WO2010110529A1 - Method for reducing edge serration defects in thin slabs - Google Patents

Method for reducing edge serration defects in thin slabs Download PDF

Info

Publication number
WO2010110529A1
WO2010110529A1 PCT/KR2009/007993 KR2009007993W WO2010110529A1 WO 2010110529 A1 WO2010110529 A1 WO 2010110529A1 KR 2009007993 W KR2009007993 W KR 2009007993W WO 2010110529 A1 WO2010110529 A1 WO 2010110529A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin slab
saw blade
carbon
extraction temperature
temperature
Prior art date
Application number
PCT/KR2009/007993
Other languages
French (fr)
Korean (ko)
Inventor
유석현
문홍길
장진수
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to CN2009801337912A priority Critical patent/CN102137942A/en
Priority to JP2011523752A priority patent/JP5392634B2/en
Priority to BRPI0917243A priority patent/BRPI0917243A2/en
Publication of WO2010110529A1 publication Critical patent/WO2010110529A1/en
Priority to US13/028,173 priority patent/US20110132503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

In the present invention, a thin slab having an alloy composition comprising carbon (C), niobium (Nb) and aluminium (Al) and a remainder of iron (Fe) and unavoidable impurities is reheated in a heat-treatment furnace where it is homogenised to an austenitic structure, and the production of precipitates is controlled by maintaining the heat-treatment-furnace extraction temperature of the thin slab at no lower than the NbC precipitation temperature and no higher than the AlN precipitation temperature, and then hot rolling is carried out. The present invention is advantageous in that it improves productivity since edge serration defects in thin slabs are reduced by controlling the heat-treatment-furnace extraction temperature of thin slabs.

Description

박슬라브 에지부 톱날형 결함 저감방법Slab edge saw blade defect reduction method
본 발명은 박슬라브 에지부 톱날형 결함 저감방법에 관한 것으로, 더욱 상세하게는 박슬라브의 대표적인 결함 중 하나인 에지부 톱날형 결함을 저감하는 박슬라브 에지부 톱날형 결함 저감방법에 관한 것이다. The present invention relates to a thin slab edge saw blade type defect reduction method, and more particularly to a thin slab edge saw blade type defect reduction method for reducing the edge saw blade type defect, which is one of the typical defects of the thin slab.
박슬라브는 슬라브 주조공정에서 슬라브의 두께를 좀더 얇은 두께로 하여 최종제품에 가까운 형상으로 주조하는 것으로, 열연공장에서 조압연 공정을 생략할 수 있어 공정생략 및 단순화에 주로 적용된다. In the slab casting process, the thin slab is cast to a shape closer to the final product by making the thickness of the slab thinner, and the rough rolling process can be omitted in the hot rolling mill, and thus it is mainly applied to the process omission and simplification.
이러한 박슬라브 연속주조공정은 일반 연속주조공정과 달리 얇은 두께의 슬라브가 빠른 속도로 주조가 되고, 액상의 용강이 박슬라브로 응고되는 것이 몰드와 스탠드부에서 완전히 이루어지므로 일반 슬라브에 비하여 미세한 결정립을 갖는다. Unlike the general continuous casting process, the thin slab continuous casting process produces a thin slab at a high speed, and the solid molten steel is solidified into the thin slab in the mold and the stand part, so that the fine grains are finer than the general slab. Have
하지만, 박슬라브는 얇은 두께로 인하여 냉각이 빠르기 때문에 박슬라브의 에지부(edge)가 중간 부분에 비하여 급냉되어 잔류응력이 생성된다. However, because the thin slab is fast cooled due to its thin thickness, the edge of the thin slab is quenched as compared with the middle portion, thereby generating residual stress.
따라서, 도 1에 도시된 바와 같이, 박슬라브가 권취된 열연코일의 에지부에 해당되는 부분 즉, 냉각 불균일로 인한 잔류응력이 형성된 부분에 톱날형 결함이 발생하는 문제점이 있다. Therefore, as shown in FIG. 1, there is a problem that a saw blade type defect occurs in a portion corresponding to an edge portion of the hot rolled coil in which the thin slab is wound, that is, a portion in which residual stress due to uneven cooling is formed.
이는 박슬라브의 에지부에서 과냉도가 크고, 압연시 박슬라브의 단변부 중심에서 폭방향으로 신장되는 정도가 에지부가 폭방향으로 늘어나는 정도보다 훨씬 커박슬라브의 두께 방향으로 인장을 받게 되고, 그에 따라 톱날형 결함이 발생하는 것이다. This is because the degree of supercooling is large at the edge of the thin slab, and the degree of extension in the width direction from the center of the short side portion of the thin slab is much greater than that of the edge portion in the width direction during rolling. A saw blade defect occurs.
특히, 박슬라브 연속주조공정을 통해 생산되는 제품 중 탄소농도 0.20~0.28wt%를 갖고 니오븀이 첨가되는 강관용 강의 경우에는 에지부에 톱날형 결함이 다발하게 되는데, 이 경우 원 재료의 강도보다 낮은 응력에서도 파손이 발생하기 쉬운 문제점이 있다. In particular, in the case of steel pipe steel with niobium added and having a carbon concentration of 0.20 to 0.28 wt% among the products produced through the thin slab continuous casting process, saw blade-type defects occur frequently at a lower edge than the strength of the raw material. There is a problem that breakage is likely to occur even under stress.
이에 박슬라브 열연코일을 제조하는 제철업체에서는 재가공 및 주문 등급외 판정을 하여 손실처리하므로 생산성이 감소되는 문제점이 있었다. Therefore, the steelmaker manufacturing the thin slab hot rolled coil has a problem in that the productivity is reduced because the loss is processed by reprocessing and out of order grades.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 박슬라브의 열처리로 추출 온도를 제어하여 박슬라브 에지부 톱날형 결함을 저감하는 박슬라브 에지부 톱날형 결함 저감방법을 제공하는 것이다. The present invention is to solve the conventional problems as described above, an object of the present invention is to control the extraction temperature of the thin slab edge blade saw blade type defect reduction method for reducing the thin slab edge portion saw blade defects. To provide.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 탄소(C) 및 니오븀(Nb)과 알루미늄(Al)을 포함하고, 잔부가 철(Fe) 및 기타 불가피한 불순물의 합금조성을 갖는 박슬라브를 열처리로에서 재가열하여 오스테나이트 조직으로 균일화하되, 상기 박슬라브의 열처리로 추출온도를 NbC석출 온도 이상 AlN석출 온도 이하로 유지하여 석출물 생성을 제어한 다음, 열간압연을 실시한다.According to a feature of the present invention for achieving the above object, the present invention comprises carbon (C) and niobium (Nb) and aluminum (Al), the balance of the alloy composition of iron (Fe) and other unavoidable impurities The thin slabs having the thin slab are reheated in a heat treatment furnace to homogenize the austenite structure, while the extraction temperature of the thin slabs is maintained at an NbC precipitation temperature or more than an AlN precipitation temperature to control the formation of precipitates, followed by hot rolling.
상기 탄소는 0.20~0.28wt%, 니오븀은 0.005~0.020wt%, 알루미늄은 0.01~0.05wt%의 함량 범위이다.The carbon is 0.20 ~ 0.28wt%, niobium is 0.005 ~ 0.020wt%, aluminum is 0.01 ~ 0.05wt% content range.
상기 탄소의 함량이 0.20wt% 이상 0.25wt% 미만이면, 상기 박슬라브의 열처리로 추출온도는 1060~1100℃로 유지한다.If the content of the carbon is 0.20wt% or more and less than 0.25wt%, the extraction temperature is maintained at 1060 ~ 1100 ℃ by heat treatment of the thin slab.
상기 탄소의 함량이 0.25wt% 이상 0.28wt% 이하이면, 상기 박슬라브의 열처리로 추출온도는 1080~1100℃로 유지한다.If the carbon content is 0.25wt% or more and 0.28wt% or less, the extraction temperature of the thin slab is maintained at 1080 to 1100 ° C.
본 발명은 박슬라브의 열처리로 추출 온도를 제어하여 박슬라브 에지부 톱날형 결함을 저감한다. 따라서 박슬라브의 품질을 향상시키고 제품의 실수율을 증가시킴에 의해 제품신뢰성 및 생산성이 향상되는 효과가 있다. The present invention controls the extraction temperature by the heat treatment of the thin slab to reduce the saw blade-type defects of the thin slab edge portion. Therefore, product reliability and productivity are improved by improving the quality of the thin slab and increasing the error rate of the product.
도 1은 열연코일 에지부의 톱날형 결함을 보인 사진.1 is a photograph showing the saw blade type defect of the hot rolled coil edge portion.
도 2는 탄소농도 0.20~0.28wt%를 갖는 Nb첨가 강관용 강의 상태도.Figure 2 is a state diagram of the steel for Nb addition steel pipe having a carbon concentration of 0.20 ~ 0.28wt%.
도 3은 열처리로 추출온도에 따른 코일 에지부 톱날형 결함 저감을 나타낸 그래프.3 is a graph showing the saw blade-type defect reduction of the coil edge according to the extraction temperature of the heat treatment furnace.
도 3은 본 발명에 의해 제조된 박슬라브의 미세조직을 종래와 대비하여 나타낸 전자현미경 사진.Figure 3 is an electron micrograph showing the microstructure of the thin slab prepared by the present invention in comparison with the prior art.
이하 본 발명에 의한 박슬라브 에지부 톱날형 결함 저감방법의 바람직한 실시예를 상세하게 설명한다. Hereinafter, a preferred embodiment of the thin slab edge saw blade type defect reduction method according to the present invention will be described in detail.
도 2는 탄소농도 0.20~0.28wt%를 갖는 Nb첨가 강관용 강의 상태도이고, 도 3은 열처리로 추출온도에 따른 코일 에지부 톱날형 결함 저감을 나타낸 그래프이며, 도 3은 본 발명에 의해 제조된 박슬라브의 미세조직을 종래와 대비하여 나타낸 전자현미경 사진이다. FIG. 2 is a state diagram of Nb-added steel pipe steel having a carbon concentration of 0.20 to 0.28 wt%, and FIG. 3 is a graph showing reduction of saw blade type defects in coil edges according to extraction temperature of a heat treatment furnace, and FIG. 3 is manufactured by the present invention. Electron micrograph showing the microstructure of the thin slab in comparison with the conventional.
본 발명은 탄소(C) 0.20~0.28wt%이고, 니오븀(Nb), 알루미늄(Al), 망간(Mn), 황(S), 질소(N)를 포함하며, 잔부가 철(Fe) 및 기타 불가피한 불순물로 이루어지는 합금조성을 갖는다. The present invention is 0.20 to 0.28wt% of carbon (C), niobium (Nb), aluminum (Al), manganese (Mn), sulfur (S), nitrogen (N), the balance is iron (Fe) and other It has an alloy composition composed of unavoidable impurities.
이러한 합금조성을 기본으로하여 제조한 박슬라브는 열처리로에서 재가열하여 오스테나이트 조직으로 균질화하는 한편, 박슬라브의 열처리로 추출온도를 1060~1100℃로 유지하여 석출물 생성을 제어한 다음, 열간압연을 실시한다. The thin slab manufactured on the basis of such alloy composition is reheated in a heat treatment furnace to homogenize into austenite structure, while the extraction temperature is maintained at 1060 to 1100 ℃ by heat treatment of the thin slab to control the formation of precipitates, followed by hot rolling. do.
더 상세히 설명하면, 박슬라브의 열처리로 추출온도를 NbC석출 시작 온도 이상으로 제어하여 NbC석출이 재가열 과정이 아닌 열간압연 과정에서 일어나도록 하여 에지부(edge) 톱날형 결함을 저감한다.In more detail, by controlling the extraction temperature by the heat treatment of the thin slab above the NbC precipitation start temperature, the NbC precipitation occurs in the hot rolling process rather than the reheating process, thereby reducing edge saw blade defects.
박슬라브에 형성되는 에지부 톱날형 결함은 NbC석출물과 주로 관련된다. NbC석출물은 열간압연시 입계성장을 가로막아 결정립사이즈를 미세화 한다. Edge saw blade defects formed in thin slabs are mainly related to NbC precipitates. NbC precipitates prevent grain boundary growth during hot rolling, thereby miniaturizing grain size.
하지만, 입계에 석출된 석출물은 열간압연시 응력 집중원으로 작용하여 보이드(voids)의 발생장소가 되고, 이러한 보이드는 결국 크랙으로 성장하여 입계 파괴를 일으키게 된다. 특히, 얇은 두께로 인하여 에지부의 냉각이 빠른 박슬라브는 NbC석출에 의한 입계 취성화 현상이 더욱 심하게 발생한다. However, the precipitate precipitated at the grain boundary acts as a stress concentration source during hot rolling, and thus becomes a place of voids, and these voids eventually grow into cracks and cause grain boundary destruction. Particularly, thin slabs having rapid cooling at the edges due to the thin thickness have more severe grain boundary embrittlement due to NbC precipitation.
따라서, 재가열시 NbC석출을 의도적으로 회피하여 열연코일 에지부의 톱날형 결함을 방지한다. 이는 열간압연시 박슬라브의 두께 방향으로 인장을 받게 되더라도 전위의 이동이 자유로워 응력집중 현상이 발생하지 않기 때문이다. Therefore, NbC precipitation is intentionally avoided during reheating to prevent saw blade defects in the hot rolled coil edge portion. This is because even if the tension is applied in the thickness direction of the thin slab during hot rolling, the dislocation movement is free and stress concentration does not occur.
바람직하게는, 박슬라브의 열처리로 추출온도는 NbC석출 온도 이상 AlN석출 온도 이하로 제어한다.Preferably, the extraction temperature of the thin slab is controlled to be equal to or greater than the NbC precipitation temperature and less than or equal to the AlN precipitation temperature.
AlN은 1100~1120℃범위에서 석출되는 석출물로 NbC와 동일하게 입계 취성화 현상을 유발한다. 따라서 열연코일 에지부의 톱날형 결함 방지를 위해 재가열시 AlN석출도 방지하는 범위로 열처리로 추출온도를 설정한다.AlN is a precipitate that precipitates in the range of 1100 ~ 1120 ° C and causes grain boundary embrittlement, similar to NbC. Therefore, the extraction temperature is set in the heat treatment furnace to prevent AlN precipitation during reheating in order to prevent saw blade type defects in the hot rolled coil edge.
탄소(C) 0.20~0.28wt%이고, 니오븀(Nb)이 첨가된 강의 NbC석출 시작온도는 도 2의 상태도에서 확인된다. The starting temperature of NbC deposition of steel (C) 0.20 to 0.28 wt% and niobium (Nb) was confirmed in the state diagram of FIG. 2.
도 2에 도시된 바에 의하면, 탄소(C) 0.20~0.28wt%이고, 니오븀(Nb)이 첨가된 강의 경우 열처리로 추출온도가 1060~1080℃(A)에서 오스테나이트상(γ) 입계에 미세한 NbC석출물이 다량으로 석출된다. As shown in FIG. 2, the carbon (C) is 0.20 to 0.28 wt%, and niobium (Nb) is added to the austenitic grain boundary at an extraction temperature of 1060 to 1080 ° C. (A). A large amount of NbC precipitates are precipitated.
따라서, 박슬라브의 열처리로 추출온도를 1060~1100℃로 유지하여 석출물 생성을 의도적으로 제어한 다음, 열간압연을 실시한다. Therefore, the extraction temperature is maintained at 1060 ~ 1100 ℃ by heat treatment of the thin slab intentionally controlled to form the precipitate, and then hot rolling.
박슬라브의 열처리로 추출온도가 1060℃보다 낮으면 NbC석출물의 다량 생성으로 에지부의 톱날형 결함 방지 효과가 없고, 1100℃보다 높으면 오스테나이트 결정입이 조대화되어 강도확보가 어렵다. 또한, 1100℃보다 높으면 AlN석출물의 생성으로 결함이 발생할 수 있다.If the extraction temperature is lower than 1060 ℃ by heat treatment of the thin slab, the formation of a large amount of NbC precipitates do not have the effect of preventing the saw blade-type defects at the edge portion, and if it is higher than 1100 ℃, the austenite grains are coarsened, making it difficult to secure the strength. In addition, when the temperature is higher than 1100 ° C., defects may occur due to the formation of AlN precipitates.
박슬라브의 열처리로 추출온도를 1080~1100℃로 유지하여 석출물 생성을 의도적으로 제어한 다음, 열간압연을 실시할 수도 있다. 이는 박슬라브의 열처리로 추출온도의 하한치가 탄소함량에 따라 1060~1080℃범위에서 변동 가능하기 때문이다. The heat treatment of the thin slab may intentionally control the formation of the precipitate by maintaining the extraction temperature at 1080 ~ 1100 ℃, and then hot rolling. This is because the lower limit of the extraction temperature can vary in the range of 1060 ~ 1080 ℃ according to the carbon content by heat treatment of the thin slab.
보다 상세하게는 탄소의 함량이 0.20wt% 이상 0.25wt% 미만이면, 박슬라브의 열처리로 추출온도는 1060~1100℃로 유지한다. 그리고, 탄소의 함량이 0.25wt% 이상 0.28wt% 이하이면, 박슬라브의 열처리로 추출온도는 1080~1100℃로 유지한다. More specifically, if the content of carbon is 0.20wt% or more and less than 0.25wt%, the extraction temperature is maintained at 1060 ~ 1100 ℃ by heat treatment of thin slabs. And, if the content of carbon is 0.25wt% or more and 0.28wt% or less, the extraction temperature is maintained at 1080 ~ 1100 ℃ by heat treatment of the thin slab.
도 2의 확대도에서 확인되는 바와 같이, 탄소의 함량이 높아지면 NbC의 석출온도도 높아진다. 그리고, 탄소의 함량이 0.25wt% 이상 0.28wt% 이하인 범위에서 NbC의 석출온도는 1080℃정도이다. 따라서, 박슬라브의 열처리로 추출온도를 1060~1100℃ 또는 1080~1100℃로 제어한다.As can be seen in the enlarged view of Figure 2, the higher the carbon content, the higher the precipitation temperature of NbC. The precipitation temperature of NbC is about 1080 ° C. in the range of 0.25 wt% or more and 0.28 wt% or less. Therefore, the extraction temperature is controlled by heat treatment of the thin slab 1060 ~ 1100 ℃ or 1080 ~ 1100 ℃.
한편, 박슬라브에 형성되는 에지부 톱날형 결함은 NbC석출물 외에도 AlN, MnS석출물과도 관련된다. On the other hand, the edge saw blade defects formed in the thin slab is related to AlN and MnS precipitates in addition to NbC precipitates.
하지만, NbC석출물이 에지부 톱날형 결함에 가장 큰 영향을 미치는 석출물인 점, 그리고 AlN, MnS석출물을 제어하기 위해 재가열 온도를 과도하게 높이는 것은 강의 강도저하 및 생산원가의 상승 등을 초래할 수 있는 점 등으로 기본적으로 NbC의 석출을 제어한다. 물론, 이 과정에서 AlN의 석출은 열처리 추출온도로 제어가능하다. However, NbC precipitates are the ones that have the greatest influence on edge saw blade defects, and excessively increasing the reheating temperature to control AlN and MnS precipitates can lead to a decrease in strength of steel and an increase in production cost. Basically, the precipitation of NbC is controlled. Of course, the precipitation of AlN in this process can be controlled by the heat treatment extraction temperature.
본 발명은 박슬라브 연속주조공정을 통해 생산되는 제품 중 탄소농도 0.20~0.28wt%(중고탄강)를 갖고 니오븀이 첨가되는 강관용 강의 경우에 더 효과적이다. The present invention is more effective in the case of steel pipe steel having niobium added with a carbon concentration of 0.20 ~ 0.28wt% (heavy carbon steel) among the products produced through the thin slab continuous casting process.
본 발명의 기본성분이 되는 합금원소에 대해 간단히 설명한다.The alloying element which becomes a basic component of this invention is demonstrated briefly.
탄소(C)는 고강도를 부여하기 위한 불가결한 원소로 강관의 경우 강도 확보를 위해 0.20~0.28wt%의 첨가를 기본으로 한다. Carbon (C) is an indispensable element for imparting high strength, and in the case of steel pipe, it is based on the addition of 0.20 to 0.28 wt% to secure the strength.
탄소는 소량 첨가되면 강도가 낮을 뿐 아니라 NbC석출물의 양이 줄어들어 고용강화원소를 첨가해야 하므로 제조원가가 상승한다. 그리고 과다하게 첨가되면 탄소를 고용하기 위한 니오븀의 함량이 많아져야 하므로 제조원가의 상승을 초래하고, 그에 따라 미세한 NbC의 석출이 증가하여 입자 성장이 저해되므로 가공성이 낮아진다.The addition of a small amount of carbon not only lowers the strength, but also reduces the amount of NbC precipitates, which increases the cost of manufacturing because it requires the addition of solid solution strengthening elements. In addition, when excessively added, the content of niobium for solid solution of carbon must be increased, which leads to an increase in manufacturing cost, thereby increasing the precipitation of fine NbC and inhibiting grain growth, thereby decreasing workability.
니오븀(Nb)은 강 중에 고용원소로 존재하는 탄소와 질소를 NbC, NbN의 석출물 형태로 석출하기 위해 첨가된다. 이러한 석출물은 열간압연시 입계성장을 가로막아 결정립사이즈를 미세하므로 강도향상에 기여한다. Niobium (Nb) is added to precipitate carbon and nitrogen present as solid solutions in steel in the form of precipitates of NbC and NbN. These precipitates prevent grain boundary growth during hot rolling and thus have a small grain size, thereby contributing to the improvement of strength.
니오븀은 0.005~0.020wt%의 범위로 첨가된다. 니오븀은 0.005wt% 미만으로 첨가되면 석출량이 너무 적어 석출경화로 인한 강도향상의 효과를 기대할 수 없고, 첨가량이 0.020wt%를 초과하면 강도 과다로 연성을 감소시키며 조관 불량이 증가하는 문제점이 있다. Niobium is added in the range of 0.005-0.020 wt%. When niobium is added in an amount less than 0.005wt%, the precipitation amount is too small to expect the effect of improving the strength due to precipitation hardening, and when the addition amount is more than 0.020wt%, there is a problem that the ductility is reduced due to excessive strength and the tube defect is increased.
알루미늄(Al)은 탈산제로서의 역할을 하는 성분으로서, 강 중 용존 산소량을 충분히 낮은 상태로 유지한다. 또한, 알루미늄은 탄화물 형성 원소로서 고용원소인 질소와 반응하여 AlN의 석출물을 생성하여 고용원소를 제거한다.Aluminum (Al) is a component that functions as a deoxidizer and keeps the amount of dissolved oxygen in the steel sufficiently low. In addition, aluminum reacts with nitrogen, a solid solution element, as a carbide-forming element to form precipitates of AlN to remove solid solution elements.
알루미늄은 0.01~0.05wt%의 범위로 첨가된다. 알루미늄은 0.01wt% 미만으로 첨가되면 그 효과가 미비하고, 0.05wt%를 초과하면 가공성을 저해한다. Aluminum is added in the range of 0.01 to 0.05 wt%. If the amount is less than 0.01wt%, the effect is insignificant, and if it exceeds 0.05wt%, workability is inhibited.
여기서, 니오븀과 알루미늄은 탄소가 0.20~0.28wt%의 범위인 강관에서 통상적으로 함유되는 범위이다. Here, niobium and aluminum are the ranges normally contained in the steel pipe whose carbon is 0.20 to 0.28 wt%.
그리고, 본 발명은 탄소가 0.20~0.28wt%의 범위이고 Nb가 첨가되는 강의 상태도를 기준으로 박슬라브의 열처리로 추출온도를 결정한다. In addition, the present invention determines the extraction temperature by heat treatment of the thin slab on the basis of the state diagram of steel in which carbon is in the range of 0.20 to 0.28 wt% and Nb is added.
이하, 상술한 박슬라브 에지부 톱날형 결함 저감방법을 실시예를 통해 상세히 설명하기로 한다.Hereinafter, the above-described thin slab edge saw blade type defect reduction method will be described in detail by way of examples.
[실시예]EXAMPLE
탄소(C) 0.20~0.28wt%이고, 니오븀(Nb)이 첨가된 박슬라브를 주조후 열처리로에서 재가열하되, 열처리로 추출온도를 1040~1090℃로 변화시키면서 추출한 다음, 열간압연을 실시하여 단상의 열연코일로 제조하였다.The thin slab containing 0.20 to 0.28 wt% of carbon (C) and niobium (Nb) is reheated in a heat treatment furnace after casting, and extracted while changing the extraction temperature of the heat treatment furnace to 1040 ~ 1090 ℃, followed by hot rolling. It was prepared with a hot rolled coil.
도 3에 의하면, 1060~1080℃범위에서 NbC석출이 시작되었으며, 박슬라브의 열처리로 추출온도가 NbC석출온도 이상인 경우 열연코일의 에지부 톱날형 결함 지수가 급감하였다. According to Figure 3, NbC precipitation started in the range of 1060 ~ 1080 ℃, when the extraction temperature is more than the NbC precipitation temperature by the heat treatment of the thin slab edge index of the hot rolled coil drops sharply.
그리고, 박슬라브의 열처리로 추출 온도가 1060℃ 미만에서는 NbC석출이 활발하였으며, 그에 따라 열연코일 에지부의 톱날형 결함 지수도 증가하였다. In addition, NbC precipitation was active when the extraction temperature was lower than 1060 ° C. by heat treatment of the thin slab, and the saw blade type defect index of the hot rolled coil edge was also increased.
도 4에 의하면, 열처리로 추출온도에 따라 미세조직 차이는 있으나, 열처리로 추출온도가 1100℃인 (b)조직사진의 경우 열처리로 추출온도가 900℃인 (a)조직사진에 비해 석출물의 양이 적은 것을 확인할 수 있다. 이는 NbC가 미석출되었기 때문이다. According to Figure 4, there is a difference in the microstructure according to the extraction temperature of the heat treatment furnace, (b) in the case of the heat treatment furnace extraction temperature (1) tissue photographs, the amount of precipitate compared to the (a) texture photo of the heat treatment furnace extraction temperature 900 ℃ We can confirm that there is little. This is because NbC has not been precipitated.
이와 같은 본 발명의 기본적인 기술적 사상의 범주 내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이고, 본 발명의 권리범위는 첨부한 특허청구 범위에 기초하여 해석되어야 할 것이다.Within the scope of the basic technical idea of the present invention, many other modifications are possible to those skilled in the art, and the scope of the present invention should be interpreted based on the appended claims. will be.

Claims (4)

  1. 탄소(C) 및 니오븀(Nb)과 알루미늄(Al)을 포함하고, 잔부가 철(Fe) 및 기타 불가피한 불순물의 합금조성을 갖는 박슬라브를Thin slab containing carbon (C) and niobium (Nb) and aluminum (Al), the balance being alloy composition of iron (Fe) and other unavoidable impurities
    열처리로에서 재가열하여 오스테나이트 조직으로 균일화하되, 상기 박슬라브의 열처리로 추출온도를 NbC석출 온도 이상 AlN석출 온도 이하로 유지하여 석출물 생성을 제어한 다음, 열간압연을 실시하는 것을 특징으로 하는 박슬라브 에지부 톱날형 결함 저감방법. Reheating in a heat treatment furnace to homogenize the austenite structure, while maintaining the extraction temperature of the thin slab at a temperature above NbC precipitation temperature or below AlN precipitation temperature to control the formation of precipitates, followed by hot rolling. Edge saw blade defect reduction method.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 탄소는 0.20~0.28wt%, 니오븀은 0.005~0.020wt%, 알루미늄은 0.01~0.05wt%의 함량 범위인 것을 특징으로 하는 박슬라브 에지부 톱날형 결함 저감방법. The carbon is 0.20 ~ 0.28wt%, niobium is 0.005 ~ 0.020wt%, aluminum is 0.01 ~ 0.05wt% content range of the thin slab edge saw blade type defect reduction method.
  3. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 탄소의 함량이 0.20wt% 이상 0.25wt% 미만이면, When the content of carbon is 0.20 wt% or more and less than 0.25 wt%,
    상기 박슬라브의 열처리로 추출온도는 1060~1100℃로 유지하는 것을 특징으로 하는 박슬라브 에지부 톱날형 결함 저감방법. Thin slab edge saw blade type defect reduction method characterized in that the extraction temperature of the thin slab is maintained at 1060 ~ 1100 ℃.
  4. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 탄소의 함량이 0.25wt% 이상 0.28wt% 이하이면, If the content of the carbon is 0.25wt% or more and 0.28wt% or less,
    상기 박슬라브의 열처리로 추출온도는 1080~1100℃로 유지하는 것을 특징으로 하는 박슬라브 에지부 톱날형 결함 저감방법. Thin slab edge saw blade type defect reduction method characterized in that the extraction temperature is maintained at 1080 ~ 1100 ℃ the heat treatment of the thin slab.
PCT/KR2009/007993 2009-03-26 2009-12-30 Method for reducing edge serration defects in thin slabs WO2010110529A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801337912A CN102137942A (en) 2009-03-26 2009-12-30 Method for reducing edge serration defects in thin slabs
JP2011523752A JP5392634B2 (en) 2009-03-26 2009-12-30 Method for reducing edge sawtooth defects in thin slabs
BRPI0917243A BRPI0917243A2 (en) 2009-03-26 2009-12-30 method for reducing thin plate edge sawing defects
US13/028,173 US20110132503A1 (en) 2009-03-26 2011-02-15 Method for reducing edge serration defects in thin slab

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0026030 2009-03-26
KR1020090026030A KR101129757B1 (en) 2009-03-26 2009-03-26 Method for preventing edge part saw type crack of thin slab

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/028,173 Continuation US20110132503A1 (en) 2009-03-26 2011-02-15 Method for reducing edge serration defects in thin slab

Publications (1)

Publication Number Publication Date
WO2010110529A1 true WO2010110529A1 (en) 2010-09-30

Family

ID=42781205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007993 WO2010110529A1 (en) 2009-03-26 2009-12-30 Method for reducing edge serration defects in thin slabs

Country Status (6)

Country Link
US (1) US20110132503A1 (en)
JP (1) JP5392634B2 (en)
KR (1) KR101129757B1 (en)
CN (1) CN102137942A (en)
BR (1) BRPI0917243A2 (en)
WO (1) WO2010110529A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015391A (en) * 1998-08-28 2000-03-15 이구택 Process for manufacturing high tensile force steel plate of peel strength 150kgf/mm2 grade
JP2000345284A (en) * 1999-06-02 2000-12-12 Nippon Steel Corp Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP2002053933A (en) * 2000-08-04 2002-02-19 Nippon Steel Corp Cold-rolled steel sheet or hot-rolled steel sheet having excellent hardenability in coating/baking and cold aging resistance, and its production method
KR20030055524A (en) * 2001-12-27 2003-07-04 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof
KR20050063982A (en) * 2003-12-23 2005-06-29 주식회사 포스코 Manufacturing method of steel sheet having high stength and deep drawability by minimill process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976514A (en) * 1975-02-10 1976-08-24 Nippon Steel Corporation Method for producing a high toughness and high tensil steel
US4938266A (en) * 1987-12-11 1990-07-03 Nippon Steel Corporation Method of producing steel having a low yield ratio
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JP3514182B2 (en) * 1999-08-31 2004-03-31 住友金属工業株式会社 Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015391A (en) * 1998-08-28 2000-03-15 이구택 Process for manufacturing high tensile force steel plate of peel strength 150kgf/mm2 grade
JP2000345284A (en) * 1999-06-02 2000-12-12 Nippon Steel Corp Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP2002053933A (en) * 2000-08-04 2002-02-19 Nippon Steel Corp Cold-rolled steel sheet or hot-rolled steel sheet having excellent hardenability in coating/baking and cold aging resistance, and its production method
KR20030055524A (en) * 2001-12-27 2003-07-04 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof
KR20050063982A (en) * 2003-12-23 2005-06-29 주식회사 포스코 Manufacturing method of steel sheet having high stength and deep drawability by minimill process

Also Published As

Publication number Publication date
JP2012500895A (en) 2012-01-12
US20110132503A1 (en) 2011-06-09
JP5392634B2 (en) 2014-01-22
KR101129757B1 (en) 2012-03-23
BRPI0917243A2 (en) 2015-11-10
KR20100107770A (en) 2010-10-06
CN102137942A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
MX2015002677A (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability.
KR101767762B1 (en) High strength cold-rolled steel sheet having excellent bendability and method for manufacturing the same
KR20120011292A (en) STEEL PLATE WITH HIGH STRENGTH OF 500MPa GRADE AND LOW TEMPERATURE TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME
WO2010110529A1 (en) Method for reducing edge serration defects in thin slabs
JPH05320756A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
KR100627475B1 (en) Method for manufacturing a high-strength hot rolled steel sheet havigng superior surface properties by using mini mill process
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
KR101957601B1 (en) Cold rolled steel sheet and method of manufacturing the same
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
KR20030053757A (en) Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR102497433B1 (en) Austenitic stainless steel with imporoved strength and corrosion resistance, and method for manufacturing the same
EP0119088B1 (en) Steel for use as material of cold-rolled steel sheet
WO2021045212A1 (en) Grain-oriented electromagnetic steel plate and production method therefor
JPH0333777B2 (en)
KR100494094B1 (en) Dummy steel sheet having superior degradation resistance of material for black plate
KR100573589B1 (en) Manufacturing Method Of Hot Rolled Steel Sheet With No Surface Crack
KR101736618B1 (en) High strength steel wire rod and steel wire having excellent formability, and method for manufacturing thereof
KR20030002578A (en) Manufacturing method for high atmosperic corrosion resisting
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
KR100362664B1 (en) Manufacturing method of hot rolled steel sheet for general structure by mini mill
KR20240056258A (en) Martensitic stainless steel with excellent primary carbide quality and method of manufacturing the same
KR20230093652A (en) High corrosion resistant austenitic stainless steel with reduced sigma phase and surface defects, and the manufacturing method thereof
KR101149121B1 (en) High strength hot rolled steel sheet and the method of producing the same
CN114645213A (en) High-hardness corrosion-resistant steel plate and production method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133791.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011523752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0917243

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110216