WO2010109795A1 - Solid polymer fuel cell and separator for solid polymer fuel cell - Google Patents

Solid polymer fuel cell and separator for solid polymer fuel cell Download PDF

Info

Publication number
WO2010109795A1
WO2010109795A1 PCT/JP2010/001712 JP2010001712W WO2010109795A1 WO 2010109795 A1 WO2010109795 A1 WO 2010109795A1 JP 2010001712 W JP2010001712 W JP 2010001712W WO 2010109795 A1 WO2010109795 A1 WO 2010109795A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
flat plate
fuel cell
cell stack
corrugated
Prior art date
Application number
PCT/JP2010/001712
Other languages
French (fr)
Japanese (ja)
Inventor
山本曜子
松本敏宏
日下部弘樹
竹口伸介
中川貴嗣
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010542469A priority Critical patent/JP4897928B2/en
Publication of WO2010109795A1 publication Critical patent/WO2010109795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell and a separator for a polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell stack (hereinafter also referred to as “fuel cell stack”) has a cell stack in which a plurality of single cells are stacked and connected in series.
  • Each single cell includes a membrane electrode assembly (hereinafter also referred to as “MEA”) and a pair of separators disposed on both sides of the membrane electrode assembly.
  • MEA membrane electrode assembly
  • the MEA has a polymer electrolyte membrane and a pair of catalyst electrodes (a fuel electrode and an air electrode) disposed on both sides of the polymer electrolyte membrane.
  • the separator has a gas flow path for supplying fuel gas or oxidizing gas to the MEA.
  • Each single cell is electrically connected via a separator.
  • FIG. 1A is a cross-sectional view of a fuel cell stack disclosed in Patent Documents 2 and 3.
  • the fuel cell stack 10 includes a cell stack 3 in which single cells are stacked, a pair of current collector plates 2 that sandwich the cell stack, and a pair of cells that sandwich the cell stack 3 and the current collector plate 2. And an end plate 1.
  • FIG. 1B is an enlarged view of the cell stack 3 of the fuel cell stack 10 shown in FIG. 1A.
  • the cell stack 3 includes a plurality of single cells 20 each including a membrane electrode assembly 21 and a pair of separators (a fuel electrode separator 23 and an air electrode separator 25) sandwiching the membrane electrode assembly 21.
  • a membrane electrode assembly 21 and a pair of separators (a fuel electrode separator 23 and an air electrode separator 25) sandwiching the membrane electrode assembly 21.
  • the fuel electrode separator 23 and the air electrode separator 25 are corrugated metal plates having a concave and convex shape integrated with the front and back surfaces, and have a corrugated cross-sectional shape.
  • the recess 24 on the surface of the fuel electrode separator 23 that contacts the membrane electrode assembly 21 is a fuel gas flow path.
  • the concave portion 26 on the surface in contact with the membrane electrode assembly 21 of the air electrode separator 25 is an oxidizing gas flow path.
  • Patent Documents 4 and 5 a technique for forming a molten carbonate fuel cell separator from a flat plate and a corrugated plate is known (see, for example, Patent Documents 4 and 5).
  • a support having elasticity between a current collector plate (flat plate) that contacts the electrode and an interconnector (flat plate) that separates the reaction gas. (Corrugated sheet) is provided.
  • the tolerance of the thickness of the current collector plate can be absorbed by the elasticity of the support.
  • Patent Document 6 a technique for incorporating a core coated with a conductive member in a separator is known (see, for example, Patent Document 6).
  • a force in the cell stacking direction is applied to the stack and a load is applied to the cell stack.
  • the corrugated separator as disclosed in Patent Documents 2 and 3 has low rigidity against the force in the cell stacking direction. For this reason, as shown in FIG. 2B, when a force in the cell stacking direction Y is applied, the separator extends in the direction X perpendicular to the cell stacking direction Y, and the separator thickness T decreases. For this reason, in a fuel cell stack as disclosed in Patent Document 2 or 3, even if a force is applied in the cell stacking direction, the separator absorbs the force and the load applied to the cell stack does not increase. For this reason, the contact resistance between cells does not decrease, and the output of the fuel cell stack does not increase sufficiently.
  • the constituent members such as the separator and the MEA contract at a low temperature (for example, below freezing point).
  • a low temperature for example, below freezing point.
  • the cell stack contracts in the stacking direction, thereby reducing the load applied to the cell stack.
  • the fuel cell stacks disclosed in Patent Documents 2 and 3 have a problem that the load applied to the cell stack is too small at a low temperature and the startability at a low temperature is not excellent.
  • An object of the present invention is to provide a polymer electrolyte fuel cell separator capable of making a contact area between cells constant and efficiently applying a load to a cell stack.
  • the present inventor configures the separator as a corrugated plate and a flat plate, and fixes the corrugated plate to the flat plate, thereby making the contact area between the cells constant and efficiently applying a load to the cell stack.
  • the headline and further investigation were added to complete the invention.
  • the first of the present invention relates to a polymer electrolyte fuel cell separator described below.
  • a separator for a polymer electrolyte fuel cell having a flat plate and a corrugated plate laminated on the flat plate, and a concave portion of a surface of the two surfaces of the corrugated plate not facing the flat plate Is a separator for a polymer electrolyte fuel cell, which is a gas flow path.
  • the second of the present invention relates to a single polymer electrolyte fuel cell unit cell shown below.
  • a solid having a polymer electrolyte membrane, a membrane electrode assembly having a pair of catalyst electrodes composed of a fuel electrode and an oxidation electrode sandwiching the polymer electrolyte membrane, and a pair of separators sandwiching the membrane electrode assembly A polymer fuel cell single cell, wherein the separator is a solid polymer fuel cell separator according to any one of [1] to [5].
  • a third aspect of the present invention relates to a single fuel cell stack shown below. [7] A fuel cell stack having a cell stack in which the single cells according to [6] are stacked.
  • the surface that contacts an adjacent cell is flat, so that a constant contact area can be always secured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
  • the corrugated plate by fixing the corrugated plate to a flat plate, a load can be efficiently applied to the cell stack during operation of the fuel cell stack, and the output of the fuel cell stack can be improved. Further, by fixing the corrugated plate to the flat plate and making the thermal expansion coefficient of the flat plate material larger than the thermal expansion coefficient of the corrugated plate material, it is possible to suppress the load fluctuation due to the temperature change.
  • the fuel cell stack of the present invention has a cell stack.
  • the cell laminate is a single cell laminate comprising a membrane electrode assembly (hereinafter also referred to as “MEA”) and a separator sandwiching the membrane electrode assembly.
  • MEA membrane electrode assembly
  • the MEA has a polymer electrolyte membrane and a pair of catalyst electrodes composed of a fuel electrode and an air electrode that sandwich the polymer electrolyte membrane.
  • the catalyst electrode preferably has a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer laminated on the catalyst layer.
  • the polymer electrolyte membrane is a polymer membrane having a function of selectively transporting protons in a wet state.
  • the material of the polymer electrolyte membrane is not particularly limited as long as it selectively moves hydrogen ions. Examples of such materials include fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes. Specific examples of fluorine-based polymer electrolyte membranes include DuPont's Nafion (registered trademark), Asahi Glass Corporation's Flemion (registered trademark), Asahi Kasei Corporation's Aciplex (registered trademark), and Japan Gore-Tex Corporation's GORE. -SELECT (R) etc. are included.
  • the catalyst layer is a layer containing a catalyst that promotes a redox reaction of hydrogen or oxygen.
  • the catalyst layer is not particularly limited as long as it has conductivity and has a catalytic ability to promote a redox reaction of hydrogen and oxygen.
  • the catalyst layer on the air electrode side includes, for example, platinum, an alloy of platinum and cobalt, an alloy of platinum, cobalt, and nickel as a catalyst.
  • the catalyst layer on the fuel electrode side contains platinum or an alloy of platinum and ruthenium as a catalyst.
  • the catalyst layer is made of, for example, a polymer electrolyte membrane prepared by mixing a proton conductive electrolyte and a water repellent PTFE resin into carbon fine particles such as acetylene black, ketjen black, and vulcan that carry these catalysts. It is formed by applying on top.
  • the gas diffusion layer is a porous layer having conductivity.
  • the material of the gas diffusion layer is not particularly limited as long as it has conductivity and can diffuse the reaction gas.
  • the gas diffusion layer may be composed of a gas diffusion base layer that diffuses the gas supplied from the separator side into the catalyst layer, and a carbon coat layer that improves the contact between the gas diffusion base layer and the catalyst layer. Good.
  • the separator is a conductive plate for separating the fuel gas and the oxidizing gas.
  • the separator has a central portion that contacts the MEA and a peripheral portion surrounding the central portion.
  • the central part of the separator has a concave part and a convex part, and the concave part constitutes a reaction gas channel (fuel gas channel or oxidizing gas channel) or a refrigerant channel.
  • the peripheral part of the separator has a refrigerant inlet manifold for supplying the refrigerant and a refrigerant outlet manifold for discharging the refrigerant.
  • the peripheral part of the separator has a manifold for supplying and exhausting fuel gas and a manifold for supplying and exhausting oxidizing gas.
  • the separator may have a rubber-like seal portion that prevents leakage of refrigerant, oxidizing gas, fuel gas, and the like.
  • the present invention is characterized by the structure of the separator.
  • the structure of the separator will be described in detail in “About the separator of the present invention” described later.
  • the fuel cell stack may further include an end plate that sandwiches a current collector plate or a cell stack.
  • the means for applying a load to the cell laminate is not particularly limited.
  • a force in the cell stacking direction is applied to a laminate composed of the cell laminate and end plate, and the laminate in the state in which the force is applied is fixed with a stud and a nut. do it.
  • the separator of this invention has a flat plate and the corrugated sheet laminated
  • the flat plate is a flat plate and is a plate having a surface (hereinafter simply referred to as “adjacent cell contact surface”) in contact with a separator (flat plate or corrugated plate) of an adjacent cell.
  • the flat plate has a central portion and a peripheral portion surrounding the central portion.
  • the flat plate is preferably flat to such an extent that the contact area with the separator (flat plate or corrugated plate) of an adjacent cell becomes constant.
  • the center part of a flat plate does not have the uneven
  • the peripheral part of a flat plate may be flat and may have the uneven
  • the surface that does not face the corrugated sheet is the adjacent cell contact surface.
  • the material of the flat plate is not particularly limited and may be a metal or a resin, but is preferably a metal.
  • the thickness of the flat plate is not particularly limited, but is about 0.2 mm.
  • the corrugated plate is a conductive plate having a corrugated cross-sectional shape and forming a gas flow path.
  • the corrugated plate is formed integrally with the front and back surfaces, for example, by pressing a conductive plate.
  • the concave portion of the surface that does not face the flat plate is the gas flow path
  • the convex portion is the rib that defines the gas flow path. That is, of the two surfaces of the corrugated plate, the surface that does not face the flat plate is in contact with the MEA.
  • the recessed part of the surface which opposes a flat plate among two surfaces of a corrugated sheet may be a refrigerant
  • the convex part may be a rib which prescribes
  • the corrugated plate material may be metal or carbon, but is preferably metal.
  • the thickness of the conductive plate constituting the corrugated plate is not particularly limited, but is approximately the same as the thickness of the flat plate (about 0.2 mm).
  • the width of the gas channel is, for example, 0.1 mm to 1.5 mm, and the depth of the gas channel is also, for example, 0.1 mm to 1.5 mm.
  • the adjacent cell contact surface is constituted by a flat plate. Therefore, even if a shift occurs in the position of the separator (see FIG. 2A), the contact area between the cells does not decrease. For this reason, the contact resistance between cells is stabilized and a fuel cell with high output can be obtained.
  • the corrugated plate is preferably fixed to a flat plate.
  • the convex portion of the surface facing the flat plate of the corrugated plate may be joined to the flat plate.
  • the joining means include caulking, welding, and adhesion using an adhesive.
  • a plurality of corrugated plates may be fixed on one flat plate (see Embodiment 3, FIG. 10).
  • the shape of the rib that defines the gas flow path is preferably a forward tapered shape.
  • FIG. 3A is a cross-sectional view of a separator in which a corrugated plate is fixed to a flat plate.
  • the separator has a flat plate 121 and a corrugated plate 123.
  • the separator also has a gas channel 125 and a rib 127 that defines the gas channel 125.
  • the separator is laminated on the MEA 111.
  • the corrugated sheet 123 when the corrugated sheet 123 is fixed to the flat plate 121, the corrugated sheet 123 cannot slide in the X direction (direction perpendicular to the stacking direction Y of the cell stack). For this reason, even if a force in the stacking direction Y of the cell stack is applied to the separator, the corrugated sheet 123 does not slide in the X direction, and the thickness T of the separator does not change. For this reason, a separator can transmit, without weakening the force of the lamination direction Y of a cell laminated body.
  • the load applied to the cell stack can be increased during the operation of the fuel cell stack.
  • the corrugated sheet 123 fixed to the flat plate 121 cannot slide in the X direction.
  • the corrugated sheet 123 is likely to expand in the stacking direction Y and hardly expand in the X direction due to heat during operation. Therefore, during the operation of the fuel cell stack, the thickness T of the separator increases and the cell stack expands in the stacking direction Y.
  • the length in the stacking direction of the fuel cell stack including the cell stack does not change because the fuel cell stack is fixed by studs or nuts. For this reason, the load concerning the cell laminated body expanded in the lamination direction increases.
  • FIG. 3B is a cross-sectional view of a separator in which the corrugated plate is not fixed to a flat plate.
  • the corrugated plate 123 easily slides in the X direction. For this reason, even if a force in the stacking direction Y of the cell stack is applied to the separator, the corrugated sheet 123 slides in the X direction, and the thickness T of the separator decreases. For this reason, the separator absorbs the force in the stacking direction Y of the cell stack, and weakens the force in the stacking direction Y.
  • the corrugated sheet 123 expands due to heat during operation of the fuel cell stack, the corrugated sheet expands in the X direction, and the cell stack hardly expands in the stacking direction Y.
  • the corrugated plate is not fixed to a flat plate or the separator is configured only by a corrugated plate like a conventional separator (see FIGS. 1 and 2), the load applied to the cell stack during operation of the fuel cell stack Cannot be increased.
  • the constituent members (MEA, separator, etc.) of the cell stack may be reduced, the length of the cell stack in the stacking direction may be reduced, and the load applied to the cell stack may be reduced.
  • the constituent members of the cell stack may expand, the length in the stacking direction of the cell stack may expand, and the load applied to the cell stack may become too strong. .
  • the load applied to the cell stack varies, the power generation efficiency of the fuel cell stack becomes unstable.
  • Adjusting the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material means reducing the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material.
  • a material having a small thermal expansion coefficient may be selected for the flat plate material and the corrugated plate material.
  • the thermal expansion coefficient of the flat plate material and the corrugated plate material is preferably 50 ⁇ 10 ⁇ 6 / ° C. or less.
  • the thermal expansion coefficient of the flat plate material is preferably larger than the thermal expansion coefficient of the corrugated plate material. More specifically, the thermal expansion coefficient of the flat plate material is preferably 15 ⁇ 10 ⁇ 6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate material. In this way, by making the thermal expansion coefficient of the flat plate material larger than the thermal expansion coefficient of the corrugated plate material, it is possible to suppress a decrease in the thickness of the separator at a low temperature and an increase in the thickness of the separator at a high temperature. More preferably, the thickness of the separator can be increased at low temperatures and the thickness of the separator can be decreased at high temperatures. Thereby, it can suppress that the length of the lamination direction of a cell laminated body changes with temperature changes, and can suppress the fluctuation
  • the flat plate material In order to make the thermal expansion coefficient of the flat plate material larger than that of the corrugated plate material, a material having a relatively large thermal expansion coefficient is selected as the flat plate material, and the relative thermal expansion coefficient of the corrugated plate material is selected. A small material may be selected.
  • the following table shows the coefficients of thermal expansion of metals that can be used for flat and corrugated sheets.
  • a flat plate material is an aluminum plate (thermal expansion coefficient 23 ⁇ 10 ⁇ 6 / ° C.) and a corrugated plate material is an Fe—Ni alloy (thermal expansion coefficient 5 ⁇ 10 ⁇ 6 / ° C.).
  • the thermal expansion coefficient of a metal changes with the crystal structure of a metal. Therefore, the thermal expansion coefficient of the metal may be adjusted by adjusting the crystal grain size of the metal by a treatment such as annealing.
  • the flat plate material may be a resin (thermal expansion coefficient 50 ⁇ 10 ⁇ 6 / ° C. to 200 ⁇ 10 ⁇ 6 / ° C.), and the corrugated plate material may be a metal (see the fourth embodiment).
  • the corrugated plate is fixed to a flat plate, and the thermal expansion coefficient of the flat plate material is increased by 15 ⁇ 10 ⁇ 6 / ° C. or more than the thermal expansion coefficient of the corrugated plate material, so that the separator thickness is low. Increase and decrease at high temperatures.
  • the thermal expansion coefficient of the flat plate material is increased by 15 ⁇ 10 ⁇ 6 / ° C. or more than the thermal expansion coefficient of the corrugated plate material, so that the separator thickness is low. Increase and decrease at high temperatures.
  • FIG. 4A is an enlarged cross-sectional view of the separator of the present invention at a low temperature.
  • the width of the flat plate 121 having a large coefficient of thermal expansion shrinks in the X direction at low temperatures.
  • the thermal expansion coefficient of the corrugated sheet 123 is smaller than that of the flat plate 121, the corrugated sheet 123 does not contract as much as the flat plate 121.
  • the width of the corrugated sheet 123 fixed to the flat plate 121 is also forcibly contracted in the arrow X direction by contracting the flat plate 121.
  • FIG. 4B is an enlarged cross-sectional view of the separator of the present invention at a high temperature.
  • the width of the flat plate 121 having a large thermal expansion coefficient expands in the X direction at high temperatures.
  • the thermal expansion coefficient of the corrugated sheet 123 is smaller than that of the flat plate 121, the corrugated sheet 123 does not expand as much as the flat plate 121.
  • the expansion of the flat plate 121 forces the width of the corrugated sheet 123 fixed to the flat plate 121 to be forcibly expanded in the arrow X direction.
  • the forward tapered rib 127 is pushed down in the Y direction.
  • the thickness T of the entire separator decreases.
  • the thickness increases at low temperatures and the thickness decreases at high temperatures.
  • a separator can be obtained.
  • the thickness of the separator of the present invention decreases at high temperatures, the length in the stacking direction of the cell stack excessively increases even when other components such as MEA expand at high temperatures. Can be suppressed. Thereby, it can suppress that the load concerning a cell laminated body at the time of high temperature increases excessively.
  • the thickness of the separator of the present invention increases at low temperatures, the length of the cell stack in the stacking direction is prevented from decreasing even when other components such as MEA are reduced at low temperatures. be able to. Thereby, it can suppress that the load concerning a cell laminated body falls at the time of low temperature.
  • FIG. 5 shows the difference in thermal expansion coefficient between the flat plate and corrugated sheet materials (the thermal expansion coefficient of the flat plate material ⁇ the thermal expansion coefficient of the corrugated sheet material) and the cell at normal temperature (25 ° C.).
  • a graph showing the relationship between the length of the laminate (200 cells) and the length of the cell laminate at low temperature ( ⁇ 5 ° C.) (cell length at low temperature ⁇ cell length at normal temperature) It is.
  • a change in thickness due to a temperature change of a member (such as MEA) other than the separator in the cell stack was not considered.
  • the thermal expansion coefficient of the flat plate is 15 ⁇ 10 ⁇ 6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate
  • the thickness of the separator increases at low temperatures as shown in FIG.
  • the thermal expansion coefficient of the flat plate is 15 ⁇ 10 ⁇ 6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate, even when other components such as MEA shrink at low temperatures, A reduction in the length in the stacking direction can be suppressed.
  • the difference in thermal expansion coefficient between the flat plate and the corrugated plate material is preferably 30 ⁇ 10 ⁇ 6 / ° C. or less so that the thickness of the separator does not increase excessively at low temperatures, and 20 ⁇ 10 ⁇ 6 / More preferably, it is not higher than ° C.
  • the surface that contacts an adjacent cell is constituted by a flat plate, so that a constant contact area can always be ensured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
  • the corrugated plate to the flat plate, it is possible to efficiently apply a load to the cell stack and improve the output of the fuel cell stack. Furthermore, the fluctuation
  • the shape of the gas flow path can be maintained by fixing the corrugated plate to the flat plate.
  • the gas can be stably supplied to the MEA.
  • FIG. 6 is a cross-sectional view of the fuel cell stack 100 of the first embodiment.
  • the fuel cell stack 100 includes a cell stack 101, an end plate 103, a stud 105, and a nut 107.
  • the cell stack 101 has a plurality of unit cells 110 stacked.
  • Each single cell 110 includes an MEA 111, a fuel electrode separator 113, an air electrode separator 115, and a seal member 117.
  • the laminate composed of the cell laminate 101 and the end plate 103 is fixed by a stud 105 and a nut 107.
  • a load consisting of the cell laminate 101 and the end plate 103 is fixed to the cell laminate 101 by the stud 105 and the nut 107.
  • FIG. 7 is an exploded perspective view of the single cell 110.
  • the single cell 110 includes an MEA 111 and a pair of separators (a fuel electrode separator 113 and an air electrode separator 115) that sandwich the MEA 111.
  • Each of the fuel electrode separator 113 and the air electrode separator 115 has a flat plate 121 and a corrugated plate 123. In the present embodiment, two adjacent separators share one flat plate 121 (see FIG. 6).
  • the fuel electrode separator 113 and the air electrode separator 115 have a gas flow path 125 and a rib 127 that defines the gas flow path on a surface facing the MEA 111.
  • FIG. 8 is an exploded perspective view of the air electrode separator 115.
  • the air electrode separator 115 is produced by laminating a corrugated sheet 123 on a metal flat plate 121.
  • the corrugated sheet 123 is not fixed to the flat plate 121.
  • FIG. 8 shows an exploded perspective view of the air electrode separator 115 as an example, but the structure of the fuel electrode separator 113 is the same as that of the air electrode separator 115.
  • the surface that contacts the adjacent cell is constituted by a flat plate, so that a constant contact area can be always secured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
  • Embodiment 2 In Embodiment 1, the aspect in which the corrugated plate is not fixed to the flat plate has been described. In the second embodiment, a mode in which a corrugated plate is fixed to a flat plate will be described.
  • FIG. 9 is a perspective view of the separator 215 of the second embodiment.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the convex portion of the surface facing the flat plate 221 of the corrugated plate 223 is joined to the metal flat plate 221, and the corrugated plate 223 is fixed to the flat plate 221.
  • Embodiments 1 and 2 the mode in which one corrugated plate is laminated on one flat plate has been described.
  • Embodiment 3 a mode in which a plurality of corrugated plates are laminated on one flat plate will be described.
  • FIG. 10 is a perspective view of the separator 315 according to the third embodiment.
  • the separator 315 includes a metal flat plate 321 and a plurality of corrugated plates 323 stacked on the flat plate 321.
  • the corrugated plates 323 are each fixed to the flat plate 321.
  • Embodiment 4 In the first to third embodiments, the aspect in which the flat plate is a metal has been described. In Embodiment 4, a mode in which the flat plate is made of resin will be described.
  • FIG. 11 is a cross-sectional view of the fuel cell stack 400 of the fourth embodiment.
  • the fuel cell stack 400 includes a cell stack 101, an end plate 103, a stud 105, and a nut 107.
  • the cell stack 101 has a plurality of unit cells 410 stacked.
  • Each single cell 410 includes an MEA 111, a fuel electrode separator 413, an air electrode separator 415, and a seal member 117.
  • FIG. 12 is a perspective view of the air electrode separator 415.
  • the separator 415 includes a resin flat plate 421 and a metal corrugated plate 423.
  • a part of the corrugated plate 423 forms a protrusion 425 that penetrates the flat plate 421.
  • the corrugated plate 423 is fixed to the flat plate 421 by the projection 425. Further, even when the resin flat plate 421 is non-conductive, the adjacent cells 410 can be electrically connected to each other by the metal protrusion 425 penetrating the flat plate 421 (see FIG. 11).
  • the fuel cell stack of the present invention is a fuel cell stack with low contact resistance between cells and high output, it is useful as a fuel cell stack for use in automobiles and household cogeneration systems.

Abstract

Disclosed is a separator for a solid polymer fuel cell, which comprises a flat plate and a corrugated plate that is arranged on the flat plate. The recessed portions of one of the two surfaces of the corrugated plate serve as gas channels, said surface not facing the flat plate. Since one of the two surfaces of the separator for a solid polymer fuel cell, which is in contact with the adjacent cell, is flat, a certain contact area can be always obtained between the adjacent cells. Consequently, the contact resistance between adjacent cells can be decreased, and a fuel cell stack having high output can be obtained.

Description

固体高分子形燃料電池および固体高分子形燃料電池用セパレータPolymer electrolyte fuel cell and separator for polymer electrolyte fuel cell
 本発明は、固体高分子形燃料電池および固体高分子形燃料電池用セパレータに関する。 The present invention relates to a polymer electrolyte fuel cell and a separator for a polymer electrolyte fuel cell.
 固体高分子形燃料電池スタック(以下「燃料電池スタック」とも称する)は、複数の単セルを積層して直列に接続したセル積層体を有する。各単セルは、膜電極接合体(membrane electrode assembly;以下「MEA」ともいう)と、膜電極接合体の両側に配置された一対のセパレータとから構成される。MEAは、高分子電解質膜と、前記高分子電解質膜の両側に配置された一対の触媒電極(燃料極および空気極)とを有する。セパレータは、MEAに燃料ガスまたは酸化ガスを供給するガス流路を有する。各単セルは、セパレータを介して電気的に接続される。 The polymer electrolyte fuel cell stack (hereinafter also referred to as “fuel cell stack”) has a cell stack in which a plurality of single cells are stacked and connected in series. Each single cell includes a membrane electrode assembly (hereinafter also referred to as “MEA”) and a pair of separators disposed on both sides of the membrane electrode assembly. The MEA has a polymer electrolyte membrane and a pair of catalyst electrodes (a fuel electrode and an air electrode) disposed on both sides of the polymer electrolyte membrane. The separator has a gas flow path for supplying fuel gas or oxidizing gas to the MEA. Each single cell is electrically connected via a separator.
 近年、金属板をプレス加工することで、固体高分子形燃料電池用セパレータ(以下単に「セパレータ」とも称する)を製造する方法が提案されている(例えば特許文献1~3参照)。 Recently, a method of manufacturing a polymer electrolyte fuel cell separator (hereinafter also simply referred to as “separator”) by pressing a metal plate has been proposed (see, for example, Patent Documents 1 to 3).
 図1Aは、特許文献2および3に開示された燃料電池スタックの断面図である。図1に示されるように燃料電池スタック10は、単セルを積層したセル積層体3と、セル積層体を挟む一対の集電板2と、セル積層体3および集電板2を挟む一対のエンドプレート1とを有する。 FIG. 1A is a cross-sectional view of a fuel cell stack disclosed in Patent Documents 2 and 3. As shown in FIG. 1, the fuel cell stack 10 includes a cell stack 3 in which single cells are stacked, a pair of current collector plates 2 that sandwich the cell stack, and a pair of cells that sandwich the cell stack 3 and the current collector plate 2. And an end plate 1.
 図1Bは、図1Aに示された燃料電池スタック10のセル積層体3の拡大図である。図1Bに示されるように、セル積層体3は、膜電極接合体21と、膜電極接合体21を挟む一対のセパレータ(燃料極セパレータ23、空気極セパレータ25)とからなる単セル20を複数有する。 FIG. 1B is an enlarged view of the cell stack 3 of the fuel cell stack 10 shown in FIG. 1A. As shown in FIG. 1B, the cell stack 3 includes a plurality of single cells 20 each including a membrane electrode assembly 21 and a pair of separators (a fuel electrode separator 23 and an air electrode separator 25) sandwiching the membrane electrode assembly 21. Have.
 燃料極セパレータ23および空気極セパレータ25は、表裏一体の凹凸形状を有する金属の波板であり、波形の断面形状を有する。燃料極セパレータ23の膜電極接合体21に接する面の凹部24は、燃料ガス流路である。また、空気極セパレータ25の膜電極接合体21に接する面の凹部26は、酸化ガス流路である。 The fuel electrode separator 23 and the air electrode separator 25 are corrugated metal plates having a concave and convex shape integrated with the front and back surfaces, and have a corrugated cross-sectional shape. The recess 24 on the surface of the fuel electrode separator 23 that contacts the membrane electrode assembly 21 is a fuel gas flow path. Further, the concave portion 26 on the surface in contact with the membrane electrode assembly 21 of the air electrode separator 25 is an oxidizing gas flow path.
 また、特許文献2および3では単セル20aの空気極セパレータ25aの酸化ガス流路26aの裏面と、単セル20aに隣接する単セル20bの燃料極セパレータ23bの燃料ガス流路24bの裏面とが接合される。このように、空気極セパレータ25aの酸化ガス流路26aの裏面と、燃料極セパレータ23bの燃料ガス流路24bの裏面とを正確に張り合わせることで、空気極セパレータ25aと、燃料極セパレータ23bとの接触面積が最大となり、単セル間の接触抵抗が低下する。また、セパレータ同士を接合することで、膜電極接合体に加わる荷重を均一にすることができる。 In Patent Documents 2 and 3, the back surface of the oxidizing gas channel 26a of the air electrode separator 25a of the single cell 20a and the back surface of the fuel gas channel 24b of the fuel electrode separator 23b of the single cell 20b adjacent to the single cell 20a Be joined. Thus, the air electrode separator 25a, the fuel electrode separator 23b, and the back surface of the oxidizing gas channel 26a of the air electrode separator 25a and the back surface of the fuel gas channel 24b of the fuel electrode separator 23b are accurately bonded together. The contact area becomes maximum, and the contact resistance between the single cells decreases. Moreover, the load added to a membrane electrode assembly can be made uniform by joining separators.
 また、溶融炭酸塩型燃料電池のセパレータを平板と波板とから構成する技術が知られている(例えば、特許文献4および5参照)。特許文献4および5に開示された溶融炭酸塩型燃料電池のセパレータでは、電極に接触する集電板(平板)と、反応ガスを分離するインターコネクタ(平板)との間に、弾性を有するサポート(波板)を設ける。サポートの弾性によって、集電板の厚みの公差を吸収することができる。 In addition, a technique for forming a molten carbonate fuel cell separator from a flat plate and a corrugated plate is known (see, for example, Patent Documents 4 and 5). In the molten carbonate fuel cell separator disclosed in Patent Documents 4 and 5, a support having elasticity between a current collector plate (flat plate) that contacts the electrode and an interconnector (flat plate) that separates the reaction gas. (Corrugated sheet) is provided. The tolerance of the thickness of the current collector plate can be absorbed by the elasticity of the support.
 また、セパレータ内に導電性部材でコーティングされたコアを内蔵させる技術が知られている(例えば特許文献6参照)。 Also, a technique for incorporating a core coated with a conductive member in a separator is known (see, for example, Patent Document 6).
特開2005-100701号公報Japanese Patent Laying-Open No. 2005-100701 特開2006-294453号公報JP 2006-294453 A 米国特許出願公開第2008/0206617号明細書US Patent Application Publication No. 2008/0206617 国際公開第92/02057号パンフレットInternational Publication No. 92/02057 Pamphlet 米国特許第5378247号明細書US Pat. No. 5,378,247 米国特許出願公開第2002/0132152号明細書US Patent Application Publication No. 2002/0132152
 しかしながら、特許文献2および3に開示されたように、セパレータが波板である場合、図2Aに示すように、燃料極セパレータ23bおよび空気極セパレータ25aの配置位置がずれ、燃料極セパレータ23bの燃料ガス流路24bの裏面と空気極セパレータ25aの酸化ガス流路26aの裏面とが、正確に重なり合わないことがあった。燃料極セパレータ23bの燃料ガス流路24bの裏面と空気極セパレータ25aの酸化ガス流路26aの裏面とが、正確に重なり合わないと、セル間の接触面積が減少する。その結果、セル間の接触抵抗が増加し、燃料電池の出力が低下する。 However, as disclosed in Patent Documents 2 and 3, when the separator is a corrugated plate, as shown in FIG. 2A, the arrangement positions of the fuel electrode separator 23b and the air electrode separator 25a are shifted, and the fuel of the fuel electrode separator 23b In some cases, the back surface of the gas channel 24b and the back surface of the oxidizing gas channel 26a of the air electrode separator 25a do not overlap accurately. If the back surface of the fuel gas channel 24b of the fuel electrode separator 23b and the back surface of the oxidizing gas channel 26a of the air electrode separator 25a do not overlap accurately, the contact area between cells decreases. As a result, the contact resistance between the cells increases and the output of the fuel cell decreases.
 また、燃料電池スタックでは、セル内およびセル間の接触抵抗を低下させ、発電効率を上昇させるため、スタックにセルの積層方向の力を加え、セル積層体に荷重を加える。 Also, in the fuel cell stack, in order to reduce the contact resistance in and between cells and increase the power generation efficiency, a force in the cell stacking direction is applied to the stack and a load is applied to the cell stack.
 一方、特許文献2および3に開示されたような波板のセパレータは、セルの積層方向の力に対する剛性が弱い。このため、図2Bに示されるように、セルの積層方向Yの力を加えると、セパレータがセルの積層方向Yに垂直な方向Xに伸びてしまい、セパレータの厚さTが減少してしまう。このため、特許文献2または3に開示されたような燃料電池スタックでは、セルの積層方向に力を加えても、セパレータが力を吸収してしまい、セル積層体にかかる荷重が増加しない。このため、セル間の接触抵抗が低下せず、燃料電池スタックの出力が十分に高まらない。 On the other hand, the corrugated separator as disclosed in Patent Documents 2 and 3 has low rigidity against the force in the cell stacking direction. For this reason, as shown in FIG. 2B, when a force in the cell stacking direction Y is applied, the separator extends in the direction X perpendicular to the cell stacking direction Y, and the separator thickness T decreases. For this reason, in a fuel cell stack as disclosed in Patent Document 2 or 3, even if a force is applied in the cell stacking direction, the separator absorbs the force and the load applied to the cell stack does not increase. For this reason, the contact resistance between cells does not decrease, and the output of the fuel cell stack does not increase sufficiently.
 また、特許文献2および3に開示されたような燃料電池スタックでは、低温時(例えば氷点下)に、セパレータやMEAなどの構成部材が収縮する。これにより、セル積層体が積層方向に収縮し、それによりセル積層体にかかる荷重が減少する。このため、特許文献2および3に開示されたような燃料電池スタックは、低温時にセル積層体にかかる荷重が小さすぎ、低温時の始動性に優れないという問題があった。 Further, in the fuel cell stack as disclosed in Patent Documents 2 and 3, the constituent members such as the separator and the MEA contract at a low temperature (for example, below freezing point). As a result, the cell stack contracts in the stacking direction, thereby reducing the load applied to the cell stack. For this reason, the fuel cell stacks disclosed in Patent Documents 2 and 3 have a problem that the load applied to the cell stack is too small at a low temperature and the startability at a low temperature is not excellent.
 本発明の目的は、セル間の接触面積を一定にし、かつセル積層体に効率的に荷重を加えることができる固体高分子形燃料電池用セパレータを提供することである。 An object of the present invention is to provide a polymer electrolyte fuel cell separator capable of making a contact area between cells constant and efficiently applying a load to a cell stack.
 本発明者は、セパレータを波板と平板とで構成し、波板を平板に固定することで、セル間の接触面積を一定にし、かつセル積層体に効率的に荷重を加えることができることを見出し、さらに検討を加え発明を完成させた。 The present inventor configures the separator as a corrugated plate and a flat plate, and fixes the corrugated plate to the flat plate, thereby making the contact area between the cells constant and efficiently applying a load to the cell stack. The headline and further investigation were added to complete the invention.
 すなわち、本発明の第1は以下に示す固体高分子形燃料電池用セパレータに関する。
 [1]平板と、前記平板の上に積層された波板と、を有する固体高分子形燃料電池用セパレータであって、前記波板の2つの面のうち、前記平板に対向しない面の凹部はガス流路である、固体高分子形燃料電池用セパレータ。
 [2]前記波板は、前記平板に固定されている、[1]に記載の固体高分子形燃料電池用セパレータ。
 [3]前記平板の材料の熱膨張係数は、前記波板の材料の熱膨張係数よりも大きい、[2]に記載の固体高分子形燃料電池用セパレータ。
 [4]前記平板の材料の熱膨張係数は、前記波板の材料の熱膨張係数よりも15×10-6/℃以上大きい、[2]に記載の固体高分子形燃料電池用セパレータ。
 [5]前記波板の2つの面のうち、前記平板に対向する面の凹部は冷媒流路である、[1]~[4]のいずれかに記載の固体高分子形燃料電池用セパレータ。
That is, the first of the present invention relates to a polymer electrolyte fuel cell separator described below.
[1] A separator for a polymer electrolyte fuel cell having a flat plate and a corrugated plate laminated on the flat plate, and a concave portion of a surface of the two surfaces of the corrugated plate not facing the flat plate Is a separator for a polymer electrolyte fuel cell, which is a gas flow path.
[2] The polymer electrolyte fuel cell separator according to [1], wherein the corrugated plate is fixed to the flat plate.
[3] The polymer electrolyte fuel cell separator according to [2], wherein a thermal expansion coefficient of the flat plate material is larger than a thermal expansion coefficient of the corrugated plate material.
[4] The polymer electrolyte fuel cell separator according to [2], wherein a thermal expansion coefficient of the flat plate material is 15 × 10 −6 / ° C. or more larger than a thermal expansion coefficient of the corrugated plate material.
[5] The separator for a polymer electrolyte fuel cell according to any one of [1] to [4], wherein the concave portion of the surface facing the flat plate of the two surfaces of the corrugated plate is a refrigerant flow path.
 本発明の第2は以下に示す固体高分子形燃料電池単セルに関する。
 [6]高分子電解質膜、ならびに前記高分子電解質膜を挟む燃料極および酸化極からなる一対の触媒電極を有する膜電極接合体と、前記膜電極接合体を挟む一対のセパレータと、を有する固体高分子形燃料電池単セルであって、前記セパレータは、[1]~[5]のいずれか一つに記載の固体高分子形燃料電池用セパレータである、燃料電池単セル。
The second of the present invention relates to a single polymer electrolyte fuel cell unit cell shown below.
[6] A solid having a polymer electrolyte membrane, a membrane electrode assembly having a pair of catalyst electrodes composed of a fuel electrode and an oxidation electrode sandwiching the polymer electrolyte membrane, and a pair of separators sandwiching the membrane electrode assembly A polymer fuel cell single cell, wherein the separator is a solid polymer fuel cell separator according to any one of [1] to [5].
 本発明の第3は以下に示す燃料電池単スタックに関する。
 [7][6]に記載の単セルを積層したセル積層体を有する、燃料電池スタック。
A third aspect of the present invention relates to a single fuel cell stack shown below.
[7] A fuel cell stack having a cell stack in which the single cells according to [6] are stacked.
 本発明によれば、セパレータの2つの面のうち、隣接するセルに接触する面が平坦であることから、セル間で常に一定の接触面積を確保することができる。このため、セル間の接触抵抗を下げることができ、出力の高い燃料電池スタックを得ることができる。 According to the present invention, of the two surfaces of the separator, the surface that contacts an adjacent cell is flat, so that a constant contact area can be always secured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
 また、波板を平板に固定することで、燃料電池スタックの運転時にセル積層体に効率的に荷重を加えることができ、燃料電池スタックの出力を向上させることができる。さらに、波板を平板に固定し、平板の材料の熱膨張係数を波板の材料の熱膨張係数よりも大きくすることで、温度変化による荷重の変動を抑制することができる。 Also, by fixing the corrugated plate to a flat plate, a load can be efficiently applied to the cell stack during operation of the fuel cell stack, and the output of the fuel cell stack can be improved. Further, by fixing the corrugated plate to the flat plate and making the thermal expansion coefficient of the flat plate material larger than the thermal expansion coefficient of the corrugated plate material, it is possible to suppress the load fluctuation due to the temperature change.
従来の燃料電池スタックの断面図Cross section of conventional fuel cell stack 従来の燃料電池スタックにおけるセパレータの接触部の拡大図Enlarged view of separator contact in a conventional fuel cell stack 本発明のセパレータの断面図Sectional view of the separator of the present invention 本発明のセパレータの断面図Sectional view of the separator of the present invention 平板の熱膨張係数と波板の熱膨張係数との差と、低温時におけるセル積層体膜厚との関係を示すグラフA graph showing the relationship between the difference between the thermal expansion coefficient of a flat plate and the thermal expansion coefficient of a corrugated sheet and the cell stack thickness at low temperatures 実施の形態1の燃料電池スタックの断面図Sectional view of fuel cell stack of Embodiment 1 実施の形態1の単セルの分解斜視図The exploded perspective view of the single cell of Embodiment 1 実施の形態1のセパレータの分解斜視図1 is an exploded perspective view of a separator according to Embodiment 1. FIG. 実施の形態2のセパレータの斜視図The perspective view of the separator of Embodiment 2. 実施の形態3のセパレータの斜視図The perspective view of the separator of Embodiment 3. 実施の形態4の燃料電池スタックの断面図Sectional view of fuel cell stack of Embodiment 4 実施の形態4のセパレータの斜視図The perspective view of the separator of Embodiment 4.
 1.本発明の燃料電池スタックについて
 本発明の燃料電池スタックは、セル積層体を有する。セル積層体とは、膜電極接合体(membrane electrode assembly;以下「MEA」とも称する)、および前記膜電極接合体を挟むセパレータからなる単セルの積層体である。
1. About the fuel cell stack of the present invention The fuel cell stack of the present invention has a cell stack. The cell laminate is a single cell laminate comprising a membrane electrode assembly (hereinafter also referred to as “MEA”) and a separator sandwiching the membrane electrode assembly.
 MEAは、高分子電解質膜と、高分子電解質膜を挟む燃料極および空気極からなる一対の触媒電極とを有する。触媒電極は、それぞれ高分子電解質膜に接する触媒層と、触媒層に積層されるガス拡散層とを有することが好ましい。 The MEA has a polymer electrolyte membrane and a pair of catalyst electrodes composed of a fuel electrode and an air electrode that sandwich the polymer electrolyte membrane. The catalyst electrode preferably has a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer laminated on the catalyst layer.
 高分子電解質膜は、湿潤状態において、プロトンを選択的に輸送する機能を有する高分子膜である。高分子電解質膜の材料は、水素イオンを選択的に移動させるものであれば特に限定されない。このような材料の例にはフッ素系の高分子電解質膜や炭化水素系の高分子電解質膜などが含まれる。フッ素系の高分子電解質膜の具体的な例には、デュポン社のNafion(登録商標)や旭硝子株式会社のFlemion(登録商標)、旭化成株式会社のAciplex(登録商標)、ジャパンゴアテックス社のGORE-SELECT(登録商標)などが含まれる。 The polymer electrolyte membrane is a polymer membrane having a function of selectively transporting protons in a wet state. The material of the polymer electrolyte membrane is not particularly limited as long as it selectively moves hydrogen ions. Examples of such materials include fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes. Specific examples of fluorine-based polymer electrolyte membranes include DuPont's Nafion (registered trademark), Asahi Glass Corporation's Flemion (registered trademark), Asahi Kasei Corporation's Aciplex (registered trademark), and Japan Gore-Tex Corporation's GORE. -SELECT (R) etc. are included.
 触媒層は、水素または酸素の酸化還元反応を促進する触媒を含む層である。触媒層は、導電性を有し、かつ水素および酸素の酸化還元反応を促進する触媒能を有するものであれば特に限定されない。空気極側の触媒層は、例えば触媒として白金や白金とコバルトとの合金、白金とコバルトとニッケルとの合金など含む。燃料極側の触媒層は、触媒として白金や白金とルテニウムとの合金などを含む。 The catalyst layer is a layer containing a catalyst that promotes a redox reaction of hydrogen or oxygen. The catalyst layer is not particularly limited as long as it has conductivity and has a catalytic ability to promote a redox reaction of hydrogen and oxygen. The catalyst layer on the air electrode side includes, for example, platinum, an alloy of platinum and cobalt, an alloy of platinum, cobalt, and nickel as a catalyst. The catalyst layer on the fuel electrode side contains platinum or an alloy of platinum and ruthenium as a catalyst.
 触媒層は、例えば、これらの触媒を担持させたアセチレンブラックやケッチェンブラック、バルカンなどのカーボン微粒子に、プロトン導電性を有する電解質と撥水性を有するPTFEなどの樹脂を混合し、高分子電解質膜上に塗布することで形成される。 The catalyst layer is made of, for example, a polymer electrolyte membrane prepared by mixing a proton conductive electrolyte and a water repellent PTFE resin into carbon fine particles such as acetylene black, ketjen black, and vulcan that carry these catalysts. It is formed by applying on top.
 ガス拡散層は、導電性を有する多孔質層である。ガス拡散層の材料は、導電性を有し、かつ反応ガスが拡散できるものであれば特に限定されない。ガス拡散層は、セパレータ側から供給されるガスを触媒層に拡散させるガス拡散基材層と、ガス拡散基材層と触媒層との接触性を向上させるカーボンコート層とから構成されていてもよい。 The gas diffusion layer is a porous layer having conductivity. The material of the gas diffusion layer is not particularly limited as long as it has conductivity and can diffuse the reaction gas. The gas diffusion layer may be composed of a gas diffusion base layer that diffuses the gas supplied from the separator side into the catalyst layer, and a carbon coat layer that improves the contact between the gas diffusion base layer and the catalyst layer. Good.
 セパレータは、燃料ガスと酸化ガスとを分離するための導電性の板である。セパレータは、MEAに接触する中央部と、中央部を囲む周辺部とを有する。セパレータの中央部は、凹部と凸部を有し、凹部が反応ガス流路(燃料ガス流路または酸化ガス流路)または冷媒流路を構成する。
 セパレータの周辺部は、冷媒を供給するための冷媒入口マニホールドおよび冷媒を排出するための冷媒出口マニホールドを有する。また、セパレータの周辺部は、燃料ガスを給排気するためのマニホールド、および酸化ガスを給排気するためのマニホールドを有する。さらにセパレータは、冷媒や酸化ガス、燃料ガスなどが漏れないようにするゴム状のシール部を有していてもよい。
The separator is a conductive plate for separating the fuel gas and the oxidizing gas. The separator has a central portion that contacts the MEA and a peripheral portion surrounding the central portion. The central part of the separator has a concave part and a convex part, and the concave part constitutes a reaction gas channel (fuel gas channel or oxidizing gas channel) or a refrigerant channel.
The peripheral part of the separator has a refrigerant inlet manifold for supplying the refrigerant and a refrigerant outlet manifold for discharging the refrigerant. The peripheral part of the separator has a manifold for supplying and exhausting fuel gas and a manifold for supplying and exhausting oxidizing gas. Furthermore, the separator may have a rubber-like seal portion that prevents leakage of refrigerant, oxidizing gas, fuel gas, and the like.
 本発明は、セパレータの構造に特徴を有する。セパレータの構造については、後述する「本発明のセパレータについて」において詳細に説明する。 The present invention is characterized by the structure of the separator. The structure of the separator will be described in detail in “About the separator of the present invention” described later.
 燃料電池スタックは、さらに、集電板やセル積層体を挟むエンドプレートを有していてもよい。 The fuel cell stack may further include an end plate that sandwiches a current collector plate or a cell stack.
 このように構成された燃料電池スタックでは、セル積層体にセルの積層方向に沿った荷重を加えることが好ましい。セル積層体に荷重を加える手段は特に限定されないが、例えば、セル積層体およびエンドプレートからなる積層物にセルの積層方向の力を加え、力を加えた状態の積層物をスタッドおよびナットで固定すればよい。セル積層体に荷重を加えることで、セル内およびセル間の接触抵抗を低減し、燃料電池スタックの出力を向上させることができる。 In the fuel cell stack configured as described above, it is preferable to apply a load along the cell stacking direction to the cell stack. The means for applying a load to the cell laminate is not particularly limited. For example, a force in the cell stacking direction is applied to a laminate composed of the cell laminate and end plate, and the laminate in the state in which the force is applied is fixed with a stud and a nut. do it. By applying a load to the cell stack, the contact resistance within and between the cells can be reduced, and the output of the fuel cell stack can be improved.
 2.本発明のセパレータについて
 以下本発明のセパレータの構造について詳細に説明する。本発明のセパレータは平板と、平板上に積層された波板とを有する。
2. About the separator of this invention The structure of the separator of this invention is demonstrated in detail below. The separator of this invention has a flat plate and the corrugated sheet laminated | stacked on the flat plate.
 平板は平坦な板であり、隣接するセルのセパレータ(平板または波板)と接触する面(以下単に「隣接セル接触面」と称する)を有する板である。平板は中央部と、中央部を囲む周辺部とを有する。平板は、隣接するセルのセパレータ(平板または波板)との接触面積が一定になる程度に平坦であることが好ましい。また平板の中央部は、プレス加工や切除によって形成された凹凸形状を有さないことが好ましい。また、平板の周辺部は、平坦であってもよく、プレス加工や切除によって形成された凹凸形状を有していてもよい。平板の2つの面のうち、波板と対向しない面が隣接セル接触面である。平板の材料は、特に限定されず、金属であっても、樹脂であってもよいが、金属であることが好ましい。平板の厚さは、特に限定されないが、約0.2mmである。 The flat plate is a flat plate and is a plate having a surface (hereinafter simply referred to as “adjacent cell contact surface”) in contact with a separator (flat plate or corrugated plate) of an adjacent cell. The flat plate has a central portion and a peripheral portion surrounding the central portion. The flat plate is preferably flat to such an extent that the contact area with the separator (flat plate or corrugated plate) of an adjacent cell becomes constant. Moreover, it is preferable that the center part of a flat plate does not have the uneven | corrugated shape formed by press work or excision. Moreover, the peripheral part of a flat plate may be flat and may have the uneven | corrugated shape formed by press work and excision. Of the two surfaces of the flat plate, the surface that does not face the corrugated sheet is the adjacent cell contact surface. The material of the flat plate is not particularly limited and may be a metal or a resin, but is preferably a metal. The thickness of the flat plate is not particularly limited, but is about 0.2 mm.
 波板は、波形の断面形状を有し、ガス流路を形成する導電性の板である。波板は、例えば、導電性の板をプレス加工することによって表裏一体に形成される。本発明では、波板の2つの面のうち、平板に対向しない面の凹部がガス流路であり、凸部はガス流路を規定するリブである。つまり、波板の2つの面のうち、平板に対向しない面がMEAと接する。また、波板の2つの面のうち、平板に対向する面の凹部が冷媒流路であり、凸部は冷媒流路を規定するリブであってもよい。波板の材料は、金属であっても、カーボンであってもよいが、金属であることが好ましい。 The corrugated plate is a conductive plate having a corrugated cross-sectional shape and forming a gas flow path. The corrugated plate is formed integrally with the front and back surfaces, for example, by pressing a conductive plate. In the present invention, of the two surfaces of the corrugated plate, the concave portion of the surface that does not face the flat plate is the gas flow path, and the convex portion is the rib that defines the gas flow path. That is, of the two surfaces of the corrugated plate, the surface that does not face the flat plate is in contact with the MEA. Moreover, the recessed part of the surface which opposes a flat plate among two surfaces of a corrugated sheet may be a refrigerant | coolant flow path, and the convex part may be a rib which prescribes | regulates a refrigerant | coolant flow path. The corrugated plate material may be metal or carbon, but is preferably metal.
 波板を構成する導電性の板の厚さは、特に限定されないが、平板の厚さと同程度(約0.2mm)である。またガス流路の幅は、例えば0.1mm~1.5mmであり、ガス流路の深さも、例えば0.1mm~1.5mmである。 The thickness of the conductive plate constituting the corrugated plate is not particularly limited, but is approximately the same as the thickness of the flat plate (about 0.2 mm). The width of the gas channel is, for example, 0.1 mm to 1.5 mm, and the depth of the gas channel is also, for example, 0.1 mm to 1.5 mm.
 このように本発明では、隣接セル接触面が平板によって構成される。したがって、仮にセパレータの配置位置にずれが生じた場合であっても(図2A参照)、セル間の接触面積は、減少しない。このため、セル間の接触抵抗が安定し、出力が高い燃料電池を得られる。 Thus, in the present invention, the adjacent cell contact surface is constituted by a flat plate. Therefore, even if a shift occurs in the position of the separator (see FIG. 2A), the contact area between the cells does not decrease. For this reason, the contact resistance between cells is stabilized and a fuel cell with high output can be obtained.
 また、上述のように、燃料電池スタックがスタッドやナットなどによって固定される場合(図6参照)、波板は、平板に固定されていることが好ましい。波板を平板に固定するには、波板の平板に対向する面の凸部を、平板に接合すればよい。接合の手段の例には、かしめや溶接、接着剤を用いた接着などが含まれる。波板を平板に固定する場合、1の平板上に複数の波板を固定してもよい(実施の形態3、図10参照)。また、波板が平板に固定されている場合、ガス流路を規定するリブの形状は順テーパ状であることが好ましい。 In addition, as described above, when the fuel cell stack is fixed by a stud, a nut, or the like (see FIG. 6), the corrugated plate is preferably fixed to a flat plate. In order to fix the corrugated plate to the flat plate, the convex portion of the surface facing the flat plate of the corrugated plate may be joined to the flat plate. Examples of the joining means include caulking, welding, and adhesion using an adhesive. When fixing the corrugated plate to a flat plate, a plurality of corrugated plates may be fixed on one flat plate (see Embodiment 3, FIG. 10). In addition, when the corrugated plate is fixed to a flat plate, the shape of the rib that defines the gas flow path is preferably a forward tapered shape.
 このように、波板を平板に固定することで、セル積層体に効率的に荷重を加えることが可能になる。以下、波板を平板に固定することと、セル積層体に効率的に荷重を加えることとの関係について、図面を参照しながら説明する。 Thus, by fixing the corrugated plate to the flat plate, it is possible to efficiently apply a load to the cell stack. Hereinafter, the relationship between fixing the corrugated sheet to the flat plate and efficiently applying a load to the cell stack will be described with reference to the drawings.
 図3Aは、波板が平板に固定されたセパレータの断面図である。図3Aに示されるようにセパレータは、平板121および波板123を有する。またセパレータは、ガス流路125およびガス流路125を規定するリブ127を有する。セパレータはMEA111に積層されている。 FIG. 3A is a cross-sectional view of a separator in which a corrugated plate is fixed to a flat plate. As shown in FIG. 3A, the separator has a flat plate 121 and a corrugated plate 123. The separator also has a gas channel 125 and a rib 127 that defines the gas channel 125. The separator is laminated on the MEA 111.
 図3Aに示されるように、波板123が平板121に固定されている場合、波板123は、X方向(セル積層体の積層方向Yに垂直な方向)にスライドすることができない。このため、セパレータにセル積層体の積層方向Yの力を加えても、波板123は、X方向にスライドせず、セパレータの厚さTが変わらない。このため、セパレータは、セル積層体の積層方向Yの力を弱めることなく伝えることができる。 3A, when the corrugated sheet 123 is fixed to the flat plate 121, the corrugated sheet 123 cannot slide in the X direction (direction perpendicular to the stacking direction Y of the cell stack). For this reason, even if a force in the stacking direction Y of the cell stack is applied to the separator, the corrugated sheet 123 does not slide in the X direction, and the thickness T of the separator does not change. For this reason, a separator can transmit, without weakening the force of the lamination direction Y of a cell laminated body.
 また、波板123を平板121に固定することで、燃料電池スタックの運転中に、セル積層体に加わる荷重を増加させることができる。上述のように平板121に固定された波板123は、X方向にスライドできない。このため波板123は、燃料電池スタックの運転中、運転時の熱によって、積層方向Yに膨張しやすく、X方向には、膨張しにくい。したがって、燃料電池スタックの運転中、セパレータの厚さTが増大し、セル積層体は積層方向Yに膨張する。一方で、セル積層体を含む燃料電池スタックの積層方向の長さは、燃料電池スタックがスタッドやナットによって固定されていることから、変化しない。このため積層方向に膨張したセル積層体にかかる荷重は増大する。 Also, by fixing the corrugated sheet 123 to the flat plate 121, the load applied to the cell stack can be increased during the operation of the fuel cell stack. As described above, the corrugated sheet 123 fixed to the flat plate 121 cannot slide in the X direction. For this reason, during operation of the fuel cell stack, the corrugated sheet 123 is likely to expand in the stacking direction Y and hardly expand in the X direction due to heat during operation. Therefore, during the operation of the fuel cell stack, the thickness T of the separator increases and the cell stack expands in the stacking direction Y. On the other hand, the length in the stacking direction of the fuel cell stack including the cell stack does not change because the fuel cell stack is fixed by studs or nuts. For this reason, the load concerning the cell laminated body expanded in the lamination direction increases.
 このように、波板を平板に固定することによって、セル積層体に効率的に荷重を加えることができる。これにより、セル間の接触抵抗を減少させることができる。 Thus, by fixing the corrugated plate to the flat plate, a load can be efficiently applied to the cell stack. Thereby, the contact resistance between cells can be reduced.
 一方、図3Bは、波板が平板に固定されていないセパレータの断面図である。図3Bに示されるように、波板が平板に固定されていないセパレータでは、波板123は、X方向にスライドしやすい。このため、セパレータにセル積層体の積層方向Yの力を加えても、波板123がX方向にスライドし、セパレータの厚さTが減少する。このため、セパレータは、セル積層体の積層方向Yの力を吸収してしまい、積層方向Yの力を弱めてしまう。 On the other hand, FIG. 3B is a cross-sectional view of a separator in which the corrugated plate is not fixed to a flat plate. As shown in FIG. 3B, in the separator in which the corrugated plate is not fixed to the flat plate, the corrugated plate 123 easily slides in the X direction. For this reason, even if a force in the stacking direction Y of the cell stack is applied to the separator, the corrugated sheet 123 slides in the X direction, and the thickness T of the separator decreases. For this reason, the separator absorbs the force in the stacking direction Y of the cell stack, and weakens the force in the stacking direction Y.
 また、燃料電池スタックの運転中に熱によって波板123が膨張したとしても、波板はX方向に膨張し、セル積層体は積層方向Yに膨張しにくい。このため、波板が平板に固定されていなかったり、セパレータが従来のセパレータのように波板だけ構成される場合(図1および図2参照)、燃料電池スタックの運転時にセル積層体にかかる荷重を増大させることができない。 Also, even if the corrugated sheet 123 expands due to heat during operation of the fuel cell stack, the corrugated sheet expands in the X direction, and the cell stack hardly expands in the stacking direction Y. For this reason, when the corrugated plate is not fixed to a flat plate or the separator is configured only by a corrugated plate like a conventional separator (see FIGS. 1 and 2), the load applied to the cell stack during operation of the fuel cell stack Cannot be increased.
 また、低温時には、セル積層体の構成部材(MEAやセパレータなど)が縮小し、セル積層体の積層方向の長さが縮小して、セル積層体にかかる荷重が低下することがある。一方、燃料電池スタックの運転時などの高温時には、セル積層体の構成部材が膨張し、セル積層体の積層方向の長さが膨張して、セル積層体にかかる荷重が強くなりすぎることがある。このように、セル積層体にかかる荷重が変動すると、燃料電池スタックの発電効率が不安定になる。 Also, at low temperatures, the constituent members (MEA, separator, etc.) of the cell stack may be reduced, the length of the cell stack in the stacking direction may be reduced, and the load applied to the cell stack may be reduced. On the other hand, at high temperatures such as when the fuel cell stack is operated, the constituent members of the cell stack may expand, the length in the stacking direction of the cell stack may expand, and the load applied to the cell stack may become too strong. . Thus, when the load applied to the cell stack varies, the power generation efficiency of the fuel cell stack becomes unstable.
 しかし、本発明では、波板が平板に固定された状態で、波板の材料の熱膨張係数と平板の材料の熱膨張係数とを調節することで、温度変化によるセル積層体にかかる荷重の変動を抑制することができる。 However, in the present invention, in a state where the corrugated sheet is fixed to the flat plate, by adjusting the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material, Variations can be suppressed.
 波板の材料の熱膨張係数と平板の材料の熱膨張係数とを調節するとは、波板の材料の熱膨張係数および平板の材料の熱膨張係数を小さくすることを意味する。波板の材料の熱膨張係数および平板の材料の熱膨張係数を小さくするには、平板の材料および波板の材料に熱膨張係数の小さい材料を選択すればよい。具体的には、平板の材料および波板の材料の熱膨張率は50×10-6/℃以下であることが好ましい。波板の材料の熱膨張係数および平板の材料の熱膨張係数を小さくすることで、低温時のセパレータの収縮を防止し、高温時のセパレータの過度な膨張を防止することができる。 Adjusting the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material means reducing the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material. In order to reduce the thermal expansion coefficient of the corrugated plate material and the flat plate material, a material having a small thermal expansion coefficient may be selected for the flat plate material and the corrugated plate material. Specifically, the thermal expansion coefficient of the flat plate material and the corrugated plate material is preferably 50 × 10 −6 / ° C. or less. By reducing the thermal expansion coefficient of the corrugated plate material and the thermal expansion coefficient of the flat plate material, shrinkage of the separator at low temperatures can be prevented, and excessive expansion of the separator at high temperatures can be prevented.
 また、平板の材料の熱膨張係数は、波板の材料の熱膨張係数よりも大きいことが好ましい。より具体的には、平板の材料の熱膨張係数は、波板の材料の熱膨張係数よりも、15×10-6/℃以上大きいことが好ましい。このように、平板の材料の熱膨張係数を、波板の材料の熱膨張係数よりも大きくすることで、低温時にセパレータの厚さが減少することを抑制し、高温時にセパレータの厚さが増加することを抑制し、より好ましくは、低温時にセパレータの厚さを増大させ、高温時にセパレータの厚さを減少させることができる。これにより、温度変化によってセル積層体の積層方向の長さが変動することを抑制でき、温度変化によるセル積層体にかかる荷重の変動を抑制することができる。 The thermal expansion coefficient of the flat plate material is preferably larger than the thermal expansion coefficient of the corrugated plate material. More specifically, the thermal expansion coefficient of the flat plate material is preferably 15 × 10 −6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate material. In this way, by making the thermal expansion coefficient of the flat plate material larger than the thermal expansion coefficient of the corrugated plate material, it is possible to suppress a decrease in the thickness of the separator at a low temperature and an increase in the thickness of the separator at a high temperature. More preferably, the thickness of the separator can be increased at low temperatures and the thickness of the separator can be decreased at high temperatures. Thereby, it can suppress that the length of the lamination direction of a cell laminated body changes with temperature changes, and can suppress the fluctuation | variation of the load concerning a cell laminated body by a temperature change.
 平板の材料の熱膨張係数を波板の材料の熱膨張係数よりも大きくするには、平板の材料に比較的熱膨張係数の大きい材料を選択し、波板の材料に比較的熱膨張係数の小さい材料を選択すればよい。以下の表は、平板および波板に用いられうる金属の熱膨張係数を示す。 In order to make the thermal expansion coefficient of the flat plate material larger than that of the corrugated plate material, a material having a relatively large thermal expansion coefficient is selected as the flat plate material, and the relative thermal expansion coefficient of the corrugated plate material is selected. A small material may be selected. The following table shows the coefficients of thermal expansion of metals that can be used for flat and corrugated sheets.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明では、例えば、平板の材料をアルミニウム板(熱膨張係数23×10-6/℃)とし、波板の材料をFe-Ni合金(熱膨張係数5×10-6/℃)とすればよい。また、金属の熱膨張係数は、金属の結晶構造によって変化する。したがって、焼なましなどの処理によって金属の結晶粒度を調整し金属の熱膨張係数を調整してもよい。また、平板の材料を樹脂(熱膨張係数50×10-6/℃~200×10-6/℃)とし、波板の材料を金属としてもよい(実施の形態4参照)。 In the present invention, for example, if a flat plate material is an aluminum plate (thermal expansion coefficient 23 × 10 −6 / ° C.) and a corrugated plate material is an Fe—Ni alloy (thermal expansion coefficient 5 × 10 −6 / ° C.). Good. Moreover, the thermal expansion coefficient of a metal changes with the crystal structure of a metal. Therefore, the thermal expansion coefficient of the metal may be adjusted by adjusting the crystal grain size of the metal by a treatment such as annealing. Further, the flat plate material may be a resin (thermal expansion coefficient 50 × 10 −6 / ° C. to 200 × 10 −6 / ° C.), and the corrugated plate material may be a metal (see the fourth embodiment).
 このように、波板を平板に固定し、平板の材料の熱膨張係数を波板の材料の熱膨張係数よりも15×10-6/℃以上大きくすることで、セパレータの厚さが低温時に増加し、高温時に減少する。以下、図4Aおよび図4Bを参照し、セパレータの厚さが低温時に増加し、高温時に減少するメカニズムについて説明する。 In this way, the corrugated plate is fixed to a flat plate, and the thermal expansion coefficient of the flat plate material is increased by 15 × 10 −6 / ° C. or more than the thermal expansion coefficient of the corrugated plate material, so that the separator thickness is low. Increase and decrease at high temperatures. Hereinafter, with reference to FIG. 4A and FIG. 4B, a mechanism in which the thickness of the separator increases at a low temperature and decreases at a high temperature will be described.
 図4Aは、低温時の本発明のセパレータの拡大断面図である。図4Aに示されるように、低温時には熱膨張係数の大きい平板121の幅は、X方向に縮む。一方、波板123の熱膨張係数は、平板121のそれよりも小さいため、波板123は、平板121ほど収縮しない。しかし、上述のように波板123は平板121に固定されているので、平板121が縮むことで、平板121に固定された波板123の幅も、強制的に矢印X方向に縮められる。このように、波板123の幅が強制的にX方向に縮められると、順テーパ状のリブ127は、Y方向に押し上げられる。リブ127がY方向に押し上げられると、セパレータ全体の厚さTが増加する。 FIG. 4A is an enlarged cross-sectional view of the separator of the present invention at a low temperature. As shown in FIG. 4A, the width of the flat plate 121 having a large coefficient of thermal expansion shrinks in the X direction at low temperatures. On the other hand, since the thermal expansion coefficient of the corrugated sheet 123 is smaller than that of the flat plate 121, the corrugated sheet 123 does not contract as much as the flat plate 121. However, since the corrugated sheet 123 is fixed to the flat plate 121 as described above, the width of the corrugated sheet 123 fixed to the flat plate 121 is also forcibly contracted in the arrow X direction by contracting the flat plate 121. In this way, when the width of the corrugated sheet 123 is forcibly reduced in the X direction, the forward tapered rib 127 is pushed up in the Y direction. When the rib 127 is pushed up in the Y direction, the thickness T of the entire separator increases.
 一方図4Bは、高温時の本発明のセパレータの拡大断面図である。図4Bに示されるように、高温時には熱膨張係数の大きい平板121の幅は、X方向に膨張する。一方、波板123の熱膨張係数は、平板121のそれよりも小さいため、波板123は、平板121ほど膨張しない。しかし、波板123は平板121に固定されているので、平板121が膨張することで、平板121に固定された波板123の幅も、強制的に矢印X方向に広げられる。このように、波板123の幅が強制的にX方向に広げられると、順テーパ状のリブ127は、Y方向に押し下げられる。リブ127がY方向に押し下げられると、セパレータ全体の厚さTが減少する。 On the other hand, FIG. 4B is an enlarged cross-sectional view of the separator of the present invention at a high temperature. As shown in FIG. 4B, the width of the flat plate 121 having a large thermal expansion coefficient expands in the X direction at high temperatures. On the other hand, since the thermal expansion coefficient of the corrugated sheet 123 is smaller than that of the flat plate 121, the corrugated sheet 123 does not expand as much as the flat plate 121. However, since the corrugated sheet 123 is fixed to the flat plate 121, the expansion of the flat plate 121 forces the width of the corrugated sheet 123 fixed to the flat plate 121 to be forcibly expanded in the arrow X direction. Thus, when the width of the corrugated sheet 123 is forcibly expanded in the X direction, the forward tapered rib 127 is pushed down in the Y direction. When the rib 127 is pushed down in the Y direction, the thickness T of the entire separator decreases.
 このように、波板を平板に固定し、平板の材料の熱膨張係数を波板の材料の熱膨張係数よりも大きくすることによって、低温時に厚さが増加し、高温時に厚さが減少するセパレータを得ることができる。 Thus, by fixing the corrugated plate to the flat plate and making the thermal expansion coefficient of the flat plate material larger than the thermal expansion coefficient of the corrugated plate material, the thickness increases at low temperatures and the thickness decreases at high temperatures. A separator can be obtained.
 このように、本発明のセパレータは、高温時に厚さが減少するので、高温時にMEAなどの他の構成部材が膨張した場合であっても、セル積層体の積層方向の長さが過度に増加することを抑制することができる。これにより、高温時にセル積層体にかかる荷重が、過度に増加することを抑制することができる。 Thus, since the thickness of the separator of the present invention decreases at high temperatures, the length in the stacking direction of the cell stack excessively increases even when other components such as MEA expand at high temperatures. Can be suppressed. Thereby, it can suppress that the load concerning a cell laminated body at the time of high temperature increases excessively.
 また、本発明のセパレータは低温時に厚さが増加するので、低温時にMEAなどの他の構成部材が縮小した場合であっても、セル積層体の積層方向の長さが縮小することを抑制することができる。これにより、低温時にセル積層体にかかる荷重が低下することを抑制することができる。 In addition, since the thickness of the separator of the present invention increases at low temperatures, the length of the cell stack in the stacking direction is prevented from decreasing even when other components such as MEA are reduced at low temperatures. be able to. Thereby, it can suppress that the load concerning a cell laminated body falls at the time of low temperature.
 図5は、シミュレーションによって得られた、平板および波板の材料の熱膨張係数の差(平板の材料の熱膨張係数-波板の材料の熱膨張係数)と、常温時(25℃)のセル積層体(200セル)の長さと低温時(-5℃)のセル積層体の長さとの差(低温時のセルの長さ-常温時のセルの長さ)と、の関係を示したグラフである。図5のシミュレーションでは、セル積層体におけるセパレータ以外の部材(MEAなど)の温度変化による厚さの変化は考慮しなかった。 FIG. 5 shows the difference in thermal expansion coefficient between the flat plate and corrugated sheet materials (the thermal expansion coefficient of the flat plate material−the thermal expansion coefficient of the corrugated sheet material) and the cell at normal temperature (25 ° C.). A graph showing the relationship between the length of the laminate (200 cells) and the length of the cell laminate at low temperature (−5 ° C.) (cell length at low temperature−cell length at normal temperature) It is. In the simulation of FIG. 5, a change in thickness due to a temperature change of a member (such as MEA) other than the separator in the cell stack was not considered.
 図5に示されるように、平板の熱膨張係数と波板の熱膨張係数とが同じである場合(熱膨張係数の差が0の場合)、セル積層体の厚さは低温時に1.2mm~0.5mm減少する(n=3)。 As shown in FIG. 5, when the thermal expansion coefficient of the flat plate and the thermal expansion coefficient of the corrugated sheet are the same (when the difference in thermal expansion coefficient is 0), the thickness of the cell stack is 1.2 mm at low temperature. Decrease by ~ 0.5 mm (n = 3).
 一方、平板の熱膨張係数が波板の熱膨張係数よりも15×10-6/℃以上大きいとき、図5に示されるようにセパレータの厚さが低温時に増加する。このため、平板の熱膨張係数が波板の熱膨張係数よりも15×10-6/℃以上大きい場合、低温時にMEAなどの他の構成部材が縮小した場合であっても、セル積層体の積層方向の長さが縮小することを抑制することができる。 On the other hand, when the thermal expansion coefficient of the flat plate is 15 × 10 −6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate, the thickness of the separator increases at low temperatures as shown in FIG. For this reason, even when the thermal expansion coefficient of the flat plate is 15 × 10 −6 / ° C. or more higher than the thermal expansion coefficient of the corrugated plate, even when other components such as MEA shrink at low temperatures, A reduction in the length in the stacking direction can be suppressed.
 一方、平板および波板の材料の熱膨張係数の差があまりにも大きいと、セパレータの厚さが低温時に過度に増加し、セル積層体の積層方向の長さが変動してしまう。このため、セパレータの厚さが低温時に過度に増加しないよう、平板および波板の材料の熱膨張係数の差は、30×10-6/℃以下であることが好ましく、20×10-6/℃以下であることがさらに好ましい。 On the other hand, if the difference in coefficient of thermal expansion between the material of the flat plate and the corrugated plate is too large, the thickness of the separator excessively increases at low temperatures, and the length of the cell stack in the stacking direction varies. For this reason, the difference in thermal expansion coefficient between the flat plate and the corrugated plate material is preferably 30 × 10 −6 / ° C. or less so that the thickness of the separator does not increase excessively at low temperatures, and 20 × 10 −6 / More preferably, it is not higher than ° C.
 このように、本発明によれば、セパレータの2つの面のうち、隣接するセルに接触する面が平板によって構成されることから、セル間で常に一定の接触面積を確保することができる。このため、セル間の接触抵抗を下げることができ、出力の高い燃料電池スタックを得ることができる。 Thus, according to the present invention, of the two surfaces of the separator, the surface that contacts an adjacent cell is constituted by a flat plate, so that a constant contact area can always be ensured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
 さらに、波板を平板に固定することで、セル積層体に効率的に荷重を加えることができ、燃料電池スタックの出力を向上させることができる。さらに、波板を平板に固定し、平板の熱膨張係数を波板の熱膨張係数よりも大きくすることで、温度変化によるセル積層体にかかる荷重の変動を抑制することができる。 Furthermore, by fixing the corrugated plate to the flat plate, it is possible to efficiently apply a load to the cell stack and improve the output of the fuel cell stack. Furthermore, the fluctuation | variation of the load concerning a cell laminated body by a temperature change can be suppressed by fixing a corrugated sheet to a flat plate and making the thermal expansion coefficient of a flat plate larger than the thermal expansion coefficient of a corrugated sheet.
 また、波板を平板に固定することで、ガス流路の形状を維持することができる。ガス流路の形状が維持されることでMEAに安定してガスを供給することができる。 Moreover, the shape of the gas flow path can be maintained by fixing the corrugated plate to the flat plate. By maintaining the shape of the gas flow path, the gas can be stably supplied to the MEA.
 以下図面を参照して本発明の燃料電池スタックの実施の形態について説明する。 Embodiments of a fuel cell stack according to the present invention will be described below with reference to the drawings.
 [実施の形態1]
 図6は実施の形態1の燃料電池スタック100の断面図である。図6に示されるように燃料電池スタック100は、セル積層体101、エンドプレート103、スタッド105、ナット107を有する。
[Embodiment 1]
FIG. 6 is a cross-sectional view of the fuel cell stack 100 of the first embodiment. As shown in FIG. 6, the fuel cell stack 100 includes a cell stack 101, an end plate 103, a stud 105, and a nut 107.
 セル積層体101は、積層された複数の単セル110を有する。単セル110はそれぞれMEA111、燃料極セパレータ113、空気極セパレータ115およびシール部材117を有する。 The cell stack 101 has a plurality of unit cells 110 stacked. Each single cell 110 includes an MEA 111, a fuel electrode separator 113, an air electrode separator 115, and a seal member 117.
 セル積層体101およびエンドプレート103からなる積層物は、スタッド105およびナット107によって固定されている。セル積層体101およびエンドプレート103からなる積層物がスタッド105およびナット107によって固定されることで、セル積層体101に荷重が加えられる。 The laminate composed of the cell laminate 101 and the end plate 103 is fixed by a stud 105 and a nut 107. A load consisting of the cell laminate 101 and the end plate 103 is fixed to the cell laminate 101 by the stud 105 and the nut 107.
 図7は単セル110の分解斜視図である。図7に示されるように単セル110は、MEA111と、MEA111を挟む一対のセパレータ(燃料極セパレータ113および空気極セパレータ115)とを有する。燃料極セパレータ113および空気極セパレータ115のそれぞれは、平板121および波板123を有する。また、本実施の形態では、隣接する2つのセパレータが1の平板121を共有している(図6参照)。また燃料極セパレータ113および空気極セパレータ115は、MEA111に対向する面にガス流路125およびガス流路を規定するリブ127を有する。 FIG. 7 is an exploded perspective view of the single cell 110. As shown in FIG. 7, the single cell 110 includes an MEA 111 and a pair of separators (a fuel electrode separator 113 and an air electrode separator 115) that sandwich the MEA 111. Each of the fuel electrode separator 113 and the air electrode separator 115 has a flat plate 121 and a corrugated plate 123. In the present embodiment, two adjacent separators share one flat plate 121 (see FIG. 6). Further, the fuel electrode separator 113 and the air electrode separator 115 have a gas flow path 125 and a rib 127 that defines the gas flow path on a surface facing the MEA 111.
 図8は空気極セパレータ115の分解斜視図である。図8に示されるように空気極セパレータ115は、金属製の平板121上に波板123を積層することで作製される。実施の形態1では、波板123は平板121に固定されていない。また、図8では、例として空気極セパレータ115の分解斜視図を示したが、燃料極セパレータ113の構造も空気極セパレータ115と同じである。 FIG. 8 is an exploded perspective view of the air electrode separator 115. As shown in FIG. 8, the air electrode separator 115 is produced by laminating a corrugated sheet 123 on a metal flat plate 121. In the first embodiment, the corrugated sheet 123 is not fixed to the flat plate 121. FIG. 8 shows an exploded perspective view of the air electrode separator 115 as an example, but the structure of the fuel electrode separator 113 is the same as that of the air electrode separator 115.
 このように、本実施の形態では、セパレータの2つの面のうち、隣接するセルに接触する面が平板によって構成されることから、セル間で常に一定の接触面積を確保することができる。このため、セル間の接触抵抗を下げることができ、出力の高い燃料電池スタックを得ることができる。 Thus, in the present embodiment, of the two surfaces of the separator, the surface that contacts the adjacent cell is constituted by a flat plate, so that a constant contact area can be always secured between the cells. For this reason, the contact resistance between cells can be lowered and a fuel cell stack with high output can be obtained.
 [実施の形態2]
 実施の形態1では、波板が平板に固定されていない態様について説明した。実施の形態2では、波板が平板に固定された態様について説明する。
[Embodiment 2]
In Embodiment 1, the aspect in which the corrugated plate is not fixed to the flat plate has been described. In the second embodiment, a mode in which a corrugated plate is fixed to a flat plate will be described.
 図9は、実施の形態2のセパレータ215の斜視図である。実施の形態1のセパレータと同じ構成要素については同一の符号を付し、説明を省略する。図9に示されるように波板223の平板221に対向する面の凸部は、金属製の平板221に接合され、波板223は平板221に固定されている。 FIG. 9 is a perspective view of the separator 215 of the second embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 9, the convex portion of the surface facing the flat plate 221 of the corrugated plate 223 is joined to the metal flat plate 221, and the corrugated plate 223 is fixed to the flat plate 221.
 このように、波板を平板に固定することで、セル積層体に効率的に荷重を加えることができ(図3参照)、燃料電池スタックの出力を向上させることができる。さらに、平板の熱膨張係数を波板の熱膨張係数よりも大きくすれば、温度変化によるセル積層体にかかる荷重の変動を抑制することができる(図4、図5参照)。 Thus, by fixing the corrugated plate to the flat plate, a load can be efficiently applied to the cell stack (see FIG. 3), and the output of the fuel cell stack can be improved. Furthermore, if the thermal expansion coefficient of the flat plate is made larger than the thermal expansion coefficient of the corrugated plate, fluctuations in the load applied to the cell stack due to temperature changes can be suppressed (see FIGS. 4 and 5).
 [実施の形態3]
 実施の形態1および2では、1の平板に1の波板が積層される態様について説明した。実施の形態3では、1の平板に複数の波板が積層される態様について説明する。
[Embodiment 3]
In Embodiments 1 and 2, the mode in which one corrugated plate is laminated on one flat plate has been described. In Embodiment 3, a mode in which a plurality of corrugated plates are laminated on one flat plate will be described.
 図10は実施の形態3のセパレータ315の斜視図である。実施の形態1のセパレータと同じ構成要素については同一の符号を付し、説明を省略する。図10に示されるように、セパレータ315は、金属製の平板321と、平板321に積層された複数の波板323を有する。波板323はそれぞれ平板321に固定される。 FIG. 10 is a perspective view of the separator 315 according to the third embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 10, the separator 315 includes a metal flat plate 321 and a plurality of corrugated plates 323 stacked on the flat plate 321. The corrugated plates 323 are each fixed to the flat plate 321.
 このように、複数の波板を1の平板に固定することで、ガス流路のパターンを自由に設定することが可能となる。 Thus, by fixing a plurality of corrugated plates to one flat plate, it is possible to freely set the gas flow path pattern.
 [実施の形態4]
 実施の形態1~3では、平板が金属である態様について説明した。実施の形態4では、平板が樹脂からなる態様について説明する。
[Embodiment 4]
In the first to third embodiments, the aspect in which the flat plate is a metal has been described. In Embodiment 4, a mode in which the flat plate is made of resin will be described.
 図11は実施の形態4の燃料電池スタック400の断面図である。図11に示されるように燃料電池スタック400は、セル積層体101、エンドプレート103、スタッド105、ナット107を有する。 FIG. 11 is a cross-sectional view of the fuel cell stack 400 of the fourth embodiment. As shown in FIG. 11, the fuel cell stack 400 includes a cell stack 101, an end plate 103, a stud 105, and a nut 107.
 セル積層体101は、積層された複数の単セル410を有する。単セル410はそれぞれMEA111、燃料極セパレータ413、空気極セパレータ415およびシール部材117を有する。 The cell stack 101 has a plurality of unit cells 410 stacked. Each single cell 410 includes an MEA 111, a fuel electrode separator 413, an air electrode separator 415, and a seal member 117.
 図12は空気極セパレータ415の斜視図である。図12に示されるように、セパレータ415は、樹脂製の平板421と、金属製の波板423とを有する。本実施の形態では、波板423の一部は、平板421を貫通する突起425を形成する。突起425によって、波板423は平板421に固定される。また、平板421を貫通する金属製の突起425によって、樹脂製の平板421が非導電性である場合であっても、隣接するセル410同士が電気的に接続されうる(図11参照)。 FIG. 12 is a perspective view of the air electrode separator 415. As shown in FIG. 12, the separator 415 includes a resin flat plate 421 and a metal corrugated plate 423. In this embodiment, a part of the corrugated plate 423 forms a protrusion 425 that penetrates the flat plate 421. The corrugated plate 423 is fixed to the flat plate 421 by the projection 425. Further, even when the resin flat plate 421 is non-conductive, the adjacent cells 410 can be electrically connected to each other by the metal protrusion 425 penetrating the flat plate 421 (see FIG. 11).
 このように、平板の材料に熱膨張係数の大きい樹脂を選択し、波板の材料に熱膨張係数の小さい金属を選択することで、低温時におけるセル積層体にかかる荷重の低下を抑制する効果をより高めることができる。 In this way, by selecting a resin with a large thermal expansion coefficient for the material of the flat plate and selecting a metal with a low coefficient of thermal expansion for the material of the corrugated sheet, the effect of suppressing a decrease in load applied to the cell stack at low temperatures Can be further enhanced.
 本出願は、2009年3月24日出願の特願2009-072669に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2009-072669 filed on Mar. 24, 2009. All the contents described in the application specification are incorporated herein by reference.
 本発明の燃料電池スタックは、セル間の接触抵抗が低く、出力が高い燃料電池スタックであることから、自動車や、家庭用コージェネレーションシステムに用いる燃料電池スタックとして有用である。 Since the fuel cell stack of the present invention is a fuel cell stack with low contact resistance between cells and high output, it is useful as a fuel cell stack for use in automobiles and household cogeneration systems.
 100、400 燃料電池スタック
 101 セル積層体
 103 エンドプレート
 105 スタッド
 107 ナット
 110、410 単セル
 111 MEA
 113、115、215、315、413、415 セパレータ
 117 シール部材
 121、221、321、421 平板
 123、223、323、423 波板
 125 ガス流路
 127 リブ
100, 400 Fuel cell stack 101 Cell stack 103 End plate 105 Stud 107 Nut 110, 410 Single cell 111 MEA
113, 115, 215, 315, 413, 415 Separator 117 Seal member 121, 221, 321, 421 Flat plate 123, 223, 323, 423 Corrugated plate 125 Gas flow path 127 Rib

Claims (7)

  1.  平板と、前記平板の上に積層された波板と、を有する固体高分子形燃料電池用セパレータであって、
     前記波板の2つの面のうち、前記平板に対向しない面の凹部はガス流路である、固体高分子形燃料電池用セパレータ。
    A separator for a polymer electrolyte fuel cell, comprising: a flat plate; and a corrugated plate laminated on the flat plate,
    A separator for a polymer electrolyte fuel cell, wherein a concave portion of a surface not facing the flat plate of the two surfaces of the corrugated plate is a gas flow path.
  2.  前記波板は、前記平板に固定されている、請求項1に記載の固体高分子形燃料電池用セパレータ。 2. The polymer electrolyte fuel cell separator according to claim 1, wherein the corrugated plate is fixed to the flat plate.
  3.  前記平板の材料の熱膨張係数は、前記波板の材料の熱膨張係数よりも大きい、請求項2に記載の固体高分子形燃料電池用セパレータ。 3. The polymer electrolyte fuel cell separator according to claim 2, wherein a thermal expansion coefficient of the flat plate material is larger than a thermal expansion coefficient of the corrugated plate material.
  4.  前記平板の材料の熱膨張係数は、前記波板の材料の熱膨張係数よりも15×10-6/℃以上大きい、請求項2に記載の固体高分子形燃料電池用セパレータ。 3. The polymer electrolyte fuel cell separator according to claim 2, wherein a thermal expansion coefficient of the flat plate material is 15 × 10 −6 / ° C. or more higher than a thermal expansion coefficient of the corrugated plate material.
  5.  前記波板の2つの面のうち、前記平板に対向する面の凹部は冷媒流路である、請求項1に記載の固体高分子形燃料電池用セパレータ。 The separator for a polymer electrolyte fuel cell according to claim 1, wherein the concave portion of the surface facing the flat plate out of the two surfaces of the corrugated plate is a refrigerant flow path.
  6.  高分子電解質膜、ならびに前記高分子電解質膜を挟む燃料極および酸化極からなる一対の触媒電極を有する膜電極接合体と、前記膜電極接合体を挟む一対のセパレータと、を有する固体高分子形燃料電池単セルであって、
     前記セパレータは、請求項1に記載の固体高分子形燃料電池用セパレータである、燃料電池単セル。
    Solid polymer type having a polymer electrolyte membrane, a membrane electrode assembly having a pair of catalyst electrodes composed of a fuel electrode and an oxidation electrode sandwiching the polymer electrolyte membrane, and a pair of separators sandwiching the membrane electrode assembly A fuel cell single cell,
    The said separator is a fuel cell single cell which is a separator for polymer electrolyte fuel cells of Claim 1.
  7.  請求項6に記載の単セルを積層したセル積層体を有する、燃料電池スタック。
      
    A fuel cell stack having a cell stack in which the single cells according to claim 6 are stacked.
PCT/JP2010/001712 2009-03-24 2010-03-10 Solid polymer fuel cell and separator for solid polymer fuel cell WO2010109795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542469A JP4897928B2 (en) 2009-03-24 2010-03-10 Polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072669 2009-03-24
JP2009072669 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109795A1 true WO2010109795A1 (en) 2010-09-30

Family

ID=42780494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001712 WO2010109795A1 (en) 2009-03-24 2010-03-10 Solid polymer fuel cell and separator for solid polymer fuel cell

Country Status (2)

Country Link
JP (1) JP4897928B2 (en)
WO (1) WO2010109795A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306721A4 (en) * 2015-06-03 2018-05-23 Nissan Motor Co., Ltd. Metal separator structure body for fuel cell, fuel cell and fuel cell stack using same separator structure body
RU2679628C1 (en) * 2018-09-12 2019-02-12 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Device for supplying to the electrochemical cells of the initial components and withdrawing of reaction products
RU2690469C1 (en) * 2018-10-08 2019-06-03 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Device for extraction of carbon dioxide from gas mixtures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055950B1 (en) * 2012-12-14 2019-12-13 주식회사 미코 Stack structure for fuel cell
KR102055951B1 (en) * 2012-12-28 2020-01-23 주식회사 미코 Stack structure for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178849A (en) * 2002-11-25 2004-06-24 Fujitsu Component Ltd Fuel cell, manufacturing method of fuel cell, and fuel cell stack
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
JP2007250212A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Fuel cell
WO2008059950A1 (en) * 2006-11-16 2008-05-22 Neomax Materials Co., Ltd. Fuel cell separator and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211865A (en) * 1988-02-19 1989-08-25 Fuji Electric Co Ltd Electrolyte plate for fused carbonate type fuel cell
JPH0992307A (en) * 1994-11-11 1997-04-04 Toshiba Corp Molten carbonate type fuel cell
JP3336869B2 (en) * 1996-09-02 2002-10-21 三菱電機株式会社 Operating method of molten carbonate fuel cell
JP2005197064A (en) * 2004-01-07 2005-07-21 Yamanashi Tlo:Kk Electrode structure for fuel cell, gas diffusion electrode, and fuel cell
JP2007149427A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Separator, fuel cell equipped with it, and manufacturing method of separator
JP2007242407A (en) * 2006-03-08 2007-09-20 Daiki Ataka Engineering Co Ltd Solid polymer electrolyte membrane type cell, and its component
JP5068051B2 (en) * 2006-09-29 2012-11-07 昭和電工株式会社 Fuel cell separator and method for producing the same
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178849A (en) * 2002-11-25 2004-06-24 Fujitsu Component Ltd Fuel cell, manufacturing method of fuel cell, and fuel cell stack
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
JP2007250212A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Fuel cell
WO2008059950A1 (en) * 2006-11-16 2008-05-22 Neomax Materials Co., Ltd. Fuel cell separator and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306721A4 (en) * 2015-06-03 2018-05-23 Nissan Motor Co., Ltd. Metal separator structure body for fuel cell, fuel cell and fuel cell stack using same separator structure body
RU2679628C1 (en) * 2018-09-12 2019-02-12 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Device for supplying to the electrochemical cells of the initial components and withdrawing of reaction products
RU2690469C1 (en) * 2018-10-08 2019-06-03 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Device for extraction of carbon dioxide from gas mixtures

Also Published As

Publication number Publication date
JP4897928B2 (en) 2012-03-14
JPWO2010109795A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US7476459B2 (en) Membrane electrode assembly and fuel cell
JP4621815B2 (en) Fuel cell stack
US20140017590A1 (en) Electrolyte membrane-electrode assembly for fuel cells, and method for producing same
JP4627406B2 (en) Separator and fuel cell
JP4897928B2 (en) Polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell
JP5454301B2 (en) Fuel cell stack
US20070178367A1 (en) Direct oxidation fuel cell and method for operating direct oxidation fuel cell system
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
US10826097B2 (en) Fuel cell
JP4213515B2 (en) Polymer electrolyte fuel cell
JP5235581B2 (en) Fuel cell separator
US11145873B2 (en) Membrane electrode assembly and fuel cell comprising core-shell catalyst
JP5151270B2 (en) Fuel cell components
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP4700140B2 (en) Polymer electrolyte fuel cell stack
JP2002170581A (en) Polymer electrolyte type fuel battery
JP4639722B2 (en) Fuel cell manufacturing method and fuel cell
JP2010123511A (en) Fuel cell and method of manufacturing the same
JP5362541B2 (en) Polymer electrolyte fuel cell
JP2010015939A (en) Fuel cell
JP2009238495A (en) Fuel cell and membrane-electrode-gas diffusion layer assembly used this
US7473483B2 (en) Direct methanol fuel cell
JP2009193724A (en) Fuel cell
JP4440088B2 (en) Fuel cell
JP3946228B2 (en) Fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010542469

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755599

Country of ref document: EP

Kind code of ref document: A1