure imgf000026_0001
0 0 2 3
1 2 3 4 表 2.6  1 2 3 4 Table 2.6
USAC 对应 Subband数 USAC 对应 Subband数  USAC corresponds to Subband number USAC corresponds to Subband number
0 0 2 4  0 0 2 4
1 3 3 5 表 2.7  1 3 3 5 Table 2.7
USAC 对应 Subband数 USAC 对应 Subband数  USAC corresponds to Subband number USAC corresponds to Subband number
0 0 2 4  0 0 2 4
1 3 3 6 表 2.8  1 3 3 6 Table 2.8
USAC 对应 Subband数 USAC 对应 Subband数  USAC corresponds to Subband number USAC corresponds to Subband number
0 1 2 3  0 1 2 3
1 2 3 4 或者: 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 3bits。 3bits表示 8种不同的 Subband数目, 这 8种不同的 Subband数目能够表示集 合 AUSAC中的所有元素。 如表 2.9所示。 表 2.9 1 2 3 4 Or: When the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 3 bits. 3bits represents the number of 8 different Subbands, which can represent all the elements in the set A USAC . As shown in Table 2.9. Table 2.9
Figure imgf000027_0001
Figure imgf000027_0001
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 USAC参 数所需的比特数为 3bits; 对于 7MHz或 8.75MHz或 10MHz, Subband数目的可能取值集合为 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the USAC parameter is 3bits; for 7MHz or 8.75MHz or 10MHz, the possible value set of the number of Subbands is
BUSAC = {0, 1,2,3,4,5,6,7,8,9, 10,11, 12}„ 表 2.10 至表 2.22 描述了系统带宽为 10MHz (也可以为 7MHz或 8.75MHz ), 且指示 USAC所需的比特数为 3bits 的情况下 , USAC的取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数目, 这 8种不同的 Subband数目取自 1 OMHz (也可以为 7MHz或 8.75MHz ) 时 Subband数目的可能取值集合 BUSAC , 共 C13 8 = 1287种组合。 例如, 表 2.10取了 {0,1,2,3,4,5,6,7} , 除表 2.10至表 2.22以外的其它组合不 再 列举。 BUSAC = {0, 1,2,3,4,5,6,7,8,9, 10,11, 12} „ Table 2.10 to Table 2.22 describe the system bandwidth as 10MHz (also 7MHz or 8.75MHz) And indicate the correspondence between the value of USAC and the number of Subbands when the number of bits required by USAC is 3 bits. 3bits indicates the number of 8 different Subbands, and the number of these 8 different Subbands is taken from 1 OMHz (may also be A possible set of values for the number of Subbands at 7 MHz or 8.75 MHz) B USAC , a total of C 13 8 = 1287 combinations. For example, Table 2.10 takes {0,1,2,3,4,5,6,7}, and other combinations than Table 2.10 to Table 2.22 are not listed.
表 2.10
Figure imgf000028_0001
Table 2.10
Figure imgf000028_0001
表 2.11
Figure imgf000028_0002
Table 2.11
Figure imgf000028_0002
表 2.12
Figure imgf000028_0003
Table 2.12
Figure imgf000028_0003
表 2.13
Figure imgf000028_0004
Table 2.13
Figure imgf000028_0004
表 2.14
Figure imgf000028_0005
表 2.15
Table 2.14
Figure imgf000028_0005
Table 2.15
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 8 表 2.16  3 3 7 8 Table 2.16
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 8  2 2 6 8
3 3 7 9 表 2.17  3 3 7 9 Table 2.17
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 10  2 2 6 10
3 3 7 12 表 2.18  3 3 7 12 Table 2.18
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 9 表 2.19  3 3 7 9 Table 2.19
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 9  2 2 6 9
3 3 7 12 表 2.20  3 3 7 12 Table 2.20
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 1 4 5 1 2 5 6 0 1 4 5 1 2 5 6
2 3 6 7  2 3 6 7
3 4 7 8 表 2.21  3 4 7 8 Table 2.21
USAC 对应 Subband数 USAC 对应 Subband数  USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 6  0 0 4 6
1 1 5 8  1 1 5 8
2 2 6 10  2 2 6 10
3 4 7 12 表 2.22  3 4 7 12 Table 2.22
USAC 对应 Subband数 USAC 对应 Subband数  USAC corresponds to Subband number USAC corresponds to Subband number
0 0 4 6  0 0 4 6
1 2 5 8  1 2 5 8
2 3 6 10  2 3 6 10
3 4 7 12 或者: 系统带宽为 10MHz或 7MHz或 8.75MHz时, 指示 USAC参数 所需的比特数为 4bits。 4bits表示 16种不同的 Subband数目, 这 16种不同的 Subband数目足够表示集合 BUSAC中的所有元素。 如表 2.23所示。 表 2.23 3 4 7 12 OR: When the system bandwidth is 10MHz or 7MHz or 8.75MHz, the number of bits required to indicate the USAC parameter is 4bits. 4bits represents the number of 16 different Subbands, which are sufficient to represent all elements in the set B USAC . As shown in Table 2.23. Table 2.23
Figure imgf000030_0001
Figure imgf000030_0001
第三带宽: 系统带宽为 20MHz 时, 指示 USAC 参数所需的比特数为 Third Bandwidth: When the system bandwidth is 20MHz, the number of bits required to indicate the USAC parameter is
3bits。 对于 20MHz, Subband数目的可能取值集合为 CUSAC = {0,1,2,3,4,5,6,7,3bits. For 20MHz, the possible set of values for the number of Subbands is C USAC = {0,1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}。 表 2.24至表 2.274 述了系 统带宽为 20MHz, 且指示 USAC所需的比特数为 3bits的情况下, USAC的 取值与 Subband数目的对应关系。 3bits表示 8种不同的 Subband数目, 这 8 种不同的 Subband数目取自 20MHz时 Subband数目的可能取值集合 CUSAC, 共 C25 8 = 1081575种组合, 例如, 表 2.24取了 {0,2,3,4,6,8,9,12} , 除表 2.24 至表 2.27以外的其它组合不再——列举。 表 2.24 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}. Table 2.24 to Table 2.274 describe the system When the system bandwidth is 20 MHz, and the number of bits required by the USAC is 3 bits, the correspondence between the value of USAC and the number of Subbands is indicated. 3bits represents 8 different subband numbers. The 8 different subband numbers are taken from the possible value set of the number of Subbands at 20MHz C USAC , and a total of C 25 8 = 1081575 combinations. For example, Table 2.24 takes {0, 2, 3,4,6,8,9,12}, other combinations than Table 2.24 to Table 2.27 are no longer - enumerated. Table 2.24
Figure imgf000031_0001
Figure imgf000031_0001
表 2.25  Table 2.25
Figure imgf000031_0002
Figure imgf000031_0002
表 2.26  Table 2.26
Figure imgf000031_0003
Figure imgf000031_0003
表 2.27 Table 2.27
Figure imgf000031_0004
或者 , 系统带宽为 20MHz时 , 指示 USAC参数所需的比特数为 4bits。 4bits表示 16种不同的 Subband数目, 这 16种不同的 Subband数目取自集合 CUSAC , 共 C25 16 = 2042975 种组合, 例如, 表 2.28 取了 {0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14,15}, 除表 2.28至表 2.40以外的其它组合不再 列举。
Figure imgf000031_0004
Or, when the system bandwidth is 20MHz, the number of bits required to indicate the USAC parameter is 4bits. 4bits represents 16 different Subband numbers. The 16 different Subband numbers are taken from the set CUSAC, a total of C 25 16 = 2042975 combinations. For example, Table 2.28 takes {0,1,2,3,4,5,6 , 7, 8, 9, 10, 11, 12, 13, 14, 15}, other combinations than Table 2.28 to Table 2.40 are not listed.
表 2.28  Table 2.28
Figure imgf000032_0001
Figure imgf000032_0001
表 2.29  Table 2.29
Figure imgf000032_0002
Figure imgf000032_0002
表 2.30  Table 2.30
Figure imgf000032_0003
USAC 对应 Subband数 USAC 对应 Subband数
Figure imgf000032_0003
USAC corresponds to Subband number USAC corresponding Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 15  5 5 13 15
6 6 14 18  6 6 14 18
7 7 15 20 表 2.32  7 7 15 20 Table 2.32
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 16  5 5 13 16
6 6 14 18  6 6 14 18
7 7 15 20 表 2.33  7 7 15 20 Table 2.33
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 14  4 4 12 14
5 5 13 15  5 5 13 15
6 6 14 18  6 6 14 18
7 7 15 21 表 2.34  7 7 15 21 Table 2.34
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
31 2 2 10 10 31 2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 13  4 4 12 13
5 5 13 15  5 5 13 15
6 6 14 18  6 6 14 18
7 7 15 21 表 2.35  7 7 15 21 Table 2.35
Figure imgf000034_0001
Figure imgf000034_0001
表 2.36  Table 2.36
Figure imgf000034_0002
Figure imgf000034_0002
表 2.37 Table 2.37
USAC 对应 Subband数 USAC 对应 Subband数 USAC corresponds to Subband number USAC corresponds to Subband number
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 12  3 3 11 12
4 4 12 15 5 5 13 18 4 4 12 15 5 5 13 18
6 6 14 21  6 6 14 21
7 7 15 24 表 2.38  7 7 15 24 Table 2.38
Figure imgf000035_0001
Figure imgf000035_0001
表 2.39  Table 2.39
Figure imgf000035_0002
Figure imgf000035_0002
表 2.40  Table 2.40
Figure imgf000035_0003
Figure imgf000035_0003
或者, 系统带宽为 20MHz时, 指示 USAC参数所需的比特数为 5bits。 5bits表示 32种不同的 Subband数目, 这 32种不同的 Subband数目足够表示 集合 CUSAC中的所有元素。 如表 2.41所示。 表 2.41 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the USAC parameter is 5bits. 5bits represents 32 different subband numbers, and the number of these 32 different Subbands is sufficient to represent all elements in the set C USAC . As shown in Table 2.41. Table 2.41
Figure imgf000036_0001
Figure imgf000036_0001
对于各个带宽下指示 USAC参数所需的比特数可以从上述方法中确定, 但对于系统支持的多个不同带宽, 指示所述参数所需的比特数彼此部分相同 或完全不同。 例 口, 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 USAC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits。 需要说明的是, 在这种方法中, 即使两个不同的带宽使用了相同的比特 数指示 USAC参数,但对应的表格也可以是不同的。例如,系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits, 但对 应的表格为表 2.23;系统带宽为 20MHz时,指示该参数所需的比特数为 4bits, 但对应的表格为表 2.39。 由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 USAC的取值及对应关系, 从而使得设 备制造更力。筒单, 即, 系统带宽为 1 OMHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时采用相同的表格。例如,系统带宽为 5MHz时,指示 USAC 参数所需的比特数为 2bits ; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所需的比特数为 4bits。 同上表 2.1至表 2.8描述了系统带宽为 5MHz, 且指示 USAC所需的比 特数为 2bits的情况下, USAC的取值与 Subband数目的对应关系, 这里不再 赘述。 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 USAC所需的比特数为 4bits的情况下, 可以 卩采用 20MHz在需要 4bits 指示 USAC时的表格之一, 例如, 都是用表 2.28或者表 2.29确定 USAC的 取值与 Subband数目的对应关系。 通过上述实例 2 , 可以看出, 系统带宽分别为 5MHz、 1 OMHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 USAC的比特数分别需要 2bits、 3bits、 3bits, 或者分别需要 2bits、 3bits、 4bits , 或者分别需要 2bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 5bits 等组合时, 在 USAC的可能取值减少的情况下, 删减了冗余和不必要的信息 指示, 节约了比特开销, 且保证了一定的灵活性。 下行频率分区配置 (DFPC)的配置方法 实例 3 DFPC指示了下行子帧中的频率分区的大小和数目。 图 12是根据本发 明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数 量的比特指示参数时信令 DFPC的应用示意图, 如图 12所示, DFPC取不同 值时 , 下行 Frequency Partitioning过程是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DFPC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 其中, NPRU是一个子 帧上的 PRU数, 一 ^:情况下, 5MHz、 7MHz、 8.75MHz 、 10MHz和 20MHz 对应的 NpRU分别为 24、 48、 48、 48和 96 , 但本方法不受 jtb限制。 并且, 在 下述各表格中的各频率分区比例 (FP。: FPi : FP2: FP3 ) 表达式中, 对于出 现的 Nl : N2: N3 : N4, 其中, N1至 N4可以表示频率分区的实际个数, 也 可以表示各频率分区之间的比例关系。 第一类: 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits。 对于 5MHz, DFPC的可能配置的集合为 ADFPC: The number of bits required to indicate the USAC parameter at each bandwidth can be determined from the above method, but for a plurality of different bandwidths supported by the system, the number of bits required to indicate the parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is 20MHz. When the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 2 bits; when the system bandwidth is 10 MHz (which may also be 7 MHz or 8.75 MHz), the parameter is indicated. The required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 2 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the USAC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameter is required. The number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate this parameter is 4 bits. It should be noted that in this method, even if two different bandwidths use the same number of bits to indicate the USAC parameter, the corresponding table may be different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 2.23; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 2.39. Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The same USAC value and correspondence can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, which makes the device manufacturing more powerful. The same table is used, ie, the system bandwidth is 1 OMHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the USAC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits. The corresponding relationship between the value of USAC and the number of Subbands in the case where the system bandwidth is 5 MHz and the number of bits required for the USAC is 2 bits is as described above, and is not described here. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required for USAC is 4bits, one of the tables at 20MHz when 4bits is required to indicate USAC can be used, for example, Use Table 2.28 or Table 2.29 to determine the correspondence between the value of USAC and the number of Subbands. Through the above example 2, it can be seen that when the system bandwidth is 5MHz, 1 OMHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the USAC needs 2bits, 3bits, 3bits, or 2bits, 3bits, respectively. 4bits, or 2bits, 4bits, 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits respectively When combined, in the case that the possible value of the USAC is reduced, redundant and unnecessary information indications are deleted, bit overhead is saved, and certain flexibility is ensured. Configuration Method of Downlink Frequency Partition Configuration (DFPC) Example 3 The DFPC indicates the size and number of frequency partitions in the downlink subframe. 12 is a schematic diagram of application of signaling DFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 12, when DFPC takes different values, downlink Frequency Partitioning The process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. Wherein, N PRU is the number of PRUs in one subframe, and in the case of ^:, the Np RUs corresponding to 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz are 24, 48, 48, 48, and 96, respectively, but the method is not Jtb limit. And, in the expression of each frequency partition ratio (FP.: FP i : FP 2 : FP 3 ) in the following tables, for the occurrence of N1 : N2: N3 : N4, where N1 to N4 can represent frequency partitioning The actual number can also represent the proportional relationship between the frequency partitions. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits. For 5MHz, the set of possible configurations for DFPC is A DFPC :
{ ( 1个频率分区, 频率分区的大小为 NPRU ), ( 3个频率分区, 每个频率分区的大小为 NPRU*l/3 ), { (1 frequency partition, frequency partition size is N PRU ), (3 frequency partitions, each frequency partition size is N PRU *l/3 ),
( 4个频率分区,且 FPSo = NPRU*3/24, FPSI = FPS2 = FPS3 = NPRU*7/24 ), (4 frequency partitions, and FPSo = NPRU*3/24, FPSI = FPS 2 = FPS 3 = N PRU *7/24 ),
( 4个频率分区 ,且 FPSo = NPRU*6/24, FPSi = FPS2 = FPS3 = NPRU*l/4 ), (4 frequency partitions, and FPSo = NPRU*6/24, FPSi = FPS 2 = FPS 3 = N PRU *l/4 ),
( 4个频率分区,且 FPSo = NPRU*9/24, FPSI = FPS2 = FPS3 = NPRU*5/24 ), (4 frequency partitions, and FPSo = NPRU*9/24, FPSI = FPS 2 = FPS 3 = N PRU *5/24 ),
( 4个频率分区 , 且 FPSo = NPRU* 1/2 , FPSi = FPS2 = FPS3 = NPRU*l/6 ), ( 4个频率分区,且 FPSo = NPRU* 15/24, FPSi = FPS2 = FPS3 = NPRU*l/8 ), (4 frequency partitions, and FPSo = NPRU* 1/2 , FPSi = FPS 2 = FPS 3 = N PRU *l/6 ), (4 frequency partitions, and FPSo = NPRU* 15/24, FPSi = FPS 2 = FPS 3 = N PRU *l/8 ),
( 4 个频率分区, 且 FPSo = NPRU* 18/24 , FPSi = FPS2 = FPS3 =
Figure imgf000039_0001
(4 frequency partitions, and FPSo = NPRU* 18/24, FPSi = FPS 2 = FPS 3 =
Figure imgf000039_0001
( 4 个频率分区, 且 FPSo = NPRU*21/24 , FPSj = FPS2 = FPS3 = NpRU* l/24 ) }。 (4 frequency partitions, and FPSo = NPRU*21/24, FPSj = FPS 2 = FPS 3 = Np RU * l/24 ) }.
2bits表示 4种不同的频率分区数目和频率分区大小, 这 4种不同的频 率分区数目和频率分区大小取自集合 ADFPC, 共 C9 4 = 126种组合。 例如, 表 3.1 ~表 3.3 描述了 DFPC 的取值与频率分区数目和频率分区大小的对应关 系, 其中, FPCT是指有效频率分区数, 其它组合不再——列举。 表 3.1 2bits represents 4 different frequency partition numbers and frequency partition sizes. The 4 different frequency partition numbers and frequency partition sizes are taken from the set A DFPC , and a total of C 9 4 = 126 combinations. For example, Table 3.1 ~ Table 3.3 describe the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. FPCT refers to the number of effective frequency partitions, and other combinations are no longer - enumerated. Form 3.1
Figure imgf000039_0003
Figure imgf000039_0003
表 3.2  Table 3.2
Figure imgf000039_0004
Figure imgf000039_0004
表 3.3 Table 3.3
Figure imgf000039_0002
Figure imgf000040_0001
Figure imgf000039_0002
Figure imgf000040_0001
或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 3bits。 3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频率分区 数目和频率分区大小取自 ADFPC , 共 C9 8 = 9种组合。 例如, 表 3.4 ~表3.5描 述了 DFPC的取值与频率分区数目和频率分区大小的对应关系, 其它组合不 再 列举。 表 3.4Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 3 bits. 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from A DFPC , and a total of C 9 8 = 9 combinations. For example, Table 3.4 ~ Table 3.5 describe the correspondence between the value of DFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are not listed. Table 3.4
Figure imgf000040_0002
Figure imgf000040_0002
表 3.5 Table 3.5
Figure imgf000040_0003
或者, 尽管 3bits能够表示 8种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 ADFPC , 选出经常使 用的频率分区大小来表示, 比如, 5种、 6种或 7种, 共 C9 5 = 126种组合、 C9 6 = 84种组合、 C9 7 = 36种组合。 例如, 表 3.6 ~表 3.8所示, 其它组合不再 ——歹'』举。 表 3.6
Figure imgf000040_0003
Or, although 3bits can represent 8 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from A DFPC , for example, 5 Species, 6 or 7 species, total C 9 5 = 126 combinations, C 9 6 = 84 combinations, C 9 7 = 36 combinations. For example, as shown in Table 3.6 ~ Table 3.8, the other combinations are no longer - 歹 '". Table 3.6
Figure imgf000041_0001
Figure imgf000041_0001
表 3.7  Table 3.7
Figure imgf000041_0002
Figure imgf000041_0002
Figure imgf000042_0001
Figure imgf000042_0001
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DFPC参数 所需的比特数为 3bits。  The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DFPC parameter is 3bits.
DFPC的可能配置的集合为 BDFPC = The set of possible configurations for DFPC is B DFPC =
{ ( 1个频率分区, 频率分区的大小为 NPRU), { (1 frequency partition, the size of the frequency partition is N PRU ),
(3个频率分区, 且每个频率分区的大小为 NPRU*l/3), (3 frequency partitions, and the size of each frequency partition is N PRU *l/3),
( 4个频率分区 ,且 FPSo = NPRU*3/48 , FPSi = FPS2 = FPS3 = NPRU*5/16), (4 frequency partitions, and FPSo = NPRU*3/48, FPSi = FPS 2 = FPS 3 = NPRU*5/16),
( 4个频率分区,且 FPSo = NPRU*6/48 , FPSi = FPS2 = FPS3 = NPRU*7/24), (4 frequency partitions, and FPSo = NPRU*6/48, FPSi = FPS 2 = FPS 3 = NPRU*7/24),
( 4 个频率分区, 且 FPSo = NPRU*9/48 , FPSi = FPS2 = FPS3 =
Figure imgf000042_0002
(4 frequency partitions, and FPSo = NPRU*9/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000042_0002
( 4个频率分区,且 FPSo = NPRU* 12/48, FPSi = FPS2 = FPS3 = NPRU*l/4 ), (4 frequency partitions, and FPSo = NPRU* 12/48, FPSi = FPS 2 = FPS 3 = N PRU *l/4 ),
( 4 个频率分区 FPSo = NPRU* 15/48 , FPSi = FPS2 = FPS3 =
Figure imgf000042_0003
(4 frequency partitions FPSo = NPRU* 15/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000042_0003
( 4 个频率分区 FPSo = NPRU* 18/48 , FPSi = FPS2 = FPS3 =
Figure imgf000042_0004
(4 frequency partitions FPSo = NPRU* 18/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000042_0004
( 4 个频率分区 FPSo = NPRU*21/48 , FPSi = FPS2 = FPS3 =
Figure imgf000042_0005
(4 frequency partitions FPSo = NPRU*21/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000042_0005
( 4个频率分区,且 FPSo = NPRU*24/48,FPSI = FPS2 = FPS3 = NPRU*l/6 ), ( 4 个频率分区, 且 FPSo = NPRU*27/48 , FPSi = FPS2 = FPS3 =
Figure imgf000043_0001
(4 frequency partitions, and FPSo = NPRU*24/48, FPSI = FPS 2 = FPS 3 = N PRU *l/6 ), (4 frequency partitions, and FPSo = NPRU*27/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000043_0001
( 4个频率分区,且 FPSo = NPRU*30/48 , FPSI = FPS2 = FPS3 = NPRU*l/8 ), (4 frequency partitions, and FPSo = NPRU*30/48, FPSI = FPS 2 = FPS 3 = N PRU *l/8 ),
( 4 个频率分区, 且 FPSo = NPRU*33/48 , FPSj = FPS2 = FPS3 =
Figure imgf000043_0002
(4 frequency partitions, and FPSo = NPRU*33/48, FPSj = FPS 2 = FPS 3 =
Figure imgf000043_0002
( 4 个频率分区, 且 FPSo = NPRU*36/48 , FPSj = FPS2 = FPS3 =
Figure imgf000043_0003
(4 frequency partitions, and FPSo = NPRU*36/48, FPSj = FPS 2 = FPS 3 =
Figure imgf000043_0003
( 4 个频率分区, 且 FPSo = NPRU*39/48 , FPSj = FPS2 = FPS3 =
Figure imgf000043_0004
( 4 个频率分区, 且 FPSo = NPRU*42/48 , FPSj = FPS2 = FPS3 =
Figure imgf000043_0005
(4 frequency partitions, and FPSo = NPRU*39/48, FPSj = FPS 2 = FPS 3 =
Figure imgf000043_0004
(4 frequency partitions, and FPSo = NPRU*42/48, FPSj = FPS 2 = FPS 3 =
Figure imgf000043_0005
( 4 个频率分区, 且 FPSo = NPRU*45/48 , FPSj = FPS2 = FPS3 = NpRU* l/48 ) }。 (4 frequency partitions, and FPSo = NPRU*45/48, FPSj = FPS 2 = FPS 3 = Np RU * l/48 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 BDFPC, 共 C17 8 = 24310种组合。 例如, 表 3.9〜表 3.11所示, 其它不再——列举。 表 3.9 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set B DFPC , and a total of C 17 8 = 24310 combinations. For example, Table 3.9 ~ Table 3.11, others are no longer - enumerated. Table 3.9
Figure imgf000043_0006
Figure imgf000043_0006
表 3.10 Table 3.10
Figure imgf000044_0001
Figure imgf000044_0001
表 3.1 1
Figure imgf000044_0002
Table 3.1 1
Figure imgf000044_0002
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DFPC参数所 需的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分区数目和频率分区大小取自集合 BDFPC, 共 C17 16 = 17 种组合。 例如, 如表 3.12〜表 3.13所示。 表 3.12 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set B DFPC , and a total of C 17 16 = 17 combinations. For example, as shown in Table 3.12 to Table 3.13. Table 3.12
Figure imgf000044_0003
Figure imgf000044_0003
Figure imgf000045_0001
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000046_0001
Figure imgf000045_0002
Figure imgf000046_0001
或者, 尽管 4bits能够表示 16种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 BDFPC选出经常使用 的频率分区大小来表示, 比如, 12种、 13种、 14种或 15种, 共 17 12 = 6188 种组合、 C17 13 = 2380种组合、 C17 14 = 680种组合、 C17 15 = 136种组合。 例如, 表 3.14所示, 其它组合不再——列举。 表 3.14 Or, although 4bits can represent 16 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from B DFPC to represent, for example, 12 kinds. , 13 species, 14 species or 15 species, a total of 17 12 = 6188 combinations, C 17 13 = 2380 combinations, C 17 14 = 680 combinations, C 17 15 = 136 combinations. For example, as shown in Table 3.14, other combinations are no longer listed. Table 3.14
Figure imgf000046_0002
Figure imgf000046_0002
第三类: 系统带宽为 20MHz时,指示 DFPC参数所需的比特数为 3bits。  The third category: When the system bandwidth is 20MHz, the number of bits required to indicate the DFPC parameter is 3bits.
DFPC的可能配置的集合为 CDFPC = The set of possible configurations for DFPC is C DFPC =
{ ( 1个频率分区, 频率分区的大小为 NPRU ) , (3个频率分区, 且每个频率分区的大小为 NPRU*l/3), { (1 frequency partition, the size of the frequency partition is N PRU ), (3 frequency partitions, and the size of each frequency partition is N PRU *l/3),
( 4 个频率分区, 且 FPS, = NPRU*3/96 ' FPSi = FPS2 = FPS3 =
Figure imgf000047_0001
(4 frequency partitions, and FPS, = NPRU*3/96 ' FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0001
( 4 个频率分区, 且 FPS, = NpRU*6/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0002
(4 frequency partitions, and FPS, = Np RU *6/96 , FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0002
( 4 个频率分区, 且 FPS, = NPRU*9/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0003
(4 frequency partitions, and FPS, = N PRU *9/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0003
( 4 个频率分区, 且 FPSo = NPRU* 12/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0004
( 4 个频率分区, 且 FPSo = NpRU* 15/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0005
(4 frequency partitions, and FPSo = NPRU* 12/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0004
(4 frequency partitions, and FPSo = Np RU * 15/96 , FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0005
( 4 个频率分区, 且 FPSo = NPRU* 18/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0006
(4 frequency partitions, and FPSo = NPRU* 18/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0006
( 4 个频率分区, 且 FPSo = NPRU*21/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0007
(4 frequency partitions, and FPSo = NPRU*21/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0007
( 4 个频率分区, 且 FPSo = NPRU*24/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0008
(4 frequency partitions, and FPSo = NPRU*24/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0008
( 4 个频率分区, 且 FPSc = NPRU*27/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0009
( 4 个频率分区, 且 FPSc = NPRU*30/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0010
(4 frequency partitions, and FPSc = NPRU*27/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0009
(4 frequency partitions, and FPSc = NPRU*30/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0010
( 4 个频率分区, 且 FPSc = NPRU*33/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0011
(4 frequency partitions, and FPSc = NPRU*33/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0011
( 4 个频率分区, 且 FPSc = NpRU*36/96 , FPSi = FPS2 = FPS3 =
Figure imgf000047_0012
(4 frequency partitions, and FPSc = Np RU *36/96 , FPSi = FPS 2 = FPS 3 =
Figure imgf000047_0012
( 4 个频率分区, 且 FPSc = NPRU*39/96 , FPSi = FPS2 = FPS3 =
Figure imgf000048_0001
(4 frequency partitions, and FPSc = NPRU*39/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0001
( 4 个频率分区, 且 FPSo = NPRU*42/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0002
(4 frequency partitions, and FPSo = NPRU*42/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0002
( 4 个频率分区, 且 FPSo = NPRU*45/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0003
(4 frequency partitions, and FPSo = N PRU *45/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0003
( 4 个频率分区, 且 FPSo = NPRU*48/96 FPS, = FPS2 = FPS3 =
Figure imgf000048_0004
(4 frequency partitions, and FPSo = N PRU *48/96 FPS, = FPS 2 = FPS 3 =
Figure imgf000048_0004
( 4 个频率分区, 且 FPSo = NpRU*51/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0005
( 4 个频率分区, 且 FPSo = NpRU* 54/96 FPS! = FPS2 = FPS3 =
Figure imgf000048_0006
(4 frequency partitions, and FPSo = Np RU *51/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0005
(4 frequency partitions, and FPSo = Np RU * 54/96 FPS! = FPS 2 = FPS 3 =
Figure imgf000048_0006
( 4 个频率分区, 且 FPSo = NPRU*57/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0007
(4 frequency partitions, and FPSo = NPRU*57/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0007
( 4 个频率分区, 且 FPSo = NPRU* 60/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0008
(4 frequency partitions, and FPSo = NPRU* 60/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0008
( 4 个频率分区, 且 FPSo = NPRU*63/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0009
(4 frequency partitions, and FPSo = NPRU*63/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0009
( 4 个频率分区, 且 FPSo = NPRU* 66/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0010
( 4 个频率分区, 且 FPSo = NPRU*69/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0011
(4 frequency partitions, and FPSo = NPRU* 66/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0010
(4 frequency partitions, and FPSo = NPRU*69/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0011
( 4 个频率分区, 且 FPSo = NPRU* 72/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0012
(4 frequency partitions, and FPSo = NPRU* 72/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0012
( 4 个频率分区, 且 FPSo = NpRU*75/96 FPSi = FPS2 = FPS3 =
Figure imgf000048_0013
(4 frequency partitions, and FPSo = Np RU *75/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000048_0013
( 4 个频率分区, 且 FPSo = NPRU* 78/96 FPSi = FPS2 = FPS3 =
Figure imgf000049_0001
(4 frequency partitions, and FPSo = NPRU* 78/96 FPSi = FPS 2 = FPS 3 =
Figure imgf000049_0001
( 4 个频率分区, 且 FPSo = NPRU*81/96 , FPSj = FPS2 = FPS3 =
Figure imgf000049_0002
(4 frequency partitions, and FPSo = NPRU*81/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000049_0002
( 4 个频率分区, 且 FPSo = NPRU* 84/96 , FPSj = FPS2 = FPS3 =
Figure imgf000049_0003
(4 frequency partitions, and FPSo = NPRU* 84/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000049_0003
( 4 个频率分区, 且 FPSo = NPRU* 87/96 , FPSj = FPS2 = FPS3 =
Figure imgf000049_0004
(4 frequency partitions, and FPSo = NPRU* 87/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000049_0004
( 4 个频率分区, 且 FPSo = NPRU*90/96 , FPSj = FPS2 = FPS3 =
Figure imgf000049_0005
( 4 个频率分区, 且 FPSo = NPRU*93/96 , FPSj = FPS2 = FPS3 =
(4 frequency partitions, and FPSo = NPRU*90/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000049_0005
(4 frequency partitions, and FPSo = NPRU*93/96, FPSj = FPS 2 = FPS 3 =
NPRU* 1/96 ) }。 NPRU* 1/96 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 CDFPC, 共 C33 8 = 13884156种组合。 可 以采用任意一种组合指示 DFPC取值与频率分区数目和频率分区大小的对应 关系, 例如, 表 3.15 ~ 3.17所示, 其它组合不——列举。 表 3.15 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set C DFPC , a total of C 33 8 = 13884156 combinations. Any combination can be used to indicate the correspondence between the value of the DFPC and the number of frequency partitions and the size of the frequency partition. For example, as shown in Tables 3.15 to 3.17, other combinations are not listed. Table 3.15
Figure imgf000049_0006
Figure imgf000049_0006
Figure imgf000050_0001
Figure imgf000050_0001
表 3.17
Figure imgf000050_0002
Table 3.17
Figure imgf000050_0002
或者 , 系统带宽为 20MHz时 , 指示 DFPC参数所需的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分 区数目和频率分区大小取自集合 CDFPC , 共 C33 16 = 1166803110种组合。 可以 采用任意一种组合指示 DFPC取值与频率分区数目和频率分区大小的对应关 系, 例如, 表 3.18 ~表 3.19所示, 其它组合不——列举。 表 3.18 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the DFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set C DFPC , a total of C 33 16 = 1166803110 combinations. Any combination can be used to indicate the correspondence between the DFPC value and the number of frequency partitions and the size of the frequency partition. For example, Table 3.18 ~ Table 3.19, other combinations are not - enumerated. Table 3.18
Figure imgf000050_0003
6
Figure imgf000050_0003
6
Figure imgf000051_0001
Figure imgf000051_0001
Figure imgf000051_0002
Figure imgf000051_0002
ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 14 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 14 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96
15 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96 或者, 系统带宽为 20MHz时, 指示 DFPC参数所需的比特数为 5bits。 5bits表示 32种不同的频率分区数目和频率分区大小, 这 32种不同的频率分 区数目和频率分区大小取自集合 CDFPC , 共 C33 32 = 33种组合。 可以采用任意 一种组合指示 DFPC取值与频率分区数目和频率分区大小的对应关系 ,例如, 表 3.20所示, 其它组合不——列举。 表 3.2015 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the DFPC parameter is 5bits. 5bits represents 32 different frequency partition numbers and frequency partition sizes. The 32 different frequency partition numbers and frequency partition sizes are taken from the set C DFPC , and a total of C 33 32 = 33 combinations. Any combination may be used to indicate the correspondence between the DFPC value and the number of frequency partitions and the size of the frequency partition, for example, as shown in Table 3.20, and other combinations are not-listed. Table 3.20
Figure imgf000052_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000053_0001
或者, 尽管 5bits能够表示 32种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 CDFPC选出经常使用 的频率分区大小来表示, 比如, M(1<M<32)种, 共 C33 M组合。 例如, 表 3.21~ 表 3.22所示, 其它组合不再——列举。 表 3.21Or, although 5bits can represent 32 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from C DFPC to represent, for example, M ( 1<M<32) species, a total of C 33 M combinations. For example, as shown in Table 3.21~ Table 3.22, other combinations are no longer listed. Table 3.21
Figure imgf000053_0002
39
Figure imgf000053_0002
39
Figure imgf000054_0001
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000054_0002
ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 10 33 : 21 : 21 : 21 4 NPRU * 33/96 NPRU * 21/96ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 10 33 : 21 : 21 : 21 4 NPRU * 33/96 NPRU * 21/96
11 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/9611 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/96
12 39: 19: 19: 19 4 NPRU * 39/96 NPRU * 19/9612 39: 19: 19: 19 4 NPRU * 39/96 NPRU * 19/96
13 42: 18 : 18 : 18 4 NPRU * 42/96 NPRU * 18/9613 42: 18 : 18 : 18 4 NPRU * 42/96 NPRU * 18/96
14 45 : 17: 17: 17 4 NPRU * 45/96 NPRU * 17/9614 45 : 17: 17: 17 4 NPRU * 45/96 NPRU * 17/96
15 48 : 16: 16: 16 4 NPRU * 48/96 NPRU * 16/9615 48 : 16: 16: 16 4 NPRU * 48/96 NPRU * 16/96
16 5 1 : 15 : 15 : 15 4 NPRU * 5 1/96 NPRU * 15/9616 5 1 : 15 : 15 : 15 4 NPRU * 5 1/96 NPRU * 15/96
17 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/9617 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/96
18 57: 13 : 13 : 13 4 NPRU * 57/96 NPRU * 13/9618 57: 13 : 13 : 13 4 NPRU * 57/96 NPRU * 13/96
19 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/9619 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/96
20 63 : 11 : 11 : 1 1 4 NPRU * 63/96 NPRU * 11/9620 63 : 11 : 11 : 1 1 4 NPRU * 63/96 NPRU * 11/96
21 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/9621 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96
22 69: 9: 9: 9 4 NPRU * 69/96 NPRU * 9/9622 69: 9: 9: 9 4 NPRU * 69/96 NPRU * 9/96
23 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/9623 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96
24 保留 保留 保留 保留 24 reservations reservations reservations reservations
25 保留 保留 保留 保留  25 reservations reservations reservations reservations
26 保留 保留 保留 保留  26 reservations reservations reservations reservations
27 保留 保留 保留 保留  27 reservations reservations reservations reservations
28 保留 保留 保留 保留  28 reservations reservations reservations reservations
29 保留 保留 保留 保留  29 reservations reservations reservations reservations
30 保留 保留 保留 保留  30 reservations reservations reservations reservations
31 保留 保留 保留 保留 对于各个带宽下指示 DFPC参数所需的比特数可以从上述方法中确定, 但对于不同的带宽,指示 DFPC参数所需的比特数彼此部分相同或完全不同。 例如, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 4bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DFPC参数所需的比特数为 4bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits。 需要指出: 在上述 DFPC的配置方法中, 当两个不同的带宽使用了相同 的比特数指示 DFPC参数, 对应的表格可以相同或不同。 例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时,指示该参数所需的比特数为 4bits, 但对应的表格为表 3.13; 系统带宽为 20MHz 时, 指示该参数所需的比特数 为 4bits , 但对应的表格为表 3.18。 由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 DFPC的取值及对应关系, 从而使得设 备制造更力。筒单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时采用相同的表格。例如,系统带宽为 5MHz时,指示 DFPC 参数所需的比特数为 2bits ; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所需的比特数为 4bits。 同上表 3.1至表 3.3描述了系统带宽为 5MHz, 且指示 DFPC所需的比 特数为 2bits的情况下的配置方法, 这里不再赞述。 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 DFPC所需的比特数为 4bits的情况下, 可以 卩采用 20MHz在需要 4bits 指示 DFPC时的表格之一, 例如, 都是用表 3.18或者表 3.19。 另夕卜, 需要指出: 在上述 DFPC的配置方法中, 针对每一个表, DFPC 的值与 DFPC的值指示的意义中间的关系是可以变化的, 每一个表格均是一 个实施例 , 只要一个表中包含的 DFPC的值指示的意义是相同的, 均被视为 相同的表, 都在保护范围之内。 例如, 表 3.23 与表 3.15 均视为相同的表, 因为两个表中包含的 DFPC的值是指示的意义是相同的。 表 3.23 31 Reserved Reservation Reserved The number of bits required to indicate DFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate DFPC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz , the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits required is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameter is required. The number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 2 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameters are indicated. The number of bits is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPC parameter is 3 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter 4 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 4bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits; when the system bandwidth is 20MHz, the indication is The number of bits required for this parameter is 5 bits. It should be noted that in the above DFPC configuration method, when two different bandwidths use the same number of bits to indicate DFPC parameters, the corresponding tables may be the same or different. For example, the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits, but the corresponding table is Table 3.13; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits, but corresponding The table is shown in Table 3.18. Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The value of the same DFPC and the corresponding relationship can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, so that the device manufacturing is stronger. The same table is used, ie, the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPC parameter is 2bits; and when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, the number of bits required to indicate this parameter is 4bits. Tables 3.1 to 3.3 above describe the configuration method in the case where the system bandwidth is 5 MHz and the number of bits required for the DFPC is 2 bits, which is not mentioned here. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required to indicate DFPC is 4bits, you can use 20MHz in one of the tables when 4bits is required to indicate DFPC, for example, Use Table 3.18 or Table 3.19. In addition, it should be noted that in the above DFPC configuration method, for each table, the relationship between the value of the DFPC and the meaning indicated by the value of the DFPC can be changed, and each table is an embodiment, as long as one table The values of the DFPCs contained in the indications are the same and are considered to be the same table, all within the scope of protection. For example, Table 3.23 and Table 3.15 are both considered to be the same table, because the values of the DFPCs contained in the two tables are the same meaning. Table 3.23
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000057_0001
Figure imgf000058_0001
通过上述实例 3 , 可以看出, 系统带宽分别为 5ΜΗζ、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 DFPC的比特数分另' J需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合或者其它组合时, 在 DFPC的 可能取值减少的情况下,删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 上行频率分区配置 (UFPC)的配置方法 实例 4 UFPC指示了上行子帧中的频率分区的大小和数目。 图 13是根据本发 明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数 量的比特指示参数时信令 UFPC的应用示意图, 如图 13所示, UFPC取不同 值时 , 上行 Frequency Partitioning过程是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UFPC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 其中, NPRU是一个子 帧上的 PRU数, 一 ^:情况下, 5MHz、 7MHz、 8.75MHz 、 10MHz和 20MHz 对应的 NPRU分别为 24、 48、 48、 48和 96 , 但本方法不受此限制。 第一类: 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits。 对于 5MHz , UFPC的可能配置的集合为 AUFPCThrough the above example 3, it can be seen that when the system bandwidth is 5ΜΗζ, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the DFPC needs to be 2bits, 3bits, 4bits, or 2bits respectively. 4bits, 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations, when redundant values of DFPC are reduced, redundant and unnecessary information indications are deleted. , saves bit overhead and guarantees a certain flexibility. Configuration Method of Upstream Frequency Partition Configuration (UFPC) Example 4 UFPC indicates the size and number of frequency partitions in an uplink subframe. FIG. 13 is a schematic diagram of application of signaling UFPC when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 13 , when the UFPC takes different values, the uplink frequency partitioning is performed. The process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. Wherein, N PRU is the number of PRUs in one subframe, and in the case of ^:, the N PRUs corresponding to 5 MHz, 7 MHz, 8.75 MHz, 10 MHz, and 20 MHz are 24, 48, 48, 48, and 96, respectively, but the method is not This limit. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 2bits. For 5MHz, the set of possible configurations for UFPC is A UFPC :
{ ( 1个频率分区, 频率分区的大小为 NPRU ), { (1 frequency partition, the size of the frequency partition is N PRU ),
( 3个频率分区, 每个频率分区的大小为 NPRU*l/3 ), (3 frequency partitions, each frequency partition has a size of N PRU *l/3 ),
( 4个频率分区,且 FPSo = NPRU*3/24, FPSI = FPS2 = FPS3 = NPRU*7/24 ), (4 frequency partitions, and FPSo = NPRU*3/24, FPSI = FPS 2 = FPS 3 = N PRU *7/24 ),
( 4个频率分区 ,且 FPSo = NPRU*6/24, FPSi = FPS2 = FPS3 = NPRU*l/4 ), ( 4个频率分区,且 FPSo = NPRU*9/24, FPSI = FPS2 = FPS3 = NPRU*5/24 ), (4 frequency partitions, and FPSo = NPRU*6/24, FPSi = FPS 2 = FPS 3 = N PRU *l/4 ), (4 frequency partitions, and FPSo = NPRU*9/24, FPSI = FPS 2 = FPS 3 = N PRU *5/24 ),
( 4个频率分区 , 且 FPSo = NPRU* 1/2 , FPSi = FPS2 = FPS3 = NPRU*l/6 ), (4 frequency partitions, and FPSo = NPRU* 1/2 , FPSi = FPS 2 = FPS 3 = N PRU *l/6 ),
( 4个频率分区,且 FPSo = NPRU* 15/24, FPSi = FPS2 = FPS3 = NPRU*l/8 ), (4 frequency partitions, and FPSo = NPRU* 15/24, FPSi = FPS 2 = FPS 3 = N PRU *l/8 ),
( 4 个频率分区, 且 FPSo = NPRU* 18/24 , FPSi = FPS2 = FPS3 =
Figure imgf000059_0001
(4 frequency partitions, and FPSo = NPRU* 18/24, FPSi = FPS 2 = FPS 3 =
Figure imgf000059_0001
( 4 个频率分区, 且 FPSo = NPRU*21/24 , FPSi = FPS2 = FPS3 = NPRU* 1/24 ) }。 (4 frequency partitions, and FPSo = NPRU*21/24, FPSi = FPS 2 = FPS 3 = NPRU* 1/24) }.
2bits表示 4种不同的频率分区数目和频率分区大小, 这 4种不同的频 率分区数目和频率分区大小取自集合 AUFPC, 共 C9 4 = 126种组合。 例如, 表 4.1 ~表 4.3 描述了 UFPC 的取值与频率分区数目和频率分区大小的对应关 系, 其它组合不再——列举。 表 4.1 2bits represents 4 different frequency partition numbers and frequency partition sizes. The 4 different frequency partition numbers and frequency partition sizes are taken from the set A UFPC , a total of C 9 4 = 126 combinations. For example, Table 4.1 ~ Table 4.3 describe the correspondence between the value of UFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are no longer - enumerated. Table 4.1
Figure imgf000059_0002
Figure imgf000060_0001
Figure imgf000059_0002
Figure imgf000060_0001
或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 3bits。 3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频率分区 数目和频率分区大小取自 AUFPC , 共 C9 8 = 9种组合。 例如, 表 4.4 ~表 4.5描 述了 UFPC的取值与频率分区数目和频率分区大小的对应关系, 其它组合不 再 列举。 表 4.4Or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 3 bits. 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from A UFPC , and a total of C 9 8 = 9 combinations. For example, Table 4.4 ~ Table 4.5 describe the correspondence between the value of UFPC and the number of frequency partitions and the size of the frequency partition. Other combinations are not listed. Table 4.4
Figure imgf000060_0002
5 12: 4: 4: 4 4 NpRU * 1/2 NpRU * 1/6
Figure imgf000060_0002
5 12: 4: 4: 4 4 Np RU * 1/2 Np RU * 1/6
6 15: 3: 3: 3 4 NPRU * 5/8 NPRU * 1/86 15: 3: 3: 3 4 NPRU * 5/8 NPRU * 1/8
7 21: 1: 1: 1 4 NPRU * 7/8 NPRU * 1/24 或者, 尽管 3bits能够表示 8种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 AUFPC, 选出经常使 用的频率分区大小来表示, 比如, 5种、 6种或 7种, 共 C9 5 = 126种组合、 C9 6 = 84种组合、 C9 7 = 36种组合。 例如, 表 4.6 ~表 4.8所示, 其它组合不再 ——歹'』举。 表 4.6 7 21: 1: 1: 1 4 NPRU * 7/8 NPRU * 1/24 Or, although 3bits can represent 8 different frequency partition numbers and frequency partition sizes, some frequency partition sizes are basically not used, so From A UFPC , you can choose the frequency partition size you use frequently, for example, 5, 6 or 7 types, total C 9 5 = 126 combinations, C 9 6 = 84 combinations, C 9 7 = 36 combination. For example, as shown in Table 4.6 ~ Table 4.8, the other combinations are no longer - 歹 '". Table 4.6
Figure imgf000061_0001
Figure imgf000061_0001
表 4.7  Table 4.7
Figure imgf000061_0002
表 4.8
Figure imgf000061_0002
Table 4.8
Figure imgf000062_0004
Figure imgf000062_0004
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UFPC参数 所需的比特数为 3bits。  The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UFPC parameter is 3bits.
UFPC的可能配置的集合为 BUFPC = { ( 1个频率分区, 频率分区的大小为 NPRU), The set of possible configurations for UFPC is B UFPC = { (1 frequency partition, the size of the frequency partition is N PRU ),
(3个频率分区, 且每个频率分区的大小为 NPRU*l/3), (3 frequency partitions, and the size of each frequency partition is N PRU *l/3),
( 4个频率分区,且 FPSo = NPRU*3/48 , FPSi = FPS2 = FPS3 = NPRU*5/16 ), (4 frequency partitions, and FPSo = NPRU*3/48, FPSi = FPS 2 = FPS 3 = N PRU *5/16 ),
( 4个频率分区,且 FPSo = NPRU*6/48 , FPSi = FPS2 = FPS3 = NPRU*7/24 ), (4 frequency partitions, and FPSo = NPRU*6/48, FPSi = FPS 2 = FPS 3 = N PRU *7/24 ),
( 4 个频率分区, 且 FPSo = NPRU*9/48 , FPSi = FPS2 = FPS3 =
Figure imgf000062_0001
(4 frequency partitions, and FPSo = NPRU*9/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000062_0001
( 4个频率分区,且 FPSo = NPRU* 12/48, FPSi = FPS2 = FPS3 = NPRU*l/4 ), (4 frequency partitions, and FPSo = NPRU* 12/48, FPSi = FPS 2 = FPS 3 = N PRU *l/4 ),
( 4 个频率分区, 且 FPSo = NPRU* 15/48 , FPSi = FPS2 = FPS3 =
Figure imgf000062_0002
(4 frequency partitions, and FPSo = NPRU* 15/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000062_0002
( 4 个频率分区, 且 FPSo = NPRU* 18/48 , FPSi = FPS2 = FPS3 =
Figure imgf000062_0003
(4 frequency partitions, and FPSo = NPRU* 18/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000062_0003
( 4 个频率分区, 且 FPSo = NPRU*21/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0001
(4 frequency partitions, and FPSo = NPRU*21/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0001
( 4个频率分区,且 FPSo = NPRU*24/48 , FPSI = FPS2 = FPS3 = NPRU*l/6 ), (4 frequency partitions, and FPSo = NPRU*24/48, FPSI = FPS 2 = FPS 3 = N PRU *l/6 ),
( 4 个频率分区, 且 FPSo = NPRU*27/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0002
( 4个频率分区,且 FPSo = NPRU*30/48 , FPSI = FPS2 = FPS3 = NPRU*l/8 ),
(4 frequency partitions, and FPSo = NPRU*27/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0002
(4 frequency partitions, and FPSo = NPRU*30/48, FPSI = FPS 2 = FPS 3 = N PRU *l/8 ),
( 4 个频率分区 FPSo = NPRU*33/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0003
(4 frequency partitions FPSo = NPRU*33/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0003
( 4 个频率分区 FPSo = NPRU*36/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0004
( 4 个频率分区 FPSo = NPRU*39/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0005
(4 frequency partitions FPSo = NPRU*36/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0004
(4 frequency partitions FPSo = NPRU*39/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0005
( 4 个频率分区 FPSo = NPRU*42/48 , FPSi = FPS2 = FPS3 =
Figure imgf000063_0006
(4 frequency partitions FPSo = NPRU*42/48, FPSi = FPS 2 = FPS 3 =
Figure imgf000063_0006
( 4 个频率分区 FPSo = NPRU*45/48 , FPSi = FPS2 = FPS3 = NPRU* 1/48 ) }。 (4 frequency partitions FPSo = NPRU*45/48, FPSi = FPS 2 = FPS 3 = NPRU* 1/48 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 BUFPC , 共 C17 8 = 24310种组合。 例如, 表 4.9〜表 4.11所示, 其它不再——列举。 表 4.9 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set B UFPC , a total of C 17 8 = 24310 combinations. For example, Table 4.9 to Table 4.11, others are no longer - enumerated. Table 4.9
Figure imgf000063_0007
6 18 : 10: 10: 10 4 NPRU * 9/24 NPRU * 5/24
Figure imgf000063_0007
6 18 : 10: 10: 10 4 NPRU * 9/24 NPRU * 5/24
7 21 : 9: 9: 9 4 NPRU * 7/16 NPRU * 3/16 表 4.107 21 : 9: 9: 9 4 NPRU * 7/16 NPRU * 3/16 Table 4.10
Figure imgf000064_0001
Figure imgf000064_0001
表 4.1 1 Table 4.1 1
Figure imgf000064_0002
Figure imgf000064_0002
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UFPC参数所 需的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分区数目和频率分区大小取自集合 BUFPC, 共 C17 16 = 17 种组合。 例如, 如表 4.12〜表 4.13所示。 表 4.12 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set B UFPC , a total of C 17 16 = 17 combinations. For example, as shown in Table 4.12 to Table 4.13. Table 4.12
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000065_0001
Figure imgf000066_0001
或者, 尽管 4bits能够表示 16种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 BUFPC选出经常使用 的频率分区大小来表示, 比如, 12种、 13种、 14种或 15种, 共 17 12 = 6188 种组合、 C17 13 = 2380种组合、 C17 14 = 680种组合、 C17 15 = 136种组合。 例如, 表 4.14所示, 其它组合不再 列举。 表 4.14 Or, although 4bits can represent 16 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from B UFPC to represent, for example, 12 kinds. , 13 species, 14 species or 15 species, a total of 17 12 = 6188 combinations, C 17 13 = 2380 combinations, C 17 14 = 680 combinations, C 17 15 = 136 combinations. For example, as shown in Table 4.14, other combinations are not listed. Table 4.14
Figure imgf000066_0002
Figure imgf000066_0002
第三类: 系统带宽为 20MHz时,指示 UFPC参数所需的比特数为 3bits。 UFPC的可能配置的集合为 CUFPC = The third category: When the system bandwidth is 20MHz, the number of bits required to indicate the UFPC parameter is 3bits. The set of possible configurations for UFPC is C UFPC =
{ ( 1个频率分区, 频率分区的大小为 NPRU), { (1 frequency partition, the size of the frequency partition is N PRU ),
(3个频率分区, 且每个频率分区的大小为 NPRU*l/3), (3 frequency partitions, and the size of each frequency partition is N PRU *l/3),
( 4 个频率分区, 且 FPSo = NPRU*3/96 , FPSj = FPS2 = FPS3 = NPRU*31/96), (4 frequency partitions, and FPSo = NPRU*3/96, FPSj = FPS 2 = FPS 3 = N PRU *31/96),
( 4 个频率分区, 且 FPSo = NPRU*6/96 , FPSj = FPS2 = FPS3 =
Figure imgf000067_0001
(4 frequency partitions, and FPSo = NPRU*6/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000067_0001
( 4 个频率分区, 且 FPSo = NPRU*9/96 , FPS) = FPS2 = FPS3 =
Figure imgf000067_0002
( 4 个频率分区 且 FPSo = NPRU* 12/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0003
(4 frequency partitions, and FPSo = N PRU *9/96, FPS) = FPS 2 = FPS 3 =
Figure imgf000067_0002
(4 frequency partitions and FPSo = NPRU* 12/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0003
( 4 个频率分区 且 FPSo = NPRU* 15/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0004
(4 frequency partitions and FPSo = NPRU* 15/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0004
( 4 个频率分区 且 FPSo = NPRU* 18/96 , FPSi = FPS2 = FPS3 = NPRU*26/96 ), (4 frequency partitions and FPSo = NPRU* 18/96, FPSi = FPS 2 = FPS 3 = N PRU *26/96 ),
( 4 个频率分区 且 FPSo = NPRU*21/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0005
(4 frequency partitions and FPSo = NPRU*21/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0005
( 4 个频率分区 且 FPSo = NPRU*24/96 , FPS〗 = FPS2 = FPS3 =
Figure imgf000067_0006
( 4 个频率分区 且 FPSo = NPRU*27/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0007
(4 frequency partitions and FPSo = NPRU*24/96, FPS = FPS 2 = FPS 3 =
Figure imgf000067_0006
(4 frequency partitions and FPSo = NPRU*27/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0007
( 4 个频率分区 且 FPSo = NPRU*30/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0008
(4 frequency partitions and FPSo = NPRU*30/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0008
( 4 个频率分区 且 FPSo = NPRU*33/96 , FPSi = FPS2 = FPS3 =
Figure imgf000067_0009
(4 frequency partitions and FPSo = NPRU*33/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000067_0009
( 4 个频率分区 且 FPSo = NPRU*36/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0001
(4 frequency partitions and FPSo = NPRU*36/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0001
( 4 个频率分区, 且 FPSo = NPRU*39/96 , FPSj = FPS2 = FPS3 =
Figure imgf000068_0002
(4 frequency partitions, and FPSo = N PRU *39/96 , FPSj = FPS 2 = FPS 3 =
Figure imgf000068_0002
( 4 个频率分区, 且 FPSo = N *42/96 , FPSj = FPS2 = FPS3 =
Figure imgf000068_0003
(4 frequency partitions, and FPSo = N *42/96 , FPSj = FPS 2 = FPS 3 =
Figure imgf000068_0003
( 4 个频率分区, 且 FPSo = NPRU*45/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0004
(4 frequency partitions, and FPSo = N PRU *45/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0004
( 4 个频率分区, 且 FPSo = NPRU*48/96 , FPSj = FPS2 = FPS3 =
Figure imgf000068_0005
( 4 个频率分区, 且 FPSo = NPRU*51/96 , FPS〗 = FPS2 = FPS3 =
Figure imgf000068_0006
(4 frequency partitions, and FPSo = NPRU*48/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000068_0005
(4 frequency partitions, and FPSo = N PRU *51/96, FPS = FPS 2 = FPS 3 =
Figure imgf000068_0006
( 4 个频率分区, 且 FPSo = NPRU* 54/96 , FPSj = FPS2 = FPS3 =
Figure imgf000068_0007
(4 frequency partitions, and FPSo = NPRU* 54/96, FPSj = FPS 2 = FPS 3 =
Figure imgf000068_0007
( 4 个频率分区, 且 FPSo = NPRU* 57/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0008
(4 frequency partitions, and FPSo = NPRU* 57/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0008
( 4 个频率分区, 且 FPSo = NPRU*60/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0009
(4 frequency partitions, and FPSo = NPRU*60/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0009
( 4 个频率分区, 且 FPSo = NPRU* 63/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0010
( 4 个频率分区, 且 FPSo = NPRU*66/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0011
(4 frequency partitions, and FPSo = NPRU* 63/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0010
(4 frequency partitions, and FPSo = NPRU*66/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0011
( 4 个频率分区, 且 FPSo = NPRU* 69/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0012
(4 frequency partitions, and FPSo = NPRU* 69/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0012
( 4 个频率分区, 且 FPSo = NPRU* 72/96 , FPSi = FPS2 = FPS3 =
Figure imgf000068_0013
(4 frequency partitions, and FPSo = NPRU* 72/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000068_0013
( 4 个频率分区, 且 FPSo = NPRU* 75/96 , FPSi = FPS2 = FPS3 =
Figure imgf000069_0001
(4 frequency partitions, and FPSo = NPRU* 75/96, FPSi = FPS 2 = FPS 3 =
Figure imgf000069_0001
( 4 个频率分区, 且 FPSo = NPRU*78/96 , FPSj = FPS2 = FPS3
Figure imgf000069_0002
(4 frequency partitions, and FPSo = NPRU*78/96, FPSj = FPS 2 = FPS 3
Figure imgf000069_0002
( 4 个频率分区, 且 FPSo = NPRU*81/96 , FPSj = FPS2 = FPS3
Figure imgf000069_0003
(4 frequency partitions, and FPSo = NPRU*81/96, FPSj = FPS 2 = FPS 3
Figure imgf000069_0003
( 4 个频率分区, 且 FPSo = NPRU* 84/96 , FPSj = FPS2 = FPS3
Figure imgf000069_0004
(4 frequency partitions, and FPSo = NPRU* 84/96, FPSj = FPS 2 = FPS 3
Figure imgf000069_0004
( 4 个频率分区, 且 FPSo = NPRU* 87/96 , FPSj = FPS2 = FPS3
Figure imgf000069_0005
(4 frequency partitions, and FPSo = NPRU* 87/96, FPSj = FPS 2 = FPS 3
Figure imgf000069_0005
( 4 个频率分区, 且 FPSo = NPRU*90/96 , FPSj = FPS2 = FPS3
Figure imgf000069_0006
(4 frequency partitions, and FPSo = NPRU*90/96, FPSj = FPS 2 = FPS 3
Figure imgf000069_0006
( 4 个频率分区, 且 FPSo = NPRU*93/96 , FPSj = FPS2 = FPS3 (4 frequency partitions, and FPSo = NPRU*93/96, FPSj = FPS 2 = FPS 3
NPRU* 1/96 ) }。 NPRU* 1/96 ) }.
3bits表示 8种不同的频率分区数目和频率分区大小, 这 8种不同的频 率分区数目和频率分区大小取自集合 CUFPC , 共 C33 8 = 13884156种组合。 可 以采用任意一种组合指示 UFPC取值与频率分区数目和频率分区大小的对应 关系, 例 口, 表 4.15 ~ 4.17所示, 其它组合不 列举。 表 4.15 3bits represents 8 different frequency partition numbers and frequency partition sizes. The 8 different frequency partition numbers and frequency partition sizes are taken from the set C UFPC , a total of C 33 8 = 13884156 combinations. Any combination can be used to indicate the correspondence between the value of the UFPC and the number of frequency partitions and the size of the frequency partition. For example, Tables 4.15 to 4.17, other combinations are not listed. Table 4.15
Figure imgf000069_0007
表 4.16
Figure imgf000069_0007
Table 4.16
Figure imgf000070_0001
Figure imgf000070_0001
或者 , 系统带宽为 20MHz时 , 指示 UFPC参数所需的比特数为 4bits。 4bits表示 16种不同的频率分区数目和频率分区大小, 这 16种不同的频率分 区数目和频率分区大小取自集合 CUFPC , 共 C33 16 = 1166803110种组合。 可以 采用任意一种组合指示 UFPC取值与频率分区数目和频率分区大小的对应关 系, 例 口, 表 4.18 ~表 4.19所示, 其它组合不 列举。 表 4.18 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the UFPC parameter is 4bits. 4bits represents 16 different frequency partition numbers and frequency partition sizes. The 16 different frequency partition numbers and frequency partition sizes are taken from the set C UFPC , a total of C 33 16 = 1166803110 combinations. Any combination of UFPC values and the number of frequency partitions and the size of the frequency partition may be indicated by any combination, as shown in Table 4.18 to Table 4.19, and other combinations are not listed. Table 4.18
UFPC 各频率分区比例 有效频率分区数 FPo 的 大 小 其它分区大小  UFPC Frequency Division Ratio Effective Frequency Partition Number FPo Size Other Partition Size
(FP0: FPi : FP2 : FPCT FPSo FPSi (i>0) 96/91 *腿 N 96/817 *腦 Ν 91 :9ΐ :91 :817 Π(FP 0 : FPi : FP 2 : FPCT FPSo FPSi (i>0) 96/91 * Leg N 96/817 * Cerebral palsy 91 : 9 ΐ : 91 : 817 Π
96/81 *腿 N 96/ 1 *腦 Ν 81 :8ΐ :81 -Z 0196/81 *legs N 96/ 1 *brain Ν81 :8ΐ :81 -Z 01
96/0乙 *腿 N 96/9 ε *腦 Ν 0Z -0Z -0Z -9£ 696/0 B * Legs N 96/9 ε * Brain Ν 0Z -0Z -0Z -9£ 6
96I L * 腿 Ν 96/0 ε *腦 Ν ZZ -ZZ -ZZ -0£ 896I L * Leg Ν 96/0 ε * Brain Ν ZZ -ZZ -ZZ -0£ 8
96/1乙 *腿 Ν 96/1乙 *腦 Ν Z - Z - Z - Z L96/1 B * Legs Ν 96/1 B * Brain Ν Z - Z - Z - Z L
961 τ * 腿 Ν 96/1 *腦 Ν ςζ -ςζ -ςζ -ιζ 9961 τ * Legs Ν 96/1 * Brain Ν ςζ -ςζ -ςζ -ιζ 9
96/9乙 *腿 Ν 96/81 *腦 Ν 9Z -9Z -9Z -SI ς96/9 B * Leg Ν 96/81 * Brain Ν 9Z -9Z -9Z -SI ς
96ILZ * 腿 Ν 96/51 *腦 Ν LZ -LZ -LZ -ςι 96ILZ * Legs Ν 96/51 * Brain Ν LZ -LZ -LZ -ςι
96/8乙 *腿 Ν 96/ 1 *腦 Ν SZ -SZ -SZ -Zl £ 96/8B * Legs Ν 96/ 1 * Brain Ν SZ -SZ -SZ -Zl £
96/6乙 *腿 Ν 96/6 *腦 Ν 6Z -6Z -6Z :6 Z96/6 B * Legs Ν 96/6 * Brain Ν 6Z -6Z -6Z : 6 Z
96/乙 ε *腿 Ν 0 £ Z€ -Z€ -Z€ -0 I 96/B ε * Legs Ν 0 £ Z€ -Z€ -Z€ -0 I
0 腦 Ν I 0 -0 -0 :96 0 0 cerebral palsy I 0 -0 -0 :96 0
(0<ΐ) !S<M 丄 dd ■zdd -ldd -°dd) (0<ΐ) ! S<M 丄dd ■ z dd - l dd -°dd)
、f, γ ^ ,f, γ ^
Figure imgf000071_0001
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0002
ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 12 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/96ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 12 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/96
13 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/9613 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/96
14 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/9614 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96
15 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96 或者 , 系统带宽为 20MHz时 , 指示 UFPC参数所需的比特数为 5bits。 5bits表示 32种不同的频率分区数目和频率分区大小, 这 32种不同的频率分 区数目和频率分区大小取自集合 CUFPC , 共 C33 32 = 33种组合。 可以采用任意 一种组合指示 UFPC取值与频率分区数目和频率分区大小的对应关系 ,例如, 表 4.20所示, 其它组合不——列举。 表 4.20 15 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the UFPC parameter is 5bits. 5bits represents 32 different frequency partition numbers and frequency partition sizes. The 32 different frequency partition numbers and frequency partition sizes are taken from the set C UFPC , a total of C 33 32 = 33 combinations. Any combination may be used to indicate the correspondence between the value of the UFPC and the number of frequency partitions and the size of the frequency partition. For example, as shown in Table 4.20, other combinations are not listed. Table 4.20
Figure imgf000072_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000073_0001
或者, 尽管 5bits能够表示 32种不同的频率分区数目和频率分区大小, 但由于有些频率分区大小基本不会被使用, 所以可以从 CUFPC选出经常使用 的频率分区大小来表示, 比如, M(1<M<32)种, 共 C33 M组合。 例如, 表 4.21~ 表 4.22所示, 其它组合不再——列举。 表 4.21Or, although 5bits can represent 32 different frequency partition numbers and frequency partition sizes, since some frequency partition sizes are basically not used, you can select the frequently used frequency partition size from C UFPC to express, for example, M ( 1<M<32) species, a total of C 33 M combinations. For example, as shown in Table 4.21~ Table 4.22, other combinations are no longer listed. Table 4.21
Figure imgf000073_0002
ZL
Figure imgf000073_0002
ZL
Figure imgf000074_0001
Figure imgf000074_0001
ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 8 27: 23 : 23 : 23 4 NPRU * 27/96 NPRU * 23/96ZZ6£L0/600Z l3/13d 6S8lll/0l0Z OAV 8 27: 23 : 23 : 23 4 NPRU * 27/96 NPRU * 23/96
9 30: 22: 22: 22 4 NPRU * 30/96 NPRU * 22/969 30: 22: 22: 22 4 NPRU * 30/96 NPRU * 22/96
10 33 : 21 : 21 : 21 4 NPRU * 33/96 NPRU * 21/9610 33 : 21 : 21 : 21 4 NPRU * 33/96 NPRU * 21/96
11 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/9611 36: 20: 20: 20 4 NPRU * 36/96 NPRU * 20/96
12 39: 19: 19: 19 4 NPRU * 39/96 NPRU * 19/9612 39: 19: 19: 19 4 NPRU * 39/96 NPRU * 19/96
13 42: 18 : 18 : 18 4 NPRU * 42/96 NPRU * 18/9613 42: 18 : 18 : 18 4 NPRU * 42/96 NPRU * 18/96
14 45 : 17: 17: 17 4 NPRU * 45/96 NPRU * 17/9614 45 : 17: 17: 17 4 NPRU * 45/96 NPRU * 17/96
15 48 : 16: 16: 16 4 NPRU * 48/96 NPRU * 16/9615 48 : 16: 16: 16 4 NPRU * 48/96 NPRU * 16/96
16 5 1 : 15 : 15 : 15 4 NPRU * 5 1/96 NPRU * 15/9616 5 1 : 15 : 15 : 15 4 NPRU * 5 1/96 NPRU * 15/96
17 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/9617 54: 14: 14: 14 4 NPRU * 54/96 NPRU * 14/96
18 57: 13 : 13 : 13 4 NPRU * 57/96 NPRU * 13/9618 57: 13 : 13 : 13 4 NPRU * 57/96 NPRU * 13/96
19 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/9619 60: 12: 12: 12 4 NPRU * 60/96 NPRU * 12/96
20 63 : 11 : 11 : 1 1 4 NPRU * 63/96 NPRU * 11/9620 63 : 11 : 11 : 1 1 4 NPRU * 63/96 NPRU * 11/96
21 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/9621 66: 10: 10: 10 4 NPRU * 66/96 NPRU * 10/96
22 69: 9: 9: 9 4 NPRU * 69/96 NPRU * 9/9622 69: 9: 9: 9 4 NPRU * 69/96 NPRU * 9/96
23 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/9623 72: 8 : 8 : 8 4 NPRU * 72/96 NPRU * 8/96
24 保留 保留 保留 保留 24 reservations reservations reservations reservations
25 保留 保留 保留 保留  25 reservations reservations reservations reservations
26 保留 保留 保留 保留  26 reservations reservations reservations reservations
27 保留 保留 保留 保留  27 reservations reservations reservations reservations
28 保留 保留 保留 保留  28 reservations reservations reservations reservations
29 保留 保留 保留 保留  29 reservations reservations reservations reservations
30 保留 保留 保留 保留  30 reservations reservations reservations reservations
31 保留 保留 保留 保留 对于各个带宽下指示 UFPC参数所需的比特数可以从上述方法中确定, 但对于不同的带宽,指示 UFPC参数所需的比特数彼此部分相同或完全不同。 例如, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 3bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 4bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UFPC参数所需的比特数为 4bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits。 需要指出: 在上述 UFPC的配置方法中, 当两个不同的带宽使用了相同 的比特数指示 UFPC参数, 对应的表格可以相同或不同。 例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )时,指示该参数所需的比特数为 4bits, 但对应的表格为表 4.13; 系统带宽为 20MHz 时, 指示该参数所需的比特数 为 4bits , 但对应的表格为表 4.18。 由于系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz ) 和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 UFPC的取值及对应关系, 从而使得设 备制造更力。筒单, 即, 系统带宽为 10MHz (可以为 7MHz或 8.75MHz )和系 统带宽为 20MHz时采用相同的表格。例如,系统带宽为 5MHz时,指示 UFPC 参数所需的比特数为 2bits ; 而系统带宽为 10MHz (也可以为 7MHz 或 8.75MHz ) 和 20MHz时, 指示该参数所需的比特数为 4bits。 同上表 4.1至表 4.3描述了系统带宽为 5MHz, 且指示 UFPC所需的比 特数为 2bits的情况下的配置方法, 这里不再赞述。 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz时, 且指 示 UFPC所需的比特数为 4bits的情况下, 可以 卩采用 20MHz在需要 4bits 指示 UFPC时的表格之一, 例如, 都是用表 4.18或者表 4.19。 另夕卜, 需要指出: 在上述 UFPC的配置方法中, 针对每一个表, UFPC 的值与 UFPC的值指示的意义中间的关系是可以变化的, 每一个表格均是一 个实施例 , 只要一个表中包含的 UFPC的值是指示的意义是相同的, 均被视 为相同的表, 都在保护范围之内。 例如, 表 4.23与表 4.15均视为相同的表, 因为两个表中包含的 UFPC的值是指示的意义是相同的。 表 4.23 31 Reserved Reservation Reserved The number of bits required to indicate UFPC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate UFPC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz , the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits required is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 2bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz) The number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 2 bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz , the number of bits required to indicate the UFPC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the required parameter is required. The number of bits is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 3bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz) The number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 3 bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz , the number of bits required to indicate the UFPC parameter is 3 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the required parameter is required. The number of bits is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 4 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPC parameter is 4bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz) When the number of bits required to indicate the parameter is 5 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits. It should be noted that in the above UFPC configuration method, when two different bandwidths use the same number of bits to indicate UFPC parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 4.13; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 4.18. Since the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered that the 1 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified, and the system bandwidth can be 10MHz ( The value of the same UFPC and the corresponding relationship can be used when the system bandwidth is 20MHz and the system bandwidth is 20MHz, so that the device manufacturing is stronger. The same table is used, ie, the system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. For example, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPC parameter is 2 bits; and when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, the number of bits required to indicate the parameter is 4 bits. Tables 4.1 to 4.3 above describe the configuration method in the case where the system bandwidth is 5 MHz and the number of bits required for the UFPC is 2 bits, which is not mentioned here. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz) and 20MHz, and the number of bits required to indicate UFPC is 4bits, you can use 20MHz in one of the tables when 4bits is required to indicate UFPC, for example, Use Table 4.18 or Table 4.19. In addition, it should be pointed out that in the above UFPC configuration method, for each table, the relationship between the value of UFPC and the meaning indicated by the value of UFPC can be changed, and each table is an embodiment, as long as one table The values of UFPC contained in the indications are the same meaning, and are considered to be the same table, all within the scope of protection. For example, Table 4.23 and Table 4.15 are both considered to be the same table, because the values of UFPC contained in the two tables are the same meaning. Table 4.23
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000077_0001
Figure imgf000078_0001
通过上述实例 4 , 可以看出, 系统带宽分别为 5ΜΗζ、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 UFPC的比特数分另' J需要 2bits、 3bits、 4bits, 或者分别需要 2bits、 4bits、 4bits , 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits等组合或者其它组合时, 在 UFPC的 可能取值减少的情况下,删减了冗余和不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 下行频率分区 Subband数 ( DFPSC ) 的配置方法 实例 5 图 14是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 DFPSC 的应用示意图, 如图 14所示, DFPSC取不同的值时, 下行 Frequency Partitioning过程是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DFPSC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类: 系统带宽为 5MHz时,指示 DFPSC参数所需的比特数为 lbits。 对于 5MHz , DFPSC 的可能指示的 Subband 的数目 集合为: ADFPSc={0,l,2} o lbits表示 2种不同的 Subband的数, 这 2种不同的 Subband 的数取自集合 ADFPSC, 共 C3 2 = 3种组合。 例如, 表 5.1〜表 5.3所示。 表 5.1 Through the above example 4, it can be seen that when the system bandwidth is 5ΜΗζ, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the UFPC needs to be 2bits, 3bits, 4bits, or 2bits respectively. 4bits, 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, etc., or other combinations are required. When the possible value of UFPC is reduced, redundant and unnecessary information indications are deleted. , saves bit overhead and guarantees a certain flexibility. Example for configuring the downlink frequency division subband number (DFPSC) Example 5 FIG. 14 is a schematic diagram of the application of the resource mapping indication information in the embodiment of the present invention, when a different number of bit indication parameters are used for the 10 MHz system bandwidth, as shown in the figure. As shown in Figure 14, when the DFPSC takes different values, the downstream Frequency Partitioning process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameters is lbits. For 5MHz, the set of possible Subbands of DFPSC is: A DFPS c={0,l,2} o lbits represents the number of two different Subbands , the number of these two different Subbands is taken from the set A DFPSC , A total of C 3 2 = 3 combinations. For example, Table 5.1 to Table 5.3 are shown. Table 5.1
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 0 1 1 表 5.2 0 0 1 1 Table 5.2
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 0 1 1 2 表 5.3 DFPSC FPi (i>0) corresponds to Subband number DFPSC FPi (i>0) corresponds to Subband number 0 1 1 2 Table 5.3
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 0 1 2 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits。 如表 5.4所示。 表 5.4
Figure imgf000079_0001
0 0 1 2 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter is 2bits. As shown in Table 5.4. Table 5.4
Figure imgf000079_0001
第二类: 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 DFPSC参 数所需的比特数为 2bits。 对于 7MHz或 8.75MHz 或 10MHz, DFPSC的可能指示的 Subband的 数目集合为: BDFPSC={0, 1,2,3,4}。 2bits表示 4种不同的 Subband的数, 这 4 种不同的 Subband的数取自集合 BDFPSC , 共 C5 4 = 5种组合。 例如, 表 5.5~ 表 5.9所示。 表 5.5 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DFPSC parameters is 2bits. For 7MHz or 8.75MHz or 10MHz, the set of possible Subbands for DFPSC is: B DFPSC = {0, 1, 2, 3, 4}. 2bits represents the number of 4 different Subbands , the number of these 4 different Subbands is taken from the set B DFPSC , and a total of C 5 4 = 5 combinations. For example, Table 5.5~ Table 5.9. Table 5.5
Figure imgf000079_0002
Figure imgf000079_0002
表 5.8 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数Table 5.8 DFPSC FPi (i>0) corresponds to Subband number DFPSC FPi (i>0) corresponds to Subband number
0 1 2 3 0 1 2 3
1 2 3 4 表 5.9  1 2 3 4 Table 5.9
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 0 2 3 0 0 2 3
1 2 3 4 或者, 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 DFPSC参数 所需的比特数为 3bits。 DFPSC的取值与其对应的频率分区的 Subband数目 的对应关系。 例 口, 表 5.10所示。 表 5.10  1 2 3 4 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DFPSC parameter is 3bits. Correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition. Example, shown in Table 5.10. Table 5.10
Figure imgf000080_0001
Figure imgf000080_0001
第三类:系统带宽为 20MHz时,指示 DFPSC参数所需的比特数为 2bits。 对于 20MHz , DFPSC 的可能指示的 Subband 的数目 集合为: CDFPSC={0, 1,2,3,4,5,6,7,8}„ 2bits表示 4种不同的 Subband的数, 这 4种不同 的 Subband的数取自集合 CDFPSC ,共 C9 4 = 126种组合。例如,表 5.11〜表 5.14 描述了系统带宽为 20MHz时, 且指示 DFPSC所需的比特数为 2bits的情况 下, DFPSC的取值与其对应的频率分区的 Subband数目的对应关系 , 其它组 合不——列举。 表 5.11 The third category: When the system bandwidth is 20MHz, the number of bits required to indicate the DFPSC parameters is 2 bits. For 20MHz, the set of possible Subbands for DFPSC is: CDFPSC={0, 1,2,3,4,5,6,7,8}„ 2bits represents the number of 4 different Subbands, these 4 different The number of Subbands is taken from the set C DFPSC , a total of C 9 4 = 126 combinations. For example, Table 5.11 to Table 5.14 describe the case where the system bandwidth is 20 MHz and the number of bits required to indicate DFPSC is 2 bits, DFPSC Correspondence between the value and the number of Subbands of its corresponding frequency partition, other combinations are not - enumerated. Table 5.11
Figure imgf000080_0002
1 1 3 4 表 5.13
Figure imgf000080_0002
1 1 3 4 Table 5.13
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 0 2 4 0 0 2 4
1 2 3 6 表 5.14  1 2 3 6 Table 5.14
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 1 2 3 0 1 2 3
1 2 3 4 或者, 系统带宽为 20MHz时, 指示 DFPSC参数所需的比特数为 3bits。 3bits表示 8种不同的 Subband的数, 这 4种不同的 Subband的数取自集合 CDFPSO 共 C9 8 = 9种组合。 例如, 表 5.15〜表 5.17描述了比特数为 3bits时, DFPSC的取值与其对应的频率分区的 Subband数目的对应关系 ,其它组合不 ——歹'』举。 表 5.15 1 2 3 4 Alternatively, when the system bandwidth is 20MHz, the number of bits required to indicate the DFPSC parameter is 3 bits. 3bits represents the number of 8 different Subbands, and the number of these 4 different Subbands is taken from the set CDFPSO total C 9 8 = 9 combinations. For example, Table 5.15 to Table 5.17 describe the correspondence between the value of DFPSC and the number of Subbands of the corresponding frequency partition when the number of bits is 3 bits, and other combinations are not - 歹 '". Table 5.15
Figure imgf000081_0001
Figure imgf000081_0001
表 5.16  Table 5.16
Figure imgf000081_0002
Figure imgf000081_0002
表 5.17  Table 5.17
DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0)对应 Subband数 DFPSC FPi(i>0) corresponds to Subband number DFPSC FPi(i>0) corresponds to Subband number
0 1 4 5 0 1 4 5
1 2 5 6  1 2 5 6
2 3 6 7  2 3 6 7
3 4 7 8 或者, 系统带宽为 20MHz时, 指示 DFPSC参数所需的比特数为 4bits。 例如, 表 5.18描述了比特数为 4bits时, DFPSC的取值与其对应的频率分区 的 Subband数目的对应关系。 表 5.18 3 4 7 8 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the DFPCS parameter is 4bits. For example, Table 5.18 describes the correspondence between the value of DFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits. Table 5.18
Figure imgf000082_0001
Figure imgf000082_0001
对于各个带宽下指示 DFPSC 参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 DFPSC 参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 2bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits。 需要指出: 在上述 DFPSC的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 DFPSC 参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits, 但对应的表格为表 5.10; 系统带宽为 20MHz 时, 指示该参数所需的 比特数为 3bits , 但对应的表格为表 5.15。 再例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz 时, 且指示 DFPSC所需的比特数为 3bits的情况下, 可以都采用 20MHz在 需要 3bits指示 DFPSC时的表格之一, 例如, 都是用表 5.15。 另夕卜, 需要指出: 在上述 DFPSC的配置方法中,针对每一个表, DFPSC 的值与 DFPSC 的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 DFPSC 的值是指示的意义是相同的, 均 被视为相同的表, 都在保护范围之内。 例如, 表 5.19与表 5.15 均视为相同 的表, 因为两个表中包含的 DFPSC的值是指示的意义是相同的。 表 5.19 The number of bits required to indicate the DFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DFPSC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 2 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the DFPSC is indicated. The number of bits required for the parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the required ratio of the parameter is indicated. The special number is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter is 1 bits; the system bandwidth is 10MHz (may also be 7MHz or 8.75) In MHz, the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 2 bits. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 2bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 3bits; or, the system bandwidth is 5MHz The number of bits required to indicate the DFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 2 bits; when the system bandwidth is 20 MHz, the parameter is required. The number of bits is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the required parameters are indicated. The number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DFPSC parameter is 2 bits; the system bandwidth is 10 MHz (may also be 7 MHz) Or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DFPSC parameter 2bits; When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 4bits. It should be pointed out that in the above DFPSC configuration method, when two different bandwidths use the same number of bits to indicate DFPCS parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits, but the corresponding table is Table 5.10; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter It is 3bits, but the corresponding table is Table 5.15. For example, when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, and the number of bits required to indicate DPFSC is 3 bits, one of the tables at 20 MHz when 3 bits is required to indicate DFPSC can be used, for example. , are all using Table 5.15. In addition, it should be pointed out that in the above DFPSC configuration method, for each table, the relationship between the value of DFPSC and the meaning of the value indicated by DFPSC can be changed, and each table is In one embodiment, as long as the values of the DFPSCs contained in one table are the same meaning, they are all considered to be the same table and are within the scope of protection. For example, Table 5.19 and Table 5.15 are both considered to be the same table, because the values of the DFPSCs contained in the two tables are the same meaning. Table 5.19
Figure imgf000084_0001
Figure imgf000084_0001
通过上述实例 5 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 DFPSC的比特数分别需要 lbits、 2bits、 2bits, 或者分别需要 2bits、 3bits、 3bits , 或者分别需要 2bits、 3bits、 4bits或者其它组合时, 在 DFPSC的可能取值减少的情况下, 删减了冗余和 不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 上行频率分区 Subband数 ( UFPSC ) 的配置方法 实例 6 图 15是 居本发明实施例的资源映射指示信息的配置方法对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 UFPSC 的应用示意图, 如图 15所示, UFPSC取不同的值时 ,上行 Frequency Partitioning过程也是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UFPSC的配置情况进行说明, 第一类为 5MHz, 第二 类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类: 系统带宽为 5MHz时,指示 UFPSC参数所需的比特数为 lbits。 对于 5MHz , UFPSC 的可能指示的 Subband 的数目 集合为:Through the above example 5, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz) and 20MHz system, the number of bits indicating DFPSC needs lbits, 2bits, 2bits, respectively, or 2bits, 3bits, 3bits respectively. , or when 2bits, 3bits, 4bits or other combinations are needed respectively, in the case that the possible value of the DFPCS is reduced, redundant and unnecessary information indications are deleted, the bit overhead is saved, and a certain flexibility is ensured. Example for Configuring the Upstream Frequency Subband Number (UFPSC) Example 6 FIG. 15 is a schematic diagram of the application of the resource mapping indication information in the embodiment of the present invention, when a different number of bit indication parameters are used for the 10 MHz system bandwidth, as shown in the figure. As shown in Figure 15, when the UFPSC takes different values, the uplink Frequency Partitioning process is also different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UFPSC, the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz, The third category is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is lbits. For 5MHz, the number of possible Subbands for UFPSC is:
AUFpsc={0,l,2} o lbits表示 2种不同的 Subband的数, 这 2种不同的 Subband 的数取自集合 AUFPSC , 共 C3 2 = 3种组合。 例如, 表 6.1〜表 6.3所示。 表 6.1 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数A UF psc={0,l,2} o lbits represents the number of two different Subbands , the number of these two different Subbands is taken from the set A UFPSC , and the total C 3 2 = 3 combinations. For example, Table 6.1 to Table 6.3 are shown. Table 6.1 UFPSC FPi (i>0) corresponds to Subband number UFPSC FPi (i>0) corresponds to Subband number
0 0 1 1 表 6.2 0 0 1 1 Table 6.2
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 1 1 2 表 6.3 0 1 1 2 Table 6.3
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 0 1 2 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits。 如表 6.4所示。 表 6.4
Figure imgf000085_0001
0 0 1 2 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 2 bits. As shown in Table 6.4. Table 6.4
Figure imgf000085_0001
第二类: 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 UFPSC参 数所需的比特数为 2bits。 对于 7MHz或 8.75MHz 或 10MHz, UFPSC的可能指示的 Subband的 数目集合为: BUFPSC={0,1,2,3,4}。 2bits表示 4种不同的 Subband的数, 这 4 种不同的 Subband的数取自集合 BUFPSC, 共 C5 4 = 5种组合。 例如, 表 6.5- 表 6.9所示。 表 6.5 The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UFPSC parameter is 2bits. For 7MHz or 8.75MHz or 10MHz, the set of possible Subbands for UFPSC is: B UFPSC = {0, 1, 2, 3, 4}. 2bits represents the number of 4 different Subbands , the number of these 4 different Subbands is taken from the set B UFPSC , and a total of C 5 4 = 5 combinations. For example, Table 6.5-Table 6.9 shows. Table 6.5
Figure imgf000085_0002
Figure imgf000085_0002
表 6.7 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数Table 6.7 UFPSC FPi (i>0) corresponds to Subband number UFPSC FPi (i>0) corresponds to Subband number
0 0 2 3 0 0 2 3
1 1 3 4 表 6.8  1 1 3 4 Table 6.8
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 1 2 3 0 1 2 3
1 2 3 4 表 6.9  1 2 3 4 Table 6.9
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 0 2 3 0 0 2 3
1 2 3 4 或者, 系统带宽为 7MHz或 8.75MHz 或 10MHz时, 指示 UFPSC参数 所需的比特数为 3bits。 UFPSC的取值与其对应的频率分区的 Subband数目 的对应关系。 例 口, 表 6.10所示。 表 6.10  1 2 3 4 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate UFPSC parameters is 3bits. Correspondence between the value of UFPSC and the number of Subbands of its corresponding frequency partition. Example, as shown in Table 6.10. Table 6.10
Figure imgf000086_0001
Figure imgf000086_0001
第三类:系统带宽为 20MHz时,指示 UFPSC参数所需的比特数为 2bits。 对于 20MHz , UFPSC 的可能指示的 Subband 的数目 集合为: CUFPSC={0, 1,2,3,4,5,6,7,8}„ 2bits表示 4种不同的 Subband的数, 这 4种不同 的 Subband的数取自集合 CUFPSC ,共 C9 4 = 126种组合。例如,表 6.11〜表 6.14 描述了系统带宽为 20MHz时, 且指示 UFPSC所需的比特数为 2bits的情况 下 , UFPSC的取值与其对应的频率分区的 Subband数目的对应关系, 其它组 合不——列举。 表 6.11
Figure imgf000086_0002
1 1 3 3 表 6.12
The third category: When the system bandwidth is 20MHz, the number of bits required to indicate the UFPSC parameter is 2 bits. For 20MHz, the set of possible Subbands for UFPSC is: CUFPSC={0, 1,2,3,4,5,6,7,8}„ 2bits represents the number of 4 different Subbands, these 4 different The number of Subbands is taken from the set C UFPSC , which has a total of C 9 4 = 126 combinations. For example, Table 6.11 to Table 6.14 describe the UFPSC when the system bandwidth is 20 MHz and the number of bits required to indicate UFPSC is 2 bits. Correspondence between the value and the number of Subbands of its corresponding frequency partition, other combinations are not - enumerated. Table 6.11
Figure imgf000086_0002
1 1 3 3 Table 6.12
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 0 2 2 0 0 2 2
1 1 3 4 表 6.13  1 1 3 4 Table 6.13
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 0 2 4 0 0 2 4
1 2 3 6 表 6.14  1 2 3 6 Table 6.14
UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0) corresponds to Subband number UFPSC FPi(i>0) corresponds to Subband number
0 1 2 3 0 1 2 3
1 2 3 4 或者, 系统带宽为 20MHz时, 指示 UFPSC参数所需的比特数为 3bits。 3bits表示 8种不同的 Subband的数, 这 4种不同的 Subband的数取自集合 CUFPSO 共 C9 8 = 9种组合。 例如, 表 6.15〜表 6.17描述了比特数为 3bits时, UFPSC的取值与其对应的频率分区的 Subband数目的对应关系 ,其它组合不 ——歹'』举。 表 6.15 1 2 3 4 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the UFPSC parameter is 3 bits. 3bits represents the number of 8 different Subbands, and the number of these 4 different Subbands is taken from the set CUFPSO total C 9 8 = 9 combinations. For example, Table 6.15 to Table 6.17 describe the correspondence between the value of UFPSC and the number of Subbands of the corresponding frequency partition when the number of bits is 3 bits, and other combinations are not-歹'. Table 6.15
Figure imgf000087_0001
Figure imgf000087_0001
表 6.16  Table 6.16
Figure imgf000087_0002
Figure imgf000087_0002
表 6.17 UFPSC FPi(i>0)对应 Subband数 UFPSC FPi(i>0)对应 Subband数Table 6.17 UFPSC FPi (i>0) corresponds to Subband number UFPSC FPi (i>0) corresponds to Subband number
0 1 4 5 0 1 4 5
1 2 5 6  1 2 5 6
2 3 6 7  2 3 6 7
3 4 7 8 或者, 系统带宽为 20MHz时, 指示 UFPSC参数所需的比特数为 4bits。 例如, 表 6.18描述了比特数为 4bits时, UFPSC的取值与其对应的频率分区 的 Subband数目的对应关系。 表 6.18  3 4 7 8 Or, when the system bandwidth is 20MHz, the number of bits required to indicate the UFPSC parameter is 4bits. For example, Table 6.18 describes the correspondence between the value of UFPSC and the number of Subbands of its corresponding frequency partition when the number of bits is 4 bits. Table 6.18
Figure imgf000088_0001
Figure imgf000088_0001
对于各个带宽下指示 UFPSC 参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 UFPSC 参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 2bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 1 bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UFPSC参数所需的比特数为 2bits; 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits。 需要指出: 在上述 UFPSC的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 UFPSC 参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 3bits, 但对应的表格为表 6.10; 系统带宽为 20MHz 时, 指示该参数所需的 比特数为 3bits , 但对应的表格为表 6.15。 再例如, 系统带宽为 10MHz (也可以为 7MHz或 8.75MHz )和 20MHz 时, 且指示 UFPSC所需的比特数为 3bits的情况下, 可以都采用 20MHz在 需要 3bits指示 UFPSC时的表格之一, 例如, 都是用表 6.15。 另夕卜, 需要指出: 在上述 UFPSC的配置方法中,针对每一个表, UFPSC 的值与 UFPSC 的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 UFPSC 的值是指示的意义是相同的, 均 被视为相同的表, 都在保护范围之内。 例如, 表 6.19与表 6.15 均视为相同 的表, 因为两个表中包含的 UFPSC的值是指示的意义是相同的。 表 6.19 The number of bits required to indicate UFPSC parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate UFPSC parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate the parameter is 2 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, The number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 1 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the UFPSC parameter is required. The number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3b. Or; when the system bandwidth is 5MHz, the number of bits required to indicate the UFPSC parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication is The number of bits required for the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UFPSC parameter is 2 bits; the system bandwidth is 10 MHz ( It can also be 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the UFPSC parameter is indicated. The required number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the required parameter is required. Special number 4bits. It should be noted that in the above UFPSC configuration method, when two different bandwidths use the same number of bits to indicate UFPSC parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 3bits, but the corresponding table is Table 6.10. When the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 3bits, but the corresponding table is Table 6.15. For example, when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz) and 20 MHz, and the number of bits required to indicate UFPSC is 3 bits, one of the tables at 20 MHz when 3 bits are required to indicate UFPSC can be used, for example. , are all using Table 6.15. In addition, it should be pointed out that in the above UFPSC configuration method, for each table, the relationship between the value of UFPSC and the meaning of the value indicated by UFPSC can be changed, and each table is an embodiment, as long as one table The values of UFPSC included in the indications are the same meaning, and are considered to be the same table, all within the scope of protection. For example, Table 6.19 and Table 6.15 are both considered to be the same table, because the values of UFPSC contained in the two tables are the same meaning. Table 6.19
Figure imgf000090_0001
Figure imgf000090_0001
遵循此原贝 |J。 通过上述实例 6 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时, 指示 UFPSC的比特数分别需要 lbits、 2bits、 2bits, 或者分别需要 2bits、 3bits、 3bits , 或者分别需要 2bits、 3bits、 4bits或者其它组合时, 在 UFPSC的可能取值减少的情况下, 删减了冗余和 不必要的信息指示, 节约了比特开销, 且保证了一定的灵活性。 下行基于 Subband的 CRU分配数 ( DCASSB ) 的配置方法 实例 7 Follow this original shell|J. Through the above example 6, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the UFPSC needs lbits, 2bits, 2bits, respectively, or 2bits, 3bits, 3bits respectively. Or when 2bits, 3bits, 4bits, or other combinations are required, in the case that the possible value of the UFPSC is reduced, redundant and unnecessary information indications are deleted, the bit overhead is saved, and a certain flexibility is ensured. Example 7: Subsystem-based CRU allocation number (DCAS SB ) configuration method
DCASSBi以 Subband为单位指示了第 i ( i > 0 ) 个频率分区中 CRU和 / 或 DRU的数目。 图 16是根据本发明实施例的资源映射指示信息的配置方法 对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 DCASssi的应用 示意图, 如图 16所示, DCASSBi取不同的值时, 下行 CRU/DRU Allocation 过程是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DCASSBi的配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类:系统带宽为 5MHz时,指示 DCASSBi参数所需的比特数为 2bits。 对于 5MHz, DCASssi以 Subband为单位指示了第 i个频率分区中 CRU 和 /或 DRU的数目可能的数目集合为: ADCASSBi= {0,1,2,3,4,5,6}。 2bits表示 4 个不同的数目, 这 4个不同的数目取自集合 ADCASSBi, 共 C7 4 = 35种组合。 DCASSBi可以采用任意一种组合例如, 表 7.1〜表 7.6所示中的一种, 其它类 似, 不再 列举。 表 7.1
Figure imgf000091_0001
DCAS SBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units. 16 is a schematic diagram of application of signaling DCASssi when a different number of bit indication parameters are used for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 16, when DCAS SBi takes different values, the downlink is performed. The CRU/DRU Allocation process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS SBi , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz. The third category is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits. For 5 MHz, DCASssi indicates, in Subband, the possible number of CRUs and/or DRUs in the i-th frequency partition as: A DCASSBi = {0, 1, 2, 3, 4, 5, 6}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set A DCASSBi , a total of C 7 4 = 35 combinations. The DCAS SBi may be in any combination, for example, one of Tables 7.1 to 7.6, and the like, and is not listed. Table 7.1
Figure imgf000091_0001
表 7.2
Figure imgf000091_0002
Table 7.2
Figure imgf000091_0002
表 7.3
Figure imgf000091_0003
Table 7.3
Figure imgf000091_0003
表 7.4
Figure imgf000091_0004
Table 7.4
Figure imgf000091_0004
表 7.5
Figure imgf000091_0005
Table 7.5
Figure imgf000091_0005
表 7.6
Figure imgf000091_0006
或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 3bits。 3bits表示 8个不同的数目, 可以表示集合 AocAsssi中所有的数值。 如表 7.7 所示。 表 7.7
Table 7.6
Figure imgf000091_0006
Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3 bits. 3bits represents 8 different numbers, which can represent all the values in the set AocAsssi. As shown in Table 7.7. Table 7.7
Figure imgf000092_0001
Figure imgf000092_0001
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi 参数所需的比特数为 2bits。 对于 7MHz或 8.75MHz或 10MHz, DCASSBi以 Subband为单位指示了 第 i 个频率分区中 CRU 和 /或 DRU 的数目可能的数目集合为: BDCASSBi= {0, 1 ,2,3,4,5,6,7,8,9, 10, 11 , 12}。 2bits表示 4个不同的数目, 这 4个不同的数目 取自集合 BDCASSBi, 共 C13 4 = 715种组合。 DCASSBi可以采用任意一种组合。 例如, 表 7.8〜表 7.9所示中的一种, 其它类似, 不再——列举。 表 7.8
Figure imgf000092_0002
The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits. For 7MHz or 8.75MHz or 10MHz, DCAS SBi indicates the possible number of CRUs and/or DRUs in the i-th frequency partition in Subband: B DCASSBi = {0, 1 , 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11 , 12}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set B DCASSBi , a total of C 13 4 = 715 combinations. DCAS SBi can be used in any combination. For example, one of the tables shown in Table 7.8 to Table 7.9, other similar, no longer - enumerated. Table 7.8
Figure imgf000092_0002
表 7.9
Figure imgf000092_0003
Table 7.9
Figure imgf000092_0003
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi参数 所需的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自集 合 BDCASSBi, 共 C13 8 = 1287种组合。 DCASSBi可以采用任意一种组合例如, 表 7.10〜表 7.13所示中的一种, 其它类似, 不再——列举。 表 7.10
Figure imgf000092_0004
0 0 4 4
Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS SBi parameter is 3 bits. 3bits represents 8 different numbers, these 8 different numbers are taken from the set B DCASSBi , a total of C 13 8 = 1287 combinations. DCAS SBi can be used in any combination, for example, one of Tables 7.10 to 7.13, and the like, no longer - no longer listed. Table 7.10
Figure imgf000092_0004
0 0 4 4
1 1 5 5  1 1 5 5
2 2 6 6  2 2 6 6
3 3 7 7 表 7.11  3 3 7 7 Table 7.11
Figure imgf000093_0001
Figure imgf000093_0001
表 7.12  Table 7.12
Figure imgf000093_0002
Figure imgf000093_0002
表 7.13  Table 7.13
Figure imgf000093_0003
Figure imgf000093_0003
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASSBi参数 所需的比特数为 4bits。 4bits表示 16个不同的数目, 可以表示集合 BDCASSBi, 中所有的数值。 例如, 如表 7.14所示。 表 7.14 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS SBi parameter is 4bits . 4bits represents 16 different numbers, which can represent all the values in the set B DCASSBi . For example, as shown in Table 7.14. Table 7.14
DCASSBl FPi(i≥0)对应 CRU数 DCASSBl FPi(i≥0)对应 CRU数DCAS SBl FPi (i ≥ 0) corresponds to the number of CRUs DCAS SBl FPi (i ≥ 0) corresponds to the number of CRUs
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 11  3 3 11 11
4 4 12 12  4 4 12 12
5 5 13 保留 6 6 14 保留 5 5 13 Reserved 6 6 14 Reserved
7 7 15 保留 第三类: 系统带宽为 20MHz 时, 指示 DCASSBi参数所需的比特数为7 7 15 Reserved for the third category: When the system bandwidth is 20MHz, the number of bits required to indicate the DCAS SBi parameter is
3bits。 对于 20MHz, DCASssi以 Subband为单位指示了第 i个频率分区中 CRU 和 I或 DRU 的 数 目 可 能 的 数 目 集合 为 : CDCASSBi= {0,1,2,3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}。 3bits表示 8个不同 的数目, 这 8个不同的数目取自集合 CDCASSBi, 共 C25 8 = 1081575种组合。 DCASSBi可以采用任意一种组合。 例如, 表 7.15〜表 7.21 所示中的一种, 其 它类似, 不再 列举。 表 7.15 3bits. For 20MHz, DCASssi indicates the possible number of CRU and I or DRU numbers in the i-th frequency partition in Subband: C DCASSBi = {0,1,2,3, 4,5,6,7,8 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}. 3bits represents 8 different numbers, these 8 different numbers are taken from the set C DCASSBi , a total of C 25 8 = 1081575 combinations. DCAS SBi can be used in any combination. For example, one of the types shown in Table 7.15 to Table 7.21, other similar, is not listed. Table 7.15
Figure imgf000094_0001
Figure imgf000094_0001
表 7.16  Table 7.16
Figure imgf000094_0002
Figure imgf000094_0002
表 7.17  Table 7.17
Figure imgf000094_0003
Figure imgf000094_0003
表 7.18
Figure imgf000094_0004
1 2 5 10
Table 7.18
Figure imgf000094_0004
1 2 5 10
2 4 6 12  2 4 6 12
3 6 7 14 表 7.18  3 6 7 14 Table 7.18
Figure imgf000095_0001
Figure imgf000095_0001
表 7.19  Table 7.19
Figure imgf000095_0002
Figure imgf000095_0002
表 7.20  Table 7.20
Figure imgf000095_0003
Figure imgf000095_0003
表 7.21  Table 7.21
Figure imgf000095_0004
Figure imgf000095_0004
或者,系统带宽为 20MHz时,指示 DCASSBi参数所需的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 CDCASSBi, 共 C25 16 = 2042975种组合。 DCASSBi可以采用任意一种组合。 例如, 表 7.22〜表 7.25 所示中的一种, 其它类似、, 不再——列举。 表 7.22 DCASSBl FPi(i>0)对应 CRU数 DCASSBl FPi(i>0)对应 CRU数Alternatively, when the system bandwidth is 20 MHz, the number of bits required to indicate the DCAS SBi parameter is 4 bits. 4bits represents 16 different numbers, these 16 different numbers are taken from the set C DCASSBi , a total of C 25 16 = 2042975 combinations. DCAS SBi can be used in any combination. For example, one of the tables shown in Table 7.22 to Table 7.25, other similar, no longer - enumerated. Table 7.22 DCAS SBl FPi (i>0) corresponds to CRU number DCAS SBl FPi (i>0) corresponds to CRU number
0 0 8 10 0 0 8 10
1 1 9 12  1 1 9 12
2 2 10 14  2 2 10 14
3 3 11 16  3 3 11 16
4 4 12 18  4 4 12 18
5 5 13 20  5 5 13 20
6 6 14 22  6 6 14 22
7 8 15 24 表 7.23  7 8 15 24 Table 7.23
Figure imgf000096_0001
Figure imgf000096_0001
表 7.24 Table 7.24
Figure imgf000096_0002
Figure imgf000096_0002
表 7.25 Table 7.25
Figure imgf000096_0003
3 4 11 16
Figure imgf000096_0003
3 4 11 16
4 5 12 18  4 5 12 18
5 6 13 20  5 6 13 20
6 7 14 22  6 7 14 22
7 8 15 24 或者,系统带宽为 20MHz时,指示 DCASSBi参数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目可以表示集合 CDCASSBi, 中 所有的数值。 例如, 表 7.26所示。 表 7.26 7 8 15 24 Alternatively, when the system bandwidth is 20MHz, the number of bits required to indicate the DCAS SBi parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set C DCASSBi . For example, as shown in Table 7.26. Table 7.26
Figure imgf000097_0001
Figure imgf000097_0001
对于各个带宽下指示 DCASSBi参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 DCASSBi参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits。 需要指出: 在上述 DCASSBi的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 DCASSBi参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits, 但对应的表格为表 7.14; 系统带宽为 20MHz 时, 指示该参数所需的 比特数为 4bits , 但对应的表格为表 7.23。 相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 DCASSBi的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时采用相同的表格, 例如, 可以采用表 7.22〜表 7.25 中的一个, 或者按照 20MHz时的配置方法产生。 或者, 按照下面的方法产生: 表 7.27 The number of bits required to indicate the DCAS SBi parameter for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DCAS SBi parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 3 bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; when the system bandwidth is 20MHz, The number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The required number of bits is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 2 bits; the system bandwidth is 10 MHz (also When it is 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the DCAS SBi parameter is indicated. The required number of bits is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 Or; when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; System bandwidth When the frequency is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), The number of bits required to indicate the parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS SBi parameter is 3 bits; When it is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 5bits. It should be noted that in the above configuration method of DCAS SBi , when two different bandwidths use the same number of bits to indicate the DCAS SBi parameter, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits, but the corresponding table is Table 7.14; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter It is 4bits, but the corresponding table is Table 7.23. The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ^ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ^) Capture system bandwidth is 10MHz (can be 7MHz Or 8.75MHz) and the system bandwidth is 20MHz, the same DCAS SBi value and corresponding relationship, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, the same table, for example, Use one of Table 7.22 to Table 7.25, or follow the configuration method at 20MHz. Alternatively, generate it as follows: Table 7.27
Figure imgf000099_0001
Figure imgf000099_0001
jt匕夕卜, 5MHz可以与 10MHz 可以为 7MHz或 8.75MHz ) 均采用 2 比特或 3比特。 另外 ,需要指出:在上述 DCASSBi的配置方法中 ,针对每一个表 , DCASsBi 的值与 DCASSBi的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 DCASSBi的值是指示的意义是相同的, 均 被视为相同的表, 啫 P在保护范围之内。 通过上述实例 7 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时,指示 DCASSBi的比特数分别需要 2bits、 3bits、 3bits, 或者分别需要 2bits、 3bits、 4bits , 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits或者其他组合时, 在 DCASSBi的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 上行基于 Subband的 CRU分配数 ( UCASSB ) 的配置方法 实例 8 Jt匕, 5MHz can be 7MHz or 8.75MHz with 10MHz) Both use 2 bits or 3 bits. In addition, it should be pointed out that in the above configuration method of DCAS SBi , for each table, the relationship between the value of DCASsBi and the meaning indicated by the value of DCAS SBi can be changed, and each table is an embodiment, as long as one table The values of DCAS SBi contained in the indications are the same meaning and are considered to be the same table, 啫P is within the scope of protection. Through the above example 7, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the DCAS SBi needs 2bits, 3bits, 3bits , or 2bits, 3bits, respectively. 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits or other combinations, respectively, possible in DCAS SBi In the case of reduced value, redundant and unnecessary information indications are deleted, bit overhead is saved, and certain flexibility is ensured. Example 8: Method for configuring the uplink sub-based CRU allocation number (UCAS SB )
UCASSBi以 Subband为单位指示了第 i ( i > 0 ) 个频率分区中 CRU和 / 或 DRU的数目。 图 17是根据本发明实施例的资源映射指示信息的配置方法 对于 10MHz 系统带宽采用不同数量的比特指示参数时信令 UCASSBi的应用 示意图, 如图 17所示, UCASSBi取不同的值时, 上行 CRU/DRU Allocation 过程是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UCASSBi的配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类:系统带宽为 5MHz时,指示 UCASSBi参数所需的比特数为 2bits。 对于 5MHz, UCASssi以 Subband为单位指示了第 i个频率分区中 CRU 和 /或 DRU的数目可能的数目集合为: AUCASSBi= {0,1,2,3,4,5,6}。 2bits表示 4 个不同的数目, 这 4个不同的数目取自集合 AUCASSBi, 共 C7 4 = 35种组合。 UCASSBi可以采用任意一种组合例如, 表 8.1〜表 8.6所示中的一种, 其它类 似, 不再 列举。 表 8.1
Figure imgf000100_0001
UCAS SBi indicates the number of CRUs and/or DRUs in the i-th (i > 0) frequency partitions in Subband units. 17 is a schematic diagram of application of signaling UCAS SBi when a method for configuring resource mapping indication information uses different numbers of bit indication parameters for a 10 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 17, when UCAS SBi takes different values, The upstream CRU/DRU Allocation process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS SBi , the first type is 5MHz, the second type is 7MHz or 8.75MHz or 10MHz. The third category is 20MHz. The first type: When the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits. For 5 MHz, UCASssi indicates, in Subband, the possible number of CRUs and/or DRUs in the i-th frequency partition as: A UCASSBi = {0,1,2,3,4,5,6}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set A UCASSBi , a total of C 7 4 = 35 combinations. UCAS SBi may be in any combination, for example, one of Table 8.1 to Table 8.6, and the like, which are not listed. Table 8.1
Figure imgf000100_0001
表 8.2
Figure imgf000100_0002
Table 8.2
Figure imgf000100_0002
表 8.3  Table 8.3
UCASsBi FPi(i>0)对应 CRU数 UCASsBi FPi(i≥0)对应 CRU数 UCASsBi FPi(i>0) corresponds to the number of CRUs UCASsBi FPi(i≥0) corresponds to the number of CRUs
0 0 2 3 1 2 3 4 表 8.4
Figure imgf000101_0001
0 0 2 3 1 2 3 4 Table 8.4
Figure imgf000101_0001
表 8.5
Figure imgf000101_0002
Table 8.5
Figure imgf000101_0002
表 8.6
Figure imgf000101_0003
Table 8.6
Figure imgf000101_0003
或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 3bits。 3bits表示 8个不同的数目, 可以表示集合 AUCASSBi, 中所有的数值。 如表 8.7 所示。 表 8.7 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3 bits. 3bits represents 8 different numbers, which can represent all the values in the set A UCASSBi . As shown in Table 8.7. Table 8.7
Figure imgf000101_0004
Figure imgf000101_0004
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASSBi 参数所需的比特数为 2bits。 对于 7MHz或 8.75MHz或 10MHz, UCASSBi以 Subband为单位指示了 第 i 个频率分区中 CRU 和 /或 DRU 的数目可能的数目集合为: BUCASSBi= {0, 1 ,2,3,4,5,6,7,8,9, 10, 11 , 12}。 2bits表示 4个不同的数目, 这 4个不同的数目 取自集合 BUCASSBi, 共 C13 4 = 715种组合。 UCASSbi可以采用任意一种组合。 例如, 表 8.8〜表 8.9所示中的一种, 其它类似, 不再——列举。 表 8.8 UCASSBl FPi(i>0)对应 CRU数 UCASSBl FPi(i≥0)对应 CRU数The second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS SBi parameter is 2bits. For 7MHz or 8.75MHz or 10MHz, UCAS SBi indicates the possible number of CRUs and/or DRUs in the i-th frequency partition in Subband: B UCASSBi = {0, 1 , 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11 , 12}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set B UCASSBi , a total of C 13 4 = 715 combinations. UCAS Sbi can be used in any combination. For example, one of the tables shown in Table 8.8 to Table 8.9, other similar, no longer - enumerated. Table 8.8 UCAS SBl FPi (i> 0) corresponding to the number of CRU UCAS SBl FPi (i≥0) corresponding to the number of CRU
0 0 2 2 0 0 2 2
1 1 3 4 表 8.9
Figure imgf000102_0001
1 1 3 4 Table 8.9
Figure imgf000102_0001
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASSBi参数 所需的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自集 合 BUCASSBi, 共 C13 8 = 1287种组合。 UCASSBi可以采用任意一种组合例如, 表 8.10〜表 8.13所示中的一种, 其它类似, 不再——列举。 表 8.10 Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits . 3bits represents 8 different numbers, these 8 different numbers are taken from the set B UCASSBi , a total of C 13 8 = 1287 combinations. UCAS SBi can be used in any combination, for example, one of Tables 8.10 to 8.13, and the like, no longer - no longer listed. Table 8.10
Figure imgf000102_0002
Figure imgf000102_0002
表 8.11  Table 8.11
Figure imgf000102_0003
Figure imgf000102_0003
表 8.12  Table 8.12
Figure imgf000102_0004
Figure imgf000102_0004
表 8.13  Table 8.13
UCASsBi FPi(i≥0)对应 CRU数 UCASsBi FPi(i≥0)对应 CRU数 UCASsBi FPi (i ≥ 0) corresponds to the number of CRUs UCASsBi FPi (i ≥ 0) corresponds to the number of CRUs
0 0 4 4 1 1 5 6 0 0 4 4 1 1 5 6
2 2 6 8  2 2 6 8
3 3 7 12 或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASSBi参数 所需的比特数为 4bits。 4bits表示 16个不同的数目, 可以表示集合 BUCASSBi, 中所有的数值。 例如, 如表 8.14所示。 表 8.14 3 3 7 12 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS SBi parameter is 4bits . 4bits represents 16 different numbers, which can represent all the values in the set B UCASSBi . For example, as shown in Table 8.14. Table 8.14
Figure imgf000103_0001
Figure imgf000103_0001
第三类: 系统带宽为 20MHz 时, 指示 UCASSBi参数所需的比特数为The third category: When the system bandwidth is 20MHz, the number of bits required to indicate the UCAS SBi parameter is
3bits。 对于 20MHz, UCASSBi以 Subband为单位指示了第 i个频率分区中 CRU 和 I或 DRU 的 数 目 可 能 的 数 目 集合 为 : CUCASSBi= {0,1,2,3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}。 3bits表示 8个不同 的数目, 这 8个不同的数目取自集合 CUCASSBi, 共 C25 8 = 1081575种组合。 3bits. For 20MHz, the UCAS SBi indicates the possible number of CRUs and I or DRUs in the i-th frequency partition in units of Subband: C UCASSBi = {0,1,2,3, 4,5,6,7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}. 3bits represents 8 different numbers, these 8 different numbers are taken from the set C UCASSBi , a total of C 25 8 = 1081575 combinations.
UCASSBi可以采用任意一种组合。 例如, 表 8.15〜表 8.21 所示中的一种, 其 它类似, 不再 列举。 表 8.15 UCAS SBi can be used in any combination. For example, one of Table 8.15 to Table 8.21, other similar, is not listed. Table 8.15
Figure imgf000103_0002
Figure imgf000103_0002
表 8.16 UCASSBl FPi(i>0)对应 CRU数 UCASSBl FPi(i>0)对应 CRU数Table 8.16 UCAS SBl FPi (i>0) corresponds to the CRU number UCAS SBl FPi (i>0) corresponds to the number of CRUs
0 0 4 4 0 0 4 4
1 1 5 6  1 1 5 6
2 2 6 8  2 2 6 8
3 3 7 10 表 8.17  3 3 7 10 Table 8.17
Figure imgf000104_0001
Figure imgf000104_0001
表 8.18 Table 8.18
Figure imgf000104_0002
Figure imgf000104_0002
表 8.18 Table 8.18
Figure imgf000104_0003
Figure imgf000104_0003
表 8.19 Table 8.19
Figure imgf000104_0004
Figure imgf000104_0004
表 8.20 Table 8.20
UCASSBl FPi(i>0)对应 CRU数 UCASSBl FPi(i>0)对应 CRU数UCAS SBl FPi (i>0) corresponds to the CRU number UCAS SBl FPi (i>0) corresponds to the number of CRUs
0 1 4 5 0 1 4 5
1 2 5 6 2 3 6 7 1 2 5 6 2 3 6 7
3 4 7 8 表 8.21  3 4 7 8 Table 8.21
Figure imgf000105_0001
Figure imgf000105_0001
或者,系统带宽为 20MHz时,指示 UCASSBi参数所需的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 CUCASSBi, 共 C25 16 = 2042975种组合。 UCASSBi可以采用任意一种组合。 例如, 表 8.22〜表 8.25 所示中的一种, 其它类似、, 不再——列举。 表 8.22 Alternatively, when the system bandwidth is 20 MHz, the number of bits required to indicate the UCAS SBi parameter is 4 bits. 4bits represents 16 different numbers, these 16 different numbers are taken from the set C UCASSBi , a total of C 25 16 = 2042975 combinations. UCAS SBi can be used in any combination. For example, one of Table 8.22 to Table 8.25, other similar, no longer - enumerated. Table 8.22
Figure imgf000105_0002
Figure imgf000105_0002
表 8.23  Table 8.23
Figure imgf000105_0003
Figure imgf000105_0003
表 8.24 UCASSBl FPi(i>0)对应 CRU数 UCASSBl FPi(i>0)对应 CRU数Table 8.24 UCAS SBl FPi (i>0) corresponds to the CRU number UCAS SBl FPi (i>0) corresponds to the number of CRUs
0 1 8 9 0 1 8 9
1 2 9 10  1 2 9 10
2 3 10 11  2 3 10 11
3 4 11 12  3 4 11 12
4 5 12 13  4 5 12 13
5 6 13 14  5 6 13 14
6 7 14 15  6 7 14 15
7 8 15 16 表 8.25  7 8 15 16 Table 8.25
Figure imgf000106_0001
Figure imgf000106_0001
或者,系统带宽为 20MHz时,指示 UCASSBi参数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目可以表示集合 CUCASSBi, 中 所有的数值。 例如, 表 8.26所示。 表 8.26 Alternatively, when the system bandwidth is 20 MHz, the number of bits required to indicate the UCAS SBi parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set C UCASSBi . For example, as shown in Table 8.26. Table 8.26
Figure imgf000106_0002
10 11 26 保留
Figure imgf000106_0002
10 11 26 Reserved
11 12 27 保留  11 12 27 Reserved
12 13 28 保留  12 13 28 Reserved
13 14 29 保留  13 14 29 Reserved
14 15 30 保留  14 15 30 Reserved
15 16 31 保留 对于各个带宽下指示 UCASSBi参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 UCASSBi参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 2bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 3bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 3bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASSBi参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits。 需要指出: 在上述 UCASSBi的配置方法中, 当两个不同的带宽使用了相 同的比特数指示 UCASSBi参数, 对应的表格可以相同或不同。 例如, 系统带 宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数为 4bits, 但对应的表格为表 8.14; 系统带宽为 20MHz 时, 指示该参数所需的 比特数为 4bits , 但对应的表格为表 8.23。 相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 UCASSBi的取值及对应关 系,即,系统带宽为 1 OMHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时采用相同的表格, 例如, 可以采用表 8.22〜表 8.25 中的一个, 或者按照 20MHz时的配置方法产生。 或者, 按照下面的方法产生: 表 8.27 15 16 31 The number of bits required to indicate the UCAS SBi parameter for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the UCAS SBi parameter is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; the system bandwidth is At 20 MHz, the number of bits required to indicate this parameter is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the indication The number of bits required for this parameter is 2 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 2bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the UCAS is indicated. The number of bits required for the SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits; when the system bandwidth is 20 MHz, the ratio required for the parameter is indicated. The special number is 3 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS SBi parameter is 2 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 3 bits. When the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 2bits; the system bandwidth is 10MHz (also 7MHz or 8.75MHz) When the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits. When the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits ; the system bandwidth is 10MHz (it can also be 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 3bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS SBi parameter 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 4bits; or, the system bandwidth When the frequency is 5MHz, the number of bits required to indicate the UCAS SBi parameter is 3bits ; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the indication is The number of bits required for the parameter is 5 bits. It should be noted that in the above UCAS SBi configuration method, when two different bandwidths use the same number of bits to indicate the UCAS SBi parameter, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits, but the corresponding table is Table 8.14; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 4bits, but the corresponding table is Table 8.23. The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ^ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ^) The system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same UCAS SBi value and corresponding relationship are used, that is, the system bandwidth is 1 OMHz (can be 7MHz or 8.75MHz) and the system bandwidth is The same table is used at 20 MHz. For example, one of Table 8.22 to Table 8.25 can be used, or it can be generated according to the configuration method at 20 MHz. Alternatively, generate as follows: Table 8.27
占 PRU 总 10MHz ( 可 以 为 7MHz 或 20MHzFPi(i>0)对应 PRU total 10MHz (can be 7MHz or 20MHzFPi (i>0)
UCAS UCAS
数的份数 8.75MHz ) FPi(i≥0)对应 CRU数 CRU数  Number of copies 8.75MHz ) FPi (i ≥ 0) corresponds to CRU number CRU number
0 0/48 0 0  0 0/48 0 0
1 1/48 1 2  1 1/48 1 2
2 2/48 2 4  2 2/48 2 4
3 3/48 3 6  3 3/48 3 6
4 4/48 4 8  4 4/48 4 8
5 5/48 5 10 6 6/48 6 125 5/48 5 10 6 6/48 6 12
7 7/48 7 14 7 7/48 7 14
8 8/48 8 16  8 8/48 8 16
9 9/48 9 18  9 9/48 9 18
10 10/48 10 20  10 10/48 10 20
11 11/48 11 22  11 11/48 11 22
12 12/48 12 24  12 12/48 12 24
13 13/48 13 26  13 13/48 13 26
14 14/48 14 28  14 14/48 14 28
15 15/48 15 30 jt匕夕卜, 5MHz可以与 10MHz ( A可以为 7MHz或 8.75MHz ) 均采用 2 比特或 3比特。 另外 ,需要指出:在上述 UCASSBI的配置方法中 ,针对每一个表, UCASSBI 的值与 UCASSBI的值指示的意义中间的关系是可以变化的, 每一个表格均是 一个实施例, 只要一个表中包含的 UCASSBI的值是指示的意义是相同的, 均 被视为相同的表, 啫 P在保护范围之内。 通过上述实例 8 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时,指示 UCASSBI的比特数分别需要 2bits、 3bits、 3bits, , 或者分别需要 2bits、 3bits、 4bits, 或者分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits或者其他组合时, 在 UCASSBI的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 下行基于 Miniband的 CRU分配数 ( DCASMB ) 的配置方法 实例 9 DCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的15 15/48 15 30 jt匕, 5MHz can be used with 10MHz (A can be 7MHz or 8.75MHz) with 2 bits or 3 bits. Further, to be noted: In the configuration above UCAS SBI's, for each table, the relationship between the intermediate significance indicated by the value UCAS SBI value and UCAS SBI can vary, each form are one embodiment, as long as a The values of the UCAS SBI contained in the table are the same meanings, and are considered to be the same table, 啫P is within the scope of protection. Through the above example 8, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the UCAS SBI needs 2bits, 3bits, 3bits, respectively, or 2bits and 3bits respectively. 4bits, or 3bits, 4bits, 4bits, or 3bits, 4bits, 5bits, or other combinations respectively. When the possible value of the UCAS SBI is reduced, redundant and unnecessary information indications are deleted, saving The bit overhead is guaranteed and a certain degree of flexibility is guaranteed. Downlink MiniC-based CRU Allocation Number (DCASMB) Configuration Method Example 9 DCASMB indicates Miniband-based frequency band based on Miniband in Miniband
CRU的数目。 图 18是根据本发明实施例的资源映射指示信息的配置方法对 于 5MHz系统带宽采用不同数量的比特指示参数时信令 DCASMB的应用示意 图, 如图 18所示, DCASMB取不同的值时, 下行 CRU/DRU Allocation过程 是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 DCASMB的配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类: 指示 DCASMB参数所需的比特数为 2bits。 对于 5MHz, DCASMB以 Miniband为单位指示了第 0个频率分区中基 于 Miniband的 CRU的数目可能的数目集合为: ADCASMB= {0至 24的闭区间 上的所有整数 }。 2bits 表示 4 个不同的数目, 这 4 个不同的数目取自集合 ADCASMB, 共 C25 4 = 12650种组合。 DCASMB可以采用任意一种组合, 例如, 表 9.1〜表 9.3所示中的一种, 其它类似, 不再——列举。 表 9.1 The number of CRUs. 18 is a schematic diagram of application of signaling DCAS MB when a different number of bit indication parameters are used for a 5 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 18, when DCAS MB takes different values, The downstream CRU/DRU Allocation process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of DCAS MB . The first type is 5MHz. The second type is 7MHz or 8.75MHz or 10MHz, and the third type is 20MHz. The first type: The number of bits required to indicate the DCAS MB parameter is 2 bits. For 5 MHz, the DCAS MB indicates, in Miniband, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: A DCASMB = {0 to 24 all integers on the closed interval}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set A DCASMB , a total of C 25 4 = 12650 combinations. The DCAS MB can be any combination, for example, one of the tables shown in Table 9.1 to Table 9.3, and the like, no longer - enumerated. Table 9.1
Figure imgf000110_0001
Figure imgf000110_0001
表 9.2  Table 9.2
Figure imgf000110_0002
Figure imgf000110_0002
表 9.3  Table 9.3
Figure imgf000110_0003
Figure imgf000110_0003
或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自集合 ADCASMB , 共 C25 8 = 1081575种组合。 DCASMB可以采用任意一种组合, 例如, 表 9.4〜表 9.11所 示中的一种, 其它类似, 不再——列举。 表 9.4 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 3 bits. 3bits represents 8 different numbers, these 8 different numbers are taken from the set A DCASMB , a total of C 25 8 = 1081575 combinations. The DCAS MB can be any combination, for example, one of Table 9.4 to Table 9.11, and the like, no longer - enumerated. Table 9.4
FP0中基于 Miniband FP0中基于 MinibandFP 0 based on Miniband FP 0 based on Miniband
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目 0 0 4 4Number of CRUs for the number of CRUs 0 0 4 4
1 1 5 51 1 5 5
2 2 6 62 2 6 6
3 3 7 7 表 9.5 3 3 7 7 Table 9.5
Figure imgf000111_0001
Figure imgf000111_0001
表 9.6 Table 9.6
Figure imgf000111_0002
Figure imgf000111_0002
表 9.7 Table 9.7
Figure imgf000111_0003
Figure imgf000111_0003
表 9.8 Table 9.8
Figure imgf000111_0004
Figure imgf000111_0004
表 9.9 FPo中基于 Miniband FPo中基于 MinibandTable 9.9 FPo based on Miniband based on Miniband FPo
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目  Number of CRUs Number of CRUs
0 0 4 8  0 0 4 8
1 2 5 10  1 2 5 10
2 4 6 12  2 4 6 12
3 6 7 24 表 9.10  3 6 7 24 Table 9.10
Figure imgf000112_0001
Figure imgf000112_0001
表 9.11  Table 9.11
Figure imgf000112_0002
Figure imgf000112_0002
或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 ADCASMB , 共 C25 16 = 2042975种组合。 DCASMB可以采用任意一种组合, 例如, 表 9.12〜表 9.15 所示中的一种, 其它类似、, 不再——列举。 表 9.12 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 4bits. 4bits represents 16 different numbers, these 16 different numbers are taken from the set A DCASMB , a total of C 25 16 = 2042975 combinations. The DCAS MB can be any combination, for example, one of the types shown in Table 9.12 to Table 9.15, other similar, no longer - enumerated. Table 9.12
Figure imgf000112_0003
6 6 14 22
Figure imgf000112_0003
6 6 14 22
7 8 15 24 表 9.13
Figure imgf000113_0001
7 8 15 24 Table 9.13
Figure imgf000113_0001
表 9.14
Figure imgf000113_0002
Table 9.14
Figure imgf000113_0002
表 9.15Table 9.15
Figure imgf000113_0003
7 8 15 24 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目可以表示集合 ADCASMB中所 有的数值。 例如, 表 9.16所示。 表 9.16
Figure imgf000113_0003
7 8 15 24 Alternatively, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set ADCASMB. For example, Table 9.16 shows. Table 9.16
Figure imgf000114_0001
Figure imgf000114_0001
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB 参数所需的比特数为 4bits。 对于 7MHz或 8.75MHz或 10MHz, DCASMB以 Miniband为单位指示了 第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: BDCASMB= {0至 48的闭区间上的所有整数 }。 4bits表示 16个不同的数目, 这 16个不同 的数目取自集合 BDCASMB , 共 C49 16 = 3348108992991 种组合。 DCASMB可以 采用任意一种组合, 例如, 表 9.17〜表 9.20所示中的一种, 其它类似, 不再 ——歹'』举。 表 9.17 FPo中基于 Miniband FPo中基于 MinibandThe second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS MB parameter is 4bits. For 7 MHz or 8.75 MHz or 10 MHz, the DCASMB indicates, in Miniband, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: B DCASMB = {0 to 48 for all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B DCASMB , a total of C 49 16 = 3348108992991 combinations. The DCAS MB can be any combination, for example, one of the types shown in Table 9.17 to Table 9.20, and the like, no longer - 歹 '". Table 9.17 FPo based on Miniband based on Miniband FPo
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目 Number of CRUs Number of CRUs
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 11  3 3 11 11
4 4 12 12  4 4 12 12
5 5 13 13  5 5 13 13
6 6 14 14  6 6 14 14
7 7 15 15 表 9.18  7 7 15 15 Table 9.18
Figure imgf000115_0001
Figure imgf000115_0001
表 9.19 Table 9.19
Figure imgf000115_0002
Figure imgf000115_0002
表 9.20
Figure imgf000115_0003
的 CRU的数目 的 CRU的数目
Table 9.20
Figure imgf000115_0003
Number of CRUs for the number of CRUs
0 0 8 20  0 0 8 20
1 1 9 24  1 1 9 24
2 2 10 28  2 2 10 28
3 3 11 32  3 3 11 32
4 4 12 36  4 4 12 36
5 8 13 40  5 8 13 40
6 12 14 44  6 12 14 44
7 16 15 48 或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB参 数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目取 自集合 BDCASMB, 共 C49 32 = 6499270398159 种组合。 DCASMB可以采用任意 一种组合, 例如, 表 9.21所示中的一种, 其它类似, 不再 列举。 表 9.21 7 16 15 48 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS MB parameter is 5bits. 5bits represents 32 different numbers, these 32 different numbers are taken from the set B DCASMB , a total of C 49 32 = 6499270398159 combinations. The DCAS MB can be any combination, for example, one of the types shown in Table 9.21, and the like, which are not listed. Table 9.21
Figure imgf000116_0001
Figure imgf000116_0001
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 DCASMB参 数所需的比特数为 6bits。 6bits表示 64个不同的数目,可以表示集合 BDCASMB 中所有的数值。 例如, 如表 9.22所示。 表 9.22Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the DCAS MB parameter is 6bits. 6bits means 64 different numbers, which can represent the set B DCASMB All the values in it. For example, as shown in Table 9.22. Table 9.22
Figure imgf000117_0001
30 30 62 保留
Figure imgf000117_0001
30 30 62 Reserved
31 31 63 保留 第三类: 对于 20MHz, 指示 DCASMB参数所需的比特数为 4bits。 31 31 63 Reserved for the third category: For 20MHz, the number of bits required to indicate the DCAS MB parameter is 4bits.
DCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: CDCASMB= {0至 96的闭区间上的所有整数}。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 BDCASMB , 共 C97 16 = 793067310934425856种组合。 DCASMB可以采用任意一种组合, 例如, 表 9.17〜表 9.20所示中的一种, 其它类似, 不再——列举。 或者,系统带宽为 20MHz时,指示 DCASMB参数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目取自集合 CDCASMB , 共 C97 32 种组合。 DCASMB可以采用任意一种组合。 例如, 表 9.23〜表 9.25所示中的 一种, 其它类似, 不再——列举。 表 9.23 The DCASMB indicates, in Minpots, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: C DCASMB = {0 to 96 all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B DCASMB , a total of C 97 16 = 793067310934425856 combinations. The DCAS MB can be any combination, for example, one of the types shown in Table 9.17 to Table 9.20, other similar, no longer - enumerated. Alternatively, when the system bandwidth is 20 MHz, the number of bits required to indicate the DCAS MB parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers are taken from the set C DCASMB , a total of C 97 32 combinations. DCAS MB can be any combination. For example, one of the tables shown in Table 9.23 to Table 9.25, other similar, no longer - enumerated. Table 9.23
Figure imgf000118_0001
Figure imgf000118_0001
表 9.24 FPo中基于 Miniband FPo中基于 MinibandTable 9.24 FPo based on Miniband based on Miniband FPo
DCASMB DCASMB DCASMB DCASMB
的 CRU的数目 的 CRU的数目 Number of CRUs Number of CRUs
0 0 16 16 0 0 16 16
1 1 17 18  1 1 17 18
2 2 18 20  2 2 18 20
3 3 19 22  3 3 19 22
4 4 20 24  4 4 20 24
5 5 21 26  5 5 21 26
6 6 22 28  6 6 22 28
7 7 23 30  7 7 23 30
8 8 24 32  8 8 24 32
9 9 25 34  9 9 25 34
10 10 26 36  10 10 26 36
11 11 27 38  11 11 27 38
12 12 28 40  12 12 28 40
13 13 29 42  13 13 29 42
14 14 30 46  14 14 30 46
15 15 31 48 9.25  15 15 31 48 9.25
Figure imgf000119_0001
15 16 31 64 或者,系统带宽为 20MHz时,指示 DCASMB参数所需的比特数为 6bits。 6bits表示 64个不同的数目, 这 64个不同的数目可以表示集合 CDCASMB中所 有的数值。 例如, 表 9.26所示。 表 9.26
Figure imgf000119_0001
15 16 31 64 Alternatively, when the system bandwidth is 20MHz, the number of bits required to indicate the DCAS MB parameter is 6 bits. 6bits represents 64 different numbers, and these 64 different numbers can represent all the values in the set CDCASMB. For example, Table 9.26 shows. Table 9.26
Figure imgf000120_0001
28 28 60 60
Figure imgf000120_0001
28 28 60 60
29 29 61 61  29 29 61 61
30 30 62 62  30 30 62 62
31 31 63 63 或者,系统带宽为 20MHz时,指示 DCASMB参数所需的比特数为 7bits。 7bits表示 128个不同的数目 , 这 128个不同的数目可以表示集合 CDCASMB中 除 0或 1或 95或者 96外所有的数值。 对于各个带宽下指示 DCASMB参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 DCASMB参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 6bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 5bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 6bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 6bits; 或者, 系统带宽为 5MHz时, 指示 DCASMB参数所需的比特数为 5bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 6bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 7bits。 需要指出: 在上述 DCASMB的配置方法中, 当两个不同的带宽使用了 相同的比特数指示 DCASMB参数, 对应的表格可以相同或不同。 例如, 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits , 但对应的表格为表 9.21 ; 系统带宽为 20MHz时, 指示该参数所需 的比特数为 5bits, 但对应的表格为表 9.25。 相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 DCASMB的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时采用相同的表格, 例如, 可以采用表 9.23〜表 9.25 中的一个, 或者按照 20MHz时的配置方法产生。 或者, 按照下面的方法产生: 表 9.27 31 31 63 63 Alternatively, when the system bandwidth is 20MHz, the number of bits required to indicate the DCAS MB parameter is 7bits. 7bits represents 128 different numbers, and these 128 different numbers can represent all values in the set C DCASMB except 0 or 1 or 95 or 96. The number of bits required to indicate the DCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the DCAS MB parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is At 20MHz, the number of bits required to indicate this parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the indication The number of bits required for this parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 3 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate this parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, DCAS is indicated. number of bits required for the MB parameters 3bits; when the system bandwidth is 10MHz (may be a 7MHz or 8.75MHz), indicating the number of bits required parameters 5bits; system bandwidth is 20MHz, required for the parameter bit indicates Is 5bits; Alternatively, when the system bandwidth is 5MHz, indicating the number of bits required DCAS MB parameters 4bits; when the system bandwidth is 10MHz (or may be a 7MHz of 8.75 MHz), indicating the number of bits required parameters 4bits; system When the bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the DCAS MB parameter is 4bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) , the number of bits required to indicate the parameter is 5 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 4 bits; When the bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 6bits; or, when the system bandwidth is 5MHz, The number of bits required to indicate the DCAS MB parameter is 5 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 6 bits; when the system bandwidth is 20 MHz, the required parameter is indicated. The number of bits is 6 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the DCAS MB parameter is 5 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the number of bits required to indicate the parameter is 6 bits. When the system bandwidth is 20MHz, the number of bits required to indicate this parameter is 7bits. It should be noted that in the above configuration method of DCAS MB , when two different bandwidths use the same number of bits to indicate DCAS MB parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits, but the corresponding table is Table 9.21; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 5bits, but the corresponding table is Table 9.25. The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ^ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ^) The system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same DCAS MB value and corresponding relationship are used, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same table is used, for example, one of Table 9.23 to Table 9.25 can be used, or it can be generated according to the configuration method at 20 MHz. Alternatively, generate it as follows: Table 9.27
10MHz (可以为 7MHz 或 20MHzFP0 中 基 于 占 PRU总 10MHz (can be 7MHz or 20MHz FP 0 based on the total PRU
DCASMB 8.75MHz )FP。中基于 Miniband Miniband的 CRU的数 数的份数  DCASMB 8.75MHz) FP. The number of copies of the CRU based on the Miniband Miniband
的 CRU的数目  Number of CRUs
0 0/48 0 0  0 0/48 0 0
1 1/48 1 2  1 1/48 1 2
2 2/48 2 4  2 2/48 2 4
3 3/48 3 6  3 3/48 3 6
4 4/48 4 8  4 4/48 4 8
5 5/48 5 10  5 5/48 5 10
6 6/48 6 12  6 6/48 6 12
7 7/48 7 14 8 8/48 8 16 7 7/48 7 14 8 8/48 8 16
9 9/48 9 18  9 9/48 9 18
10 10/48 10 20  10 10/48 10 20
11 11/48 11 22  11 11/48 11 22
12 12/48 12 24  12 12/48 12 24
13 13/48 13 26  13 13/48 13 26
14 14/48 14 28  14 14/48 14 28
15 15/48 15 30 jt匕夕卜, 5MHz可以与 10MHz ( A可以为 7MHz或 8.75MHz ) 均采用 3 比特或 4比特或者 5比特。 另外, 需要指出: 在上述 DCASMB的配置方法中, 针对每一个表, DCASMB的值与 DCASMB的值指示的意义中间的关系是可以变化的, 每一个 表格均是一个实施例, 只要一个表中包含的 DCASMB的值是指示的意义是相 同的, 均被视为相同的表, 都在保护范围之内。 通过上述实例 9 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以为 7MHz或 8.75MHz )、 20MHz系统时,指示 DCASMB的比特数分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits , 或者分别需要 4bits、 5bits、 6bits, 或者分别需要 5bits、 6bits、 7bits或者其他组合时, 在 DCASMB的可能 取值减少的情况下, 删减了冗余和不必要的信息指示, 节约了比特开销, 且 保证了一定的灵活性。 上行基于 Miniband的 CRU分配数 ( UCASMB ) 的配置方法 实例 10 UCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的15 15/48 15 30 jt匕, 5MHz can be 3 bits or 4 bits or 5 bits with 10MHz (A can be 7MHz or 8.75MHz). Further, to be noted: In the DCAS MB configuration process, for each table, the relationship between the intermediate meaning DCAS MB value with the DCAS MB values indicated may be varied, each form are one embodiment, as long as a The values of the DCAS MB included in the table are the same meanings, and are considered to be the same table, all within the scope of protection. Through the above example 9, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the DCAS MB needs 3bits, 4bits, 4bits, or 3bits, 4bits, respectively. 5bits, or 4bits, 5bits, 6bits, or 5bits, 6bits, 7bits or other combinations respectively, when the possible value of DCAS MB is reduced, the redundant and unnecessary information indications are deleted, saving Bit overhead, and guarantees a certain flexibility. Example of configuring the uplink mini-based CRU allocation number (UCASMB) Example 10 UCASMB indicates the Miniband-based frequency band in the 0th frequency partition in Miniband
CRU的数目。 图 19是根据本发明实施例的资源映射指示信息的配置方法对 于 5MHz系统带宽采用不同数量的比特指示参数时信令 UCASMB的应用示意 图, 如图 19所示 , UCASMB取不同的值时 , 上行 CRU/DRU Allocation过程 是不同的。 下面以系统带宽为 5MHz、 7MHz、 8.75MHz、 10MHz和 20MHz为例, 并将其分成三类带宽对 UCASMB的配置情况进行说明, 第一类为 5MHz, 第 二类为 7MHz或 8.75MHz或 10MHz, 第三类为 20MHz。 第一类: 指示 UCASMB参数所需的比特数为 2bits。 对于 5MHz, UCASMB以 Miniband为单位指示了第 0个频率分区中基 于 Miniband的 CRU的数目可能的数目集合为: AUCASMB= {0至 24的闭区间 上的所有整数 }。 2bits 表示 4 个不同的数目, 这 4 个不同的数目取自集合 AUCASMB, 共 C25 4 = 12650种组合。 UCASMB可以采用任意一种组合, 例如, 表 10. 1〜表 10.3所示中的一种, 其它类似, 不再——列举。 表 10. 1 The number of CRUs. FIG. 19 is a schematic diagram of application of signaling UCAS MB when a method for configuring resource mapping indication information uses a different number of bit indication parameters for a 5 MHz system bandwidth according to an embodiment of the present invention. As shown in FIG. 19, when UCAS MB takes different values, The uplink CRU/DRU Allocation process is different. The system bandwidth is 5MHz, 7MHz, 8.75MHz, 10MHz and 20MHz as an example, and it is divided into three types of bandwidth to explain the configuration of UCAS MB . The first type is 5MHz, and the second type is 7MHz or 8.75MHz or 10MHz. The third category is 20MHz. The first type: The number of bits required to indicate the UCAS MB parameter is 2 bits. For 5 MHz, the UCAS MB indicates, in Minpots, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: A UCASMB = {0 to 24 all integers on the closed interval}. 2bits represents 4 different numbers, these 4 different numbers are taken from the set AUCASMB, a total of C 25 4 = 12650 combinations. UCAS MB can be any combination, for example, one of the tables shown in Table 10.1 to Table 10.3, other similar, no longer - enumerated. Table 10.1
Figure imgf000124_0001
Figure imgf000124_0001
表 10.2  Table 10.2
Figure imgf000124_0002
Figure imgf000124_0002
表 10.3  Table 10.3
Figure imgf000124_0003
Figure imgf000124_0003
或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 3bits。 3bits表示 8个不同的数目, 这 8个不同的数目取自集合 AUCASMB , 共 C25 8 = 108 1575种组合。 UCASMB可以采用任意一种组合, 例如, 表 10.4〜表 10.1 1 所示中的一种, 其它类似、, 不再——列举。 表 10.4 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 3 bits. 3bits represents 8 different numbers, these 8 different numbers are taken from the set A UCASMB , a total of C 25 8 = 108 1575 combinations. UCAS MB can be any combination, for example, one of Table 10.4 to Table 10.1 1 , other similar, no longer - enumerated. Table 10.4
Figure imgf000124_0004
1 1 5 5
Figure imgf000124_0004
1 1 5 5
2 2 6 62 2 6 6
3 3 7 7 表 10.5 3 3 7 7 Table 10.5
Figure imgf000125_0001
Figure imgf000125_0001
表 10.6 Table 10.6
Figure imgf000125_0002
Figure imgf000125_0002
表 10.7 Table 10.7
Figure imgf000125_0003
Figure imgf000125_0003
表 10.8 Table 10.8
Figure imgf000125_0004
Figure imgf000125_0004
表 10.9 FPo中基于 Miniband FPo中基于 MinibandTable 10.9 FPo based on Miniband based on Miniband FPo
UCASMB UCASMB UCASMB UCASMB
的 CRU的数目 的 CRU的数目  Number of CRUs Number of CRUs
0 0 4 8  0 0 4 8
1 2 5 10  1 2 5 10
2 4 6 12  2 4 6 12
3 6 7 24 表 10.10  3 6 7 24 Table 10.10
Figure imgf000126_0001
Figure imgf000126_0001
表 10.11  Table 10.11
Figure imgf000126_0002
Figure imgf000126_0002
或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 4bits。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 AUCASMB , 共 C25 16 = 2042975种组合。 UCASMB可以采用任意一种组合,例如,表 10.12〜表 10.15 所示中的一种, 其它类似、, 不再——列举。 表 10.12 Or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 4bits. 4bits represents 16 different numbers, these 16 different numbers are taken from the set A UCASMB , a total of C 25 16 = 2042975 combinations. UCAS MB can be any combination, for example, one of the tables shown in Table 10.12 to Table 10.15, other similar, no longer - enumerated. Table 10.12
Figure imgf000126_0003
6 6 14 22
Figure imgf000126_0003
6 6 14 22
7 8 15 24 表 10.13
Figure imgf000127_0001
7 8 15 24 Table 10.13
Figure imgf000127_0001
表 10.14
Figure imgf000127_0002
Table 10.14
Figure imgf000127_0002
表 10.15Table 10.15
Figure imgf000127_0003
7 8 15 24 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目可以表示集合 AUCASMB中所 有的数值。 例如, 表 10.16所示。 表 10.16
Figure imgf000127_0003
7 8 15 24 Alternatively, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 5 bits. 5 bits represents 32 different numbers, and these 32 different numbers can represent all the values in the set AUCASMB. For example, Table 10.16 shows. Table 10.16
Figure imgf000128_0001
Figure imgf000128_0001
第二类: 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASMB 参数所需的比特数为 4bits。 对于 7MHz或 8.75MHz或 10MHz, UCASMB以 Miniband为单位指示了 第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: BUCASMB= {0至 48的闭区间上的所有整数 }。 4bits表示 16个不同的数目, 这 16个不同 的数目取自集合 BUCASMB , 共 C49 16 = 3348108992991 种组合。 UCASMB可以 采用任意一种组合, 例如, 表 10.17〜表 10.20所示中的一种, 其它类似, 不 再 列举。 表 10.17 FPo中基于 Miniband FPo中基于 MinibandThe second type: When the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS MB parameter is 4bits. For 7 MHz or 8.75 MHz or 10 MHz, UCASMB indicates, in Miniband, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: B UCASMB = {0 to 48 for all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B UCASMB , a total of C 49 16 = 3348108992991 combinations. UCAS MB can be used in any combination, for example, one of Tables 10.17 to 10.20, and the like, and is not listed. Table 10.17 FPo based on Miniband based on Miniband FPo
UCASMB UCASMB UCASMB UCASMB
的 CRU的数目 的 CRU的数目 Number of CRUs Number of CRUs
0 0 8 8 0 0 8 8
1 1 9 9  1 1 9 9
2 2 10 10  2 2 10 10
3 3 11 11  3 3 11 11
4 4 12 12  4 4 12 12
5 5 13 13  5 5 13 13
6 6 14 14  6 6 14 14
7 7 15 15 表 10.18  7 7 15 15 Table 10.18
Figure imgf000129_0001
Figure imgf000129_0001
表 10.19 Table 10.19
Figure imgf000129_0002
Figure imgf000129_0002
表 10.20
Figure imgf000129_0003
的 CRU的数目 的 CRU的数目
Table 10.20
Figure imgf000129_0003
Number of CRUs for the number of CRUs
0 0 8 20  0 0 8 20
1 1 9 24  1 1 9 24
2 2 10 28  2 2 10 28
3 3 11 32  3 3 11 32
4 4 12 36  4 4 12 36
5 8 13 40  5 8 13 40
6 12 14 44  6 12 14 44
7 16 15 48 或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASMB参 数所需的比特数为 5bits。 5bits表示 32个不同的数目, 这 32个不同的数目取 自集合 BUCASMB, 共 C49 32 = 6499270398159 种组合。 UCASMB可以采用任意 一种组合, 例如, 表 10.21所示中的一种, 其它类似, 不再 列举。 表 10.21 7 16 15 48 Alternatively, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS MB parameter is 5bits. 5bits represents 32 different numbers, these 32 different numbers are taken from the set B UCASMB , a total of C 49 32 = 6499270398159 combinations. UCAS MB can be used in any combination, for example, one of the tables shown in Table 10.21, and the like, which are not listed. Table 10.21
Figure imgf000130_0001
Figure imgf000130_0001
或者, 系统带宽为 7MHz或 8.75MHz或 10MHz时, 指示 UCASMB参 数所需的比特数为 6bits。 6bits表示 64个不同的数目,可以表示集合 BUCASMB 中所有的数值。 例如, 如表 10.22所示。 表 10.22Or, when the system bandwidth is 7MHz or 8.75MHz or 10MHz, the number of bits required to indicate the UCAS MB parameter is 6bits. 6bits means 64 different numbers, which can represent the set B UCASMB All the values in it. For example, as shown in Table 10.22. Table 10.22
Figure imgf000131_0001
30 30 62 保留
Figure imgf000131_0001
30 30 62 Reserved
31 31 63 保留 第三类: 对于 20MHz, 指示 UCASMB参数所需的比特数为 4bits。 31 31 63 Reserved for the third category: For 20MHz, the number of bits required to indicate the UCAS MB parameter is 4 bits.
UCASMB以 Miniband为单位指示了第 0个频率分区中基于 Miniband的 CRU的数目可能的数目集合为: CUCASMB= {0至 96的闭区间上的所有整数}。 4bits表示 16个不同的数目, 这 16个不同的数目取自集合 BUCASMB , 共 C97 16 = 793067310934425856种组合。 UCASMB可以采用任意一种组合, 例如, 表 10.17〜表 10.20 所示中的一种, 其它类似, 不再——列举。 或者, 系统带宽 为 20MHz时, 指示 UCASMB参数所需的比特数为 5bits。 5bits表示 32个不 同的数目, 这 32个不同的数目取自集合 CUCASMB , 共 C97 32种组合。 UCASMB 可以采用任意一种组合。 例如, 表 10.23〜表 10.25所示中的一种, 其它类似, 不再 列举。 表 10.23 The UCASMB indicates, in Minpots, the possible number of sets of Miniband-based CRUs in the 0th frequency partition as: C UCASMB = {0 to 96 all integers on the closed interval}. 4bits represents 16 different numbers, these 16 different numbers are taken from the set B UCASMB , a total of C 97 16 = 793067310934425856 combinations. UCAS MB can be any combination, for example, one of the tables shown in Table 10.17 to Table 10.20, other similar, no longer - enumerated. Or, when the system bandwidth is 20MHz, the number of bits required to indicate the UCAS MB parameter is 5 bits. 5bits represents 32 different numbers, and these 32 different numbers are taken from the set C UCASMB , a total of C 97 32 combinations. UCAS MB can be any combination. For example, one of the tables shown in Table 10.23 to Table 10.25, other similar, is not listed. Table 10.23
FPo中基于 Miniband FPo中基于 Miniband FPo based on Miniband FPo based on Miniband
UCASMB UCASMB UCASMB UCASMB
的 CRU的数目 的 CRU的数目  Number of CRUs Number of CRUs
0 0 16 16  0 0 16 16
1 1 17 17  1 1 17 17
2 2 18 18  2 2 18 18
3 3 19 19  3 3 19 19
4 4 20 20  4 4 20 20
5 5 21 21  5 5 21 21
6 6 22 22  6 6 22 22
7 7 23 23  7 7 23 23
8 8 24 24  8 8 24 24
9 9 25 25  9 9 25 25
10 10 26 26  10 10 26 26
11 11 27 27  11 11 27 27
12 12 28 28  12 12 28 28
13 13 29 29  13 13 29 29
14 14 30 30  14 14 30 30
15 15 31 31 10.24  15 15 31 31 10.24
UCASMB FPo中基于 Miniband UCASMB FPo中基于 Miniband 的 CRU的数目 的 CRU的数目UCASMB FPo based on Miniband UCASMB FPo based on Miniband Number of CRUs for the number of CRUs
0 0 16 16 0 0 16 16
1 1 17 18  1 1 17 18
2 2 18 20  2 2 18 20
3 3 19 22  3 3 19 22
4 4 20 24  4 4 20 24
5 5 21 26  5 5 21 26
6 6 22 28  6 6 22 28
7 7 23 30  7 7 23 30
8 8 24 32  8 8 24 32
9 9 25 34  9 9 25 34
10 10 26 36  10 10 26 36
11 11 27 38  11 11 27 38
12 12 28 40  12 12 28 40
13 13 29 42  13 13 29 42
14 14 30 46  14 14 30 46
15 15 31 48 10.25  15 15 31 48 10.25
Figure imgf000133_0001
或者,系统带宽为 20MHz时,指示 UCASMB参数所需的比特数为 6bits。 6bits表示 64个不同的数目, 这 64个不同的数目可以表示集合 CUCASMB中所 有的数值。 例如, 表 10.26所示。 表 10.26
Figure imgf000133_0001
Or, when the system bandwidth is 20 MHz, the number of bits required to indicate the UCAS MB parameter is 6 bits. 6bits represents 64 different numbers, and these 64 different numbers can represent all the values in the set CUCASMB. For example, Table 10.26. Table 10.26
Figure imgf000134_0001
30 30 62 62
Figure imgf000134_0001
30 30 62 62
31 31 63 63 或者,系统带宽为 20MHz时,指示 UCASMB参数所需的比特数为 7bits。 7bits表示 128个不同的数目, 这 128个不同的数目可以表示集合 CUCASMB中 除 0或 1或 95或者 96外所有的数值。 对于各个带宽下指示 UCASMB参数所需的比特数可以从上述方法中确 定, 但对于不同的带宽, 指示 UCASMB参数所需的比特数彼此部分相同或完 全不同。 例 口, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 2bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 4bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 3bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 4bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 5bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 4bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 6bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 5bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 6bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 6bits; 或者, 系统带宽为 5MHz时, 指示 UCASMB参数所需的比特数为 5bits; 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 6bits; 系统带宽为 20MHz时, 指示该参数所需的比特数为 7bits。 需要指出: 在上述 UCASMB的配置方法中, 当两个不同的带宽使用了 相同的比特数指示 UCASMB参数, 对应的表格可以相同或不同。 例如, 系统 带宽为 10MHz (也可以为 7MHz或 8.75MHz )时, 指示该参数所需的比特数 为 5bits , 但对应的表格为表 10.21 ; 系统带宽为 20MHz时, 指示该参数所需 的比特数为 5bits, 但对应的表格为表 10.25。 相同的表格是指: 由于系统带宽为 10MHz (可以为 7MHz或 8.75MHz ) 和系统带宽为 20MHz的情况比较相似可以考虑^ 1 10MHz (可以为 7MHz或 8.75MHz )和 20MHz的特点统一, 可以^)夺系统带宽为 10MHz (可以为 7MHz 或 8.75MHz ) 和系统带宽为 20MHz时采用相同的 UCASMB的取值及对应关 系,即,系统带宽为 10MHz(可以为 7MHz或 8.75MHz )和系统带宽为 20MHz 时采用相同的表格, 例如, 可以采用表 10.23〜表 10.25 中的一个, 或者按照 20MHz时的配置方法产生。 或者, 按照下面的方法产生: 表 10.27 31 31 63 63 Alternatively, when the system bandwidth is 20MHz, the number of bits required to indicate the UCAS MB parameter is 7bits. 7bits represents 128 different numbers, and these 128 different numbers can represent all values in the set C UCASMB except 0 or 1 or 95 or 96. The number of bits required to indicate the UCAS MB parameters for each bandwidth can be determined from the above method, but for different bandwidths, the number of bits required to indicate the UCAS MB parameters is partially identical or completely different from each other. For example, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 2bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; the system bandwidth is At 20MHz, the number of bits required to indicate this parameter is 4bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 3bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the indication The number of bits required for this parameter is 4 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 4 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS MB parameter is 3 bits; When 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 4bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the UCAS is indicated. number of bits required for the MB parameters 3bits; when the system bandwidth is 10MHz (may be a 7MHz or 8.75MHz), indicating the number of bits required parameters 5bits; system bandwidth is 20MHz, required for the parameter bit indicates Is 5bits; Alternatively, the system bandwidth is 5MHz, the number of bits required to indicate UCAS MB parameter 4bits; when the system bandwidth is 10MHz (or may be a 7MHz of 8.75 MHz), indicating the number of bits required parameters 4bits; system When the bandwidth is 20MHz, the number of bits required to indicate the parameter is 5bits; or, when the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 4bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz) , the number of bits required to indicate the parameter is 5 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate the parameter is 5 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS MB parameter is 4 bits; When the bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits; when the system bandwidth is 20MHz, the number of bits required to indicate the parameter is 6bits; or When the system bandwidth is 5MHz, the number of bits required to indicate the UCAS MB parameter is 5bits; when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 6bits; when the system bandwidth is 20MHz, The number of bits required to indicate the parameter is 6 bits; or, when the system bandwidth is 5 MHz, the number of bits required to indicate the UCAS MB parameter is 5 bits; when the system bandwidth is 10 MHz (also 7 MHz or 8.75 MHz), the parameter is indicated. The number of bits required is 6 bits; when the system bandwidth is 20 MHz, the number of bits required to indicate this parameter is 7 bits. It should be noted that in the above UCAS MB configuration method, when two different bandwidths use the same number of bits to indicate UCAS MB parameters, the corresponding tables may be the same or different. For example, when the system bandwidth is 10MHz (also 7MHz or 8.75MHz), the number of bits required to indicate the parameter is 5bits, but the corresponding table is Table 10.21; when the system bandwidth is 20MHz, the number of bits required for the parameter is indicated. It is 5bits, but the corresponding table is Table 10.25. The same table means: Since the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz, it can be considered similarly ^ 1 10MHz (can be 7MHz or 8.75MHz) and 20MHz features can be unified ^) The system bandwidth is 10MHz (which can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same UCAS MB value and corresponding relationship are used, that is, the system bandwidth is 10MHz (can be 7MHz or 8.75MHz) and the system bandwidth is 20MHz. The same table is used, for example, one of Table 10.23 to Table 10.25 can be used, or it can be generated according to the configuration method at 20 MHz. Alternatively, generate as follows: Table 10.27
Figure imgf000136_0001
10 10/48 10 20
Figure imgf000136_0001
10 10/48 10 20
11 11/48 11 22 11 11/48 11 22
12 12/48 12 24  12 12/48 12 24
13 13/48 13 26  13 13/48 13 26
14 14/48 14 28  14 14/48 14 28
15 15/48 15 30 jt匕夕卜, 5MHz可以与 10MHz ( A可以为 7MHz或 8.75MHz ) 均采用 3 比特或 4比特或者 5比特。 另外, 需要指出: 在上述 UCASMB的配置方法中, 针对每一个表, UCASMB的值与 UCASMB的值指示的意义中间的关系是可以变化的, 每一个 表格均是一个实施例, 只要一个表中包含的 UCASMB的值是指示的意义是相 同的, 均被视为相同的表, 都在保护范围之内。 通过上述实例 10 , 可以看出, 系统带宽分别为 5MHz、 10MHz (可以 为 7MHz或 8.75MHz )、20MHz系统时,指示 UCASMB的比特数分别需要 3bits、 4bits、 4bits, 或者分别需要 3bits、 4bits、 5bits , 或者分别需要 4bits、 5bits、 6bits, , 或者分别需要 5bits、 6bits、 7bits或者其他组合时, 在 UCASMB的可 能取值减少的情况下 , 删减了冗余和不必要的信息指示, 节约了比特开销 , 且保证了一定的灵活性。 综上所述, 借助于本发明提供的资源映射指示信息的配置方法, 对于系 统支持的每个带宽配置指示参数所需的比特数, 并且同一参数在不同带宽下 的进行指示的比特数部分相同或完全不同, 使得物理资源映射指示信令使用 的比特数能够根据系统使用的带宽灵活变化, 尽可能地减少传输的比特数, 避免了相关技术中控制信道开销大的问题, 在不影响系统正常的运作的前提 下节约下行控制开销, 从而提高系统的工作效率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 15 15/48 15 30 jt匕, 5MHz can be 3 bits or 4 bits or 5 bits with 10MHz (A can be 7MHz or 8.75MHz). Further, to be noted: In the UCAS MB configuration process, for each table, the relationship between the intermediate meaning UCAS MB value with UCAS MB values indicated may be varied, each form are one embodiment, as long as a The values of UCAS MB included in the table are the same meanings, and are considered to be the same table, all within the scope of protection. Through the above example 10, it can be seen that when the system bandwidth is 5MHz, 10MHz (which can be 7MHz or 8.75MHz), and the 20MHz system, the number of bits indicating the UCAS MB needs 3bits, 4bits, 4bits, or 3bits, 4bits, respectively. 5bits, or 4bits, 5bits, 6bits, or 5bits, 6bits, 7bits or other combinations respectively, when the possible value of UCAS MB is reduced, the redundant and unnecessary information indications are deleted, saving The bit overhead is guaranteed and a certain degree of flexibility is guaranteed. In summary, with the configuration method of the resource mapping indication information provided by the present invention, the number of bits required to indicate the parameter is configured for each bandwidth supported by the system, and the number of bits indicated by the same parameter under different bandwidths is the same. Or completely different, so that the number of bits used by the physical resource mapping indication signaling can be flexibly changed according to the bandwidth used by the system, and the number of transmitted bits is reduced as much as possible, thereby avoiding the problem of large control channel overhead in the related art, without affecting the normal system. Under the premise of operation, the downlink control overhead is saved, thereby improving the working efficiency of the system. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种资源映射指示信息的配置方法, 其特征在于, 包括: A method for configuring resource mapping indication information, which is characterized by:
指示资源映射的至少一个参数 ,根据带宽确定指示所述参数所需的 比特数;  Determining at least one parameter of the resource mapping, determining a number of bits required to indicate the parameter according to the bandwidth;
其中, 对于多个不同的带宽, 指示所述参数所需的比特数彼此部分 相同或完全不同。  Wherein, for a plurality of different bandwidths, the number of bits required to indicate the parameter is partially identical or completely different from each other.
2. 根据权利要求 1所述的方法, 其特征在于, 所述资源映射包括下行资源 映射和 /或上行资源映射, 其中, 所述下行资源映射包括如下步骤之一或 组合: 子带划分、 ^啟带置换、 频率分区划分、 连续资源单元 /分布资源单 元分配和子载波置换; 所述上行资源映射包括如下步骤之一或组合: 子 带划分、 ^啟带置换、 频率分区划分、 连续资源单元 /分布资源单元分配和 Tile置换。 The method according to claim 1, wherein the resource mapping includes a downlink resource mapping and/or an uplink resource mapping, where the downlink resource mapping includes one or a combination of the following steps: subband division, ^ Entity band permutation, frequency partition division, continuous resource unit/distributed resource unit allocation, and subcarrier permutation; the uplink resource mapping includes one or a combination of the following steps: subband division, ^ start band permutation, frequency partition division, continuous resource unit/ Distributed resource unit allocation and tile replacement.
3. 根据权利要求 1所述的方法, 其特征在于, 所述多个带宽包括第一带宽、 第二带宽和第三带宽, 其中, 对于所述资源指示信息中的一个参数: 对 应于所述第一带宽, 指示该参数所需的比特数为 M; 对应于所述第二带 宽, 指示该参数所需的比特数为 N; 对应于所述第三带宽, 指示该参数 所需的比特数为 P, 并且, M、 N、 P的取值彼此部分相同或完全不同。 The method according to claim 1, wherein the plurality of bandwidths comprise a first bandwidth, a second bandwidth, and a third bandwidth, wherein: one parameter in the resource indication information: corresponding to the The first bandwidth, the number of bits required to indicate the parameter is M; corresponding to the second bandwidth, the number of bits required to indicate the parameter is N; corresponding to the third bandwidth, the number of bits required to indicate the parameter It is P, and the values of M, N, and P are partially identical or completely different from each other.
4. 才艮据权利要求 3所述的方法, 其特征在于, 所述 M、 N、 P的取值彼此 部分相同是指: 4. The method according to claim 3, wherein the values of the M, N, and P are partially identical to each other:
N=M+1、 且 P=M+1 ; 或者, N=M+2、 且 P=M+2; 或者, N=M、 JL P=M+1 ; 或者, N=M、 且 P=M+2, 其中 M为大于 0的整数。  N=M+1, and P=M+1; or, N=M+2, and P=M+2; or, N=M, JL P=M+1; or, N=M, and P= M+2, where M is an integer greater than zero.
5. 才艮据权利要求 3所述的方法, 其特征在于, 所述 M、 N、 P的取值彼此 完全不同是指: 5. The method according to claim 3, wherein the values of the M, N, and P are completely different from each other:
N=M+1、 JL P=M+2; 或者 N=M+2、 JL P=M+3 , 或者 N=M+1、 且 P=M+3 , 其中 M为大于 0的整数。  N=M+1, JL P=M+2; or N=M+2, JL P=M+3, or N=M+1, and P=M+3, where M is an integer greater than zero.
6. 根据权利要求 3至 5中任一项所述的方法, 其特征在于, M的取值为 1 或 2或 3或 4。 The method according to any one of claims 3 to 5, characterized in that the value of M is 1 or 2 or 3 or 4.
7. 根据权利要求 3至 5中任一项所述的方法 , 其特征在于 , 所述第一带宽包括: 5 MHz , 所述第二带宽包括以下之一: 7MHz、 8.75MHz, 10MHz、 所述第三带宽包括: 20MHz。 The method according to any one of claims 3 to 5, wherein the first bandwidth comprises: 5 MHz, and the second bandwidth comprises one of: 7MHz, 8.75MHz, 10MHz, The third bandwidth includes: 20 MHz.
8. 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述资源指示 信息中的参数包括以下至少之一: 下行子带分配数、 上行子带分配数、 下行频率分区配置、 上行频率分区配置、 下行频率分区子带分配数、 上 行频率分区子带分配数、 下行连续资源单元分配的数目、 上行连续资源 单元分配的数目、 下行基于 ^啟带 Miniband的连续资源单元的数目、 上行 基于 Miniband的连续资源单元的数目。 The method according to any one of claims 1 to 5, wherein the parameter in the resource indication information includes at least one of the following: a downlink subband allocation number, an uplink subband allocation number, and a downlink frequency partition. Configuration, uplink frequency partition configuration, downlink frequency partition subband allocation number, uplink frequency partition subband allocation number, downlink continuous resource unit allocation number, uplink continuous resource unit allocation number, downlink based on Miniband-based continuous resource unit Number, number of consecutive contiguous resource units based on Miniband.
9. 才艮据权利要求 8所述的方法, 其特征在于, 9. The method of claim 8 wherein:
在所述系统中指示下行子带分配数的比特数与指示上行子带分配 数的比特数相同或不同;  The number of bits indicating the number of downlink subband allocations in the system is the same as or different from the number of bits indicating the number of uplink subband allocations;
在所述系统中指示下行频率分区配置的比特数与指示上行频率分 区配置的比特数相同或不同;  The number of bits indicating the configuration of the downlink frequency partition in the system is the same as or different from the number of bits indicating the configuration of the uplink frequency partition;
在所述系统中指示下行频率分区子带分配数的比特数与指示上行 频率分区子带分配数的比特数相同或不同;  The number of bits indicating the number of downlink frequency partition subband allocations in the system is the same as or different from the number of bits indicating the uplink frequency partition subband allocation number;
在所述系统中指示下行连续资源单元分配的数目的比特数与指示 上行连续资源单元分配的数目的比特数相同或不同。  The number of bits indicating the number of downlink contiguous resource unit allocations in the system is the same or different from the number of bits indicating the number of uplink contiguous resource unit allocations.
10. 才艮据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述下行子带 分配数和 /或上行子带分配数是指: 子带划分中子带的数目、 下行频率分 区配置和 /或上行频率分区配置是指频率分区划分中频率分区的个数和 / 或各个频率分区的大小或比例、 下行频率分区子带分配数和 /或上行频率 分区子带分配数均是指示频率分区中除频率分区 0以外的频率分区中子 带的数目、 下行连续资源单元分配的数目和 /或上行连续资源单元分配的 数目均是指每个频率分区中连续资源单元分配的数目 、 下行基于The method according to any one of claims 1 to 5, wherein the downlink subband allocation number and/or the uplink subband allocation number are: the number of subbands in the subband division, The downlink frequency partition configuration and/or the uplink frequency partition configuration refers to the number of frequency partitions in the frequency partition division and/or the size or proportion of each frequency partition, the downlink frequency partition subband allocation number, and/or the uplink frequency partition subband allocation number. All indicating that the number of subbands in the frequency partition other than frequency partition 0 in the frequency partition, the number of downlink contiguous resource unit allocations, and/or the number of uplink contiguous resource unit allocations refer to the allocation of consecutive resource units in each frequency partition. Number, downlink based
Miniband 的连续资源单元的数目指示下行频率分区 0 中基于 Miniband 的连续资源单元的数目、上行基于 Miniband的连续资源单元的数目指示 上行频率分区 0中基于 Miniband的连续资源单元的数目 , 其中, 数目的 单位为子带或 ^啟带或物理资源单元。 The number of contiguous resource units of the Miniband indicates the number of contiguous resource units based on the Miniband in the downlink frequency partition 0, and the number of contiguous resource units based on the Miniband indicates the number of contiguous resource units based on the Miniband in the uplink frequency partition 0, where the number The unit is a subband or a starter or a physical resource unit.
PCT/CN2009/073922 2009-04-03 2009-09-14 Method for configuring resource mapping indication information WO2010111859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910130558 CN101854727B (en) 2009-04-03 2009-04-03 Method for configuring resource mapping indication information
CN200910130558.0 2009-04-03

Publications (1)

Publication Number Publication Date
WO2010111859A1 true WO2010111859A1 (en) 2010-10-07

Family

ID=42805923

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/073922 WO2010111859A1 (en) 2009-04-03 2009-09-14 Method for configuring resource mapping indication information
PCT/CN2010/071554 WO2010111974A1 (en) 2009-04-03 2010-04-02 Configuration method and apparatus for resource mapping indication information

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071554 WO2010111974A1 (en) 2009-04-03 2010-04-02 Configuration method and apparatus for resource mapping indication information

Country Status (2)

Country Link
CN (1) CN101854727B (en)
WO (2) WO2010111859A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801675B (en) * 2011-05-25 2014-10-08 华为技术有限公司 Method and system for transmitting indication information as well as method for receiving indication information and equipment
CN110380838B (en) * 2013-03-28 2021-08-03 华为技术有限公司 Bandwidth allocation method and device, user equipment and base station
JP2018537900A (en) 2016-08-02 2018-12-20 日本電気株式会社 Method for numerology multiplexing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916652A1 (en) * 2006-10-23 2008-04-30 Fujitsu Ltd. Encoder, method of encoding, and computer-readable recording medium
CN101242625A (en) * 2007-02-06 2008-08-13 华为技术有限公司 A method, system and device for control channel resource mapping
CN101346959A (en) * 2005-10-27 2009-01-14 高通股份有限公司 Method and apparatus for achieving flexible bandwidth using variable guard bands
WO2009017260A2 (en) * 2007-08-02 2009-02-05 Nec Corporation Signalling of resource allocation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123805A (en) * 2006-08-11 2008-02-13 华为技术有限公司 Orthogonal frequency division multiplexing access system and its device, transmission method and terminal
WO2008084422A2 (en) * 2007-01-04 2008-07-17 Nokia Corporation Allocation of time-frequency resources to a control channel
CN101127719B (en) * 2007-09-27 2013-03-20 中兴通讯股份有限公司 Indication method for wireless resource allocation of LTE system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346959A (en) * 2005-10-27 2009-01-14 高通股份有限公司 Method and apparatus for achieving flexible bandwidth using variable guard bands
EP1916652A1 (en) * 2006-10-23 2008-04-30 Fujitsu Ltd. Encoder, method of encoding, and computer-readable recording medium
CN101242625A (en) * 2007-02-06 2008-08-13 华为技术有限公司 A method, system and device for control channel resource mapping
WO2009017260A2 (en) * 2007-08-02 2009-02-05 Nec Corporation Signalling of resource allocation

Also Published As

Publication number Publication date
WO2010111974A1 (en) 2010-10-07
CN101854727A (en) 2010-10-06
CN101854727B (en) 2013-02-27

Similar Documents

Publication Publication Date Title
EP2384041B1 (en) System information transmission method
CN106507486B (en) Method, network equipment and terminal equipment for uplink data transmission
KR101586988B1 (en) Method for sub-channelizing and resource mapping of wireless resources
CN108365940B (en) Electronic device, mobile terminal and method
JP5349601B2 (en) Method and apparatus for allocating resources for multicast and / or broadcast service data in a wireless communication system
CN101374017B (en) Method for distributing physical resource blocks based on OFDM system
JP5073101B2 (en) Method and apparatus for allocating resources for multicast and / or broadcast service data in a wireless communication system
WO2011150761A1 (en) Resource allocation method and device
KR20120040688A (en) Signal transmission with fixed subcarrier spacing within ofdma communication systems
US8861528B2 (en) Apparatus and method for resource selection in OFDMA systems
WO2010078770A1 (en) Resource mapping methods for control channels
WO2017167011A1 (en) Message transmission method and associated device
KR101330427B1 (en) Radio resource mapping method
CN110089170A (en) Transmit method, the network equipment and the terminal device of data
WO2017167264A1 (en) Information transmission method and apparatus
WO2011087242A2 (en) Method and apparatus for allocating resources for enhanced multicast broadcast service data in wireless communication system
WO2010111859A1 (en) Method for configuring resource mapping indication information
WO2018112933A1 (en) Information transmission method, network device and terminal device
WO2010051704A1 (en) Method for mapping resource cells
CN113453164B (en) Method, device and equipment for broadcasting MBMS in NR cell
CN104735674B (en) Wireless LAN communication method and wireless LAN communication equipment
CN101516136A (en) Method for controlling channel allocation and information transmission under large bandwidth
WO2011113277A1 (en) Resource mapping method and base station
WO2011054236A1 (en) Method for resource allocation and base station
KR20210138820A (en) Method and apparatus for transmitting and receiving signal based on layered division multiplexing in communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842515

Country of ref document: EP

Kind code of ref document: A1