WO2010109816A1 - Solid state image pickup device - Google Patents

Solid state image pickup device Download PDF

Info

Publication number
WO2010109816A1
WO2010109816A1 PCT/JP2010/001915 JP2010001915W WO2010109816A1 WO 2010109816 A1 WO2010109816 A1 WO 2010109816A1 JP 2010001915 W JP2010001915 W JP 2010001915W WO 2010109816 A1 WO2010109816 A1 WO 2010109816A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
column amplifier
pixel
value
Prior art date
Application number
PCT/JP2010/001915
Other languages
French (fr)
Japanese (ja)
Inventor
片桐哲也
楠田将之
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010524271A priority Critical patent/JP4582267B1/en
Publication of WO2010109816A1 publication Critical patent/WO2010109816A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors

Definitions

  • the present invention relates to a solid-state imaging device that performs analog-digital conversion of a pixel signal by a successive approximation type analog-digital conversion method, and particularly relates to a technique for correcting a weighted value of each bit of digital data.
  • a pixel unit in which a plurality of pixels are arranged in a matrix and a column AD conversion unit that reads a pixel signal from each pixel provided corresponding to each column of the pixel unit are provided.
  • a CMOS image sensor that performs analog-to-digital conversion of the pixel signal read out in (1) is known.
  • the column AD conversion unit generally includes an integration type AD converter, and generally performs AD (analog digital) conversion of a pixel signal by an integration type AD conversion method.
  • Patent Document 2 a technique for performing AD conversion by dividing digital data into an upper bit group and a lower bit group is known.
  • FIG. 8 shows a circuit diagram of a column AD conversion unit that AD-converts the upper bit group by the successive approximation AD conversion method and AD-converts the lower bit group by the integration AD conversion method.
  • FIG. 9 shows a timing chart of the column AD converter shown in FIG.
  • the column AD conversion unit shown in FIG. 8 is a 15-bit column AD conversion unit in which one bit is added as a redundant bit, and is divided into an upper bit group of upper 4 bits and a lower bit group of lower 11 bits including redundant bits. Then, AD conversion is performed.
  • the column AD conversion unit includes a column amplifier 100, a clamp unit 200, a comparator unit 300, a latch circuit 400, a successive approximation signal generation unit 500, and an SA (Successive Approximation) register 600.
  • SA Successessive Approximation
  • a high-potential signal which is a noise (Noise) component pixel signal Video
  • ⁇ ARST, ⁇ CL, ⁇ CRST1, and ⁇ CRST2 are set to Hi (high level) for a certain period
  • the charge accumulated in the photodiode is transferred to the floating diffusion, and is lower by the magnitude of the Signal component than the Noise component which is the pixel signal Video of the (Noise + Signal) component from the pixel portion via the vertical signal line L1.
  • a potential signal is output.
  • the output signal AOUT of the column amplifier 100 increases from VOPA, which is the reset level of the column amplifier 100, according to the magnitude of the Signal component.
  • the magnitude of this change in VOPA depends on the gain settings of ⁇ GainA and ⁇ GainB. That is, as shown in the timing chart of FIG. 9, when both ⁇ GainA and ⁇ GainB are Hi, the gain of the column amplifier 100 is (CA + CB) / CF, and the output signal AOUT of the column amplifier 100 is Signal ⁇ Increase by (CA + CB) / CF.
  • AD conversion of the upper bit group is started by the successive approximation AD conversion method.
  • ⁇ SA1 Hi
  • the capacitor C1 is connected to the column amplifier 100.
  • the potential input to the column amplifier 100 increases by VREF ⁇ C1.
  • AOUT decreases by VREF ⁇ (C1 / CF).
  • a signal CIN (hereinafter referred to as “CIN”) input to the comparator unit 300 has a DC level different from AOUT because the clamp unit 200 exists between the column amplifier 100 and the comparator unit 300, but the AC level. Changes in the same way as AOUT.
  • the potential of AOUT changes according to VREF ⁇ (C3 / CF)
  • the potential of AOUT changes according to VREF ⁇ (C4 / CF)
  • COUT is inverted from Lo to Hi (period T4).
  • the upper bit group can be digitized by performing the above-described operation by giving C1, C2, C3, C4, CF, C21, C22, and VREF a certain relationship.
  • VRAMP a ramp signal
  • FIG. 10 is a diagram conceptually illustrating an AD conversion operation by the successive approximation AD conversion method.
  • the vertical direction indicates the CIN level.
  • TH1 to TH4 are KG ⁇ (C1 / CF) ⁇ VREF, KG ⁇ (C2 / CF) ⁇ VREF, KG ⁇ (C3 / CF) ⁇ VREF, and KG ⁇ (C4 / CF) ⁇ VREF, respectively.
  • D1 to D4 indicate 4-bit digital data.
  • FIG. 11 is a graph showing an ideal AD conversion characteristic of the upper bit group and an AD conversion characteristic of the lower bit group in the column AD conversion unit of FIG.
  • the horizontal axis represents an analog pixel signal (analog input) input to the column AD converter
  • the left vertical axis represents the value of the upper bit group
  • the right vertical axis represents the value of the lower bit group.
  • G1 indicates the AD conversion characteristic of the upper bit group
  • g2 indicates the AD conversion characteristic of the lower bit group.
  • the value of the high-order bit group changes in 16 steps from 0 to 15 stepwise as the analog input increases. It can be seen that the value of the lower bit group changes in a saw-like manner, with one step of the upper bit group being one period.
  • the column AD converter in FIG. 8 finally obtains 14-bit digital data. Since the upper bit group is 4 bits, the resolution of the lower bit group is 10 bits, but the lower bit group is 1-bit redundant. It has a bit and is 11 bits.
  • the dynamic range of the lower bit group is obtained by removing the upper 0.5-bit redundant bit and the lower 0.5-bit redundant bit.
  • the AD conversion characteristics of FIG. 12 can be obtained.
  • the weighting value is a weighting value used when converting a binary number to a decimal number
  • the capacitances of the capacitors C1 to C4 are deviated from the ideal values, and the CIN when the capacitors C1 to C4 are connected to the column amplifier 100 is generally deviated from the ideal values.
  • the AD conversion characteristics of the bit group and the lower bit group are as shown in FIG. In FIG. 13, it can be seen that the dynamic range of the lower bit group varies depending on the value of the upper bit group.
  • the signal input to the column amplifier 100 is set to 0, the column amplifier 100 and the capacitors C1 to C4 are forcibly connected to the SA register 600, the value of CIN is measured, and based on the measurement result. Correction of the weight value of each bit of the upper bit group has been performed.
  • the SA register 600 causes the capacitors C1 to C4 to be connected to the column amplifier. After sequentially connecting to 100, all the capacitors C1 to C4 should not be connected to the column amplifier 100 in the end.
  • the SA register 600 is compulsory even though the values of D1 to D4 are all zero.
  • the capacitor C1 is connected to the column amplifier 100. Therefore, the SA register 600 is forced to operate differently from the normal operation.
  • the value of CIN input to the comparator unit 300 when the capacitor C1 is connected to the column amplifier 100 differs between normal operation and measurement, and CIN cannot be measured with high accuracy. there were.
  • the weighting value of each bit of the upper bit group cannot be corrected with high accuracy.
  • An object of the present invention is to provide a solid-state imaging device capable of accurately correcting the weighting value of each bit of digital data.
  • a solid-state imaging device corresponding to a pixel portion in which a plurality of pixels are arranged in a matrix, a vertical scanning circuit that sequentially selects each row of the pixel portion, and each column of the pixel portion.
  • a plurality of readout circuits that read out pixel signals from pixels in a row selected by the vertical scanning circuit and perform analog-to-digital conversion, and the readout circuit includes a column amplifier that amplifies the pixel signals read out from the pixel unit; A comparator unit that inverts the output signal by comparing the signal output from the column amplifier with a predetermined reference voltage, and a signal having a different level provided for each bit of the digital data to be converted from analog to digital A plurality of successive approximation capacitors for outputting to the column amplifier, a voltage source for outputting a pseudo pixel signal, the successive approximation capacitor, The bit determination unit that sequentially switches the connection relationship with the column amplifier and determines the value of the digital data of the pixel signal by the successive approximation type analog-to-digital conversion method based on the output signal output from the comparator unit; A measurement unit that measures a signal input to the comparator unit, and one sequential comparison with the bit determination unit in a state where the column amplifier and the pixel unit are disconnected and
  • FIG. 1 is an overall configuration diagram of a solid-state imaging device according to an embodiment of the present invention.
  • the circuit diagram of the column AD conversion part shown in FIG. 1 is shown. It is a flowchart which shows a correction process. It is the graph which showed Y ⁇ 0>. It is the graph which showed Y ⁇ 4>. It is the graph which showed Y ⁇ 3>. It is the graph which showed Y ⁇ 2>.
  • the circuit diagram of the column AD conversion part which AD-converts an upper bit group by a successive approximation AD conversion system, and AD-converts a lower bit group by an integral AD conversion system is shown. 9 shows a timing chart of the column AD converter shown in FIG.
  • FIG. 1 is an overall configuration diagram of a solid-state imaging device according to an embodiment of the present invention.
  • the solid-state imaging device is a solid-state imaging device using a column parallel AD conversion type (column AD conversion type) CMOS image sensor, and includes a pixel unit 1, a vertical scanning circuit 2, and a column AD as a readout circuit.
  • a conversion unit 3, a horizontal scanning circuit 4, a control unit 5, an image processing unit 6, and an image memory 7 are provided.
  • the pixel unit 1 has a plurality of pixels arranged in a matrix of 8 rows ⁇ 8 columns. Note that 8 rows ⁇ 8 columns is an example, and may be arranged in M (M is a positive integer of 2 or more) rows ⁇ N (N is a positive integer of 2 or more) columns.
  • the vertical scanning circuit 2 is configured by, for example, a shift register, and is connected to the pixel unit 1 via eight pixel control lines HL1 corresponding to the first to eighth rows of the pixel unit 1. .
  • the vertical scanning circuit 2 performs vertical scanning of the pixel unit 1 by cyclically selecting the pixel control lines HL1 in the first to eighth rows in synchronization with the vertical synchronization signal VD.
  • the horizontal scanning circuit 4 is composed of, for example, a shift register, and outputs a column selection signal in synchronization with the horizontal synchronization signal HD, so that the column AD conversion units for the first to eighth columns in one horizontal scanning period. 3 is selected cyclically, the column AD conversion unit 3 is horizontally scanned, and the pixel signals of the first to eighth columns held by the column AD conversion unit 3 are sequentially output.
  • the control unit 5 includes a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls the entire solid-state imaging device.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the image processing unit 6 is configured by a dedicated hardware circuit, and performs various image processing on the image data output from each column AD conversion unit 3.
  • the image processing unit 6 particularly includes a correction unit 61. Details of the processing of the correction unit 61 will be described later.
  • the image memory 7 is composed of a storage device such as a hard disk, and stores image data that has been subjected to predetermined image processing by the image processing unit 6.
  • FIG. 2 shows a circuit diagram of the column AD conversion unit 3 shown in FIG.
  • the column AD conversion unit 3 includes a column amplifier 10, a clamp unit 20, a comparator unit 30, a latch unit 40 as a measurement unit, a successive approximation signal generation unit 50, an SA register 60 as a bit determination unit, and a switch unit 70. Yes.
  • ⁇ CORR, ⁇ XCORR, ⁇ GainA, ⁇ GainB, ⁇ ARST, ⁇ CL, ⁇ SH, ⁇ CMP, ⁇ CRST1, and ⁇ CRST2 indicate control signals, and are output from the control unit 5, for example.
  • VRAMP indicates a ramp signal and is output from the control unit 5, for example.
  • the column amplifier 10 performs an amplification process on the pixel signal Video output from the pixel unit 1 while performing a CDS process, and removes a noise signal from the pixel signal Video.
  • the column amplifier 10 includes an operational amplifier A10, capacitors CA, CB, and CF, and switches SW3, SW4, and SW5.
  • the capacitors CA and CB are connected to the negative terminal side of the operational amplifier A10 via switches SW3 and SW4.
  • the capacitor CF is a feedback capacitor provided between the input and output terminals of the operational amplifier A10.
  • the input signal is amplified with a gain of (CA + CB) / CF.
  • the clamp unit 20 is provided on the output terminal side of the column amplifier 10 and clamps the black level of the pixel signal Video to a clamp voltage VCL that is a predetermined constant voltage.
  • the switch SW7 has one end connected to the capacitor C21 and the other end connected to the comparator unit 30 via the capacitor C22.
  • the capacitor Cx has one end connected to the capacitor C21 and the other end grounded to hold AOUT.
  • the comparator unit 30 includes switches SW10, SW8, SW9, a capacitor C31, and comparators A31, A32.
  • the pixel signal Video is AD-converted separately into an upper bit group of upper 4 bits and a lower bit group of lower 11 bits (including 1 redundant bit). Then, the column AD conversion unit 3 performs AD conversion on the upper bit group by the successive approximation AD conversion method, and AD converts the lower bit group by the integration AD conversion method.
  • the switch SW8 is connected between the input and output terminals of the comparator A31.
  • the comparator A31 is reset, and the negative terminal of the comparator A31 and the output terminal of the comparator A31 are connected.
  • the potential is set to a predetermined reset level (hereinafter referred to as “VOPC”). Note that VOPC is always applied to the plus terminal of the comparator A31.
  • Comparator A31 compares the signal input to the negative terminal (hereinafter referred to as “CIN”) with VOPC. When CIN exceeds VOPC, the output signal is inverted to a low level, and when CIN falls below VOPC, Invert the output signal to high level.
  • CIN negative terminal
  • the switch SW9 is connected between the input and output terminals of the comparator A32.
  • the comparator A32 is reset, and the negative terminal of the comparator A32 and the output terminal of the comparator A32 are connected.
  • the potential is set to VOPC which is a reset level. Note that VOPC is always applied to the plus terminal of the comparator A32.
  • the comparator A32 has a negative terminal connected to the comparator A31 via the capacitor C31, and when the output signal from the comparator A31 exceeds VOPC, the output signal (hereinafter referred to as “COUT”) is inverted to Lo and the comparator A31. When the output signal from VOPC falls below VOPC, COUT is inverted to Hi.
  • the counter 90 is constituted by, for example, an 11-bit counter provided in the control unit 5 shown in FIG. 1. After the input to the comparator unit 30 of VRAMP is started, CIN reaches VOPC and COUT is inverted. Until the count value is counted and the latch circuit 41 latches the count value.
  • the successive approximation signal generation unit 50 includes capacitors C1 to C4 as successive approximation capacitors and switches SA1 to SA4.
  • Capacitors C1 to C4 output signals having different levels to the column amplifier 10 corresponding to the respective bits of the upper bit group.
  • one end of each of the capacitors C1 to C4 is connected to a voltage source (not shown) that outputs a reference voltage (hereinafter referred to as “VREF”) via the switches SA1 to SA4, and the other end is connected to the operational amplifier A10. Is connected to the negative terminal.
  • a voltage source not shown
  • VREF reference voltage
  • the capacitors C1 to C4 correspond to D1 to D4, where each bit of the upper bit group is D1 to D4 in order from the most significant bit.
  • ⁇ SA1 to ⁇ SA4 are output by the SA register 60.
  • the SA register 60 sequentially switches the connection relationship between the capacitors C1 to C4 and the column amplifier 10, and based on COUT output from the comparator unit 30, the value of the upper bit of the pixel signal Video is determined by the successive approximation AD conversion method. decide.
  • the SA register 60 sequentially connects the capacitors C1 to C4 to the column amplifier 10 in the descending order of capacity, and one of the capacitors C1 to C4 is connected to the column amplifier 10. Based on the presence or absence of inversion, whether to maintain the connection of the one capacitor to the column amplifier 10 is determined, and the value of the bit corresponding to the one capacitor is determined.
  • the SA register 60 sequentially connects the capacitors C2 to C4 to the column amplifier 10, and when COUT when a certain capacitor is connected is inverted, the bit value corresponding to the one capacitor is increased by one.
  • the bit value is opposite to the bit value and the bit corresponding to the one capacitor is 1, the connection of the capacitor to the column amplifier 10 is maintained, and the bit corresponding to the one capacitor is 0. In this case, the connection of the one capacitor to the column amplifier 10 is cut off.
  • the switch unit 70 is connected between the vertical signal line L1 and the column amplifier 10, and under the control of the correction unit 61, the column amplifier 10 and the vertical signal line L1 are disconnected to connect the column amplifier 10 to the voltage source 80.
  • the switch unit 70 includes switches SW1 and SW2.
  • the Hi and Lo timings of ⁇ CORR and ⁇ XCORR are determined so that the switches SW1 and SW2 are turned on complementarily.
  • the load capacity viewed from the operational amplifier A10 is the same in the normal operation of reading the pixel signal Video and in the measurement of measuring CIN.
  • the load capacity viewed from the operational amplifier A10 is the capacitors CA1 and C4 and the capacitors C1 to C4 sequentially connected by the SA register 60. Therefore, the load capacity viewed from the operational amplifier A10 is the same during normal operation and during measurement.
  • the noise component pixel signal Video is sampled and held by the capacitors CA and CB.
  • a signal having a potential lower than the Noise component which is the (Noise + Signal) component pixel signal Video, is output from the pixel unit 1 through the vertical signal line L1.
  • the output signal AOUT of the column amplifier 10 increases from VOPA by Signal ⁇ ((CA + CB) / CF) according to the magnitude of the Signal component.
  • ⁇ SA1 Hi
  • the capacitor C1 is connected to the column amplifier 10
  • the potential input to the column amplifier 10 increases only by VREF ⁇ C1
  • AOUT decreases by VREF ⁇ (C1 / CF).
  • the correction unit 61 disconnects the column amplifier 10 and the pixel unit 1 and connects the column amplifier 10 to the voltage source 80, and the SA register 60 is one capacitor among the capacitors C1 to C4. Is output to the voltage source 80 so as to connect to the column amplifier 10. Then, the correction unit 61 causes the latch unit 40 to measure CIN, and corrects the weighting value of the bit corresponding to the one capacitor based on the measurement result by the latch unit 40.
  • the correction unit 61 disconnects the column amplifier 10 and the pixel unit 1 and connects the column amplifier 10 to the voltage source 80, and one of the capacitors C1 to C4 is connected to the column amplifier 10.
  • the pseudo pixel signals having different levels to be connected are output to the voltage source 80 at least twice.
  • the correction unit 61 interpolates each time of the digital measurement value measured by the latch unit 40, calculates a first function indicating the relationship between the voltage of the pseudo pixel signal and the digital measurement value, and calculates the calculated first value. Based on this function, the weight value of the bit corresponding to the one capacitor is corrected.
  • the correction unit 61 causes the voltage source 80 to output a pseudo pixel signal that does not connect all of the capacitors C1 to C4 to the column amplifier 10 at least twice, and in the same manner as the first function, A second function indicating the relationship with the measured value is calculated, and the weight value of the bit corresponding to the one successive approximation capacitor is corrected based on the difference between the first function and the second function.
  • the weighting value can be corrected using the first function and the second function.
  • the correction unit 61 cuts off the voltage between the column amplifier 10 and the pixel unit 1 by applying voltage to the column amplifier 10 during the vertical blanking period. What is necessary is just to make it the state connected to the source 80.
  • FIG. 3 is a flowchart showing this correction processing.
  • the correction unit 61 causes the voltage source 80 to output a pseudo pixel signal at such a level that the SA register 60 blocks the capacitors C1 to C4 from the column amplifier 10 (step S1).
  • the column amplifier 10 subtracts the pixel signal Video of the Noise component output in the first phase from the pixel signal Video of the (Noise + Signal) component, specifically, a signal according to the Signal component, specifically, , Signal ⁇ (CA + CB) / CF is output as AOUT.
  • the voltage source 80 outputs a pseudo pixel signal having a level corresponding to the Noise component in the first phase to the column amplifier 10 and then outputs a pseudo pixel signal having a level corresponding to the (Noise + Signal) component in the second phase to the column amplifier 10. Output to.
  • the SA register 60 sequentially connects the capacitors C1 to C4, and finally shuts off all of C1 to C4 from the column amplifier 10.
  • the latch unit 40 counts the time from when VRAMP is input until CIN exceeds VOPC, and obtains the values of D5 to D15 of the lower bit group, thereby measuring the digital measurement value of CIN (Ste S2).
  • step S3 when the latch unit 40 has finished the two CIN measurements (YES in step S3), the correction unit 61 advances the process to step S4. On the other hand, when the latch unit 40 has not finished the two measurements of CIN (NO in step S3), the correction unit 61 returns the process to step S1 and causes the voltage source 80 to measure the first CIN.
  • the correction unit 61 plots the two digital measurement values of CIN measured by the latch unit 40 in a two-dimensional coordinate space having Signal ′ as the horizontal axis and the CIN digital measurement value as the vertical axis, Y ⁇ 0> as the second function is calculated (step S4).
  • FIG. 4 is a graph showing Y ⁇ 0>.
  • the vertical axis indicates the CIN digital measurement value by the latch unit 40
  • the horizontal axis indicates Signal ′.
  • X1 represents Signal ′ at the time of the first measurement
  • Y1 represents a digital measurement value of CIN at the time of the first measurement
  • X2 represents Signal 'at the time of the second measurement
  • Y2 represents a digital measurement value of CIN at the time of the second measurement.
  • Y ⁇ 0> deviates from RL due to changes over time in the capacitance of capacitors (for example, capacitors CA, CB, etc.) constituting the column AD conversion unit 3 and due to individual variations inherent in the capacitor.
  • the correction unit 61 outputs to the voltage source 80 a pseudo pixel signal such that the SA register 60 sequentially connects the capacitors C1 to C4 to the column amplifier 10 and finally connects only the capacitor Ci and only the column amplifier 10.
  • step S7 the latch unit 40 measures the digital measurement value of CIN (step S7).
  • step S9 the correction
  • step S8 when the two measurements of CIN for one i have not been completed (NO in step S8), the correction unit 61 returns the process to step S6, and only the capacitor Ci is connected to the column amplifier 10, In addition, a pseudo pixel signal having a different Signal ′ value from the first measurement is output to the voltage source 80.
  • the pseudo-pixel signal having a different Signal ′ in which the SA register 60 connects only the capacitor C4 to the column amplifier 10, that is, the SA register 60 has D1 to D4 0, 0, 0, 1
  • the pseudo pixel signals having different signals' are output from the voltage source 80 twice. Then, the correction unit 61 acquires two digital measurement values measured by the latch unit 40.
  • the correction unit 61 plots the digital measurement values measured twice by the latch unit 40 in a two-dimensional coordinate space with Signal ′ as the horizontal axis and CIN's digital measurement value as the vertical axis. For example, Y ⁇ i> that is the first function is calculated by linearly interpolating the values (step S9).
  • FIG. 5 is a graph showing Y ⁇ 4>.
  • the vertical and horizontal axes are the same as those in FIG.
  • X3 represents Signal ′ at the time of the first measurement
  • Y3 represents a digital measurement value of CIN at the time of the first measurement
  • X4 represents Signal ′ at the time of the second measurement
  • Y4 represents a digital measurement value of CIN at the time of the second measurement.
  • the Y-intercept B4 (X4 ⁇ Y3-X3 ⁇ Y4) / (X4-X3). It is a straight line represented.
  • the slope a of Y ⁇ 4> is determined by VRAMP, it is the same as the slope a of Y ⁇ 0>.
  • K4 which is a weighting value for D4 is added to Y ⁇ 4> as an offset
  • Y ⁇ 4> should ride on RL.
  • step S10 the correction unit 61 calculates a difference ⁇ B04 between B0 and B4 from Y ⁇ 0> ⁇ Y ⁇ 4>, and corrects K4 by setting ⁇ B04 to K4 after correction. Since Y ⁇ 0> and Y ⁇ 4> have the same slope, Y ⁇ 0> ⁇ Y ⁇ 4> indicates that B ⁇ 0> is a Y intercept of Y ⁇ 0> and a Y intercept of Y ⁇ 4>. A difference ⁇ B04 from a certain B4 can be obtained.
  • step S11 the correction unit 61 updates i by subtracting 1 from i. If i ⁇ 1 (NO in step S12), the process returns to step S6, and if i ⁇ 1 ( In step S12, YES), the process ends. That is, the correction unit 61 updates i until i ⁇ 1, and repeats the processes of steps S6 to S12.
  • FIG. 6 is a graph showing Y ⁇ 3>.
  • the vertical and horizontal axes are the same as those in FIG. Y ⁇ 3> is a straight line obtained when the voltage source 80 outputs twice the pseudo pixel signal having different Signal ′ such that only the capacitor C3 is connected to the column amplifier.
  • the Y-intercept B3 (X6 ⁇ Y5-X5 ⁇ Y6) / (X6-X5). It is a straight line represented.
  • the slope a of Y ⁇ 3> is determined by VRAMP, it is the same as the slope a of Y ⁇ 0>.
  • X ⁇ 2 which is Signal ′ at the time of ()
  • Y ⁇ 3> 0.
  • step S10 the correction unit 61 obtains a difference ⁇ B03 between B0 and B3 from Y ⁇ 0> ⁇ Y ⁇ 3>, and corrects K3 using ⁇ B03 as K3 after correction. Since Y ⁇ 0> and Y ⁇ 3> have the same slope, Y ⁇ 0> ⁇ Y ⁇ 3> indicates that the Y intercept of Y ⁇ 0> is B0 and the Y intercept of Y ⁇ 3>. A difference ⁇ B03 from a certain B3 can be obtained.
  • FIG. 7 is a graph showing Y ⁇ 2>.
  • the vertical and horizontal axes are the same as those in FIG. Y ⁇ 3> is a straight line obtained when the voltage source 80 outputs twice the pseudo pixel signal having different Signal ′ such that only the capacitor C3 is connected to the column amplifier.
  • the correction unit 61 calculates Y ⁇ 2> by linearly interpolating two points (X7, Y7) and (X8, Y8), for example.
  • the Y intercept B3 (X8 ⁇ Y7 ⁇ X7 ⁇ Y8) / (X8 ⁇ X7). It is a straight line represented.
  • the slope a of Y ⁇ 2> is determined by VRAMP, it is the same as the slope a of Y ⁇ 0>.
  • step S10 the correction unit 61 obtains a difference ⁇ B02 between B0 and B2 from Y ⁇ 0> ⁇ Y ⁇ 2>, and corrects K2 with ⁇ B02 as K2 after correction. Since Y ⁇ 0> and Y ⁇ 2> have the same slope, Y ⁇ 0> ⁇ Y ⁇ 2> indicates that B0 that is the Y intercept of Y ⁇ 0> and the Y intercept of Y ⁇ 2>. A difference ⁇ B02 from a certain B2 can be obtained.
  • the correction unit 61 obtains Y ⁇ 1>, obtains ⁇ B01 from Y ⁇ 0> ⁇ Y ⁇ 1>, and corrects K1 with ⁇ B01 as K1 after correction.
  • the image processing unit 6 illustrated in FIG. 1 sets the corrected weight values as K1 ′ to K4 ′. Then, K1 ′ ⁇ D1 + K2 ′ ⁇ D2 + K3 ′ ⁇ D3 + K4 ′ ⁇ D4 is obtained as the upper bit group digital data. As a result, Y ⁇ 0> to Y ⁇ 4> are smoothly connected.
  • the predetermined value M0 is subtracted from the lower bit group digital data to obtain 10 bit digital data of D5 to D14 of the lower bit group.
  • B0 shown in FIG. 4 may be adopted as M0.
  • D5 to D14 are multiplied by predetermined weight values K5 to K14 for D5 to D14 and added, that is, K5 ⁇ D5 + K6 ⁇ D6 +... + K14 ⁇ D14 is obtained as digital data of the lower bit group.
  • the digital data of the pixel signal Video is obtained by adding the digital data of the upper bit group and the digital data of the lower bit group.
  • the SA register 60 sequentially connects the capacitor Ci to the column amplifier 10 and finally connects the capacitor Ci to the column amplifier 10.
  • the latch unit 40 measures the signal (CIN) input to the comparator unit 30 in this state, and the correction unit 61 uses the weighting value of the bit corresponding to the capacitor Ci based on the measurement result by the latch unit 40. A certain Ki is corrected.
  • the SA register 60 normally reads the pixel signal Video instead of forcibly connecting the capacitor Ci to the column amplifier 10 even though a 0 signal is input to the column amplifier 10 as in the prior art.
  • the capacitors C1 to C4 are sequentially connected to the column amplifier 10, and then the capacitor Ci is connected to the column amplifier 10.
  • the latch unit 40 measures the signal (CIN) input to the comparator unit 30 in this state. Therefore, the SA register 60 can be operated under the same conditions as during normal operation, and the signal input to the comparator unit 30 can be measured. As a result, the weight values K1 to K4 of the bits D1 to D4 can be accurately corrected.
  • Y ⁇ 1> to Y ⁇ 4> are obtained.
  • Y ⁇ 0> is obtained, and the weight values K1 to K4 are corrected from the deviation from the ideal straight line RL. It may be.
  • the pseudo pixel signal is measured twice for one i.
  • the present invention is not limited to this, and any number of times may be used as long as it is twice or more.
  • the upper bit group is 4 bits and the lower bit group is 11 bits.
  • the present invention is not limited to this, and other numbers of bits may be adopted.
  • the pixel signal Video is AD-converted separately into an upper bit group and a lower bit group.
  • the present invention is not limited to this, and all bits of digital data are sequentially converted.
  • a / D conversion may be performed by a comparative AD conversion method.
  • the latch unit 40 may be used as a measurement unit for measuring CIN.
  • a solid-state imaging device corresponds to a pixel portion in which a plurality of pixels are arranged in a matrix, a vertical scanning circuit that sequentially selects each row of the pixel portion, and each column of the pixel portion A plurality of readout circuits that read out pixel signals from pixels in a row selected by the vertical scanning circuit and perform analog-to-digital conversion, and the readout circuit amplifies the pixel signals read out from the pixel unit A column amplifier, a comparator unit that inverts an output signal by comparing the signal output from the column amplifier with a predetermined reference voltage, and each level of digital data that is analog-to-digital converted are provided, respectively.
  • a plurality of successive approximation capacitors that output different signals to the column amplifier, a voltage source that outputs a pseudo pixel signal, and the successive approximation capacitor.
  • a bit determining unit that sequentially switches a connection relationship between the column amplifier and the column amplifier, and determines a value of digital data of the pixel signal by a successive approximation type analog-to-digital conversion method based on an output signal output from the comparator unit;
  • the bit determining unit includes a measuring unit that measures a signal input to the comparator unit, and the column amplifier and the pixel unit are disconnected and the column amplifier is connected to the voltage source.
  • a pseudo pixel signal that connects a successive approximation capacitor to the column amplifier is output to the voltage source, a signal input to the comparator unit is measured by the measurement unit, and based on a measurement result by the measurement unit, And a correction unit that corrects a weighting value of a bit corresponding to one successive approximation capacitor.
  • the bit determination unit sequentially connects the successive approximation capacitor to the column amplifier, and finally connects the one successive approximation capacitor to the column amplifier. Then, the measurement unit measures the signal input to the comparator unit in this state, and the correction unit corrects the weight value of the bit corresponding to the one successive approximation capacitor based on the measurement result by the measurement unit.
  • the bit determination unit reads out the pixel signal instead of forcibly connecting the one successive approximation capacitor to the column amplifier even though a 0 signal is input to the column amplifier as in the prior art.
  • the successive approximation capacitor is connected to the column amplifier in the same manner as in normal operation, and then the one successive approximation capacitor is connected to the column amplifier.
  • the measurement unit measures the signal input to the comparator unit in this state. Therefore, it is possible to measure the signal input to the comparator unit by operating the bit determining unit under the same conditions as in normal operation. As a result, the weight value of each bit of the digital data can be corrected with high accuracy.
  • the measurement unit performs analog-to-digital conversion on the signal input to the comparator unit by comparing the signal input to the comparator unit and a predetermined ramp signal with the comparator by an integral analog-digital conversion method.
  • the digital measurement value is measured, and the correction unit disconnects the column amplifier and the pixel unit and connects the column amplifier to the voltage source, and one successive approximation capacitor is connected to the column amplifier.
  • the pseudo-pixel signal having different levels connected to the voltage source is output to the voltage source at least twice, and the digital measurement value measured by the measurement unit is interpolated to interpolate the pseudo-pixel signal voltage and the digital measurement.
  • a first function indicating a relationship with the value is calculated, and based on the calculated first function, the first function corresponding to the one successive approximation capacitor is calculated. It is preferable to correct bets weighting value.
  • the comparator unit compares the input signal with a predetermined ramp signal, and the measurement unit measures the digital measurement value of the signal input to the comparator unit from the comparison result by the comparator unit.
  • the correction unit causes the voltage source to output a pseudo pixel signal such that a certain successive approximation capacitor is connected to the column amplifier at least twice.
  • the measurement unit measures the digital measurement value of the signal input to the comparator unit every time the pseudo pixel signal is output. Accordingly, the first function indicating the relationship between the pseudo pixel signal and the digital measurement value in a state where the one successive approximation capacitor is connected to the column amplifier by interpolating the digital measurement value each time the measurement value is measured. Can be obtained. That is, it is possible to obtain AD conversion characteristics in a state where the one successive approximation capacitor is connected to the column amplifier.
  • the correction unit causes the voltage source to output a pseudo pixel signal such that not all successive approximation capacitors are connected to the column amplifier at least twice, and in the same manner as the first function, A second function indicating a relationship with the digital measurement value is calculated, and a weight value of a bit corresponding to the one successive approximation capacitor is corrected based on a difference between the first function and the second function. It is preferable to do.
  • the second function indicating the AD conversion characteristic in a state where all successive approximation capacitors are disconnected from the column amplifier is calculated, and the difference between the first function and the second function is calculated. Yes. Therefore, the calculated difference between the first and second functions is the corrected weighting value.
  • the readout circuit divides the pixel signal into an upper bit group and a lower bit group and performs analog-to-digital conversion, the bit determination unit determines a value of the upper bit group, and the measurement unit It is preferable to measure a digital measurement value as the value of the lower bit group.
  • the readout circuit when the readout circuit is configured to perform analog-to-digital conversion by dividing the pixel signal into an upper bit group and a lower bit group, a signal input to the comparator unit by the circuit that performs analog-digital conversion of the lower bit group Measurement can be performed, and there is no need to provide a separate measurement circuit.
  • the pixel unit outputs a pixel signal including a noise component and a pixel signal including the noise component and the signal component in two phases, and the column amplifier outputs the pixel signal output in two phases. It is preferable that the noise component is canceled and amplified, and the correction unit causes the voltage source to output the pseudo pixel signal in two phases when the measurement unit measures the digital measurement value once.
  • the correction unit cuts off the column amplifier and the pixel unit during a vertical blanking period to connect the column amplifier to the voltage source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

In a state where a column amplifier (10) is isolated from a pixel portion (1) and connected to a voltage source (80), the voltage source (80) outputs such a pseudo-pixel signal as to cause an SA register (60) to connect one of four capacitors (C1 to C4) to the column amplifier (10). A latch unit (40) measures a signal inputted to a comparator unit (30). A correction unit (61) corrects a weighting value for a bit corresponding to the one capacitor on the basis of the measurement result of the latch unit (40).

Description

固体撮像装置Solid-state imaging device
 本発明は、逐次比較型アナログデジタル変換方式により画素信号をアナログデジタル変換する固体撮像装置に関するものであり、特にデジタルデータの各ビットの重み付け値を補正する技術に関するものである。 The present invention relates to a solid-state imaging device that performs analog-digital conversion of a pixel signal by a successive approximation type analog-digital conversion method, and particularly relates to a technique for correcting a weighted value of each bit of digital data.
 近年、複数の画素がマトリックス状に配列された画素部と、画素部の各列に対応して設けられた各画素から画素信号を読み出すカラムAD変換部とを備え、各カラムAD変換部が自身で読み出した画素信号をアナログデジタル変換するCMOSイメージセンサが知られている(例えば、特許文献1)。このようなCMOSイメージセンサでは、カラムAD変換部は積分型AD変換器を備え、積分型AD変換方式により画素信号をAD(アナログデジタル)変換するものが一般的である。 2. Description of the Related Art In recent years, a pixel unit in which a plurality of pixels are arranged in a matrix and a column AD conversion unit that reads a pixel signal from each pixel provided corresponding to each column of the pixel unit are provided. A CMOS image sensor that performs analog-to-digital conversion of the pixel signal read out in (1) is known. In such a CMOS image sensor, the column AD conversion unit generally includes an integration type AD converter, and generally performs AD (analog digital) conversion of a pixel signal by an integration type AD conversion method.
 ここで、積分型AD変換器において分解能を上げようとすると、必要なクロック数が増え、AD変換に時間が掛かってしまうという問題がある。これは、例えばnビットのデジタルデータを得るためには、2のn乗クロックの時間が必要となるからである。 Here, when the resolution is increased in the integral type AD converter, there is a problem that the number of clocks required increases and AD conversion takes time. This is because, for example, in order to obtain n-bit digital data, a time of 2 n clocks is required.
 この問題を解消するために、デジタルデータを上位ビット群と下位ビット群とに分割してAD変換する技術が知られている(特許文献2)。 In order to solve this problem, a technique for performing AD conversion by dividing digital data into an upper bit group and a lower bit group is known (Patent Document 2).
 しかしながら、特許文献2の技術では上位ビット群と下位ビット群とが共に積分型AD変換方式によってAD変換されているため、さほどAD変換のスピードを上げることはできない。 However, in the technique of Patent Document 2, since both the upper bit group and the lower bit group are AD-converted by the integral AD conversion method, the AD conversion speed cannot be increased so much.
 この問題を解決するために、上位ビット群を積分型ではなく逐次比較型でAD変換を行う技術が知られている(特許文献3)。 In order to solve this problem, a technique is known in which the upper bit group is AD-converted using a successive approximation type instead of an integration type (Patent Document 3).
 図8は、上位ビット群を逐次比較型AD変換方式でAD変換し、下位ビット群を積分型AD変換方式でAD変換するカラムAD変換部の回路図を示している。図9は、図8に示すカラムAD変換部のタイミングチャートを示している。 FIG. 8 shows a circuit diagram of a column AD conversion unit that AD-converts the upper bit group by the successive approximation AD conversion method and AD-converts the lower bit group by the integration AD conversion method. FIG. 9 shows a timing chart of the column AD converter shown in FIG.
 図8に示すカラムAD変換部は、冗長ビットとして1ビットを追加した15ビットのカラムAD変換部で、上位4ビットの上位ビット群と、冗長ビットを含む下位11ビットの下位ビット群とに分割してAD変換を行う。 The column AD conversion unit shown in FIG. 8 is a 15-bit column AD conversion unit in which one bit is added as a redundant bit, and is divided into an upper bit group of upper 4 bits and a lower bit group of lower 11 bits including redundant bits. Then, AD conversion is performed.
 図8に示すようにカラムAD変換部は、カラムアンプ100、クランプ部200、コンパレータ部300、ラッチ回路400、逐次比較信号生成部500、及びSA(Successive Approximation)レジスタ600を備えている。 As shown in FIG. 8, the column AD conversion unit includes a column amplifier 100, a clamp unit 200, a comparator unit 300, a latch circuit 400, a successive approximation signal generation unit 500, and an SA (Successive Approximation) register 600.
 図8と図9とを用いて、図8に示す画素回路の動作を説明する。まず、垂直信号線L1に画素からのノイズ(Noise)成分の画素信号Videoである高電位の信号が出力されると、φARST、φCL、φCRST1、φCRST2が一定期間Hi(ハイレベル)にされ、カラムアンプ100、クランプ部200、コンパレータ部300がリセットされ、φGainA=Hi、φGainB=Loの場合、Noise成分の画素信号VideoがコンデンサCAにサンプルホールドされる。 The operation of the pixel circuit shown in FIG. 8 will be described with reference to FIGS. First, when a high-potential signal, which is a noise (Noise) component pixel signal Video, is output to the vertical signal line L1, φARST, φCL, φCRST1, and φCRST2 are set to Hi (high level) for a certain period, When the amplifier 100, the clamp unit 200, and the comparator unit 300 are reset and φGainA = Hi and φGainB = Lo, the pixel signal Video of the Noise component is sampled and held in the capacitor CA.
 その後、画素において、フォトダイオードで蓄積された電荷がフローティングディフュージョンに転送され、画素部から垂直信号線L1を介して(Noise+Signal)成分の画素信号VideoであるNoise成分よりもSignal成分の大きさだけ低電位の信号が出力される。 Thereafter, in the pixel, the charge accumulated in the photodiode is transferred to the floating diffusion, and is lower by the magnitude of the Signal component than the Noise component which is the pixel signal Video of the (Noise + Signal) component from the pixel portion via the vertical signal line L1. A potential signal is output.
 画素信号Videoが(Signal+Noise)成分のレベルに低下すると、カラムアンプ100の出力信号であるAOUTは、Signal成分の大きさに従って、カラムアンプ100のリセットレベルであるVOPAから増大する。このVOPAの変化の大きさは、φGainA、φGainBのゲイン設定による。すなわち、図9のタイミングチャートのように、φGainAとφGainBとの両方がHiの場合は、カラムアンプ100のゲインは、(CA+CB)/CFとなり、カラムアンプ100の出力信号であるAOUTは、Signal・(CA+CB)/CFだけ上昇する。 When the pixel signal Video decreases to the level of the (Signal + Noise) component, the output signal AOUT of the column amplifier 100 increases from VOPA, which is the reset level of the column amplifier 100, according to the magnitude of the Signal component. The magnitude of this change in VOPA depends on the gain settings of φGainA and φGainB. That is, as shown in the timing chart of FIG. 9, when both φGainA and φGainB are Hi, the gain of the column amplifier 100 is (CA + CB) / CF, and the output signal AOUT of the column amplifier 100 is Signal · Increase by (CA + CB) / CF.
 この後、逐次比較型AD変換方式により上位ビット群のAD変換が開始される。まず、φSA1=Hiになり、カラムアンプ100にコンデンサC1が接続される。ここで、コンデンサC1の他端には電圧VREFが入力されているため、カラムアンプ100に入力される電位はVREF・C1だけ上昇する。カラムアンプ100に入力される電位が上昇すると、AOUTはVREF・(C1/CF)だけ低下する。 Thereafter, AD conversion of the upper bit group is started by the successive approximation AD conversion method. First, φSA1 = Hi, and the capacitor C1 is connected to the column amplifier 100. Here, since the voltage VREF is input to the other end of the capacitor C1, the potential input to the column amplifier 100 increases by VREF · C1. When the potential input to the column amplifier 100 increases, AOUT decreases by VREF · (C1 / CF).
 コンパレータ部300に入力される信号CIN(以下、「CIN」と記す。)は、カラムアンプ100とコンパレータ部300との間にクランプ部200が存在するため、直流レベルはAOUTと異なるが、交流レベルはAOUTと同様に変化する。 A signal CIN (hereinafter referred to as “CIN”) input to the comparator unit 300 has a DC level different from AOUT because the clamp unit 200 exists between the column amplifier 100 and the comparator unit 300, but the AC level. Changes in the same way as AOUT.
 具体的には、クランプ部200のゲインKGがKG=C21/(C21+C22)であるため、φSA1=Hiとなると、CINはKG・VREF・(C1/CF)=TH1だけ低下する。ここで、φSA1=Hiにしたとき、CINがコンパレータ部300の閾値電圧であるVOPC以下になればCOUTはHiからLoに反転する。図9のタイミングチャートではCINは、TH1低下しても、VOPCよりも高いため、COUTは反転せずHiを維持している(期間T1)。 Specifically, since the gain KG of the clamp part 200 is KG = C21 / (C21 + C22), when φSA1 = Hi, CIN decreases by KG · VREF · (C1 / CF) = TH1. Here, when φSA1 = Hi, if CIN becomes equal to or lower than VOPC which is the threshold voltage of the comparator unit 300, COUT is inverted from Hi to Lo. In the timing chart of FIG. 9, even if TH1 decreases by TH1, it is higher than VOPC, so COUT does not invert and maintains Hi (period T1).
 この場合、SAレジスタ600は、COUT=Hiが維持されているので、φSA1=Hiを維持する。φSA1=Hiを維持するということは、上位ビット群のMSB(D1)=1にするということなので、SAレジスタ600はD1=1にする。 In this case, since COUT = Hi is maintained, the SA register 600 maintains φSA1 = Hi. Maintaining φSA1 = Hi means MSB (D1) = 1 of the upper bit group, and therefore SA register 600 sets D1 = 1.
 次に、SAレジスタ600は、φSA1=Hiを維持してφSA2=Hiにして、カラムアンプ100にコンデンサC2を接続する。 Next, the SA register 600 maintains φSA1 = Hi and sets φSA2 = Hi, and connects the capacitor C2 to the column amplifier 100.
 このとき、AOUTはVREF・(C2/CF)だけ電位が変化し、CINはKG・VREF・(C2/CF)=TH2だけ電位が変化する。図9の例ではCINがVOPC以下になるのでCOUTはHiからLoに反転する(期間T2)。 At this time, the potential of AOUT changes by VREF · (C2 / CF), and the potential of CIN changes by KG · VREF · (C2 / CF) = TH2. In the example of FIG. 9, since CIN becomes equal to or less than VOPC, COUT is inverted from Hi to Lo (period T2).
 COUT=Loになると、SAレジスタ600は、φSA2をHiからLoに戻し、コンデンサC2をカラムアンプ100から切り離す。ここで、SAレジスタ600は、φSA2がLoに戻ったので、D2=0にする。 When COUT = Lo, the SA register 600 returns φSA2 from Hi to Lo, and disconnects the capacitor C2 from the column amplifier 100. Here, the SA register 600 sets D2 = 0 since φSA2 has returned to Lo.
 次に、SAレジスタ600は、φSA1=Hi、φSA2=Loを維持して、φSA3=Hiにしてカラムアンプ100にコンデンサC3を接続する。これにより、AOUTはVREF・(C3/CF)に応じて電位が変化し、CINはKG・VREF・(C3/CF)=TH3に応じて電位が変化する。図9の例ではCINは上昇しているが、CINはVOPC以下なので、COUT=Loを維持する(期間T3)。COUT=Loが維持されているので、SAレジスタ600は、φSA3をHiからLoに戻し、カラムアンプ100からコンデンサC3を切り離す。ここで、SAレジスタ600は、φSA3がLoに戻ったので、D3=0とする。 Next, the SA register 600 maintains φSA1 = Hi and φSA2 = Lo, sets φSA3 = Hi, and connects the capacitor C3 to the column amplifier 100. As a result, the potential of AOUT changes according to VREF · (C3 / CF), and the potential of CIN changes according to KG · VREF · (C3 / CF) = TH3. In the example of FIG. 9, CIN increases, but CIN is equal to or lower than VOPC, so COUT = Lo is maintained (period T3). Since COUT = Lo is maintained, the SA register 600 returns φSA3 from Hi to Lo, and disconnects the capacitor C3 from the column amplifier 100. Here, the SA register 600 sets D3 = 0 since φSA3 returns to Lo.
 次に、SAレジスタ600は、φSA1=Hi、φSA2=Lo、φSA3=Loを維持して、φSA4=Hiにして、カラムアンプ100にコンデンサC4を接続する。これにより、AOUTはVREF・(C4/CF)に応じて電位が変化し、CINはKG・VREF・(C4/CF)=TH4(図略)に応じて電位が変化する。図9の例ではCINの電位がVOPCを超えているので、COUTはLoからHiに反転する(期間T4)。COUTがHiに反転したため、SAレジスタ600は、φSA4=Hiを維持させる。ここで、SAレジスタ600は、φSA4=Hiを維持したため、D4=1にする。 Next, the SA register 600 maintains φSA1 = Hi, φSA2 = Lo, φSA3 = Lo, sets φSA4 = Hi, and connects the capacitor C4 to the column amplifier 100. Thus, the potential of AOUT changes according to VREF · (C4 / CF), and the potential of CIN changes according to KG · VREF · (C4 / CF) = TH4 (not shown). In the example of FIG. 9, since the potential of CIN exceeds VOPC, COUT is inverted from Lo to Hi (period T4). Since COUT is inverted to Hi, the SA register 600 maintains φSA4 = Hi. Here, since the SA register 600 maintains φSA4 = Hi, D4 = 1 is set.
 そして、C1、C2、C3、C4、CF、C21、C22、VREFに一定の関係を持たせて、上記のような動作を行えば、上位ビット群をデジタル化することができる。 Then, the upper bit group can be digitized by performing the above-described operation by giving C1, C2, C3, C4, CF, C21, C22, and VREF a certain relationship.
 次に、コンパレータ部300にランプ信号(以下、「VRAMP」と記す。)が入力されると、上位ビット群のAD変換後におけるCINにVRAMPが重畳され、CINがVOPCになるまでの時間がカウントされ(時刻T6)、このカウント値が下位ビット群の値となる。 Next, when a ramp signal (hereinafter referred to as “VRAMP”) is input to the comparator unit 300, VRAMP is superimposed on CIN after AD conversion of the upper bit group, and the time until CIN becomes VOPC is counted. (Time T6), this count value becomes the value of the lower bit group.
 図10は、逐次比較型AD変換方式によるAD変換動作を概念的に説明する図である。ここで、縦方向はCINのレベルを示している。また、TH1~TH4はそれぞれ、KG・(C1/CF)・VREF、KG・(C2/CF)・VREF、KG・(C3/CF)・VREF、KG・(C4/CF)・VREFを示している。D1~D4は4ビットのデジタルデータを示している。 FIG. 10 is a diagram conceptually illustrating an AD conversion operation by the successive approximation AD conversion method. Here, the vertical direction indicates the CIN level. TH1 to TH4 are KG · (C1 / CF) · VREF, KG · (C2 / CF) · VREF, KG · (C3 / CF) · VREF, and KG · (C4 / CF) · VREF, respectively. Yes. D1 to D4 indicate 4-bit digital data.
 図10を用いてカラムAD変換部の動作を概念的に説明すると、まず、カラムAD変換部は、CINをTH1と比較し、CIN>TH1の場合、D1=1とし、CIN<TH1の場合、D1=0とする。 The operation of the column AD conversion unit is conceptually described with reference to FIG. 10. First, the column AD conversion unit compares CIN with TH1, and when CIN> TH1, D1 = 1, and when CIN <TH1, Let D1 = 0.
 次に、カラムAD変換部は、D1=1とした場合はCINからTH1を減じた値をCINとしてTH2と比較し、D1=0とした場合はCINをそのままTH2と比較し、CIN>TH2の場合、D2=1とし、CIN<TH2の場合、D2=0とする。 Next, when D1 = 1, the column AD conversion unit compares CIN with TH2 as a value obtained by subtracting TH1 from CIN, and when D1 = 0, CIN is directly compared with TH2, and CIN> TH2 In this case, D2 = 1, and if CIN <TH2, D2 = 0.
 次に、カラムAD変換部は、D2=1とした場合はCINからTH2を減じた値をCINとしてTH3と比較し、D2=0とした場合はCINをそのままTH3と比較し、CIN>TH3の場合、D3=1とし、CIN<TH3の場合、D3=0とする。 Next, when D2 = 1, the column AD converter compares CIN with TH3 as a value obtained by subtracting TH2 from CIN, and when D2 = 0, CIN is directly compared with TH3, and CIN> TH3 In this case, D3 = 1, and if CIN <TH3, D3 = 0.
 次に、カラムAD変換部は、D3=1とした場合はCINからTH3を減じた値をCINとしてTH4と比較し、D3=0とした場合はCINをそのままTH4と比較し、CIN>TH4の場合、D4=1とし、CIN<TH4の場合、D4=0とする。 Next, when D3 = 1, the column AD conversion unit compares CIN with TH4 as a value obtained by subtracting TH3 from CIN, and when D3 = 0, CIN is directly compared with TH4, and CIN> TH4. In this case, D4 = 1, and if CIN <TH4, D4 = 0.
 図9のタイミングチャートの例では、CINは升αに属している。そのため、D1~D4=1,0,0,1となる。 In the example of the timing chart of FIG. 9, CIN belongs to 升 α. Therefore, D1 to D4 = 1, 0, 0, 1.
 図11は図8のカラムAD変換部における理想的な上位ビット群のAD変換特性と下位ビット群のAD変換特性とを示したグラフである。図11において、横軸はカラムAD変換部に入力されるアナログの画素信号(アナログ入力)、左の縦軸は上位ビット群の値、右の縦軸は下位ビット群の値を示している。また、g1は上位ビット群のAD変換特性を示し、g2は下位ビット群のAD変換特性を示している。 FIG. 11 is a graph showing an ideal AD conversion characteristic of the upper bit group and an AD conversion characteristic of the lower bit group in the column AD conversion unit of FIG. In FIG. 11, the horizontal axis represents an analog pixel signal (analog input) input to the column AD converter, the left vertical axis represents the value of the upper bit group, and the right vertical axis represents the value of the lower bit group. G1 indicates the AD conversion characteristic of the upper bit group, and g2 indicates the AD conversion characteristic of the lower bit group.
 図11に示すように、上位ビット群の値はアナログ入力が増大するにつれて、階段状に0から15まで16段階で変化している。下位ビット群の値は、上位ビット群の1ステップが1期間とされてのこぎり状に変化していることが分かる。 As shown in FIG. 11, the value of the high-order bit group changes in 16 steps from 0 to 15 stepwise as the analog input increases. It can be seen that the value of the lower bit group changes in a saw-like manner, with one step of the upper bit group being one period.
 特許文献3にも記載されているが、上位ビット群と下位ビット群とに分割してAD変換を行う場合、必ず上位ビット群の値と下位ビット群の値との間でマッチング誤差が生じるため、下位ビット群に1ビットの冗長ビットが設けられているのが通常である。 As described in Patent Document 3, when AD conversion is performed by dividing into an upper bit group and a lower bit group, a matching error always occurs between the value of the upper bit group and the value of the lower bit group. In general, one redundant bit is provided in the lower bit group.
 図8のカラムAD変換部は最終的に14ビットのデジタルデータを得るものであり、上位ビット群が4ビットなので、下位ビット群の分解能は10ビットで足りるが、下位ビット群は1ビットの冗長ビットを持ち、11ビットとされている。 The column AD converter in FIG. 8 finally obtains 14-bit digital data. Since the upper bit group is 4 bits, the resolution of the lower bit group is 10 bits, but the lower bit group is 1-bit redundant. It has a bit and is 11 bits.
 よって、図11に示すように下位ビット群のダイナミックレンジは上側0.5ビットの冗長ビットと下側0.5ビットの冗長ビットとが除かれたものになる。 Therefore, as shown in FIG. 11, the dynamic range of the lower bit group is obtained by removing the upper 0.5-bit redundant bit and the lower 0.5-bit redundant bit.
 図11のAD変換特性を示す場合、下位ビット群から下側及び上側の冗長ビットのダイナミックレンジを減算して、上位ビット群と合成すれば、図12に示すような滑らかな直線状の14ビットのAD変換特性が得られる。 When the AD conversion characteristics shown in FIG. 11 are shown, if the dynamic range of the lower and upper redundant bits is subtracted from the lower bit group and synthesized with the upper bit group, the smooth linear 14 bits as shown in FIG. The AD conversion characteristics can be obtained.
 すなわち、下位ビット群から冗長ビットを取り除き、上位ビット群の各ビットに重み付け値を乗じて合成すれば、図12のAD変換特性が得られる。ここで、重み付け値は、2進数を10進数に変換する際に使用される重み付け値であり、最終的に得られるデジタルデータは14ビットであるので、上位ビット群のD1~D4の重み付け値はそれぞれ、213=8192、212=4096、211=2048、210=1024となる。 That is, by removing redundant bits from the lower bit group and multiplying each bit of the upper bit group by the weighting value, the AD conversion characteristics of FIG. 12 can be obtained. Here, the weighting value is a weighting value used when converting a binary number to a decimal number, and the finally obtained digital data is 14 bits. 2 13 = 8192, 2 12 = 4096, 2 11 = 2048, 2 10 = 1024, respectively.
 しかしながら、実際にはコンデンサC1~C4の容量が理想値からずれ、コンデンサC1~C4のそれぞれをカラムアンプ100に接続したときのCINが理想値からずれるのが一般的であるため、実際には上位ビット群と下位ビット群とのAD変換特性は、図13に示すような特性になる。図13では、上位ビット群の値によって下位ビット群のダイナミックレンジにバラツキが生じていることが分かる。 In practice, however, the capacitances of the capacitors C1 to C4 are deviated from the ideal values, and the CIN when the capacitors C1 to C4 are connected to the column amplifier 100 is generally deviated from the ideal values. The AD conversion characteristics of the bit group and the lower bit group are as shown in FIG. In FIG. 13, it can be seen that the dynamic range of the lower bit group varies depending on the value of the upper bit group.
 図13のようなAD変換特性の場合、単純に下位ビット群から冗長ビットを取り除いて上位ビット群に合成する手法では、上位ビット群の各ビットの重み付け値をそのまま採用すると、図12に示すような滑らかな直線状のAD変換特性は得られない。具体的には、図12に示す直線を上位ビット群の1ステップごとに分断して不連続に繋げたようなAD変換特性が得られる。 In the case of the AD conversion characteristics as shown in FIG. 13, in the method of simply removing redundant bits from the lower bit group and synthesizing it into the upper bit group, if the weight values of each bit of the upper bit group are directly adopted, as shown in FIG. Smooth linear AD conversion characteristics cannot be obtained. Specifically, an AD conversion characteristic in which the straight line shown in FIG. 12 is divided and discontinuously connected for each step of the upper bit group is obtained.
 そこで、従来では、カラムアンプ100に入力される信号を0として、SAレジスタ600にカラムアンプ100と各コンデンサC1~C4とを強制的に接続させ、CINの値を測定し、測定結果に基づいて上位ビット群の各ビットの重み付け値を補正することが行われていた。 Therefore, conventionally, the signal input to the column amplifier 100 is set to 0, the column amplifier 100 and the capacitors C1 to C4 are forcibly connected to the SA register 600, the value of CIN is measured, and based on the measurement result. Correction of the weight value of each bit of the upper bit group has been performed.
 一方、通常動作時においてカラムアンプ100に入力される信号が0である場合、上位ビット群の値は、D1~D4の全てが0であるため、SAレジスタ600は、コンデンサC1~C4をカラムアンプ100に逐次接続した後、最終的には全てのコンデンサC1~C4をカラムアンプ100に接続させないはずである。 On the other hand, when the signal input to the column amplifier 100 during normal operation is 0, since the values of the upper bit group are all 0 for D1 to D4, the SA register 600 causes the capacitors C1 to C4 to be connected to the column amplifier. After sequentially connecting to 100, all the capacitors C1 to C4 should not be connected to the column amplifier 100 in the end.
 しかしながら、従来のCINの測定方法では、例えばコンデンサC1をカラムアンプ100に接続したときのCINを測定する場合、SAレジスタ600は、D1~D4の値が全て0であるにも関わらず、強制的にコンデンサC1をカラムアンプ100に接続させる。そのため、SAレジスタ600は、通常動作時と異なる動作が強いられていた。これにより、例えばコンデンサC1をカラムアンプ100に接続したときのコンパレータ部300に入力されるCINの値が通常動作時と測定時とで異なってしまい、CINを精度良く測定することができないという問題があった。その結果、上位ビット群の各ビットの重み付け値を精度良く補正することができないという問題があった。 However, in the conventional CIN measurement method, for example, when measuring CIN when the capacitor C1 is connected to the column amplifier 100, the SA register 600 is compulsory even though the values of D1 to D4 are all zero. The capacitor C1 is connected to the column amplifier 100. Therefore, the SA register 600 is forced to operate differently from the normal operation. As a result, for example, the value of CIN input to the comparator unit 300 when the capacitor C1 is connected to the column amplifier 100 differs between normal operation and measurement, and CIN cannot be measured with high accuracy. there were. As a result, there is a problem that the weighting value of each bit of the upper bit group cannot be corrected with high accuracy.
特許第2532374号公報Japanese Patent No. 2532374 特許第3507800号公報Japanese Patent No. 3507800 特開2008-244716号公報JP 2008-244716 A
 本発明の目的は、デジタルデータの各ビットの重み付け値を精度良く補正することができる固体撮像装置を提供することである。 An object of the present invention is to provide a solid-state imaging device capable of accurately correcting the weighting value of each bit of digital data.
 本発明の一局面による固体撮像装置は、複数の画素がマトリックス状に配置された画素部と、前記画素部の各行を順次選択する垂直走査回路と、前記画素部の各列に対応して設けられ、前記垂直走査回路により選択された行の画素から画素信号を読み出し、アナログデジタル変換する複数の読出回路とを備え、前記読出回路は、前記画素部から読み出した画素信号を増幅するカラムアンプと、前記カラムアンプから出力された信号を所定の基準電圧と比較することで出力信号を反転させるコンパレータ部と、アナログデジタル変換されるデジタルデータの各ビットに対応して設けられ、それぞれレベルの異なる信号を前記カラムアンプに出力する複数の逐次比較コンデンサと、疑似画素信号を出力する電圧源と、前記逐次比較コンデンサと前記カラムアンプとの接続関係を逐次切り替えて、前記コンパレータ部から出力される出力信号を基に、逐次比較型アナログデジタル変換方式により前記画素信号のデジタルデータの値を決定するビット決定部と、前記コンパレータ部に入力される信号を測定する測定部と、前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態で、前記ビット決定部がある1つの逐次比較コンデンサを前記カラムアンプに接続するような疑似画素信号を前記電圧源に出力させ、前記コンパレータ部に入力される信号を前記測定部に測定させ、前記測定部による測定結果を基に、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正する補正部とを備える。 According to one aspect of the present invention, a solid-state imaging device is provided corresponding to a pixel portion in which a plurality of pixels are arranged in a matrix, a vertical scanning circuit that sequentially selects each row of the pixel portion, and each column of the pixel portion. A plurality of readout circuits that read out pixel signals from pixels in a row selected by the vertical scanning circuit and perform analog-to-digital conversion, and the readout circuit includes a column amplifier that amplifies the pixel signals read out from the pixel unit; A comparator unit that inverts the output signal by comparing the signal output from the column amplifier with a predetermined reference voltage, and a signal having a different level provided for each bit of the digital data to be converted from analog to digital A plurality of successive approximation capacitors for outputting to the column amplifier, a voltage source for outputting a pseudo pixel signal, the successive approximation capacitor, The bit determination unit that sequentially switches the connection relationship with the column amplifier and determines the value of the digital data of the pixel signal by the successive approximation type analog-to-digital conversion method based on the output signal output from the comparator unit; A measurement unit that measures a signal input to the comparator unit, and one sequential comparison with the bit determination unit in a state where the column amplifier and the pixel unit are disconnected and the column amplifier is connected to the voltage source A pseudo pixel signal that connects a capacitor to the column amplifier is output to the voltage source, and a signal input to the comparator unit is measured by the measurement unit. Based on a measurement result by the measurement unit, the one A correction unit that corrects the weighting value of the bit corresponding to the successive approximation capacitor.
本発明の実施の形態による固体撮像装置の全体構成図である。1 is an overall configuration diagram of a solid-state imaging device according to an embodiment of the present invention. 図1に示すカラムAD変換部の回路図を示している。The circuit diagram of the column AD conversion part shown in FIG. 1 is shown. 補正処理を示すフローチャートである。It is a flowchart which shows a correction process. Y<0>を示したグラフである。It is the graph which showed Y <0>. Y<4>を示したグラフである。It is the graph which showed Y <4>. Y<3>を示したグラフである。It is the graph which showed Y <3>. Y<2>を示したグラフである。It is the graph which showed Y <2>. 上位ビット群を逐次比較型AD変換方式でAD変換し、下位ビット群を積分型AD変換方式でAD変換するカラムAD変換部の回路図を示している。The circuit diagram of the column AD conversion part which AD-converts an upper bit group by a successive approximation AD conversion system, and AD-converts a lower bit group by an integral AD conversion system is shown. 図8に示すカラムAD変換部のタイミングチャートを示している。9 shows a timing chart of the column AD converter shown in FIG. 逐次比較型AD変換方式のAD変換動作を概念的に説明する図である。It is a figure which illustrates notionally AD conversion operation | movement of a successive approximation type AD conversion system. 理想的な上位ビット群と下位ビット群とのAD変換特性を示したグラフである。It is the graph which showed the AD conversion characteristic of the ideal upper bit group and lower bit group. 理想的なAD変換特性を示したグラフである。3 is a graph showing ideal AD conversion characteristics. 上位ビット群と下位ビット群との実際のAD変換特性を示したグラフである。It is the graph which showed the actual AD conversion characteristic of a high-order bit group and a low-order bit group.
 図1は、本発明の実施の形態による固体撮像装置の全体構成図である。図1に示すように固体撮像装置は、列並列型AD変換方式(カラムAD変換方式)のCMOSイメージセンサによる固体撮像装置であって、画素部1、垂直走査回路2、読出回路としてのカラムAD変換部3、水平走査回路4、制御部5、画像処理部6、及び画像メモリ7を備えている。 FIG. 1 is an overall configuration diagram of a solid-state imaging device according to an embodiment of the present invention. As shown in FIG. 1, the solid-state imaging device is a solid-state imaging device using a column parallel AD conversion type (column AD conversion type) CMOS image sensor, and includes a pixel unit 1, a vertical scanning circuit 2, and a column AD as a readout circuit. A conversion unit 3, a horizontal scanning circuit 4, a control unit 5, an image processing unit 6, and an image memory 7 are provided.
 画素部1は、複数の画素が8行×8列でマトリックス状に配列されている。なお、8行×8列は一例であり、M(Mは2以上の正の整数)行×N(Nは2以上の正の整数)列に配列してもよい。 The pixel unit 1 has a plurality of pixels arranged in a matrix of 8 rows × 8 columns. Note that 8 rows × 8 columns is an example, and may be arranged in M (M is a positive integer of 2 or more) rows × N (N is a positive integer of 2 or more) columns.
 垂直走査回路2は、例えば、シフトレジスタにより構成され、画素部1の第1行目~第8行目の各行に対応する8本の画素制御線HL1を介して画素部1と接続されている。そして、垂直走査回路2は、垂直同期信号VDに同期して、第1行目~第8行目の画素制御線HL1をサイクリックに選択することで、画素部1を垂直走査する。 The vertical scanning circuit 2 is configured by, for example, a shift register, and is connected to the pixel unit 1 via eight pixel control lines HL1 corresponding to the first to eighth rows of the pixel unit 1. . The vertical scanning circuit 2 performs vertical scanning of the pixel unit 1 by cyclically selecting the pixel control lines HL1 in the first to eighth rows in synchronization with the vertical synchronization signal VD.
 水平走査回路4は、例えばシフトレジスタにより構成され、水平同期信号HDに同期して列選択信号を出力することで、1水平走査期間において、第1列目~第8列目のカラムAD変換部3をサイクリックに選択してカラムAD変換部3を水平走査し、カラムAD変換部3が保持する第1列目~第8列目の画素信号を順次に出力させる。 The horizontal scanning circuit 4 is composed of, for example, a shift register, and outputs a column selection signal in synchronization with the horizontal synchronization signal HD, so that the column AD conversion units for the first to eighth columns in one horizontal scanning period. 3 is selected cyclically, the column AD conversion unit 3 is horizontally scanned, and the pixel signals of the first to eighth columns held by the column AD conversion unit 3 are sequentially output.
 制御部5は、CPU(中央演算処理装置)、ROM(リードオンリーメモリ)、及びRAM(ランダムアクセスメモリ)等かなるマイコンから構成され、固体撮像装置全体制御を司る。 The control unit 5 includes a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls the entire solid-state imaging device.
 画像処理部6は、専用のハードウエア回路により構成され、各カラムAD変換部3から出力された画像データに種々の画像処理を施す。本実施の形態では、画像処理部6は、特に補正部61を備えている。補正部61の処理の詳細については後述する。 The image processing unit 6 is configured by a dedicated hardware circuit, and performs various image processing on the image data output from each column AD conversion unit 3. In the present embodiment, the image processing unit 6 particularly includes a correction unit 61. Details of the processing of the correction unit 61 will be described later.
 画像メモリ7は、ハードディスク等の記憶装置から構成され、画像処理部6により所定の画像処理が行われた画像データを記憶する。 The image memory 7 is composed of a storage device such as a hard disk, and stores image data that has been subjected to predetermined image processing by the image processing unit 6.
 図2は、図1に示すカラムAD変換部3の回路図を示している。カラムAD変換部3は、カラムアンプ10、クランプ部20、コンパレータ部30、測定部としてのラッチ部40、逐次比較信号生成部50、ビット決定部としてのSAレジスタ60、及びスイッチ部70を備えている。 FIG. 2 shows a circuit diagram of the column AD conversion unit 3 shown in FIG. The column AD conversion unit 3 includes a column amplifier 10, a clamp unit 20, a comparator unit 30, a latch unit 40 as a measurement unit, a successive approximation signal generation unit 50, an SA register 60 as a bit determination unit, and a switch unit 70. Yes.
 図2において、φCORR,φXCORR,φGainA,φGainB,φARST,φCL,φSH,φCMP,φCRST1,φCRST2は制御信号を示し、例えば制御部5から出力される。また、VRAMPはランプ信号を示し、例えば制御部5から出力される。 In FIG. 2, φCORR, φXCORR, φGainA, φGainB, φARST, φCL, φSH, φCMP, φCRST1, and φCRST2 indicate control signals, and are output from the control unit 5, for example. VRAMP indicates a ramp signal and is output from the control unit 5, for example.
 カラムアンプ10は、画素部1から出力された画素信号Videoに対して、CDS処理を行いながら増幅処理を行い、画素信号Videoからノイズ信号を除去する。 The column amplifier 10 performs an amplification process on the pixel signal Video output from the pixel unit 1 while performing a CDS process, and removes a noise signal from the pixel signal Video.
 具体的にはカラムアンプ10は、オペアンプA10と、コンデンサCA,CB,CF、及びスイッチSW3,SW4,SW5を備えている。コンデンサCA,CBは、オペアンプA10のマイナス端子側にスイッチSW3,SW4を介して接続されている。コンデンサCFは、オペアンプA10の入出力端子間に設けられた帰還コンデンサである。 Specifically, the column amplifier 10 includes an operational amplifier A10, capacitors CA, CB, and CF, and switches SW3, SW4, and SW5. The capacitors CA and CB are connected to the negative terminal side of the operational amplifier A10 via switches SW3 and SW4. The capacitor CF is a feedback capacitor provided between the input and output terminals of the operational amplifier A10.
 スイッチSW3は、コンデンサCAをオペアンプA10に接続するためのスイッチであり、例えばφGainA=Hi(ハイレベル)のときオンしてコンデンサCAをオペアンプA10のマイナス端子に接続し、φGainA=Lo(ローレベル)のときオフしてコンデンサCAをオペアンプA10のマイナス端子から切り離す。 The switch SW3 is a switch for connecting the capacitor CA to the operational amplifier A10. For example, the switch SW3 is turned on when φGainA = Hi (high level) to connect the capacitor CA to the negative terminal of the operational amplifier A10, and φGainA = Lo (low level). Is turned off and the capacitor CA is disconnected from the negative terminal of the operational amplifier A10.
 スイッチSW4は、コンデンサCBをオペアンプA10に接続するためのスイッチであり、例えばφGainB=Hi(ハイレベル)のときオンしてコンデンサCBをオペアンプA10のマイナス端子に接続し、φGainB=Lo(ローレベル)のときオフしてコンデンサCBをオペアンプA10のマイナス端子から切り離す。 The switch SW4 is a switch for connecting the capacitor CB to the operational amplifier A10. For example, the switch SW4 is turned on when φGainB = Hi (high level) to connect the capacitor CB to the negative terminal of the operational amplifier A10, and φGainB = Lo (low level). Is turned off to disconnect the capacitor CB from the negative terminal of the operational amplifier A10.
 スイッチSW5は、コンデンサCFと並列接続され、φARST=Hiのときオンし、φARST=Loのときオフし、カラムアンプ10をリセットし、オペアンプA10のマイナス端子とオペアンプA10の出力端子との電位を所定のリセットレベル(以下、「VOPA」と記す。)にする。なお、オペアンプA10のプラス端子には常にVOPAが印加されている。 The switch SW5 is connected in parallel with the capacitor CF and is turned on when φARST = Hi, turned off when φARST = Lo, resets the column amplifier 10, and sets the potential between the negative terminal of the operational amplifier A10 and the output terminal of the operational amplifier A10 to a predetermined value. To the reset level (hereinafter referred to as “VOPA”). Note that VOPA is always applied to the plus terminal of the operational amplifier A10.
 ここで、カラムアンプ10は、スイッチSW3=オンの場合、入力される信号をCA/CFの利得で増幅し、スイッチSW4=オンの場合、入力される信号をCB/CFの利得で増幅し、スイッチSW3,SW4=オンの場合、入力される信号を(CA+CB)/CFの利得で増幅する。 Here, the column amplifier 10 amplifies the input signal with the gain of CA / CF when the switch SW3 = on, and amplifies the input signal with the gain of CB / CF when the switch SW4 = on. When the switches SW3 and SW4 are on, the input signal is amplified with a gain of (CA + CB) / CF.
 クランプ部20は、カラムアンプ10の出力端子側に設けられ、画素信号Videoの黒レベルを所定の定電圧であるクランプ電圧VCLにクランプする。ここで、クランプ部20は、スイッチSW6,SW7、及びコンデンサC21,C22を備えている。スイッチSW6は一端がコンデンサC21,Cxを介して接地されると共にコンデンサC21を介してオペアンプA10の出力端子に接続され、他端がクランプ電圧VCLを出力するクランプ電圧源(図略)に接続され、φCL=Hiのときオンし、φCL=Loのときオフする。 The clamp unit 20 is provided on the output terminal side of the column amplifier 10 and clamps the black level of the pixel signal Video to a clamp voltage VCL that is a predetermined constant voltage. Here, the clamp unit 20 includes switches SW6 and SW7 and capacitors C21 and C22. One end of the switch SW6 is grounded via the capacitors C21 and Cx, and is connected to the output terminal of the operational amplifier A10 via the capacitor C21. The other end is connected to a clamp voltage source (not shown) that outputs the clamp voltage VCL. Turns on when φCL = Hi, and turns off when φCL = Lo.
 スイッチSW7は、一端がコンデンサC21に接続され、他端がコンデンサC22を介してコンパレータ部30に接続され、φSH=Hiのときオンして、カラムアンプ10及びコンパレータ部30間を接続し、φSH=Loのときオフして、カラムアンプ10及びコンパレータ部30間を遮断する。 The switch SW7 has one end connected to the capacitor C21 and the other end connected to the comparator unit 30 via the capacitor C22. The switch SW7 is turned on when φSH = Hi to connect between the column amplifier 10 and the comparator unit 30, and φSH = When it is Lo, it is turned off and the column amplifier 10 and the comparator unit 30 are disconnected.
 コンデンサCxは、一端がコンデンサC21に接続され、他端が接地され、AOUTを保持する。 The capacitor Cx has one end connected to the capacitor C21 and the other end grounded to hold AOUT.
 コンパレータ部30は、スイッチSW10,SW8,SW9、コンデンサC31、及びコンパレータA31,A32を備えている。 The comparator unit 30 includes switches SW10, SW8, SW9, a capacitor C31, and comparators A31, A32.
 スイッチSW10は、一端がコンデンサC22を介して、コンパレータA31のマイナス端子に接続され、他端にVRAMPが入力され、φCMP=Hiになったときオンして、VRAMPをコンパレータA31のマイナス端子に入力し、φCMP=Loになったときオフして、VRAMPをコンパレータA31のマイナス端子に入力しない。 One end of the switch SW10 is connected to the negative terminal of the comparator A31 via the capacitor C22, and VRAMP is input to the other end, and is turned on when φCMP = Hi, and VRAMP is input to the negative terminal of the comparator A31. When φCMP = Lo, it turns off and VRAMP is not input to the negative terminal of the comparator A31.
 本実施の形態では、画素信号Videoは、上位4ビットの上位ビット群と下位11ビット(1ビットの冗長ビットを含む)の下位ビット群とに分けてAD変換される。そして、カラムAD変換部3は、上位ビット群を逐次比較型AD変換方式によりAD変換し、下位ビット群を積分型AD変換方式によりAD変換する。 In this embodiment, the pixel signal Video is AD-converted separately into an upper bit group of upper 4 bits and a lower bit group of lower 11 bits (including 1 redundant bit). Then, the column AD conversion unit 3 performs AD conversion on the upper bit group by the successive approximation AD conversion method, and AD converts the lower bit group by the integration AD conversion method.
 そのため、VRAMPは下位ビット群をAD変換するために、例えば0~2048(=211)の範囲で経時的に増大するランプ信号が採用される。 For this reason, VRAMP employs a ramp signal that increases with time in the range of 0 to 2048 (= 2 11 ), for example, in order to AD-convert the lower bit group.
 スイッチSW8は、コンパレータA31の入出力端子間に接続され、φCRST1=Hiのときオンし、φCRST1=Loのときオフし、コンパレータA31をリセットさせ、コンパレータA31のマイナス端子とコンパレータA31の出力端子との電位を所定のリセットレベル(以下、「VOPC」と記す。)にする。なお、コンパレータA31のプラス端子には常にVOPCが印加されている。 The switch SW8 is connected between the input and output terminals of the comparator A31. The switch SW8 is turned on when φCRST1 = Hi and turned off when φCRST1 = Lo. The comparator A31 is reset, and the negative terminal of the comparator A31 and the output terminal of the comparator A31 are connected. The potential is set to a predetermined reset level (hereinafter referred to as “VOPC”). Note that VOPC is always applied to the plus terminal of the comparator A31.
 コンパレータA31は、マイナス端子に入力される信号(以下、「CIN」と記す。)をVOPCと比較し、CINがVOPCを超えると、出力信号をローレベルに反転させ、CINがVOPCを下回ると、出力信号をハイレベルに反転させる。 Comparator A31 compares the signal input to the negative terminal (hereinafter referred to as “CIN”) with VOPC. When CIN exceeds VOPC, the output signal is inverted to a low level, and when CIN falls below VOPC, Invert the output signal to high level.
 スイッチSW9は、コンパレータA32の入出力端子間に接続され、φCRST2=Hiのときオンし、φCRST2=Loのときオフし、コンパレータA32をリセットし、コンパレータA32のマイナス端子とコンパレータA32の出力端子との電位をリセットレベルであるVOPCにする。なお、コンパレータA32のプラス端子には常にVOPCが印加されている。 The switch SW9 is connected between the input and output terminals of the comparator A32. The switch SW9 is turned on when φCRST2 = Hi and turned off when φCRST2 = Lo. The comparator A32 is reset, and the negative terminal of the comparator A32 and the output terminal of the comparator A32 are connected. The potential is set to VOPC which is a reset level. Note that VOPC is always applied to the plus terminal of the comparator A32.
 コンパレータA32は、マイナス端子がコンデンサC31を介してコンパレータA31に接続され、コンパレータA31からの出力信号がVOPCを超えると、出力信号(以下、「COUT」と記す。)をLoに反転させ、コンパレータA31からの出力信号がVOPCを下回ると、COUTをHiに反転させる。 The comparator A32 has a negative terminal connected to the comparator A31 via the capacitor C31, and when the output signal from the comparator A31 exceeds VOPC, the output signal (hereinafter referred to as “COUT”) is inverted to Lo and the comparator A31. When the output signal from VOPC falls below VOPC, COUT is inverted to Hi.
 ラッチ部40は、下位ビット群の各ビットの値(=D5~D15)をラッチする11個のラッチ回路41を備えている。 The latch unit 40 includes eleven latch circuits 41 that latch the value (= D5 to D15) of each bit of the lower bit group.
 カウンタ90は、例えば図1に示す制御部5内に設けられた11ビットのカウンタにより構成され、VRAMPのコンパレータ部30への入力が開始されてから、CINがVOPCに到達してCOUTが反転するまでの時間をカウントし、カウント値をラッチ回路41にラッチさせる。 The counter 90 is constituted by, for example, an 11-bit counter provided in the control unit 5 shown in FIG. 1. After the input to the comparator unit 30 of VRAMP is started, CIN reaches VOPC and COUT is inverted. Until the count value is counted and the latch circuit 41 latches the count value.
 逐次比較信号生成部50は、逐次比較コンデンサとしてのコンデンサC1~C4、及びスイッチSA1~SA4を備えている。コンデンサC1~C4は、上位ビット群の各ビットに対応し、それぞれレベルの異なる信号をカラムアンプ10に出力する。具体的には、コンデンサC1~C4は、一端がスイッチSA1~SA4を介して基準電圧(以下、「VREF」と記す。)を出力する電圧源(図略)に接続され、他端がオペアンプA10のマイナス端子に接続されている。 The successive approximation signal generation unit 50 includes capacitors C1 to C4 as successive approximation capacitors and switches SA1 to SA4. Capacitors C1 to C4 output signals having different levels to the column amplifier 10 corresponding to the respective bits of the upper bit group. Specifically, one end of each of the capacitors C1 to C4 is connected to a voltage source (not shown) that outputs a reference voltage (hereinafter referred to as “VREF”) via the switches SA1 to SA4, and the other end is connected to the operational amplifier A10. Is connected to the negative terminal.
 本実施の形態では、コンデンサC1~C4は、それぞれ、上位ビット群の各ビットを最上位ビットから順にD1~D4とすると、D1~D4に対応している。 In this embodiment, the capacitors C1 to C4 correspond to D1 to D4, where each bit of the upper bit group is D1 to D4 in order from the most significant bit.
 ここで、KG・Signal・((CA+CB)/CF)のダイナミックレンジをWとすると(但し、KG=C21/(C21+C22))、コンデンサC1~C4の容量はそれぞれ、例えばKG・(C1/CF)・VREF=W/2、KG・(C2/CF)・VREF=W/4、KG・(C3/CF)・VREF=W/8、KG・(C4/CF)・VREF=W/16となるように設定されている。そして、D1~D4の閾値をTH1~TH4とすると、TH1=W/2、TH2=W/4、TH3=W/8、TH4=W/16となる。 Here, when the dynamic range of KG · Signal · ((CA + CB) / CF) is W (where KG = C21 / (C21 + C22)), the capacities of the capacitors C1 to C4 are, for example, KG · (C1 / CF).・ VREF = W / 2, KG ・ (C2 / CF) ・ VREF = W / 4, KG ・ (C3 / CF) ・ VREF = W / 8, KG ・ (C4 / CF) ・ VREF = W / 16 Is set to When the threshold values of D1 to D4 are TH1 to TH4, TH1 = W / 2, TH2 = W / 4, TH3 = W / 8, and TH4 = W / 16.
 スイッチSA1~SA4は、それぞれ、φSA1~φSA4=HiのときオンしてC1~C4をVREFに接続し、φSA1~φSA4=LoのときオフしてC1~C4を接地端子(Ground)に接続する。ここで、φSA1~φSA4は、SAレジスタ60により出力される。 The switches SA1 to SA4 are turned on when φSA1 to φSA4 = Hi to connect C1 to C4 to VREF, and turned off when φSA1 to φSA4 = Lo to connect C1 to C4 to the ground terminal (Ground). Here, φSA1 to φSA4 are output by the SA register 60.
 SAレジスタ60は、コンデンサC1~C4とカラムアンプ10との接続関係を逐次切り替えて、コンパレータ部30から出力されるCOUTを基に、逐次比較型AD変換方式により画素信号Videoの上位ビットの値を決定する。 The SA register 60 sequentially switches the connection relationship between the capacitors C1 to C4 and the column amplifier 10, and based on COUT output from the comparator unit 30, the value of the upper bit of the pixel signal Video is determined by the successive approximation AD conversion method. decide.
 ここで、SAレジスタ60は、コンデンサC1~C4を、容量の大きい順番でカラムアンプ10に逐次に接続し、コンデンサC1~C4のうちのある1つのコンデンサをカラムアンプ10に接続したときのCOUTの反転の有無に基づいて、当該1つのコンデンサのカラムアンプ10への接続を維持するか否かを決定すると共に、当該1つのコンデンサに対応するビットの値を決定する。 Here, the SA register 60 sequentially connects the capacitors C1 to C4 to the column amplifier 10 in the descending order of capacity, and one of the capacitors C1 to C4 is connected to the column amplifier 10. Based on the presence or absence of inversion, whether to maintain the connection of the one capacitor to the column amplifier 10 is determined, and the value of the bit corresponding to the one capacitor is determined.
 具体的には、SAレジスタ60は、コンデンサC1をカラムアンプ10に接続し、COUTが反転しない場合、φSA1=Hiを維持し、かつ、D1=1とする。一方、SAレジスタ60は、コンデンサC1をカラムアンプ10に接続し、COUTが反転した場合、φS1=Loに切り替え、D1=0とする。 Specifically, the SA register 60 connects the capacitor C1 to the column amplifier 10, maintains φSA1 = Hi and sets D1 = 1 when COUT does not invert. On the other hand, when the capacitor C1 is connected to the column amplifier 10 and COUT is inverted, the SA register 60 switches φS1 = Lo and sets D1 = 0.
 そして、SAレジスタ60は、コンデンサC2~C4を逐次カラムアンプ10に接続し、ある1つのコンデンサを接続したときのCOUTが反転した場合、当該1つのコンデンサに対応するビットの値を1つ上位のビットの値と逆の値にすると共に、当該1つのコンデンサに対応するビットが1の場合は、当該1つのコンデンサのカラムアンプ10への接続を維持し、当該1つのコンデンサに対応するビットが0の場合は、当該1つのコンデンサのカラムアンプ10への接続を遮断する。 Then, the SA register 60 sequentially connects the capacitors C2 to C4 to the column amplifier 10, and when COUT when a certain capacitor is connected is inverted, the bit value corresponding to the one capacitor is increased by one. When the bit value is opposite to the bit value and the bit corresponding to the one capacitor is 1, the connection of the capacitor to the column amplifier 10 is maintained, and the bit corresponding to the one capacitor is 0. In this case, the connection of the one capacitor to the column amplifier 10 is cut off.
 スイッチ部70は、垂直信号線L1及びカラムアンプ10間に接続され、補正部61の制御の下、カラムアンプ10及び垂直信号線L1間を遮断してカラムアンプ10を電圧源80に接続させる。 The switch unit 70 is connected between the vertical signal line L1 and the column amplifier 10, and under the control of the correction unit 61, the column amplifier 10 and the vertical signal line L1 are disconnected to connect the column amplifier 10 to the voltage source 80.
 ここで、スイッチ部70は、スイッチSW1,SW2を備えている。スイッチSW1は、電圧源80及びカラムアンプ10間に設けられ、φCORR=Hiのときオンして電圧源80をカラムアンプ10に接続し、φCORR=Loのときオフして電圧源80をカラムアンプ10から切り離す。 Here, the switch unit 70 includes switches SW1 and SW2. The switch SW1 is provided between the voltage source 80 and the column amplifier 10, and is turned on when φCORR = Hi to connect the voltage source 80 to the column amplifier 10, and turned off when φCORR = Lo to turn off the voltage source 80. Disconnect from.
 スイッチSW2は、カラムアンプ10及び垂直信号線L1間に設けられ、φXCORR=Hiのときオンして垂直信号線L1をカラムアンプ10に接続し、φXCORR=Loのときオフして垂直信号線L1をカラムアンプ10から切り離す。ここで、スイッチSW1,SW2は相補的にオンするようにφCORR、φXCORRのHi、Loのタイミングが定められている。 The switch SW2 is provided between the column amplifier 10 and the vertical signal line L1, and is turned on when φXCORR = Hi to connect the vertical signal line L1 to the column amplifier 10, and turned off when φXCORR = Lo to turn off the vertical signal line L1. Disconnect from the column amplifier 10. Here, the Hi and Lo timings of φCORR and φXCORR are determined so that the switches SW1 and SW2 are turned on complementarily.
 このように、スイッチSW1,SW2が設けられているため、画素信号Videoを読み取る通常動作時と、CINを測定する測定時とにおいて、オペアンプA10からみた負荷容量が同じになる。 As described above, since the switches SW1 and SW2 are provided, the load capacity viewed from the operational amplifier A10 is the same in the normal operation of reading the pixel signal Video and in the measurement of measuring CIN.
 つまり、通常動作時では、スイッチSW1=オフ、スイッチSW2=オンとなるため、オペアンプA10からみた負荷容量は、コンデンサCA,CB,と、SAレジスタ60により逐次接続されるコンデンサC1~C4となる。一方、測定時では、スイッチSW1=オン、スイッチSW2=オフとなるため、オペアンプA10からみた負荷容量は、コンデンサCA,CBと、SAレジスタ60により逐次接続されるコンデンサC1~C4となる。そのため、通常動作時と測定時とにおいてオペアンプA10からみた負荷容量は同一となる。 That is, during normal operation, the switch SW1 = off and the switch SW2 = on, so that the load capacity viewed from the operational amplifier A10 is the capacitors CA, CB and the capacitors C1 to C4 sequentially connected by the SA register 60. On the other hand, at the time of measurement, since the switch SW1 is turned on and the switch SW2 is turned off, the load capacity viewed from the operational amplifier A10 is the capacitors CA1 and C4 and the capacitors C1 to C4 sequentially connected by the SA register 60. Therefore, the load capacity viewed from the operational amplifier A10 is the same during normal operation and during measurement.
 次に、図2に示すカラムAD変換部3の動作について説明する。なお、カラムAD変換部3の動作は、図9と同様であるため、図9のタイミングチャートを用いて説明する。以下の説明では、SW3,SW4は共にオンされているものとする。 Next, the operation of the column AD conversion unit 3 shown in FIG. 2 will be described. The operation of the column AD conversion unit 3 is the same as that in FIG. 9 and will be described with reference to the timing chart of FIG. In the following description, it is assumed that SW3 and SW4 are both turned on.
 まず、垂直信号線L1に画素からのNoise成分の画素信号Videoが出力されると、φARST、φCL、φCRST1、φCRST2、φSHが一定期間Hiにされ、カラムアンプ10、クランプ部20、コンパレータ部30がリセットされる。 First, when a Noise component pixel signal Video is output from the pixel to the vertical signal line L1, φARST, φCL, φCRST1, φCRST2, and φSH are set to Hi for a certain period, and the column amplifier 10, the clamp unit 20, and the comparator unit 30 are It is reset.
 次に、Noise成分の画素信号Videoが、コンデンサCA,CBでサンプルホールドされる。 Next, the noise component pixel signal Video is sampled and held by the capacitors CA and CB.
 次に、画素部1から垂直信号線L1を介して(Noise+Signal)成分の画素信号VideoであるNoise成分よりもSignal成分の大きさだけ低電位の信号が出力される。 Next, a signal having a potential lower than the Noise component, which is the (Noise + Signal) component pixel signal Video, is output from the pixel unit 1 through the vertical signal line L1.
 次に、画素信号Videoが(Noise+Signal)成分のレベルに低下すると、カラムアンプ10の出力信号であるAOUTは、Signal成分の大きさに従って、VOPAからSignal・((CA+CB)/CF)だけ増大する。 Next, when the pixel signal Video decreases to the level of the (Noise + Signal) component, the output signal AOUT of the column amplifier 10 increases from VOPA by Signal · ((CA + CB) / CF) according to the magnitude of the Signal component.
 また、クランプ部20のゲインKGがKG=C21/(C21+C22)であるため、CINはVOPCからKG・Signal・((CA+CB)/CF)だけ増大する。このとき、コンパレータ部30は、CIN>VOPCとなるため、COUT=Hiに反転させる。 In addition, since the gain KG of the clamp unit 20 is KG = C21 / (C21 + C22), CIN increases from VOPC by KG · Signal · ((CA + CB) / CF). At this time, the comparator unit 30 inverts COUT = Hi because CIN> VOPC.
 次に、φSA1=Hiになり、カラムアンプ10にコンデンサC1が接続され、カラムアンプ10に入力される電位がVREF・C1だけが上昇し、AOUTはVREF・(C1/CF)だけ低下する。これに伴って、CINはKG・VREF・(C1/CF)=TH1だけ低下してレベルVL1となる(期間T1)。 Next, φSA1 = Hi, the capacitor C1 is connected to the column amplifier 10, the potential input to the column amplifier 10 increases only by VREF · C1, and AOUT decreases by VREF · (C1 / CF). Along with this, CIN decreases by KG · VREF · (C1 / CF) = TH1 and becomes level VL1 (period T1).
 このとき、SAレジスタ60は、CIN>VOPCであり、COUTが反転しないため、φSA1=Hiを維持し、D1=1にする(期間T1)。 At this time, the SA register 60 satisfies CIN> VOPC and COUT does not invert, so φSA1 = Hi is maintained and D1 = 1 is set (period T1).
 すなわち、SAレジスタ60は、初期のCIN(=KG・Signal・(CA+CB)/CF)とD1の閾値であるTH1(=KG・VREF・(C1/CF))とを比較し、CIN>TH1であるため、φSA1=Hiを維持し、D1=1にする。 That is, the SA register 60 compares the initial CIN (= KG · Signal · (CA + CB) / CF) with the threshold TH1 (= KG · VREF · (C1 / CF)) of D1, and CIN> TH1. Therefore, φSA1 = Hi is maintained and D1 = 1 is set.
 次に、φSA1=Hiの状態で、φSA2=Hiにされ、カラムアンプ10にコンデンサC2が接続される。これにより、CINがレベルVL1からKG・VREF・(C2/CF)=TH2だけ低下し、CIN<VPOCとなり、COUTがHiからLoに反転するため、SAレジスタ60は、φSA2=Loに戻してコンデンサC2をカラムアンプ10から切り離し、D2=0とする(期間T2)。 Next, in the state where φSA1 = Hi, φSA2 = Hi, and the capacitor C2 is connected to the column amplifier 10. As a result, CIN decreases from level VL1 by KG · VREF · (C2 / CF) = TH2, CIN <VPOC, and COUT is inverted from Hi to Lo. Therefore, the SA register 60 returns to φSA2 = Lo and the capacitor C2 is separated from the column amplifier 10, and D2 = 0 is set (period T2).
 すなわち、SAレジスタ60は、初期のCINから期間T1によってTH1が差し引かれたα(=初期のCIN-TH1)とD2の閾値であるTH2(=KG・VREF・(C2/CF)とを比較し、初期のCIN-TH1<TH2なので、φSA2=Loに戻して、D2=0とする。 That is, the SA register 60 compares α (= initial CIN−TH1) obtained by subtracting TH1 from the initial CIN by the period T1 and TH2 (= KG · VREF · (C2 / CF)) which is a threshold value of D2. Since CIN−TH1 <TH2 at the initial stage, φSA2 = Lo is returned to D2 = 0.
 次に、φSA1=Hi、φSA2=Loの状態で、φSA3=Hiにし、コンデンサC3をカラムアンプ10に接続する。これにより、CINがレベルVL1からKG・VREF・(C3/CF)=TH3だけ低いレベルまで上昇するが、CIN<VPOCであり、COUTがLoを維持するため、SAレジスタ60は、φSA3をLoに戻して、D3=0とする(期間T3)。 Next, in the state of φSA1 = Hi and φSA2 = Lo, φSA3 = Hi and the capacitor C3 is connected to the column amplifier 10. As a result, CIN increases from level VL1 to a level lower by KG · VREF · (C3 / CF) = TH3. However, CIN <VPOC and COUT maintains Lo, so SA register 60 sets φSA3 to Lo. Returning to D3 = 0 (period T3).
 すなわち、SAレジスタ60は、β=TH2-(初期のCIN-TH1)とγ(=TH2-TH3)とを比較し、TH2-(初期のCIN-TH1)>TH2-TH3ということは、初期のCIN-TH1<TH3ということなので、D3=0とし、φSA3=Loに戻す。なお、TH3はD3の閾値でありTH3=KG・VREF・(C3/CF))である。 That is, the SA register 60 compares β = TH2- (initial CIN-TH1) and γ (= TH2-TH3), and TH2- (initial CIN-TH1)> TH2-TH3 Since CIN-TH1 <TH3, D3 = 0 and φSA3 = Lo are returned. TH3 is a threshold value of D3, and TH3 = KG · VREF · (C3 / CF)).
 次に、φSA1=Hi、φSA2=Lo、φSA3=Loの状態で、φSA4=Hiにし、コンデンサC4をカラムアンプ10に接続する。これにより、CINがレベルVL1からKG・VREF・(C4/CF)だけ低いレベルであるVL2まで上昇し、CIN>VPOCとなり、COUTがLoからHiに反転するため、SAレジスタ60は、φSA4=Hiを維持して、D4=1とする(期間T4)。 Next, in the state of φSA1 = Hi, φSA2 = Lo, φSA3 = Lo, φSA4 = Hi and the capacitor C4 is connected to the column amplifier 10. As a result, CIN rises from level VL1 to VL2 which is lower by KG · VREF · (C4 / CF), CIN> VPOC, and COUT inverts from Lo to Hi. Therefore, SA register 60 has φSA4 = Hi. And D4 = 1 (period T4).
 すなわち、SAレジスタ60は、TH3-(初期のCIN-TH1)とTH3-TH4とを比較し、TH3-(初期のCIN-TH1)<TH3-TH4ということは、初期のCIN-TH1>TH4ということなので、D4=1とし、φSA4=Hiを維持する。なお、TH4はD4の閾値でありTH4=VREF・(C4/CF))である。 That is, the SA register 60 compares TH3- (initial CIN-TH1) with TH3-TH4, and TH3- (initial CIN-TH1) <TH3-TH4 is referred to as initial CIN-TH1> TH4. Therefore, D4 = 1 and φSA4 = Hi is maintained. TH4 is a threshold value of D4, and TH4 = VREF · (C4 / CF)).
 以上により上位ビット群のAD変換期間が終了し、D1~D4=1,0,0,1とされる。この時点において、レベルがVL2のCINはコンデンサC22で保持されている。 Thus, the AD conversion period of the upper bit group ends, and D1 to D4 = 1, 0, 0, 1. At this time, the CIN having the level VL2 is held by the capacitor C22.
 次に、φCRST1,φCRST2が一定期間Hiにされ、コンパレータA31,A32がリセットされ、COUT=VOPCにされる。 Next, φCRST1 and φCRST2 are set to Hi for a certain period, the comparators A31 and A32 are reset, and COUT = VOPC is set.
 次に、φSH=Loとなりコンパレータ部30及びクランプ部20間が遮断され、φCMP=HiとなりVRAMPがコンパレータ部30へ入力され、コンデンサC22に保持されたレベルVL2のCINにVRAMPが重畳され、CINがVL2からVRAMPの初期レベルに応じてレベルΔVaだけ低下する(時刻T5)。これにより、CIN<VOPCとなり、COUTがVOPCからLoに反転する。また、時刻T5において、カウンタ90は、カウント動作を開始する。 Next, φSH = Lo and the comparator unit 30 and the clamp unit 20 are disconnected, φCMP = Hi and VRAMP is input to the comparator unit 30, VRAMP is superimposed on CIN of the level VL 2 held in the capacitor C 22, and CIN is The voltage decreases from VL2 by the level ΔVa according to the initial level of VRAMP (time T5). As a result, CIN <VOPC and COUT is inverted from VOPC to Lo. At time T5, the counter 90 starts a counting operation.
 次に、CINがVOPCのレベルを超えると(時刻T6)、COUTはLoからHiに反転する。そして、カウンタ90は、カウント動作を停止し、時刻T6におけるカウント値をラッチ回路41にラッチする。これにより、下位ビット群の各ビットの値が決定される。 Next, when CIN exceeds the level of VOPC (time T6), COUT is inverted from Lo to Hi. Then, the counter 90 stops the count operation and latches the count value at time T6 in the latch circuit 41. Thereby, the value of each bit of the lower bit group is determined.
 図1に戻り、補正部61は、カラムアンプ10及び画素部1間を遮断してカラムアンプ10を電圧源80に接続させた状態で、SAレジスタ60がコンデンサC1~C4のうちある1つのコンデンサをカラムアンプ10に接続するような疑似画素信号を電圧源80に出力させる。そして、補正部61は、CINをラッチ部40に測定させ、ラッチ部40による測定結果を基に、当該1つのコンデンサに対応するビットの重み付け値を補正する。 Returning to FIG. 1, the correction unit 61 disconnects the column amplifier 10 and the pixel unit 1 and connects the column amplifier 10 to the voltage source 80, and the SA register 60 is one capacitor among the capacitors C1 to C4. Is output to the voltage source 80 so as to connect to the column amplifier 10. Then, the correction unit 61 causes the latch unit 40 to measure CIN, and corrects the weighting value of the bit corresponding to the one capacitor based on the measurement result by the latch unit 40.
 ここで、補正部61は、カラムアンプ10及び画素部1間を遮断してカラムアンプ10を電圧源80に接続させた状態で、コンデンサC1~C4のうち、ある1つのコンデンサがカラムアンプ10に接続されるようなレベルの異なる疑似画素信号を電圧源80に少なくとも2回出力させる。そして、補正部61は、ラッチ部40により測定された各回のデジタル測定値を補間して、疑似画素信号の電圧とデジタル測定値との関係を示す第1の関数を算出し、算出した第1の関数を基に、当該1つのコンデンサに対応するビットの重み付け値を補正する。 Here, the correction unit 61 disconnects the column amplifier 10 and the pixel unit 1 and connects the column amplifier 10 to the voltage source 80, and one of the capacitors C1 to C4 is connected to the column amplifier 10. The pseudo pixel signals having different levels to be connected are output to the voltage source 80 at least twice. Then, the correction unit 61 interpolates each time of the digital measurement value measured by the latch unit 40, calculates a first function indicating the relationship between the voltage of the pseudo pixel signal and the digital measurement value, and calculates the calculated first value. Based on this function, the weight value of the bit corresponding to the one capacitor is corrected.
 そして、補正部61は、コンデンサC1~C4の全てがカラムアンプ10に接続されないような疑似画素信号を電圧源80に少なくとも2回出力させ、第1の関数と同様にして、疑似画素信号とデジタル測定値との関係を示す第2の関数を算出し、第1の関数と第2の関数との差分を基に、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正する。 Then, the correction unit 61 causes the voltage source 80 to output a pseudo pixel signal that does not connect all of the capacitors C1 to C4 to the column amplifier 10 at least twice, and in the same manner as the first function, A second function indicating the relationship with the measured value is calculated, and the weight value of the bit corresponding to the one successive approximation capacitor is corrected based on the difference between the first function and the second function.
 これにより、第1の関数と第2の関数とを用いて重み付け値を補正することができる。ここで、図1に示す固体撮像装置が所定のフレームレートで動画像を取得する場合、補正部61は、垂直ブランキング期間にカラムアンプ10及び画素部1間を遮断してカラムアンプ10を電圧源80に接続させた状態にすればよい。 Thus, the weighting value can be corrected using the first function and the second function. Here, when the solid-state imaging device shown in FIG. 1 acquires a moving image at a predetermined frame rate, the correction unit 61 cuts off the voltage between the column amplifier 10 and the pixel unit 1 by applying voltage to the column amplifier 10 during the vertical blanking period. What is necessary is just to make it the state connected to the source 80.
 この場合、撮像中に随時変動するコンデンサC1~C4による重み付け値の変動をリアルタイムで補正することができる。 In this case, it is possible to correct in real time the fluctuation of the weighting value due to the capacitors C1 to C4 that fluctuate as needed during imaging.
 次に、補正部61を中心として実行される補正処理について具体的に説明する。図3は、この補正処理を示すフローチャートである。 Next, the correction process executed centering on the correction unit 61 will be described in detail. FIG. 3 is a flowchart showing this correction processing.
 まず、補正部61は、SAレジスタ60が、コンデンサC1~C4をカラムアンプ10から遮断するようなレベルの疑似画素信号を電圧源80に出力させる(ステップS1)。 First, the correction unit 61 causes the voltage source 80 to output a pseudo pixel signal at such a level that the SA register 60 blocks the capacitors C1 to C4 from the column amplifier 10 (step S1).
 本実施の形態では、カラムアンプ10は、1相目で出力されるNoise成分の画素信号Videoを(Noise+Signal)成分の画素信号Videoから減じた、Signal成分に応じたレベルの信号、具体的には、Signal・(CA+CB)/CFをAOUTとして出力している。 In the present embodiment, the column amplifier 10 subtracts the pixel signal Video of the Noise component output in the first phase from the pixel signal Video of the (Noise + Signal) component, specifically, a signal according to the Signal component, specifically, , Signal · (CA + CB) / CF is output as AOUT.
 そのため、電圧源80は、1相目にNoise成分に相当するレベルの疑似画素信号をカラムアンプ10に出力した後、2相目に(Noise+Signal)成分に相当するレベルの疑似画素信号をカラムアンプ10に出力する。 Therefore, the voltage source 80 outputs a pseudo pixel signal having a level corresponding to the Noise component in the first phase to the column amplifier 10 and then outputs a pseudo pixel signal having a level corresponding to the (Noise + Signal) component in the second phase to the column amplifier 10. Output to.
 このとき、電圧源80は、1相目と2相目との疑似画素信号の差分を疑似Signal成分(以下、「Signal´」と記す。)とすると、SAレジスタ60が、D1~D4=0,0,0,0にするような疑似画素信号を1相目と2相目とに出力する。 At this time, if the voltage source 80 uses the difference between the pseudo-pixel signals of the first phase and the second phase as a pseudo-Signal component (hereinafter referred to as “Signal ′”), the SA register 60 sets D1 to D4 = 0. , 0, 0, 0 are output to the first phase and the second phase.
 ステップS1で疑似画素信号が出力されると、SAレジスタ60は、コンデンサC1~C4を逐次接続し、最終的にC1~C4の全てをカラムアンプ10から遮断する。 When the pseudo pixel signal is output in step S1, the SA register 60 sequentially connects the capacitors C1 to C4, and finally shuts off all of C1 to C4 from the column amplifier 10.
 次に、ラッチ部40は、VRAMPが入力されてから、CINがVOPCを超えるまでの時間をカウントし、下位ビット群のD5~D15の値を得ることで、CINのデジタル測定値を測定する(ステップS2)。 Next, the latch unit 40 counts the time from when VRAMP is input until CIN exceeds VOPC, and obtains the values of D5 to D15 of the lower bit group, thereby measuring the digital measurement value of CIN ( Step S2).
 次に、補正部61は、ラッチ部40がCINの2回の測定を終了している場合は(ステップS3でYES)、処理をステップS4に進める。一方、補正部61は、ラッチ部40がCINの2回の測定を終了していない場合(ステップS3でNO)、処理をステップS1に戻し、電圧源80に1回目のCINの測定時とはSignal´が異なり、かつD1~D4=0,0,0,0となるような所定レベルの疑似画素信号をカラムアンプ10に出力させる。 Next, when the latch unit 40 has finished the two CIN measurements (YES in step S3), the correction unit 61 advances the process to step S4. On the other hand, when the latch unit 40 has not finished the two measurements of CIN (NO in step S3), the correction unit 61 returns the process to step S1 and causes the voltage source 80 to measure the first CIN. The column amplifier 10 is made to output a pseudo-pixel signal of a predetermined level such that Signal ′ is different and D1 to D4 = 0, 0, 0, 0.
 次に、補正部61は、Signal´を横軸とし、CINのデジタル測定値を縦軸とする2次元座標空間に、ラッチ部40により測定されたCINの2回のデジタル測定値をプロットし、第2の関数としてのY<0>を算出する(ステップS4)。 Next, the correction unit 61 plots the two digital measurement values of CIN measured by the latch unit 40 in a two-dimensional coordinate space having Signal ′ as the horizontal axis and the CIN digital measurement value as the vertical axis, Y <0> as the second function is calculated (step S4).
 図4は、Y<0>を示したグラフである。図4において縦軸はラッチ部40によりCINのデジタル測定値を示し、横軸はSignal´を示している。 FIG. 4 is a graph showing Y <0>. In FIG. 4, the vertical axis indicates the CIN digital measurement value by the latch unit 40, and the horizontal axis indicates Signal ′.
 図4において、X1は1回目の測定時におけるSignal´を示し、Y1は1回目の測定時におけるCINのデジタル測定値を示している。また、X2は2回目の測定時におけるSignal´を示し、Y2は2回目の測定時におけるCINのデジタル測定値を示している。 4, X1 represents Signal ′ at the time of the first measurement, and Y1 represents a digital measurement value of CIN at the time of the first measurement. X2 represents Signal 'at the time of the second measurement, and Y2 represents a digital measurement value of CIN at the time of the second measurement.
 そして、補正部61は、(X1,Y1)と(X2,Y2)との2点を例えば線形補間することで、Y<0>を算出する。Y<0>をY=a・X+bとおくと、Y<0>は、Y<0>=((Y2-Y1)/(X2-X1))・X+(X2・Y1-X1・Y2)/(X2-X1)で表される。 Then, the correction unit 61 calculates Y <0> by linearly interpolating the two points (X1, Y1) and (X2, Y2), for example. Assuming that Y <0> is Y = a · X + b, Y <0> is Y <0> = ((Y2−Y1) / (X2−X1)) · X + (X2 · Y1−X1 · Y2) / It is represented by (X2-X1).
 つまり、Y<0>は、傾きaがa=(Y2-Y1)/(X2-X1)で表され、Y切片B0がB0=(X2・Y1-X1・Y2)/(X2-X1)で表される直線である。 That is, in Y <0>, the slope a is represented by a = (Y2-Y1) / (X2-X1), and the Y intercept B0 is represented by B0 = (X2, Y1-X1, Y2) / (X2-X1). It is a straight line represented.
 Y<0>は、D1~D4=0,0,0,0の場合のSignal´に対するD5~D15のAD変換特性を表している。したがって、理想的には、Y<0>は、Signal´=0のとき、Y=0となり、傾きがVRAMPと等しい直線であるRLを描くはずである。 Y <0> represents the AD conversion characteristics of D5 to D15 with respect to Signal ′ when D1 to D4 = 0, 0, 0, 0. Therefore, ideally, Y <0> should draw Y = 0 when Signal ′ = 0 and draw an RL that is a straight line with a slope equal to VRAMP.
 しかしながら、カラムAD変換部3を構成するコンデンサ(例えばコンデンサCA,CB等)の容量の経時的変化や元々有する個体バラツキ等によって、Y<0>はRLからずれるのである。 However, Y <0> deviates from RL due to changes over time in the capacitance of capacitors (for example, capacitors CA, CB, etc.) constituting the column AD conversion unit 3 and due to individual variations inherent in the capacitor.
 図3に戻り、ステップS5において、補正部61は、コンデンサC1~C4のうちある1つのコンデンサCiのインデックスであるiをi=4に設定する。 Returning to FIG. 3, in step S5, the correction unit 61 sets i, which is an index of one capacitor Ci among the capacitors C1 to C4, to i = 4.
 次に、補正部61は、SAレジスタ60がコンデンサC1~C4をカラムアンプ10に逐次接続して最終的にコンデンサCiのみをカラムアンプ10のみを接続するような疑似画素信号を電圧源80に出力させる。例えばi=4の場合、SAレジスタ60がコンデンサC4のみをカラムアンプ10に接続するようなSignal´、すなわち、SAレジスタ60がD1~D4=0,0,0,1とするような疑似画素信号が電圧源80から出力される。 Next, the correction unit 61 outputs to the voltage source 80 a pseudo pixel signal such that the SA register 60 sequentially connects the capacitors C1 to C4 to the column amplifier 10 and finally connects only the capacitor Ci and only the column amplifier 10. Let For example, in the case of i = 4, the signal “Signal ′” in which the SA register 60 connects only the capacitor C4 to the column amplifier 10, that is, the pseudo pixel signal in which the SA register 60 sets D1 to D4 = 0, 0, 0, 1. Is output from the voltage source 80.
 次に、ラッチ部40はCINのデジタル測定値を測定する(ステップS7)。次に、補正部61は、1つのiに対してCINの2回の測定が終了した場合は(ステップS8でYES)、処理をステップS9に進める。 Next, the latch unit 40 measures the digital measurement value of CIN (step S7). Next, the correction | amendment part 61 advances a process to step S9, when two measurement of CIN is complete | finished with respect to one i (it is YES at step S8).
 一方、補正部61は、1つのiに対してCINの2回の測定が終了していない場合(ステップS8でNO)、処理をステップS6に戻し、コンデンサCiのみがカラムアンプ10に接続され、かつ1回目の測定とはSignal´の値が異なる疑似画素信号を電圧源80に出力させる。 On the other hand, when the two measurements of CIN for one i have not been completed (NO in step S8), the correction unit 61 returns the process to step S6, and only the capacitor Ci is connected to the column amplifier 10, In addition, a pseudo pixel signal having a different Signal ′ value from the first measurement is output to the voltage source 80.
 例えば、i=4の場合、SAレジスタ60がコンデンサC4のみをカラムアンプ10に接続するようなSignal´の異なる疑似画素信号、すなわち、SAレジスタ60がD1~D4=0,0,0,1とするようなSignal´の異なる疑似画素信号が電圧源80から2回出力される。そして、補正部61は、ラッチ部40により測定された2回分のデジタル測定値を取得する。 For example, in the case of i = 4, the pseudo-pixel signal having a different Signal ′ in which the SA register 60 connects only the capacitor C4 to the column amplifier 10, that is, the SA register 60 has D1 to D4 = 0, 0, 0, 1 The pseudo pixel signals having different signals' are output from the voltage source 80 twice. Then, the correction unit 61 acquires two digital measurement values measured by the latch unit 40.
 次に、補正部61は、ラッチ部40により2回測定されたデジタル測定値を、Signal´を横軸、CINのデジタル測定値を縦軸とする2次元座標空間にプロットし、プロットしたデジタル測定値を例えば線形補間することで第1の関数であるY<i>を算出する(ステップS9)。 Next, the correction unit 61 plots the digital measurement values measured twice by the latch unit 40 in a two-dimensional coordinate space with Signal ′ as the horizontal axis and CIN's digital measurement value as the vertical axis. For example, Y <i> that is the first function is calculated by linearly interpolating the values (step S9).
 次に、補正部61は、第1の関数としてのY<i>(=Y<1>~Y<4>)とY<0>とを用いてDi(=D1~D4)の重み付け値であるKi(=K1~K4)を補正する(ステップS10)。 Next, the correcting unit 61 uses Y <i> (= Y <1> to Y <4>) and Y <0> as the first function and uses a weighting value of Di (= D1 to D4). A certain Ki (= K1 to K4) is corrected (step S10).
 図5は、Y<4>を示したグラフである。縦軸及び横軸は図4と同一であるため、説明を省く。図5において、X3は1回目の測定時におけるSignal´を示し、Y3は1回目の測定時におけるCINのデジタル測定値を示している。また、X4は2回目の測定時におけるSignal´を示し、Y4は2回目の測定時におけるCINのデジタル測定値を示している。 FIG. 5 is a graph showing Y <4>. The vertical and horizontal axes are the same as those in FIG. In FIG. 5, X3 represents Signal ′ at the time of the first measurement, and Y3 represents a digital measurement value of CIN at the time of the first measurement. X4 represents Signal ′ at the time of the second measurement, and Y4 represents a digital measurement value of CIN at the time of the second measurement.
 そして、補正部61は、(X3,Y3)と(X4,Y4)との2点を例えば線形補間することで、Y<4>を算出する。Y<4>をY=a・X+bとおくと、Y<4>は、Y<4>=((Y4-Y3)/(X4-X3))・X+(X4・Y3-X3・Y4)/(X4-X3)で表される。 Then, the correction unit 61 calculates Y <4> by linearly interpolating two points (X3, Y3) and (X4, Y4), for example. Assuming that Y <4> is Y = a · X + b, Y <4> is Y <4> = ((Y4−Y3) / (X4−X3)) · X + (X4 · Y3−X3 · Y4) / It is represented by (X4-X3).
 つまり、Y<4>は、傾きaがa=(Y4-Y3)/(X4-X3)で表され、Y切片B4がB4=(X4・Y3-X3・Y4)/(X4-X3)で表される直線である。ここで、Y<4>の傾きaは、VRAMPによって定まるため、Y<0>の傾きaと同じである。 That is, for Y <4>, the slope a is represented by a = (Y4-Y3) / (X4-X3), and the Y-intercept B4 is represented by B4 = (X4 · Y3-X3 · Y4) / (X4-X3). It is a straight line represented. Here, since the slope a of Y <4> is determined by VRAMP, it is the same as the slope a of Y <0>.
 Y<4>は、D1~D4=0,0,0,1のときのSignal´とD5~D15とのAD変換特性を示しているため、理想的にはRL=K4(=210=1024)のときのSignal´であるXα1において、Y<4>=0となるはずである。 Y <4> indicates the AD conversion characteristic between Signal ′ and D5 to D15 when D1 to D4 = 0, 0, 0, 1, and ideally RL = K4 (= 2 10 = 1024 In the case of Xα1, which is the Signal ′ at the time of Y), Y <4> = 0.
 つまり、D4に対する重み付け値であるK4をオフセットとしてY<4>に加えると、Y<4>はRLに乗るはずである。 That is, if K4 which is a weighting value for D4 is added to Y <4> as an offset, Y <4> should ride on RL.
 しかしながら、コンデンサC4の容量の経時的変化や個体バラツキによって理想値からずれ、Y<0>もRLからずれているため、Y<4>にK4をオフセットとして加えても、Y<4>はRLに乗らず、Y<0>とは滑らかに繋がらない。 However, since the deviation of the capacitance of the capacitor C4 from the ideal value due to changes over time and individual variations, Y <0> is also deviated from RL. Even if K4 is added as an offset to Y <4>, Y <4> is RL. Is not connected to Y <0> smoothly.
 これにより、D4をK4で重み付けしても、カラムAD変換部3のADC特性が図12に示すように滑らかな直線とならず、画素信号Videoを精度良くAD変換することができなくなる。 Thus, even if D4 is weighted by K4, the ADC characteristic of the column AD converter 3 does not become a smooth straight line as shown in FIG. 12, and the pixel signal Video cannot be AD converted with high accuracy.
 そこで、ステップS10において、補正部61は、Y<0>-Y<4>からB0とB4との差分ΔB04を求め、ΔB04を補正後のK4とすることでK4を補正する。なお、Y<0>とY<4>とは傾きが同一であるため、Y<0>-Y<4>により、Y<0>のY切片であるB0とY<4>のY切片であるB4との差分ΔB04を求めることができる。 Therefore, in step S10, the correction unit 61 calculates a difference ΔB04 between B0 and B4 from Y <0> −Y <4>, and corrects K4 by setting ΔB04 to K4 after correction. Since Y <0> and Y <4> have the same slope, Y <0> −Y <4> indicates that B <0> is a Y intercept of Y <0> and a Y intercept of Y <4>. A difference ΔB04 from a certain B4 can be obtained.
 図3に戻り、ステップS11において、補正部61は、iから1を減じてiを更新し、i≧1の場合(ステップS12でNO)、処理をステップS6に戻し、i<1の場合(ステップS12でYES)、処理を終了する。すなわち、補正部61は、i<1となるまでiを更新してステップS6~S12の処理を繰り返し行う。 Returning to FIG. 3, in step S11, the correction unit 61 updates i by subtracting 1 from i. If i ≧ 1 (NO in step S12), the process returns to step S6, and if i <1 ( In step S12, YES), the process ends. That is, the correction unit 61 updates i until i <1, and repeats the processes of steps S6 to S12.
 これにより、Y<4>、Y<3>、Y<2>、Y<1>が順次算出され、K4~K1が補正される。 Thereby, Y <4>, Y <3>, Y <2>, Y <1> are sequentially calculated, and K4 to K1 are corrected.
 図6は、Y<3>を示したグラフである。縦軸及び横軸は図4と同一であるため、説明を省く。Y<3>は、電圧源80がコンデンサC3のみをカラムアンプに接続するようなSignal´の異なる疑似画素信号を2回出力することで得られた直線である。 FIG. 6 is a graph showing Y <3>. The vertical and horizontal axes are the same as those in FIG. Y <3> is a straight line obtained when the voltage source 80 outputs twice the pseudo pixel signal having different Signal ′ such that only the capacitor C3 is connected to the column amplifier.
 図6において、X5はi=3の場合の1回目の測定時におけるSignal´を示し、Y5はi=3の場合の1回目の測定時におけるCINのデジタル測定値を示している。また、X6はi=3の場合の2回目の測定時におけるSignal´を示し、Y6はi=3の2回目の測定時におけるCINのデジタル測定値を示している。 6, X5 represents Signal ′ at the time of the first measurement when i = 3, and Y5 represents the digital measurement value of CIN at the time of the first measurement when i = 3. X6 represents Signal ′ at the time of the second measurement when i = 3, and Y6 represents the digital measurement value of CIN at the time of the second measurement of i = 3.
 そして、補正部61は、(X5,Y5)と(X6,Y6)との2点を例えば線形補間することで、Y<3>を算出する。Y<3>をY=a・X+bとおくと、Y<3>は、Y<3>=((Y6-Y5)/(X6-X5))・X+(X6・Y5-X5・Y6)/(X6-X5)で表される。 Then, the correction unit 61 calculates Y <3> by linearly interpolating the two points (X5, Y5) and (X6, Y6), for example. Assuming that Y <3> is Y = a · X + b, Y <3> is Y <3> = ((Y6-Y5) / (X6-X5)) · X + (X6 · Y5-X5 · Y6) / It is represented by (X6-X5).
 つまり、Y<3>は、傾きaがa=(Y6-Y5)/(X6-X5)で表され、Y切片B3がB3=(X6・Y5-X5・Y6)/(X6-X5)で表される直線である。ここで、Y<3>の傾きaは、VRAMPによって定まるため、Y<0>の傾きaと同じである。 That is, for Y <3>, the slope a is represented by a = (Y6-Y5) / (X6-X5), and the Y-intercept B3 is represented by B3 = (X6 · Y5-X5 · Y6) / (X6-X5). It is a straight line represented. Here, since the slope a of Y <3> is determined by VRAMP, it is the same as the slope a of Y <0>.
 Y<3>は、D1~D4=0,0,1,0のときのSignal´とD5~D15とのAD変換特性を示しているため、理想的にはRL=K3(=211=2048)のときのSignal´であるXα2において、Y<3>=0となるはずである。 Y <3> indicates the AD conversion characteristic between Signal ′ and D5 to D15 when D1 to D4 = 0, 0, 1, 0, and therefore ideally RL = K3 (= 2 11 = 2048). In the case of Xα2 which is Signal ′ at the time of (), Y <3> = 0.
 つまり、K3をオフセットとしてY<3>に加えると、Y<3>はRLに乗るはずである。 That is, if K3 is added to Y <3> as an offset, Y <3> should ride on RL.
 しかしながら、コンデンサC3の容量の経時的変化や個体バラツキによって理想値からずれているため、Y<3>にK3をオフセットとして加えても、Y<3>はRLに乗らず、Y<4>とは滑らかに繋がらない。 However, since it deviates from the ideal value due to a change in the capacitance of the capacitor C3 with time and individual variations, even if K3 is added as an offset to Y <3>, Y <3> does not ride on RL, and Y <4>. Does not connect smoothly.
 これにより、D3をK3で重み付けしても、カラムAD変換部3のADC特性が図12に示すように滑らかな直線とならず、画素信号Videoを精度良くAD変換することができなくなる。 Thus, even if D3 is weighted by K3, the ADC characteristic of the column AD conversion unit 3 does not become a smooth straight line as shown in FIG. 12, and the pixel signal Video cannot be AD converted with high accuracy.
 そこで、ステップS10において、補正部61は、Y<0>-Y<3>からB0とB3との差分ΔB03を求め、ΔB03を補正後のK3としてK3を補正する。なお、Y<0>とY<3>とは傾きが同一であるため、Y<0>-Y<3>により、Y<0>のY切片であるB0とY<3>のY切片であるB3との差分ΔB03を求めることができる。 Therefore, in step S10, the correction unit 61 obtains a difference ΔB03 between B0 and B3 from Y <0> −Y <3>, and corrects K3 using ΔB03 as K3 after correction. Since Y <0> and Y <3> have the same slope, Y <0> −Y <3> indicates that the Y intercept of Y <0> is B0 and the Y intercept of Y <3>. A difference ΔB03 from a certain B3 can be obtained.
 図7は、Y<2>を示したグラフである。縦軸及び横軸は図4と同一であるため、説明を省く。Y<3>は、電圧源80がコンデンサC3のみをカラムアンプに接続するようなSignal´の異なる疑似画素信号を2回出力することで得られた直線である。 FIG. 7 is a graph showing Y <2>. The vertical and horizontal axes are the same as those in FIG. Y <3> is a straight line obtained when the voltage source 80 outputs twice the pseudo pixel signal having different Signal ′ such that only the capacitor C3 is connected to the column amplifier.
 図7において、X7はi=2の場合の1回目の測定時におけるSignal´を示し、Y7はi=2の場合の1回目の測定時におけるCINのデジタル測定値を示している。また、X8はi=2の場合の2回目の測定時におけるSignal´を示し、Y8はi=2の2回目の測定時におけるCINのデジタル測定値を示している。 7, X7 indicates Signal ′ at the time of the first measurement when i = 2, and Y7 indicates the digital measurement value of CIN at the time of the first measurement when i = 2. X8 represents Signal ′ at the time of the second measurement when i = 2, and Y8 represents the CIN digital measurement value at the time of the second measurement of i = 2.
 そして、補正部61は、(X7,Y7)と(X8,Y8)との2点を例えば線形補間することで、Y<2>を算出する。Y<2>をY=a・X+bとおくと、Y<2>は、Y<2>=((Y8-Y7)/(X8-X7))・X+(X8・Y7-X7・Y8)/(X8-X7)で表される。 Then, the correction unit 61 calculates Y <2> by linearly interpolating two points (X7, Y7) and (X8, Y8), for example. When Y <2> is set to Y = a · X + b, Y <2> is Y <2> = ((Y8−Y7) / (X8−X7)) × X + (X8 • Y7−X7 • Y8) / It is represented by (X8-X7).
 つまり、Y<2>は、傾きaがa=(Y8-Y7)/(X8-X7)で表され、Y切片B3がB3=(X8・Y7-X7・Y8)/(X8-X7)で表される直線である。ここで、Y<2>の傾きaは、VRAMPによって定まるため、Y<0>の傾きaと同じである。 That is, for Y <2>, the slope a is represented by a = (Y8−Y7) / (X8−X7), and the Y intercept B3 is represented by B3 = (X8 · Y7−X7 · Y8) / (X8−X7). It is a straight line represented. Here, since the slope a of Y <2> is determined by VRAMP, it is the same as the slope a of Y <0>.
 Y<2>は、D1~D4=0,1,0,0のときのSignal´に対するD5~D15とのAD変換特性を示しているため、理想的にはRL=K2(=212=4096)のときのSignal´であるXα3において、Y<2>=0となるはずである。 Y <2> indicates AD conversion characteristics with D5 to D15 with respect to Signal ′ when D1 to D4 = 0, 1, 0, 0, and therefore ideally RL = K2 (= 2 12 = 4096). ) Should be Y <2> = 0 in Xα3 which is Signal ′.
 つまり、K2をオフセットとしてY<2>に加えると、Y<2>はRLに乗るはずである。 That is, if K2 is added to Y <2> as an offset, Y <2> should ride on RL.
 しかしながら、TH2がコンデンサC2の容量の経時的変化によって理想値からずれているため、Y<2>にK2をオフセットとして加えても、Y<2>はRLに乗らず、Y<3>とは滑らかに繋がらない。 However, since TH2 deviates from the ideal value due to a change in the capacitance of the capacitor C2 over time, even if K2 is added as an offset to Y <2>, Y <2> does not ride on RL, and Y <3> It does not connect smoothly.
 これにより、D2をK2で重み付けしても、カラムAD変換部3のADC特性が図12に示すように滑らかな直線とならず、画素信号Videoを精度良くAD変換することができなくなる。 Thus, even if D2 is weighted by K2, the ADC characteristic of the column AD conversion unit 3 does not become a smooth straight line as shown in FIG. 12, and the pixel signal Video cannot be AD converted with high accuracy.
 そこで、ステップS10において、補正部61は、Y<0>-Y<2>からB0とB2との差分ΔB02を求め、ΔB02を補正後のK2としてK2を補正する。なお、Y<0>とY<2>とは傾きが同一であるため、Y<0>-Y<2>により、Y<0>のY切片であるB0とY<2>のY切片であるB2との差分ΔB02を求めることができる。 Therefore, in step S10, the correction unit 61 obtains a difference ΔB02 between B0 and B2 from Y <0> −Y <2>, and corrects K2 with ΔB02 as K2 after correction. Since Y <0> and Y <2> have the same slope, Y <0> −Y <2> indicates that B0 that is the Y intercept of Y <0> and the Y intercept of Y <2>. A difference ΔB02 from a certain B2 can be obtained.
 同様にして、補正部61は、Y<1>を求め、Y<0>-Y<1>よりΔB01を求め、ΔB01を補正後のK1としてK1を補正する。 Similarly, the correction unit 61 obtains Y <1>, obtains ΔB01 from Y <0> −Y <1>, and corrects K1 with ΔB01 as K1 after correction.
 そして、図1に示す画像処理部6は、通常動作時に画素信号VideoのデジタルデータであるD1~D15がカラムAD変換部3から出力されると、補正後の重み付け値をK1´~K4´とすると、上位ビット群のデジタルデータをK1´・D1+K2´・D2+K3´・D3+K4´・D4を求める。これにより、Y<0>~Y<4>が滑らかに繋がる。 Then, when D1 to D15, which are digital data of the pixel signal Video, are output from the column AD conversion unit 3 during normal operation, the image processing unit 6 illustrated in FIG. 1 sets the corrected weight values as K1 ′ to K4 ′. Then, K1 ′ · D1 + K2 ′ · D2 + K3 ′ · D3 + K4 ′ · D4 is obtained as the upper bit group digital data. As a result, Y <0> to Y <4> are smoothly connected.
 次に、下位ビット群のデジタルデータをD5~D15から冗長ビットを取り除くために所定値M0を差し引き、下位ビット群のD5~D14の10ビットのデジタルデータにする。ここで、M0としては、例えば図4に示すB0を採用すればよい。これにより、Signal´=0でY<0>=0にすることができる。次に、D5~D14に対して、D5~D14に対する所定の重み付け値K5~K14を乗じて加算する、すなわち、K5・D5+K6・D6+・・・+K14・D14を下位ビット群のデジタルデータとして求める。次に、上位ビット群のデジタルデータと下位ビット群のデジタルデータとを加算して、画素信号Videoのデジタルデータの値が得られる。 Next, in order to remove redundant bits from D5 to D15, the predetermined value M0 is subtracted from the lower bit group digital data to obtain 10 bit digital data of D5 to D14 of the lower bit group. Here, for example, B0 shown in FIG. 4 may be adopted as M0. Thereby, it is possible to set Y <0> = 0 when Signal ′ = 0. Next, D5 to D14 are multiplied by predetermined weight values K5 to K14 for D5 to D14 and added, that is, K5 · D5 + K6 · D6 +... + K14 · D14 is obtained as digital data of the lower bit group. Next, the digital data of the pixel signal Video is obtained by adding the digital data of the upper bit group and the digital data of the lower bit group.
 このように、本実施の形態による固体撮像装置によれば、カラムアンプ10及び画素部1間を遮断してカラムアンプ10が電圧源80に接続され、電圧源80から1つのコンデンサCi(=C1~C4)をカラムアンプに接続させるような疑似画素信号が出力されると、SAレジスタ60は、コンデンサCiをカラムアンプ10に逐次接続し、最終的にコンデンサCiをカラムアンプ10に接続させる。そして、ラッチ部40は、この状態においてコンパレータ部30に入力される信号(CIN)を測定し、補正部61は、ラッチ部40による測定結果を基に、コンデンサCiに対応するビットの重み付け値であるKiを補正する。 Thus, according to the solid-state imaging device according to the present embodiment, the column amplifier 10 and the pixel unit 1 are disconnected and the column amplifier 10 is connected to the voltage source 80, and one capacitor Ci (= C 1) is connected from the voltage source 80. When the pseudo pixel signal is output so as to connect .about.C4) to the column amplifier, the SA register 60 sequentially connects the capacitor Ci to the column amplifier 10 and finally connects the capacitor Ci to the column amplifier 10. The latch unit 40 measures the signal (CIN) input to the comparator unit 30 in this state, and the correction unit 61 uses the weighting value of the bit corresponding to the capacitor Ci based on the measurement result by the latch unit 40. A certain Ki is corrected.
 すなわち、SAレジスタ60は、従来のようにカラムアンプ10に0の信号が入力されているにも関わらず、強制的にコンデンサCiをカラムアンプ10に接続させるのではなく、画素信号Videoを読み出す通常動作時と同様にしてコンデンサC1~C4をカラムアンプ10に逐次接続した後に、コンデンサCiをカラムアンプ10に接続させている。そして、ラッチ部40はこの状態においてコンパレータ部30に入力される信号(CIN)を測定している。そのため、通常動作時と同一条件でSAレジスタ60を動作させて、コンパレータ部30に入力される信号を測定することができる。その結果、D1~D4の各ビットの重み付け値であるK1~K4を精度良く補正することができる。 That is, the SA register 60 normally reads the pixel signal Video instead of forcibly connecting the capacitor Ci to the column amplifier 10 even though a 0 signal is input to the column amplifier 10 as in the prior art. Similarly to the operation, the capacitors C1 to C4 are sequentially connected to the column amplifier 10, and then the capacitor Ci is connected to the column amplifier 10. The latch unit 40 measures the signal (CIN) input to the comparator unit 30 in this state. Therefore, the SA register 60 can be operated under the same conditions as during normal operation, and the signal input to the comparator unit 30 can be measured. As a result, the weight values K1 to K4 of the bits D1 to D4 can be accurately corrected.
 なお、上記実施の形態では、Y<1>~Y<4>を求めていたが、Y<0>のみ求め、理想となる直線であるRLとのずれから重み付け値K1~K4を補正するようにしてもよい。 In the above embodiment, Y <1> to Y <4> are obtained. However, only Y <0> is obtained, and the weight values K1 to K4 are corrected from the deviation from the ideal straight line RL. It may be.
 また、上記実施の形態では、1つのiに対して2回、疑似画素信号が測定されているが、これに限定されず、2回以上であれば何回測定してもよい。 In the above embodiment, the pseudo pixel signal is measured twice for one i. However, the present invention is not limited to this, and any number of times may be used as long as it is twice or more.
 また、上記実施の形態では、上位ビット群を4ビット、下位ビット群を11ビットとしたが、これに限定されず、他のビット数を採用してもよい。 In the above embodiment, the upper bit group is 4 bits and the lower bit group is 11 bits. However, the present invention is not limited to this, and other numbers of bits may be adopted.
 また、上記の実施の形態の固体撮像装置は、上位ビット群と下位ビット群とに分けて画素信号VideoをAD変換するものであったが、これに限定されず、デジタルデータの全ビットを逐次比較型AD変換方式でAD変換するものであってもよい。この場合、ラッチ部40を、CINを測定するための測定部として利用すればよい。 In the solid-state imaging device of the above-described embodiment, the pixel signal Video is AD-converted separately into an upper bit group and a lower bit group. However, the present invention is not limited to this, and all bits of digital data are sequentially converted. A / D conversion may be performed by a comparative AD conversion method. In this case, the latch unit 40 may be used as a measurement unit for measuring CIN.
 上記の固体撮像装置の技術的特徴は以下のように纏められる。 The technical features of the above solid-state imaging device can be summarized as follows.
 (1)本発明の一局面による固体撮像装置は、複数の画素がマトリックス状に配置された画素部と、前記画素部の各行を順次選択する垂直走査回路と、前記画素部の各列に対応して設けられ、前記垂直走査回路により選択された行の画素から画素信号を読み出し、アナログデジタル変換する複数の読出回路とを備え、前記読出回路は、前記画素部から読み出した画素信号を増幅するカラムアンプと、前記カラムアンプから出力された信号を所定の基準電圧と比較することで出力信号を反転させるコンパレータ部と、アナログデジタル変換されるデジタルデータの各ビットに対応して設けられ、それぞれレベルの異なる信号を前記カラムアンプに出力する複数の逐次比較コンデンサと、疑似画素信号を出力する電圧源と、前記逐次比較コンデンサと前記カラムアンプとの接続関係を逐次切り替えて、前記コンパレータ部から出力される出力信号を基に、逐次比較型アナログデジタル変換方式により前記画素信号のデジタルデータの値を決定するビット決定部と、前記コンパレータ部に入力される信号を測定する測定部と、前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態で、前記ビット決定部がある1つの逐次比較コンデンサを前記カラムアンプに接続するような疑似画素信号を前記電圧源に出力させ、前記コンパレータ部に入力される信号を前記測定部に測定させ、前記測定部による測定結果を基に、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正する補正部とを備えることを特徴とする。 (1) A solid-state imaging device according to one aspect of the present invention corresponds to a pixel portion in which a plurality of pixels are arranged in a matrix, a vertical scanning circuit that sequentially selects each row of the pixel portion, and each column of the pixel portion A plurality of readout circuits that read out pixel signals from pixels in a row selected by the vertical scanning circuit and perform analog-to-digital conversion, and the readout circuit amplifies the pixel signals read out from the pixel unit A column amplifier, a comparator unit that inverts an output signal by comparing the signal output from the column amplifier with a predetermined reference voltage, and each level of digital data that is analog-to-digital converted are provided, respectively. A plurality of successive approximation capacitors that output different signals to the column amplifier, a voltage source that outputs a pseudo pixel signal, and the successive approximation capacitor. A bit determining unit that sequentially switches a connection relationship between the column amplifier and the column amplifier, and determines a value of digital data of the pixel signal by a successive approximation type analog-to-digital conversion method based on an output signal output from the comparator unit; The bit determining unit includes a measuring unit that measures a signal input to the comparator unit, and the column amplifier and the pixel unit are disconnected and the column amplifier is connected to the voltage source. A pseudo pixel signal that connects a successive approximation capacitor to the column amplifier is output to the voltage source, a signal input to the comparator unit is measured by the measurement unit, and based on a measurement result by the measurement unit, And a correction unit that corrects a weighting value of a bit corresponding to one successive approximation capacitor.
 この構成によれば、カラムアンプ及び画素部間を遮断してカラムアンプが電圧源に接続され、電圧源からある1つの逐次比較コンデンサをカラムアンプに接続させるような疑似画素信号が出力されると、ビット決定部は、逐次比較コンデンサをカラムアンプに逐次接続し、最終的に当該1つの逐次比較コンデンサをカラムアンプに接続させる。そして、測定部は、この状態においてコンパレータ部に入力される信号を測定し、補正部は、測定部による測定結果を基に、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正する。 According to this configuration, when the column amplifier is connected to the voltage source while the column amplifier is disconnected from the pixel unit, and a pseudo pixel signal that connects one successive approximation capacitor to the column amplifier is output from the voltage source. The bit determination unit sequentially connects the successive approximation capacitor to the column amplifier, and finally connects the one successive approximation capacitor to the column amplifier. Then, the measurement unit measures the signal input to the comparator unit in this state, and the correction unit corrects the weight value of the bit corresponding to the one successive approximation capacitor based on the measurement result by the measurement unit.
 すなわち、ビット決定部は、従来のようにカラムアンプに0の信号が入力されているにも関わらず、強制的に当該1つの逐次比較コンデンサをカラムアンプに接続させるのではなく、画素信号を読み出す通常動作時と同様にして逐次比較コンデンサをカラムアンプに逐次接続した後に、当該1つの逐次比較コンデンサをカラムアンプに接続させている。そして、測定部はこの状態においてコンパレータ部に入力される信号を測定している。そのため、通常動作時と同一条件でビット決定部を動作させて、コンパレータ部に入力される信号を測定することができる。その結果、デジタルデータの各ビットの重み付け値を精度良く補正することができる。 That is, the bit determination unit reads out the pixel signal instead of forcibly connecting the one successive approximation capacitor to the column amplifier even though a 0 signal is input to the column amplifier as in the prior art. The successive approximation capacitor is connected to the column amplifier in the same manner as in normal operation, and then the one successive approximation capacitor is connected to the column amplifier. The measurement unit measures the signal input to the comparator unit in this state. Therefore, it is possible to measure the signal input to the comparator unit by operating the bit determining unit under the same conditions as in normal operation. As a result, the weight value of each bit of the digital data can be corrected with high accuracy.
 (2)前記測定部は、前記コンパレータ部に入力される信号と所定のランプ信号とを前記コンパレータに比較させることで前記コンパレータ部に入力される信号を、積分型アナログデジタル変換方式によりアナログデジタル変換してデジタル測定値を測定し、前記補正部は、前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態で、ある1つの逐次比較コンデンサが前記カラムアンプに接続されるようなレベルの異なる疑似画素信号を前記電圧源に少なくとも2回出力させ、前記測定部により測定された各回のデジタル測定値を補間して、前記疑似画素信号の電圧と前記デジタル測定値との関係を示す第1の関数を算出し、算出した第1の関数を基に、前記1つの逐次比較コンデンサに対応するビットの重み付け値を補正することが好ましい。 (2) The measurement unit performs analog-to-digital conversion on the signal input to the comparator unit by comparing the signal input to the comparator unit and a predetermined ramp signal with the comparator by an integral analog-digital conversion method. The digital measurement value is measured, and the correction unit disconnects the column amplifier and the pixel unit and connects the column amplifier to the voltage source, and one successive approximation capacitor is connected to the column amplifier. The pseudo-pixel signal having different levels connected to the voltage source is output to the voltage source at least twice, and the digital measurement value measured by the measurement unit is interpolated to interpolate the pseudo-pixel signal voltage and the digital measurement. A first function indicating a relationship with the value is calculated, and based on the calculated first function, the first function corresponding to the one successive approximation capacitor is calculated. It is preferable to correct bets weighting value.
 この構成によれば、コンパレータ部は入力される信号と所定のランプ信号とを比較し、測定部はコンパレータ部による比較結果からコンパレータ部に入力される信号のデジタル測定値を測定する。そして、補正部は、ある1つの逐次比較コンデンサがカラムアンプに接続されるような疑似画素信号を電圧源に少なくとも2回出力させる。一方、測定部は、疑似画素信号が出力される毎にコンパレータ部に入力される信号のデジタル測定値を測定する。これにより、測定値が測定した各回のデジタル測定値を補間することにより、当該1つの逐次比較コンデンサをカラムアンプに接続した状態において、疑似画素信号とデジタル測定値との関係を示す第1の関数を得ることができる。つまり、当該1つの逐次比較コンデンサをカラムアンプに接続した状態での、AD変換特性を得ることができる。 According to this configuration, the comparator unit compares the input signal with a predetermined ramp signal, and the measurement unit measures the digital measurement value of the signal input to the comparator unit from the comparison result by the comparator unit. The correction unit causes the voltage source to output a pseudo pixel signal such that a certain successive approximation capacitor is connected to the column amplifier at least twice. On the other hand, the measurement unit measures the digital measurement value of the signal input to the comparator unit every time the pseudo pixel signal is output. Accordingly, the first function indicating the relationship between the pseudo pixel signal and the digital measurement value in a state where the one successive approximation capacitor is connected to the column amplifier by interpolating the digital measurement value each time the measurement value is measured. Can be obtained. That is, it is possible to obtain AD conversion characteristics in a state where the one successive approximation capacitor is connected to the column amplifier.
 したがって、例えば、理想のAD変換特性に対するこの第1の関数のずれを求める等の手法を用いることで、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正することが可能となる。 Therefore, for example, by using a technique such as obtaining a deviation of the first function with respect to an ideal AD conversion characteristic, it is possible to correct a weighting value of a bit corresponding to the one successive approximation capacitor.
 (3)前記補正部は、全ての逐次比較コンデンサが前記カラムアンプに接続されないような疑似画素信号を前記電圧源に少なくとも2回出力させ、前記第1の関数と同様にして、疑似画素信号と前記デジタル測定値との関係を示す第2の関数を算出し、前記第1の関数と前記第2の関数との差分を基に、前記1つの逐次比較コンデンサに対応するビットの重み付け値を補正することが好ましい。 (3) The correction unit causes the voltage source to output a pseudo pixel signal such that not all successive approximation capacitors are connected to the column amplifier at least twice, and in the same manner as the first function, A second function indicating a relationship with the digital measurement value is calculated, and a weight value of a bit corresponding to the one successive approximation capacitor is corrected based on a difference between the first function and the second function. It is preferable to do.
 この構成によれば、全ての逐次比較コンデンサがカラムアンプから切り離された状態でのAD変換特性を示す第2の関数が算出され、第1の関数と第2の関数との差分が算出されている。したがって、算出した第1及び第2の関数の差分が補正後の重み付け値となる。 According to this configuration, the second function indicating the AD conversion characteristic in a state where all successive approximation capacitors are disconnected from the column amplifier is calculated, and the difference between the first function and the second function is calculated. Yes. Therefore, the calculated difference between the first and second functions is the corrected weighting value.
 (4)前記読出回路は、前記画素信号を上位ビット群と下位ビット群とに分けてアナログデジタル変換し、前記ビット決定部は、前記上位ビット群の値を決定し、前記測定部は、前記デジタル測定値を前記下位ビット群の値として測定することが好ましい。 (4) The readout circuit divides the pixel signal into an upper bit group and a lower bit group and performs analog-to-digital conversion, the bit determination unit determines a value of the upper bit group, and the measurement unit It is preferable to measure a digital measurement value as the value of the lower bit group.
 この構成によれば、読出回路が画素信号を上位ビット群と下位ビット群とに分けてアナログデジタル変換する構成である場合、下位ビット群をアナログデジタル変換させる回路によりコンパレータ部に入力される信号を測定することができ、別途、測定回路を設ける必要がなくなる。 According to this configuration, when the readout circuit is configured to perform analog-to-digital conversion by dividing the pixel signal into an upper bit group and a lower bit group, a signal input to the comparator unit by the circuit that performs analog-digital conversion of the lower bit group Measurement can be performed, and there is no need to provide a separate measurement circuit.
 (5)前記画素部は、ノイズ成分の画素信号と、ノイズ成分及びシグナル成分を含む画素信号とを2相に分けて出力し、前記カラムアンプは、2相に分けて出力された画素信号のノイズ成分を相殺して増幅し、前記補正部は、前記測定部が前記デジタル測定値を1回測定するに際して、前記電圧源に疑似画素信号を2相に分けて出力させることが好ましい。 (5) The pixel unit outputs a pixel signal including a noise component and a pixel signal including the noise component and the signal component in two phases, and the column amplifier outputs the pixel signal output in two phases. It is preferable that the noise component is canceled and amplified, and the correction unit causes the voltage source to output the pseudo pixel signal in two phases when the measurement unit measures the digital measurement value once.
 この構成によれば、1回の測定につき疑似画素信号が2相に分けて出力されるため、読出回路が2相に分けて画素信号を読み出す回路構成を有している場合においても、コンパレータに入力される信号を測定することが可能となる。 According to this configuration, since the pseudo pixel signal is output in two phases for each measurement, even when the readout circuit has a circuit configuration for reading out the pixel signal in two phases, An input signal can be measured.
 (6)前記補正部は、垂直ブランキング期間に前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態にすることが好ましい。 (6) It is preferable that the correction unit cuts off the column amplifier and the pixel unit during a vertical blanking period to connect the column amplifier to the voltage source.
 この構成によれば、垂直ブランキング期間において、重み付け値が補正されるため、撮像中に随時変動する逐次比較コンデンサの容量変動等に伴う重み付け値の変動をリアルタイムで補正することができる。
 
According to this configuration, since the weighting value is corrected in the vertical blanking period, it is possible to correct in real time the variation of the weighting value due to the capacitance variation of the successive approximation capacitor that varies as needed during imaging.

Claims (6)

  1.  複数の画素がマトリックス状に配置された画素部と、
     前記画素部の各行を順次選択する垂直走査回路と、
     前記画素部の各列に対応して設けられ、前記垂直走査回路により選択された行の画素から画素信号を読み出し、アナログデジタル変換する複数の読出回路とを備え、
     前記読出回路は、
     前記画素部から読み出した画素信号を増幅するカラムアンプと、
     前記カラムアンプから出力された信号を所定の基準電圧と比較することで出力信号を反転させるコンパレータ部と、
     アナログデジタル変換されるデジタルデータの各ビットに対応して設けられ、それぞれレベルの異なる信号を前記カラムアンプに出力する複数の逐次比較コンデンサと、
     疑似画素信号を出力する電圧源と、
     前記逐次比較コンデンサと前記カラムアンプとの接続関係を逐次切り替えて、前記コンパレータ部から出力される出力信号を基に、逐次比較型アナログデジタル変換方式により前記画素信号のデジタルデータの値を決定するビット決定部と、
     前記コンパレータ部に入力される信号を測定する測定部と、
     前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態で、前記ビット決定部がある1つの逐次比較コンデンサを前記カラムアンプに接続するような疑似画素信号を前記電圧源に出力させ、前記コンパレータ部に入力される信号を前記測定部に測定させ、前記測定部による測定結果を基に、当該1つの逐次比較コンデンサに対応するビットの重み付け値を補正する補正部とを備えることを特徴とする固体撮像装置。
    A pixel portion in which a plurality of pixels are arranged in a matrix;
    A vertical scanning circuit for sequentially selecting each row of the pixel portion;
    A plurality of readout circuits which are provided corresponding to the respective columns of the pixel portion, read out pixel signals from pixels in a row selected by the vertical scanning circuit, and perform analog-digital conversion;
    The readout circuit includes:
    A column amplifier for amplifying a pixel signal read from the pixel unit;
    A comparator that inverts the output signal by comparing the signal output from the column amplifier with a predetermined reference voltage;
    A plurality of successive approximation capacitors that are provided corresponding to each bit of digital data to be converted from analog to digital, and that output signals of different levels to the column amplifier,
    A voltage source that outputs a pseudo pixel signal;
    A bit for sequentially switching the connection relationship between the successive approximation capacitor and the column amplifier, and determining the value of the digital data of the pixel signal by the successive approximation analog-to-digital conversion method based on the output signal output from the comparator unit A decision unit;
    A measurement unit for measuring a signal input to the comparator unit;
    A pseudo pixel signal for connecting one successive approximation capacitor having the bit determining unit to the column amplifier in a state where the column amplifier and the pixel unit are disconnected and the column amplifier is connected to the voltage source. Correction that causes the voltage source to output the signal input to the comparator unit to be measured by the measurement unit, and corrects the weight value of the bit corresponding to the one successive approximation capacitor based on the measurement result by the measurement unit A solid-state imaging device.
  2.  前記測定部は、前記コンパレータ部に入力される信号と所定のランプ信号とを前記コンパレータに比較させることで前記コンパレータ部に入力される信号を、積分型アナログデジタル変換方式によりアナログデジタル変換してデジタル測定値を測定し、
     前記補正部は、前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態で、ある1つの逐次比較コンデンサが前記カラムアンプに接続されるようなレベルの異なる疑似画素信号を前記電圧源に少なくとも2回出力させ、前記測定部により測定された各回のデジタル測定値を補間して、前記疑似画素信号の電圧と前記デジタル測定値との関係を示す第1の関数を算出し、算出した第1の関数を基に、前記1つの逐次比較コンデンサに対応するビットの重み付け値を補正することを特徴とする請求項1記載の固体撮像装置。
    The measurement unit compares the signal input to the comparator unit with a predetermined ramp signal by the comparator so that the signal input to the comparator unit is analog-to-digital converted by an integral analog-to-digital conversion method and digitally converted. Measure the measured value,
    The correction unit is different in level so that one successive approximation capacitor is connected to the column amplifier in a state where the column amplifier and the pixel unit are disconnected and the column amplifier is connected to the voltage source. A pseudo pixel signal is output to the voltage source at least twice, and a digital measurement value measured each time by the measurement unit is interpolated to show a relationship between the voltage of the pseudo pixel signal and the digital measurement value. The solid-state imaging device according to claim 1, wherein a function is calculated, and a weight value of a bit corresponding to the one successive approximation capacitor is corrected based on the calculated first function.
  3.  前記補正部は、全ての逐次比較コンデンサが前記カラムアンプに接続されないような疑似画素信号を前記電圧源に少なくとも2回出力させ、前記第1の関数と同様にして、疑似画素信号と前記デジタル測定値との関係を示す第2の関数を算出し、前記第1の関数と前記第2の関数との差分を基に、前記1つの逐次比較コンデンサに対応するビットの重み付け値を補正することを特徴とする請求項2記載の固体撮像装置。 The correction unit causes the voltage source to output a pseudo pixel signal such that not all successive approximation capacitors are connected to the column amplifier, and outputs the pseudo pixel signal and the digital measurement in the same manner as the first function. Calculating a second function indicating a relationship with a value, and correcting a weighting value of a bit corresponding to the one successive approximation capacitor based on a difference between the first function and the second function. The solid-state imaging device according to claim 2, characterized in that:
  4.  前記読出回路は、前記画素信号を上位ビット群と下位ビット群とに分けてアナログデジタル変換し、
     前記ビット決定部は、前記上位ビット群の値を決定し、
     前記測定部は、前記デジタル測定値を前記下位ビット群の値として測定することを特徴とする請求項2又は3記載の固体撮像装置。
    The readout circuit divides the pixel signal into an upper bit group and a lower bit group and performs analog-digital conversion,
    The bit determining unit determines a value of the upper bit group;
    The solid-state imaging device according to claim 2, wherein the measurement unit measures the digital measurement value as a value of the lower-order bit group.
  5.  前記画素部は、ノイズ成分の画素信号と、ノイズ成分及びシグナル成分を含む画素信号とを2相に分けて出力し、
     前記カラムアンプは、2相に分けて出力された画素信号のノイズ成分を相殺して増幅し、
     前記補正部は、前記測定部が前記デジタル測定値を1回測定するに際して、前記電圧源に疑似画素信号を2相に分けて出力させることを特徴とする請求項2~4のいずれかに記載の固体撮像装置。
    The pixel unit outputs a pixel signal including a noise component and a pixel signal including the noise component and the signal component in two phases,
    The column amplifier cancels and amplifies the noise component of the pixel signal output divided into two phases,
    5. The correction unit according to claim 2, wherein when the measurement unit measures the digital measurement value once, the correction unit causes the voltage source to output a pseudo pixel signal in two phases. Solid-state imaging device.
  6.  前記補正部は、垂直ブランキング期間に前記カラムアンプ及び前記画素部間を遮断して前記カラムアンプを前記電圧源に接続させた状態にすることを特徴とする請求項1~5のいずれかに記載の固体撮像装置。 6. The correction unit according to claim 1, wherein the column amplifier is disconnected from the pixel unit during a vertical blanking period so that the column amplifier is connected to the voltage source. The solid-state imaging device described.
PCT/JP2010/001915 2009-03-24 2010-03-17 Solid state image pickup device WO2010109816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524271A JP4582267B1 (en) 2009-03-24 2010-03-17 Solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009071729 2009-03-24
JP2009-071729 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109816A1 true WO2010109816A1 (en) 2010-09-30

Family

ID=42780515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001915 WO2010109816A1 (en) 2009-03-24 2010-03-17 Solid state image pickup device

Country Status (2)

Country Link
JP (1) JP4582267B1 (en)
WO (1) WO2010109816A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199769A (en) * 2011-03-22 2012-10-18 Canon Inc Ad conversion circuit, photoelectric conversion device, imaging system, and method of driving ad conversion circuit
CN103001637A (en) * 2011-09-15 2013-03-27 佳能株式会社 Solid-state imaging apparatus, A/D converter, and control method thereof
WO2013111473A1 (en) * 2012-01-23 2013-08-01 国立大学法人東北大学 Analog-digital converter and solid-state image capture device
WO2013129646A1 (en) * 2012-03-01 2013-09-06 株式会社ニコン A/d conversion circuit, and solid-state image pickup apparatus
JP2013183291A (en) * 2012-03-01 2013-09-12 Nikon Corp Solid state imaging device
JP2013183290A (en) * 2012-03-01 2013-09-12 Nikon Corp A/d conversion circuit and solid state imaging device
JP2013251700A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Ad conversion circuit and ad conversion method
JP2014075847A (en) * 2014-01-14 2014-04-24 Tohoku Univ Analog-digital converter and solid state imaging device
JP2014140212A (en) * 2014-03-06 2014-07-31 Tohoku Univ Solid state imaging device
JP2016072975A (en) * 2014-09-26 2016-05-09 株式会社半導体エネルギー研究所 Semiconductor device and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116523A (en) * 1986-11-04 1988-05-20 Mitsubishi Electric Corp A/d converting system
JP2008244716A (en) * 2007-03-27 2008-10-09 Seiko Epson Corp Digital-analog converter with redundant bits, analog-digital converter using the same, and image sensor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116523A (en) * 1986-11-04 1988-05-20 Mitsubishi Electric Corp A/d converting system
JP2008244716A (en) * 2007-03-27 2008-10-09 Seiko Epson Corp Digital-analog converter with redundant bits, analog-digital converter using the same, and image sensor using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199769A (en) * 2011-03-22 2012-10-18 Canon Inc Ad conversion circuit, photoelectric conversion device, imaging system, and method of driving ad conversion circuit
CN103001637A (en) * 2011-09-15 2013-03-27 佳能株式会社 Solid-state imaging apparatus, A/D converter, and control method thereof
CN103001637B (en) * 2011-09-15 2016-01-13 佳能株式会社 Solid state image pickup device, analog to digital converter and control method thereof
US8963760B2 (en) 2012-01-23 2015-02-24 Tohoku University Analog-to-digital converter and solid-state imaging device
WO2013111473A1 (en) * 2012-01-23 2013-08-01 国立大学法人東北大学 Analog-digital converter and solid-state image capture device
JP2013150255A (en) * 2012-01-23 2013-08-01 Tohoku Univ Analog/digital converter and solid-state imaging apparatus
WO2013129646A1 (en) * 2012-03-01 2013-09-06 株式会社ニコン A/d conversion circuit, and solid-state image pickup apparatus
JP2013183290A (en) * 2012-03-01 2013-09-12 Nikon Corp A/d conversion circuit and solid state imaging device
US9083892B2 (en) 2012-03-01 2015-07-14 Nikon Corporation A/D conversion circuit, and solid-state image pickup apparatus
JP2013183291A (en) * 2012-03-01 2013-09-12 Nikon Corp Solid state imaging device
US10051220B2 (en) 2012-03-01 2018-08-14 Nikon Corporation A/D conversion circuit, and solid-state image pickup apparatus
US10805564B2 (en) 2012-03-01 2020-10-13 Nikon Corporation A/D conversion circuit, and solid-state image pickup apparatus
JP2013251700A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Ad conversion circuit and ad conversion method
JP2014075847A (en) * 2014-01-14 2014-04-24 Tohoku Univ Analog-digital converter and solid state imaging device
JP2014140212A (en) * 2014-03-06 2014-07-31 Tohoku Univ Solid state imaging device
JP2016072975A (en) * 2014-09-26 2016-05-09 株式会社半導体エネルギー研究所 Semiconductor device and display device

Also Published As

Publication number Publication date
JPWO2010109816A1 (en) 2012-09-27
JP4582267B1 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4582267B1 (en) Solid-state imaging device
JP3962788B2 (en) A / D conversion array and image sensor
US10116320B2 (en) Photoelectric conversion apparatus and image capturing system
JP5378945B2 (en) X-ray pixel detector readout circuit and integrated circuit
EP2104235B1 (en) Analog-to-digital converter, analog-to-digital converting method, solid-state image pickup device.
JP5332041B2 (en) Solid-state imaging device
US8704694B2 (en) A/D converter
EP0981204A2 (en) Self-calibrating analog-to-digital converter
IL197437A (en) A/d converter circuit and optical sensor
US8797455B2 (en) Analog-to-digital converter, image sensor including the same, and apparatus including image sensor
JP2013211832A (en) Imaging device, imaging system, and driving method of imaging device
JP4588787B2 (en) Solid-state imaging device and imaging method
CN210157249U (en) Image sensor and data converter
JP6021626B2 (en) Imaging device driving method, imaging device, and imaging system
JP4661996B2 (en) Solid-state imaging device
WO2012111821A1 (en) A/d converter, image sensor device, and method of generating digital signal from analog signal
US6229472B1 (en) A/D converter
TW201626727A (en) Method and system for implementing correlated multi-sampling with improved analog-to-digital converter linearity
JP4811339B2 (en) A / D converter
WO2009131018A1 (en) Image sensor a/d converter
KR20130064971A (en) Analog-digital converter for high resolution image sensor
JP6805753B2 (en) Imaging device
JP2010074331A (en) Solid-state imaging apparatus
US8581171B2 (en) Cyclic A/D converter, image sensor device, and method for generating digital signal from analog signal
JP4061033B2 (en) A / D converter and semiconductor integrated circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010524271

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755619

Country of ref document: EP

Kind code of ref document: A1