WO2010109831A1 - Drive recorder - Google Patents

Drive recorder Download PDF

Info

Publication number
WO2010109831A1
WO2010109831A1 PCT/JP2010/001968 JP2010001968W WO2010109831A1 WO 2010109831 A1 WO2010109831 A1 WO 2010109831A1 JP 2010001968 W JP2010001968 W JP 2010001968W WO 2010109831 A1 WO2010109831 A1 WO 2010109831A1
Authority
WO
WIPO (PCT)
Prior art keywords
relative speed
drive recorder
time
recording
unit
Prior art date
Application number
PCT/JP2010/001968
Other languages
French (fr)
Japanese (ja)
Inventor
大和宏
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011505860A priority Critical patent/JPWO2010109831A1/en
Publication of WO2010109831A1 publication Critical patent/WO2010109831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/0875Registering performance data using magnetic data carriers
    • G07C5/0891Video recorder in combination with video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Definitions

  • the present invention relates to a drive recorder that is suitably mounted on a vehicle, for example, and records an image of a running subject, and particularly relates to a trigger for starting recording and marking of a point of interest in continuous recording.
  • drive recorders capable of recording images at the time of vehicle collision have been put into practical use.
  • This drive recorder is useful for investigating the cause of an accident by recording an image at a predetermined time of several seconds to several tens of seconds before and after the time when a collision occurs.
  • drive recorders that record continuously and can verify events before the accident, so-called near-miss events, are mainly used in the transportation and transportation industries. It is starting to be used.
  • a recording start trigger is generated and recording starts when an acceleration sensor detects vibration of a predetermined level or higher.
  • the driver puts the marking at the point of interest, or the driver takes the recording medium back to the office, and the administrator checks and applies the marking. It is. Therefore, in the case of using the acceleration sensor, the acceleration sensor erroneously detects recording due to vibrations caused by road surface unevenness or crossings, and recording is performed, and there is no free space on the recording medium in the event of an actual accident. There is a problem that a case that cannot be recorded occurs. In the case of continuous recording, there is a problem that marking is troublesome.
  • Patent Document 1 has been proposed in order to solve such a problem.
  • cameras are installed at four locations so as to monitor 360 degrees around the vehicle, while the distance calculation device calculates the distance to the target object, and when the calculated distance is closer than the predetermined distance, the recording start determination is made. It is carried out.
  • this prior art is a drive recorder that automatically triggers recording without using an acceleration sensor so as not to record an erroneous image due to the road surface unevenness or passing through a railroad crossing. Further, it is shown that the distance calculation device uses a single-lens camera, a twin-lens camera, and an ultrasonic sensor (sonar).
  • this conventional technique simply determines whether or not to perform recording based only on the distance relationship with the target object, if the threshold for determining that recording should be started is severe, recording is performed only to the extent of actual collision. In other words, it is difficult to reliably record a scene such as the near-miss, and on the other hand, if the threshold value is low, it is recorded even in a less dangerous situation, and the capacity of the recording medium is reduced as described above. There is a problem that it is not possible to record at an important time. In addition, when this conventional technique is used for marking continuous recording, if the threshold is severe, leakage of incidents of the near-miss event will occur, and if the threshold is loose, the marking will be full of markings. There is a problem that it is complicated.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a drive recorder capable of performing more appropriate triggering and marking.
  • a drive recorder calculates a relative speed with respect to a target object from a time-series image acquired by a stereo camera, and records the time-series image in a recording unit in response to the calculated relative speed. Accordingly, a recording start trigger is given to the recording unit, or marking is performed on the time-series images that are constantly recorded by the recording unit. For this reason, the drive recorder having such a configuration detects the relative speed from the time-series image and determines the trigger or the marking, so that the malfunction can be reduced compared with the determination using a general acceleration sensor. And more appropriate triggering and marking can be performed.
  • FIG. 1 is a schematic configuration diagram of a drive recorder according to an embodiment of the present invention. It is a block diagram which shows the structure of the controller in the drive recorder shown in FIG.
  • FIG. 2 is a diagram for explaining time-series captured images by a stereo camera in the drive recorder shown in FIG. 1.
  • 4 is a flowchart for explaining a first relative speed calculation method in the drive recorder shown in FIG. 1. It is a figure for demonstrating the calculation method of FIG. 6 is a flowchart for explaining a second method of calculating a relative speed in the drive recorder shown in FIG. 1. It is a figure for demonstrating the calculation method of FIG. It is a figure for demonstrating the calculation method of the said relative velocity.
  • FIG. 6 is a flowchart for explaining a third method of calculating a relative speed in the drive recorder shown in FIG. 1.
  • 3 is a flowchart for explaining a first determination method of trigger determination in the drive recorder shown in FIG. 1.
  • 6 is a flowchart for explaining a second determination method of trigger determination in the drive recorder shown in FIG. 1.
  • FIG. 2 is a diagram showing an example of the trigger determination scene in the drive recorder shown in FIG. 1. It is a graph for demonstrating the determination method in the case of performing trigger determination from relative speed in FIG.
  • FIG. 13 is a graph for explaining a determination method when trigger determination is performed from relative acceleration.
  • FIG. 6 is a diagram showing another example of the trigger determination scene in the drive recorder shown in FIG. 1. In FIG.
  • FIG. 20 is a diagram showing an example of a collision possibility determination scene in the drive recorder shown in FIG. 19.
  • FIG. 20 is a diagram showing another example of a collision possibility determination scene in the drive recorder shown in FIG. 19.
  • FIG. 20 is a diagram showing still another example of a collision possibility determination scene in the drive recorder shown in FIG. 19.
  • FIG. 20 is a flowchart for explaining the operation of the drive recorder shown in FIG. 19.
  • FIG. 1 is a schematic configuration diagram of a drive recorder 1 according to an embodiment of the present invention.
  • the drive recorder 1 is mounted on a vehicle 2 and obtains a two-dimensional input image of a subject, and obtains a three-dimensional image from the stereo images acquired by the stereo cameras 11 and 12.
  • a controller 13 that automatically records the images of the stereo cameras 11 and 12 when the degree of danger is high and the degree of danger is high.
  • the stereo cameras 11 and 12 output a pair of left and right images (a standard image and a reference image) obtained by photographing the subject at the same timing.
  • the aberrations of the stereo cameras 11 and 12 are well corrected and installed parallel to each other.
  • the stereo images are transmitted from the stereo cameras 11 and 12 to the controller 13 via a communication line.
  • the communication method of the image data between the stereo cameras 11 and 12 and the controller 13 is not limited to the wired method, and may be a wireless method.
  • the drive recorder 1 when recording the images of the stereo cameras 11 and 12 when the degree of danger is high as described above, uses the target object 4 calculated from the stereo image for the trigger determination. By using the relative speed of 5, there is no need to calculate acceleration information, distance information, object movement information, etc. as in the prior art. Note that the drive recorder 1 not only records a stereo image when the risk level is high in this way, but also always records the stereo image, and when the risk level is high, it is easy to cue playback of the image at that time later. It may be configured to provide markings for In the following description, it is assumed that the drive recorder 1 performs recording by a trigger.
  • the image acquisition unit includes stereo cameras 11 and 12 as an example, and the controller 13 cuts out an object from a stereo image obtained by the stereo cameras 11 and 12, as shown in FIG.
  • a relative speed calculation unit 21 that searches only for a region, calculates a relative speed with respect to a target object that is considered to be likely to collide due to being on the lane of the host vehicle, and the calculation result
  • a trigger determination unit 22 that performs the trigger determination in response
  • a recording unit 23 that records at least one of the images of the two stereo cameras 11 and 12 in response to a trigger from the trigger determination unit 22. Composed.
  • the relative speed calculation unit 21 calculates a relative speed. In the following, three calculation methods are exemplified.
  • FIG. 4 is a flowchart for explaining a first method for calculating the relative speed by the relative speed calculation unit 21 in the trigger determination
  • FIG. 5 is a diagram for explaining the calculation method.
  • step S1 the corresponding point pr on the reference image I2 (i, j, t) is obtained by the corresponding point search process for the pixel p (i, j) on the base image I1 (i, j, t + ⁇ t) at time t + ⁇ t.
  • I, j) is calculated
  • three-dimensional information P (i, j, t) is calculated by the three-dimensional reconstruction process.
  • the corresponding point search method includes a gradient method which is one of optimization methods, a method of subtracting luminance values as they are (SAD (Sum of Absolute Absolute Difference) method or SSD (Sum of Square Intensity Difference) method), or each method Correlation calculation methods such as a method (NCC (NormalizedNormalCross Correlation) method) that subtracts a local average value from the luminance value of a point and obtains a corresponding point with the similarity of the variance values are used.
  • NCC NormalizedNormalCross Correlation
  • a POC corresponding position can be calculated in sub-pixel units based on the similarity of signals obtained by frequency-resolving patterns in a window set for two input images and suppressing amplitude components.
  • step S2 the reference image I1 (i, j) at time t is obtained by performing corresponding point search processing on the pixel p (i, j) on the reference image I1 (i, j, t + ⁇ t) at time t + ⁇ t. , T), the corresponding point pp (i, j) is calculated.
  • step S3 the correspondence on the reference image I2 (i, j, t) is detected by the corresponding point search process for the pixel pp (i, j) on the reference image I1 (i, j, t) at time t.
  • a point ps (i, j) is calculated, and three-dimensional information Pp (i, j, t) is calculated by a three-dimensional reconstruction process. Then, in the calculated three-dimensional information P (i, j, t) and the three-dimensional information Pp (i, j, t), the target for which the relative speed is to be obtained is determined in step S4, and the target object 4 , 5 from the position Pp (i, j, t) at time t and the position P (i, j, t) at time t + ⁇ , the difference obtained as follows in step S5 is the time The relative speed ⁇ (i, j, t) of movement between ⁇ is obtained.
  • ⁇ (i, j, t) P (i, j, t) ⁇ Pp (i, j, t)
  • ⁇ Px (i, j, t) ⁇ Ppx (i, j, t) ⁇ 2+ ⁇ Py (i, j, t) ⁇ Ppy (i, j, t) ⁇ 2+ ⁇ Pz (i, j, t) -Ppz (i, j, t) ⁇ 2 ⁇ 1/2
  • the drive recorder 1 of the present embodiment can calculate the relative speed with high accuracy by calculating the relative speed ⁇ (i, j, t) from the parallax information calculated by the corresponding point search process.
  • the corresponding point search method in step S3 includes a sub-pixel estimation method for calculating a three-dimensional movement vector using four stereo images at two times T1 and T2 because the reference coordinate position is a decimal point coordinate. Can be used.
  • a subpixel estimation method for calculating a three-dimensional movement vector using four stereo images at two times T1 and T2 because the reference coordinate position is a decimal point coordinate.
  • a motion vector generation apparatus and method for selecting an optimal estimation model based on a correlation value between a peak position correlation value and a correlation value around the peak position by the applicant and a model for subpixel estimation By setting a sub-pixel window at the point of interest, the perimeter monitoring method that directly associates the sub-pixel point of interest, the interpolation processing based on the results of the four corresponding points measured in the past A three-dimensional optical flow calculation method or the like that performs the above can be used.
  • FIG. 6 is a flowchart for explaining a second method for calculating the relative speed by the relative speed calculation unit 21 in the trigger determination
  • FIG. 7 is a diagram for explaining the calculation method.
  • the relative speed is calculated only for a predetermined fixed region obtained by dividing an acquired image into regions and applying hatching.
  • the calculation may be performed using only the representative value to reduce the process.
  • the relative speed calculation unit 21 performs the corresponding point search process. Only the process of calculating the relative speed from the obtained parallax information may be performed.
  • the condition is that the time ⁇ t is as short as a predetermined range, for example, up to 0.1 second, preferably 1/30 second or less.
  • the short time ⁇ t means that the frame rate is large and the amount of change (three-dimensional optical flow), that is, the deviation is small, and this is the movement of the region of the target objects 4 and 5 in the time direction. This means that the distance is also small.
  • the target region is included in the fixed region between times t and t + ⁇ t.
  • step S11 the corresponding point prt on the reference image I2 (i, j, t) is obtained by the corresponding point search process for the pixel pt (i, j) on the reference image I1 (i, j) at time t. (I, j) is calculated, and three-dimensional information P (i, j, t) is calculated by the three-dimensional reconstruction process.
  • step S12 the pixel pt + ⁇ t (i, j) on the base image I1 (i, j, t + ⁇ t) at time t + ⁇ t is subjected to the corresponding point search process on the reference image I2 (i, j, t).
  • Corresponding point prt + ⁇ t (i, j) is calculated, and three-dimensional information P (i, j, t + ⁇ t) is calculated by the three-dimensional reconstruction process.
  • step S13 the target objects 4 and 5 are extracted.
  • step S14 the three-dimensional information P (i, j, t) and P (i, j, t + ⁇ t) in the region of the target objects 4 and 5 are extracted. From the difference, the relative velocity ⁇ (i, j, t) is obtained as follows.
  • ⁇ (i, j, t) P (i, j, t) ⁇ P (i, j, t + ⁇ t)
  • ⁇ Px (i, j, t) ⁇ Px (i, j, t + ⁇ t) ⁇ 2+ ⁇ Py (i, j, t) ⁇ Py (i, j, t + ⁇ t) ⁇ 2+ ⁇ Pz (i, j, t) ⁇ Pz (i, j, t + ⁇ t) ⁇ 2 ⁇ 1/2
  • Step S11 uses the previous value), and the processing can be performed at high speed.
  • the corresponding point search method the method described above can be used.
  • the relative speed used for the actual trigger determination described later is the difference of the average value of the three-dimensional information P (i, j, T) calculated for each pixel as described above,
  • the histogram is used for the three-dimensional information P (i, j, t) calculated at time t, which is the difference between the most frequent ones from the histogram of the three-dimensional information P (i, j, T) calculated every time.
  • Any of the three-dimensional information P (i, j, t + ⁇ t) selected and calculated at time t + ⁇ t may be obtained using any of the average values of the results of the distance change within the threshold.
  • FIG. 9 is a flowchart for explaining a third method of calculating the relative speed by the relative speed calculation unit 21 in the trigger determination.
  • the first or second calculation method is used in step S22.
  • step S21 the target objects 4 and 5 are extracted in advance from the acquired image, and the relative speed of only the extracted target object is calculated.
  • a method such as pattern recognition from a two-dimensional image is used. Therefore, even if the first or second calculation method is used, the object extraction in the steps S4 and S13 is not performed.
  • step S21 the calculation load of the preprocessing in step S21 increases, but it is only necessary to calculate the relative speed of only the area of the target objects 4 and 5, so the calculation load of the process in the subsequent step S22 is reduced. As a result, the processing can be performed at a higher speed than when the entire region is processed.
  • step S21 There are the following methods for extracting the target object in step S21, and any of them may be used. First, based on the distance information and the road model, an image in which the road surface is removed, a three-dimensional movement vector of an object above the road surface is calculated, and a stationary object and a moving object are determined based on the three-dimensional information.
  • a processing apparatus and an image processing method For such an image processing apparatus and method, reference can be made, for example, to JP-A-2006-134035.
  • the vanishing point of each optical flow is obtained, and the vanishing point is determined by the stationary object.
  • the parallax d is calculated from the stereo image by the corresponding point search process, the road surface parameter is estimated from the relationship between the parallax d and the y-axis direction on the image, and only the area excluding the estimated road surface is the target area.
  • a motion analysis device For such an analysis apparatus, reference can be made to, for example, Japanese Patent Application Laid-Open No. 2009-181492. Then, there is a speed-up processing method of the periphery monitoring method that analyzes the amount of movement of the two-dimensional optical flow calculated from the time series image and extracts a region having a motion different from the prediction as a target region.
  • the types of the target objects 4 and 5 such as whether they are people or cars are recognized on the extracted target objects 4 and 5 based on the size of the target objects 4 and 5. May be.
  • the trigger determination unit 22 performs trigger determination based on the relative speed ⁇ (i, j, t) obtained as described above by the relative speed calculation unit 21.
  • the trigger determination unit 22 takes in the relative speed ⁇ (i, j, t) from the relative speed calculation unit 21 in step S31, in step S32.
  • the threshold value TH1 if it is larger than the threshold value TH1 in the minus direction, that is, if the target objects 4 and 5 are rapidly approached, it is determined that there is a possibility of collision and the recording unit 23 starts recording. If the trigger is given and is smaller than the threshold value TH1, it is determined that the possibility of collision is small, and the process returns to step S31.
  • the trigger determination unit 22 receives the time-series relative speeds ⁇ (i, j, t), ⁇ (i, j) from the relative speed calculation unit 21 in step S41. , T + ⁇ t), the relative acceleration a is obtained by the following equation, compared with the threshold value TH2 in step S42, and when it is larger than the threshold value TH2 in the minus direction, that is, the change in acceleration is large and the target objects 4 and 5 are rapidly approached. If it is determined that there is a possibility of collision, a recording start trigger is given to the recording unit 23, and if it is smaller than the threshold value TH2, it is determined that there is little possibility of collision and the process returns to step S41.
  • the preceding vehicle (target object 4) is braked suddenly while the host vehicle (vehicle 2) and the preceding vehicle (target object 4) are following at 60 km / h at a constant speed.
  • the relative speed ⁇ (i, j, t) falls as shown in FIG. 13, and the relative acceleration a falls greatly negatively as shown in FIG. .
  • the relative speed of the preceding vehicle (target object 4) toward the host vehicle (vehicle 2) is negative, and the relative speed of going away is positive.
  • the threshold TH1 is set to -50 km / h, for example, and the relative speed ⁇ (i, j, t) is greatly reduced beyond that, and the threshold TH2 is set to -20 km / h / sec, for example.
  • a trigger determination is performed.
  • the relative speed is set to an arbitrary value from an arbitrary speed.
  • the comparison is made by comparing the relative acceleration a with the threshold value TH2
  • the change occurs with a certain width from the relatively stable median value (0). Easy to set up.
  • the preceding vehicle (target object 4) is traveling at 60 km / h, the own vehicle (vehicle 2) catches up at 100 km / h, and the inter-vehicle distance is reduced.
  • the vehicle (vehicle 2) suddenly brakes and stops (0 km / h)
  • the relative speed ⁇ (i, j, t) is as shown in FIG. 16
  • the relative acceleration a is as shown in FIG.
  • both increase significantly positively.
  • the trigger is not applied in the determination with the threshold values TH1 and TH2.
  • the trigger determination unit 22 takes in the relative speed ⁇ (i, j, t) from the relative speed calculation unit 21 in step S51, and the relative speed ⁇ .
  • the three-dimensional information P (i, j, t) of the target objects 4 and 5 obtained when (i, j, t) is obtained is taken, and the distance D (i, j, t), and the collision prediction time S (i, j, t) is obtained from the distance D (i, j, t) and the relative velocity ⁇ (i, j, t) by the following equation.
  • step S52 the collision prediction time S (i, j, t) is compared with the threshold value TH3.
  • the trigger determination unit 22 considers not only the relative speed ⁇ (i, j, t) but also the distance D (i, j, t) with respect to the target objects 4 and 5, and the distance D (i, j , T) and the relative speed ⁇ (i, j, t) are calculated from the collision predicted time S (i, j, t), and the predicted collision time S (i, j, t) is compared with the threshold value TH3.
  • the drive recorder 1 of the present embodiment can perform the determination with high accuracy.
  • the controller 13a applies to the target object (target region of the trigger determination unit) determined to be the trigger target by the trigger determination unit 22.
  • the possibility of collision is further analyzed by the collision possibility analysis unit 24, and when the possibility of collision is high, a recording start trigger is given to the recording unit 23.
  • the relative velocity calculation unit 21 calculates the three-dimensional information P (i, j, t), Pp (i) of the time-series images calculated as shown in FIG. , J, t), the vector / P (i, j, t) (/ represents that it is a vector) is calculated, and the direction and length of the vector / P (i, j, t) are calculated.
  • the collision is determined from the speed of the host vehicle (vehicle 2) and the distance D (i, j, t) to the target objects 4 and 5.
  • the collision determination method the above-described method or the like is used.
  • the collision possibility analysis unit 24 further analyzes even the collision possibility of the region determined as the trigger target from the relative velocity ⁇ (i, j, t) and the relative acceleration a by the trigger determination unit 22, and the analysis By giving a trigger according to the result, malfunctions can be reduced by analyzing the region of the target objects 4 and 5 in more detail, such as whether the vehicle is on the lane of the host vehicle (vehicle 2). Further, the collision possibility analysis unit 24 uses the three-dimensional information P (i, j, t), Pp (i, j), which is position information of the region determined as the trigger target by the trigger determination unit 22, as the collision possibility.
  • a cube 2b that is one size larger is defined in the cube 2a of the host vehicle (vehicle 2), a plane that forms the cubes 2a and 2b, and a vector / P (i, j,
  • the collision possibility analysis unit 24 may be configured to perform the determination at different levels at the intersection P (X, Y, Z) with t).
  • the target object 9a in the case of intersecting with the own vehicle area of the cube 2a is determined to be a collision danger target having a high possibility of collision
  • the area of the cube 2b is a near-miss area and intersects only with the near-hat area (cube 2b).
  • the target object 9b is determined to be a near-miss target with a high degree of danger although the possibility of collision is low.
  • the trigger determination may be arbitrarily selected as to whether only the case of intersecting with the own vehicle area (cube 2a) or the case of intersecting with the near-miss area (cube 2b) is included.
  • the size of the near miss area may be changed according to the relative speed ⁇ (i, j, t). That is, as shown in FIG. 21A, when the relative speed ⁇ (i, j, t) with respect to the target object 9b is large, the size of the near-miss area is increased as indicated by reference numeral 2b ′. As shown in (b), when the relative velocity ⁇ (i, j, t) is small, the default size is set. As described above, the collision possibility analysis unit 24 increases the extraction region of the target object 9b as the relative velocity ⁇ (i, j, t) increases (cube 2b ⁇ 2b ′), so that the analysis can be performed with higher accuracy. It can be performed.
  • the size of the near-miss region (cube 2b ') may be increased on the moving direction side of the target object 9b.
  • the target object 9b approaches the host vehicle (vehicle 2) and also moves from the left to the right, and therefore, the near-miss region (cube 2b ′). Is formed large on the right side.
  • the collision possibility analysis unit 24 increases the extraction area (cube 2b ′) of the target objects 9a and 9b on the moving direction side of the target object 9b, and in a scene that jumps out of the measurement. More accurate analysis can be performed.
  • the collision possibility analysis unit 24 extracts the target objects 9a and 9b when the relative velocity calculation unit 21 determines that the person area can be extracted by recognizing the target objects 9a and 9b.
  • a margin may be provided so that the area (cubes 2b, 2b ′) is slightly larger than the own vehicle area (cube 2a).
  • the relative velocity calculation unit 21 causes the pixel pp (i, j) on the reference image I1 (i, j, t) at time t as shown in FIG.
  • the corresponding point ps (i, j) on the reference image I2 (i, j, t) is calculated by the corresponding point search process, and obtained from these pixels pp (i, j) and ps (i, j).
  • the collision possibility analysis unit 24 detects the angles ⁇ t and ⁇ t + ⁇ t with respect to the traveling direction F of the host vehicle (vehicle 2) with respect to the area determined as the trigger target by the trigger determination unit 22. If the angles ⁇ t and ⁇ t + ⁇ t do not change, it is possible to collide with simple parameters such as the angles ⁇ t and ⁇ t + ⁇ t with respect to the traveling direction F of the host vehicle (vehicle 2) by determining as the region where there is a possibility of a collision if the vehicle runs as it is. The presence or absence of sex can be determined.
  • Information recorded by the recording unit 23 includes at least one of the base image I1 or the reference image I2, the collision time, the vehicle speed at the time of the collision, the acceleration, the steering angle of the steering wheel, and 3 Dimensional information and the like can be considered, but the parameter obtained from the optical flow can also be obtained from a time-series recorded image after the fact. Therefore, the controller 13 does not particularly use the optical flow when performing the above-described trigger determination. In some cases, it may not be recorded. Moreover, the parameter used by the above-mentioned trigger determination may be recorded, and the three-dimensional information effective for accident analysis may be recorded.
  • the recording unit 23 is configured to record a rank corresponding to the level of the near-miss in addition to the possibility of collision when the collision possibility analysis unit 24 determines that the scene is a near-miss scene. Also good.
  • the collision possibility analysis unit 24 includes a plurality of different sizes in the near-miss area, and can determine the rank depending on which one corresponds. By storing the ranks together in this way, it is possible to easily select and extract a scene according to the level.
  • the drive recorder performs high-level post-processing such as extracting only a high-level scene and creating an overhead image or a sketch that can be used for accident proof, (All near-miss scenes) can be extracted in chronological order and used to reflect on the day's driving, and scenes up to the required rank can be easily extracted.
  • high-level post-processing such as extracting only a high-level scene and creating an overhead image or a sketch that can be used for accident proof, (All near-miss scenes) can be extracted in chronological order and used to reflect on the day's driving, and scenes up to the required rank can be easily extracted.
  • FIG. 23 is a flowchart for explaining the operation of the drive recorder 1a having the collision possibility analysis unit 24.
  • step S0 time-series stereo images I1 (i, j, t) and I2 (i, j, t) are acquired by the stereo cameras 11 and 12, as shown in FIG.
  • step S1 the three-dimensional information P is obtained from the corresponding point search process of the reference image I1 (i, j, t + ⁇ t) and the reference image I2 (i, j, t) at the time t + ⁇ t to the three-dimensional reconstruction process. (I, j, t) is calculated.
  • step S2 time-series association is performed by corresponding point search processing between the reference image I1 (i, j, t + ⁇ t) at the time t + ⁇ t and the reference image I1 (i, j, t) at the time t. Done.
  • step S3 as in step S1, the three-dimensional reconstruction process is performed from the corresponding point search process of the reference image I1 (i, j, t) and the reference image I2 (i, j, t) at time t. Is used to calculate the three-dimensional information Pp (i, j, t).
  • step S4 the target object is extracted in step S4, and the target objects 4 and 5 are extracted.
  • step S5 the relative speed ⁇ (i, j, t) is obtained from the position Pp (i, j, t) at time t and the position P (i, j, t) at time t + ⁇ . .
  • step S41 the time-series relative speeds ⁇ (i, j, t) and ⁇ (i, j, t + ⁇ t) are taken in from the relative speed calculation unit 21 and are relative.
  • the acceleration a is obtained and compared with the threshold value TH2 in step S42. If no trigger determination is made, the process returns to step S0 after waiting for time ⁇ t, that is, one frame period in step S60.
  • step S42 the process further proceeds to step S61, where the collision possibility analysis unit 24 determines the possibility of collision, and in step S62, if there is no possibility.
  • step S63 the recording process of step S63 is performed. After the recording process, it is determined in step S64 whether or not the predicted collision time has exceeded a predetermined time. If not, the process returns from step S60 to step S0, and the process is continued. Is terminated.
  • the drive recorder 1a according to the present embodiment can leave images at least before and after the collision, and can store information that is effective for analysis of accidents and near-miss events.
  • the drive recorder 1a of the present embodiment since the trigger determination is performed by detecting the relative speeds ⁇ (i, j, t) and ⁇ (i, j, t + ⁇ t) from the images of the stereo cameras 11 and 12, the drive recorder 1a of the present embodiment. Compared with the determination using a general acceleration sensor, it is possible to reduce malfunctions, and does not require complicated processing. It is possible to record reliably even when the preceding vehicle suddenly brakes. Further, when the drive recorder 1a of the present embodiment uses the stereo cameras 11 and 12 that can acquire time-series three-dimensional information of the target objects 4 and 5 that are extremely effective for accident analysis, the stereo camera 11 , 12 makes it possible to eliminate the need for a separate configuration when performing the trigger determination of the acceleration sensor or the like.
  • the free running distance, the braking distance, and the turning angle of the steering wheel vary depending on the speed, while the relative speed calculated from the stationary object can be replaced with the vehicle speed of the own vehicle (vehicle 2).
  • vehicle speed changing the size of the cube 2b
  • a drive recorder includes a stereo camera that acquires a time-series image, a recording unit that records the time-series image acquired by the stereo camera, and the time-series image acquired by the stereo camera.
  • a relative velocity calculation unit for calculating a relative velocity with respect to the target object, and a trigger for starting the recording in response to the relative velocity calculated by the relative velocity calculation unit, or recording constantly by the recording unit
  • a trigger determination unit for marking the time-series images.
  • the drive recorder is mounted on a vehicle, and when the time series image acquired by the image acquisition unit is recorded in the recording unit, the trigger determination unit Is a drive recorder that applies a trigger for starting the recording to the recording unit or marks the time-series images that are always recorded by the recording unit, wherein the image acquisition unit includes a stereo A relative speed calculation unit configured to calculate a relative speed with respect to a target object from an image acquired by the stereo camera, wherein the trigger determination unit responds to the relative speed calculated by the relative speed calculation unit. Then, the trigger is given to the recording unit, or the marking is performed on the time-series image constantly recorded by the recording unit.
  • the relative speed calculation unit calculates the relative speed with respect to the target object such as being on the lane from the time-series image acquired by the stereo camera, and the trigger determination unit calculates the relative speed.
  • the relative speed calculated by the relative speed calculation unit is equal to or greater than a predetermined threshold, the recording is triggered by the recording unit, or the marking is performed on a time-series image constantly recorded by the recording unit. Applied.
  • the drive recorder having such a configuration detects the relative speed from the time-series image and determines the trigger or the marking, it can reduce malfunction as compared with the determination using a general acceleration sensor. It is possible to record reliably in the case of a so-called near-miss scene, for example, when the preceding vehicle steps on the brakes suddenly, when there is a high possibility of a collision with a simple method that does not require complicated processing. it can. Further, the drive recorder having such a configuration can acquire time-series three-dimensional information of a target object that is extremely effective for accident analysis by using a stereo camera. Further, in the drive recorder having such a configuration, when not all the areas are searched but the area to be the target object is extracted in advance and the search is performed, the search process for the extra area is performed. There is no need.
  • the relative speed calculation unit further calculates a relative acceleration based on the calculated relative speed, and the trigger determination unit responds to the relative acceleration. Then, a trigger for starting the recording is given, or marking is performed on the time-series images constantly recorded by the recording unit.
  • the relative acceleration changes from a relatively stable median value to a certain range. Easy.
  • the above-described drive recorder further includes a collision possibility analysis unit that analyzes a collision possibility with respect to a target area of the trigger determination unit, and the trigger determination unit is configured to respond to the analysis result. Then, a trigger for starting the recording is given, or marking is performed on the time-series images constantly recorded by the recording unit.
  • the collision possibility analysis unit further includes, for example, a vehicle Malfunctions can be reduced by analyzing the region of the target object in more detail, such as whether it is in a lane.
  • the relative speed calculation unit further calculates a distance to the target object, and calculates a collision prediction time from a relationship between the calculated distance and the relative speed.
  • the trigger determination unit gives a trigger for starting the recording when the predicted collision time is within a predetermined threshold value, or marks the time-series images that are constantly recorded by the recording unit. is there.
  • the drive recorder having such a configuration can make a determination with high accuracy by considering not only the relative speed but also the distance to the target object.
  • the relative speed calculation unit calculates the relative speed from the disparity information calculated by the corresponding point search process for the stereo image acquired by the stereo camera. Is.
  • the drive recorder having such a configuration can calculate the relative speed with high accuracy by calculating the relative speed by the corresponding point search process.
  • the relative speed calculation unit sets a calculation area for calculating the corresponding point as a fixed area on the screen.
  • the collision possibility analysis unit determines the collision possibility based on position information of a target area of the trigger determination unit, direction and length of a three-dimensional movement vector. It is judged from.
  • the collision possibility analysis unit performs the determination using the position information of the region determined as the trigger target by the trigger determination unit and the direction and length of the three-dimensional movement vector.
  • This drive recorder can make a determination in consideration of the movement of the target object.
  • the collision possibility analysis unit enlarges the extraction area of the target object as the relative speed increases.
  • the collision possibility analysis unit can perform the analysis with higher accuracy by changing the extraction area of the target object according to the relative speed.
  • the collision possibility analysis unit enlarges the extraction area of the target object on the moving direction side of the target object.
  • the collision possibility analysis unit changes the extraction area of the target object in accordance with the moving direction of the target object, so that, for example, in a scene that pops out from the measurement method, it is more accurate. High analysis can be performed.
  • the stereo camera is mounted on a vehicle, and the collision possibility analysis unit has determined that the collision possibility is a trigger target by the trigger determination unit.
  • An angle with respect to the traveling direction of the host vehicle is detected for the region, and when the change of the angle with respect to time is within a predetermined threshold value, it is analyzed that there is a possibility of collision.
  • the collision possibility analysis unit analyzes the area of the target object in more detail as described above in order to reduce malfunctions. If the angle with respect to the traveling direction of the host vehicle does not change, it is determined that there is a possibility of a collision if the vehicle runs as it is. Therefore, the drive recorder having such a configuration can determine whether or not there is a possibility of collision with a simple parameter such as an angle with respect to the traveling direction of the host vehicle.
  • the collision possibility analysis unit performs rank classification according to the analysis result of the collision possibility and further stores the rank in the recording unit. is there.
  • the drive recorder having such a configuration can easily extract scenes up to a required rank when used for reflection of drive results.
  • the trigger determination unit causes the recording unit to trigger a recording end when at least the predicted collision time calculated by the relative speed calculation unit is exceeded.
  • An end marking is given to the time-series image that is given or always recorded by the recording unit.
  • the drive recorder having such a configuration can leave images at least during the period before and after the collision, and can store information useful for analyzing accidents and near-miss events.
  • a drive recorder can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Television Signal Processing For Recording (AREA)
  • Studio Devices (AREA)

Abstract

A drive recorder (1) calculates relative speed to objects (4, 5) from the time-series images acquired by stereo cameras (11, 12), and gives trigger to the recording section to start recording so as to record the time-series images on a recording section in response to the calculated relative speed, or applies marking to the time-series images which are always recorded by the recording section. Hence, the drive recorder (1) with this configuration detects the relative speed from the time-series images to perform the determination of the trigger or the marking, thus making it possible to reduce malfunction and perform more proper trigger or marking in comparison to the determination using a general acceleration sensor.

Description

ドライブレコーダDrive recorder
 本発明は、例えば車両に好適に搭載され、走行中の被写体の画像を記録するドライブレコーダに関し、特に、記録開始のトリガや、常時記録における注目時点のマーキングに関する。 The present invention relates to a drive recorder that is suitably mounted on a vehicle, for example, and records an image of a running subject, and particularly relates to a trigger for starting recording and marking of a point of interest in continuous recording.
 近年、例えば、車両の衝突時の画像を記録することができるドライブレコーダが実用化されている。このドライブレコーダは、衝突が発生した時点を基準に、前後数秒から数十秒程度の所定時間における画像を記録することで、事故原因の究明などに役立てるものである。また、記録媒体の容量増加に伴い、常時記録をしておき、事故の一歩手前の事象、いわゆるヒヤリハットの事象までも、以後に検証できるようにしたドライブレコーダが、主に運輸や運送業界等で使用され始めている。 In recent years, for example, drive recorders capable of recording images at the time of vehicle collision have been put into practical use. This drive recorder is useful for investigating the cause of an accident by recording an image at a predetermined time of several seconds to several tens of seconds before and after the time when a collision occurs. In addition, with the increase in recording media capacity, drive recorders that record continuously and can verify events before the accident, so-called near-miss events, are mainly used in the transportation and transportation industries. It is starting to be used.
 ところで、このようなドライブレコーダにおいて、短時間記録のものでは、従来から、加速度センサによって、所定レベル以上の振動を検知した場合に、記録開始のトリガが生成され、記録が開始される。また、常時記録のものでは、そのヒヤリハットの事象が発生した時点で、運転者が注目時点のマーキングを入れたり、運転者が記録媒体を事業所へ持ち帰り、管理者がチェックして前記マーキングを施したりしている。したがって、前記加速度センサを用いる場合では、路面の凹凸や踏切通過などによる振動で前記加速度センサが誤検知してしまって記録を行い、実際の事故の際に記録媒体の空き容量が無くなってしまい、記録できないケースが生じるという問題がある。また、常時記録の場合では、マーキングが煩わしいという問題がある。 By the way, in such a drive recorder that records for a short time, a recording start trigger is generated and recording starts when an acceleration sensor detects vibration of a predetermined level or higher. In the case of continuous recording, when a near-miss event occurs, the driver puts the marking at the point of interest, or the driver takes the recording medium back to the office, and the administrator checks and applies the marking. It is. Therefore, in the case of using the acceleration sensor, the acceleration sensor erroneously detects recording due to vibrations caused by road surface unevenness or crossings, and recording is performed, and there is no free space on the recording medium in the event of an actual accident. There is a problem that a case that cannot be recorded occurs. In the case of continuous recording, there is a problem that marking is troublesome.
 そこで、このような問題を解決するために、特許文献1が提案された。この従来技術は、車両周囲の360度を監視するように4ヶ所にカメラを設置する一方、距離算出装置で対象物体までの距離を算出し、算出した距離が所定距離より近い場合に記録開始判断を行っている。これによって、この従来技術は、前記路面凹凸や踏切通過による誤った画像の記録を行わないように加速度センサを用いることなく、自動的に記録開始のトリガを行うようにしたドライブレコーダである。また、前記距離算出装置には、1眼カメラ、2眼カメラ、超音波センサ(ソナー)を用いることが示されている。 Therefore, Patent Document 1 has been proposed in order to solve such a problem. In this prior art, cameras are installed at four locations so as to monitor 360 degrees around the vehicle, while the distance calculation device calculates the distance to the target object, and when the calculated distance is closer than the predetermined distance, the recording start determination is made. It is carried out. Thus, this prior art is a drive recorder that automatically triggers recording without using an acceleration sensor so as not to record an erroneous image due to the road surface unevenness or passing through a railroad crossing. Further, it is shown that the distance calculation device uses a single-lens camera, a twin-lens camera, and an ultrasonic sensor (sonar).
 この従来技術は、単純に対象物体との距離関係のみで記録を行うか否かの判断を行うので、記録を開始すべきと判定する閾値が厳しいと、実際に衝突する程度でしか記録が行われず、すなわち前記ヒヤリハットのようなシーンを確実に記録することが困難であり、一方、前記閾値が緩いと、あまり危険でない状況でも記録してしまい、前述と同様に記録媒体の容量の減少を招き、肝心な時に記録できないという問題がある。また、この従来技術を連続記録のマーキングに使用した場合には、前記閾値が厳しいと、前記ヒヤリハットの事象の記録には漏れを生じ、前記閾値が緩いと、マーキングだらけとなって、有効なマーキングを選別しなければならず、煩雑であるという問題がある。 Since this conventional technique simply determines whether or not to perform recording based only on the distance relationship with the target object, if the threshold for determining that recording should be started is severe, recording is performed only to the extent of actual collision. In other words, it is difficult to reliably record a scene such as the near-miss, and on the other hand, if the threshold value is low, it is recorded even in a less dangerous situation, and the capacity of the recording medium is reduced as described above. There is a problem that it is not possible to record at an important time. In addition, when this conventional technique is used for marking continuous recording, if the threshold is severe, leakage of incidents of the near-miss event will occur, and if the threshold is loose, the marking will be full of markings. There is a problem that it is complicated.
特開2007-334760号公報JP 2007-334760 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より適切なトリガやマーキングを行うことができるドライブレコーダを提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a drive recorder capable of performing more appropriate triggering and marking.
 本発明にかかるドライブレコーダは、ステレオカメラによって取得された時系列画像から、対象物体に対する相対的な速度を算出し、この算出された相対速度に応答して、前記時系列画像を記録部へ記録するべく記録開始のトリガを前記記録部に与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すものである。このため、このような構成のドライブレコーダは、時系列画像から相対速度を検出して前記トリガやマーキングの判定を行うので、一般的な加速度センサを用いた判定と比べて、誤動作を低減することができ、より適切なトリガやマーキングを行うことができる。 A drive recorder according to the present invention calculates a relative speed with respect to a target object from a time-series image acquired by a stereo camera, and records the time-series image in a recording unit in response to the calculated relative speed. Accordingly, a recording start trigger is given to the recording unit, or marking is performed on the time-series images that are constantly recorded by the recording unit. For this reason, the drive recorder having such a configuration detects the relative speed from the time-series image and determines the trigger or the marking, so that the malfunction can be reduced compared with the determination using a general acceleration sensor. And more appropriate triggering and marking can be performed.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の実施の一形態に係るドライブレコーダの概略構成図である。1 is a schematic configuration diagram of a drive recorder according to an embodiment of the present invention. 図1に示すドライブレコーダにおけるコントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the controller in the drive recorder shown in FIG. 図1に示すドライブレコーダにおいて、ステレオカメラによる時系列の撮像画像を説明するための図である。FIG. 2 is a diagram for explaining time-series captured images by a stereo camera in the drive recorder shown in FIG. 1. 図1に示すドライブレコーダにおいて、相対速度の第1の算出方法を説明するためのフローチャートである。4 is a flowchart for explaining a first relative speed calculation method in the drive recorder shown in FIG. 1. 図4の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of FIG. 図1に示すドライブレコーダにおいて、相対速度の第2の算出方法を説明するためのフローチャートである。6 is a flowchart for explaining a second method of calculating a relative speed in the drive recorder shown in FIG. 1. 図6の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of FIG. 前記相対速度の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the said relative velocity. 図1に示すドライブレコーダにおいて、相対速度の第3の算出方法を説明するためのフローチャートである。6 is a flowchart for explaining a third method of calculating a relative speed in the drive recorder shown in FIG. 1. 図1に示すドライブレコーダにおいて、トリガ判定の第1の判定方法を説明するためのフローチャートである。3 is a flowchart for explaining a first determination method of trigger determination in the drive recorder shown in FIG. 1. 図1に示すドライブレコーダにおいて、トリガ判定の第2の判定方法を説明するためのフローチャートである。6 is a flowchart for explaining a second determination method of trigger determination in the drive recorder shown in FIG. 1. 図1に示すドライブレコーダにおいて、前記トリガ判定のシーンの一例を示す図である。FIG. 2 is a diagram showing an example of the trigger determination scene in the drive recorder shown in FIG. 1. 図12で、相対速度からトリガ判定を行う場合の判定方法を説明するためのグラフである。It is a graph for demonstrating the determination method in the case of performing trigger determination from relative speed in FIG. 図12で、相対加速度からトリガ判定を行う場合の判定方法を説明するためのグラフである。FIG. 13 is a graph for explaining a determination method when trigger determination is performed from relative acceleration. 図1に示すドライブレコーダにおいて、前記トリガ判定のシーンの他の例を示す図である。FIG. 6 is a diagram showing another example of the trigger determination scene in the drive recorder shown in FIG. 1. 図15で、相対速度からトリガ判定を行う場合の判定方法を説明するためのグラフである。In FIG. 15, it is a graph for demonstrating the determination method in the case of performing trigger determination from a relative speed. 図15で、相対加速度からトリガ判定を行う場合の判定方法を説明するためのグラフである。In FIG. 15, it is a graph for demonstrating the determination method in the case of performing trigger determination from a relative acceleration. 図1に示すドライブレコーダにおいて、トリガ判定の第3の判定方法を説明するためのフローチャートである。6 is a flowchart for explaining a third determination method of trigger determination in the drive recorder shown in FIG. 1. 本発明の実施の他の形態に係るドライブレコーダにおけるコントローラの構成を示す図である。It is a figure which shows the structure of the controller in the drive recorder which concerns on other forms of implementation of this invention. 図19に示すドライブレコーダにおいて、衝突可能性の判定シーンの一例を示す図である。FIG. 20 is a diagram showing an example of a collision possibility determination scene in the drive recorder shown in FIG. 19. 図19に示すドライブレコーダにおいて、衝突可能性の判定シーンの他の例を示す図である。FIG. 20 is a diagram showing another example of a collision possibility determination scene in the drive recorder shown in FIG. 19. 図19に示すドライブレコーダにおいて、衝突可能性の判定シーンのさらに他の例を示す図である。FIG. 20 is a diagram showing still another example of a collision possibility determination scene in the drive recorder shown in FIG. 19. 図19に示すドライブレコーダの動作を説明するためのフローチャートである。FIG. 20 is a flowchart for explaining the operation of the drive recorder shown in FIG. 19. FIG.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.
 図1は、本発明の実施の一形態に係るドライブレコーダ1の概略構成図である。このドライブレコーダ1は、車両2に搭載されて被写体の2次元入力画像をそれぞれ得るステレオカメラ11,12と、これらステレオカメラ11、12によって取得したステレオ画像から3次元画像を得て、路面3上に存在する対象物体4,5に対する危険度(衝突の危険度合い)を判定し、危険度が高い場合に、前記ステレオカメラ11,12の画像を自動記録するコントローラ13とを備えて構成される。ステレオカメラ11,12は、被写体を同じタイミングで撮影した左右一対の画像(基準画像と参照画像)を出力する。本実施の形態においては、説明の簡単化のために、ステレオカメラ11,12の収差は、良好に補正されており、かつ相互に平行に設置されているものとする。また、実際のハードウェアがこのような条件に無くても、画像処理によって、同等の画像に変換することも可能である。ステレオカメラ11,12から前記ステレオ画像がコントローラ13に通信線を介して送信される。ステレオカメラ11,12とコントローラ13との間での画像データの通信方式は、有線方式に限定されず、無線方式であってもよい。 FIG. 1 is a schematic configuration diagram of a drive recorder 1 according to an embodiment of the present invention. The drive recorder 1 is mounted on a vehicle 2 and obtains a two-dimensional input image of a subject, and obtains a three-dimensional image from the stereo images acquired by the stereo cameras 11 and 12. And a controller 13 that automatically records the images of the stereo cameras 11 and 12 when the degree of danger is high and the degree of danger is high. The stereo cameras 11 and 12 output a pair of left and right images (a standard image and a reference image) obtained by photographing the subject at the same timing. In the present embodiment, for the sake of simplicity of explanation, it is assumed that the aberrations of the stereo cameras 11 and 12 are well corrected and installed parallel to each other. Even if the actual hardware is not in such a condition, it is possible to convert it to an equivalent image by image processing. The stereo images are transmitted from the stereo cameras 11 and 12 to the controller 13 via a communication line. The communication method of the image data between the stereo cameras 11 and 12 and the controller 13 is not limited to the wired method, and may be a wireless method.
 ここで、本実施の形態のドライブレコーダ1は、前記のように危険度が高い場合にステレオカメラ11,12の画像を記録する際に、そのトリガ判定に、ステレオ画像から算出した対象物体4,5の相対的速度を用いることで、従来のような加速度情報、距離情報、物体の移動情報などを算出する必要が無い。なお、ドライブレコーダ1は、ステレオ画像を、このように危険度が高い場合に記録するだけでなく、常時記録しておき、危険度が高い場合に、後にその時の画像の再生の頭出しを容易にするためのマーキングを施すように構成されてよい。以下では、ドライブレコーダ1がトリガによって記録を行うものとして説明する。 Here, the drive recorder 1 according to the present embodiment, when recording the images of the stereo cameras 11 and 12 when the degree of danger is high as described above, uses the target object 4 calculated from the stereo image for the trigger determination. By using the relative speed of 5, there is no need to calculate acceleration information, distance information, object movement information, etc. as in the prior art. Note that the drive recorder 1 not only records a stereo image when the risk level is high in this way, but also always records the stereo image, and when the risk level is high, it is easy to cue playback of the image at that time later. It may be configured to provide markings for In the following description, it is assumed that the drive recorder 1 performs recording by a trigger.
 このため、画像取得部は、その一例としてステレオカメラ11,12から成り、コントローラ13は、例えば、図2で示すように、ステレオカメラ11,12によって得られたステレオ画像から、物体を切出し、その領域のみについて探索を行い、自車の車線上に存在する等のために前記衝突の可能性があると思われる対象物体に対する相対的な速度を算出する相対速度算出部21と、その算出結果に応答して前記トリガ判定を行うトリガ判定部22と、トリガ判定部22からのトリガに応答して、2つのステレオカメラ11,12の画像の内、少なくとも一方を記録する記録部23とを備えて構成される。 For this reason, the image acquisition unit includes stereo cameras 11 and 12 as an example, and the controller 13 cuts out an object from a stereo image obtained by the stereo cameras 11 and 12, as shown in FIG. A relative speed calculation unit 21 that searches only for a region, calculates a relative speed with respect to a target object that is considered to be likely to collide due to being on the lane of the host vehicle, and the calculation result A trigger determination unit 22 that performs the trigger determination in response, and a recording unit 23 that records at least one of the images of the two stereo cameras 11 and 12 in response to a trigger from the trigger determination unit 22. Composed.
 上述のように構成されるドライブレコーダ1において、前記相対速度を算出する場合には、先ず、ステレオカメラ11,12からの時系列の撮像画像が対比される。そのため、図3で示すように、或る時刻tから、Δt秒(1フレーム)毎のステレオカメラ11での撮像画像が、I1(i,j,t),I1(i,j,t+Δt),I1(i,j,t+2Δt),・・・,I1(i,j,t+nΔt)とされ、同様にテレオカメラ12での撮像画像が、I2(i,j,t),I2(i,j,t+Δt),I2(i,j,t+2Δt),・・・,I2(i,j,t+nΔt)とされる。ただし、i,jは、マトリクス配列された撮像素子のx,y方向での位置を表す。こうして求められた撮像画像から、相対速度算出部21は、相対速度を算出する。以下には、3つの算出方法を例示する。 In the drive recorder 1 configured as described above, when calculating the relative speed, first, time-series captured images from the stereo cameras 11 and 12 are compared. Therefore, as shown in FIG. 3, from a certain time t, images captured by the stereo camera 11 every Δt seconds (one frame) are I1 (i, j, t), I1 (i, j, t + Δt), I1 (i, j, t + 2Δt),..., I1 (i, j, t + nΔt). Similarly, the images captured by the teleo camera 12 are I2 (i, j, t), I2 (i, j, t + Δt). ), I2 (i, j, t + 2Δt),..., I2 (i, j, t + nΔt). Here, i and j represent the positions in the x and y directions of the image pickup elements arranged in a matrix. From the captured image thus obtained, the relative speed calculation unit 21 calculates a relative speed. In the following, three calculation methods are exemplified.
 図4は、前記トリガ判定の際に、相対速度算出部21による相対速度の第1の算出方法を説明するためのフローチャートであり、図5は、その算出方法を説明するための図である。ステップS1では、時刻t+Δtにおける基準画像I1(i,j,t+Δt)上の画素p(i,j)に対し、対応点探索処理によって、参照画像I2(i,j,t)上の対応点pr(i,j)が算出され、3次元再構成処理によって、3次元情報P(i,j,t)が算出される。前記対応点探索方法には、最適化手法の1つである勾配法や、輝度値をそのまま減算する手法(SAD(Sum of Absolute Difference)法やSSD(Sum of Squared intensity Difference)法)、または各点の輝度値から局所的な平均値を引き、分散値の類似度で対応点を求める手法(NCC(Normalized Cross Correlation)法)等の相関演算法などが用いられる。前記相関演算法の中でも、2つの入力画像に設定したウインドウ内のパターンを周波数分解し、振幅成分を抑制した信号の類似度に基づいて、サブピクセル単位で対応位置を演算することができるPOC(位相限定相関法)を用いることによって、安定かつ高精度な対応付けが可能となる。 FIG. 4 is a flowchart for explaining a first method for calculating the relative speed by the relative speed calculation unit 21 in the trigger determination, and FIG. 5 is a diagram for explaining the calculation method. In step S1, the corresponding point pr on the reference image I2 (i, j, t) is obtained by the corresponding point search process for the pixel p (i, j) on the base image I1 (i, j, t + Δt) at time t + Δt. (I, j) is calculated, and three-dimensional information P (i, j, t) is calculated by the three-dimensional reconstruction process. The corresponding point search method includes a gradient method which is one of optimization methods, a method of subtracting luminance values as they are (SAD (Sum of Absolute Absolute Difference) method or SSD (Sum of Square Intensity Difference) method), or each method Correlation calculation methods such as a method (NCC (NormalizedNormalCross Correlation) method) that subtracts a local average value from the luminance value of a point and obtains a corresponding point with the similarity of the variance values are used. Among the correlation calculation methods, a POC (corresponding position can be calculated in sub-pixel units based on the similarity of signals obtained by frequency-resolving patterns in a window set for two input images and suppressing amplitude components. By using the phase-only correlation method, stable and highly accurate association is possible.
 次に、ステップS2では、前記時刻t+Δtにおける基準画像I1(i,j,t+Δt)上の画素p(i,j)に対し、対応点探索処理によって、時刻tにおける前記基準画像I1(i,j,t)上の対応点pp(i,j)が算出される。続いて、ステップS3で、時刻tにおける基準画像I1(i,j,t)上の画素pp(i,j)に対し、対応点探索処理によって参照画像I2(i,j,t)上の対応点ps(i,j)を算出し、3次元再構成処理によって、3次元情報Pp(i,j,t)が算出される。そして、算出した3次元情報P(i,j,t)および3次元情報Pp(i,j,t)の中で、ステップS4で相対速度を求めるべき対象の確定が行われ、前記対象物体4,5の領域の時刻tでの位置Pp(i,j,t)と、時刻t+Δでの位置P(i,j,t)とから、ステップS5で、下記のようにして求める差が、時間Δ間の移動の相対速度ν(i,j,t)となる。
 ν(i,j,t)=P(i,j,t)-Pp(i,j,t)
 |ν(i,j,t)|={{Px(i,j,t)-Ppx(i,j,t)}2+{Py(i,j,t)-Ppy(i,j,t)}2+{Pz(i,j,t)-Ppz(i,j,t)}2}1/2
Next, in step S2, the reference image I1 (i, j) at time t is obtained by performing corresponding point search processing on the pixel p (i, j) on the reference image I1 (i, j, t + Δt) at time t + Δt. , T), the corresponding point pp (i, j) is calculated. Subsequently, in step S3, the correspondence on the reference image I2 (i, j, t) is detected by the corresponding point search process for the pixel pp (i, j) on the reference image I1 (i, j, t) at time t. A point ps (i, j) is calculated, and three-dimensional information Pp (i, j, t) is calculated by a three-dimensional reconstruction process. Then, in the calculated three-dimensional information P (i, j, t) and the three-dimensional information Pp (i, j, t), the target for which the relative speed is to be obtained is determined in step S4, and the target object 4 , 5 from the position Pp (i, j, t) at time t and the position P (i, j, t) at time t + Δ, the difference obtained as follows in step S5 is the time The relative speed ν (i, j, t) of movement between Δ is obtained.
ν (i, j, t) = P (i, j, t) −Pp (i, j, t)
| Ν (i, j, t) | = {{Px (i, j, t) −Ppx (i, j, t)} 2+ {Py (i, j, t) −Ppy (i, j, t) } 2+ {Pz (i, j, t) -Ppz (i, j, t)} 2} 1/2
 こうして、本実施形態のドライブレコーダ1は、対応点探索処理によって算出した視差情報から、前記相対速度ν(i,j,t)を算出することで、精度良く相対速度を算出することができる。 Thus, the drive recorder 1 of the present embodiment can calculate the relative speed with high accuracy by calculating the relative speed ν (i, j, t) from the parallax information calculated by the corresponding point search process.
 なお、前記ステップS3における対応点探索方法は、基準座標位置が小数点座標となることから、2つの時刻T1,T2のステレオ画像4枚を用いて3次元移動ベクトルを算出するサブピクセル推定方法などを用いることができる。このようなサブピクセル推定方法は、例えば、特開2001-84383号公報を参照することができる。また、本件出願人によるピーク位置の相関値およびピーク位置周辺にある相関値と、サブピクセル推定のためのモデルとの合致度に基づいて、最適な推定モデルに選択する動きベクトル生成装置及び方法、注目点にサブピクセルウィンドウを設定することで、直接的にサブピクセル注目点の対応付けを行う周辺監視方法の高速化処理方法、過去に計測された4点の対応点の結果に基づいて補間処理を行う3次元オプティカルフロー算出方法などを用いることができる。 The corresponding point search method in step S3 includes a sub-pixel estimation method for calculating a three-dimensional movement vector using four stereo images at two times T1 and T2 because the reference coordinate position is a decimal point coordinate. Can be used. For such a subpixel estimation method, reference can be made to, for example, Japanese Patent Laid-Open No. 2001-84383. Further, a motion vector generation apparatus and method for selecting an optimal estimation model based on a correlation value between a peak position correlation value and a correlation value around the peak position by the applicant and a model for subpixel estimation, By setting a sub-pixel window at the point of interest, the perimeter monitoring method that directly associates the sub-pixel point of interest, the interpolation processing based on the results of the four corresponding points measured in the past A three-dimensional optical flow calculation method or the like that performs the above can be used.
 図6は、前記トリガ判定の際に、前記相対速度算出部21による相対速度の第2の算出方法を説明するためのフローチャートであり、図7は、その算出方法を説明するための図である。この第2の算出方法では、図8で示すように、取得画像を領域分割し、ハッチングを施して示す予め定められる固定領域に対してのみ、相対速度が算出される。また、その固定領域では、以下の処理で相対速度を求める場合に、代表値だけで演算が行われ、処理の軽減を図ってもよい。こうして、対応点を算出する算出領域を固定領域に設定しておくことで、前記算出領域の決定に特別な演算処理を行う必要が無く、相対速度算出部21は、前記対応点探索処理に、求められた視差情報から、前記相対速度を算出する処理だけを行えばよい。 FIG. 6 is a flowchart for explaining a second method for calculating the relative speed by the relative speed calculation unit 21 in the trigger determination, and FIG. 7 is a diagram for explaining the calculation method. . In the second calculation method, as shown in FIG. 8, the relative speed is calculated only for a predetermined fixed region obtained by dividing an acquired image into regions and applying hatching. In the fixed area, when the relative speed is obtained by the following process, the calculation may be performed using only the representative value to reduce the process. In this way, by setting the calculation area for calculating the corresponding points as a fixed area, there is no need to perform a special calculation process for determining the calculation area, and the relative speed calculation unit 21 performs the corresponding point search process. Only the process of calculating the relative speed from the obtained parallax information may be performed.
 なお、前記固定領域のみの演算を行う場合に、時間Δtが、所定範囲、たとえば0.1秒まで、好ましくは、1/30秒以下と、短いことが条件となる。これは、時間Δtが短いということは、フレームレートが大きく、変化量(3次元オプティカルフロー)、すなわちズレが小さいことを表し、また、これは、対象物体4,5の領域の時間方向の移動距離も小さいことを表す。さらにまた時刻t,t+Δt間で、対象となる領域が固定領域に含まれる可能性が高いからである。 It should be noted that in the case of performing computation only on the fixed area, the condition is that the time Δt is as short as a predetermined range, for example, up to 0.1 second, preferably 1/30 second or less. This means that the short time Δt means that the frame rate is large and the amount of change (three-dimensional optical flow), that is, the deviation is small, and this is the movement of the region of the target objects 4 and 5 in the time direction. This means that the distance is also small. Furthermore, there is a high possibility that the target region is included in the fixed region between times t and t + Δt.
 先ず、ステップS11では、時刻tにおける基準画像I1(i,j)上の画素pt(i,j)に対し、対応点探索処理によって、参照画像I2(i,j,t)上の対応点prt(i,j)が算出され、3次元再構成処理によって、3次元情報P(i,j,t)が算出される。同様に、ステップS12では、時刻t+Δtにおける基準画像I1(i,j,t+Δt)上の画素pt+Δt(i,j)に対し、対応点探索処理によって、参照画像I2(i,j,t)上の対応点prt+Δt(i,j)が算出され、3次元再構成処理によって、3次元情報P(i,j,t+Δt)が算出される。続いて、ステップS13では、対象物体4,5が抽出され、ステップS14では、その対象物体4,5の領域における3次元情報P(i,j,t),P(i,j,t+Δt)の差から、下記のようにして相対速度ν(i,j,t)が求められる。
  ν(i,j,t)=P(i,j,t)-P(i,j,t+Δt)
  |ν(i,j,t)|={{Px(i,j,t)-Px(i,j,t+Δt)}2+{Py(i,j,t)-Py(i,j,t+Δt)}2+{Pz(i,j,t)-Pz(i,j,t+Δt)}2}1/2
First, in step S11, the corresponding point prt on the reference image I2 (i, j, t) is obtained by the corresponding point search process for the pixel pt (i, j) on the reference image I1 (i, j) at time t. (I, j) is calculated, and three-dimensional information P (i, j, t) is calculated by the three-dimensional reconstruction process. Similarly, in step S12, the pixel pt + Δt (i, j) on the base image I1 (i, j, t + Δt) at time t + Δt is subjected to the corresponding point search process on the reference image I2 (i, j, t). Corresponding point prt + Δt (i, j) is calculated, and three-dimensional information P (i, j, t + Δt) is calculated by the three-dimensional reconstruction process. Subsequently, in step S13, the target objects 4 and 5 are extracted. In step S14, the three-dimensional information P (i, j, t) and P (i, j, t + Δt) in the region of the target objects 4 and 5 are extracted. From the difference, the relative velocity ν (i, j, t) is obtained as follows.
ν (i, j, t) = P (i, j, t) −P (i, j, t + Δt)
| Ν (i, j, t) | = {{Px (i, j, t) −Px (i, j, t + Δt)} 2+ {Py (i, j, t) −Py (i, j, t + Δt) } 2+ {Pz (i, j, t) −Pz (i, j, t + Δt)} 2} 1/2
 この方法の利点は、第1の算出方法のように時間方向での追尾による対応点探索を行う必要が無く、各時刻t,t+Δt,t+2Δt,・・・に対し、新たにはステップS12の処理のみを行う(ステップS11は前回値を使用)だけでよく、処理を高速に行うことができることである。対応点探索方法は、上記記載の方法を用いることができる。 The advantage of this method is that there is no need to perform corresponding point search by tracking in the time direction unlike the first calculation method, and for each time t, t + Δt, t + 2Δt,. (Step S11 uses the previous value), and the processing can be performed at high speed. As the corresponding point search method, the method described above can be used.
 また、後述の実際のトリガ判定のために使用される相対速度は、上述のようにして画素毎に算出した3次元情報P(i,j,T)の平均値の時刻毎の差、前記画素毎に算出した前記3次元情報P(i,j,T)のヒストグラムから最も多いものの時刻毎の差、時刻tで算出した3次元情報P(i,j,t)に対し、ヒストグラムを用いて選択し、時刻t+Δtで算出した3次元情報P(i,j,t+Δt)の中で、距離の変化が閾値以内の結果の平均値などの何れを用いて求めたものであってもよい。 The relative speed used for the actual trigger determination described later is the difference of the average value of the three-dimensional information P (i, j, T) calculated for each pixel as described above, The histogram is used for the three-dimensional information P (i, j, t) calculated at time t, which is the difference between the most frequent ones from the histogram of the three-dimensional information P (i, j, T) calculated every time. Any of the three-dimensional information P (i, j, t + Δt) selected and calculated at time t + Δt may be obtained using any of the average values of the results of the distance change within the threshold.
 図9は、前記トリガ判定の際に、相対速度算出部21による相対速度の第3の算出方法を説明するためのフローチャートである。この第3の算出方法では、ステップS22において、前記第1または第2の算出方法を用いる。ただし、ステップS21で、取得画像から対象物体4,5が事前に抽出され、この抽出された対象物体のみの相対速度が算出される。その対象物体4,5の抽出には、2次元画像からパターン認識などの手法を用いる。したがって、前記第1または第2の算出方法を用いても、前記ステップS4,S13での物体抽出は、行われない。この方法では、ステップS21による前処理の演算負荷が増加するが、対象物体4,5の領域のみの相対速度を算出するだけでよいので、後段のステップS22での処理の演算負荷は、少なくなり、結果的に、全領域を処理する場合と比べ、処理を高速に行うことができる。 FIG. 9 is a flowchart for explaining a third method of calculating the relative speed by the relative speed calculation unit 21 in the trigger determination. In the third calculation method, the first or second calculation method is used in step S22. However, in step S21, the target objects 4 and 5 are extracted in advance from the acquired image, and the relative speed of only the extracted target object is calculated. For extraction of the target objects 4 and 5, a method such as pattern recognition from a two-dimensional image is used. Therefore, even if the first or second calculation method is used, the object extraction in the steps S4 and S13 is not performed. In this method, the calculation load of the preprocessing in step S21 increases, but it is only necessary to calculate the relative speed of only the area of the target objects 4 and 5, so the calculation load of the process in the subsequent step S22 is reduced. As a result, the processing can be performed at a higher speed than when the entire region is processed.
 なお、前記ステップS21における対象物体の抽出方法には、以下のような方法があり、どれを使用してもよい。先ず、距離情報と道路モデルとに基づいて、路面を除去し、路面より上にある物体の3次元移動ベクトルを算出し、3次元情報で静止物体と移動物体との判別を行うようにした画像処理装置および画像処理方法がある。このような画像処理装置および該方法は、例えば、特開2006-134035号公報を参照することができる。そして、異なるタイミングで撮影された複数の画像間で対応点を求めることにより各注目点のオプティカルフローを求めた後、各オプティカルフローの消失点を求め、当該消失点が、静止している物体によるオプティカルフローの消失点と一致しない物体を移動物体として抽出する方法がある。そして、ステレオ画像から対応点探索処理により視差dを算出し、その視差dと画像上のy軸方向の関係から路面パラメータを推定し、推定した路面を除いた領域のみを対象領域とする移動体の動き解析装置がある。このような解析装置は、例えば、特開2009-181492号公報を参照することができる。そして、時系列画像から算出された2次元オプティカルフローの移動量を解析し、予測と異なる動きがある領域を対象領域として抽出する周辺監視方法の高速化処理方法がある。 There are the following methods for extracting the target object in step S21, and any of them may be used. First, based on the distance information and the road model, an image in which the road surface is removed, a three-dimensional movement vector of an object above the road surface is calculated, and a stationary object and a moving object are determined based on the three-dimensional information. There are a processing apparatus and an image processing method. For such an image processing apparatus and method, reference can be made, for example, to JP-A-2006-134035. Then, after obtaining the optical flow of each attention point by obtaining corresponding points between multiple images taken at different timings, the vanishing point of each optical flow is obtained, and the vanishing point is determined by the stationary object There is a method of extracting an object that does not match the vanishing point of the optical flow as a moving object. Then, the parallax d is calculated from the stereo image by the corresponding point search process, the road surface parameter is estimated from the relationship between the parallax d and the y-axis direction on the image, and only the area excluding the estimated road surface is the target area. There is a motion analysis device. For such an analysis apparatus, reference can be made to, for example, Japanese Patent Application Laid-Open No. 2009-181492. Then, there is a speed-up processing method of the periphery monitoring method that analyzes the amount of movement of the two-dimensional optical flow calculated from the time series image and extracts a region having a motion different from the prediction as a target region.
 好ましくは、抽出した対象物体4,5に対して、その対象物体4,5の大きさから、人であるのか、車であるのか、などの該対象物体4,5の種類の認識が行われてもよい。 Preferably, the types of the target objects 4 and 5 such as whether they are people or cars are recognized on the extracted target objects 4 and 5 based on the size of the target objects 4 and 5. May be.
 以下に、本実施の形態のトリガ判定の手法を詳述する。トリガ判定部22は、相対速度算出部21によって、上述のようにして求められた相対速度ν(i,j,t)を基に、トリガ判定を行う。先ず、第1の判定方法では、図10で示すように、トリガ判定部22は、ステップS31で相対速度算出部21からその相対速度ν(i,j,t)を取込むと、ステップS32で閾値TH1と比較し、マイナス方向に前記閾値TH1より大きい場合に、すなわち対象物体4,5に急速に接近している場合に、衝突の可能性があると判断して記録部23に記録開始のトリガを与え、閾値TH1より小さい場合には、衝突の可能性が少ないと判断してステップS31に戻る。 Hereinafter, the trigger determination method of this embodiment will be described in detail. The trigger determination unit 22 performs trigger determination based on the relative speed ν (i, j, t) obtained as described above by the relative speed calculation unit 21. First, in the first determination method, as shown in FIG. 10, when the trigger determination unit 22 takes in the relative speed ν (i, j, t) from the relative speed calculation unit 21 in step S31, in step S32. Compared with the threshold value TH1, if it is larger than the threshold value TH1 in the minus direction, that is, if the target objects 4 and 5 are rapidly approached, it is determined that there is a possibility of collision and the recording unit 23 starts recording. If the trigger is given and is smaller than the threshold value TH1, it is determined that the possibility of collision is small, and the process returns to step S31.
 一方、第2の判定方法では、図11で示すように、トリガ判定部22は、ステップS41で相対速度算出部21から時系列の相対速度ν(i,j,t),ν(i,j,t+Δt)を取込み、下式によって相対加速度aを求め、ステップS42で閾値TH2と比較し、マイナス方向に閾値TH2より大きい場合に、すなわち加速度の変化が大きく、対象物体4,5に急速に接近している場合に、衝突の可能性があると判断して記録部23に記録開始のトリガを与え、閾値TH2より小さい場合には、衝突の可能性が少ないと判断してステップS41に戻る。相対速度から相対加速度を算出する方法は、上記以外のどのような手法を用いてもよい。
  a={ν(i,j,t+Δt)-ν(i,j,t)}/t+Δt-t
   =Δν(i,j,t)/Δt
On the other hand, in the second determination method, as shown in FIG. 11, the trigger determination unit 22 receives the time-series relative speeds ν (i, j, t), ν (i, j) from the relative speed calculation unit 21 in step S41. , T + Δt), the relative acceleration a is obtained by the following equation, compared with the threshold value TH2 in step S42, and when it is larger than the threshold value TH2 in the minus direction, that is, the change in acceleration is large and the target objects 4 and 5 are rapidly approached. If it is determined that there is a possibility of collision, a recording start trigger is given to the recording unit 23, and if it is smaller than the threshold value TH2, it is determined that there is little possibility of collision and the process returns to step S41. Any method other than the above may be used as a method of calculating the relative acceleration from the relative velocity.
a = {ν (i, j, t + Δt) −ν (i, j, t)} / t + Δt−t
= Δν (i, j, t) / Δt
 したがって、たとえば図12のように、自車(車両2)および先行車(対象物体4)が、60km/hで等速で追従走行している状態で、先行車(対象物体4)が急ブレーキを掛け、停車した(0km/h)とすると、相対速度ν(i,j,t)は、図13のように、そして、相対加速度aは、図14で示すように、共に負に大きく落ち込む。ただし、先行車(対象物体4)が自車(車両2)に向かう相対速度を負、遠去かる相対速度を正とする。これに前記閾値TH1を、たとえば-50km/hとすると、相対速度ν(i,j,t)がそれを超えて大きく落ち込んだとき、また前記閾値TH2を、たとえば-20km/h/secとすると、前記相対加速度aがそれを超えて大きく落ち込んだとき、トリガ判定が行われる。 Accordingly, as shown in FIG. 12, for example, the preceding vehicle (target object 4) is braked suddenly while the host vehicle (vehicle 2) and the preceding vehicle (target object 4) are following at 60 km / h at a constant speed. Assuming that the vehicle is stopped and stopped (0 km / h), the relative speed ν (i, j, t) falls as shown in FIG. 13, and the relative acceleration a falls greatly negatively as shown in FIG. . However, the relative speed of the preceding vehicle (target object 4) toward the host vehicle (vehicle 2) is negative, and the relative speed of going away is positive. If the threshold TH1 is set to -50 km / h, for example, and the relative speed ν (i, j, t) is greatly reduced beyond that, and the threshold TH2 is set to -20 km / h / sec, for example. When the relative acceleration a is greatly reduced beyond that, a trigger determination is performed.
 ここで、図13と図14とを比較して、トリガ判定を、相対速度ν(i,j,t)と閾値TH1との比較で行う場合には、相対速度は、任意の速度から任意の幅で変化するのに対して、相対加速度aと閾値TH2との比較で行う場合には、比較的安定した中央値(0)から、或る程度の幅での変化となるので、閾値TH2の設定が容易である。 Here, when the trigger determination is performed by comparing the relative speed ν (i, j, t) with the threshold value TH1 by comparing FIG. 13 and FIG. 14, the relative speed is set to an arbitrary value from an arbitrary speed. When the comparison is made by comparing the relative acceleration a with the threshold value TH2, the change occurs with a certain width from the relatively stable median value (0). Easy to set up.
 これに対して、たとえば図15のように、先行車(対象物体4)が60km/hで走行しており、自車(車両2)が100km/hで追い着き、車間距離が小さくなり、自車(車両2)が急ブレーキを掛け、停車した(0km/h)とすると、相対速度ν(i,j,t)は、図16で示すように、そして、相対加速度aは、図17で示すように、共に正に大きく増加する。この場合、安全側であるので、共に前記閾値TH1,TH2での判定では、トリガは、掛からない。しかしながら、直前には危険な状況であったので記相対速度ν(i,j,t)および相対加速度aを絶対値で得て、ステップS32,S42での閾値TH1,TH2との比較の大小関係(不等号)を、逆にすることで、このような状況でもトリガ対象とすることもできる。 On the other hand, as shown in FIG. 15, for example, the preceding vehicle (target object 4) is traveling at 60 km / h, the own vehicle (vehicle 2) catches up at 100 km / h, and the inter-vehicle distance is reduced. Assuming that the vehicle (vehicle 2) suddenly brakes and stops (0 km / h), the relative speed ν (i, j, t) is as shown in FIG. 16, and the relative acceleration a is as shown in FIG. As shown, both increase significantly positively. In this case, since it is on the safe side, the trigger is not applied in the determination with the threshold values TH1 and TH2. However, since it was a dangerous situation immediately before, the relative speed ν (i, j, t) and the relative acceleration a were obtained as absolute values, and the magnitude relation of comparison with the thresholds TH1 and TH2 in steps S32 and S42. By reversing (inequality sign), even in such a situation, it can be set as a trigger target.
 また、第3の判定方法では、図18で示すように、トリガ判定部22は、ステップS51で相対速度算出部21から相対速度ν(i,j,t)を取込むとともに、その相対速度ν(i,j,t)を求める際に求められている対象物体4,5の3次元情報P(i,j,t)を取込み、下式によって対象物体4,5までの距離D(i,j,t)を求め、その距離D(i,j,t)と前記相対速度ν(i,j,t)とから、下式によって衝突予測時間S(i,j,t)を求める。そして、ステップS52で衝突予測時間S(i,j,t)を閾値TH3と比較し、閾値TH3より小さい場合には、衝突の可能性があると判断して記録部23にトリガを与え、閾値TH3以上の場合には、衝突の可能性が少ないと判断してステップS51に戻る。
  D(i,j,t)={P(i,j,t)2}1/2
  S(i,j,t)=D(i,j,t)/ν(i,j,t)
In the third determination method, as shown in FIG. 18, the trigger determination unit 22 takes in the relative speed ν (i, j, t) from the relative speed calculation unit 21 in step S51, and the relative speed ν. The three-dimensional information P (i, j, t) of the target objects 4 and 5 obtained when (i, j, t) is obtained is taken, and the distance D (i, j, t), and the collision prediction time S (i, j, t) is obtained from the distance D (i, j, t) and the relative velocity ν (i, j, t) by the following equation. Then, in step S52, the collision prediction time S (i, j, t) is compared with the threshold value TH3. If it is smaller than the threshold value TH3, it is determined that there is a possibility of collision, and a trigger is given to the recording unit 23. If it is equal to or greater than TH3, it is determined that the possibility of collision is small, and the process returns to step S51.
D (i, j, t) = {P (i, j, t) 2} 1/2
S (i, j, t) = D (i, j, t) / ν (i, j, t)
 このようにトリガ判定部22が、相対速度ν(i,j,t)だけでなく、対象物体4,5に対する距離D(i,j,t)も加味して、その距離D(i,j,t)と相対速度ν(i,j,t)との関係から衝突予測時間S(i,j,t)を算出し、その衝突予測時間S(i,j,t)を閾値TH3と比較してトリガ判定を行うことで、本実施形態のドライブレコーダ1は、精度良く判定を行うことができる。 In this way, the trigger determination unit 22 considers not only the relative speed ν (i, j, t) but also the distance D (i, j, t) with respect to the target objects 4 and 5, and the distance D (i, j , T) and the relative speed ν (i, j, t) are calculated from the collision predicted time S (i, j, t), and the predicted collision time S (i, j, t) is compared with the threshold value TH3. By performing the trigger determination, the drive recorder 1 of the present embodiment can perform the determination with high accuracy.
 さらにまた、第4の判定方法を用いるドライブレコーダ1aでは、図19で示すように、コントローラ13aは、トリガ判定部22によってトリガ対象であると判定された対象物体(トリガ判定部の対象領域)に対して、さらに衝突可能性解析部24によって衝突可能性の解析を行い、衝突の可能性が高い場合に、前記記録部23へ記録の開始のトリガが与えられる。 Furthermore, in the drive recorder 1a using the fourth determination method, as shown in FIG. 19, the controller 13a applies to the target object (target region of the trigger determination unit) determined to be the trigger target by the trigger determination unit 22. On the other hand, the possibility of collision is further analyzed by the collision possibility analysis unit 24, and when the possibility of collision is high, a recording start trigger is given to the recording unit 23.
 衝突可能性解析部24の第1の解析方法では、相対速度算出部21において、図5で示すようにして算出された時系列画像の3次元情報P(i,j,t),Pp(i,j,t)から、それらのベクトル/P(i,j,t)(/は、ベクトルであることを表す)が算出され、そのベクトル/P(i,j,t)の向き、長さ、ならびに自車(車両2)の速度、および対象物体4,5までの距離D(i,j,t)から衝突判定が行われる。前記衝突判定の手法として、上述の方法などが用いられる。例えば、自車(車両2)を立方体と仮定し、その立方体を構成する平面と、3次元オプティカルフロー(前記ベクトル/P(i,j,t))との交点P(X,Y,Z)を算出することで判定を行う方法がある。 In the first analysis method of the collision possibility analysis unit 24, the relative velocity calculation unit 21 calculates the three-dimensional information P (i, j, t), Pp (i) of the time-series images calculated as shown in FIG. , J, t), the vector / P (i, j, t) (/ represents that it is a vector) is calculated, and the direction and length of the vector / P (i, j, t) are calculated. The collision is determined from the speed of the host vehicle (vehicle 2) and the distance D (i, j, t) to the target objects 4 and 5. As the collision determination method, the above-described method or the like is used. For example, assuming that the vehicle (vehicle 2) is a cube, the intersection P (X, Y, Z) between the plane constituting the cube and the three-dimensional optical flow (the vector / P (i, j, t)) There is a method of making a determination by calculating.
 このように衝突可能性解析部24は、トリガ判定部22で相対速度ν(i,j,t)や相対加速度aからトリガ対象と判定された領域の衝突可能性までもさらに解析し、その解析結果に応じて、トリガを与えることで、自車(車両2)の車線に掛かっているか等、対象物体4,5の領域をより詳細に解析することで、誤動作を低減することができる。また、衝突可能性解析部24は、前記衝突可能性を、トリガ判定部22でトリガ対象と判定された領域の位置情報である3次元情報P(i,j,t),Pp(i,j,t)と、3次元移動ベクトル/P(i,j,t)の向き、長さ、ならびに自車(車両2)の速度、および対象物体4,5までの距離D(i,j,t)から判定を行うので、対象物体4,5の動きを考慮した判定を行うことができる。 In this way, the collision possibility analysis unit 24 further analyzes even the collision possibility of the region determined as the trigger target from the relative velocity ν (i, j, t) and the relative acceleration a by the trigger determination unit 22, and the analysis By giving a trigger according to the result, malfunctions can be reduced by analyzing the region of the target objects 4 and 5 in more detail, such as whether the vehicle is on the lane of the host vehicle (vehicle 2). Further, the collision possibility analysis unit 24 uses the three-dimensional information P (i, j, t), Pp (i, j), which is position information of the region determined as the trigger target by the trigger determination unit 22, as the collision possibility. , T), the direction and length of the three-dimensional movement vector / P (i, j, t), the speed of the host vehicle (vehicle 2), and the distance D (i, j, t) to the target objects 4 and 5 Therefore, it is possible to make a determination in consideration of the movement of the target objects 4 and 5.
 その場合、図20で示すように、自車(車両2)の立方体2aに、一回り大きな立方体2bを定義し、それらの立方体2a,2bを構成する平面と、ベクトル/P(i,j,t)との交点P(X,Y,Z)で、レベルの異なる判定を行うように、衝突可能性解析部24が構成されてもよい。たとえば、立方体2aの自車領域に交わる場合の対象物体9aは、衝突可能性が高い衝突危険対象と判断し、立方体2bの領域は、ヒヤリハット領域とし、そのヒヤリハット領域(立方体2b)のみと交差する場合の対象物体9bは、衝突可能性が低いものの、危険度が高いヒヤリハット対象と判断する。そして、トリガ判定は、自車領域(立方体2a)に交わる場合のみとするか、ヒヤリハット領域(立方体2b)に交わる場合も含めるかは、任意に選択されればよい。 In that case, as shown in FIG. 20, a cube 2b that is one size larger is defined in the cube 2a of the host vehicle (vehicle 2), a plane that forms the cubes 2a and 2b, and a vector / P (i, j, The collision possibility analysis unit 24 may be configured to perform the determination at different levels at the intersection P (X, Y, Z) with t). For example, the target object 9a in the case of intersecting with the own vehicle area of the cube 2a is determined to be a collision danger target having a high possibility of collision, and the area of the cube 2b is a near-miss area and intersects only with the near-hat area (cube 2b). In this case, the target object 9b is determined to be a near-miss target with a high degree of danger although the possibility of collision is low. The trigger determination may be arbitrarily selected as to whether only the case of intersecting with the own vehicle area (cube 2a) or the case of intersecting with the near-miss area (cube 2b) is included.
 さらに、図21で示すように、前記ヒヤリハット領域の大きさが、相対速度ν(i,j,t)に応じて変更されてもよい。すなわち、図21(a)で示すように、対象物体9bとの相対速度ν(i,j,t)が大きい場合は、参照符号2b’で示すようにヒヤリハット領域のサイズが大きくされ、図21(b)で示すように、相対速度ν(i,j,t)が小さい場合は、デフォルトの大きさにされる。このように衝突可能性解析部24は、相対速度ν(i,j,t)が大きくなるに従い、対象物体9bの抽出領域を大きくする(立方体2b→2b’)ことで、より精度の高い解析を行うことができる。 Furthermore, as shown in FIG. 21, the size of the near miss area may be changed according to the relative speed ν (i, j, t). That is, as shown in FIG. 21A, when the relative speed ν (i, j, t) with respect to the target object 9b is large, the size of the near-miss area is increased as indicated by reference numeral 2b ′. As shown in (b), when the relative velocity ν (i, j, t) is small, the default size is set. As described above, the collision possibility analysis unit 24 increases the extraction region of the target object 9b as the relative velocity ν (i, j, t) increases (cube 2b → 2b ′), so that the analysis can be performed with higher accuracy. It can be performed.
 また、図21(a)で示すように、前記ヒヤリハット領域(立方体2b’)の大きさが、対象物体9bの移動方向側で大きくするようにされてもよい。図21(a)の例では、対象物体9bは、自車(車両2)に接近して来るとともに、向って左方から右方へも移動しており、したがって前記ヒヤリハット領域(立方体2b’)は、右方側が大きく形成されている。このように衝突可能性解析部24は、対象物体9bの移動方向側で、対象物体9a,9bの抽出領域(立方体2b’)を大きくすることで、測方から飛び出してくるようなシーンにおいて、より精度の高い解析を行うことができる。 Further, as shown in FIG. 21 (a), the size of the near-miss region (cube 2b ') may be increased on the moving direction side of the target object 9b. In the example of FIG. 21 (a), the target object 9b approaches the host vehicle (vehicle 2) and also moves from the left to the right, and therefore, the near-miss region (cube 2b ′). Is formed large on the right side. In this way, the collision possibility analysis unit 24 increases the extraction area (cube 2b ′) of the target objects 9a and 9b on the moving direction side of the target object 9b, and in a scene that jumps out of the measurement. More accurate analysis can be performed.
 また、衝突可能性解析部24は、相対速度算出部21において、対象物体9a,9bの認識によって人物を抽出可能な場合、人物領域であると判定された場合は、対象物体9a,9bの抽出領域(立方体2b,2b’)を自車両領域(立方体2a)よりも少し大きめとなるように、余裕を持たせるようにしてもよい。 The collision possibility analysis unit 24 extracts the target objects 9a and 9b when the relative velocity calculation unit 21 determines that the person area can be extracted by recognizing the target objects 9a and 9b. A margin may be provided so that the area ( cubes 2b, 2b ′) is slightly larger than the own vehicle area (cube 2a).
 衝突可能性解析部24の第2の解析方法では、相対速度算出部21において、図5で示すように、時刻tにおける基準画像I1(i,j,t)上の画素pp(i,j)に対し、対応点探索処理によって参照画像I2(i,j,t)上の対応点ps(i,j)が算出され、それらの画素pp(i,j),ps(i,j)から求められるオプティカルフローOFtと、時刻t+Δtにおける基準画像I1(i,j,t+Δt)上の画素p(i,j)に対し、対応点探索処理によって、参照画像I2(i,j,t)上の対応点pr(i,j)が算出され、それらの画素p(i,j),pr(i,j)から求められるオプティカルフローOFt+Δtとを用いて、図22で示すように、自車(車両2)の車速V1に、対象物体9cの速度V2がそれぞれ一定の状態で、自車(車両2)の進行方向Fに対する角度θt,θt+Δtが検出され、その角度θt,θt+Δtの時間経過に対する変化(θt-θt+Δt)が予め定める閾値内である場合には、衝突可能性有りとして解析される。 In the second analysis method of the collision possibility analysis unit 24, the relative velocity calculation unit 21 causes the pixel pp (i, j) on the reference image I1 (i, j, t) at time t as shown in FIG. On the other hand, the corresponding point ps (i, j) on the reference image I2 (i, j, t) is calculated by the corresponding point search process, and obtained from these pixels pp (i, j) and ps (i, j). Corresponding to the reference image I2 (i, j, t) by the corresponding point search process for the optical flow OFt to be performed and the pixel p (i, j) on the standard image I1 (i, j, t + Δt) at time t + Δt. The point pr (i, j) is calculated, and using the optical flow OFt + Δt obtained from the pixels p (i, j) and pr (i, j), as shown in FIG. ) Of the target object 9c is equal to the vehicle speed V1. In a fixed state, when the angle θt, θt + Δt with respect to the traveling direction F of the host vehicle (vehicle 2) is detected, and the change of the angles θt, θt + Δt with respect to time (θt−θt + Δt) is within a predetermined threshold value, It is analyzed that there is a possibility of collision.
 このように衝突可能性解析部24は、前記衝突可能性を、トリガ判定部22でトリガ対象と判定された領域に対し、自車(車両2)の進行方向Fに対する角度θt,θt+Δtを検出し、その角度θt,θt+Δtが変らない場合は、そのまま走れば衝突の可能性が有る領域として判定することで、自車(車両2)の進行方向Fに対する角度θt,θt+Δtという簡易なパラメータで衝突可能性の有無を判定することができる。 In this way, the collision possibility analysis unit 24 detects the angles θt and θt + Δt with respect to the traveling direction F of the host vehicle (vehicle 2) with respect to the area determined as the trigger target by the trigger determination unit 22. If the angles θt and θt + Δt do not change, it is possible to collide with simple parameters such as the angles θt and θt + Δt with respect to the traveling direction F of the host vehicle (vehicle 2) by determining as the region where there is a possibility of a collision if the vehicle runs as it is. The presence or absence of sex can be determined.
 記録部23で記録される情報は、基準画像I1または参照画像I2の少なくとも一方に、衝突時刻、それらの画像のオプティカルフローから求めることができる衝突時の車速、加速度、ハンドルの操作角、ならびに3次元情報などが考えられるが、前記オプティカルフローから求められるパラメータは、事後に時系列の記録画像から求めることもできるので、コントローラ13において、上述のトリガ判定の際に、特に前記オプティカルフローを使用しない場合には、記録されなくてもよい。また、上述のトリガ判定で使用したパラメータが記録されてもよく、事故解析に有効な3次元情報が記録されてもよい。 Information recorded by the recording unit 23 includes at least one of the base image I1 or the reference image I2, the collision time, the vehicle speed at the time of the collision, the acceleration, the steering angle of the steering wheel, and 3 Dimensional information and the like can be considered, but the parameter obtained from the optical flow can also be obtained from a time-series recorded image after the fact. Therefore, the controller 13 does not particularly use the optical flow when performing the above-described trigger determination. In some cases, it may not be recorded. Moreover, the parameter used by the above-mentioned trigger determination may be recorded, and the three-dimensional information effective for accident analysis may be recorded.
 また、記録部23は、衝突可能性解析部24によって、ヒヤリハットシーンであると判定された場合、衝突可能性とは別に、そのヒヤリハットのレベルに応じたランクも合わせて記録するように構成されてもよい。その場合、衝突可能性解析部24は、前記ヒヤリハット領域に相互に異なる大きさのものを複数備え、その何れに該当したかによって、前記ランクの判定を行うことができる。こうしてランクも合わせて記憶しておくことで、レベルに応じたシーンを容易に選択、抽出することが可能となる。これによって、本実施形態のドライブレコーダは、たとえば高レベルシーンのみを抽出して、事故証明に使用できるような俯瞰画像や見取り図を作ったりするような高度な後処理を行ったり、低レベルシーンまで(総てのヒヤリハットシーンを)、時間経過順に抽出して、その日の運転の反省に用いるような使い方をすることができ、必要なランクまでのシーンを容易に抽出することができる。 In addition, the recording unit 23 is configured to record a rank corresponding to the level of the near-miss in addition to the possibility of collision when the collision possibility analysis unit 24 determines that the scene is a near-miss scene. Also good. In that case, the collision possibility analysis unit 24 includes a plurality of different sizes in the near-miss area, and can determine the rank depending on which one corresponds. By storing the ranks together in this way, it is possible to easily select and extract a scene according to the level. As a result, the drive recorder according to the present embodiment performs high-level post-processing such as extracting only a high-level scene and creating an overhead image or a sketch that can be used for accident proof, (All near-miss scenes) can be extracted in chronological order and used to reflect on the day's driving, and scenes up to the required rank can be easily extracted.
 図23は、前記衝突可能性解析部24を有するドライブレコーダ1aの動作を説明するためのフローチャートである。ステップS0では、ステレオカメラ11,12によって図3で示すように時系列のステレオ画像I1(i,j,t),I2(i,j,t)が取得される。続いて、前記ステップS1では、時刻t+Δtにおける基準画像I1(i,j,t+Δt)と参照画像I2(i,j,t)との対応点探索処理から3次元再構成処理によって、3次元情報P(i,j,t)が算出される。次に、ステップS2では、前記時刻t+Δtにおける基準画像I1(i,j,t+Δt)と時刻tにおける前記基準画像I1(i,j,t)との対応点探索処理によって、時系列の対応付けが行われる。続いて、ステップS3では、前記ステップS1と同様に、時刻tにおける基準画像I1(i,j,t)と参照画像I2(i,j,t)との対応点探索処理から3次元再構成処理によって3次元情報Pp(i,j,t)が算出される。そして、算出された3次元情報P(i,j,t)および3次元情報Pp(i,j,t)の中で、ステップS4で対象とする物体の抽出が行われ、対象物体4,5の領域の時刻tでの位置Pp(i,j,t)と、時刻t+Δでの位置P(i,j,t)とから、ステップS5で相対速度ν(i,j,t)が求められる。 FIG. 23 is a flowchart for explaining the operation of the drive recorder 1a having the collision possibility analysis unit 24. In step S0, time-series stereo images I1 (i, j, t) and I2 (i, j, t) are acquired by the stereo cameras 11 and 12, as shown in FIG. Subsequently, in step S1, the three-dimensional information P is obtained from the corresponding point search process of the reference image I1 (i, j, t + Δt) and the reference image I2 (i, j, t) at the time t + Δt to the three-dimensional reconstruction process. (I, j, t) is calculated. Next, in step S2, time-series association is performed by corresponding point search processing between the reference image I1 (i, j, t + Δt) at the time t + Δt and the reference image I1 (i, j, t) at the time t. Done. Subsequently, in step S3, as in step S1, the three-dimensional reconstruction process is performed from the corresponding point search process of the reference image I1 (i, j, t) and the reference image I2 (i, j, t) at time t. Is used to calculate the three-dimensional information Pp (i, j, t). Then, in the calculated three-dimensional information P (i, j, t) and the three-dimensional information Pp (i, j, t), the target object is extracted in step S4, and the target objects 4 and 5 are extracted. In step S5, the relative speed ν (i, j, t) is obtained from the position Pp (i, j, t) at time t and the position P (i, j, t) at time t + Δ. .
 この後は、トリガ判定部22による判定に移り、前記ステップS41で相対速度算出部21から時系列の相対速度ν(i,j,t),ν(i,j,t+Δt)を取込んで相対加速度aが求められ、ステップS42で閾値TH2と比較され、トリガ判定が行われなかった場合はステップS60で時間Δt、すなわち1フレーム周期だけ待機した後前記ステップS0に戻る。これに対して、前記ステップS42でトリガ判定が行われた場合は、さらにステップS61に移って衝突可能性解析部24による衝突可能性の判定が行われ、ステップS62で、可能性の無い場合には前記ステップS60からステップS0に戻り、可能性のある場合にはステップS63の録画処理が行われる。録画処理の後、ステップS64で前記衝突予測時間を所定時間超えたか否かが判断され、超えていない場合には前記ステップS60からステップS0に戻って処理が継続され、超えている場合には処理が終了される。こうして、本実施形態のドライブレコーダ1aは、少なくとも衝突前後の期間における画像を残すことができ、事故やヒヤリハットの事象の解析に有効な情報を保存することができる。 Thereafter, the process proceeds to the determination by the trigger determination unit 22, and in step S41, the time-series relative speeds ν (i, j, t) and ν (i, j, t + Δt) are taken in from the relative speed calculation unit 21 and are relative. The acceleration a is obtained and compared with the threshold value TH2 in step S42. If no trigger determination is made, the process returns to step S0 after waiting for time Δt, that is, one frame period in step S60. On the other hand, when the trigger determination is made in step S42, the process further proceeds to step S61, where the collision possibility analysis unit 24 determines the possibility of collision, and in step S62, if there is no possibility. Returns from step S60 to step S0, and if possible, the recording process of step S63 is performed. After the recording process, it is determined in step S64 whether or not the predicted collision time has exceeded a predetermined time. If not, the process returns from step S60 to step S0, and the process is continued. Is terminated. Thus, the drive recorder 1a according to the present embodiment can leave images at least before and after the collision, and can store information that is effective for analysis of accidents and near-miss events.
 このようにステレオカメラ11,12の画像から、相対速度ν(i,j,t),ν(i,j,t+Δt)を検出することで前記トリガ判定を行うので、本実施形態のドライブレコーダ1aは、一般的な加速度センサを用いた判定と比べて、誤動作を低減することができるとともに、複雑な処理を必要とせず、簡易な手法で、衝突の可能性が高い、いわゆるヒヤリハットのシーン、たとえば先行車が急ブレーキを踏んだような場合まで、確実に記録することができる。また、本実施形態のドライブレコーダ1aは、事故解析に極めて有効な対象物体4,5の時系列な3次元情報を取得することが可能なステレオカメラ11,12を用いる際に、そのステレオカメラ11,12の画像からトリガ判定を行うことで、前記加速度センサなどのトリガ判定を行うに場合に別途の構成を不要とすることができる。 Thus, since the trigger determination is performed by detecting the relative speeds ν (i, j, t) and ν (i, j, t + Δt) from the images of the stereo cameras 11 and 12, the drive recorder 1a of the present embodiment. Compared with the determination using a general acceleration sensor, it is possible to reduce malfunctions, and does not require complicated processing. It is possible to record reliably even when the preceding vehicle suddenly brakes. Further, when the drive recorder 1a of the present embodiment uses the stereo cameras 11 and 12 that can acquire time-series three-dimensional information of the target objects 4 and 5 that are extremely effective for accident analysis, the stereo camera 11 , 12 makes it possible to eliminate the need for a separate configuration when performing the trigger determination of the acceleration sensor or the like.
 ここで、空走距離や制動距離およびハンドルの切れ角は、速度によって異なり、一方、静止物体から算出された相対速度は、自車(車両2)の車速に置き換えることができ、その場合は、車速に応じた衝突判定を行う(前記立方体2bの大きさを変える)ことで、判定精度を向上することができる。 Here, the free running distance, the braking distance, and the turning angle of the steering wheel vary depending on the speed, while the relative speed calculated from the stationary object can be replaced with the vehicle speed of the own vehicle (vehicle 2). By performing the collision determination according to the vehicle speed (changing the size of the cube 2b), the determination accuracy can be improved.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるドライブレコーダは、時系列画像を取得するステレオカメラと、前記ステレオカメラで取得された前記時系列画像を記録するための記録部と、前記ステレオカメラによって取得された前記時系列画像から、対象物体に対する相対的な速度を算出する相対速度算出部と、前記相対速度算出部で算出された相対速度に応答して、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すトリガ判定部とを備える。 A drive recorder according to an aspect includes a stereo camera that acquires a time-series image, a recording unit that records the time-series image acquired by the stereo camera, and the time-series image acquired by the stereo camera. A relative velocity calculation unit for calculating a relative velocity with respect to the target object, and a trigger for starting the recording in response to the relative velocity calculated by the relative velocity calculation unit, or recording constantly by the recording unit A trigger determination unit for marking the time-series images.
 また、他の一態様では、好ましくは、ドライブレコーダは、車両に搭載され、画像取得部で取得した時系列画像を記録部に記録させて行く際に、危険度が高い場合に、トリガ判定部が、前記記録の開始のトリガを前記記録部に与え、あるいは前記記録部で常時記録される前記時系列画像に対してマーキングを施すようにしたドライブレコーダであって、前記画像取得部は、ステレオカメラから成り、前記ステレオカメラによって取得された画像から、対象物体に対する相対的な速度を算出する相対速度算出部を備え、前記トリガ判定部は、前記相対速度算出部で算出された相対速度に応答して、前記トリガを前記記録部に与え、あるいは前記記録部で常時記録される前記時系列画像に対して前記マーキングを施すものである。 In another aspect, preferably, the drive recorder is mounted on a vehicle, and when the time series image acquired by the image acquisition unit is recorded in the recording unit, the trigger determination unit Is a drive recorder that applies a trigger for starting the recording to the recording unit or marks the time-series images that are always recorded by the recording unit, wherein the image acquisition unit includes a stereo A relative speed calculation unit configured to calculate a relative speed with respect to a target object from an image acquired by the stereo camera, wherein the trigger determination unit responds to the relative speed calculated by the relative speed calculation unit. Then, the trigger is given to the recording unit, or the marking is performed on the time-series image constantly recorded by the recording unit.
 この構成によれば、相対速度算出部によって、ステレオカメラによって取得された時系列画像から、例えば車線上に存在する等の対象物体に対する相対的な速度が算出され、そして、トリガ判定部によって、この相対速度算出部で算出された相対速度が所定の閾値以上である場合に、前記記録の開始のトリガが記録部に与えられ、あるいは記録部で常時記録される時系列画像に対して前記マーキングが施される。 According to this configuration, the relative speed calculation unit calculates the relative speed with respect to the target object such as being on the lane from the time-series image acquired by the stereo camera, and the trigger determination unit calculates the relative speed. When the relative speed calculated by the relative speed calculation unit is equal to or greater than a predetermined threshold, the recording is triggered by the recording unit, or the marking is performed on a time-series image constantly recorded by the recording unit. Applied.
 したがって、このような構成のドライブレコーダは、時系列画像から相対速度を検出して前記トリガやマーキングの判定を行うので、一般的な加速度センサを用いた判定と比べて、誤動作を低減することができるとともに、複雑な処理を必要とせず、簡易な手法で、衝突の可能性が高い場合に、いわゆるヒヤリハットのシーン、たとえば先行車が急ブレーキを踏んだような場合に、確実に記録することができる。また、このような構成のドライブレコーダは、ステレオカメラを用いることで、事故解析に極めて有効な対象物体の時系列な3次元情報を取得することが可能である。また、このような構成のドライブレコーダにおいて、総ての領域を探索するのではなく、対象物体となる領域を事前に抽出し、探索を行うようにした場合は、余分な領域の探索処理を行う必要がなくなる。 Therefore, since the drive recorder having such a configuration detects the relative speed from the time-series image and determines the trigger or the marking, it can reduce malfunction as compared with the determination using a general acceleration sensor. It is possible to record reliably in the case of a so-called near-miss scene, for example, when the preceding vehicle steps on the brakes suddenly, when there is a high possibility of a collision with a simple method that does not require complicated processing. it can. Further, the drive recorder having such a configuration can acquire time-series three-dimensional information of a target object that is extremely effective for accident analysis by using a stereo camera. Further, in the drive recorder having such a configuration, when not all the areas are searched but the area to be the target object is extracted in advance and the search is performed, the search process for the extra area is performed. There is no need.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記相対速度算出部は、算出された相対速度を基に、相対加速度をさらに算出し、前記トリガ判定部は、前記相対加速度に応答して、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すものである。 According to another aspect, in the above-described drive recorder, the relative speed calculation unit further calculates a relative acceleration based on the calculated relative speed, and the trigger determination unit responds to the relative acceleration. Then, a trigger for starting the recording is given, or marking is performed on the time-series images constantly recorded by the recording unit.
 この構成によれば、前記トリガ或いはマーキングの判定に相対加速度を用いることで、該相対加速度は、比較的安定した中央値から、或る程度の幅での変化となるので、判定閾値の設定が容易である。 According to this configuration, by using the relative acceleration for the determination of the trigger or the marking, the relative acceleration changes from a relatively stable median value to a certain range. Easy.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記トリガ判定部の対象領域に対し衝突可能性を解析する衝突可能性解析部をさらに備え、前記トリガ判定部は、前記解析結果に応じて、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すものである。 According to another aspect, the above-described drive recorder further includes a collision possibility analysis unit that analyzes a collision possibility with respect to a target area of the trigger determination unit, and the trigger determination unit is configured to respond to the analysis result. Then, a trigger for starting the recording is given, or marking is performed on the time-series images constantly recorded by the recording unit.
 このような構成のドライブレコーダは、前記トリガ判定部によって相対速度や相対加速度による判定が行われた後に、トリガ対象と判定された領域に対して、さらに衝突可能性解析部が、例えば自車の車線に掛かっているか等、対象物体の領域をより詳細に解析することで、誤動作を低減することができる。 In the drive recorder having such a configuration, after the determination based on the relative speed and the relative acceleration is performed by the trigger determination unit, the collision possibility analysis unit further includes, for example, a vehicle Malfunctions can be reduced by analyzing the region of the target object in more detail, such as whether it is in a lane.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記相対速度算出部は、前記対象物体に対する距離をさらに算出し、この算出した距離と前記相対速度との関係から衝突予測時間を算出し、前記トリガ判定部は、前記衝突予測時間が予め定める閾値以内の場合に、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すものである。 According to another aspect, in the above-described drive recorder, the relative speed calculation unit further calculates a distance to the target object, and calculates a collision prediction time from a relationship between the calculated distance and the relative speed. The trigger determination unit gives a trigger for starting the recording when the predicted collision time is within a predetermined threshold value, or marks the time-series images that are constantly recorded by the recording unit. is there.
 このような構成のドライブレコーダは、相対速度だけでなく、対象物体との距離を加味することで、精度良く判定を行うことができる。 The drive recorder having such a configuration can make a determination with high accuracy by considering not only the relative speed but also the distance to the target object.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記相対速度算出部は、前記ステレオカメラで取得したステレオ画像に対し、対応点探索処理によって算出した視差情報から、前記相対速度を算出するものである。 In another aspect, in the above-described drive recorder, the relative speed calculation unit calculates the relative speed from the disparity information calculated by the corresponding point search process for the stereo image acquired by the stereo camera. Is.
 このような構成のドライブレコーダは、対応点探索処理によって相対速度を算出することで、精度良く相対速度を算出することができる。 The drive recorder having such a configuration can calculate the relative speed with high accuracy by calculating the relative speed by the corresponding point search process.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記相対速度算出部は、前記対応点を算出する算出領域を画面上の固定領域に設定するものである。 In another aspect, in the above-described drive recorder, the relative speed calculation unit sets a calculation area for calculating the corresponding point as a fixed area on the screen.
 この構成によれば、対応点を算出する算出領域を画面上の固定領域に設定しておくことで、算出領域の決定に特別な演算処理を行う必要が無く、相対速度算出部は、対応点探索処理に、求められた視差情報から、相対速度を算出する処理だけを行えばよい。 According to this configuration, by setting the calculation area for calculating the corresponding point as a fixed area on the screen, it is not necessary to perform a special calculation process for determining the calculation area, and the relative speed calculation unit Only the process of calculating the relative speed from the obtained parallax information may be performed in the search process.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記衝突可能性解析部は、前記衝突可能性を、前記トリガ判定部の対象領域の位置情報と、3次元移動ベクトルの向きおよび長さとから判定するものである。 According to another aspect, in the above-described drive recorder, the collision possibility analysis unit determines the collision possibility based on position information of a target area of the trigger determination unit, direction and length of a three-dimensional movement vector. It is judged from.
 この構成によれば、衝突可能性解析部は、トリガ判定部でトリガ対象と判定された領域の位置情報と、3次元移動ベクトルの向きおよび長さとを用いて判定を行うので、このような構成のドライブレコーダは、対象物体の動きを考慮した判定を行うことができる。 According to this configuration, the collision possibility analysis unit performs the determination using the position information of the region determined as the trigger target by the trigger determination unit and the direction and length of the three-dimensional movement vector. This drive recorder can make a determination in consideration of the movement of the target object.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記衝突可能性解析部は、前記相対速度が大きくなるに従い、前記対象物体の抽出領域を大きくするものである。 In another aspect, in the above-described drive recorder, the collision possibility analysis unit enlarges the extraction area of the target object as the relative speed increases.
 このような構成のドライブレコーダは、衝突可能性解析部が、相対速度に従って前記対象物体の抽出領域を変更することで、より精度の高い解析を行うことができる。 In the drive recorder having such a configuration, the collision possibility analysis unit can perform the analysis with higher accuracy by changing the extraction area of the target object according to the relative speed.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記衝突可能性解析部は、前記対象物体の移動方向側で、前記対象物体の抽出領域を大きくするものである。 In another aspect, in the above-described drive recorder, the collision possibility analysis unit enlarges the extraction area of the target object on the moving direction side of the target object.
 このような構成のドライブレコーダは、衝突可能性解析部が、対象物体の移動方向に応じて前記対象物体の抽出領域を変更することで、例えば測方から飛び出してくるようなシーンにおいて、より精度の高い解析を行うことができる。 In the drive recorder having such a configuration, the collision possibility analysis unit changes the extraction area of the target object in accordance with the moving direction of the target object, so that, for example, in a scene that pops out from the measurement method, it is more accurate. High analysis can be performed.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記ステレオカメラは、車両に搭載され、前記衝突可能性解析部は、前記衝突可能性を、前記トリガ判定部でトリガ対象と判定された領域に対し、自車の進行方向に対する角度を検出し、その角度の時間経過に対する変化が予め定める閾値内である場合は、衝突可能性有りとして解析するものである。 In another aspect, in the above-described drive recorder, the stereo camera is mounted on a vehicle, and the collision possibility analysis unit has determined that the collision possibility is a trigger target by the trigger determination unit. An angle with respect to the traveling direction of the host vehicle is detected for the region, and when the change of the angle with respect to time is within a predetermined threshold value, it is analyzed that there is a possibility of collision.
 この構成によれば、衝突可能性解析部は、前記のように対象物体の領域をより詳細に解析することで誤動作を低減するために、その対象物体の領域と自車との位置と速度との関係を用いて、自車の進行方向に対する角度が変らない場合は、そのまま走れば衝突の可能性が有る領域として判定する。したがって、このような構成のドライブレコーダは、自車の進行方向に対する角度という簡易なパラメータで衝突可能性の有無を判定することができる。 According to this configuration, the collision possibility analysis unit analyzes the area of the target object in more detail as described above in order to reduce malfunctions. If the angle with respect to the traveling direction of the host vehicle does not change, it is determined that there is a possibility of a collision if the vehicle runs as it is. Therefore, the drive recorder having such a configuration can determine whether or not there is a possibility of collision with a simple parameter such as an angle with respect to the traveling direction of the host vehicle.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記衝突可能性解析部は、前記衝突可能性の解析結果に応じたランク分けを行い、そのランクを前記記録部にさらに記憶させるものである。 According to another aspect, in the above-described drive recorder, the collision possibility analysis unit performs rank classification according to the analysis result of the collision possibility and further stores the rank in the recording unit. is there.
 このような構成のドライブレコーダは、ドライブ結果の反省などに用いる場合、必要なランクまでのシーンを容易に抽出することができる。 The drive recorder having such a configuration can easily extract scenes up to a required rank when used for reflection of drive results.
 また、他の一態様では、これら上述のドライブレコーダにおいて、前記トリガ判定部は、前記相対速度算出部で算出された衝突予測時間を少なくとも超えた時点で、記録の終了のトリガを前記記録部に与え、あるいは前記記録部で常時記録される前記時系列画像に対して終了のマーキングを施すものである。 Further, in another aspect, in the above-described drive recorder, the trigger determination unit causes the recording unit to trigger a recording end when at least the predicted collision time calculated by the relative speed calculation unit is exceeded. An end marking is given to the time-series image that is given or always recorded by the recording unit.
 このような構成のドライブレコーダは、少なくとも衝突前後の期間における画像を残すことができ、事故やヒヤリハットの事象の解析に有効な情報を保存することができる。 The drive recorder having such a configuration can leave images at least during the period before and after the collision, and can store information useful for analyzing accidents and near-miss events.
 この出願は、2009年3月23日に出願された日本国特許出願特願2009-70467を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2009-70467 filed on Mar. 23, 2009, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、ドライブレコーダを提供することができる。 According to the present invention, a drive recorder can be provided.

Claims (12)

  1.  時系列画像を取得するステレオカメラと、
     前記ステレオカメラで取得された前記時系列画像を記録するための記録部と、
     前記ステレオカメラによって取得された前記時系列画像から、対象物体に対する相対的な速度を算出する相対速度算出部と、
     前記相対速度算出部で算出された相対速度に応答して、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すトリガ判定部とを備えること
     を特徴とするドライブレコーダ。
    A stereo camera that acquires time-series images;
    A recording unit for recording the time-series images acquired by the stereo camera;
    A relative speed calculation unit that calculates a relative speed with respect to a target object from the time-series image acquired by the stereo camera;
    In response to the relative speed calculated by the relative speed calculation unit, a trigger determination unit that gives a trigger for starting the recording or performs marking on the time-series image constantly recorded by the recording unit is provided. A drive recorder characterized by this.
  2.  前記相対速度算出部は、算出された相対速度を基に、相対加速度をさらに算出し、
     前記トリガ判定部は、前記相対加速度に応答して、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すこと
     を特徴とする請求項1に記載のドライブレコーダ。
    The relative speed calculation unit further calculates a relative acceleration based on the calculated relative speed,
    2. The trigger determination unit gives a trigger for starting the recording in response to the relative acceleration, or marks the time-series image constantly recorded by the recording unit. Drive recorder as described in.
  3.  前記トリガ判定部の対象領域に対し衝突可能性を解析する衝突可能性解析部をさらに備え、
     前記トリガ判定部は、前記解析結果に応じて、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すこと
     を特徴とする請求項1または請求項2に記載のドライブレコーダ。
    A collision possibility analysis unit for analyzing the possibility of collision with respect to the target area of the trigger determination unit;
    The trigger determination unit gives a trigger to start the recording according to the analysis result, or marks the time-series image constantly recorded by the recording unit. The drive recorder according to claim 2.
  4.  前記相対速度算出部は、前記対象物体に対する距離をさらに算出し、この算出した距離と前記相対速度との関係から衝突予測時間を算出し、
     前記トリガ判定部は、前記衝突予測時間が予め定める閾値以内の場合に、前記記録の開始のトリガを与え、あるいは、前記記録部で常時記録される前記時系列画像に対しマーキングを施すこと
     を特徴とする請求項1に記載のドライブレコーダ。
    The relative speed calculation unit further calculates a distance to the target object, calculates a collision prediction time from a relationship between the calculated distance and the relative speed,
    The trigger determination unit gives a trigger to start the recording when the predicted collision time is within a predetermined threshold value, or marks the time-series image constantly recorded by the recording unit. The drive recorder according to claim 1.
  5.  前記相対速度算出部は、前記ステレオカメラで取得したステレオ画像に対し、対応点探索処理によって算出した視差情報から、前記相対速度を算出すること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載のドライブレコーダ。
    5. The relative speed calculation unit calculates the relative speed from disparity information calculated by corresponding point search processing for a stereo image acquired by the stereo camera. The drive recorder according to item 1.
  6.  前記相対速度算出部は、前記対応点を算出する算出領域を画面上の固定領域に設定すること
     を特徴とする請求項5に記載のドライブレコーダ。
    The drive recorder according to claim 5, wherein the relative speed calculation unit sets a calculation area for calculating the corresponding point as a fixed area on a screen.
  7.  前記衝突可能性解析部は、前記衝突可能性を、前記トリガ判定部の対象領域の位置情報と、3次元移動ベクトルの向きおよび長さとから判定すること
     を特徴とする請求項3に記載のドライブレコーダ。
    The drive according to claim 3, wherein the collision possibility analysis unit determines the collision possibility from position information of a target area of the trigger determination unit and a direction and a length of a three-dimensional movement vector. Recorder.
  8.  前記衝突可能性解析部は、前記相対速度が大きくなるに従い、前記対象物体の抽出領域を大きくすること
     を特徴とする請求項3または請求項7に記載のドライブレコーダ。
    The drive recorder according to claim 3 or 7, wherein the collision possibility analysis unit increases an extraction area of the target object as the relative speed increases.
  9.  前記衝突可能性解析部は、前記対象物体の移動方向側で、前記対象物体の抽出領域を大きくすること
     を特徴とする請求項3または請求項7に記載のドライブレコーダ。
    The drive recorder according to claim 3 or 7, wherein the collision possibility analysis unit increases an extraction area of the target object on a moving direction side of the target object.
  10.  前記ステレオカメラは、車両に搭載され、
     前記衝突可能性解析部は、前記衝突可能性を、前記トリガ判定部の対象領域に対し、自車の進行方向に対する角度を検出し、その角度の時間経過に対する変化が予め定める閾値内である場合は、衝突可能性有りとして解析すること
     を特徴とする請求項3に記載のドライブレコーダ。
    The stereo camera is mounted on a vehicle,
    The collision possibility analysis unit detects an angle of the collision possibility with respect to a target area of the trigger determination unit with respect to a traveling direction of the own vehicle, and a change of the angle with respect to time is within a predetermined threshold. The drive recorder according to claim 3, wherein the drive recorder is analyzed as having a possibility of collision.
  11.  前記衝突可能性解析部は、前記衝突可能性の解析結果に応じたランク分けを行い、そのランクを前記記録部にさらに記憶させること
     を特徴とする請求項3または請求項10に記載のドライブレコーダ。
    The drive recorder according to claim 3 or 10, wherein the collision possibility analysis unit performs rank division according to the analysis result of the collision possibility and further stores the rank in the recording unit. .
  12.  前記トリガ判定部は、前記相対速度算出部で算出された衝突予測時間を少なくとも超えた時点で、記録の終了のトリガを前記記録部に与え、あるいは前記記録部で常時記録される前記時系列画像に対して終了のマーキングを施すこと
     を特徴とする請求項4に記載のドライブレコーダ。
    The trigger determination unit gives the recording end trigger to the recording unit at least when the predicted collision time calculated by the relative speed calculation unit is exceeded, or the time-series image constantly recorded by the recording unit The drive recorder according to claim 4, wherein end marking is performed on the drive recorder.
PCT/JP2010/001968 2009-03-23 2010-03-18 Drive recorder WO2010109831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505860A JPWO2010109831A1 (en) 2009-03-23 2010-03-18 Drive recorder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009070467 2009-03-23
JP2009-070467 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010109831A1 true WO2010109831A1 (en) 2010-09-30

Family

ID=42780530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001968 WO2010109831A1 (en) 2009-03-23 2010-03-18 Drive recorder

Country Status (2)

Country Link
JP (1) JPWO2010109831A1 (en)
WO (1) WO2010109831A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070040A (en) * 2010-09-21 2012-04-05 Jvc Kenwood Corp Stereoscopic imaging apparatus and stereoscopic imaging method
JP2012146146A (en) * 2011-01-12 2012-08-02 Denso It Laboratory Inc Moving object detection apparatus
JP2018169667A (en) * 2017-03-29 2018-11-01 株式会社デンソー Driving information recording system, driving information recording method, and program
CN110490993A (en) * 2019-08-22 2019-11-22 公安部交通管理科学研究所 A kind of automobile data recorder interpretation apparatus and system
CN111627042A (en) * 2019-02-28 2020-09-04 丰田自动车株式会社 Collision determination server, program, and recording medium
JP2022097576A (en) * 2020-11-24 2022-06-30 株式会社ユピテル Device and program
CN114944082A (en) * 2021-02-16 2022-08-26 丰田自动车株式会社 Image collecting device, image collecting method, and recording medium
JP7438584B2 (en) 2022-04-26 2024-02-27 株式会社ユピテル equipment and programs
JP7471024B2 (en) 2019-07-09 2024-04-19 株式会社ユピテル DISPLAY CONTROL SYSTEM, DISPLAY CONTROL METHOD, AND PROGRAM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302621A (en) * 2003-03-28 2004-10-28 Calsonic Kansei Corp Vehicle collision preventing device
JP2005037991A (en) * 2003-07-15 2005-02-10 Toyota Motor Corp Onboard collision countermeasure system, collision accident countermeasure facilitation supporting system and collision accident countermeasure system configured including these
JP2008123462A (en) * 2006-11-16 2008-05-29 Hitachi Ltd Object detector
WO2009099022A1 (en) * 2008-02-04 2009-08-13 Konica Minolta Holdings, Inc. Periphery monitoring device and periphery monitoring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055194A1 (en) * 2005-11-08 2007-05-18 Pioneer Corporation Information recording device, information recording method, information recording program and recording medium
JP2007334760A (en) * 2006-06-16 2007-12-27 Auto Network Gijutsu Kenkyusho:Kk Drive recorder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302621A (en) * 2003-03-28 2004-10-28 Calsonic Kansei Corp Vehicle collision preventing device
JP2005037991A (en) * 2003-07-15 2005-02-10 Toyota Motor Corp Onboard collision countermeasure system, collision accident countermeasure facilitation supporting system and collision accident countermeasure system configured including these
JP2008123462A (en) * 2006-11-16 2008-05-29 Hitachi Ltd Object detector
WO2009099022A1 (en) * 2008-02-04 2009-08-13 Konica Minolta Holdings, Inc. Periphery monitoring device and periphery monitoring method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070040A (en) * 2010-09-21 2012-04-05 Jvc Kenwood Corp Stereoscopic imaging apparatus and stereoscopic imaging method
JP2012146146A (en) * 2011-01-12 2012-08-02 Denso It Laboratory Inc Moving object detection apparatus
JP2018169667A (en) * 2017-03-29 2018-11-01 株式会社デンソー Driving information recording system, driving information recording method, and program
CN111627042A (en) * 2019-02-28 2020-09-04 丰田自动车株式会社 Collision determination server, program, and recording medium
JP7471024B2 (en) 2019-07-09 2024-04-19 株式会社ユピテル DISPLAY CONTROL SYSTEM, DISPLAY CONTROL METHOD, AND PROGRAM
CN110490993A (en) * 2019-08-22 2019-11-22 公安部交通管理科学研究所 A kind of automobile data recorder interpretation apparatus and system
JP2022097576A (en) * 2020-11-24 2022-06-30 株式会社ユピテル Device and program
JP7266335B2 (en) 2020-11-24 2023-04-28 株式会社ユピテル Device and program
CN114944082A (en) * 2021-02-16 2022-08-26 丰田自动车株式会社 Image collecting device, image collecting method, and recording medium
JP7438584B2 (en) 2022-04-26 2024-02-27 株式会社ユピテル equipment and programs

Also Published As

Publication number Publication date
JPWO2010109831A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2010109831A1 (en) Drive recorder
US11643076B2 (en) Forward collision control method and apparatus, electronic device, program, and medium
US9934440B1 (en) Method for monitoring blind spot of monitoring vehicle and blind spot monitor using the same
Anand et al. Crack-pot: Autonomous road crack and pothole detection
JP5297078B2 (en) Method for detecting moving object in blind spot of vehicle, and blind spot detection device
US20180150704A1 (en) Method of detecting pedestrian and vehicle based on convolutional neural network by using stereo camera
JP5867273B2 (en) Approaching object detection device, approaching object detection method, and computer program for approaching object detection
US10442438B2 (en) Method and apparatus for detecting and assessing road reflections
US9280900B2 (en) Vehicle external environment recognition device
Aytekin et al. Increasing driving safety with a multiple vehicle detection and tracking system using ongoing vehicle shadow information
JP6436357B2 (en) Pedestrian motion identification device for vehicle
JP6972797B2 (en) Information processing device, image pickup device, device control system, mobile body, information processing method, and program
WO2018211930A1 (en) Object detection device, object detection method, and computer-readable recording medium
KR101472674B1 (en) Method and apparatus for video surveillance based on detecting abnormal behavior using extraction of trajectories from crowd in images
KR20170064652A (en) Egomotion estimation system and method thereof
JP2010079582A (en) Apparatus, method and program for detecting object
US9365195B2 (en) Monitoring method of vehicle and automatic braking apparatus
JP5261752B2 (en) Drive recorder
CN115147587A (en) Obstacle detection method and device and electronic equipment
KR20180047149A (en) Apparatus and method for risk alarming of collision
KR101492366B1 (en) Car accident detection method and apparatus
JP7031157B2 (en) Object detection method and object detection device
Sirbu et al. Real-time line matching based speed bump detection algorithm
JP4575315B2 (en) Object detection apparatus and method
JP6972798B2 (en) Information processing device, image pickup device, device control system, mobile body, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505860

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755634

Country of ref document: EP

Kind code of ref document: A1