WO2010109562A1 - Method of producing multilayer ceramic electronic component - Google Patents

Method of producing multilayer ceramic electronic component Download PDF

Info

Publication number
WO2010109562A1
WO2010109562A1 PCT/JP2009/006500 JP2009006500W WO2010109562A1 WO 2010109562 A1 WO2010109562 A1 WO 2010109562A1 JP 2009006500 W JP2009006500 W JP 2009006500W WO 2010109562 A1 WO2010109562 A1 WO 2010109562A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
ceramic
electrode pattern
green sheet
electronic component
Prior art date
Application number
PCT/JP2009/006500
Other languages
French (fr)
Japanese (ja)
Inventor
戸上敬
藤岡真人
吉川宣弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN200980158383.2A priority Critical patent/CN102365694B/en
Priority to JP2011505681A priority patent/JP4968411B2/en
Publication of WO2010109562A1 publication Critical patent/WO2010109562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material

Definitions

  • the present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
  • a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • a carrier film for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • the internal electrode pattern is formed on the ceramic green sheet formed by printing the ceramic slurry formed on the carrier film, and the formation of the green sheet and the internal electrode pattern by further printing the ceramic slurry thereon. Proposing a method to improve production efficiency by shortening the time required for the lamination process by forming a minority unit laminate of ceramic green sheets and internal electrode patterns by stacking and stacking composite laminates punched from this (See Patent Document 1).
  • the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the organic binder contained in the ceramic green sheet and the internal electrode paste.
  • a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste.
  • Patent Document 2 there has been proposed a method for manufacturing a multilayer electronic component that suppresses or prevents the organic binder in the ceramic green sheet from dissolving in the internal electrode paste.
  • the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there are problems such as insufficient adhesion between layers, causing delamination, and causing cracks in the lamination process.
  • the present invention solves the above-mentioned problems, and suppresses and prevents attacks to the internal electrode pattern by the ceramic green sheet (ceramic slurry) formed as an upper layer of the internal electrode pattern without curing the ceramic green sheet.
  • ceramic green sheet ceramic slurry
  • a method for manufacturing a multilayer ceramic electronic component of the present invention includes: A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer, (a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet; (b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern; (c) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that hardly dissolves the organic binder contained in the ceramic green sheet and the internal electrode pattern is applied and dried.
  • the method for manufacturing the multilayer ceramic electronic component of the present invention includes: A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers, (a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern; (b) A resin paste containing a solvent and a resin that hardly dissolve the organic binder contained in the internal electrode pattern is applied onto the internal electrode pattern and the base material around the internal electrode pattern, and then dried and uncured protection Forming a resin layer; (c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the uncured protective resin layer, and drying to form a ceramic green sheet; (d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern; (e) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that
  • the method for producing a multilayer ceramic electronic component of the present invention comprises the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2 on the substrate.
  • a step between the internal electrode pattern and the periphery thereof is formed in a region around the formed internal electrode pattern.
  • a step-absorbing layer is formed by applying and drying a step-absorbing layer ceramic paste to eliminate the step-absorbing layer.
  • the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area. Applying and drying a ceramic paste for layer to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern It is a feature.
  • the protective resin layer has a thickness of 0.03 to 0.20 ⁇ m.
  • the resin paste used for forming the protective resin layer is a resin paste containing an aqueous solvent and a water-soluble resin.
  • the aqueous solvent preferably contains water and an organic solvent, and the water content is 30% by weight or more.
  • the aqueous solvent preferably contains alcohol as the organic solvent.
  • the water-soluble resin contained in the protective resin layer is polyvinyl alcohol having a polymerization degree of 500 or more and a hydroxyl group content of 90% or more.
  • the ratio of the ceramic powder in the protective resin layer formed by curing the resin paste is not more than the critical particle volume fraction. It is desirable to use a ceramic powder.
  • the method for producing a multilayer ceramic electronic component of the present invention is a method in which a ceramic slurry is applied to an internal electrode pattern or an internal electrode pattern and a ceramic green sheet via a protective resin layer. Since it is applied, sheet attack due to the ceramic slurry can be reliably suppressed and prevented, and a highly reliable multilayer ceramic electronic component having desired characteristics can be reliably manufactured. That is, the present invention applies an uncured by applying a resin paste containing a solvent and a resin that hardly dissolves the binder of the ceramic green sheet and the internal electrode pattern onto the internal electrode pattern or the internal electrode pattern and the ceramic green sheet.
  • the protective resin layer is formed, and then the ceramic slurry is applied thereon and dried to form a ceramic green sheet. Therefore, the ceramic slurry is not directly brought into contact with the internal electrode pattern and the ceramic green sheet. Therefore, it is possible to reliably suppress and prevent seat attack.
  • the ceramic slurry is applied on the protective resin layer containing a resin and a solvent that hardly dissolves the organic binder of the ceramic green sheet and the internal electrode pattern, so that the solvent used for the ceramic slurry can be freely selected.
  • the degree can be improved dramatically.
  • the internal electrode paste is related to the solvent and the organic binder contained in the ceramic slurry.
  • the type of organic binder to be contained is not restricted. Therefore, also in this respect, the degree of freedom in material selection is improved.
  • the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
  • Examples of the method of applying the internal electrode paste include a method of printing and attaching the internal electrode paste on the ceramic green sheet by a screen printing method or the like.
  • the present invention is not limited to this, and various other methods can be used.
  • the resin paste to be used when the first protective resin layer is formed, may be one that satisfies the requirement that the organic binder contained in the internal electrode pattern is difficult to dissolve.
  • the second and subsequent protective resin layers it is necessary to use a resin paste that hardly dissolves the organic binder contained in each of the previously formed internal electrode pattern and ceramic green sheet. .
  • the step absorption layer is formed by applying the ceramic paste for the step absorption layer to the region around the internal electrode pattern, thereby eliminating the step and preventing delamination.
  • a highly reliable multilayer ceramic electronic component can be obtained. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, the solvent used in the ceramic slurry and the internal electrode paste and the organic system are used in order to avoid sheet attack. Although the selection range of the binder is narrowed, in the present invention, the protective resin layer is interposed at a predetermined position as described above and functions to prevent sheet attack, so that the degree of freedom in selecting the solvent is kept high. be able to.
  • the step-absorbing layer ceramic paste preferably has a component that hardly dissolves the organic binder contained in the internal electrode pattern, but only contacts the internal electrode pattern at its peripheral edge. It ’s not a very strict requirement.
  • the internal electrode paste applied to the region where the step absorption layer is not formed is such that the component hardly dissolves the organic binder contained in the step absorption layer. Since the paste only touches the step absorption layer at the peripheral edge thereof, it is not a very strict requirement.
  • the thickness of the protective resin layer 0.03 to 0.20 ⁇ m, it is possible to efficiently suppress both electrical characteristic defects due to sheet attack and structural defects due to delamination. It is preferable.
  • the thickness of the protective resin layer is less than 0.03 ⁇ m, the effect of preventing sheet attack is insufficient, and when it exceeds 0.20 ⁇ m, delamination tends to occur.
  • a resin paste containing an aqueous solvent and a water-soluble resin as a resin paste used for forming a protective resin layer, an internal electrode pattern and a ceramic green sheet are used. It is possible to reliably form a protective resin layer that protects the internal electrode pattern and the ceramic green sheet from attack by the ceramic slurry (solvent therein) without dissolving the organic binder contained therein. It becomes possible.
  • the organic binder contained in a ceramic green sheet and an internal electrode pattern is used by using what contains an organic solvent in the range which satisfies the requirement that the content rate of water is 30 weight% or more as an aqueous solvent. It is possible to realize an evaporation rate of the aqueous solvent that can shorten the drying time while suppressing and preventing the dissolution, and productivity can be improved.
  • the organic binder contained in the internal electrode pattern and the ceramic green sheet is easily dissolved, which is preferable. Absent. Also, when the solvent is only water or when the water content is high, it is preferable in that it is difficult to dissolve the organic binder contained in the internal electrode pattern and the ceramic green sheet, but in the drying process after applying the resin paste This is not preferable because a long drying time is required and productivity is lowered.
  • an aqueous solvent containing an alcohol as an organic solvent, it is possible to suppress and prevent the organic binder contained in the ceramic green sheet and the internal electrode pattern from being dissolved, while increasing the evaporation rate of the solvent. It becomes possible to keep the level at which there is no problem in practical use, and the present invention can be made more effective.
  • polyvinyl alcohol having a degree of polymerization of 500 or more and a hydroxyl group content of 90% or more is used to be applied on the ceramic green sheet and the internal electrode pattern via the protective resin layer.
  • the sheet attack by the ceramic slurry can be efficiently suppressed and prevented, and the occurrence of short circuit failure due to the sheet attack can be effectively suppressed.
  • the resin paste one containing ceramic powder at a ratio such that the ratio of ceramic powder in the protective resin layer is equal to or less than the critical particle volume fraction is used, that is, the protective resin layer contains ceramic powder.
  • the firing step it becomes possible to diffuse the ceramic powder in the protective resin layer to the lower and upper ceramic green sheets, and to firmly bond the lower and upper ceramic green sheets, such as delamination. The occurrence of structural defects can be prevented more reliably.
  • FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
  • the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52.
  • the internal electrodes 53a and 53b facing each other are alternately drawn out to the end faces 54a and 54b on different sides of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
  • Example 1 a first dielectric green sheet (ceramic green sheet), a first internal electrode pattern, a protective resin layer, and a second dielectric green sheet (ceramic green sheet) are formed on a base material (support film).
  • a base material support film
  • Example 1 of the present invention Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio of 1: 1. Then, it was denatured with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material.
  • BaCO 3 barium carbonate
  • TiO 2 titanium oxide
  • the mixture was placed in a ball mill and wet mixed for 24 hours to prepare a ceramic slurry.
  • the same ceramic slurry produced here was used as the ceramic slurry for producing the ceramic green sheet.
  • an internal electrode paste for forming an internal electrode pattern a paste containing Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as an organic binder was used.
  • the same internal electrode paste as used here was used as the internal electrode paste for forming the internal electrode pattern.
  • a resin paste for forming a protective resin layer a polyvinyl alcohol highly polymerized product (degree of polymerization: 1700, hydroxyl group content: 98%) (water-soluble resin) is dissolved in water, and the resin concentration is 10% by weight.
  • An aqueous resin solution was prepared. That is, in this resin paste, water containing no organic solvent is used as the aqueous solvent.
  • the ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 ⁇ m was formed on a substrate (support film) 1 as shown in FIG. 2a was molded. Then, drying was performed at 80 ° C. for 5 minutes.
  • the internal electrode paste (Ni electrode paste) prepared as described above is applied on the dried first dielectric green sheet 2a by the screen printing method, and is dried at 60 ° C. for 5 minutes.
  • the first internal electrode pattern 3a having a thickness of 0.5 ⁇ m was formed.
  • a resin paste that is, water containing no organic solvent prepared as described above is used as an aqueous solvent so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon.
  • a resin paste in which polyvinyl alcohol (PVA) is dissolved in a proportion of 10% by weight in this aqueous solvent is adjusted to a predetermined thickness (0.01 ⁇ m, 0.03 ⁇ m, 0.20 ⁇ m, 0.22 ⁇ m).
  • the protective resin layer 4 was formed by applying and drying at 80 ° C. for 10 minutes.
  • water-soluble resin in addition to polyvinyl alcohol (PVA), polyvinyl acetal, urethane, acrylic, fluorine-based resin, vinylidene chloride, vinyl acetate, acrylic styrene, phenol, Examples include polyimide and polyamideimide.
  • PVA polyvinyl alcohol
  • polyvinyl acetal polyvinyl acetal, urethane, acrylic, fluorine-based resin, vinylidene chloride, vinyl acetate, acrylic styrene, phenol
  • examples include polyimide and polyamideimide.
  • the ceramic slurry is applied onto the protective resin layer 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 ⁇ m, and is heated at 80 ° C. for 5 minutes. Drying was performed under the conditions.
  • a Ni electrode paste is applied on the second dielectric green sheet 2b by screen printing and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern 3b having a thickness of 0.5 ⁇ m. did.
  • a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained.
  • the composite laminate 10 includes one protective resin layer 4.
  • the resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa.
  • An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element 51 (FIG. 1).
  • the above-mentioned protective resin layer 4 is decomposed
  • a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 4).
  • Comparative Multilayer Ceramic Capacitor (Comparative Example 1)
  • a procedure for explaining the multilayer ceramic capacitor of Comparative Example 1 that does not include the protective resin layer, which is an essential component of the present invention will be described below. It was made with. First, a ceramic slurry having the same composition prepared by the same method as in Example 1 was prepared.
  • this ceramic slurry was applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 ⁇ m on the base material (support film), and dried at 80 ° C. for 5 minutes.
  • Ni electrode paste which is an internal electrode paste
  • a Ni electrode paste is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes.
  • a first internal electrode pattern having a thickness of 0.5 ⁇ m was formed.
  • the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 ⁇ m on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
  • a Ni electrode paste was applied by screen printing on the second dielectric green sheet and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 ⁇ m.
  • a composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained.
  • this composite laminate is not provided with a protective resin layer.
  • 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element. Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
  • the protective resin layer thickness is as thin as 0.01 ⁇ m, so the incidence of short-circuit failure is a little as high as 7%.
  • the thickness of the resin layer is 0.03 to 0.22 ⁇ m, it has been confirmed that the occurrence rate of short circuit can be suppressed to 2% or less.
  • the delamination occurrence rate was 0% in the samples 1 to 3 of the example, but it was confirmed that the delamination occurrence rate was somewhat higher as 5% in the sample 4. This is because, when the protective resin layer exceeds 0.20 ⁇ m, the pattern between the first dielectric green sheet and the second dielectric green sheet and the first internal electrode pattern after thermal decomposition of the water-soluble resin (polyvinyl alcohol) in the degreasing process This is probably because a void layer is generated between the second dielectric green sheet and the second dielectric green sheet.
  • the second dielectric green sheet 2b is formed by applying the ceramic slurry on the first dielectric green sheet 2a and the first internal electrode pattern 3a via the protective resin layer 4, thereby forming the electric It was confirmed that a monolithic ceramic capacitor having a low characteristic defect rate and a low structural defect rate can be efficiently manufactured. Further, it was confirmed that the thickness of the protective resin layer is particularly preferably in the range of 0.03 ⁇ m to 0.20 ⁇ m under the above conditions.
  • Samples 6 and 8 also have a significantly improved short-circuit defect rate as compared with Comparative Example 1 produced in Example 1 above, and the significance of the present invention is clear.
  • an alcohol it is particularly desirable to use an alcohol having a degree of polymerization of 500 or more and a hydroxyl group content of 90% or more.
  • aqueous solvents (1) to (4) were used as aqueous solvents for dissolving polyvinyl alcohol (PVA), which is a water-soluble resin.
  • PVA polyvinyl alcohol
  • monolithic ceramic capacitors of Samples 9 to 11 were produced.
  • the ratio of water: ethanol in the mixed solvent is a weight ratio.
  • Sample 2 in Table 3 is the same as that prepared in Example 1, and in Sample 2, water that does not contain an organic solvent is used as the aqueous solvent.
  • Example 4 a first internal electrode pattern is first formed on a substrate (support film), and a protective resin layer, a first dielectric green sheet (ceramic green sheet), and a second internal electrode are sequentially formed thereon.
  • a multilayer laminate is formed by laminating a pattern, a protective resin layer, and a second dielectric green sheet (ceramic green sheet), and a multilayer ceramic capacitor is manufactured through a step of laminating a predetermined number of the composite laminate.
  • Example 4 (a) a ceramic slurry for forming a ceramic green sheet; As the internal electrode paste for forming the internal electrode pattern (b) and the resin paste for forming the protective resin layer (c), the same one as used in Example 1 was used.
  • an internal electrode paste is formed on a base material (support film) 1 by a screen printing method so as to form a predetermined pattern.
  • Ni electrode paste was printed and dried at 60 ° C. for 5 minutes to form a first internal electrode pattern 3 a having a thickness of 0.5 ⁇ m.
  • a resin paste in which water containing no organic solvent is used as a water-based solvent and polyvinyl alcohol is dissolved in the water-based solvent at a ratio of 10% by weight is used. It apply
  • the ceramic slurry prepared as described above is applied onto the first protective resin layer 4a by a coater method, and a first dielectric having a thickness of 1.2 ⁇ m is formed on the entire surface of the first protective resin layer 4a.
  • the green sheet 2a was molded and dried at 80 ° C. for 5 minutes.
  • Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 ⁇ m.
  • the second internal electrode pattern 3b was formed.
  • the resin paste is coated with a predetermined thickness (0.01 ⁇ m, 0.03 ⁇ m, 0.20 ⁇ m, 0.22 ⁇ m) so as to cover the second internal electrode pattern 3b and the surrounding first dielectric green sheet 2a.
  • the second protective resin layer 4b was formed by drying at 80 ° C. for 10 minutes.
  • the composite laminate 10 includes two protective resin layers 4a and 4b.
  • 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
  • the above-mentioned protective resin layer is decomposed
  • Comparative Multilayer Ceramic Capacitor Comparison is made in the same manner as in Example 4 except that it does not include the step of providing the first and second protective resin layers. A multilayer ceramic capacitor (Comparative Example 2) was prepared.
  • the thickness of the protective resin layer is as thin as 0.01 ⁇ m, the short-circuit defect occurrence rate is a little as high as 7%.
  • the thickness of the resin layer is 0.03 to 0.22 ⁇ m, it has been confirmed that the occurrence rate of short circuit can be suppressed to 2% or less.
  • the delamination occurrence rate was 0% in the samples 21 to 23 of the example, but it was confirmed that it was somewhat higher in the sample 24, 5%. If the protective resin layer exceeds 0.20 ⁇ m, the first internal electrode pattern between the first dielectric green sheet and the second dielectric green sheet after thermal decomposition of the water-soluble resin (polyvinyl alcohol) in the degreasing step It is considered that a void layer is generated between the first dielectric green sheet and the second internal electrode pattern and the second dielectric green sheet.
  • a dielectric green sheet is formed by applying a ceramic paste through a protective resin layer, whereby a low electrical property defect rate and a structural defect occurrence rate are low. It was confirmed that the ceramic capacitor can be manufactured efficiently. Further, it was confirmed that the thickness of the protective resin layer is particularly preferably in the range of 0.03 ⁇ m to 0.20 ⁇ m under the above conditions.
  • a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b.
  • a step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form a step absorbing dielectric pattern (step absorbing layer) 20 as in Example 1.
  • multilayer ceramic capacitors of Samples 31 to 34 (Table 4) corresponding to Samples 1 to 4 of Example 1 were produced.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • step absorption layer dielectric paste was applied between the first internal electrode patterns and between the second internal electrode patterns and dried at 60 ° C. for 5 minutes to form the step absorption dielectric pattern.
  • a multilayer ceramic capacitor of Comparative Example 3 was produced in the same manner as in Comparative Example 1 of Example 1.
  • the step absorbing layer dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder. A paste containing was used.
  • the characteristics of the samples 31 to 34 of the example produced in Example 5 and the sample of Comparative Example 3 were examined in the same manner as in Example 1. The results are shown in Table 5.
  • the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
  • Example 6 As shown in FIG. 5, after the first internal electrode pattern 3a is formed, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after the second internal electrode pattern 3b is formed.
  • Example 4 except that the step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form the step absorbing dielectric pattern (step absorbing layer) 20.
  • multilayer ceramic capacitors of Samples 41 to 44 (Table 6) corresponding to Samples 21 to 24 of Example 4 were produced.
  • the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • a comparative multilayer ceramic capacitor (Comparative Example 4) was produced in the same manner as in Example 6 except that the step of providing the first and second protective resin layers was not provided.
  • the dielectric paste for the step absorption layer the same one as used in Example 5 was used.
  • the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
  • the step absorption layer may be disposed in the area where the internal electrode pattern is not formed after the internal electrode pattern is formed, or the step absorption layer is formed in advance and the step absorption layer is formed.
  • the internal electrode pattern may be formed in a region that is not, and the same effect can be obtained in any case.
  • Example 7 the resin paste containing the ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet is used as the resin paste for forming the protective resin layer in the configuration of the sample 2 of Example 1. A multilayer ceramic capacitor was produced.
  • Example 7 as a resin paste, a water-soluble resin (polyvinyl alcohol) is dissolved in water, and the ceramic powder is in the range shown in Table 7 (the volume fraction in the formed protective resin layer is A multilayer ceramic capacitor was manufactured using a resin paste contained in a range of 0.1 vol% to 60 vol%.
  • a resin paste contained in a range of 0.1 vol% to 60 vol%.
  • the value of the volume fraction of the ceramic powder in the protective resin layer in Table 7 indicates the volume ratio of the ceramic powder to the protective resin layer containing the ceramic powder.
  • the critical particle volume fraction (CPVC) of the ceramic powder in a protective resin layer will be about 50 vol%.
  • the protective resin layer containing the ceramic powder is formed at a predetermined ratio using the resin paste containing the ceramic powder as in Example 7, the ceramic green sheets of the lower layer and the upper layer are formed in the firing step.
  • the ceramic powder in the protective resin layer diffuses and the lower and upper ceramic green sheets are firmly bonded.
  • the content ratio of the ceramic powder in the protective resin layer exceeds the critical particle volume fraction (CPVC), a region where no resin exists between the ceramic particles is formed, which is not preferable. That is, when a region in which no resin is present is formed, the region becomes a void, and the solvent in the ceramic slurry applied on the protective resin layer attacks the underlying ceramic green sheet and internal electrode layer through this void. Will do. Therefore, in the present invention, the content ratio of the ceramic powder in the resin paste is preferably set such that the ratio of the ceramic powder in the formed protective resin layer is equal to or less than the critical particle volume fraction (CPVC).
  • CPVC critical particle volume fraction
  • the multilayer ceramic capacitor has been described as an example.
  • the present invention is applicable to various multilayer ceramic electronic components having a structure in which a ceramic layer and an internal electrode are stacked, such as a multilayer inductor and a multilayer LC composite component. It is possible to apply.
  • the present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
  • Base material 2a First dielectric green sheet (ceramic green sheet) 2b Second dielectric green sheet (ceramic green sheet) 3a 1st internal electrode pattern 3b 2nd internal electrode pattern 4 Protective resin layer 4a 1st protective resin layer 4b 2nd protective resin layer 10
  • Composite laminated body 20 Step absorption dielectric pattern (step absorption layer) 51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element) 52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Abstract

A method of producing a multilayer ceramic electronic component, which coats ceramic slurry over an internal electrode pattern and ceramic green sheet to suppress and prevent "sheet attacks" occurring when forming the ceramic green sheet. This method comprises: coating and drying a ceramic slurry on a substrate (1) to form a ceramic green sheet (2a); applying and drying an internal electrode paste on the sheet to form an internal electrode pattern (3a); coating and drying a resin paste on the sheet and the pattern to form an unhardened protective resin layer (4), said resin paste including a solvent and a resin, and said solvent having difficulty dissolving the organic binders contained in the ceramic green sheet and internal electrode pattern; then, in the same manner, forming a ceramic green sheet (2b) and forming an internal electrode pattern (3b) to form a composite multilayer structure (10). Then, the steps of stacking the composite multilayer structure (10) are repeated so as to form an unfired multilayer structure which will become the multilayer ceramic electronic component after firing.

Description

積層セラミック電子部品の製造方法Manufacturing method of multilayer ceramic electronic component
 本発明は、セラミックスラリーを塗布することによってセラミックグリーンシートを形成し、内部電極ペーストを所定のパターンで塗布することにより内部電極パターンを形成する工程を経て製造される、積層セラミック電子部品の製造方法に関する。 The present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
 積層セラミックコンデンサのように、セラミック層と内部電極層とが交互に積層された構造を有する積層セラミック電子部品は、例えば、キャリアフィルム上にセラミックスラリーを塗工してセラミックグリーンシートを形成し、さらにセラミックグリーンシート上に内部電極ペーストを付与(印刷)して内部電極パターンを形成した後、所定パターンに打ち抜いたシートを順次積み重ねて積層体を形成し、これを焼成する工程を経て製造されるのが一般的である。
 しかしながら、電子部品の薄層化、高特性化につれて、セラミックグリーンシートの積層枚数が増加し、積層工程に要する時間が長くなって、生産性が低下するに至っている。
A multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked, such as a multilayer ceramic capacitor, forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired. Is common.
However, as electronic components become thinner and have higher characteristics, the number of laminated ceramic green sheets increases, the time required for the lamination process becomes longer, and productivity is reduced.
 そこで、キャリアフィルム上に形成したセラミックスラリーを印刷して形成したセラミックグリーンシート上に内部電極パターンを形成し、さらにその上にセラミックスラリーを印刷することによるグリーンシートの形成、内部電極パターンの形成を順に行うことにより、セラミックグリーンシートと内部電極パターンの少数単位積層体を形成し、これを打ち抜いた複合積層体を積み重ねることにより、積層工程に要する時間を短くして生産効率を向上させる方法が提案されている(特許文献1参照)。 Therefore, the internal electrode pattern is formed on the ceramic green sheet formed by printing the ceramic slurry formed on the carrier film, and the formation of the green sheet and the internal electrode pattern by further printing the ceramic slurry thereon. Proposing a method to improve production efficiency by shortening the time required for the lamination process by forming a minority unit laminate of ceramic green sheets and internal electrode patterns by stacking and stacking composite laminates punched from this (See Patent Document 1).
 しかしながら、上述のように内部電極パターンの上にさらにセラミックスラリーを印刷してセラミックグリーンシートを形成する方法の場合、上層として印刷したセラミックスラリーの溶剤によって下層の内部電極パターンやセラミックグリーンシート中の有機系バインダーが溶解される、いわゆるシートアタックが生じ、内部電極パターンの精度低下や、セラミックグリーンシートに生じるピンホールに起因するショート不良などが発生するという問題点がある。 However, as described above, in the method of forming a ceramic green sheet by further printing a ceramic slurry on the internal electrode pattern, organic solvent in the lower internal electrode pattern or ceramic green sheet is formed by the solvent of the ceramic slurry printed as the upper layer. There is a problem that a so-called sheet attack occurs in which the system binder is dissolved, resulting in a decrease in accuracy of the internal electrode pattern and a short circuit failure due to a pinhole generated in the ceramic green sheet.
 また、シートアタックは、セラミックグリーンシートに含まれる有機系バインダーと内部電極ペーストとの組み合わせによっては、セラミックグリーンシート上に内部電極ペーストを付与する際にも発生する。そして、この場合のシートアタックを防止する技術として、硬化性樹脂を含有させたセラミックスラリーを用いてセラミックグリーンシートを成形し、内部電極ペーストを付与する前にセラミックグリーンシート中の硬化性樹脂を硬化させることにより、セラミックグリーンシート中の有機系バインダーが内部電極ペーストに溶解してしまうことを抑制、防止するようにした積層型電子部品の製造方法が提案されている(特許文献2参照)。 Also, the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the organic binder contained in the ceramic green sheet and the internal electrode paste. As a technique for preventing sheet attack in this case, a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste. Thus, there has been proposed a method for manufacturing a multilayer electronic component that suppresses or prevents the organic binder in the ceramic green sheet from dissolving in the internal electrode paste (see Patent Document 2).
 この方法の場合、硬化したセラミックグリーンシートが、内部電極ペーストによるアタックを受けにくくなるものの、上述の特許文献1に開示されている方法にこの方法を応用した場合、セラミックグリーンシート自体が硬化した状態で積層されることになるため、層間密着力が不十分になり、デラミネーションの原因となったり、積層工程で割れを生じたりするなどの問題点がある。 In the case of this method, the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there are problems such as insufficient adhesion between layers, causing delamination, and causing cracks in the lamination process.
特開平8-250370号公報JP-A-8-250370 特開2006-66852号公報JP 2006-66852 A
 本発明は、上記課題を解決するものであり、セラミックグリーンシートを硬化させることなく、内部電極パターンの上層として形成されるセラミックグリーンシート(セラミックスラリー)による内部電極パターンへのアタックを抑制、防止して、所望の特性を備えた、信頼性の高い積層セラミック電子部品を確実に製造することが可能で、しかも、セラミックグリーンシートや内部電極ペーストなどの構成材料(例えば、溶剤や有機系バインダーの種類など)を選択するにあたっての自由度の高い積層セラミック電子部品の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and suppresses and prevents attacks to the internal electrode pattern by the ceramic green sheet (ceramic slurry) formed as an upper layer of the internal electrode pattern without curing the ceramic green sheet. In addition, it is possible to reliably manufacture highly reliable multilayer ceramic electronic components with desired characteristics, and to construct materials such as ceramic green sheets and internal electrode paste (for example, types of solvents and organic binders) It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component having a high degree of freedom in selecting the above.
 上記課題を解決するため、本発明(請求項1)の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (b)前記セラミックグリーンシート上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
 (d)未硬化の前記保護樹脂層上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
 前記(c)~(e)の工程を1回以上行うことを特徴としている。
In order to solve the above problems, a method for manufacturing a multilayer ceramic electronic component of the present invention (Claim 1) includes:
A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
(a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet;
(b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
(c) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that hardly dissolves the organic binder contained in the ceramic green sheet and the internal electrode pattern is applied and dried. Forming a cured protective resin layer; and
(d) applying the ceramic slurry on the uncured protective resin layer and drying to form a ceramic green sheet;
(e) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
The steps (c) to (e) are performed once or more.
 また、本発明の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (b)前記内部電極パターンおよびその周囲の前記基材上に、前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
 (c)未硬化の前記保護樹脂層上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (d)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (e)前記セラミックグリーンシート上および前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
 (f)未硬化の前記保護樹脂層上に有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
 前記(d)~(f)の工程を1回以上行うことを特徴としている。
In addition, the method for manufacturing the multilayer ceramic electronic component of the present invention includes:
A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
(a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
(b) A resin paste containing a solvent and a resin that hardly dissolve the organic binder contained in the internal electrode pattern is applied onto the internal electrode pattern and the base material around the internal electrode pattern, and then dried and uncured protection Forming a resin layer;
(c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the uncured protective resin layer, and drying to form a ceramic green sheet;
(d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
(e) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that hardly dissolve the organic binder contained in the ceramic green sheet and the internal electrode pattern is applied and dried. Forming an uncured protective resin layer;
(f) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the uncured protective resin layer, and drying to form a ceramic green sheet;
The steps (d) to (f) are performed once or more.
 また、本発明の積層セラミック電子部品の製造方法は、前記基材上に、請求項1の(a)~(e)の工程、または、請求項2の(a)~(f)の工程を経て形成される、複数層のセラミックグリーンシートと複数層の内部電極パターンとを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴としている。 The method for producing a multilayer ceramic electronic component of the present invention comprises the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2 on the substrate. A step of stacking a composite laminate including a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, and forming an unsintered laminate that becomes a multilayer ceramic electronic component element after firing. It is characterized by having.
 また、本発明の積層セラミック電子部品の製造方法は、前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることを特徴としている。 Further, in the method for manufacturing a multilayer ceramic electronic component of the present invention, after the step of forming the internal electrode pattern, a step between the internal electrode pattern and the periphery thereof is formed in a region around the formed internal electrode pattern. A step-absorbing layer is formed by applying and drying a step-absorbing layer ceramic paste to eliminate the step-absorbing layer.
 また、前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することを特徴としている。 Further, before the step of forming the internal electrode pattern, the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area. Applying and drying a ceramic paste for layer to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern It is a feature.
 また、本発明の積層セラミック電子部品の製造方法においては、前記保護樹脂層の厚みが、0.03~0.20μmであることが望ましい。 In the method for manufacturing a multilayer ceramic electronic component of the present invention, it is desirable that the protective resin layer has a thickness of 0.03 to 0.20 μm.
 また、本発明の積層セラミック電子部品の製造方法においては、前記保護樹脂層の形成に用いられる前記樹脂ペーストが、水系溶剤と水溶性樹脂とを含む樹脂ペーストであることが望ましい。 In the method for manufacturing a multilayer ceramic electronic component of the present invention, it is desirable that the resin paste used for forming the protective resin layer is a resin paste containing an aqueous solvent and a water-soluble resin.
 また、前記水系溶剤は、水と有機系溶剤とを含み、かつ、水の含有率が30重量%以上のものであることが望ましい。 The aqueous solvent preferably contains water and an organic solvent, and the water content is 30% by weight or more.
 また、前記水系溶剤は、前記有機系溶剤としてアルコールを含むものであることが望ましい。 The aqueous solvent preferably contains alcohol as the organic solvent.
 また、前記保護樹脂層に含まれる水溶性樹脂が、ポリビニルアルコールであり、重合度が500以上、水酸基量90%以上のものであることが望ましい。 In addition, it is desirable that the water-soluble resin contained in the protective resin layer is polyvinyl alcohol having a polymerization degree of 500 or more and a hydroxyl group content of 90% or more.
 また、前記保護樹脂層の形成に用いられる前記樹脂ペーストとして、該樹脂ペーストが硬化することにより形成される前記保護樹脂層におけるセラミック粉末の割合が、臨界粒子体積分率以下となるような割合でセラミック粉末を含有しているものを用いることが望ましい。 Further, as the resin paste used for forming the protective resin layer, the ratio of the ceramic powder in the protective resin layer formed by curing the resin paste is not more than the critical particle volume fraction. It is desirable to use a ceramic powder.
 本発明(請求項1および2)の積層セラミック電子部品の製造方法は、上述のように、保護樹脂層を介して、内部電極パターン上、または内部電極パターンおよびセラミックグリーンシート上に、セラミックスラリーを塗布するようにしているので、セラミックスラリーによるシートアタックを確実に抑制、防止して、所望の特性を備えた、信頼性の高い積層セラミック電子部品を確実に製造することが可能になる。
 すなわち、本発明は、内部電極パターン上、または内部電極パターンおよびセラミックグリーンシート上に、該セラミックグリーンシートおよび内部電極パターンのバインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布して未硬化の保護樹脂層を形成し、しかる後にその上に、セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成するようにしているので、セラミックスラリーを直接に内部電極パターンおよびセラミックグリーンシートに接触させないようにすることが可能になり、シートアタックを確実に抑制、防止することが可能になる。
As described above, the method for producing a multilayer ceramic electronic component of the present invention (Claims 1 and 2) is a method in which a ceramic slurry is applied to an internal electrode pattern or an internal electrode pattern and a ceramic green sheet via a protective resin layer. Since it is applied, sheet attack due to the ceramic slurry can be reliably suppressed and prevented, and a highly reliable multilayer ceramic electronic component having desired characteristics can be reliably manufactured.
That is, the present invention applies an uncured by applying a resin paste containing a solvent and a resin that hardly dissolves the binder of the ceramic green sheet and the internal electrode pattern onto the internal electrode pattern or the internal electrode pattern and the ceramic green sheet. The protective resin layer is formed, and then the ceramic slurry is applied thereon and dried to form a ceramic green sheet. Therefore, the ceramic slurry is not directly brought into contact with the internal electrode pattern and the ceramic green sheet. Therefore, it is possible to reliably suppress and prevent seat attack.
 また、セラミックグリーンシートを硬化させることを必要とせずに、セラミックグリーンシートおよび内部電極パターンへのセラミックスラリーによるシートアタックを効果的に防止することが可能になるため、デラミネーションを引き起こすことなく、精度の高い内部電極を備えた積層セラミック電子部品を効率よく製造することが可能になる。 In addition, it is possible to effectively prevent sheet attack due to ceramic slurry to the ceramic green sheet and internal electrode pattern without requiring curing of the ceramic green sheet, so that accuracy is not caused without causing delamination. It is possible to efficiently manufacture a monolithic ceramic electronic component having a high internal electrode.
 また、セラミックグリーンシートおよび内部電極パターンの有機系バインダーを溶解しにくい溶剤と樹脂とを含む保護樹脂層の上にセラミックスラリーを塗布するようにしているため、セラミックスラリーに使用する溶剤の選定の自由度を格段に向上させることが可能になる。 In addition, the ceramic slurry is applied on the protective resin layer containing a resin and a solvent that hardly dissolves the organic binder of the ceramic green sheet and the internal electrode pattern, so that the solvent used for the ceramic slurry can be freely selected. The degree can be improved dramatically.
 また、内部電極ペーストとセラミックスラリーとの間には保護樹脂層が介在する(保護樹脂層により縁が切られる)ため、セラミックスラリーが含有する溶剤や有機系バインダーとの関係で、内部電極ペーストが含有する有機系バインダーの種類が制約されることもなくなる。したがって、この点でも材料の選択の自由度が向上する。 In addition, since the protective resin layer is interposed between the internal electrode paste and the ceramic slurry (the edge is cut by the protective resin layer), the internal electrode paste is related to the solvent and the organic binder contained in the ceramic slurry. The type of organic binder to be contained is not restricted. Therefore, also in this respect, the degree of freedom in material selection is improved.
 なお、本発明において、セラミックスラリーを塗布するとは、コータ法や、ドクターブレード法などによりセラミックスラリーをシート状に成形する場合や、グラビア印刷法などによりセラミックスラリーをシート状に印刷する場合などを含む広い概念である。 In the present invention, the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
 また、内部電極ペーストを付与する方法としては、例えば、スクリーン印刷法などにより内部電極ペーストをセラミックグリーンシート上に印刷して付着させる方法などが例示されるが、内部電極ペーストを付与する方法はこれに限らず、その他の種々の方法を用いることが可能である。 Examples of the method of applying the internal electrode paste include a method of printing and attaching the internal electrode paste on the ceramic green sheet by a screen printing method or the like. The present invention is not limited to this, and various other methods can be used.
 なお、請求項2の発明においては、最初の保護樹脂層を形成する場合、用いられるべき樹脂ペーストとしては、内部電極パターンに含まれる有機系バインダーを溶解しにくいという要件を満たすものを用いればよいが、2回目以降の保護樹脂層を形成する場合には、先に形成されている内部電極パターンおよびセラミックグリーンシートのそれぞれに含まれる有機系バインダーを溶解しにくい樹脂ペーストを用いることが必要になる。ただし、溶剤の種類や有機系バインダーの種類を適切に選択することにより、通常は同じ樹脂ペーストを用いることができるように構成することが可能である。 In the invention of claim 2, when the first protective resin layer is formed, the resin paste to be used may be one that satisfies the requirement that the organic binder contained in the internal electrode pattern is difficult to dissolve. However, when forming the second and subsequent protective resin layers, it is necessary to use a resin paste that hardly dissolves the organic binder contained in each of the previously formed internal electrode pattern and ceramic green sheet. . However, it is usually possible to use the same resin paste by appropriately selecting the type of solvent and the type of organic binder.
 また、複数層のセラミックグリーンシートおよび複数層の内部電極パターンを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成するようにした場合、積層工程に要する時間を減らして効率よく積層セラミック電子部品を製造することが可能になる。 In addition, by repeating the process of stacking a composite laminate including a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, and forming an unfired laminate that becomes a multilayer ceramic electronic component element after firing, It becomes possible to efficiently manufacture a multilayer ceramic electronic component by reducing the time required for the lamination process.
 また、内部電極パターンを形成した後、内部電極パターンの周囲の領域に、段差吸収層用セラミックペーストを塗布して段差吸収層を形成することにより、段差を解消して、層間剥離などの生じにくい信頼性の高い積層セラミック電子部品を得ることが可能になる。なお、段差吸収層を配設するようにした場合、使用材料の種類が増えることになるため、従来の技術では、シートアタック回避などのため、セラミックスラリーや内部電極ペーストに用いられる溶剤や有機系バインダーの選定の幅が狭くなるが、本発明においては、保護樹脂層が上述のように所定の位置に介在して、シートアタックを防止する機能を果たすため、溶剤選定の自由度を高く維持することができる。
 なお、段差吸収層用セラミックペーストは、その成分が、内部電極パターンに含まれる有機系バインダーを溶解しにくいものであることが望ましいが、内部電極パターンとはその周縁部で接するだけであることから、それほど厳密な要件となるものでない。
In addition, after forming the internal electrode pattern, the step absorption layer is formed by applying the ceramic paste for the step absorption layer to the region around the internal electrode pattern, thereby eliminating the step and preventing delamination. A highly reliable multilayer ceramic electronic component can be obtained. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, the solvent used in the ceramic slurry and the internal electrode paste and the organic system are used in order to avoid sheet attack. Although the selection range of the binder is narrowed, in the present invention, the protective resin layer is interposed at a predetermined position as described above and functions to prevent sheet attack, so that the degree of freedom in selecting the solvent is kept high. be able to.
The step-absorbing layer ceramic paste preferably has a component that hardly dissolves the organic binder contained in the internal electrode pattern, but only contacts the internal electrode pattern at its peripheral edge. It ’s not a very strict requirement.
 また、内部電極パターンを形成する前に、内部電極パターンが形成されるべき領域の周囲に、段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、内部電極パターンを形成すべき領域に内部電極ペーストを付与、乾燥することにより内部電極パターンを形成するようにした場合にも、同様の作用効果を得ることが可能である。
 なお、この場合、段差吸収層の形成されていない領域に付与される内部電極ペーストは、その成分が、段差吸収層に含まれる有機系バインダーを溶解しにくいものであることが望ましいが、内部電極ペーストはその周縁部において段差吸収層に接するだけであることから、それほど厳密な要件となるものでない。
Also, before forming the internal electrode pattern, apply the step absorbing layer ceramic paste around the area where the internal electrode pattern is to be formed and dry to form the step absorbing layer, and then form the internal electrode pattern Similar effects can be obtained even when the internal electrode pattern is formed by applying and drying the internal electrode paste to the region to be formed.
In this case, it is desirable that the internal electrode paste applied to the region where the step absorption layer is not formed is such that the component hardly dissolves the organic binder contained in the step absorption layer. Since the paste only touches the step absorption layer at the peripheral edge thereof, it is not a very strict requirement.
 また、保護樹脂層の厚さを0.03~0.20μmとすることにより、シートアタックに起因する電気特性不良と、デラミネーションに起因する構造欠陥の双方を効率よく抑制することができるようになり、好ましい。
 なお、保護樹脂層の厚さが0.03μm未満になると、シートアタックを防止する作用が不十分になり、0.20μmを超えるとデラミネーションが生じやすくなる傾向がある。
In addition, by setting the thickness of the protective resin layer to 0.03 to 0.20 μm, it is possible to efficiently suppress both electrical characteristic defects due to sheet attack and structural defects due to delamination. It is preferable.
When the thickness of the protective resin layer is less than 0.03 μm, the effect of preventing sheet attack is insufficient, and when it exceeds 0.20 μm, delamination tends to occur.
 また、本発明の積層セラミック電子部品の製造方法において、保護樹脂層の形成に用いられる樹脂ペーストとして、水系溶剤と水溶性樹脂とを含む樹脂ペーストを用いることにより、内部電極パターンおよびセラミックグリーンシートに含まれる有機系バインダーを溶解させてしまうことなく、内部電極パターンおよびセラミックグリーンシートを、その上に塗布されるセラミックスラリー(中の溶剤)によるアタックから保護する保護樹脂層を確実に形成することが可能になる。 Further, in the method for manufacturing a multilayer ceramic electronic component of the present invention, by using a resin paste containing an aqueous solvent and a water-soluble resin as a resin paste used for forming a protective resin layer, an internal electrode pattern and a ceramic green sheet are used. It is possible to reliably form a protective resin layer that protects the internal electrode pattern and the ceramic green sheet from attack by the ceramic slurry (solvent therein) without dissolving the organic binder contained therein. It becomes possible.
 また、本発明において、水系溶剤として、水の含有率が30重量%以上という要件を満たす範囲で有機系溶剤を含むものを用いることにより、セラミックグリーンシートおよび内部電極パターンに含まれる有機系バインダーを溶解させてしまうことを抑制、防止しつつ、乾燥時間の短縮が可能になるような水系溶剤の蒸発速度を実現することが可能になり、生産性を向上させることができる。 Moreover, in this invention, the organic binder contained in a ceramic green sheet and an internal electrode pattern is used by using what contains an organic solvent in the range which satisfies the requirement that the content rate of water is 30 weight% or more as an aqueous solvent. It is possible to realize an evaporation rate of the aqueous solvent that can shorten the drying time while suppressing and preventing the dissolution, and productivity can be improved.
 なお、水の含有率が30重量%未満になり、有機系溶剤の割合が70%以上にまで大きくなると、内部電極パターンおよびセラミックグリーンシートに含まれる有機系バインダーを溶解しやすくなってしまうため好ましくない。また、溶剤が水だけの場合や、水の含有率が高い場合、内部電極パターンおよびセラミックグリーンシートに含まれる有機系バインダーを溶解しにくい点では好ましいが、樹脂ペーストを塗布した後の乾燥工程において、長い乾燥時間が必要となり、生産性が低下するため好ましくない。 In addition, when the content of water is less than 30% by weight and the ratio of the organic solvent is increased to 70% or more, the organic binder contained in the internal electrode pattern and the ceramic green sheet is easily dissolved, which is preferable. Absent. Also, when the solvent is only water or when the water content is high, it is preferable in that it is difficult to dissolve the organic binder contained in the internal electrode pattern and the ceramic green sheet, but in the drying process after applying the resin paste This is not preferable because a long drying time is required and productivity is lowered.
 また、水系溶剤として、有機系溶剤としてアルコールを含むものを用いることにより、セラミックグリーンシートおよび内部電極パターンに含まれる有機系バインダーを溶解させてしまうことを抑制、防止しつつ、溶剤の蒸発速度を実用上問題のないレベルに保つことが可能になり本発明をより実効あらしめることができる。 In addition, by using an aqueous solvent containing an alcohol as an organic solvent, it is possible to suppress and prevent the organic binder contained in the ceramic green sheet and the internal electrode pattern from being dissolved, while increasing the evaporation rate of the solvent. It becomes possible to keep the level at which there is no problem in practical use, and the present invention can be made more effective.
 また、保護樹脂層に含まれる水溶性樹脂として、重合度が500以上、水酸基量90%以上のポリビニルアルコールを用いることにより、保護樹脂層を介して、セラミックグリーンシート及び内部電極パターン上に塗布されるセラミックスラリーによるシートアタックを効率よく、抑制、防止し、シートアタックによるショート不良などの発生を効果的に抑制することができる。 Further, as the water-soluble resin contained in the protective resin layer, polyvinyl alcohol having a degree of polymerization of 500 or more and a hydroxyl group content of 90% or more is used to be applied on the ceramic green sheet and the internal electrode pattern via the protective resin layer. The sheet attack by the ceramic slurry can be efficiently suppressed and prevented, and the occurrence of short circuit failure due to the sheet attack can be effectively suppressed.
 また、樹脂ペーストとして、保護樹脂層におけるセラミック粉末の割合が臨界粒子体積分率以下となるような割合で、セラミック粉末を含有しているものを用いる、すなわち、保護樹脂層にセラミック粉末を含有させるようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに保護樹脂層中のセラミック粉末を拡散させて、下層と上層のセラミックグリーンシートを強固に結合させることが可能になり、デラミネーションなどの構造欠陥の発生をさらに確実に防止することができる。 Further, as the resin paste, one containing ceramic powder at a ratio such that the ratio of ceramic powder in the protective resin layer is equal to or less than the critical particle volume fraction is used, that is, the protective resin layer contains ceramic powder. In such a case, in the firing step, it becomes possible to diffuse the ceramic powder in the protective resin layer to the lower and upper ceramic green sheets, and to firmly bond the lower and upper ceramic green sheets, such as delamination. The occurrence of structural defects can be prevented more reliably.
本発明の積層セラミック電子部品の製造方法により製造された積層セラミックコンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the multilayer ceramic capacitor manufactured by the manufacturing method of the multilayer ceramic electronic component of this invention. 本発明の実施例1の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 1 of this invention. 本発明の実施例4の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 4 of this invention. 本発明の実施例5の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 5 of this invention. 本発明の実施例6の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 6 of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
 この実施例1では、代表的な積層セラミック電子部品の一つである、積層セラミックコンデンサを製造する場合を例にとって説明する。図1は、本発明の一実施例にかかる方法により製造される積層セラミックコンデンサの構成を示す図である。
 図1に示すように、この積層セラミックコンデンサは、積層セラミック素子(積層セラミック電子部品素子)51中に、セラミック層52を介して、複数の内部電極53a,53bが積層され、かつ、セラミック層52を介して互いに対向する内部電極53a,53bが交互に積層セラミック素子51の異なる側の端面54a,54bに引き出されて、該端面に形成された外部電極55a,55bに接続された構造を有している。
In Example 1, a case where a multilayer ceramic capacitor, which is one of typical multilayer ceramic electronic components, is manufactured will be described as an example. FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
As shown in FIG. 1, the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52. The internal electrodes 53a and 53b facing each other are alternately drawn out to the end faces 54a and 54b on different sides of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
 なお、この実施例1では、基材(支持フィルム)上に、第1誘電体グリーンシート(セラミックグリーンシート)、第1内部電極パターン、保護樹脂層、第2誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターンを順次積層して、複合積層体を形成し、この複合積層体を所定数だけ積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。 In Example 1, a first dielectric green sheet (ceramic green sheet), a first internal electrode pattern, a protective resin layer, and a second dielectric green sheet (ceramic green sheet) are formed on a base material (support film). A case will be described in which a multilayer ceramic capacitor is manufactured through a process of sequentially laminating the second internal electrode patterns to form a composite laminate, and laminating a predetermined number of this composite laminate.
 (1)本発明の実施例1にかかる積層セラミックコンデンサの作製
 炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。そして、Dy、Mgなどで変性し、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、有機系バインダーとしてポリビニルブチラールの高重合品30体積部と、可塑剤としてフタル酸ジオクチル10体積部と、溶剤としてトルエン/エタノール(50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーを調製した。
 なお、以下の各実施例、比較例ともセラミックグリーンシートを作製するためのセラミックスラリーとしては、ここで作製したセラミックスラリーと同じものを用いた。
(1) Production of monolithic ceramic capacitor according to Example 1 of the present invention Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio of 1: 1. Then, it was denatured with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as an organic binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and 900 parts by volume of a toluene / ethanol (50/50) mixture as a solvent Together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, the mixture was placed in a ball mill and wet mixed for 24 hours to prepare a ceramic slurry.
In each of the following Examples and Comparative Examples, the same ceramic slurry produced here was used as the ceramic slurry for producing the ceramic green sheet.
 また、内部電極パターンを形成するための内部電極ペーストとして、導電成分としてNi粉末を、溶剤としてジヒドロターピネオールアセテートを、有機系バインダーとしてエチルセルロースを含むものを用いた。
 なお、以下の各実施例、比較例とも、内部電極パターンを形成するための内部電極ペーストとしては、ここで作製した内部電極ペーストと同じものを用いている。
Further, as an internal electrode paste for forming an internal electrode pattern, a paste containing Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as an organic binder was used.
In each of the following examples and comparative examples, the same internal electrode paste as used here was used as the internal electrode paste for forming the internal electrode pattern.
 また、保護樹脂層を形成するための樹脂ペーストとして、ポリビニルアルコールの高重合品(重合度:1700、水酸基量:98%)(水溶性樹脂)を水に溶解させた、樹脂濃度が10重量%の樹脂水溶液を用意した。すなわち、この樹脂ペーストでは、有機溶剤を含まない水が水系溶剤として用いられている。 Further, as a resin paste for forming a protective resin layer, a polyvinyl alcohol highly polymerized product (degree of polymerization: 1700, hydroxyl group content: 98%) (water-soluble resin) is dissolved in water, and the resin concentration is 10% by weight. An aqueous resin solution was prepared. That is, in this resin paste, water containing no organic solvent is used as the aqueous solvent.
 上述のようにして調製したセラミックスラリーをコータ法により塗布して、図2に示すように、基材(支持フィルム)1上に厚さ1.2μmの第1誘電体グリーンシート(セラミックグリーンシート)2aを成形した。それから、80℃、5分間の条件で乾燥を行った。 The ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 μm was formed on a substrate (support film) 1 as shown in FIG. 2a was molded. Then, drying was performed at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、上述のようにして調製した内部電極ペースト(Ni電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターン3aを形成した。 Thereafter, the internal electrode paste (Ni electrode paste) prepared as described above is applied on the dried first dielectric green sheet 2a by the screen printing method, and is dried at 60 ° C. for 5 minutes. Thus, the first internal electrode pattern 3a having a thickness of 0.5 μm was formed.
 次に、第1誘電体グリーンシート2aと、その上に形成した第1内部電極パターン3aを覆うように、樹脂ペースト、すなわち、上述のようにして作製した、有機溶剤を含まない水を水系溶剤として用い、この水系溶剤にポリビニルアルコール(PVA)を10重量%の割合で溶解させた樹脂ペーストを、所定の厚み(0.01μm、0.03μm、0.20μm、0.22μm)になるように塗布し、80℃で10分間乾燥させることにより保護樹脂層4を形成した。 Next, a resin paste, that is, water containing no organic solvent prepared as described above is used as an aqueous solvent so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon. A resin paste in which polyvinyl alcohol (PVA) is dissolved in a proportion of 10% by weight in this aqueous solvent is adjusted to a predetermined thickness (0.01 μm, 0.03 μm, 0.20 μm, 0.22 μm). The protective resin layer 4 was formed by applying and drying at 80 ° C. for 10 minutes.
 なお、本発明において用いることが可能な水溶性樹脂の好ましい例としては、 ポリビニルアルコール(PVA)以外にも、ポリビニルアセタール、ウレタン、アクリル、フッ素系樹脂、塩化ビニリデン、酢酸ビニル、アクリルスチレン、フェノール、ポリイミド、ポリアミドイミドなどが例示される。 In addition, as a preferable example of the water-soluble resin that can be used in the present invention, in addition to polyvinyl alcohol (PVA), polyvinyl acetal, urethane, acrylic, fluorine-based resin, vinylidene chloride, vinyl acetate, acrylic styrene, phenol, Examples include polyimide and polyamideimide.
 それから、保護樹脂層4の上に、上記セラミックスラリーをコータ法により塗布して、厚さ1.2μmの第2誘電体グリーンシート(セラミックグリーンシート)2bを成形し、80℃で、5分間の条件で乾燥を行った。 Then, the ceramic slurry is applied onto the protective resin layer 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 μm, and is heated at 80 ° C. for 5 minutes. Drying was performed under the conditions.
 次に、第2誘電体グリーンシート2b上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターン3bを形成した。そして、これにより2層の誘電体グリーンシート2a,2bと、2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、1層の保護樹脂層4を備えている。 Next, a Ni electrode paste is applied on the second dielectric green sheet 2b by screen printing and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern 3b having a thickness of 0.5 μm. did. Thus, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes one protective resin layer 4.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子(積層セラミック電子部品素子)となる未焼成の積層体を作製した。 The resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa. An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子51(図1)を得た。なお、上述の保護樹脂層4は、この焼成工程で分解、燃焼して消失する。 Then, the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element 51 (FIG. 1). In addition, the above-mentioned protective resin layer 4 is decomposed | disassembled and combusted by this baking process, and lose | disappears.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する、本発明の実施例にかかる積層セラミックコンデンサ(実施例の試料1~4)を得た。 Then, a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 4).
 (2)比較用の積層セラミックコンデンサ(比較例1)の作製
 比較のため、本発明の必須の構成要件である保護樹脂層を備えていない、比較例1の積層セラミックコンデンサを以下に説明する手順で作製した。
 まず、上記実施例1の場合と同様の方法で調製された同じ組成のセラミックスラリーを用意した。
(2) Production of Comparative Multilayer Ceramic Capacitor (Comparative Example 1) For comparison, a procedure for explaining the multilayer ceramic capacitor of Comparative Example 1 that does not include the protective resin layer, which is an essential component of the present invention, will be described below. It was made with.
First, a ceramic slurry having the same composition prepared by the same method as in Example 1 was prepared.
 それから、このセラミックスラリーをコータ法により塗布して、基材(支持フィルム)上に厚さ1.2μmの第1誘電体グリーンシートを成形し、80℃、5分間の条件で乾燥を行った。 Then, this ceramic slurry was applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 μm on the base material (support film), and dried at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート上に、内部電極ペーストであるNi電極ペースト(内部電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターンを形成した。 Thereafter, a Ni electrode paste (internal electrode paste), which is an internal electrode paste, is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes. A first internal electrode pattern having a thickness of 0.5 μm was formed.
 次に、上記セラミックスラリーをコータ法により塗布して、第1誘電体グリーンシート上に形成した第1内部電極パターン上に、厚さ1.2μmの第2誘電体グリーンシートを成形し、80℃で、5分間の条件で乾燥を行った。 Next, the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 μm on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
 それから、第2誘電体グリーンシート上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターンを形成した。そして、これにより2層の誘電体グリーンシートと、2層の内部電極パターンを有する複合積層体を得た。ただし、この複合積層体は、保護樹脂層を備えていない。 Then, a Ni electrode paste was applied by screen printing on the second dielectric green sheet and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 μm. Thus, a composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained. However, this composite laminate is not provided with a protective resin layer.
 得られた複合積層体を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子を得た。
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する積層セラミックコンデンサ(比較例1)を得た。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
 (3)特性の評価
 上述のようにして作製した実施例1の積層セラミックコンデンサ(試料1~4)と比較例1の積層セラミックコンデンサについて、電気特性不良率と、構造欠陥発生率を調べた。
(3) Evaluation of characteristics For the multilayer ceramic capacitor of Example 1 (samples 1 to 4) and the multilayer ceramic capacitor of Comparative Example 1 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were examined.
 なお、電気特性不良率は、上記実施例1の試料1~4と、比較例1の試料について、ショート不良発生率を調べ(n=100)、これを電気特性不良率とした。
 また、構造欠陥発生率は、上記実施例1の試料1~4および比較例1の試料について、デラミネーション発生率を調べ(n=100)、これを構造欠陥発生率とした。
 その結果を表1に示す。
As for the electrical property defect rate, the short-circuit defect occurrence rate was examined for the samples 1 to 4 of Example 1 and the sample of Comparative Example 1 (n = 100), and this was defined as the electrical property defect rate.
As for the structural defect occurrence rate, the delamination occurrence rate was examined for the samples 1 to 4 of Example 1 and the sample of Comparative Example 1 (n = 100), and this was used as the structural defect occurrence rate.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、製造工程で保護樹脂層を設けるようにしていない比較例1の積層セラミックコンデンサの場合、デラミネーション発生率は低いが、ショート不良発生率が高くなることが確認された。これは、誘電体シートどうしの接合力は損なわれないことからデラミネーション発生率は低いものの、製造工程でセラミックスラリーが直接に内部電極パターンやセラミックグリーンシートに接触することから、セラミックスラリー中の溶剤によるアタックを受け、ショート不良を発生したものと考えられる。なお、この比較例1の場合、ショート不良発生率は100%であった。 As shown in Table 1, in the case of the multilayer ceramic capacitor of Comparative Example 1 in which the protective resin layer was not provided in the manufacturing process, it was confirmed that although the delamination occurrence rate is low, the short failure occurrence rate is high. This is because the delamination rate is low because the bonding force between the dielectric sheets is not impaired, but since the ceramic slurry directly contacts the internal electrode pattern and the ceramic green sheet in the manufacturing process, the solvent in the ceramic slurry It is probable that a short-circuit defect occurred due to the attack. In the case of Comparative Example 1, the incidence of short circuit failure was 100%.
 これに対し、実施例1の積層セラミックコンデンサ(実施例の試料1~4)の場合、比較例1の積層セラミックコンデンサに比べて、特性を大幅に改善できることが確認された。 On the other hand, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 1 (Samples 1 to 4 of the Example) can be significantly improved as compared with the multilayer ceramic capacitor of Comparative Example 1.
 すなわち、実施例の試料1の場合、保護樹脂層の厚みが0.01μmと薄いため、ショート不良発生率が7%と少し高くなっているが、実施例の試料2~4のように、保護樹脂層の厚みを0.03~0.22μmとした場合には、ショート不良発生率を2%以下に抑えられることが確認された。 That is, in the case of sample 1 of the example, the protective resin layer thickness is as thin as 0.01 μm, so the incidence of short-circuit failure is a little as high as 7%. When the thickness of the resin layer is 0.03 to 0.22 μm, it has been confirmed that the occurrence rate of short circuit can be suppressed to 2% or less.
 また、デラミネーション発生率については、実施例の試料1~3では0%であったが、試料4では5%といくらか高くなることが確認された。これは、保護樹脂層が0.20μmを超えると、脱脂工程での水溶性樹脂(ポリビニルアルコール)の熱分解後に第1誘電体グリーンシートと第2誘電体グリーンシート間および第1内部電極用パターンと第2誘電体グリーンシート間に空隙層が発生するためと考えられる。 Further, the delamination occurrence rate was 0% in the samples 1 to 3 of the example, but it was confirmed that the delamination occurrence rate was somewhat higher as 5% in the sample 4. This is because, when the protective resin layer exceeds 0.20 μm, the pattern between the first dielectric green sheet and the second dielectric green sheet and the first internal electrode pattern after thermal decomposition of the water-soluble resin (polyvinyl alcohol) in the degreasing process This is probably because a void layer is generated between the second dielectric green sheet and the second dielectric green sheet.
 上記の結果より、保護樹脂層4を介して、第1誘電体グリーンシート2aおよび第1内部電極用パターン3a上にセラミックスラリーを塗布して第2誘電体グリーンシート2bを形成することにより、電気特性不良率および構造欠陥発生率の低い積層セラミックコンデンサを効率よく製造できることが確認できた。
 また、保護樹脂層の厚みとしては、上記条件下では、0.03μm~0.20μmの範囲が特に好ましいことが確認された。
From the above results, the second dielectric green sheet 2b is formed by applying the ceramic slurry on the first dielectric green sheet 2a and the first internal electrode pattern 3a via the protective resin layer 4, thereby forming the electric It was confirmed that a monolithic ceramic capacitor having a low characteristic defect rate and a low structural defect rate can be efficiently manufactured.
Further, it was confirmed that the thickness of the protective resin layer is particularly preferably in the range of 0.03 μm to 0.20 μm under the above conditions.
 実施例1の試料2の構成において、水溶性樹脂であるポリビニルアルコール(PVA)の重合度と、水酸基量の関係を、表2に示すように、重合度:300~1700、水酸基量:88%~98%の範囲で変化させて、積層セラミックコンデンサ(実施例の試料5~8の積層セラミックコンデンサ)を作製した。 In the configuration of Sample 2 in Example 1, the relationship between the degree of polymerization of polyvinyl alcohol (PVA), which is a water-soluble resin, and the amount of hydroxyl groups is as shown in Table 2. Degree of polymerization: 300 to 1700, amount of hydroxyl groups: 88% Multilayer ceramic capacitors (multilayer ceramic capacitors of Samples 5 to 8 in Examples) were produced by changing the content in the range of ˜98%.
 そして、上述のようにして作製した試料5~8の積層セラミックコンデンサについて、上記実施例1の場合と同様の方法で、電気特性不良率と、構造欠陥発生率を調べた。
 その結果を表2に併せて示す。
For the multilayer ceramic capacitors of Samples 5 to 8 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were examined by the same method as in Example 1 above.
The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料5~8のいずれの試料も、構造欠陥発生率は1~2%と低く、試料間に大きな差は認められないが、重合度が500未満の水溶性樹脂(PVA)を用いた試料6(重合度300)、および水酸基量が90%未満の水溶性樹脂(PVA)を用いた試料8(水酸基量88%)ではショート不良発生率が高くなることが確認された。
 これは重合度または水酸基量が低下すると第2誘電体シートを形成する際に塗布されるセラミックスラリーが、既に形成されている誘電体グリーンシートおよび内部電極パターンをアタックしたためと考えられる。
As shown in Table 2, in any of Samples 5 to 8, the structural defect occurrence rate is as low as 1 to 2%, and no significant difference is observed between the samples, but a water-soluble resin having a polymerization degree of less than 500 ( Sample 6 (polymerization degree 300) using PVA) and sample 8 (hydroxyl group content 88%) using water-soluble resin (PVA) having a hydroxyl group content of less than 90% were confirmed to have a high incidence of short circuit failure. It was.
This is presumably because the ceramic slurry applied when forming the second dielectric sheet attacked the already formed dielectric green sheet and internal electrode pattern when the degree of polymerization or the amount of hydroxyl group decreased.
 なお、試料6および8も、上記実施例1で作製した比較例1と比べると、ショート不良発生率は大幅に改善されており、本発明の有意性は明らかであるが、水溶性樹脂としてポリビニルアルコールを用いる場合、重合度が500以上、水酸基量が90%以上のものを用いることが特に望ましい。 Samples 6 and 8 also have a significantly improved short-circuit defect rate as compared with Comparative Example 1 produced in Example 1 above, and the significance of the present invention is clear. When using an alcohol, it is particularly desirable to use an alcohol having a degree of polymerization of 500 or more and a hydroxyl group content of 90% or more.
 実施例1の試料2の構成において、水溶性樹脂であるポリビニルアルコール(PVA)を溶解する水系溶剤として、以下の(1)~(4)の水系溶剤を用いて、上記実施例1の場合と同じ条件で実施例の試料9~11(表3参照)の積層セラミックコンデンサを作製した。
 (1)有機系溶剤を含まない水、
 (2)水にエタノ-ルを配合した混合溶剤A(水:エタノール=70:30)
 (3)水にエタノ-ルを配合した混合溶剤B(水:エタノール=50:50)
 (4)水にエタノ-ルを配合した混合溶剤C(水:エタノール=30:70)
 ただし、混合溶剤の水:エタノールの割合は重量比である。
In the configuration of Sample 2 in Example 1, the following aqueous solvents (1) to (4) were used as aqueous solvents for dissolving polyvinyl alcohol (PVA), which is a water-soluble resin. Under the same conditions, monolithic ceramic capacitors of Samples 9 to 11 (see Table 3) of Examples were produced.
(1) Water that does not contain organic solvents,
(2) Mixed solvent A in which ethanol is mixed with water (water: ethanol = 70: 30)
(3) Mixed solvent B in which ethanol is mixed with water (water: ethanol = 50: 50)
(4) Mixed solvent C in which ethanol is mixed with water (water: ethanol = 30: 70)
However, the ratio of water: ethanol in the mixed solvent is a weight ratio.
 なお、表3における試料2は、実施例1で作製したものと同じものであり、この試料2では、有機系溶剤を含まない水が水系溶剤として用いられている。 Note that Sample 2 in Table 3 is the same as that prepared in Example 1, and in Sample 2, water that does not contain an organic solvent is used as the aqueous solvent.
 そして、上述のようにして作製した試料9~11の積層セラミックコンデンサについて、上記実施例1の場合と同様の方法で、電気特性不良率と、構造欠陥発生率を調べた。
 その結果を表3に併せて示す。
For the multilayer ceramic capacitors of Samples 9 to 11 produced as described above, the electrical property defect rate and the structural defect occurrence rate were examined by the same method as in Example 1 above.
The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料9~11のいずれの試料も、構造欠陥発生率は1%以下と低く、試料間に大きな差は認められなかった。
 また、ショート不良発生率については、試料9、10では2%と低いが、水:エタノール=30:70の混合溶剤Cを用いた試料11の場合、ショート不良発生率が5%といくらか高くなることが確認された。しかし、保護樹脂層を設けずに製造した比較例1の試料の場合、ショート不良発生率が100%であることから(表1の比較例1参照)、水:エタノール=30:70の混合溶剤Cを用いる場合も十分な有意性があることは明らかである。
 なお、水とエタノ-ルの割合が、水:エタノール=30:70よりもさらにエタノールリッチになると、下層である内部電極パターンなどが、無視できないシートアタックを受ける場合があるため、あまり好ましくない。
As shown in Table 3, the structural defect occurrence rate of all the samples 9 to 11 was as low as 1% or less, and no large difference was observed between the samples.
Further, the short-circuit defect occurrence rate is as low as 2% in the samples 9 and 10, but in the case of the sample 11 using the mixed solvent C of water: ethanol = 30: 70, the short-circuit defect occurrence rate is somewhat high as 5%. It was confirmed. However, in the case of the sample of Comparative Example 1 manufactured without providing the protective resin layer, since the short-circuit defect occurrence rate is 100% (see Comparative Example 1 of Table 1), a mixed solvent of water: ethanol = 30: 70 It is clear that there is sufficient significance when C is used.
If the ratio of water and ethanol becomes ethanol richer than water: ethanol = 30: 70, the underlying internal electrode pattern and the like may receive a sheet attack that cannot be ignored.
 この結果から、水系溶剤として、水の含有率が30重量%以上のものを用いることが望ましいことがわかる。なお、水系溶剤として、有機系溶剤を含み、かつ、水の含有率が30重量%以上のものを用いることにより、ショート不良発生率を低く抑えつつ、乾燥時間を短縮して製造コストの低減を図ることが可能になる。 From this result, it can be seen that it is desirable to use a water-based solvent having a water content of 30% by weight or more. In addition, by using an organic solvent that contains an organic solvent and a water content of 30% by weight or more, the drying time can be shortened and the manufacturing cost can be reduced while keeping the occurrence rate of short-circuit defects low. It becomes possible to plan.
 この実施例4では、基材(支持フィルム)上に、まず第1内部電極パターンを形成し、その上に順次、保護樹脂層、第1誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターン、保護樹脂層、第2誘電体グリーンシート(セラミックグリーンシート)を積層して複合積層体を形成し、この複合積層体を所定枚数積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。なお、この実施例4の場合でも、上記実施例1の場合と同様に、図1に示すような構造を有する積層セラミックコンデンサを製造した。以下説明を行う。 In Example 4, a first internal electrode pattern is first formed on a substrate (support film), and a protective resin layer, a first dielectric green sheet (ceramic green sheet), and a second internal electrode are sequentially formed thereon. A case will be described in which a multilayer laminate is formed by laminating a pattern, a protective resin layer, and a second dielectric green sheet (ceramic green sheet), and a multilayer ceramic capacitor is manufactured through a step of laminating a predetermined number of the composite laminate. . In the case of Example 4 as well, as in the case of Example 1, a multilayer ceramic capacitor having a structure as shown in FIG. A description will be given below.
 この実施例4では、
 (a)セラミックグリーンシートを形成するためのセラミックスラリー、
 (b)内部電極パターンを形成するための内部電極ペースト、および
 (c)保護樹脂層を形成するための樹脂ペースト
 として、上述の実施例1で用いたものと同じものを用いた。
In this Example 4,
(a) a ceramic slurry for forming a ceramic green sheet;
As the internal electrode paste for forming the internal electrode pattern (b) and the resin paste for forming the protective resin layer (c), the same one as used in Example 1 was used.
 (1)本発明の実施例4にかかる積層セラミックコンデンサの作製
 まず、図3に示すように、基材(支持フィルム)1上に、スクリーン印刷法により、所定パターンとなるように、内部電極ペースト(Ni電極ペースト)を印刷し、60℃で5分間乾燥して厚さ0.5μmの第1内部電極パターン3aを形成した。 
(1) Production of Multilayer Ceramic Capacitor According to Example 4 of the Present Invention First, as shown in FIG. 3, an internal electrode paste is formed on a base material (support film) 1 by a screen printing method so as to form a predetermined pattern. (Ni electrode paste) was printed and dried at 60 ° C. for 5 minutes to form a first internal electrode pattern 3 a having a thickness of 0.5 μm.
 それから、基材1上および第1内部電極パターン3a上に、有機溶剤を含まない水を水系溶剤として用い、この水系溶剤にポリビニルアルコールを10重量%の割合で溶解させた樹脂ペーストを、所定の厚み(0.01μm、0.03μm、0.20μm、0.22μm)になるように塗布し、80℃で10分間乾燥させることにより第1保護樹脂層4aを形成した。 Then, on the base material 1 and the first internal electrode pattern 3a, a resin paste in which water containing no organic solvent is used as a water-based solvent and polyvinyl alcohol is dissolved in the water-based solvent at a ratio of 10% by weight is used. It apply | coated so that it might become thickness (0.01 micrometer, 0.03 micrometer, 0.20 micrometer, 0.22 micrometer), and it dried at 80 degreeC for 10 minutes, and formed the 1st protective resin layer 4a.
 次に、この第1保護樹脂層4a上に、上述のようにして作製したセラミックスラリーをコータ法により塗布して、第1保護樹脂層4aの全面に、厚さ1.2μmの第1誘電体グリーンシート2aを成形し、80℃、5分間の条件で乾燥を行った。 Next, the ceramic slurry prepared as described above is applied onto the first protective resin layer 4a by a coater method, and a first dielectric having a thickness of 1.2 μm is formed on the entire surface of the first protective resin layer 4a. The green sheet 2a was molded and dried at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、内部電極ペーストであるNi電極ペーストをスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第2内部電極パターン3bを形成した。 Thereafter, a Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 μm. The second internal electrode pattern 3b was formed.
 次に、第2内部電極パターン3bとその周囲の第1誘電体グリーンシート2aを覆うように、上記樹脂ペーストを、所定の厚み(0.01μm、0.03μm、0.20μm、0.22μm)になるように塗布し、80℃で10分間乾燥させることにより第2保護樹脂層4bを形成した。 Next, the resin paste is coated with a predetermined thickness (0.01 μm, 0.03 μm, 0.20 μm, 0.22 μm) so as to cover the second internal electrode pattern 3b and the surrounding first dielectric green sheet 2a. Then, the second protective resin layer 4b was formed by drying at 80 ° C. for 10 minutes.
 それから、第2保護樹脂層4bの上に、上記のセラミックスラリーをコータ法により塗布し、80℃、5分間の条件で乾燥を行って、厚さ1.2μmの第2誘電体グリーンシート2bを成形することにより、2層の誘電体グリーンシート2a,2bと2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、2層の保護樹脂層4a,4bを備えている。 Then, the ceramic slurry is applied onto the second protective resin layer 4b by a coater method, and dried at 80 ° C. for 5 minutes to obtain a second dielectric green sheet 2b having a thickness of 1.2 μm. By molding, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes two protective resin layers 4a and 4b.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)1から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子を得た。
 なお、上述の保護樹脂層は、この焼成工程で分解、燃焼して消失する。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
In addition, the above-mentioned protective resin layer is decomposed | disassembled and combusted by this baking process, and lose | disappears.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、本発明の実施例4にかかる積層セラミックコンデンサ(実施例の試料21~24)を得た。この積層セラミックコンデンサの構造は、図1に示した上記実施例1のものと同じである。 Then, a conductive paste for forming an external electrode was applied to this multilayer ceramic element and baked to obtain multilayer ceramic capacitors (Samples 21 to 24 of Examples) according to Example 4 of the present invention. The structure of this multilayer ceramic capacitor is the same as that of the first embodiment shown in FIG.
 (2)比較用の積層セラミックコンデンサ(比較例2)の作製
 上記の第1および第2の保護樹脂層を設ける工程を備えていないことを除いて、実施例4の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例2)を作製した。
(2) Manufacture of Comparative Multilayer Ceramic Capacitor (Comparative Example 2) Comparison is made in the same manner as in Example 4 except that it does not include the step of providing the first and second protective resin layers. A multilayer ceramic capacitor (Comparative Example 2) was prepared.
 (3)特性の評価
 上述のようにして作製した実施例4の積層セラミックコンデンサ(試料21~24)と比較例2の積層セラミックコンデンサについて、上記実施例1の場合と同様の方法で、電気特性不良率と、構造欠陥発生率を調べた。
 その結果を表4に示す。
(3) Evaluation of characteristics The electrical characteristics of the multilayer ceramic capacitor of Example 4 (samples 21 to 24) and the multilayer ceramic capacitor of Comparative Example 2 manufactured as described above were obtained in the same manner as in Example 1 above. The defect rate and the structural defect occurrence rate were examined.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 保護樹脂層を設けるようにしていない比較例2の積層セラミックコンデンサの場合、デラミネーション発生率は低いが、シートアタックを阻止することができないため、ショート不良発生率が高くなることが確認された。なお、この比較例2の場合、ショート不良発生率は100%であった。 In the case of the multilayer ceramic capacitor of Comparative Example 2 in which the protective resin layer was not provided, it was confirmed that although the delamination occurrence rate is low, the sheet attack cannot be prevented, so that the short defect occurrence rate is increased. In the case of Comparative Example 2, the incidence of short circuit failure was 100%.
 これに対し、実施例4の積層セラミックコンデンサ(実施例の試料21~24)の場合、比較例2の積層セラミックコンデンサに比べて、特性を改善できることが確認された。 On the other hand, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 4 (Samples 21 to 24 of Example) can be improved as compared with the multilayer ceramic capacitor of Comparative Example 2.
 すなわち、実施例の試料21の場合、保護樹脂層の厚みが0.01μmと薄いため、ショート不良発生率が7%と少し高くなっているが、実施例の試料22~24のように、保護樹脂層の厚みを0.03~0.22μmとした場合には、ショート不良発生率を2%以下に抑えられることが確認された。 That is, in the case of the sample 21 of the example, since the thickness of the protective resin layer is as thin as 0.01 μm, the short-circuit defect occurrence rate is a little as high as 7%. When the thickness of the resin layer is 0.03 to 0.22 μm, it has been confirmed that the occurrence rate of short circuit can be suppressed to 2% or less.
 また、デラミネーション発生率については、実施例の試料21~23では0%であったが、試料24では5%といくらか高くなることが確認された。これは、保護樹脂層が0.20μmを超えると、脱脂工程での水溶性樹脂(ポリビニルアルコール)の熱分解後に第1誘電体グリーンシートと第2誘電体グリーンシート間、第1内部電極用パターンと第1誘電体グリーンシート間、第2内部電極パターンと第2誘電体グリーンシート間に空隙層が発生するためと考えられる。 Further, the delamination occurrence rate was 0% in the samples 21 to 23 of the example, but it was confirmed that it was somewhat higher in the sample 24, 5%. If the protective resin layer exceeds 0.20 μm, the first internal electrode pattern between the first dielectric green sheet and the second dielectric green sheet after thermal decomposition of the water-soluble resin (polyvinyl alcohol) in the degreasing step It is considered that a void layer is generated between the first dielectric green sheet and the second internal electrode pattern and the second dielectric green sheet.
 上記の結果より、この実施例4の構成の場合にも、保護樹脂層を介してセラミックペーストを塗布して誘電体グリーンシートを形成することにより、電気特性不良率および構造欠陥発生率の低い積層セラミックコンデンサを効率よく製造できることが確認できた。
 また、保護樹脂層の厚みとしては、上記条件下では、0.03μm~0.20μmの範囲が特に好ましいことが確認された。
From the above results, even in the case of the configuration of this Example 4, a dielectric green sheet is formed by applying a ceramic paste through a protective resin layer, whereby a low electrical property defect rate and a structural defect occurrence rate are low. It was confirmed that the ceramic capacitor can be manufactured efficiently.
Further, it was confirmed that the thickness of the protective resin layer is particularly preferably in the range of 0.03 μm to 0.20 μm under the above conditions.
 この実施例5では、図4に示すように、第1内部電極パターン3aの形成後に第1内部電極パターン3a間に段差吸収層用誘電体ペーストを塗布し、第2内部電極パターン3bの形成後に、第2内部電極パターン3b間に段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層)20を形成した以外は、実施例1と同様にして、実施例1の試料1~4に対応する試料31~34(表4)の積層セラミックコンデンサを作製した。
 なお、図4において、図2と同一符号を付した部分は同一または相当する部分を示す。
In the fifth embodiment, as shown in FIG. 4, after forming the first internal electrode pattern 3a, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b. A step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form a step absorbing dielectric pattern (step absorbing layer) 20 as in Example 1. Similarly, multilayer ceramic capacitors of Samples 31 to 34 (Table 4) corresponding to Samples 1 to 4 of Example 1 were produced.
In FIG. 4, the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
 また、第1内部電極パターン間、および第2内部電極パターン間に、段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターンを形成した以外は、上記実施例1における比較例1の場合と同様の方法で比較例3の積層セラミックコンデンサを作製した。 In addition, except that the step absorption layer dielectric paste was applied between the first internal electrode patterns and between the second internal electrode patterns and dried at 60 ° C. for 5 minutes to form the step absorption dielectric pattern. A multilayer ceramic capacitor of Comparative Example 3 was produced in the same manner as in Comparative Example 1 of Example 1.
 なお、段差吸収層用誘電体ペーストとしては、第1および第2誘電体グリーンシートを形成するのに用いたセラミックスラリーと同一のセラミック材料を含むとともに、溶剤としてジヒドロターピネオールアセテートを、バインダーとしてポリビニルブチラールを含むペーストを用いた。
 そして、この実施例5で作製した実施例の試料31~34および比較例3の試料について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表5に示す。
The step absorbing layer dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder. A paste containing was used.
The characteristics of the samples 31 to 34 of the example produced in Example 5 and the sample of Comparative Example 3 were examined in the same manner as in Example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、この実施例5の試料31~34についても、上記実施例1の試料1~4の場合と同様の特性が得られることが確認された。しかし、比較例3の積層セラミックコンデンサにおいては、シートアタックの影響でショート不良の発生を防止することができなかった。 As shown in Table 5, it was confirmed that the same characteristics as those of Samples 1 to 4 of Example 1 were obtained for Samples 31 to 34 of Example 5. However, in the multilayer ceramic capacitor of Comparative Example 3, it was not possible to prevent the occurrence of a short circuit due to the influence of the sheet attack.
 また、この実施例5の試料31~34においては、段差吸収層20を設けるようにしていることから、製品の形状精度を向上させることができた。 Further, in the samples 31 to 34 of Example 5, the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
 この実施例6では、図5に示すように、第1内部電極パターン3aの形成後に第1内部電極パターン3a間に段差吸収層用誘電体ペーストを塗布し、第2内部電極パターン3bの形成後に、第2内部電極パターン3b間に段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層)20を形成した以外は、実施例4と同様にして、実施例4の試料21~24に対応する試料41~44(表6)の積層セラミックコンデンサを作製した。
 なお、図5において、図3と同一符号を付した部分は同一または相当する部分を示す。
In Example 6, as shown in FIG. 5, after the first internal electrode pattern 3a is formed, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after the second internal electrode pattern 3b is formed. Example 4 except that the step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form the step absorbing dielectric pattern (step absorbing layer) 20. Similarly, multilayer ceramic capacitors of Samples 41 to 44 (Table 6) corresponding to Samples 21 to 24 of Example 4 were produced.
In FIG. 5, the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
 また、第1および第2の保護樹脂層を設ける工程を備えていないことを除いて、この実施例6の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例4)を作製した。
 なお、段差吸収層用誘電体ペーストとしては、上記実施例5で用いたものと同じものを用いた。
Further, a comparative multilayer ceramic capacitor (Comparative Example 4) was produced in the same manner as in Example 6 except that the step of providing the first and second protective resin layers was not provided.
In addition, as the dielectric paste for the step absorption layer, the same one as used in Example 5 was used.
 そして、この実施例6で作製した実施例の試料41~44および比較例4の試料について、上記実施例4の場合と同様の方法でその特性を調べた。その結果を表6に示す。 Then, the characteristics of the samples 41 to 44 of the example manufactured in Example 6 and the sample of Comparative Example 4 were examined by the same method as in Example 4 above. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、この実施例6の試料41~44についても、上記実施例4の試料21~24の場合と同様の特性が得られることが確認された。しかし、比較例4の積層セラミックコンデンサにおいては、シートアタックの影響でショート不良の発生を防止することができなかった。 As shown in Table 6, it was confirmed that the same characteristics as those of Samples 21 to 24 of Example 4 were obtained for Samples 41 to 44 of Example 6. However, in the multilayer ceramic capacitor of Comparative Example 4, it was not possible to prevent the occurrence of a short circuit failure due to the influence of the sheet attack.
 また、この実施例6の試料41~44においても、段差吸収層20を設けるようにしていることから、製品の形状精度を向上させることができた。
 なお、段差吸収層は、内部電極パターンを形成した後に、内部電極パターン未形成領域に配設するようにしてもよく、また、先に段差吸収層を形成しておき、段差吸収層の形成されていない領域に内部電極パターンを形成するようにしてもよく、いずれの場合にも同様の効果を得ることができる。
Also, in the samples 41 to 44 of Example 6, the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
The step absorption layer may be disposed in the area where the internal electrode pattern is not formed after the internal electrode pattern is formed, or the step absorption layer is formed in advance and the step absorption layer is formed. The internal electrode pattern may be formed in a region that is not, and the same effect can be obtained in any case.
 この実施例7では、実施例1の試料2の構成において、保護樹脂層を形成するための樹脂ペーストとして、セラミックグリーンシートを構成するセラミック粉末と同じ組成のセラミック粉末を含有する樹脂ペーストを用いて積層セラミックコンデンサを作製した。 In Example 7, the resin paste containing the ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet is used as the resin paste for forming the protective resin layer in the configuration of the sample 2 of Example 1. A multilayer ceramic capacitor was produced.
 すなわち、この実施例7では、樹脂ペーストとして、水溶性樹脂(ポリビニルアルコール)を水に溶解させてなり、かつ、セラミック粉末を表7に示す範囲(形成される保護樹脂層中の体積分率が0.1vol%~60vol%となるような範囲)で含有させた樹脂ペーストを用いて、積層セラミックコンデンサを作製した。 That is, in Example 7, as a resin paste, a water-soluble resin (polyvinyl alcohol) is dissolved in water, and the ceramic powder is in the range shown in Table 7 (the volume fraction in the formed protective resin layer is A multilayer ceramic capacitor was manufactured using a resin paste contained in a range of 0.1 vol% to 60 vol%.
 表7の保護樹脂層中のセラミック粉末の上記体積分率の値は、セラミック粉末を含む保護樹脂層に対するセラミック粉末の体積割合を示すものである。
 なお、この実施例7の条件では、保護樹脂層中のセラミック粉末の臨界粒子体積分率(CPVC)は約50vol%となる。
The value of the volume fraction of the ceramic powder in the protective resin layer in Table 7 indicates the volume ratio of the ceramic powder to the protective resin layer containing the ceramic powder.
In addition, on the conditions of this Example 7, the critical particle volume fraction (CPVC) of the ceramic powder in a protective resin layer will be about 50 vol%.
 この実施例7で作製した試料51~54について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表7に併せて示す。なお、表7には、実施例1の試料2についての特性を併せて示す。 The characteristics of the samples 51 to 54 produced in Example 7 were examined by the same method as in Example 1 above. The results are also shown in Table 7. Table 7 also shows the characteristics of the sample 2 of Example 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、セラミック粉末を0.1vol%~50vol%の範囲(すなわち、臨界粒子体積分率(CPVC)以下の範囲)で含有する保護樹脂層を形成した試料51~53の場合、ショート不良率は1%と低く、かつ、構造欠陥発生率は0%と、特性の良好な積層セラミックコンデンサが得られることが確認された。
 ただし、セラミック粉末を60vol%(すなわち、臨界粒子体積分率(CPVC)を超える割合)の割合で含有する保護樹脂層を形成した試料54の場合、構造欠陥発生率は0%であったが、ショート不良率が10%と、試料51~53に比べていくらか高くなることが確認された。
As shown in Table 7, in the case of samples 51 to 53 in which a protective resin layer containing ceramic powder in a range of 0.1 vol% to 50 vol% (that is, a range of critical particle volume fraction (CPVC) or less) was formed, The short defect rate was as low as 1%, and the structural defect occurrence rate was 0%, confirming that a multilayer ceramic capacitor with good characteristics was obtained.
However, in the case of the sample 54 in which the protective resin layer containing the ceramic powder at a ratio of 60 vol% (that is, the ratio exceeding the critical particle volume fraction (CPVC)) was formed, the structural defect occurrence rate was 0%. It was confirmed that the short-circuit defect rate was 10%, which was somewhat higher than those of samples 51 to 53.
 この実施例7のように、セラミック粉末を含有する樹脂ペーストを用いて、所定の割合でセラミック粉末を含有する保護樹脂層を形成するようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに保護樹脂層中のセラミック粉末が拡散し、下層と上層のセラミックグリーンシートが強固に結合する。その結果、デラミネーションなどの構造欠陥の発生をさらに確実に防止して、信頼性の高い積層セラミック電子部品を製造することができる。 When the protective resin layer containing the ceramic powder is formed at a predetermined ratio using the resin paste containing the ceramic powder as in Example 7, the ceramic green sheets of the lower layer and the upper layer are formed in the firing step. Thus, the ceramic powder in the protective resin layer diffuses and the lower and upper ceramic green sheets are firmly bonded. As a result, it is possible to more reliably prevent the occurrence of structural defects such as delamination and manufacture a highly reliable multilayer ceramic electronic component.
 なお、保護樹脂層中のセラミック粉末の含有割合が、臨界粒子体積分率(CPVC)を超えると、セラミック粒子間に樹脂が存在しない領域が形成されてしまうため、あまり好ましくない。すなわち、樹脂が存在しない領域が形成されると、該領域が空隙となり、保護樹脂層の上に塗布されたセラミックスラリー中の溶剤がこの空隙を通って下層のセラミックグリーンシートや内部電極層をアタックすることになる。したがって、本発明において、樹脂ペースト中のセラミック粉末の含有割合は、形成される保護樹脂層におけるセラミック粉末の割合が臨界粒子体積分率(CPVC)以下となるような割合とすることが好ましい。 It should be noted that if the content ratio of the ceramic powder in the protective resin layer exceeds the critical particle volume fraction (CPVC), a region where no resin exists between the ceramic particles is formed, which is not preferable. That is, when a region in which no resin is present is formed, the region becomes a void, and the solvent in the ceramic slurry applied on the protective resin layer attacks the underlying ceramic green sheet and internal electrode layer through this void. Will do. Therefore, in the present invention, the content ratio of the ceramic powder in the resin paste is preferably set such that the ratio of the ceramic powder in the formed protective resin layer is equal to or less than the critical particle volume fraction (CPVC).
 なお、上記実施例では、積層セラミックコンデンサを例にとって説明したが、本発明は、積層インダクタ、積層LC複合部品など、セラミック層と内部電極とが積層された構造を有する種々の積層セラミック電子部品に適用することが可能である。 In the above embodiment, the multilayer ceramic capacitor has been described as an example. However, the present invention is applicable to various multilayer ceramic electronic components having a structure in which a ceramic layer and an internal electrode are stacked, such as a multilayer inductor and a multilayer LC composite component. It is possible to apply.
 本発明は、さらにその他の点においても、上記実施例に限定されるものではなく、セラミック層および内部電極の積層数、内部電極の具体的なパターン、セラミック層および内部電極の構成材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
 1        基材(支持フィルム)
 2a       第1誘電体グリーンシート(セラミックグリーンシート)
 2b       第2誘電体グリーンシート(セラミックグリーンシート)
 3a       第1内部電極パターン
 3b       第2内部電極パターン
 4        保護樹脂層
 4a       第1保護樹脂層
 4b       第2保護樹脂層
 10       複合積層体  
 20       段差吸収用誘電体パターン(段差吸収層)
 51       積層セラミック素子(積層セラミック電子部品素子)
 52       セラミック層
 53a,53b  内部電極
 54a,54b  積層セラミック素子の端面
 55a,55b  外部電極
1 Base material (support film)
2a First dielectric green sheet (ceramic green sheet)
2b Second dielectric green sheet (ceramic green sheet)
3a 1st internal electrode pattern 3b 2nd internal electrode pattern 4 Protective resin layer 4a 1st protective resin layer 4b 2nd protective resin layer 10 Composite laminated body
20 Step absorption dielectric pattern (step absorption layer)
51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element)
52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Claims (11)

  1.  セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (b)前記セラミックグリーンシート上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
     (d)未硬化の前記保護樹脂層上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
     前記(c)~(e)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
    (a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet;
    (b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
    (c) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that hardly dissolves the organic binder contained in the ceramic green sheet and the internal electrode pattern is applied and dried. Forming a cured protective resin layer; and
    (d) applying the ceramic slurry on the uncured protective resin layer and drying to form a ceramic green sheet;
    (e) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    A method for producing a multilayer ceramic electronic component, wherein the steps (c) to (e) are performed once or more.
  2.  セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (b)前記内部電極パターンおよびその周囲の前記基材上に、前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
     (c)未硬化の前記保護樹脂層上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (d)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (e)前記セラミックグリーンシート上および前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記有機系バインダーを溶解しにくい溶剤と樹脂とを含む樹脂ペーストを塗布、乾燥して未硬化の保護樹脂層を形成する工程と、
     (f)未硬化の前記保護樹脂層上に有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
     前記(d)~(f)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
    (a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
    (b) A resin paste containing a solvent and a resin that hardly dissolve the organic binder contained in the internal electrode pattern is applied onto the internal electrode pattern and the base material around the internal electrode pattern, and then dried and uncured protection Forming a resin layer;
    (c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the uncured protective resin layer, and drying to form a ceramic green sheet;
    (d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    (e) On the ceramic green sheet and the internal electrode pattern, a resin paste containing a solvent and a resin that hardly dissolve the organic binder contained in the ceramic green sheet and the internal electrode pattern is applied and dried. Forming an uncured protective resin layer;
    (f) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the uncured protective resin layer, and drying to form a ceramic green sheet;
    A method for producing a multilayer ceramic electronic component, wherein the steps (d) to (f) are performed once or more.
  3.  前記基材上に、請求項1の(a)~(e)の工程、または、請求項2の(a)~(f)の工程を経て形成される、複数層のセラミックグリーンシートと複数層の内部電極パターンとを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴とする請求項1または2記載の積層セラミック電子部品の製造方法。 A plurality of ceramic green sheets and a plurality of layers formed on the substrate through the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2. 3. A step of repeating a step of stacking a composite laminate including the internal electrode pattern and forming an unfired laminate that becomes a multilayer ceramic electronic component element after firing is provided. The manufacturing method of the multilayer ceramic electronic component of description.
  4.  前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることを特徴とする請求項1~3のいずれかに記載の積層セラミック電子部品の製造方法。 After the step of forming the internal electrode pattern, a step-absorbing layer ceramic paste for eliminating the step between the internal electrode pattern and the surrounding area is applied to the area around the formed internal electrode pattern and dried. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 3, further comprising a step of forming a step absorption layer.
  5.  前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することを特徴とする請求項1~3のいずれかに記載の積層セラミック電子部品の製造方法。 Before the step of forming the internal electrode pattern, for the step absorption layer for eliminating the step between the internal electrode pattern to be formed and the surrounding area around the region where the internal electrode pattern is to be formed Applying and drying a ceramic paste to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 3.
  6.  前記保護樹脂層の厚みが、0.03~0.20μmであることを特徴とする請求項1~5のいずれかに記載の積層セラミック電子部品の製造方法。 6. The method for producing a multilayer ceramic electronic component according to claim 1, wherein the protective resin layer has a thickness of 0.03 to 0.20 μm.
  7.  前記保護樹脂層の形成に用いられる前記樹脂ペーストが、水系溶剤と水溶性樹脂とを含む樹脂ペーストであることを特徴とする請求項1~6のいずれかに記載の積層セラミック電子部品の製造方法。 7. The method for producing a multilayer ceramic electronic component according to claim 1, wherein the resin paste used for forming the protective resin layer is a resin paste containing an aqueous solvent and a water-soluble resin. .
  8.  前記水系溶剤が、水と有機系溶剤とを含み、かつ、水の含有率が30重量%以上のものであることを特徴とする請求項7記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 7, wherein the aqueous solvent contains water and an organic solvent, and the water content is 30% by weight or more.
  9.  前記水系溶剤が、前記有機系溶剤としてアルコールを含むものであることを特徴とする請求項8記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 8, wherein the aqueous solvent contains alcohol as the organic solvent.
  10.  前記保護樹脂層に含まれる水溶性樹脂が、ポリビニルアルコールであり、重合度が500以上、水酸基量90%以上のものであることを特徴とする請求項7~9のいずれかに記載の積層セラミック電子部品の製造方法。 10. The multilayer ceramic according to claim 7, wherein the water-soluble resin contained in the protective resin layer is polyvinyl alcohol, having a polymerization degree of 500 or more and a hydroxyl group content of 90% or more. Manufacturing method of electronic components.
  11.  前記保護樹脂層の形成に用いられる前記樹脂ペーストが、該樹脂ペーストが硬化することにより形成される前記保護樹脂層におけるセラミック粉末の割合が臨界粒子体積分率以下となるような割合で、セラミック粉末を含有していることを特徴とする請求項1~10のいずれかに記載の積層セラミック電子部品の製造方法。 The resin paste used for forming the protective resin layer is a ceramic powder in such a ratio that the ratio of the ceramic powder in the protective resin layer formed by curing the resin paste is equal to or less than the critical particle volume fraction. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 10, wherein the multilayer ceramic electronic component is contained.
PCT/JP2009/006500 2009-03-27 2009-12-01 Method of producing multilayer ceramic electronic component WO2010109562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980158383.2A CN102365694B (en) 2009-03-27 2009-12-01 Method of producing multilayer ceramic electronic component
JP2011505681A JP4968411B2 (en) 2009-03-27 2009-12-01 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-078722 2009-03-27
JP2009078722 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109562A1 true WO2010109562A1 (en) 2010-09-30

Family

ID=42780272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006500 WO2010109562A1 (en) 2009-03-27 2009-12-01 Method of producing multilayer ceramic electronic component

Country Status (3)

Country Link
JP (1) JP4968411B2 (en)
CN (1) CN102365694B (en)
WO (1) WO2010109562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903676A (en) * 2012-12-26 2014-07-02 诺里威士达股份有限公司 Cataplasm used for inner electrode and laminated ceramic electronic part using the same
CN103946926A (en) * 2011-11-29 2014-07-23 株式会社可乐丽 Conductive paste and multilayer ceramic capacitor
JP2020095052A (en) * 2020-03-11 2020-06-18 株式会社小松製作所 Thermoelectric power generation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302713B (en) * 2012-05-18 2016-09-21 株式会社村田制作所 The manufacture method of ink for inkjet, printing process and ceramic electronic components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250370A (en) * 1995-03-14 1996-09-27 Toshiba Corp Manufacture of multilayered ceramic capacitor
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP2002127117A (en) * 2000-10-30 2002-05-08 Kyocera Corp Method for manufacturing green sheet and method for manufacturing electronic component
JP2003347154A (en) * 2002-05-24 2003-12-05 Tdk Corp Method for manufacturing multilayer ceramic electronic component
JP2005150709A (en) * 2003-10-21 2005-06-09 Murata Mfg Co Ltd Drying method of paste for electronic part, manufacturing method for electronic part, and paste dryer
JP2005216797A (en) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd Water-based nickel electrode ink, and manufacturing method of laminated ceramic capacitor using the same
JP2008113023A (en) * 2003-02-24 2008-05-15 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component, and gravure printing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234829A (en) * 2006-02-28 2007-09-13 Tdk Corp Method for manufacturing laminated ceramic electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250370A (en) * 1995-03-14 1996-09-27 Toshiba Corp Manufacture of multilayered ceramic capacitor
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP2002127117A (en) * 2000-10-30 2002-05-08 Kyocera Corp Method for manufacturing green sheet and method for manufacturing electronic component
JP2003347154A (en) * 2002-05-24 2003-12-05 Tdk Corp Method for manufacturing multilayer ceramic electronic component
JP2008113023A (en) * 2003-02-24 2008-05-15 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component, and gravure printing method
JP2005150709A (en) * 2003-10-21 2005-06-09 Murata Mfg Co Ltd Drying method of paste for electronic part, manufacturing method for electronic part, and paste dryer
JP2005216797A (en) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd Water-based nickel electrode ink, and manufacturing method of laminated ceramic capacitor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103946926A (en) * 2011-11-29 2014-07-23 株式会社可乐丽 Conductive paste and multilayer ceramic capacitor
CN103903676A (en) * 2012-12-26 2014-07-02 诺里威士达股份有限公司 Cataplasm used for inner electrode and laminated ceramic electronic part using the same
JP2020095052A (en) * 2020-03-11 2020-06-18 株式会社小松製作所 Thermoelectric power generation device
JP7108651B2 (en) 2020-03-11 2022-07-28 株式会社小松製作所 thermoelectric generator

Also Published As

Publication number Publication date
CN102365694B (en) 2014-03-05
JP4968411B2 (en) 2012-07-04
JPWO2010109562A1 (en) 2012-09-20
CN102365694A (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5083409B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4968411B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2011204849A (en) Method of manufacturing laminated ceramic electronic component
WO2004088686A1 (en) Production method for laminated ceramic electronic component
JP2001044071A (en) Manufacture of ceramic electronic component
JP5035471B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004114632A (en) Producing method of ceramic layered product
JP2003059759A (en) Multilayer ceramic electronic component and its manufacturing method
JP2000276944A (en) Conductive paste and manufacture of ceramic electronic component using it
JP3496184B2 (en) Manufacturing method of multilayer ceramic electronic component
KR20010030501A (en) Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same
JPH07297074A (en) Multilayered ceramic electronic component
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP4303020B2 (en) Manufacturing method of laminated parts
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JP2001126951A (en) Method for manufacturing laminated ceramic electronic component
JPH0236512A (en) Manufacture of laminated ceramic electronic component
JP2000173858A (en) Manufacture of laminated ceramic electronic part
JP2005297339A (en) Method for manufacturing multi-layer ceramic sheet and method for manufacturing ceramic electronic component
JP2636306B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH02126619A (en) Green sheet for laminated porcelain capacitor
JP2003282352A (en) Manufacturing method of laminated capacitor
JP2013093462A (en) Manufacturing method of lamination electronic component and manufacturing method of lamination unit used in the same
JPH11168024A (en) Manufacture of laminated ceramic electronic component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158383.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842178

Country of ref document: EP

Kind code of ref document: A1