WO2010107015A1 - ガスタービン - Google Patents
ガスタービン Download PDFInfo
- Publication number
- WO2010107015A1 WO2010107015A1 PCT/JP2010/054407 JP2010054407W WO2010107015A1 WO 2010107015 A1 WO2010107015 A1 WO 2010107015A1 JP 2010054407 W JP2010054407 W JP 2010054407W WO 2010107015 A1 WO2010107015 A1 WO 2010107015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- stationary blade
- blade
- rotor
- circumferential direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/02—Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
- F01D1/04—Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
- F01D11/04—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/321—Application in turbines in gas turbines for a special turbine stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/321—Application in turbines in gas turbines for a special turbine stage
- F05D2220/3213—Application in turbines in gas turbines for a special turbine stage an intermediate stage of the turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/81—Modelling or simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- Patent Document 1 the relative position in the circumferential direction of the front and rear stationary blade stages is changed (so-called clocking), and the wake (wake) formed by the blade surface of the upstream stationary blade is changed to the downstream side. It is disclosed that the performance is improved by reaching the stationary blade.
- Patent Literature 2 the relative position in the circumferential direction of the front and rear stationary blade stages is changed, and the downstream blade is formed by the wake (rear flow) formed by the upstream stationary blade or the cooling air blown from the upstream stationary blade. A method of cooling is disclosed.
- the gas turbine according to the second aspect of the present invention includes an nth stage stationary blade (n is a natural number) in which a plurality of stationary blade portions extending in the radial direction are provided at predetermined intervals in the circumferential direction, and the nth stage stationary blade.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
一般的に翼列間の軸方向キャビティ部位の信頼性を向上させるには、軸方向キャビティ内に挿入しているシール空気量を増やし、主流の高温ガスが入り込まないようにする必要がある。しかしながら、シール空気を増やす事は、ガスタービンの性能を落とす事になる。
また、翼列間の軸方向キャビティから主流に漏れだすシール空気は、主流より低温のガスであり、翼面(シュラウドやプラットフォーム面含む)を冷却する能力があるが、一般的に翼面などの主流部では、翼によって作り出された流れのパターンが支配的であるため、この漏れ出したシール空気で効果的に冷却を行う事が難しい。
ガスタービンの運転実績やリグ試験、非特許文献1から、軸方向キャビティの内部には、主流におかれた静翼や動翼などの翼1枚おきの小さな周方向間隔の圧力・ガス温度分布に加え、全周(360deg)に数個程度のもしくは、複数枚の翼周方向範囲にまたがる、大きい周方向間隔の渦や、圧力分布や温度分布が流れの性質上生じ易い事が分かっている。また、実際のガスタービンエンジンでは構造上完全な周方向の対称性を満たす事が難しく、構造的な周方向の非対称性も、軸方向キャビティ内で全周に1~数個程度の周期の圧力分布を生じさせる要因になる。
したがって、設計する際には、この様な周方向の不均一性も考慮して、余裕のある多めのシール空気量の設定が必要となる。
特許文献2には前後の静翼段の周方向における相対位置を変化させて、上流側の静翼によって形成されるウェーク(後流)もしくは上流側の静翼から吹き出される冷却空気によって下流翼の冷却を行う方法が開示されている。
また、特許文献2は、高温ガスにさらされる部品の耐久性については考慮されているが、静翼と動翼の軸方向キャビティの存在やそこから漏れ出るシール空気の存在は考慮されていない。また、特許文献2では、例えば、静翼、動翼、静翼と3つの連続した翼列配置では、下流側の静翼を冷却するために、上流側に配置された静翼からのウェーク(後流)もしくは上流側に配置された静翼面から吹き出された低温の空気を利用している。上流側の静翼から吹き出された低温のガスは、下流側の静翼に到達する前に、中間の回転中の動翼を通過するため、下流静翼に到達する前に、途中で撹拌され、主流の高温ガスと混合が促進され、冷却能力が低下する。
これに対して、本発明者は、翼のすぐ上流に位置するハブ側、またはチップ側の軸方向キャビティの存在に着目し、軸方向キャビティ部位の耐久性の課題と、軸方向キャビティから主流へ漏れ出す主流より温度の低いシール空気がすぐ下流翼の冷却に効果的に使われていない点に着目した。
すなわち、本発明の第1の態様にかかるガスタービンは、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n段静翼(nは自然数)と、該第n段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n段動翼と、該第n段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+1段静翼と、該第n+1段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+1段動翼とを備えたガスタービンであって、前記第n段静翼と前記第n+1段静翼の前記静翼部の枚数の差が0又は5以上とされ、及び/又は、前記第n段動翼と前記第n+1段動翼の前記動翼部の枚数の差が0又は5以上とされ、前記第n段静翼と前記第n+1段静翼の周方向における相対位置は、前記第n+1段静翼の前記静翼部のハブ側からのスパン方向の長さの0%以上15%以下の範囲、及び/又は、85%以上100%以下の範囲で、前記第n段静翼の前記静翼部によって形成された後流が、前記第n+1段静翼の前記静翼部の前縁を中心として周方向に±1/4ピッチ(1ピッチは隣り合う前記静翼部の周方向間隔)の範囲に導かれるように決定されている。
その上で、第n段静翼と第n+1段静翼との周方向における相対位置を調整することによって、静翼部のスパンの0%以上15%以下のハブ近傍の範囲、及び/又は、85%以上100%以下のチップ近傍の範囲で、第n段静翼の静翼部によって形成された後流が第n+1段静翼の静翼部の前縁を中心として周方向に±1/4の範囲に導かれるようにした。これにより、第n+1段静翼のハブ近傍またはチップ近傍の冷却が促進されることになり、従来から困難とされていたハブ近傍またはチップ近傍の冷却が改善されることになる。特に、ハブ近傍の流れの改善によって、第n段動翼と第n+1段静翼との間のハブ側に形成されるキャビティから導かれるシール空気の流れを有効に利用することができるので、ガスタービン効率の低下を来すことなく冷却を行うことができる。
その上で、第n段静翼と第n+1段静翼との周方向における相対位置を調整することによって、第n段動翼と第n+1段静翼との間のキャビティから第n+1段静翼のハブ側シュラウド上を流れるシール空気の流れが、ハブ側シュラウド表面のピーク熱応力位置に流れるように調整する。これにより、第n+1段静翼のハブ側シュラウドにおけるピーク熱応力を低減することができる。
なお、「ピーク熱応力位置」は、熱流体場のシミュレーションにより、局所的な高温部として把握することができる。第n段静翼と第n+1段静翼との周方向における相対位置を変化させ、得られたピーク熱応力位置にシール空気が流れるように周方向相対位置を調整する。
静翼部および動翼部の枚数が20枚未満の場合には、1~4以下の整数比としても、4枚以下で前後の段の翼の粗密を繰り返すことになるので、静翼部および動翼部の枚数は20枚以上が必要である。
[第1実施形態]
図1には、ガスタービンのタービン部における側断面が部分的に示されている。このタービン部は、空気を圧縮する軸流圧縮機(図示せず)と、圧縮された空気を燃焼用空気として燃料を燃焼させる燃焼器(図示せず)の下流側に接続されている。
図1に示されているように、タービン部には、燃焼器からの燃焼ガスの流れに沿って、図において左方から右方へ向かって、第1段動翼1、第2段静翼3、第2段動翼5、および第3段静翼7が配置されている。なお、第1段動翼1の上流側に位置する第1段静翼については図示されていない。同様に、第3段静翼7の下流側に位置する第3段動翼や第4段静翼等についても図示が省略されている。
また、図示されていないが、各動翼1,5の回転軸線は、同図において下方に水平方向に延在して位置している。
第2段静翼3には、半径方向に延在する複数の静翼部13が設けられている。各静翼部13は、周方向に等間隔にて配置されている。各静翼部は、ハブ側シュラウド13aを介して回転軸線側に固定され、チップ側シュラウド13bを介して外筒側に固定されている。
第2段動翼5には、半径方向に延在する複数の動翼部15が設けられている。各動翼部15は、ロータ16対して固定されており、周方向に等間隔にて配置されている。
第2段静翼7には、半径方向に延在する複数の静翼部17が設けられている。各静翼部17は、周方向に等間隔にて配置されている。各静翼部は、ハブ側シュラウド17aを介して回転軸線側に固定され、チップ側シュラウド17bを介して外筒側に固定されている。
なお、図示されていないが、第3段動翼や第4段静翼についても、同様の構成とされている。
そして、第2段静翼3と第3段静翼7の周方向における相対位置は、クロッキングによって、第3段静翼7の静翼部17のハブ側からのスパン方向の長さの0%以上15%以下の範囲で、第2段静翼3の静翼部13によって形成された後流(ウェーク)が、第3段静翼7の静翼部17の前縁に導かれるように決定されている。
図3には、第2段静翼3、第2段動翼5および第3段静翼7の翼列が示されている。同図には、第2段静翼3の静翼部13によって形成された後流22が示されている。この後流23は、動翼部15間の流路を通り、第3段静翼17へと導かれるようになっている。
本実施形態では、図2に示すように、第3段静翼7の静翼部17のハブ側からのスパン方向の長さの0%以上15%以下の範囲で、第2段静翼3の静翼部13によって形成された後流22が第3段静翼7の静翼部17の前縁に導かれるようになっている。これは、第2段静翼3と第3段静翼7とをクロッキングする(周方向の相対位置をずらす)ことによって実現することができる。実際には、数値流体(CFD)解析を行うことによってクロッキング位置が決定される。例えば、図1の2点鎖線で囲った範囲25で解析を行う。この範囲25に示されているように、軸方向キャビティ20の流れについても考慮した解析が行われている。
図4には、解析結果である圧力および温度を評価した位置が示されている。すなわち、符号27で示されているように、圧力および温度は、第3段静翼7の静翼部17のハブ側シュラウド17aの前端の中間高さ位置において評価した。
図5には、圧力に関する解析結果が示されている。同図において、太線が本実施形態(図2の符号17参照)を示し、細線が比較例(図2の符号24参照)を示している。本実施形態では、圧力(静圧)の高低差が比較例に対して小さくなっており、かつ、平均圧力が小さくなっていることが分かる。このように、シュラウド17aの前端における圧力を小さくすることができるので、軸方向キャビティ20およびシュラウド17a表面の冷却効果が得られることが分かる。
図7には、図4に示した評価位置27における温度分布が示されている。同図において、太線が本実施形態(図2の符号17参照)を示し、細線が比較例(図2の符号24参照)を示している。本実施形態では、温度の高低差が比較例に対して小さくなっており、かつ、平均温度が低くなっていることが分かる。
第2段静翼3と第3段静翼7の静翼部13,17の枚数差、及び、第1段動翼1と第2段動翼5の動翼部11,15の枚数差を0としたので、枚数差が1~4となることによって全周において1~4ノーダル(周期)といった比較的低周期の圧力分布または温度分布を回避することとした。
その上で、第2段静翼3と第3段静翼7との周方向における相対位置をクロッキングにより調整することによって、静翼部17のスパンの0%以上15%以下のハブ近傍の範囲で、第2段静翼3の静翼部13によって形成された後流22が第3静翼7の静翼部17の前縁に導かれるようにした。これにより、第3段静翼のハブ近傍の冷却が促進されることになり、従来から困難とされていたハブ近傍の冷却が改善されることになる。特に、クロッキングによるハブ近傍の流れの改善によって、第2段動翼と第3段静翼との間のハブ側に形成されるキャビティ20から導かれるシール空気の流れを有効に利用することができるので、ガスタービン効率の低下を来すことなく冷却を行うことができる。
具体的には、翼枚数差については以下のように考える。
翼枚数比(n段静翼:n+1段静翼)が、1:1もしくは2:1の場合では、n+1段静翼周方向全翼枚数で好ましい状態(すなわち、n+1段静翼の前縁0~15%Htの範囲に、n段静翼のウェークがあたる)を生じさせる事ができる。
翼枚数比が1:2や3:2の場合は、n+1段静翼にて2枚につき1枚(1枚おきに)は好ましい状態を生じさせる事ができ、枚数比が1:3、2:3、4:3の場合は3枚につき1枚、1:4、3:4の場合は、4枚につき1枚となる。あまり大きい整数比での場合では、好ましい状態となる翼の数が減り効果が小さくなってしまうので、有効な形態としては4以下の整数比で表される翼枚数が好ましい。
一方、たとえば翼枚数比が20枚:15枚=4:3の場合には、翼枚数が20枚程度で既に枚数差が5枚となってしまうので、翼枚数差の観点からもあまり大きい整数比は好ましくない。
次に、本発明の第2実施形態について説明する。
本実施形態は、第1実施形態と同様に、クロッキングによってハブ側またはチップ側の冷却を改善するものである。したがって、動翼や静翼等の構成は同様であるので、その説明は省略する。
本実施形態では、第2段静翼3と第3段静翼7の周方向における相対位置を、クロッキングによって、第2段動翼5と第3段静翼7のハブ側に形成された軸方向キャビティ20から第3段静翼7のハブ側シュラウド17aの表面上を流れるシール空気の流れが、ハブ側シュラウド17a表面のピーク熱応力位置に流れるように設定する。
これにより、第3段静翼7のハブ側シュラウド17aにおけるピーク熱応力を低減することができる。
このように、本実施形態によれば、クロッキングによって主流ガス流れを調整することにより、静翼のハブ側またはチップ側の冷却を改善することができる。
次に、本発明の第3実施形態について説明する。
本実施形態は、第1実施形態と同様に、周方向の圧力分布および温度分布を改善するものである。したがって、第1実施形態と同様の構成についてはその説明を省略する。
本実施形態では、各動翼1,5および各静翼3,7の翼枚数が20枚以上とされている。
第2段静翼3と第3段静翼7の翼枚数の差、及び、第3段静翼7と第4段静翼の翼枚数の差は、0又は5以上とされている。
第2段静翼、第3段静翼および第4段静翼の翼枚数比は、1~4以下の整数比(ただし、1:1:1は除く。)とされている。
静翼部の翼枚数が20枚未満の場合には、1~4以下の整数比としても、4枚以下で前後の段の翼の粗密を繰り返すことになるので、静翼部の枚翼数は20枚以上が必要である。
なお、図8には、参考例として、5枚以上の翼枚数で翼間隔の粗密を繰り返す状態が示されている。
また、静翼に代えて或いは静翼と共に、動翼についても本実施形態の翼枚数比としても良い。具体的には、第1段動翼1と前記第2段動翼5の翼枚数の差、及び、第2段動翼5と第3段動翼の翼枚数の差を0又は5以上とし、第1段動翼、第2段動翼および第3段動翼の翼枚数比を1~4以下の整数比(ただし、1:1:1は除く。)とする。
3 第2段静翼
5 第2段動翼
7 第3段静翼
11,15 動翼部
13,17 動翼部
Claims (4)
- 半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n段静翼(nは自然数)と、
該第n段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n段動翼と、
該第n段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+1段静翼と、
該第n+1段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+1段動翼と、
を備えたガスタービンにおいて、
前記第n段静翼と前記第n+1段静翼の前記静翼部の枚数の差が0又は5以上とされ、及び/又は、前記第n段動翼と前記第n+1段動翼の前記動翼部の枚数の差が0又は5以上とされ、
前記第n段静翼と前記第n+1段静翼の周方向における相対位置は、前記第n+1段静翼の前記静翼部のハブ側からのスパン方向の長さの0%以上15%以下の範囲、及び/又は、85%以上100%以下の範囲で、前記第n段静翼の前記静翼部によって形成された後流が、前記第n+1段静翼の前記静翼部の前縁を中心として周方向に±1/4ピッチ(1ピッチは隣り合う前記静翼部の周方向間隔)の範囲に導かれるように決定されているガスタービン。 - 半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n段静翼(nは自然数)と、
該第n段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n段動翼と、
該第n段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+1段静翼と、
該第n+1段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+1段動翼と、
を備えたガスタービンにおいて、
前記第n段静翼と前記第n+1段静翼の前記静翼部の枚数の差が0又は5以上とされ、及び/又は、前記第n段動翼と前記第n+1段動翼の前記動翼部の枚数の差が0又は5以上とされ、
前記第n段静翼と前記第n+1段静翼の周方向における相対位置は、前記第n段動翼と前記第n+1段静翼のハブ側に形成されたキャビティから該第n+1段静翼のハブ側シュラウド表面上を流れるシール空気の流れが、該ハブ側シュラウド表面のピーク熱応力位置に流れるように設定されているガスタービン。 - 前記第n+1段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+2段静翼と、
該第n+2段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+2段動翼と、
を備えたガスタービンにおいて、
前記第n+1段静翼と前記第n+2段静翼の前記静翼部の枚数の差が0又は5以上とされ、及び/又は、前記第n+1段動翼と前記第n+2段動翼の前記動翼部の枚数の差が0又は5以上とされている請求項1又は2に記載のガスタービン。 - 半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n段静翼(nは自然数)と、
該第n段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n段動翼と、
該第n段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+1段静翼と、
該第n+1段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+1段動翼と、
該第n+1段動翼の燃焼ガス流れ下流側に配置され、半径方向に延在する静翼部が周方向に所定間隔にて複数設けられた第n+2段静翼と、
該第n+2段静翼の燃焼ガス流れ下流側に配置され、半径方向に延在する動翼部が周方向に所定間隔にてロータの外周上に複数設けられた第n+2段動翼と、
を備えたガスタービンにおいて、
前記静翼部および前記動翼部の枚数は、20枚以上とされ、
前記第n段静翼と前記第n+1段静翼の前記静翼部の枚数の差、及び、前記第n+1段静翼と前記第n+2段静翼の前記静翼部の枚数の差が0又は5以上とされ、及び/又は、前記第n段動翼と前記第n+1段動翼の前記動翼部の枚数の差、及び、前記第n+1段動翼と前記第n+2段動翼の前記動翼部の枚数の差が0又は5以上とされ、
第n段静翼、第n+1段静翼および第n+2段静翼の前記静翼部の枚数比、または、第n段動翼、第n+1段動翼および第n+2段動翼の前記動翼部の枚数比が、1~4以下の整数比(ただし、1:1:1は除く。)とされているガスタービン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080002931.5A CN102187061B (zh) | 2009-03-19 | 2010-03-16 | 燃气轮机 |
EP10753507.2A EP2410125B1 (en) | 2009-03-19 | 2010-03-16 | Gas turbine |
US13/122,580 US8734095B2 (en) | 2009-03-19 | 2010-03-16 | Gas turbine |
KR1020117008077A KR101286330B1 (ko) | 2009-03-19 | 2010-03-16 | 가스 터빈 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009068716A JP5374199B2 (ja) | 2009-03-19 | 2009-03-19 | ガスタービン |
JP2009-068716 | 2009-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010107015A1 true WO2010107015A1 (ja) | 2010-09-23 |
Family
ID=42739675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054407 WO2010107015A1 (ja) | 2009-03-19 | 2010-03-16 | ガスタービン |
Country Status (6)
Country | Link |
---|---|
US (1) | US8734095B2 (ja) |
EP (1) | EP2410125B1 (ja) |
JP (1) | JP5374199B2 (ja) |
KR (1) | KR101286330B1 (ja) |
CN (2) | CN103557033B (ja) |
WO (1) | WO2010107015A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277172B2 (en) * | 2009-03-23 | 2012-10-02 | General Electric Company | Apparatus for turbine engine cooling air management |
US8734087B2 (en) * | 2010-06-28 | 2014-05-27 | Hamilton Sundstrand Space Systems International, Inc. | Multi-stage centrifugal fan |
US8684684B2 (en) * | 2010-08-31 | 2014-04-01 | General Electric Company | Turbine assembly with end-wall-contoured airfoils and preferenttial clocking |
US20130081402A1 (en) * | 2011-10-03 | 2013-04-04 | General Electric Company | Turbomachine having a gas flow aeromechanic system and method |
US20140072433A1 (en) * | 2012-09-10 | 2014-03-13 | General Electric Company | Method of clocking a turbine by reshaping the turbine's downstream airfoils |
US20140068938A1 (en) * | 2012-09-10 | 2014-03-13 | General Electric Company | Method of clocking a turbine with skewed wakes |
WO2014055104A1 (en) * | 2012-10-01 | 2014-04-10 | United Technologies Corporation | Gas turbine engine with first turbine vane clocking |
US9435221B2 (en) | 2013-08-09 | 2016-09-06 | General Electric Company | Turbomachine airfoil positioning |
JP6134628B2 (ja) * | 2013-10-17 | 2017-05-24 | 三菱重工業株式会社 | 軸流式の圧縮機、及びガスタービン |
US9869190B2 (en) | 2014-05-30 | 2018-01-16 | General Electric Company | Variable-pitch rotor with remote counterweights |
US10072510B2 (en) | 2014-11-21 | 2018-09-11 | General Electric Company | Variable pitch fan for gas turbine engine and method of assembling the same |
US10100653B2 (en) | 2015-10-08 | 2018-10-16 | General Electric Company | Variable pitch fan blade retention system |
DE102015223212A1 (de) * | 2015-11-24 | 2017-05-24 | MTU Aero Engines AG | Verfahren, Verdichter und Strömungsmaschine |
JP2022013322A (ja) * | 2020-07-03 | 2022-01-18 | 三菱重工業株式会社 | タービン |
US11674435B2 (en) | 2021-06-29 | 2023-06-13 | General Electric Company | Levered counterweight feathering system |
US11795964B2 (en) | 2021-07-16 | 2023-10-24 | General Electric Company | Levered counterweight feathering system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09512320A (ja) * | 1994-04-19 | 1997-12-09 | ユナイテッド テクノロジーズ コーポレイション | ガスタービンのエアフォイルのクロッキング |
JP2002155701A (ja) | 2000-08-16 | 2002-05-31 | General Electric Co <Ge> | 時計方向にずらしたタービン翼形部の冷却 |
JP2009144716A (ja) * | 2007-12-14 | 2009-07-02 | Snecma | ターボ機械用の多段タービンを設計する方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3112866A (en) * | 1961-07-05 | 1963-12-03 | Gen Dynamics Corp | Compressor blade structure |
JPS54114618A (en) * | 1978-02-28 | 1979-09-06 | Toshiba Corp | Moving and stator blades arranging method of turbine |
JPS6088002U (ja) * | 1983-11-24 | 1985-06-17 | 株式会社日立製作所 | ガスタ−ビン |
US4968216A (en) * | 1984-10-12 | 1990-11-06 | The Boeing Company | Two-stage fluid driven turbine |
JP2000034902A (ja) * | 1998-07-17 | 2000-02-02 | Mitsubishi Heavy Ind Ltd | ガスタービン冷却動翼 |
IT1320722B1 (it) * | 2000-10-23 | 2003-12-10 | Fiatavio Spa | Metodo per il posizionamento di schiere di stadi di una turbina,particolarmente per motori aeronautici. |
ES2310307T3 (es) * | 2005-05-10 | 2009-01-01 | Mtu Aero Engines Gmbh | Procedimiento para la optimizacion de la corriente en motores de turbopropulsion de varias fases. |
US8087253B2 (en) * | 2008-11-20 | 2012-01-03 | General Electric Company | Methods, apparatus and systems concerning the circumferential clocking of turbine airfoils in relation to combustor cans and the flow of cooling air through the turbine hot gas flowpath |
-
2009
- 2009-03-19 JP JP2009068716A patent/JP5374199B2/ja active Active
-
2010
- 2010-03-16 US US13/122,580 patent/US8734095B2/en active Active
- 2010-03-16 KR KR1020117008077A patent/KR101286330B1/ko active IP Right Grant
- 2010-03-16 EP EP10753507.2A patent/EP2410125B1/en active Active
- 2010-03-16 WO PCT/JP2010/054407 patent/WO2010107015A1/ja active Application Filing
- 2010-03-16 CN CN201310491643.6A patent/CN103557033B/zh active Active
- 2010-03-16 CN CN201080002931.5A patent/CN102187061B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09512320A (ja) * | 1994-04-19 | 1997-12-09 | ユナイテッド テクノロジーズ コーポレイション | ガスタービンのエアフォイルのクロッキング |
JP2002155701A (ja) | 2000-08-16 | 2002-05-31 | General Electric Co <Ge> | 時計方向にずらしたタービン翼形部の冷却 |
JP2009144716A (ja) * | 2007-12-14 | 2009-07-02 | Snecma | ターボ機械用の多段タービンを設計する方法 |
Non-Patent Citations (3)
Title |
---|
ASME PAPER, pages 1 - 10 |
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, vol. 126, no. 4, October 2004 (2004-10-01), pages 786 - 793 |
See also references of EP2410125A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2410125A4 (en) | 2016-06-08 |
JP5374199B2 (ja) | 2013-12-25 |
US20110189003A1 (en) | 2011-08-04 |
KR101286330B1 (ko) | 2013-07-15 |
CN103557033A (zh) | 2014-02-05 |
EP2410125A1 (en) | 2012-01-25 |
JP2010223010A (ja) | 2010-10-07 |
EP2410125B1 (en) | 2022-04-27 |
US8734095B2 (en) | 2014-05-27 |
KR20110050738A (ko) | 2011-05-16 |
CN102187061B (zh) | 2015-11-25 |
CN102187061A (zh) | 2011-09-14 |
CN103557033B (zh) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5374199B2 (ja) | ガスタービン | |
US8075256B2 (en) | Ingestion resistant seal assembly | |
JP5631686B2 (ja) | 間隙流れ制御のための渦チャンバ | |
US8573925B2 (en) | Cooled component for a gas turbine engine | |
US10422233B2 (en) | Baffle insert for a gas turbine engine component and component with baffle insert | |
JP2012052524A (ja) | 端壁輪郭形成の翼形部及び選択的クロッキングを有するタービン組立体 | |
US20080050233A1 (en) | Turbo Machine | |
JP2015017608A (ja) | ガスタービン・シュラウド冷却 | |
JP2010156339A (ja) | タービンエーロフォイルのクロッキング | |
JPWO2012160586A1 (ja) | ターボ機械のケーシングシュラウド | |
JP5586407B2 (ja) | ターボ機械用の成形ハニカムシール | |
JP2011140943A (ja) | 逆圧力勾配シール機構 | |
JP2015075103A (ja) | 冷却を強化したガスタービン翼 | |
JP6496539B2 (ja) | タービンバケットおよびガスタービンエンジンのタービンバケットを冷却する方法 | |
EP3441564A1 (en) | Tubine component comprising a platform with a depression | |
US9500085B2 (en) | Method for modifying gas turbine performance | |
KR101737716B1 (ko) | 가스 터빈 및 외측 슈라우드 | |
JP2010019256A (ja) | タービンダブテール用のラビリンスシール | |
KR20190000306A (ko) | 터보 기계의 로터 블레이드 | |
US20190145266A1 (en) | Gas turbine engines with improved airfoil dust removal | |
JP5770970B2 (ja) | ガスタービンエンジン用タービンノズル | |
KR20230165705A (ko) | 응력 완화 냉각 회로를 가지는 터빈 hgp 부품 | |
JP2018040282A (ja) | 軸流タービン及びそのダイヤフラム外輪 | |
JP6659825B2 (ja) | タービンエンジン用のディフューザおよびタービンエンジン用のディフューザを形成する方法 | |
US20180230813A1 (en) | Turbomachine Rotor Blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080002931.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753507 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010753507 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13122580 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117008077 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |