WO2010108949A1 - Drucksensor - Google Patents

Drucksensor Download PDF

Info

Publication number
WO2010108949A1
WO2010108949A1 PCT/EP2010/053825 EP2010053825W WO2010108949A1 WO 2010108949 A1 WO2010108949 A1 WO 2010108949A1 EP 2010053825 W EP2010053825 W EP 2010053825W WO 2010108949 A1 WO2010108949 A1 WO 2010108949A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
mounting surface
membrane
pressure
sensor according
Prior art date
Application number
PCT/EP2010/053825
Other languages
English (en)
French (fr)
Inventor
Michael Philipps
Original Assignee
Endress+Hauser Gmbh+Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Gmbh+Co.Kg filed Critical Endress+Hauser Gmbh+Co.Kg
Priority to US13/258,543 priority Critical patent/US8794077B2/en
Priority to EP10711204A priority patent/EP2411781A1/de
Publication of WO2010108949A1 publication Critical patent/WO2010108949A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms

Definitions

  • the present invention relates to a pressure sensor, in particular a pressure sensor with a monocrystalline membrane body, which has a measuring membrane and a measuring membrane surrounding edge region, and a monocrystalline substrate body, wherein the membrane body along a mounting surface of the edge region is fixedly connected to the substrate body.
  • pressure sensors are manufactured and distributed by the applicant, for example, in differential pressure transmitters under the name "Deltabar” and in pressure transmitters, which have a hydraulic pressure transmitter, under the name "Cerabar”.
  • the membrane body and the substrate body in particular have monocrystalline silicon as the basis for material, wherein the mounting surfaces to be joined together have normal, which are each given by the same main crystal axis, for example, a ⁇ 100> axis.
  • the substrate body and the membrane body are joined together by a eutectic compound containing an intermediate layer of gold necessary to form the eutectic.
  • the described procedure and the generic pressure sensors provide satisfactory measurement results, there are, nevertheless, effects between the substrate body and the membrane body, which can occur due to the anisotropy of the mechanical and electrical material parameters.
  • the Young's modulus of silicon is 130 GPa in the 100 direction, 169 GPa in the ⁇ 1 10> direction, and 188 GPa in the ⁇ 1 1 1> direction.
  • the pressure sensor according to the invention for example a semiconductor pressure sensor, comprises a monocrystalline membrane body which has a measuring diaphragm and an edge region surrounding the measuring diaphragm, wherein the
  • Edge region has a greater material thickness than the measuring diaphragm, and wherein the edge region has a first mounting surface, the surfaces of which is given normally by a first main crystal axis; and a monocrystalline substrate body having the same semiconductor material as the membrane body with respect to the crystal structure, the substrate body having a second mounting surface whose surface normal is parallel to the first main crystal axis, the membrane body being fixedly connected to the substrate body by joining the first mounting surface to the second mounting surface is, according to the invention, the orientations of other main crystal axes of membrane body and substrate body are each aligned parallel to each other.
  • the membrane body and the substrate body Si, SiC or sapphire.
  • the first main crystal axis is, for example for a Si, a ⁇ 100> or a ⁇ 11> axis.
  • first mounting surface and the second mounting surface are joined by means of a eutectic connection.
  • first mounting surface and the second mounting surface are joined by fusion bonding (English: fusion bonding), wherein the first mounting surface and the second mounting surface are joined in particular in the wafer assembly prior to the separation of the sensors (English: full wafer bonding).
  • the pressure sensor according to the invention comprises, according to one embodiment of the invention, a transducer for converting a pressure-dependent deformation of the measuring diaphragm into an electrical signal, wherein the transducer may in particular be a (piezo) resistive or a capacitive transducer.
  • the pressure sensor according to the invention may be an absolute pressure sensor, a relative pressure sensor or a differential pressure sensor, wherein an absolute pressure sensor measures a media pressure against vacuum, a relative pressure sensor measures a media pressure against atmospheric pressure, and a differential pressure sensor measures the difference between a first media pressure and a second media pressure.
  • Substrate body and membrane body is significantly reduced, and that on the other hand, the anisotropic material properties in the vicinity of the mounting surfaces no longer lead to the entry of inhomogeneous tension. As a result, the long-term stability and the measurement accuracy can be improved as a result.
  • a pressure sensor according to the invention comprises a pressure sensor according to the invention and a housing which has in its interior a sensor chamber in which the pressure sensor is arranged, and at least one hydraulic path extending from an outer surface of the housing into the sensor chamber around a surface of the Apply measuring membrane with a pressure to be measured.
  • an opening of the hydraulic path in the outer surface of the housing is covered with a separation membrane which is pressure-tightly connected to the outer surface of the housing along an edge, and wherein the volume of the hydraulic path enclosed between the separation membrane and the measurement membrane is filled with a transmission medium, such as a non-compressible liquid.
  • Fig. 1 a representation of the main crystal planes of a silicon crystal
  • FIG. 2 shows a perspective sectional view of a membrane body according to the invention and of a device according to the invention
  • Figure 1 shows the main crystal planes ⁇ 100 ⁇ , ⁇ 1 10 ⁇ and ⁇ 11 1 ⁇ of a silicon crystal and their orientation to each other.
  • a membrane body 1 comprises monocrystalline silicon. It has a measuring membrane 3, which runs in a ⁇ 100 ⁇ plane.
  • the measuring membrane is prepared by an etching process in a silicon crystal, ⁇ 1 1 1 ⁇ planes being formed by the etching process, which delimit an edge region 5 of the membrane body towards the measuring membrane 3.
  • Perpendicular to the surface of the measuring diaphragm 3 and perpendicular to the Mounting surfaces run, each perpendicular to each other, ⁇ 1 10 ⁇ planes, which limit the membrane body laterally.
  • the membrane body 1 is to be joined to a substrate body 10 which has a ⁇ 100 ⁇ plane 12 and, in parallel, a ⁇ 100 ⁇ plane 14, the latter serving as a second mounting surface.
  • the substrate body is also bounded laterally by ⁇ 110 ⁇ planes.
  • the membrane body 1 and the substrate body 10 are oriented in such a way to each other, that the first mounting surface is applied to the second mounting surface, and that the ⁇ 1 10 ⁇ - planes of the membrane body 1 and substrate body 10 each parallel to each other.
  • the membrane body 1 and the substrate body 10 are joined together by fusion bonding, and this is especially done in the wafer assembly before the pressure sensors are singulated by sawing the wafers along the ⁇ 1 10 ⁇ planes.
  • the wafers have corresponding orientation marks, which allow the described alignment of membrane body and substrate body to each other.
  • FIG. 3 shows a pressure measuring transducer according to the invention, in which a pressure sensor according to the invention, consisting of a membrane body 1 and a substrate body 10, which are joined together along the first mounting surface 7 and the second mounting surface 14, is arranged in a sensor housing 22 in a metal housing 20.
  • the pressure transducer shown is a Relativ umansauf choir, in which a measuring diaphragm 3 of the Hableitertiksensors via a capillary 24, which extends to a surface of the housing 20, acted upon by a pressure acting on a separation membrane 26 media pressure.
  • the measuring membrane 26 is connected to the surface of the housing 20 with a circumferential weld, the free volume of the sensor chamber 22 and the volume enclosed under the separation membrane being mixed with a transfer medium, e.g. a non-compressible liquid is filled.
  • a transfer medium e.g. a non-compressible liquid
  • the substrate body is fixed in the sensor chamber 22 on the back by means of a pressure-bearing joint, for example a bond 30, through which the channel 28 extends.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

Ein Drucksensor, umfasst einen einkristallinen Membrankörper (1), welcher eine Messmembran (3) und einen die Messmembran umgebende Randbereich (5) aufweist, wobei der Randbereich eine größere Materialstärke aufweist als die Messmembran (3), und wobei der Randbereich eine erste Montageoberfläche (7) aufweist, deren Oberflächen normal durch einen erste Hauptkristallachse gegeben ist; und einen einkristallinen Substratkörper (10), der hinsichtlich der Kristallstruktur das gleiche Halbleitermaterial aufweist wie der Membrankörper (1), wobei der Substratkörper (10) eine zweite Montageoberfläche (14) aufweist, deren Oberflächennormale parallel zur ersten Hauptkristallachse verläuft, wobei der Membrankörper mit dem Substratkörper durchfügen der ersten Montageoberfläche mit der zweiten Montageoberfläche fest verbunden ist, dadurch gekennzeichnet, dass auch die Orientierungen anderer Hauptkristallachsen von Membrankörper und Substratkörper jeweils parallel zueinander ausgerichtet sind.

Description

Drucksensor
Die vorliegende Erfindung betrifft einen Drucksensor, insbesondere einen Drucksensor mit einem einkristallinen Membrankörper, welcher eine Messmembran und ein Messmembran umgebenden Randbereich aufweist, und einen einkristallinen Substratkörper, wobei der Membrankörper entlang einer Montagefläche des Randbereichs mit dem Substratkörper fest verbunden ist. Derartige Drucksensoren werden von der Anmelderin beispielsweise in Differenzdruckmessumformer unter der Bezeichnung „Deltabar" und in Druckmessumformern, die einen hydraulischen Druckmittler aufweisen, unter der Bezeichnung „Cerabar" hergestellt und vertrieben.
Der Membrankörper und der Substratkörper weisen insbesondere einkristallines Silizium als Basis für Material auf, wobei die miteinander zu verbindenden Montageoberflächen Normale aufweisen, welche jeweils durch die gleiche Hauptkristallachse gegeben sind, beispielsweise, eine <100>-Achse. Der Substratkörper und der Membrankörper werden durch eine eutektische Verbindung miteinander gefügt, welche eine Zwischenschicht aus Gold beinhaltet, die zur Bildung des Eutektikums erforderlich ist.
Alternativ hierzu ist eine Verbindung über so genanntes Fusionbonding möglich. Wenngleich die beschriebene Vorgehensweise und die gattungsgemäßen Drucksensoren zufrieden stellende Messergebnisse liefern, gibt es, dennoch Rückwirkungen zwischen dem Substratkörper und dem Membrankörper, die aufgrund der Einisotropie der mechanischen und elektrischen Materialparameter auftreten können. So ist Beispiel das Elastizitätsmodul von Silizium in 100 Richtung 130 GPa, in <1 10>-Richtung 169 GPa und in <1 1 1 >-Richtung 188 GPa.
An der Grenzfläche zwischen den Montageflächen können aufgrund mangelnder lateraler Orientierung der Montageflächen zueinander trotz identischen Oberflächen normale erhebliche Sprünge in den richtungsabhängigen Kristalleigenschaften auftreten. Es ist daher die Aufgabe der vorliegenden Erfindung, einen Drucksensor bereitzustellen, welcher diese Nachteile überwindet.
Die Aufgabe wird erfindungsgemäß gelöst durch den Drucksensor gemäß dem unabhängigen Patentanspruch 1.
Der erfindungsgemäße Drucksensor, beispielsweise ein Halbleiterdrucksensor, umfasst einen einkristallinen Membrankörper, welcher eine Messmembran und einen die Messmembran umgebende Randbereich aufweist, wobei der
Randbereich eine größere Materialstärke aufweist als die Messmembran, und wobei der Randbereich eine erste Montageoberfläche aufweist, deren Oberflächen normal durch einen erste Hauptkristallachse gegeben ist; und einen einkristallinen Substratkörper, der hinsichtlich der Kristallstruktur das gleiche Halbleitermaterial aufweist wie der Membrankörper, wobei der Substratkörper eine zweite Montageoberfläche aufweist, deren Oberflächennormale parallel zur ersten Hauptkristallachse verläuft, wobei der Membrankörper mit dem Substratkörper durch Fügen der ersten Montageoberfläche mit der zweiten Montageoberfläche fest verbunden ist, wobei erfindungsgemäß auch die Orientierungen anderer Hauptkristallachsen von Membrankörper und Substratkörper jeweils parallel zueinander ausgerichtet sind.
In einer Ausgestaltung der Erfindung weisen der Membrankörper und der Substratkörper Si, SiC oder Saphir auf.
In einer Weiterbildung der Erfindung ist die erste Hauptkristallachse beispielsweise für eine Si eine <100>-, oder eine <1 11 >-Achse.
In einer Weiterbildung der Erfindung sind die erste Montageoberfläche und die zweite Montageoberfläche mittels einer eutektischen Verbindung gefügt. In einer alternativen Weiterbildung der Erfindung sind die erste Montageoberfläche und die zweite Montageoberfläche mittels Fusionsbinden (Englisch: Fusionbonding) gefügt, wobei die erste Montageoberfläche und die zweite Montageoberfläche insbesondere im Waferverband vor der Vereinzelung der Sensoren gefügt sind (Englisch: Fullwaferbonding).
Der erfindungsgemäße Drucksensor umfasst gemäß einer Ausgestaltung der Erfindung einen Wandler zum Wandeln einer druckabhängigen Verformung der Messmembran in ein elektrisches Signal, wobei der Wandler insbesondere ein (piezo-)resistiver oder ein kapazitiver Wandler sein kann.
Der erfindungsgemäße Drucksensor kann ein Absolutdrucksensor, ein Relativdrucksensor oder ein Differenzdrucksensor sein, wobei ein Absolutdrucksensor einen Mediendruck gegen Vakuum misst, ein Relativdrucksensor einen Mediendruck gegen Atmosphärendruck misst, und ein Differenzdrucksensor die Differenz zwischen einem ersten Mediendruck und einem zweiten Mediendruck misst.
Der erfindungsgemäße Drucksensor bietet die Vorteile, gegenüber dem Stand der Technik, dass einerseits die Wahrscheinlichkeit für Defekte zwischen
Substratkörper und Membrankörper erheblich reduziert ist, und dass andererseits die anisotropen Materialeigenschaften in der Nähe der Montageflächen nicht mehr zum Eintrag von inhomogenen Verspannungen führen. Damit kann im Ergebnis die Langzeitstabilität und die Messgenauigkeit verbessert werden.
Ein erfindungsgemäßer Druckmessaufnehmer, umfasst einen erfindungsgemäßen Drucksensor und ein Gehäuse, welches in seinem Inneren eine Sensorkammer aufweist, in welcher der Drucksensor angeordnet ist, und mindestens einen hydraulischen Pfad, der sich von einer äußeren Oberfläche des Gehäuses in die Sensorkammer erstreckt, um eine Oberfläche der Messmembran mit einem zu messenden Druck zu beaufschlagen. In einer Ausgestaltung des Druckmessaufnehmer ist eine Öffnung des hydraulischen Pfades in der äußeren Oberfläche des Gehäuses mit einer Trennmembran überdeckt, die entlang eines Randes druckdicht mit der äußeren Oberfläche des Gehäuses verbunden ist, und wobei das zwischen der Trennmembran und der Messmembran eingeschlossene Volumen des hydraulischen Pfades mit einer Übertragungsmedium, z.B. einer nicht kompressiblen Flüssigkeit gefüllt ist.
Die Erfindung wird nun anhand eines in der Zeichnung dargestellten Ausführungsbeispiels erläutert. Es zeigt:
Fig. 1 : eine Darstellung der Hauptkristallebenen eines Siliziumkristalls;
Fig. 2: eine perspektivische Schnittansicht eines erfindungsgemäßen Membrankörpers und eines erfindungsgemäßen
Substratkörpers; und
Fig. 3: einen Längsschnitt durch einen erfindungsgemäßen
Druckmessaufnehmer.
Als Hintergrundinformation zur vorliegenden Erfindung zeigt Figur 1 die Hauptkristallebenen {100}, {1 10} und {11 1 } eines Siliziumkristalls sowie deren Orientierung zueinander.
Wie in Figur 2 dargestellt, umfasst ein Membrankörper 1 einkristallines Silizium. Er weist eine Messmembran 3 auf, welche in einer {100}-Ebene verläuft. Die Messmembran ist durch einen Ätz-Prozess in einem Siliziumkristall präpariert, wobei durch den Ätz-Prozess {1 1 1 }-Ebenen gebildet werden, welche einen Randbereich 5 des Membrankörpers zur Messmembran 3 hin begrenzen. Parallel zur Messmembran, also auch mit {100}-Orientierung, verläuft eine erste Montagefläche 7. Senkrecht zur Fläche der Messmembran 3 und senkerecht zur Montageflächen verlaufen, jeweils senkrecht zueinander, {1 10} Ebenen, welche den Membrankörper seitlich begrenzen. Der Membrankörper 1 ist mit einem Substratkörper 10 zu fügen, welcher eine {100}-Ebene 12 und parallel dazu eine {100}-Ebene 14 aufweist, wobei letztere als zweite Montagefläche dient. Der Substratkörper ist seitlich ebenfalls durch {110}-Ebenen begrenzt. Bei der
Herstellung des erfindungsgemäßen Drucksensors werden der Membrankörper 1 und Substratkörper 10 in der Weise zueinander orientiert, dass die erste Montagefläche an der zweiten Montagefläche anliegt, und dass die {1 10}- Ebenen von Membrankörper 1 und Substratkörper 10 jeweils parallel zueinander verlaufen. Mit dieser Orientierung werden der Membrankörper 1 und der Substratkörper 10 durch Fusionsbinden miteinander gefügt, wobei dies insbesondere im Waferverband geschieht, bevor die Drucksensoren durch Sägen der Wafer entlang der {1 10} Ebenen vereinzelt werden. Die Wafer weisen entsprechende Orientierungsmarken auf, welche die beschriebene Ausrichtung von Membrankörper und Substratkörper zueinander ermöglichen.
Figur 3 zeigt einen erfindungsgemäßen Druckmessaufnehmer, bei welchem ein erfindungsgemäßer Drucksensor, bestehend aus einem Membrankörper 1 und einem Substratkörper 10, die entlang der ersten Montageoberfläche 7 und der zweiten Montagefläche 14 miteinander gefügt sind, in einer Sensorkammer 22 in einem Metallgehäuse 20 angeordnet ist. Der dargestellte Druckmessaufnehmer ist ein Relativdruckmessaufnehmer, bei welchem eine Messmembran 3 des Hableiterdrucksensors über eine Kapillarleitung 24, die sich zu einer Oberfläche des Gehäuses 20 erstreckt, mit einem auf eine Trennmembran 26 einwirkenden Mediendruck beaufschlagt. Die Messmembran 26 ist mit einer umlaufenden Schweißnaht mit der Oberfläche des Gehäuses 20 verbunden, wobei das freie Volumen der Sensorkammer 22 und das unter der Trennmembran eingeschlossene Volumen mit einem Übertragungsmedium, z.B. einer nicht kompressiblen Flüssigkeit gefüllt ist. Durch das Gehäuse und durch den Substratkörper 10 erstreckt sich ein rückseitiger Kanal 28, über welche die
Rückseite der Messmembran 3 mit dem Atmosphärendruck als Referenzdruck zu beaufschlagen ist. Der Substratkörper ist rückseitig mittels einer drucktragenden Fügung, beispielsweise einer Klebung 30, durch welche der Kanal 28 verläuft, in der Sensorkammer 22 fixiert.

Claims

Patentansprüche
1. Drucksensor, umfassend: einen einkristallinen Membrankörper (1 ), welcher eine Messmembran (3) und einen die Messmembran umgebende Randbereich (5) aufweist, wobei der Randbereich eine größere Materialstärke aufweist als die Messmembran (3), und wobei der Randbereich eine erste Montageoberfläche (7) aufweist, deren Oberflächennormale durch einen erste Hauptkristallachse gegeben ist; und einen einkristallinen Substratkörper (10), der hinsichtlich der Kristallstruktur das gleiche
Halbleitermaterial aufweist wie der Membrankörper(i ) , wobei der Substratkörper (10) eine zweite Montageoberfläche (14) aufweist, deren Oberflächennormale parallel zur ersten Hauptkristallachse verläuft, wobei der Membrankörper mit dem Substratkörper durch Fügen der ersten Montageoberfläche mit der zweiten Montageoberfläche fest verbunden ist, dadurch gekennzeichnet, dass auch die Orientierungen anderer Hauptkristallachsen von Membrankörper und Substratkörper jeweils parallel zueinander ausgerichtet sind.
2. Drucksensor nach Anspruch 1 , wobei der Membrankörper und der Substratkörper Si, SiC oder Saphir aufweisen.
3. Drucksensor gemäß Anspruch 1 oder Anspruch 2, wobei die erste Hauptkristallachse eine <100>-, <1 1 1 >-Achse ist.
4. Drucksensor gemäß einem der Ansprüche 1 bis 3, wobei die erste Montageoberfläche und die zweite Montageoberfläche mittels einer eutektischen Verbindung gefügt sind.
5. Drucksensor gemäß einem der Ansprüche 1 bis 3, wobei die erste Montageoberfläche und die zweite Montageoberfläche mittels Fusionsbinden gefügt sind.
6. Drucksensor nach Anspruch 5, wobei die erste Montageoberfläche und die zweite Montageoberfläche im Waferverband gefügt sind.
7. Drucksensor nach einem der vorhergehenden Ansprüche, weiterhin umfassend einen Wandler zum Wandeln einer druckabhängigen Verformung der Messmembran in ein elektrisches Signal.
8. Drucksensor nach Anspruch 7,wobei der Wandler ein (piezo-) resistiver oder ein kapazitiver Wandler ist.
9. Drucksensor nach einem der vorhergehenden Ansprüche, wobei der Drucksensor ein Absolutdrucksensor, ein Relativdrucksensor oder ein Differenzdrucksensor ist.
10. Druckmessaufnehmer, umfassend:
einen Drucksensor nach einem der vorhergehenden Ansprüche; und ein Gehäuse, welches in seinem inneren eine Sensorkammer aufweist, in welcher der Drucksensor angeordnet ist, und mindestens einen hydraulischen Pfad, der sich von einer äußeren Oberfläche des Gehäuses in die Sensorkammer erstreckt, um eine Oberfläche der Messmembran mit einem zu messenden Druck zu beaufschlagen.
11. Druckmessaufnehmer nach Anspruch 10, wobei eine Öffnung des hydraulischen Pfades in der äußeren Oberfläche des Gehäuses mit einer Trennmembran überdeckt ist, die entlang eines Randes druckdicht mit der äußeren Oberfläche des Gehäuses verbunden ist, und wobei das zwischen der Trennmembran und der Messmembran eingeschlossene Volumen des hydraulischen Pfades mit einem Übertragungsmedium gefüllt ist.
PCT/EP2010/053825 2009-03-26 2010-03-24 Drucksensor WO2010108949A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/258,543 US8794077B2 (en) 2009-03-26 2010-03-24 Pressure sensor
EP10711204A EP2411781A1 (de) 2009-03-26 2010-03-24 Drucksensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009001892.1 2009-03-26
DE102009001892A DE102009001892A1 (de) 2009-03-26 2009-03-26 Drucksensor

Publications (1)

Publication Number Publication Date
WO2010108949A1 true WO2010108949A1 (de) 2010-09-30

Family

ID=42288982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053825 WO2010108949A1 (de) 2009-03-26 2010-03-24 Drucksensor

Country Status (4)

Country Link
US (1) US8794077B2 (de)
EP (1) EP2411781A1 (de)
DE (1) DE102009001892A1 (de)
WO (1) WO2010108949A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130512A1 (de) * 2011-03-31 2012-10-04 Endress+Hauser Gmbh+Co.Kg Druckfest gekapselter differenzdrucksensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001133A1 (de) * 2009-02-25 2010-08-26 Endress + Hauser Gmbh + Co. Kg Drucksensor mit Halbleiterdruckmesswandler
JP5630088B2 (ja) * 2010-06-16 2014-11-26 ミツミ電機株式会社 ピエゾ抵抗式圧力センサ
DE102011088303A1 (de) * 2011-12-12 2013-06-13 Endress + Hauser Gmbh + Co. Kg Tubusflanschdruckmittler, Druckmessanordnung mit einem solchen Tubusflanschdruckmittler und Druckmessstelle mit einer solchen Druckmessanordnung
US10390333B2 (en) * 2013-05-02 2019-08-20 Huawei Technologies Co., Ltd. System and method for transmission source identification
DE102016115197A1 (de) * 2016-08-16 2018-02-22 Endress + Hauser Gmbh + Co. Kg Füllkörper zur Reduktion eines Volumens einer Druckmesskammer
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
US11378480B2 (en) * 2020-09-21 2022-07-05 Rosemount Inc. Polysilicon on sapphire oil-less pressure sensor
KR102687205B1 (ko) * 2022-08-26 2024-07-22 (주)에이치에스씨엠티 고온 배관용 압력계

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD254271A1 (de) * 1986-12-03 1988-02-17 Geraete & Regler Werke Veb Verfahren zum verbinden von fuegeteilen aus gleichem material
EP0400939A2 (de) 1989-05-30 1990-12-05 Solartron Group Limited Halbleiterwandler mit Schwingelement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1698121C3 (de) * 1968-03-05 1975-12-11 Conrac Corp., New York, N.Y. (V.St.A.) Piezoelektrischer Druckmesser
US4945769A (en) * 1989-03-06 1990-08-07 Delco Electronics Corporation Semiconductive structure useful as a pressure sensor
US4993143A (en) * 1989-03-06 1991-02-19 Delco Electronics Corporation Method of making a semiconductive structure useful as a pressure sensor
JPH0329829A (ja) 1989-06-27 1991-02-07 Fuji Electric Co Ltd 半導体圧力変換器
US5289721A (en) * 1990-09-10 1994-03-01 Nippondenso Co., Ltd. Semiconductor pressure sensor
JP2000121469A (ja) * 1998-10-16 2000-04-28 Mitsubishi Electric Corp 圧力センサ
DE10231727A1 (de) * 2002-07-13 2004-01-22 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechende Messanordnung
EP1764597B1 (de) * 2005-09-16 2011-03-23 STMicroelectronics Srl Druckwandler mit akoustischen Oberflächenwellen
JP4916006B2 (ja) * 2007-02-28 2012-04-11 株式会社山武 圧力センサ
DE102007053859A1 (de) * 2007-11-09 2009-05-14 Endress + Hauser Gmbh + Co. Kg Druck-Messeinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD254271A1 (de) * 1986-12-03 1988-02-17 Geraete & Regler Werke Veb Verfahren zum verbinden von fuegeteilen aus gleichem material
EP0400939A2 (de) 1989-05-30 1990-12-05 Solartron Group Limited Halbleiterwandler mit Schwingelement

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE ET AL: "A silicon directly bonded capacitive absolute pressure sensor", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH LNKD- DOI:10.1016/J.SNA.2006.09.022, vol. 135, no. 2, 4 April 2007 (2007-04-04), pages 507 - 514, XP022016213, ISSN: 0924-4247 *
PFEIFER, WERTHSCHÜTZKY: "Drucksensoren", 1989, VEB VERLAG TECHNIK BERLIN, Berlin, ISBN: 3-341-00660-5, XP002591140 *
RESNIK D ET AL: "Study of low-temperature direct bonding of (111) and (100) silicon wafers under various ambient and surface conditions", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH LNKD- DOI:10.1016/S0924-4247(99)00299-X, vol. 80, no. 1, 1 March 2000 (2000-03-01), pages 68 - 76, XP004189237, ISSN: 0924-4247 *
See also references of EP2411781A1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130512A1 (de) * 2011-03-31 2012-10-04 Endress+Hauser Gmbh+Co.Kg Druckfest gekapselter differenzdrucksensor
CN103477199A (zh) * 2011-03-31 2013-12-25 恩德莱斯和豪瑟尔两合公司 耐压封装的压差传感器
US9054222B2 (en) 2011-03-31 2015-06-09 Endress + Hauser Gmbh + Co. Kg Pressure resistently encapsulated, pressure difference sensor

Also Published As

Publication number Publication date
US8794077B2 (en) 2014-08-05
US20120017690A1 (en) 2012-01-26
EP2411781A1 (de) 2012-02-01
DE102009001892A1 (de) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2411781A1 (de) Drucksensor
EP2691754B1 (de) Druckfest gekapselter differenzdrucksensor
EP3237868B1 (de) Druckmesseinrichtung
DE102004006201B4 (de) Drucksensor mit Siliziumchip auf einer Stahlmembran
EP3365648B1 (de) Druckmesseinrichtung
EP2205955A2 (de) Druck-messeinrichtung
DE102007022852A1 (de) Differenzdruck-Sensoranordnung und entsprechendes Herstellungsverfahren
DE102006032128A1 (de) Vorrichtung zum Messen von Kräften, insbesondere Drucksensor, und zugehöriges Herstellverfahren
EP2464955B1 (de) Relativdrucksensor
DE102017212422B4 (de) Drucksensoranordnung und Verfahren zu deren Herstellung
WO2017050582A1 (de) Druckmesseinrichtung
DE102016107856A1 (de) Druckmesseinrichtung
EP3807608B1 (de) Druckmesseinrichtung und verfahren zu deren herstellung
DE102017109971A1 (de) Drucksensor
DE102008033592B4 (de) Mikromechanischer Drucksensor
EP3714246B1 (de) Druckmesseinrichtung
DE102008043171A1 (de) Drucksensor, insbesondere Drucksensortechnik
DE102006058927A1 (de) Differenzdruckwandler
DE102009045158A1 (de) Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
DE102013113171A1 (de) Piezoresistive Silizium-Differenzdruckmesszelle und Verfahren zu ihrer Herstellung
DE102007034691B4 (de) Differenzdrucksensor
WO2022078578A1 (de) Druckmesszelle und verfahren zur herstellung einer druckmesszelle
DD259040A1 (de) Halbleiterdruckwandler mit linearitaetsfehler - reduzierendem schichtaufbau
DE102016200261A1 (de) Mikroelektronische Bauelementanordnung und entsprechendes Herstellungsverfahren für eine mikroelektronische Bauelementanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10711204

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010711204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010711204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258543

Country of ref document: US