JP5392634B2 - Method for reducing edge sawtooth defects in thin slabs - Google Patents

Method for reducing edge sawtooth defects in thin slabs Download PDF

Info

Publication number
JP5392634B2
JP5392634B2 JP2011523752A JP2011523752A JP5392634B2 JP 5392634 B2 JP5392634 B2 JP 5392634B2 JP 2011523752 A JP2011523752 A JP 2011523752A JP 2011523752 A JP2011523752 A JP 2011523752A JP 5392634 B2 JP5392634 B2 JP 5392634B2
Authority
JP
Japan
Prior art keywords
thin slab
heat treatment
treatment furnace
defects
extraction temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011523752A
Other languages
Japanese (ja)
Other versions
JP2012500895A (en
Inventor
ユー、スクヒュン
ムーン、ホングキル
ジャング、ジンスー
Original Assignee
ヒュンダイ スチール カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒュンダイ スチール カンパニー filed Critical ヒュンダイ スチール カンパニー
Publication of JP2012500895A publication Critical patent/JP2012500895A/en
Application granted granted Critical
Publication of JP5392634B2 publication Critical patent/JP5392634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、薄スラブのエッジ部鋸歯状欠陥の低減方法に係り、さらに詳しくは、薄スラブの代表的な欠陥の一つであるエッジ部鋸歯状欠陥を低減する、薄スラブのエッジ部鋸歯状欠陥の低減方法に関する。   The present invention relates to a method for reducing edge serrated defects of a thin slab, and more particularly, an edge serrated edge of a thin slab that reduces edge serrated defects, one of the typical defects of thin slabs. The present invention relates to a defect reduction method.

薄スラブは、スラブ鋳造工程でスラブの厚さをさらに薄い厚さにして最終製品に近い形状に鋳造するもので、熱延工場で粗圧延工程を省略することができるため、工程の省略および単純化に主に適用される。   Thin slabs are cast into a shape close to the final product by further reducing the thickness of the slab in the slab casting process. Since the rough rolling process can be omitted in a hot rolling plant, the process can be omitted and simplified. Mainly applied to

このような薄スラブの連続鋳造工程では、一般な連続鋳造工程とは異なり、薄い厚さのスラブが速い速度で鋳造され、液状溶鋼の薄スラブへの凝固がモールドとスタンド部で完全に行われるので、薄スラブは一般スラブに比べて微細な結晶粒を有する。   In such a thin slab continuous casting process, unlike a general continuous casting process, a thin slab is cast at a high speed, and solidification of liquid molten steel into a thin slab is completely performed in the mold and the stand part. Therefore, the thin slab has fine crystal grains compared to the general slab.

しかし、薄スラブは、薄い厚さにより冷却が速いため、薄スラブのエッジ部が中間部分に比べて急冷されて残留応力が生成される。   However, since the thin slab is cooled quickly due to the thin thickness, the edge portion of the thin slab is rapidly cooled as compared with the intermediate portion, and residual stress is generated.

したがって、図1に示すように、薄スラブが巻き取られた熱延コイルのエッジ部に該当する部分、すなわち、冷却の不均一による残留応力が形成された部分に鋸歯状欠陥が発生するという問題点がある。   Therefore, as shown in FIG. 1, a problem that sawtooth defects occur in a portion corresponding to an edge portion of a hot-rolled coil wound with a thin slab, that is, a portion where residual stress is formed due to non-uniform cooling. There is a point.

これは薄スラブのエッジ部で過冷度が大きく、圧延の際に薄スラブの短辺部の中心から幅方向に伸長する程度が、エッジ部が幅方向に伸長する程度より一層大きいため、薄スラブの厚さ方向に引張を受け、それにより鋸歯状欠陥が発生する。   This is because the degree of supercooling is large at the edge of the thin slab, and the extent of extending in the width direction from the center of the short side of the thin slab during rolling is greater than the extent of extending the edge in the width direction. The slab is subjected to tension in the thickness direction, which causes sawtooth defects.

特に、薄スラブの連続鋳造工程によって生産される製品のうち、0.20〜0.28wt%の炭素濃度を有するニオビウム添加鋼管用鋼の場合は、エッジ部に鋸歯状欠陥が多発するが、この場合、原材料の強度より低い応力でも破損が発生し易いという問題点がある。   Especially, in the case of niobium-added steel pipe steel having a carbon concentration of 0.20 to 0.28 wt% among products produced by the continuous casting process of thin slab, sawtooth defects frequently occur at the edge part. In this case, there is a problem that damage is likely to occur even with a stress lower than the strength of the raw material.

このため、薄スラブの熱延コイルを製造する製鉄業社では、再加工および注文等級外の判定をして損失処理するので、生産性が減少するという問題点があった。   For this reason, in the steel industry that manufactures a thin slab hot-rolled coil, loss processing is performed by performing reprocessing and out-of-order determination, and there is a problem that productivity is reduced.

本発明は、上述したような従来の問題点を解決するためのもので、その目的は、薄スラブの熱処理炉の抽出温度を制御して薄スラブのエッジ部鋸歯状欠陥を低減する、薄スラブのエッジ部鋸歯状欠陥の低減方法を提供することにある。   The present invention is to solve the above-mentioned conventional problems, and its purpose is to control the extraction temperature of the heat treatment furnace of the thin slab to reduce the sawtooth defects at the edge of the thin slab. An object of the present invention is to provide a method for reducing the sawtooth defects at the edge portion.

上記目的を達成するために、本発明の一特徴によれば、炭素(C)、ニオビウム(N)およびアルミニウム(Al)を含有し、残部が鉄(Fe)およびその他不可避な不純物からなる合金組成を有する薄スラブを、熱処理炉で再加熱してオーステナイト組織に均一化するが、前記薄スラブの熱処理炉の抽出温度をNbC析出温度以上に維持して析出物の生成を制御した後、熱間圧延を行う、薄スラブのエッジ部鋸歯状欠陥の低減方法を提供する。   In order to achieve the above object, according to one aspect of the present invention, an alloy composition containing carbon (C), niobium (N) and aluminum (Al), the balance being iron (Fe) and other inevitable impurities The thin slab having slab is reheated in a heat treatment furnace to homogenize the austenite structure. After controlling the formation of precipitates by maintaining the extraction temperature of the thin slab heat treatment furnace above the NbC precipitation temperature, Provided is a method of reducing edge sawtooth defects of a thin slab that is rolled.

前記炭素は0.20〜0.28wt%の含量範囲である。   The carbon ranges from 0.20 to 0.28 wt%.

前記薄スラブの熱処理炉の抽出温度は1060〜1100℃に維持する。   The extraction temperature of the heat treatment furnace for the thin slab is maintained at 1060 to 1100 ° C.

前記薄スラブの熱処理炉の抽出温度は1080〜1100℃に維持する。   The extraction temperature of the heat treatment furnace for the thin slab is maintained at 1080 to 1100 ° C.

本発明は、薄スラブの熱処理炉の抽出温度を制御して薄スラブのエッジ部鋸歯状欠陥を低減する。よって、薄スラブの品質を向上させ且つ製品の実収率を増加させることにより、製品の信頼性および生産性が向上するという効果がある。   The present invention controls the extraction temperature of a thin slab heat treatment furnace to reduce the sawtooth defects at the edge of the thin slab. Therefore, there is an effect that the reliability and productivity of the product are improved by improving the quality of the thin slab and increasing the actual yield of the product.

熱延コイルエッジ部の鋸歯状欠陥を示す写真である。It is a photograph which shows the serrated defect of a hot rolled coil edge part. 0.20〜0.28wt%の炭素濃度を有するNb添加鋼管用鋼の状態図である。It is a phase diagram of the steel for Nb addition steel pipes which has a carbon concentration of 0.20-0.28 wt%. 熱処理炉の抽出温度によるコイルエッジ部の鋸歯状欠陥の低減を示すグラフである。It is a graph which shows reduction of the serrated defect of a coil edge part by the extraction temperature of a heat treatment furnace. 本発明によって製造された薄スラブの微細組織を従来の技術によるものと比較して示す電子顕微鏡写真である。It is an electron micrograph which shows the fine structure of the thin slab manufactured by this invention compared with the thing by a prior art.

以下、本発明の好適な実施例に係る薄スラブのエッジ部鋸歯状欠陥の低減方法を詳細に説明する。   Hereinafter, a method for reducing edge sawtooth defects of a thin slab according to a preferred embodiment of the present invention will be described in detail.

図2は0.20〜0.28wt%の炭素濃度を有するNb添加鋼管用鋼の状態図、図3は熱処理炉の抽出温度によるコイルエッジ部の鋸歯状欠陥の低減を示すグラフ、図4は本発明によって製造された薄スラブの微細組織を従来の技術のものと比較して示す電子顕微鏡写真である。   FIG. 2 is a phase diagram of Nb-added steel pipe steel having a carbon concentration of 0.20 to 0.28 wt%, FIG. 3 is a graph showing the reduction of sawtooth defects at the coil edge portion by the extraction temperature of the heat treatment furnace, and FIG. It is an electron micrograph which shows the fine structure of the thin slab manufactured by this invention compared with the thing of a prior art.

本発明は0.20〜0.28wt%の炭素(C)、ニオビウム(Nb)、アルミニウム(Al)、マンガン(Mn)、硫黄(S)、および窒素(N)を含有し、残部が鉄(Fe)およびその他不可避な不純物からなる合金組成を有する。   The present invention contains 0.20 to 0.28 wt% of carbon (C), niobium (Nb), aluminum (Al), manganese (Mn), sulfur (S), and nitrogen (N), with the balance being iron ( Fe) and an alloy composition consisting of other inevitable impurities.

このような合金組成を基本として製造した薄スラブは、熱処理炉で再加熱してオーステナイト組織に均質化する一方で、薄スラブの熱処理炉の抽出温度を1060〜1100℃に維持して析出物の生成を制御した後、熱間圧延を行う。   The thin slab produced on the basis of such an alloy composition is reheated in a heat treatment furnace and homogenized to an austenite structure, while the extraction temperature of the thin slab heat treatment furnace is maintained at 1060 to 1100 ° C. After controlling the production, hot rolling is performed.

さらに詳しく説明すると、薄スラブの熱処理炉の抽出温度をNbC析出開始温度以上に制御することにより、NbC析出が再加熱過程ではなく熱間圧延過程で起こるようにして、エッジ部鋸歯状欠陥を低減する。   More specifically, by controlling the extraction temperature of the heat treatment furnace for thin slabs above the NbC precipitation start temperature, NbC precipitation occurs not in the reheating process but in the hot rolling process, thereby reducing edge sawtooth defects. To do.

薄スラブに形成されるエッジ部鋸歯状欠陥はNbC析出物に主に関連する。NbC析出物は熱間圧延の際に粒界成長を妨げて結晶粒サイズを微細化する。   Edge serrated defects formed in thin slabs are mainly associated with NbC precipitates. NbC precipitates hinder grain boundary growth during hot rolling to refine the crystal grain size.

しかし、粒界に析出した析出物は、熱間圧延の際に応力集中源として作用してボイドの発生場所となり、このようなボイドは結局クラックに成長して粒界破壊を起こす。特に、薄い厚さによりエッジ部の冷却が速い薄スラブは、NbC析出による粒界脆化現象がさらに激しく発生する。   However, the precipitates precipitated at the grain boundaries act as stress concentration sources during hot rolling and become void generation sites. Such voids eventually grow into cracks and cause grain boundary fracture. In particular, in a thin slab in which the edge portion is rapidly cooled due to a thin thickness, the grain boundary embrittlement phenomenon due to NbC precipitation occurs more severely.

よって、再加熱の際にNbC析出を意図的に回避して熱延コイルエッジ部の鋸歯状欠陥を防止する。これは熱間圧延の際に薄スラブの厚さ方向に引張を受けても電位の移動が自由であって応力集中現象が発生しないためである。   Therefore, NbC precipitation is intentionally avoided during reheating to prevent sawtooth defects at the hot rolled coil edge. This is because the potential can move freely and no stress concentration phenomenon occurs even if it is pulled in the thickness direction of the thin slab during hot rolling.

0.20〜0.28wt%の炭素(C)濃度を有するニオビウム(Nb)添加鋼のNbC析出開始温度は図2の状態図から確認される。   The NbC precipitation start temperature of the niobium (Nb) -added steel having a carbon (C) concentration of 0.20 to 0.28 wt% is confirmed from the phase diagram of FIG.

図2によれば、0.20〜0.28wt%の炭素(C)濃度を有するニオビウム(Nb)添加鋼の場合、1060〜1080℃(A)の熱処理炉の抽出温度でオーステナイト相(γ)の粒界に微細なNbC析出物が多量析出する。   According to FIG. 2, in the case of niobium (Nb) -added steel having a carbon (C) concentration of 0.20 to 0.28 wt%, the austenite phase (γ) at the extraction temperature of the heat treatment furnace of 1060 to 1080 ° C. (A) A large amount of fine NbC precipitates are precipitated at the grain boundaries.

したがって、薄スラブの熱処理炉の抽出温度を1060〜1100℃に維持して析出物の生成を意図的に制御した後、熱間圧延を行う。   Therefore, hot rolling is performed after intentionally controlling the formation of precipitates while maintaining the extraction temperature of the heat treatment furnace for thin slabs at 1060 to 1100 ° C.

薄スラブの熱処理炉の抽出温度が1060℃より低ければ、NbC析出物の多量生成によりエッジ部の鋸歯状欠陥防止効果がなく、薄スラブの熱処理炉の抽出温度が1100℃より高ければ、オーステナイト結晶粒が粗大化して強度の確保が難しい。   If the extraction temperature of the thin slab heat treatment furnace is lower than 1060 ° C., there is no effect of preventing sawtooth defects at the edge due to the large amount of NbC precipitates. If the extraction temperature of the thin slab heat treatment furnace is higher than 1100 ° C. It is difficult to ensure strength due to coarsening of the grains.

薄スラブの熱処理炉の抽出温度を1080〜1100℃に維持して析出物の生成を意図的に制御した後、熱間圧延を行うこともできる。これは薄スラブの熱処理炉抽出温度の下限値が炭素含量に応じて1060〜1080℃の範囲で変動できるためである。   Hot rolling can also be performed after maintaining the extraction temperature of the thin slab heat treatment furnace at 1080 to 1100 ° C. to intentionally control the formation of precipitates. This is because the lower limit of the heat treatment furnace extraction temperature of the thin slab can vary in the range of 1060 to 1080 ° C. depending on the carbon content.

一方、薄スラブに形成されるエッジ部鋸歯状欠陥は、NbC析出物以外にも、AlN、MnS析出物に関連する。しかし、NbC析出物がエッジ部鋸歯状欠陥に最も大きい影響を及ぼす析出物であること、およびAlN、MnS析出物を制御するために再加熱温度を過度に高めることは、鋼の強度低下および生産コストの上昇などをもたらすおそれがあるなど、基本的にNbCの析出を制御する。勿論、この過程におけるAlNの析出は制御可能である。   On the other hand, the edge serrated defect formed in the thin slab is related to AlN and MnS precipitates in addition to the NbC precipitates. However, NbC precipitates are the precipitates that have the greatest influence on edge serrated defects, and excessively increasing the reheating temperature to control AlN, MnS precipitates reduces steel strength and production. Basically, the precipitation of NbC is controlled such that there is a risk of increasing the cost. Of course, the precipitation of AlN in this process can be controlled.

次に、本発明の基本成分となる合金元素について簡単に説明する。   Next, the alloy element which is a basic component of the present invention will be briefly described.

炭素(C)は、高強度を与えるための不可欠な元素であって、鋼管の場合、強度確保のために0.20〜0.28wt%の添加を基本とする。   Carbon (C) is an indispensable element for imparting high strength. In the case of a steel pipe, carbon (C) is basically added in an amount of 0.20 to 0.28 wt% to ensure the strength.

炭素は、少量添加されると、強度が低いうえ、NbC析出物の量が減少して固溶強化元素を添加しなければならないので、製造コストが上昇する。そして、炭素が過量添加されると、炭素を固溶するためのニオビウムの含量が多くならなければならないので、製造コストの上昇をもたらし、それにより微細なNbCの析出が増加して粒子成長が阻害されるので、加工性が低くなる   When carbon is added in a small amount, the strength is low, and the amount of NbC precipitates is reduced, so that a solid solution strengthening element has to be added, resulting in an increase in manufacturing cost. And if carbon is added in an excessive amount, the content of niobium for dissolving carbon must be increased, resulting in an increase in manufacturing cost, thereby increasing the precipitation of fine NbC and hindering particle growth. Processability is reduced

ニオビウム(Nb)は、鋼中に固溶元素として存在する炭素と窒素をNbC、NbNの析出物形態で析出させるために添加される。このような析出物は、熱間圧延の際に粒界成長を妨げて結晶粒サイズを微細にするので、強度の向上に寄与する。   Niobium (Nb) is added to precipitate carbon and nitrogen present as solid solution elements in steel in the form of NbC and NbN precipitates. Such precipitates prevent grain boundary growth during the hot rolling and reduce the crystal grain size, thereby contributing to an improvement in strength.

ニオビウムは0.005〜0.020wt%の範囲で添加される。ニオビウムは、0.005wt%未満で添加されると、析出量があまり少なくて析出硬化による強度向上の効果を期待することができず、添加量が0.020wt%超過で添加されると、強度過多により軟性を減少させ、造管不良が増加するという問題点がある。   Niobium is added in the range of 0.005 to 0.020 wt%. When niobium is added at less than 0.005 wt%, the amount of precipitation is so small that the effect of improving strength by precipitation hardening cannot be expected, and when added at an amount exceeding 0.020 wt%, the strength is increased. There is a problem that softness is reduced due to an excessive amount and pipe-forming defects are increased.

アルミニウム(Al)は、脱酸剤としての役割を果たす成分であって、鋼中の溶存酸素量を十分に低い状態に維持する。また、アルミニウムは、炭化物形成元素であって、固溶元素としての窒素と反応してAlNの析出物を生成して固溶元素を除去する。   Aluminum (Al) is a component that plays a role as a deoxidizer, and maintains the amount of dissolved oxygen in the steel sufficiently low. Aluminum is a carbide-forming element and reacts with nitrogen as a solid solution element to generate a precipitate of AlN to remove the solid solution element.

アルミニウムは、0.01〜0.05wt%の範囲で添加される。アルミニウムは、0.01wt%未満で添加されると、その効果が微々であり、0.05wt%超過で添加されると、加工性を阻害する。   Aluminum is added in the range of 0.01 to 0.05 wt%. When aluminum is added in an amount of less than 0.01 wt%, the effect is insignificant, and when it is added in an amount exceeding 0.05 wt%, the workability is impaired.

ここで、ニオビウムとアルミニウムは、0.20〜0.28wt%の炭素濃度を有する鋼管で通常含有される範囲である。   Here, niobium and aluminum are in a range usually contained in a steel pipe having a carbon concentration of 0.20 to 0.28 wt%.

本発明は、0.20〜0.28wt%の炭素濃度を有するNb添加鋼の状態図を基準として薄スラブの熱処理炉の抽出温度を決定する。   In the present invention, the extraction temperature of the thin slab heat treatment furnace is determined based on the phase diagram of the Nb-added steel having a carbon concentration of 0.20 to 0.28 wt%.

以下、上述した薄スラブのエッジ部鋸歯状欠陥の低減方法を実施例によって詳細に説明する。   Hereinafter, the method for reducing the above-mentioned sawtooth defect on the edge portion of the thin slab will be described in detail with reference to examples.

[実施例]
0.20〜0.28wt%の炭素(C)濃度を有するニオビウム(Nb)添加薄スラブを鋳造した後、熱処理炉で再加熱するが、熱処理炉の抽出温度を1040〜1090℃の範囲で変化させながら抽出した後、熱間圧延を施して単相の熱延コイルとして製造した。
[Example]
After casting a niobium (Nb) -added thin slab having a carbon (C) concentration of 0.20 to 0.28 wt%, it is reheated in a heat treatment furnace, but the extraction temperature of the heat treatment furnace varies in the range of 1040 to 1090 ° C. After being extracted, hot rolling was performed to produce a single-phase hot rolled coil.

図3によれば、1060〜1080℃の範囲でNbC析出が開始した。薄スラブの熱処理炉の抽出温度がNbC析出温度以上であれば、熱延コイルのエッジ部鋸歯状欠陥の指数が急減した。   According to FIG. 3, NbC precipitation started in the range of 1060 to 1080 ° C. If the extraction temperature of the thin slab heat treatment furnace was equal to or higher than the NbC deposition temperature, the index of the sawtooth defects at the edge of the hot rolled coil decreased rapidly.

薄スラブの熱処理炉の抽出温度が1060℃未満の場合には、NbC析出が活発であった。それにより、熱延コイルエッジ部の鋸歯状欠陥指数も増加した。   When the extraction temperature of the thin slab heat treatment furnace was less than 1060 ° C., NbC precipitation was active. As a result, the sawtooth defect index of the hot rolled coil edge also increased.

図4によれば、熱処理炉の抽出温度によって微細組織の差異はあるが、熱処理炉抽出温度1100℃の(b)組織写真の場合、熱処理炉抽出温度900℃の(a)組織写真に比べて析出物の量が少ないことを確認することができる。これはNbCが析出していないためである。   According to FIG. 4, although there is a difference in microstructure depending on the extraction temperature of the heat treatment furnace, the (b) structure photograph at the heat treatment furnace extraction temperature of 1100 ° C. is compared with the (a) structure photograph at the heat treatment furnace extraction temperature of 900 ° C. It can be confirmed that the amount of the precipitate is small. This is because NbC is not precipitated.

このような本発明の基本的な技術的思想の範疇内において、当該分野における通常の知識を有する者であれば、様々な変形を加え得るのは勿論のこと、本発明の権利範囲は添付した特許請求の範囲に基づいて解釈されるべきであろう。   Within the scope of the basic technical idea of the present invention, those skilled in the art can make various modifications, and the scope of rights of the present invention is attached. It should be construed based on the claims.

Claims (2)

炭素(C)0.20〜0.28wt%、ニオビウム(N0.005〜0.02wt%およびアルミニウム(Al)を含有し、残部が鉄(Fe)およびその他不可避な不純物からなる合金組成を有する薄スラブを、熱処理炉で再加熱してオーステナイト組織に均一化するが、前記薄スラブの熱処理炉の抽出温度を1060〜1100℃に維持してNbC析出物生成されないように制御した後、熱間圧延を行うことを特徴とする、薄スラブのエッジ部鋸歯状欠陥の低減方法。 Alloy composition containing carbon (C) 0.20 to 0.28 wt% , niobium (N b ) 0.005 to 0.02 wt% and aluminum (Al), the balance being iron (Fe) and other inevitable impurities a thin slab having, although uniform austenite structure, and then re-heated in a heat treatment furnace, after the NbC precipitates by maintaining the extraction temperature of the heat treatment furnace of the thin slab to 1060-1100 ° C. was controlled so as not to be generated A method for reducing edge sawtooth defects in a thin slab, characterized by performing hot rolling. 前記薄スラブの熱処理炉の抽出温度は1080〜1100℃に維持することを特徴とする、請求項1に記載の薄スラブのエッジ部鋸歯状欠陥の低減方法。 2. The method of reducing edge sawtooth defects of a thin slab according to claim 1, wherein an extraction temperature of the heat treatment furnace of the thin slab is maintained at 1080 to 1100C.
JP2011523752A 2009-03-26 2009-12-30 Method for reducing edge sawtooth defects in thin slabs Expired - Fee Related JP5392634B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0026030 2009-03-26
KR1020090026030A KR101129757B1 (en) 2009-03-26 2009-03-26 Method for preventing edge part saw type crack of thin slab
PCT/KR2009/007993 WO2010110529A1 (en) 2009-03-26 2009-12-30 Method for reducing edge serration defects in thin slabs

Publications (2)

Publication Number Publication Date
JP2012500895A JP2012500895A (en) 2012-01-12
JP5392634B2 true JP5392634B2 (en) 2014-01-22

Family

ID=42781205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523752A Expired - Fee Related JP5392634B2 (en) 2009-03-26 2009-12-30 Method for reducing edge sawtooth defects in thin slabs

Country Status (6)

Country Link
US (1) US20110132503A1 (en)
JP (1) JP5392634B2 (en)
KR (1) KR101129757B1 (en)
CN (1) CN102137942A (en)
BR (1) BRPI0917243A2 (en)
WO (1) WO2010110529A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976514A (en) * 1975-02-10 1976-08-24 Nippon Steel Corporation Method for producing a high toughness and high tensil steel
US4938266A (en) * 1987-12-11 1990-07-03 Nippon Steel Corporation Method of producing steel having a low yield ratio
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
KR100363188B1 (en) * 1998-08-28 2003-01-24 주식회사 포스코 A METHOD OF MANUFACTURING ULTRA HIGH STRENGTH STEEL WITH TENSILE STRENGTH 150kgf/㎟ GRADE
JP3548461B2 (en) 1999-06-02 2004-07-28 新日本製鐵株式会社 Structural steel excellent in corrosion resistance and corrosion fatigue resistance and method for producing the same
JP3514182B2 (en) * 1999-08-31 2004-03-31 住友金属工業株式会社 Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
KR100554753B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 High strength cold rolled steel sheet with superior formability and weldability and method for manufacturing thereof
KR101055818B1 (en) * 2003-12-23 2011-08-11 주식회사 포스코 Manufacturing method of high strength steel sheet for deep processing by mini mill process

Also Published As

Publication number Publication date
KR20100107770A (en) 2010-10-06
US20110132503A1 (en) 2011-06-09
JP2012500895A (en) 2012-01-12
WO2010110529A1 (en) 2010-09-30
KR101129757B1 (en) 2012-03-23
CN102137942A (en) 2011-07-27
BRPI0917243A2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP6150819B2 (en) High strength austenitic stainless steel and method for producing the same
TWI479029B (en) Non - directional electrical steel sheet and manufacturing method thereof
KR101423826B1 (en) Martensitic stainless steel and the method of manufacturing the same
JP5531109B2 (en) Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101496000B1 (en) Method for manufacturing hot rolled steel sheet of lean duplex stainless steels
JP4568875B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
CN112912530B (en) Austenitic high-manganese steel material with excellent yield strength and preparation method thereof
JP2007119849A (en) Cold rolled ferritic stainless steel sheet having excellent press formability and its production method
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
KR101685825B1 (en) Carbon steel for machine structure and method for manufacturing thereof
CN113631733A (en) Bar-shaped steel
JP5392634B2 (en) Method for reducing edge sawtooth defects in thin slabs
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
KR101642696B1 (en) High manganese light weight steel with excellent wear resistance and method of manufacturing the same
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
KR100946068B1 (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JPH046249A (en) Fe-ni magnetic alloy excellent in magnetic property and surface characteristic and its production
KR101500048B1 (en) Method for manufacturing steel sheet having superior resistance to corrosion by sulfuric acid
KR101412286B1 (en) Ultra high strength steel sheet and method of manufacturing the steel sheet
JP7404520B2 (en) High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method
KR101726129B1 (en) Wire rod and steel wire having excellent elongation and method for manufacturing thereof
KR101455465B1 (en) Steel sheet and method for manufacturing the hot-rolled steel sheet
JP2005179746A (en) Nonoriented silicon steel sheet having excellent magnetic property, production method therefor, and stress relieving annealing method therefor
CN118326246A (en) Short-process near-net-shape steel plate for manufacturing ship body and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees